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Abstract

We present a highly efficient, automatic method for the
generation of hievarchical surface triangulations, Given a
sef of scattered points in three-dimensional space, withour
comnectiviry information, our method reconstructs a valid
triangulated surface model in a two-step procedure. First,
we apply clustering to the set of given points and iden-
tify point subsets in locally nearly planar regions. Second,
we construct o surface triangulation from the ourput aof the
clustering step. The owtput of the clustering step 15 a yet
of 2-manifold tiles, which locally approximate the under-
lving, unknown surface. We construct the triangulation of
the entire surface by triangwlating the individuad tiles and
triangularing the “gaps” between the riles. Since we apply
point clustering in a higrarchical fashion we can generate
model hierarchies by rriangulating various levels resulting
[from the hierarchical clustering step.

1. Introduction

Surface reconstruction is concerned with the extraction
of shape information from point sets. Often, these point
sels describe complex objects and are generated by scan-
ning physical objects, by sampling other digital represen-
tations, or by merging data from different sources. Conse-
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quently, they might embody incompletencss, noise and re-
dundancy, which makes a geneml approach for reconstruct-
ing surfaces a challenging problem. In many instances, the
described objects are characterized by high complexity and
high level of detail. Different levels of representation are
needed 10 allow rapid rendering and interactive exploration
and manipulation. Surface reconstruction problems arise in
a wide range of scientific and engineering applications. The
most important application is reverse engineering, i.e.. the
reconstruction of surfaces from digitized data.

We introduce an extremely fast surface reconstruction
technigue that 1s based on cluster analysis, Our approach
generates a multiresolution representation of reconstructed
surfaces from arbitrury point sets. Furthermore, our method
allows us to control the level of detail locally.

Our paper is structured as follows: In Section 2, we
briefly summarize related work in the felds of surface re-
construction, multiresolution modeling and clustering. In
Section 3, we provide an overview of our approach, which
is presented in greater detail in Section 4. The application
of our surface reconstruction approach to a variety of data
sets 15 described in Section 5. We conclude with summa-
rizing the results in Section 6 and give an outlook on fufure
work,



2. Related Work
2.1. Surface Reconstruction

The goal of surface reconstruction methods can be de-
scribed like this:

Surface Reconstruction: Given a set of sample points X
assumed 1o lie on or pear an inknown surface U, consiruct
a surface model § approximating U.

Most surface reconstruction methods require additional
topological knowledge, such as connectivity between data,
surface topology. or orientation.

Paramerric reconstruction represents the reconstructed
surface by mapping a rwo-dimensional parameter domain to
a surface in three-dimensional space. This method usoally
requires knowledge of the topological type of the surface.
Maoreover, in order to converge 1o a valid model, this method
also requires an initial embedding that is sufficiently close
to the original surface and assumes a “good” parameteriza-
tion that may be difficult 1o construct.

Function reconstruction methods deal with surfaces
that are graphs of bivariate functions f{z, y). Various appli-
cations are concemed only with this surface type, including
digital elevation maps, digital satellite imaging, and medical
imaging, It is also possible 10 apply these non-parametric
methods in a local manner to general two-manifold data,
which we can locally represent by a function fiz, ¥).

Constriction methods attempt 10 find a surface mesh
interpolating a set of data points in three-dimensional
space without any given topological information. A three-
manifold (tetrahedral) triangulation of the points {often De-
launay triangulation) is consiructed first. The boundary of
the triangulation is & mesh that defines the convex hull of
the points. Since many surfaces are not convex, “undesired”
clements must be eliminated, Therefore, one has 10 use iter-
ative iques creating a new triangulation by removing
“undesired” tetrahedra. The result of these methods is 4
closed surfuce mesh.

Only a few methods developed fairly recently [15] [14]
can create valid topological and geometrical models from
only three-dimensional coordinates of sample points, Work
in this field includes Edelsbrunner and Muoecke [4]. who
generalize the notion of convex hull 1o that of an alpha hull
{ hull). An interesting, directly related concept is the con-
cept of alpha shapes (o shapes) used for the approxima-
tion of shapes in three-dimensional space (or even higher
dimensions), These shapes are derived purely from finite
sets of scattered, unorganized points, Applications for al-
phit shapes are automatic mesh generation, cluster identifi-
cation for peint sets in three-dimensional space, and mod-
eling complex molecular structures.

Alpha shapes can be viewed as a generalization of the
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Delaunay triangulation. Ignoring certain degenerate cases,
the Delaunay trisngolation of a point set in three dimensions
is characterized by the fact that the sphere passing though
the four vertices of any tetrahedron does not contain any
other point but the four vertices. The Delaunay trangula-
tion defines a complex of edges, triangles, and tetrahedra.
Given a specific alpha value, an edge in this complex be-
longs 10 the alpha shape if the radius of the smallest cir-
cle passing through the edge's end points is less than al-
pha, Similarly, a triangle (tetrahedron) in the complex be-
longs to the alpha shape if the radius of the smallest sphere
passing through the triangle’s {retrahedron's) vertices is less
than alpha. The Delaunay tmangulation itself has an asso-
ciated alpha value of infinity. Graduoally decreasing the al-
pha value wowards zero leads to structures consisting of in-
creasingly “isolated sub-complexes.” e.g., strings of edges,
chains of triangles, groups of connected tetrahedra, and iso-
lated points.

The alphashape approach has great potential for a gen-
eral surface reconstruction paradigm. The alpha-shape ap-
proach will, in general, lead 1o geometric model with rel-
ative “thickness”, ie.. it may locally describe a three-
manifold region. This usually happen when the samples
are noisy or when the underlying surface is not sufficiently
srmoath,

2.2. Multiresolution Modeling

A multiresolution model is a model defined by a set of
detail levels of an object, which can be used to efficiently
access any one of those levels on demand. Surface sim-
plification is a particular form of multiresolution modeling
where the goal is 1o take a polygonal model as input and
generate a simplified model, ie., an approximation of the
original model. A variety of methods have been developed,
mcluding:

s Image Pvramids. They provide a successful and
fairly simple multiresolution technique for raster im-
ages [18).

Virlume Methods, They allow multiresolution repre-
sentations for models that are acquired as volumes and
will be rendered as volumes. If the simplified volumes
must be rendered using polygon-based rendering, then
these volume methods may become less attractive [11].

Decimation Technigues. There are vertex, edge, face
and cell decimation techniques, which are all itera-
tive simplification algorithms, In each step, an ele-
ment is selected for removal according o one of sev-
eral rules, and the algorithm must locally re-triangulate
the ares. Most algorithms were developed 1o reduce



the density while preserving topology.  Such algo-
nihims become computationally expensive Tor large
data sets [207 [13] [17] [7] [8]

o Verter Clustering, This 15 0 method that subdivides an
object's bounding box into an octree-hike gnd struc-
ture, and all the verfices included in a single grid cell
are clustered together and replaced by a single venex
This 15 a very Tast ond general method, buoi it 15 often
affected by a severe [oss of detail and by distortions in
the mode] [19]

& simpificarion Emvelopes.  Such methods provide a
ghohal ermor measure for approximation quality of the
simplified model, and they preserve lopology. How-
ever, these methods require the onginal model to be an
oriented manifold and can have problems with sharp
edges [2]

o Waveler Methods. They typically require a wensor prod
wel structure for o mesh 10 be represented af multi-
ple résolution levels. Recenily, different approaches
have been introduced (o overcome topology restric-
tons | 3] 23]

2.3, Clustering

Clustening is a classical data analysis technique that has
thorcughly been studied over the last few decades and has
also been adopied as a stamdard 1echmigue in the emerging
field of dato mining [1]. So far, very hitle research has been
done on applving data miming and clostenng techmigues o
visualization problems. Veriex clustering, bricAy described
im 2.2, is one of the very few applications of clustering 1o
visualization. Conversely, visualization echnigues can be
apphed o the ouiput of clusier analysis to present exiracied
patterns effectively [ 1.2] [21]

3. Overview of Approach

Swarting with scanered point data in three-dimensional
space, our method 15 able 10 generate a muluresolution
model extremely quickly and awiomatically reconstruct a
vahid geometncal and wpolopoal model,  Oor method 15
unigque in two aspects: (1) It does nol require any conngc-
tivity information to be supplied with the sample points, and
(21 it 15 sigmificanily faster than most currently used meth-
ods, We achieve this by using a clustening methodology
(ailored (o the specific needs of surface reconstruction from
scattered data gt multiple levels of detail

knowing that the data points onginale from s0me on-
known underlving two-dimensional manifold in three di-
mensins, we associale points with a certain cluster based
on coplanarity and distance checks, By using more or less
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restrictive conditions regarding cluster membership, mone
of less poinis are associated with the individual clusiers,
and we thus have a means for controlling the levels of de-
iail. Each clusier 15 essentially characterized by a closed
polygon in three-dimensional space and an associated nor-
mal vector, This information suffices to locally characienze
the underlying surface, These clusiers can thus be thought
of as “iles” - unfortunately unconnected - approximaling
the surface fromm which all sample points onginated

This paradigm leads to an exiremely efficient algorithm
for tile generation at muluple levels of detail. Furthermore,
ihe membership crilenon used w associate samples with a
cluster could easily be changed 1o accommodale hierarchi-
cal representations of vector ficlds in two or three dimen-
sions or nherently three-manifold daa (volumetric data)

We apply the Delaonay trisngulation 1o the set of tle
center points leading o a set of tetrahedra, At this poan,
we have established a iopologically complete representation
which, unforunately, contains oo much connectivity” in-
formuotion: Adler all, we know that our samples belong to
some underlying surface and thus the miangulation that we
meed for the tile centers must define a two-manifold sur-
face. Using a set of rules, we produce a model that, in the
end, will describe a true iwo-manifold surfice irangulation
in space

Poimermrdails s

amal jure [LILE

Figure 1. lllustration of the principal phases
of the algorithm.

The nput data sel consisis of o st of pomnis in space
{without connectivity), The outpur is a valid geometrical
andl topological surface model for the given samples. Our
clustening-based surface reconstruction algonihm consists
of two stages:

& Suage 1@ Tile generation

This stage wses the inpul daa and applies a clusier-
ing algorithm that splits the original data set in gquasi-
planar tiles according 10 o user-defined error wlerance



The goal of the clustering process is to construct a hier-
archy of representations of the model based on the sur-
face description by tiles. The output of the first stage
is @ set of tiles representing clusters of nearly coplanar
peoims.

Stage 2: Reconstruction

In this stage, we fill the gaps between tiles by using
a triangulation algorithm, i.e., we construct the miss-
ing connectivity information. For the triangulation-
siep, we consider only the boundary of the tiles, Since
the triangulation algorithm will lead 10.a maodel whose
boundary is the convex hull of the entire point set.
a posi-processing phase is necessary 10 delete “unde-
sired” trianglesfietrahedra from our model.

4. Surface Reconstruction
4.1. Clustering

The input for our clustering process Is a sel of scat-
tered points in three-dimensional space, Our method for
creating the cluster hierarchy is based on an incremen-
tal and divisive paradigm. Initially, all points are placed
in one cluster, which is recursively split. A cluster C' is
4 subset of the given data se. The center of a cluster
Covnter = (€21 €y €] is defined as the geometric mean of
the points P; = (=i, g, a8 = L2, ... , k. associated with
a cluster of size k. At each stage of the clustering process,
every point is associated with exactly one cluster, which i
the cluster with its center being the closest in terms of Eu-
clidian distance. The internal error of a cluster is the sum of
the distances from the cluster center 1o the associated points,
Le.,

El‘fﬂfinfgrn-f{m = z ” F1_'|._| = Ceenter ” : “]

pliled

The global error is defined as the sum of the internal
error over all clusters. In each iteration of the clustering
process, the cluster C; with the hughest internal error is split
into two clusters. Each iteration decreases the global error
and the maximum internal error. The centers of the gener-
ated clusters are determined by adding/subtracting an offset
vector 1o/from the center of the original cluster. This off-
set vector lics either in the direction of highest deviation of
ihe cluster data or in the direction of maximom variance.
The direction of maximum variance is computed by per-
forming principal component analysis {PCA) for the 3-by-3
covariance-matrix M, given by

M=AT.A, (2)
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where A is the cluster’s normalized k-by-3 data matrix A,
defined as

Iy — €
Iy = s

I — 6y
g — Gy

i —
=ty

a (3)

Tp—Cx We—Cy Zk—Ce

We compute the cigenvalues and “eigendirections” for
M. The direction of maximum variance is equivalent to the
eigendirection with the largest cigenvalue, Using the direc-
tion of maximum variance is generally more accurate, but
this is only feasible when the number of points is relatively
small e.g., less than 500. Therefore, & threshold variable
Tpe 4 is used to control which splitting mechanism is used.
1f the numbser of points associated with the cluster i 1o be
split exceeds Tpoa, the cluster % is split in the direction
of highest deviation. Otherwisc, the eigenvector with the
highest eigenvalue is used 1o determine the centers of the
new clusters that result from splitting €. After splitting a
cluster, & local reclassification scheme is used to improve
the quality of the classification.

Tbcpuh'usmbercﬂnﬁsiﬁadmglwnhyaﬂpnim
that are assigned 1o the split cluster or to the Gabriel neigh-
bors of that cluster. Hierarchical clustering is illustrated for
curve reconstruction in Figure 2.

i

o

Figure 2. Cluster splitting.

Two clusters are Gabriel neighbors when they are connected
in the Gabriel graph constructed from the clusier centers.
Two points p and g are connected in the Gabrel graph when
only p and ¢—but no other poini— are contained in the hy-
persphere with the midpoint of p and g as its center and the
distance from p to g as its diameter. (The Gabricl graph of
a point set s a subset of its Delaunay graph and a superset
of its relative neighborhood graph [16].)

After each reclassification step we update the local
neighborhood. The cluster centers arc moved 1o reflect the
changes in the point-cluster association due 1o local reclas-
sification. The Gabriel graph is updated locally and another



Figure 3. Gabriel neighbors

cluster is split subsequently, The clustering process termi-
nates when the smallest eigenvalues of all cluseers do not
exceed the threshold rped jim.

Algorithm 1 Creating the cluster higrarchy

Input: sei of poinis
Output: set of clusters
while Tpo g jim IS exceeded |
determine cluster C; 10 be split

split cluster C, mio two new clusters and define their
CERbErs;

create List of clusiers in the local peighborbood of split
cluster:

perform kocal reclassification;
update nelghbarhood:
}

4.2, Tile Generation

Al this point, we have generated a sel of clusters that
partition the original data set. Since we choose a relatively
small valoe for reea jim. the poinis associated with o cer-
tain cluster are nearly coplanar. Thus, the point clusters
have an almost fat shape. For each cluster (G, the clus-
ter center and the two eigendirections with the two largest
cigervalues define a plane F; that locally minimizes the
sum of the plane-to-point distances of the associated points,
We project all poinis py associated with cluster O info the
plane F; and compute the convex hull ; for the projected
points p, in the associated plane. We map the points g
on H; back to their original locations in three-dimensional
Space. The result is a closed, nearly planar polygon in three-
dimensional space, defining the so-called tile 7] of cluster

; consisting of a set of points p{’ lying in /. For each
cluster we generate o pseado tile T} by replacing the points
pi'. defining the tile boundary, by their oniginal poinis p,.

Figure 4. Tile generation.

Omce tile generation is completed, each cluster C has two
comesponding representations by its tile T and its pseudo
tile 7. The normal directions of T; and T; are defined by
the cluster’s eigendirection with the smallest eipenvalue.

4.3. Reconstruction

For the reconstruction process we triangulate pseudo
tiles by connecting the cluster center with the vertices of its
boundary polygon. The resulting set of triangles Ty (rile
rriangulation)is a close approximation of the unknown sur-
face. However, it does not vel descnibe a complele model
due 1o the lack of connectivity information for the tiles,

Figure 5. Triangulation of tiles and between
tiles.

A “connected model” is obtained by Ty with a set of tran-
gles Ty (gap rrigngilanion) that flls the gaps between the
tiles. To determine Ty we apply a Delaunay tnangulation
algorithm to the boundary points of the pseudo tiles .

IThe resuli of the Delaumsy triamgulaiion siep is & “true volumstric™
triangulation of the mpa points, e, o sel of \etrabedra, from which we
have o eliminate “undesired™ edges, trianghes, tetrahedra acconding 1o &
st of heurisics,



The algorithm we use employ a variant of the random-
ized incremental-flip algonthm developed by Edelsbronner
and Shah [3]. Based on the characteristics of the data, we
use iwo different vanants of the Delaunay tnangulation

s For functional data (ie., data sets where each paint
of the nput hes on the graph of a kivanate function
fi, 1) we project the points in the x-y plane and
apply the two-dimensional Delaunay trisngulation al-
gorithm, We ose the resulting tnangulation (o estab-
lish the connectivity of the points in three-dimensional
space (Figure 6}

¢ For an arbitrary data set, the three-dimensional Delae-
nay tnangulation algonthm is directly applied 1o the
boundary paints of the pseudo teles.

Figure 6. Triangulation of functional data.

since the boundary of the Delaunay inangulabion describes
the comvex hull of the point set, we have o remove certain
elements of the mesh (triangles or tewrahedra) that “do not
helong” 1o the desired surface. Our approach 1o reduce the
Delaunay triangulation to Ty is related to the alpha shape
defimoon by Edelsbrunner and Mucke [4]. We remove ini-
angles from the Delaunay mangulation when

e all points e in one tile or

¢ the poinis do not fit in a sphere of radius b,

where the value of b is chosen by locally adjusting the global
alpha threshold depending on the rile anea

In the eriginal alpha shape approach, the quality of the
reconstructed model is very sensitive to the alpha value.
which is used globally e identify riangles 1o be removed
When using an alpha value that is oo large, “undesired”
triangles do not get removed, while an o-value that is 100
small might remove features that do belong to the model. A
valid surface model cannot be reconstructed in many cases,
due e an inadeguately chosen alpha valwe. Our clusiering
based approach vields additional information (e g . tle anea,
connectivity, local density of point distribution that can be
psed o locally refine the alpha value

I In

Figure 7. Models obtained using varying al-
pha values (o=optimal alpha value)

Since we have “almost defined a topology™ afier the tile
generation siep, completing the reconstruction is a far sim-
pler problem than applying the alpha shape approach di-
rectly 1o the original sel of points. Because the gaps be-
tween the tiles are relatively small. one can choose a very
small alpha valee without removing imporiant features of
the model. However, leng, skinny inangles along the tile
boundaries can resull due 1o small alpha values. We deal
with this problem by inseming vemices along boundary
edpes when they excesd a cenain length.

Figure 8. Removing “undesired” triangles.

With this enhancement, our approach is relatively insensi-
tive 1o changes of the alpha value. Since a wide range of al-
pha values yvields a consistent model, the global alpha value
can be determined automatically as a inear funcoon of the
average edge length, However, when a the data sef contains
a large number of discontnuitics (the underlying surface is
aciually discontinuous) we propose 1o select the al pha value
manually. Removing the undesired trangles from the De-
launay triangulation of the tile boundary poiniz yields the
set of tnangles Ty that fill the gap between tiles. By merg-
ing Ty and T3 we obtain a consisient model

Algorithm 2 Reconstruce model

Inpui: set of pseudo tiles
Output: consistent model



reconstruct model {

generate Ty by tiangulating pseosdo tiles;
gencrabe T'y:

i boumnchary edge length > e

then insert additional vertices:

iringulnple vertices using Delaunay inangulation;
remove umdhesired fmongles;

merae Ty and Ty

}
5. Results

We have applied our method 1o a vanety of data sets,
The number of tiles produced by our algorithm is—For o
piven dati set—i function of the threshold for the smallest
eigenvalue of a cluster (see 4.1). The ermor By of a point py
of the original data sef associated with cluster 5 is defined
as the distance of py 1o the plane H; containing tile Ty, Le.,

Ey = Dist (plk], H}) . i4)
The global error Egssa is defined as the sum of the
ermors of all points in the original data set. Le.,

Egiosar = > Dist (plk], H;). (5)

rlk]

To measure the root-mean-square (RMS) emor, we
compute the object diameter, which is the diameter of the
smllest sphere that includes the object. We have tested our
approach for five different data sets, which are listed in Ta-
ble 1.

Table 1. Number of points and object diame-
ters

Data set Original # of pts.  Object diameter’
Rabbit 35929 0.1557

3Holes 4000 208

Car 20621 K]

Step function®  BOOO 1

M 5t Helems 151728 F67T 602

We obtain an EMS error measure Egar s by dividing
the global error by the product of object diameter and num-
ber of points in the original data set, i.e.,

Egiobal

number of points ¥ object diameter’ (6)

Epms =

119

The listed execution times were obtained for an 5GI
P workstation with a 180 MHz R5000 processor. Table
2 summuanzes the performance and quality information for
our five data sets.

Table 2. Data sets: 1-Rabbit, 2-3Holes, 3-Car,
4-step function’, 5-Mt. 5t. Helens

Set TPCA fim  lefusier Nh’-le-r Hpnnl s EnRms
1 1.0 T.83 5 [110 1.68

1 .02 15.05 154 4764 0,0

1 .00 15,94 T27 BOlI& 0.6
2 I (e b L T62 1.7

2 5 1.24 91 102 (.9

2 2 LT 202 1815 (.39

2 1 238 AL 2620) .19

3 0LK1S B.37 517 5174 LI
4 iLin1 1.63 il 715 0

5 b 43.08 154 310K} L0034
3 40 531.06 352 6307 LERE
3 2] 74,70 13491 17513 0004

Figures 9-13 show reconstructed models for our five
lest data sets. Figures 9 and 10 show tiles and recon-
structed, trisngulated surfaces. Figure 9 demonstrates how
our method can be used o preserve or remove a discontinu-
ity.

Figures 11, 12, and 13 illustrate the power of our tech-
nique to generate multiresolution models, Three examples
show that our algorithm can handle extremely large data sets
(Mt 5t. Helens) and surfaces that are topologically compli-
cated (3Holes, Rabbit),

6. Conclusions

The algonithm we have presented allows the genera-
tion of a hierarchy of surface models from discrete point
sels without known connectivity information. While we
have demonsirated the power of our approach only for sur-
face models, we are guite confident that the same cluster-
ing paradigm, when applied to more general two- or three-
manifold, or even time-varying data, would significantly
speed up the process of computing level-of-detail represen-
anions.

We plan to extend our approach to the clustering of
more general scattered data sets describing scalar and vec-
tors fields, defined over either two-dimensional or three-

Tl define e chect danmeter oy the diameter of the smallest sphere
including all originsl dain,
frw)=Ly2 s and flzp) =0,y < = xpE[0,1]



dimensional domains. Faster algorithms for the penera-
tion of data hierarchies for scientific visualization will be-
come more important as our ability to generate ever larger
data sels increases: Computing a data hierarchy prior 1o the
application of a visualization algorithm should not require
minutes or bours but seconds instead. We believe that our
clustering methodology provides one viable answer to this
prohlem.

Currently. we are working on a scalable parallelization
of our approach. We believe that this parallelization will
allow us 1o analyze data seis that consist of several millions
of points in real time.

Furthermore, we plan to extend our algorithm o ensure
that all tetrabedma are removed, such that the reconstructed
maodel is a true two-manifold representation. Regarding the
triangle elimination phase, we will develop means o guar-
antee that mo “holes” are inseried into the model.
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Figure 9. Discontinuous example (step function); (a) tiles, (b) discontinuous triangulation, (c) contin-
uous triangulation.
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Figure 11. Three resolution levels of Mt. 5t. Helens data set (154, 382 and 1391 tiles); (a)-{c) tiles,
(d={T) reconstructed surface.
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Figure 12. Four resolution levels of three-hole data set 59, 91, 202 and 402 tiles); (a)}-{d) tiles, (e}-{h)}
reconstructed model.

Figure 13. Three resclution levels of rabbit data set (50, 354 and 727 tiles); (a)—<) tiles, (d)}{f) recon-
structed model.

|22





