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Abstract 

Human-level natural language understanding (NLU) of open 
text is far beyond the current state of the art. In practice, if 
deep NLU is attempted at all, it is within narrow domains. We 
report a program of R&D on cognitively modeled NLU that 
works toward depth and breadth of processing simultaneous-
ly. The current contribution describes lessons learned – scien-
tifically and methodologically – from an exercise in applying 
deep NLU to open-domain texts. An overarching lesson was 
that although learning to compute sentence-level semantics 
seems like a natural step toward computing full, context-
sensitive, semantic and pragmatic meaning, corpus evidence 
underscores just how infrequently semantics can be cleanly 
separated from pragmatics. We conclude that a more compre-
hensive methodology for automatic example selection and re-
sult validation is needed as prerequisite for success in devel-
oping NLU applications operating on open text.  

Keywords: natural language understanding; cognitive model-
ing; language-endowed intelligent agents 

Introduction 
Operationalizing human-level natural language understand-
ing (NLU) in computer systems has been a goal of AI since 
its inception. People want intelligent agents to understand 
not only what they say but what they mean, taking into ac-
count the linguistic and real-world context, shared back-
ground knowledge, the interlocutors’ mutually understood 
plans and goals, and even their mental, physical, and emo-
tional states. All of these considerations explain why hu-
man-level NLU is an AI-complete problem. 
 It is difficult to carve out a program of R&D for AI-
complete problems. With respect to natural language, the 
field has responded in five broadly-defined ways.1 (1) Avoid 
meaning. For the past 25 years, mainstream NLP has chosen 
to pursue so-called knowledge-lean methods, i.e., the statis-
tical processing of big data with little to no computation of 
meaning. This has proven useful for certain applications but 
is not moving toward explainable, human-level NLU in ser-
vice of intelligent agents. (2) Address select aspects of 
meaning. Computing individual aspects of meaning has im-

                                                             
1 This is a thumbnail sketch of a long history and extensive liter-

ature. See Nirenburg and McShane (2016) for a more in-depth 
treatment. 

proved the quality of some primarily knowledge-lean sys-
tems. Topics addressed include, e.g., case-role identifica-
tion, speech act detection, textual coreference resolution, 
and the semantic clustering of word strings using distribu-
tional semantics (Jurafsky and Martin, 2009). (3) Pursue 
deep NLU in a (very) narrow domain. This provides sys-
tems with the kinds of knowledge and reasoning capabilities 
that people leverage when interpreting language (e.g., Allen 
et al. 2007; Lindes and Laird, 2016). (4) Build theories 
without systems. Such work anticipates that prerequisites – 
such as NLU – will be eventually be fulfilled externally, and 
is typical in the fields like computational formal semantics 
and machine reasoning. (5)  Build extensive theories but 
implement and evaluate just a subset. This appears to be the 
choice of the dialog specialist David Traum (compare 
Traum 1994 for scientific work with Nouri et al. 2011 for 
application-oriented work).  

The program of R&D described here – developing Lan-
guage-Endowed Intelligent Agents (LEIAs) within the On-
toAgent cognitive architecture – offers a sixth approach to 
attacking the AI-complete problem of human-level NLU 
(McShane, Nirenburg and English, 2018). It pursues depth 
of analysis and breadth of coverage concurrently, but 
with appropriately flexible expectations about the coverage, 
quality, and confidence of analyses depending on the corre-
lation of text inputs with knowledge bases. It focuses on the 
actionability of language interpretations, as judged by the 
agent systems that use them. 

 Of the many theoretical and methodological issues at the 
core of this program of work (McShane, Nirenburg and 
Beale, 2016), the following are particularly relevant for this 
discussion. 

 
1.  LEIAs are modeled after humans. Like humans, they do 

not need to understand everything their interlocutors 
say and mean; instead, they need to achieve actionable 
interpretations, defined as interpretations that are suffi-
cient to support reasoning about action. 

2.  The same knowledge that allows LEIAs to function 
intelligently in their domain of expertise supports lan-
guage-oriented reasoning in that domain. Full NLU is 
not possible without such knowledge. 
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3.  For both theoretical and methodological reasons, NLU 
is best implemented as a series of layers of ever-deeper 
analysis, resulting in ontologically-grounded text mean-
ing representations (TMRs) that are well-suited to agent 
reasoning. 

4.  Most narrow-domain approaches seek to avoid disam-
biguation, one of the hardest problems of NLU; howev-
er, such approaches will not attain a human level of un-
derstanding until this problem is solved and agents 
function with a realistic-sized lexicon. 

5.  A very large number of linguistic phenomena (to name 
just a few: nominal compounding; all aspects of refer-
ence resolution, including fragments and ellipsis; non-
literal language; indirect modification; indirect speech 
acts; implicatures) must be handled by LEIAs no matter 
their domain of specialization (McShane and Niren-
burg, forthcoming). The computational microtheories 
accounting for these phenomena are best investigated 
using open text. 

 
The original hypothesis underlying the work described here 
was that we could quickly validate many of the implemented 
microtheories of NLU for LEIAs using an open corpus. 
Why an open corpus? As discussed in more detail later, this 
method a) provides useful fodder for improving microtheo-
ries, b) makes the work “real” in the eyes of the mainstream 
NLP community, and c) shows how the analysis capabilities 
can be usefully applied to open texts.      

In formulating the reported exercise, we assumed that a 
corpus would contain a sufficient number of sentences that 
could be automatically interpreted using general linguistic 
and world knowledge, without the need for the finer-grain 
knowledge resources supporting agent-reasoning capabili-
ties that are available only in narrower domains. Such sen-
tences would be similar in nature, but methodologically 
preferable, to the invented examples we use to test out indi-
vidual microtheories.  

We further assumed that a simple, automatic method of 
extracting examples would serve the purpose. However, this 
experience has shown that, in order to sufficiently evaluate 
all of the microtheories contributing to the system, we need 
a more sophisticated example extraction methodology oper-
ating over a larger corpus, as well as more human effort 
devoted to reviewing results. However, rather than change 
the original hypothesis by allocating more time and effort to 
data collection, we heeded the lessons learned from the Re-
producibility Project (Open Science Collaboration, 2015) 
and its analytical wake: It is not appropriate to tweak hy-
potheses or results until they achieve the envisioned thresh-
old. Research habitually involves things not going to plan, 
and the associated lessons learned are central to progress in 
the field. This paper focuses on lessons learned. But we 
must begin with the briefest introduction to the NLU envi-
ronment at hand.  

The OntoAgent Cognitive Architecture 
The OntoAgent cognitive architecture underlying LEIAs 
includes the modules of perception, reasoning and action. 
Language is one of the perception modes of a LEIA. Lan-
guage inputs are analyzed into disambiguated, ontological-
ly-grounded meaning representations. For example, the 
bare-bones basic TMR for I knocked on the door (stripped 
of metadata and calls to the procedural semantic routines for 
coreference resolution) is as follows:  
 
(HIT-1  (AGENT   HUMAN-1) 
  (THEME   DOOR-1) 
  (INSTRUMENT   HAND (OPENNESS 0))  

  (TIME   < find-anchor-time)) ; indicates past tense 
 

The fact that the instrument is a closed hand is provided by 
the lexical description of the selected sense of knock in the 
system’s lexicon, which also expects the object of the prep-
osition to refer to, among other possibilities, a door.  

Although we cannot adequately familiarize readers with 
the theory of Ontological Semantics, the agent applications 
that this approach to NLU has supported, the knowledge 
bases employed, or how the analysis process works (see, 
e.g., Nirenburg and Raskin, 2004; McShane, Nirenburg, and 
English, 2018; Nirenburg, McShane and Beale, 2008), the 
following facts will serve as orientation. The lexicon con-
tains ~30,000 word senses, which are comprised of linked 
syntactic and semantic representations and, whenever neces-
sary, calls to procedural semantic routines (for example, to 
resolve coreferences). Argument-taking words, multiword 
expressions, and polysemy are richly represented. The se-
mantic descriptions are written in an unambiguous ontologi-
cal metalanguage. The ontology contains ~9,000 concepts 
(~145,000 RDF triples), mostly from the general domain. 
Concepts are described using attributes and relations. 
Scripts detailing complex events are available in select do-
mains.  

The lexicon and ontology were mostly compiled through 
a modest, short-term effort around 25 years ago in service of 
interligua-based machine translation and have been only 
minimally modified since. They were not modified at all for 
the reported exercise. The key benefit of our lexicon is that 
it is far from toy and, therefore, allows us to develop and 
test the essential capability of lexical disambiguation. All 
parts of speech include polysemous entries, and light verbs 
such as have, make, and do have dozens of senses, many of 
which involve multi-word expressions or constructions. The 
ontology, for its part, provides selectional constraints on 
case-roles that support disambiguation, as well as a sub-
strate for various types of language-oriented reasoning, such 
as topic/domain detection based on ontological distance.  

Although these resources have served our research goals 
quite well, their insufficiencies are relevant to the current 
report. We estimate that the lexicon would need to be 
around ten times larger to provide baseline coverage of  
open text, with the necessary acquisition including a large 
percentage of multi-word expressions and constructions. An 
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acquisition effort of this size is, we estimate, no more labor-
intensive than some of the well-known corpus annotation 
efforts in service of supervised machine learning.   
 NLU by LEIAs is reasoning-intensive. The overall pro-
cess is modeled as two types of incrementality: horizontal 
incrementality involves analyzing elements of input as they 
become available to the agent (essentially, word by word); 
vertical incrementality involves applying, on an as-needed 
basis, increasingly sophisticated methods of analysis to the 
given state of input, be it a fragment, a complete utterance, 
or a multi-sentence text. Agents dynamically decide how 
deeply to process chunks of input as they are perceived.  
 There are six stages of vertical incrementality, described 
in greater detail in (McShane and Nirenburg, forthcoming): 
1. Preprocessing and syntactic parsing, for which we use the 
CoreNLP toolset (Manning et al. 2014). 2. Integrating these 
results into our environment, which includes recovering 
from unexpected syntax as well as the initial stage of learn-
ing new words. 3. Basic semantic analysis, which uses lexi-
cal and ontological knowledge for disambiguation and se-
mantic dependency analysis. This includes such advanced 
capabilities as the detection and resolution of many types of 
ellipsis and learning the semantics of unknown words.  4. 
Aspects of reference resolution that do not require full con-
textual grounding. These include resolving textual corefer-
ence, identifying which referring expressions do not require 
a coreferent and why, establishing reference relations that 
are not coreference (e.g., bridging constructions), and recon-
sidering upstream lexical disambiguation decisions based on 
coreference relations. 5. Extended semantic analysis, which 
treats select instances of residual ambiguities and incongrui-
ties using additional general-purpose rule sets. These in-
clude, e.g., ontological patterns for interpreting nominal 
compounds, rules for interpreting metonymies, and dialog-
analysis strategies for integrating the meaning of fragmen-
tary utterances into the discourse. 6. Situated NLU, which 
applies all of an agent’s domain-specific and situational 
knowledge and reasoning to resolve residual ambiguities 
and incongruities, and anchors newly learned knowledge to 
agent memory.  
 If it sounds like this system is claiming to do everything, 
that is, in a certain sense, correct. The overall challenges of 
NLU must be addressed in an integrated system, within an 
architecture and theory that reserves a place for each com-
ponent microtheory. The microtheories must be crafted as 
components of such an overall analysis system. This ap-
proach avoids the two most serious problems of strictly 
modular or limited-scope research: the assumption that pre-
requisites for one’s own work will be provided externally; 
and the avoidance of all cross-modular phenomena.     
 Stages 1-5 involve what some call semantic meaning, as 
contrasted with pragmatic (discourse, situational) meaning. 
This level of meaning should be understandable at the sen-
tence level, outside of context – even if some expressions 
(e.g., pronouns) remain underspecified. Following this ex-
pectation, individual sentences outside of their context were 
the focus of the reported exercise. Given that the ~30,000-

sense lexicon contains over 1,600 verb senses, and that the 
system can process proper nouns аnd learn new words, we 
projected that there would be plenty of appropriate sentenc-
es to seed our exercise. As concerns Stage 6 of processing, it 
cannot be validated using individual sentences outside con-
text; we are working on that separately, within a robotic 
application (Nirenburg et al., 2018).     

Methodology 
Our initial goal was to focus on validating our system rather 
than formally evaluating it in the way that has become 
standard in the field of natural language processing (NLP). 
That methodology is of no use for systems that seek human-
level understanding of language. It is not, therefore, surpris-
ing that mainstream NLP has all but officially placed our 
area of R&D beyond the boundaries of the discipline. For 
example, in their chapter on “Evaluation of NLP Systems” 
in The Handbook of Computational Linguistics and Natural 
Language Processing (Clark, Fox and Lappin, 2010), Res-
nik and Lin do not even address the evaluation of cognitive-
ly-oriented systems that integrate scientific and technologi-
cal goals. They write: “such scientific criteria [involving, 
e.g., the cognitive modeling of human language processing] 
have fallen out of mainstream computational linguistics 
almost entirely in recent years in favor of a focus on practi-
cal applications, and we will not consider them further 
here.” (p. 271) So, we need an alternative valida-
tion/evaluation methodology. 
 There is no truly fast, easy, and complete way to validate 
(no less evaluate) a large and complex knowledge-based 
system, nor can the full set of options be fleshed out in this 
short space. As a starting point, consider just a few of the 
options. (1)  Invent test inputs guided by the knowledge ba-
ses and system capabilities. This gives credit for what does 
work but rarely uncovers unexpected phenomena and is 
viewed skeptically by the field at large. (2) Use inputs lim-
ited to a narrowly-defined domain. This, too, usually in-
volves manual example creation since ‘narrowly-defined’ 
must be enforced; moreover, it fails to give the system or 
component microtheories credit for their applicability across 
domains. (3) Use randomly selected inputs from the open 
domain. Although this is a cornerstone of statistical NLP, it 
is inapplicable to deep NLU given that the environment is 
known to have limited lexical coverage. (4) Focus on full 
sentences from open text that the system analyzes perfectly. 
This approach tasks the system with extracting from open 
text, and processing, only those sentences it hypothesizes it 
can analyze correctly. During validation, people inspect 
only the highest-quality results – i.e., those for which exact-
ly one TMR achieves the highest score, and that score re-
flects high confidence. This is the approach we used for the 
current exercise. Its insufficiencies underlie many of the 
lessons learned from this exercise, as discussed in the next 
section. (5) Focus on subsentential chunks of text from the 
open domain that the system analyzes perfectly. Such 
chunks can represent propositions, individual phenomena 
(e.g., nominal compounds, instances of verb phrase ellipsis), 
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or sentences for which all aspects but one – e.g., an un-
known adverb – are correctly understood. We have used this 
method in past formal evaluations (Nirenburg et al., 2018) 
and have found it useful for vetting individual microtheo-
ries. The problem is that it is time-consuming to formulate a 
vetting regimen for even a single microtheory, let alone the 
dozens that the system currently comprises, or the interac-
tions among them. Additionally, any of the above methods 
can also involve inspecting outputs that are partially correct, 
residually ambiguous, etc.  

Results  
As should be clear by now, this vetting exercise was primar-
ily intended to guide our continued R&D effort. It did – but 
more through lessons learned than from compiling examples 
that work. That being said, we do want to present some ex-
amples to show that our NLU system can, in fact, work on 
open text.   

To further specify the set-up: The system extracted exam-
ples from two randomly selected excerpts of the COCA 
corpus (Davies 2008), one literary and the other journalistic. 
It extracted sentences that included a maximum of one un-
known word, with “known” implying that the lexicon con-
tained an entry with the necessary part of speech. No other 
extraction filters were applied. The system processed the 
sentences into TMRs using Stages 1-5 of our NLU system. 
We manually reviewed only those results that seemed prom-
ising. For example, we did not inspect the TMRs for sen-
tences that were incomprehensible outside of context, or 
that required knowledge or reasoning beyond that available 
in Stages 1-5 of NLU.  

 We spent just a few person-weeks on the exercise, much 
of which involved code debugging (after all, the exercise 
was primarily in service of R&D). However, the examples 
we cite as “correct” were correct before any system modifi-
cations. No amendments to the knowledge bases were made. 
It did not take long to determine that we had learned what 
we could from this exercise, and we, therefore, did not pro-
long it to collect more working examples.  

Unless otherwise noted, all examples presented in this 
section were analyzed perfectly. Any incorrect portions are 
indicated by strikethroughs or explanatory text. Every input 
required disambiguation decisions, in some cases, from a 
large choice space: e.g., He looked for the creek disambigu-
ates between 16 senses of look, and I went into the bath-
room disambiguates between 54 senses of go. The examples 
below are grouped by the specific phenomena they illus-
trate. 
 Complex semantic descriptions. For example, the TMR 
for I knocked on the door includes a hand as the instrument, 
and the TMR for I pointed at the blood includes a finger as 
the instrument.  
 Disambiguation of highly polysemous particles and 
prepositions: She rebelled against him; He stared at the 
ceiling; She jokes with him; She switched on the light; He 
passed through the entrance; I called for a blanket; I 
thought about Amalia; He talked about Leona.  

 Modification and sets: An old white couple lived in a 
trailer.  
 Multiword expressions: He took me by surprise,  
 Verbal disambiguation using a specificity preference. 
For example, in I do not know Dave, three senses of know 
(glossed as be acquainted with, be aware of, and be able to 
identify) formally match the case-role constraints. The sense 
be acquainted with fulfills the tightest case-role constraints, 
so it wins. This example also shows the correct processing 
of the modality indicated by negation. 
 Dynamic sense bunching. This allows the system to un-
derspecify an interpretation rather than end up with compet-
ing analyses. E.g., No, and I didn’t ask him does not permit 
disambiguation between three senses of ask – those encoded 
using the ontological concepts REQUEST-INFO, REQUEST-
ACTION and PROPOSE – so the system bunches these into 
their closest common ontological ancestor, ROGATIVE-ACT, 
whose case-roles are correctly understood as AGENT and 
THEME.  
 Lateral selectional constraints for disambiguation. E.g., 
in I heard the hands on the clock move, clock was correctly 
used to disambiguate hands (but since the CoreNLP misi-
dentified “clock move” as a nominal compound, that aspect 
of the analysis was wrong). Similarly, in The arm jerked, 
eyelids rose, the meaning of eyelids was correctly used to 
disambiguate arm between body part and furniture part (but 
rise as applied to eyelids was misanalyzed).  
 New word learning. An example of new noun learning is 
‘uncle’ in The uncle said something to him, which is under-
stood as referring to a HUMAN since the AGENT slot of AS-
SERTIVE-ACT must be filled by a HUMAN. The results of 
learning are understood as provisional, and values of proper-
ties of the newly learned concept are expected to be added 
opportunistically as a side effect of continued processing of 
input – or, alternatively, by a knowledge acquirer. An ex-
ample of new property learning is inconsiderate in Burying 
Leora in Pittsburgh is inconsiderate. The system represents 
the meaning as a generic PROPERTY whose DOMAIN is filled 
by the event BURY (from burying). In Pittsburgh was cor-
rectly analyzed but incorrectly attached to Leora rather than 
burying, following a parsing error by CoreNLP. (Reambig-
uating PP attachments from the CoreNLP parse, so that se-
mantics can weigh in, is on agenda.)  
 The above presents just a small sampling of linguistic 
phenomena that the system covers, along with examples of 
successful analyses. It shows that vision behind the current 
exercise was not ultimately ill-conceived, and illustrates that 
the corpus was, in fact, open-domain. But, as we said earli-
er, we keep this aspect of the report brief in order to focus 
on the main point: lessons learned.  

Lessons Learned  
Most of the types of outcomes of this exercise were predica-
ble beforehand, but in some cases their frequency was rather 
surprising, thus representing a lesson learned. 

1. It is not possible to automatically detect that a needed 
multiword expression (idiom, construction, etc.) is missing 
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in the lexicon. Multiword expressions are central to a hu-
man’s knowledge of language and, accordingly, to modeling 
NLU for LEIAs. When a multiword expression is missing 
from the lexicon, the system analyzes the components com-
positionally, which necessarily results in an error. All of the 
following examples were misanalysed because interpreting 
the meaning of the underlined portion required a multiword 
lexical sense that had not yet been acquired. She is long 
gone from the club. I got a good look at that shot; The 
Knicks can live with that. But once Miller gets on a roll, he 
can make shots from almost 30 feet. I can't say enough 
about him. This better be good. You miss the point. I should 
have known better. The lesson learned involves the frequen-
cy with which the system will be overly confident in its 
analysis, not having recognized that an input component is 
not semantically compositional.  

2. The methodology of focusing on completely correct 
TMRs was suboptimal. Often, the meaning representation   
of a portion of the input nicely demonstrates a particular 
functionality, even though some aspect of the overall sen-
tence interpretation is incorrect. Many such mistakes reflect 
the use of microtheories that are currently underdeveloped, 
such as those for relative temporal and spatial relations (in 
recent weeks, 25 feet right of the hole, and for the second 
time this year). When, midstream, we decided to revisit par-
tially correct TMRs, we found many interesting correct 
subanalyses, suggesting that vetting Method #5 described 
above might be superior to the method we used. 

3. The methodology of focusing exclusively on sentences 
that resulted in a single TMR was suboptimal. Outside of 
context, residual ambiguity is quite common. When we de-
cided to revisit analyses that resulted in two output TMRs – 
because the analyzer did not have a reason to prefer one 
over the other – we found examples in which this outcome 
was actually the correct one. For example, the system cor-
rectly detected the ambiguity, and generated multiple cor-
rect candidates, for He stared at the fish, which could refer 
to a live fish (FISH) or its meat (FISH-MEAT); and He glanced 
at the walls could refer to parts of a room (WALL) or parts of 
a person undergoing surgery (WALL-OF-ORGAN).  

4. It can be difficult, even for humans, to describe many 
intended meanings. Consider the following sentences: And 
he came back from the dead. Training was a way of killing 
myself without dying. The supporting actor has become the 
leading man. This is about substance. The roots that are set 
here grow deep. Such examples allow for multiple interpre-
tations, at many levels of vagueness and specificity, depend-
ing on the specific speech situation. The existence of utter-
ances of this type are among the reasons we believe that,  in 
building agent-oriented NLU capabilities, actionability – not 
exhaustive understanding – is key. But for this exercise, 
decision-making about actionability was outside of purview.   

5. The intended meaning can rely more centrally on dis-
course/pragmatic interpretation than semantic analysis. In 
some cases, e.g., for personal pronouns, there is a clear pro-
gression from semantic to pragmatic meaning. However, in 
other cases, semantic meaning is either vague, not directly 

connected with pragmatic meaning, or even relatively un-
important. Space is too short to flesh out these complex 
eventualities, but consider the example It takes two to tango, 
which occurred in our corpus. If we were to write a lexical 
sense for this phrase, how would we describe its meaning? 
Its propositional meaning – something like “a communica-
tion cannot exist without multiple people being agentive” –  
is much less important than its discourse function. That is, 
the speaker is saying that the given situation is an example 
of a generalization about human relations, but the context-
specific pragmatic nuances can range from being a barb 
during a spat (It’s your fault, too, that we’re arguing!) to 
being advice to a friend (If you back off, maybe the other 
person will too). It seems incorrect to lexically record, and 
then give a system credit for computing, semantic meanings 
when it is the pragmatic force that is predictably more im-
portant.  

6. Non-literal language is even more prevalent than we 
had expected – and we had expected a lot. In fact, we have 
methods for detecting and recovering from some types of 
non-literal language, but not the onslaught we encountered 
in this exercise. For example, Everyone was saying we won 
ugly last week and He not only hit the ball, he hammered 
were imperfectly analyzed because the non-literal meanings 
were not correctly recovered. 

7. We need to operationalize reasoning about language 
via affordances. Just as human vision is well-understood to 
be largely driven by expectations, so, too, is language un-
derstanding. Affordances – i.e., the knowledge of what ob-
jects can do and how they can be used – can support reason-
ing about language inputs, particularly if they involve diffi-
cult phenomena, such as non-literal language, unknown 
words, and indirect modifications. For example, we previ-
ously noted that eyelids rose resulted in a misinterpretation 
of ‘rise’. It is unlikely that people encode a word sense of 
‘rise’ that covers eyelids; however, we know that eyelids are 
capable of precious few actions. So a fuzzy matching be-
tween words and concepts for moving up and down is suffi-
cient for a person to understand this. A microtheory of ap-
plying affordances to reasoning about NLU is on our team’s 
agenda. 

8. It is unclear what credit to give semantics without im-
plicatures. On the one hand, semantic analysis is hard 
enough without requiring that NLU systems account for all 
a speaker’s implicatures before claiming any success. On 
the other hand, in some cases semantics and implicatures  
cannot be neatly separated. Consider the example, She's also 
a woman. Reading this in isolation, we understand that the 
context must have been about her in some other social role – 
as a mother, a co-worker, etc. – and that this utterance fo-
cuses attention on her female/sexual side. It is similarly un-
clear what, if anything, would count as a sufficient semantic 
(pre-implicature) analysis of the following: How quickly the 
city claimed the young. They sat by bloodline. I think he is 
coming into good years. Fathers were for that.  
 9. Not invoking domain-oriented expectations is more 
limiting that we had anticipated.  For example, unless you 
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realize you are in a sports context – and know sports-related 
lexical and ontological knowledge – the following are not 
fully interpretable: The Rangers and the Athletics have yet 
to make it. He hit his shot to four feet at the 16th. We stole 
this one.  I wanted the shot. 
 10. Although our system is knowledge-based and all 
processing apart from what is contributed by CoreNLP is 
fully inspectable, the computational complexity of deep NLU 
can make it difficult to fully predict, explain, and trouble-
shoot results. Consider the simple example I almost never 
talk about it, whose words have, respectively, 3/5/2/2/2/1 
senses. The number of candidate TMRs generated is 50, 
with their final scores ranging from -22 to 22.9. There was 
only 1 highest-scoring TMR and it was correct. The 
CoreNLP parse happened to be correct, but since this is not 
always the case, our analyzer compensates by considering 
other syntactic analysis possibilities as well. As a result, the 
process of mapping syntactic dependencies in inputs to the 
variables in the syntactic descriptions in lexicon entries can 
lead to multiple sets of variable assignments for each avail-
able sense. At the semantic level, the system needs to select 
the best sense and set of variable assignments for each word 
by examining the interactions between the semantic con-
straints among all the words that interact with it. In the 
worst case, that can become a computational clique, which 
has exponential time requirements (we employ various 
techniques for reducing or sometimes eliminating this com-
putational drain). Scoring functions are also complex – their 
composition is a research issue in itself. In short, even 
though we can configure a glassbox evaluation, the analysis 
process can, in certain cases, still defy complete explana-
tion.   

Conclusions 
We believe that our original goal – to vet our system’s do-
main-independent microtheories using open text – is achiev-
able. The reason why the focus of this exercise shifted from 
“vetting” to “investigating lessons learned” is because the 
methodology for extracting examples and automatically 
evaluating the quality of output TMRs turned out to be in-
sufficiently developed. The lessons learned will inform the 
creation of a more sophisticated methodology for future 
experiments. To give just a few examples of planned en-
hancements: (a) Including the preceding context for each 
extracted example to allow for coreference and lateral-
constraint heuristics to be leveraged; (b) Automatically ex-
cluding excessively short inputs, direct speech, texts from 
jargon-intensive domains like sports, and inputs containing 
pronouns whose resolution strongly affects disambiguation 
decisions (e.g., it, that and they are more problematic than 
he or she); (c) Using an example-extraction methodology 
that identifies the highest-confidence examples of  each 
word sense, microtheory, etc., from a much larger corpus 
than was used for this exercise; and (d) Including within 
purview high-confidence subsentential results. 
 Apart from lessons learned, this experiment has resulted 
in promising outcomes. The fact that the system correctly 

analyzed some inputs from the open domain – even given 
the shortcomings of the reported methodology and all of the 
challenges natural language predictably presents – suggests  
that deep NLU can have near- and mid-term utility, given an 
appropriate task formulation and improved methods of au-
tomatically judging the system’s confidence in its analyses. 
 Lifelong learning has long been understood as a neces-
sary foundation of AI. Even the current capabilities of the 
reported NLU system can support the learning of lexical 
units and ontological concepts, with the coverage expected 
to rise dramatically even with relatively (by industry stand-
ards) modest knowledge acquisition efforts.  

Our system addresses the open-world problem directly 
and takes responsibility for all upstream processing errors 
(currently, from CoreNLP). In some cases, it can successful-
ly learn new meanings and recover from upstream errors, 
whereas in others it cannot. However, we believe that fail-
ures under real-world circumstances are far preferable to the 
non-real-world experimental set-ups favored by the well-
known task-oriented competitions of statistical NLP.  

Although the reported exercise focused on stages of NLU 
that can be, to some degree, computed outside of context, 
the overall program of work moves toward explainable AI 
covering integrated agent functionalities.  
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