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Abstract 

We develop a numerical methodology for the calculation of mode-I R-curves of brittle and 

elastoplastic lattice materials, and unveil the impact of lattice topology, relative density and 

constituent material behavior on the toughening response of 2D isotropic lattices. The approach is 

based on finite element calculations of the J-integral on a single-edge-notch-bend (SENB) 

specimen, with individual bars modeled as beams having a linear elastic or a power-law elasto-

plastic constitutive behavior and a maximum strain-based damage model. Results for three 2D 

isotropic lattice topologies (triangular, hexagonal and kagome) and two constituent materials 

(representative of a brittle ceramic (silicon carbide) and a strain hardening elasto-plastic metal 

(titanium alloy)) are presented. We extract initial fracture toughness and R-curves for all lattices 

and show that (i) elastic brittle triangular lattices exhibit toughening (rising R-curve), and (ii) 

elasto-plastic triangular lattices display significant toughening, while elasto-plastic hexagonal 

lattices fail in a brittle manner. We show that the difference in such failure behavior can be 
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explained by the size of the plastic zone that grows upon crack propagation, and conclude that the 

nature of crack propagation in lattices (brittle vs ductile) depends both on the constituent material 

and the lattice architecture. While results are presented for 2D truss-lattices, the proposed approach 

can be easily applied to 3D truss and shell-lattices, as long as the crack tip lies within the empty 

space of a unit cell. 

 

 

1.  Introduction 

The mechanical properties of cellular materials (i.e., architected materials consisting of a solid and 

a void phase) depend on the nature of the constituent material and the topology of the architecture. 

The optimal design of the architecture to achieve maximum stiffness and strength has been 

extensively investigated over the past two decades, both numerically and experimentally. While a 

number of efficient designs have been identified, both properties are limited by theoretical bounds: 

for any cellular material, the relative Young’s modulus, �̅� = 𝐸/𝐸𝑠  and the relative yield strength, 

𝜎𝑦 = 𝜎𝑦/𝜎𝑦𝑠  (with the subscript s denoting the properties of the constituent materials) cannot 

exceed the relative density of the material, �̅� = 𝜌/𝜌𝑠  (Voigt bound). In the case of isotropic 

cellular materials, much tighter bounds exist, namely the  Hashin-Shtrikman bound (Hashin and 

Shtrikman, 1963) and the Suquet-Ponte-Castaneda nonlinear bound (Castaneda and Debotton, 

1992; Suquet, 1993), respectively. A number of nearly-isotropic topologies that achieve or 

approach the bounds have been identified, e.g., the plate-based closed cell architected material 

with cube-octet unit cell (Berger et al., 2017) and stochastic shell-based architected materials with 

spinodal topology (Hsieh et al., 2019). 



Conversely, the fracture toughness of cellular materials is theoretically unbounded, and has been 

much less investigated.  The first systematic investigation dates back to 1984, when Maiti, Gibson, 

and Ashby derived the analytical expressions of mode I fracture toughness, 𝐾𝐼𝑐, for both open and 

closed-cell brittle isotropic foams, by using dimensional analysis that relates the global stress 

intensity factor, K, to the local microscopic stress in the cell wall (Maiti et al., 1984); fracture 

occurs (K= 𝐾𝑐) when the maximum stress in the cell wall around the crack tip reaches the tensile 

strength, 𝜎𝑇𝑆, of the constituent material. 𝐾𝐼𝐶 of open and closed-cell isotropic foams is found to 

scale with �̅�1.5 and �̅�2, respectively (Maiti et al., 1984).  Later, Gibson and Ashby showed that the 

𝐾𝐼𝐶  of 2D elastic brittle hexagonal lattices scales with �̅�2 (Gibson and Ashby, 1988). Huang and 

Lin used the same approach to obtain analytical expressions for mode II fracture toughness, 𝐾𝐼𝐼𝐶, 

and mixed mode fracture toughness for both 2D hexagonal lattices and 3D elastic brittle isotropic 

foams (Huang and Lin, 1996). These models predict that for all cellular materials, the initial 

fracture toughness can be expressed as 𝐾𝐼𝐶 = 𝐷 σTS √ℓ �̅�𝑑, with  ℓ, the unit cell size, and d and 

D,  non-dimensional parameters that depend on the topology. While the exponent d can be derived 

from analytical considerations, the pre-factor D is in general extracted by numerical simulations 

or experiments.   

Alternatively, one can evaluate the fracture toughness analytically using a enriched continuum 

Cosserat  (micropolar) theory; the continuum model is developed by equating its strain energy to 

that of discrete lattices, in analogy with strain gradient theories (Fleck et al., 1994; Fleck and 

Hutchinson, 1996, 1993). The first applications of the enriched continuum theory to lattice 

structures were proposed by Banks and Sokolowski (Banks and Sokolowski, 1968) and Bazant 

and Christensen (Bazant and Christensen, 2011) . Using this method, Chen et al. obtained the 

expressions of 𝑲𝑰𝑪 for 2D triangular, square, and hexagonal lattices, predicting the exponent value 



d = 1 (Chen et al., 1998). Such prediction for hexagonal lattices is in disagreement with d = 2 

obtained previously by dimensional analysis and experiment data (Gibson and Ashby, 1988); this 

discrepancy is attributed to the assumption of affine deformation (stretching) implicit in the 

Cosserat medium calculations, which ignores cell wall bending (Fleck and Qiu, 2007).  As an 

additional limitation, enriched continuum techniques, as all techniques utilizing homogenization, 

lack the ability to capture local instabilities in the individual struts of discrete lattices, such as those 

induced by elastic buckling (Quintana-Alonso and Fleck, 2009). 

A number of numerical techniques, based on the Finite Elements method, have been introduced to 

calculate the fracture toughness of cellular materials (including the pre-factor D). Discrete lattices 

are modeled in configurations with known relations of stress intensity factor  to remote boundary 

conditions such as single edge notched bend (SENB)  or center-cracked plate specimens, and 

treated as a framework of rigid-jointed interconnected beams; the stresses in individual beams as 

a function of the remotely applied loads are then calculated using the finite element method and 

the fracture toughness is obtained under the same linear elastic fracture mechanics (LEFM) 

assumption implicit in the analytical derivations of  Gibson and Ashby (Gibson and Ashby, 1988) 

and Maiti et al. (Maiti et al., 1984).  Under these assumptions, accurate estimation of fracture 

toughness requires that the global K-field be sufficiently larger than the local microscopic cell size. 

The implication is that in the case of cellular materials, the characteristic size of the overall sample, 

L, must be much larger than the crack length, a, which in turn must be much larger than the unit 

cell size, ℓ. Huang and Gibson investigated 2D elastic brittle diamond lattices and showed that a/ 

ℓ  must be larger than 7 (Huang and Gibson, 1991). Quintana and Fleck demonstrated the existence 

of a transitional crack size, 𝒂𝑻, such that below it no K-field exists (strength-controlled failure) 

and above it failure is well predicted by LEFM (toughness-controlled failure). It was shown that 



𝒂𝑻 =  𝟎. 𝟗(𝓵𝟐/𝒕) for single edge notched bend (SENB)  specimens and 𝒂𝑻 =  𝟎. 𝟏𝟒(𝓵𝟑/𝒕𝟐)  for a 

center-cracked plate subjected to uniaxial tension, with t the in-plane thickness of a bar (Quintana-

alonso et al., 2010; Quintana-Alonso and Fleck, 2007). The implication is that for �̅� < 𝟏𝟔%,  

smaller SENB specimens suffice as a fracture toughness testing method. These 𝒂𝑻 values also 

explained the contradictory results between center-cracked plate specimens and SENB specimen 

of the same 2D lattice found by Huang and Chiang (Huang and Chiang, 1996).  

As an alternative to center-cracked plate and SENB specimens, the fracture toughness of 2D 

lattices can also be obtained via boundary layer analysis. In the simplest term, boundary layer 

analysis relates the local maximum stress around the macroscopic crack tip to the global 

asymptotic K-field of a crack (Kanninen and Popelar, 1985; Williams, 1957) in an equivalent 

homogeneous medium with effective elastic properties, and K-corresponding displacements and 

rotations are prescribed onto the outer periphery of the finite element mesh. This technique was 

first applied by Schmidt and Fleck (Schmidt and Fleck, 2001) to gain insights of fracture toughness 

of regular and irregular elasto-plastic hexagonal lattices. However, extensive usage of such 

technique is on the study of elastic brittle materials. For example, Fleck and Qiu (Fleck and Qiu, 

2007) applied this technique to extract the fracture behaviors of 2D isotropic brittle elastic kagome, 

triangular, and hexagonal lattices, and demonstrated that 𝐾𝐼𝐶 scales as �̅�0.5 for kagome lattices, as 

�̅�1  for triangular lattices, and as �̅�2  for hexagonal lattices. The superior fracture behavior of 

kagome lattices was attributed to a reduced stress level around the crack tip due to elastic crack tip 

blunting (Fleck et al., 2010). Subsequently, Romijn and Fleck applied the same technique with 

orthotropic K-field boundary conditions to show that 𝐾𝐼𝐶 of both square and diamond lattices scale 

as �̅�1  (Romijn and Fleck, 2007; Sih et al., 1965). Finally, Christodoulou et al. used a similar 

technique to investigate the effect of cell regularity on the fracture toughness of 2D hexagonal 



lattices (Christodoulou and Tan, 2013); they found that mode I fracture toughness is more sensitive 

to topological variations than mode II in the vicinity of the crack tip.  

The boundary layer analysis can also be used to investigate the crack initiation and crack 

propagation of elastoplastic 2D lattices (Schmidt and Fleck, 2001). Under the conditions of small 

yielding, Schmidt and Fleck applied the displacement boundary conditions corresponding to a KI 

field to hexagonal lattices and assumed that the constituent material follows a bilinear hardening 

law until one of the beams near the crack tip attains the fracture strength, 𝜎𝑓. The beam is then 

gradually removed while the magnitude of the applied K field is increased during the process, such 

that the work of fracture at the failed joint equals the prescribed fracture energy of the beam. Such 

requirement of adjusting the applied K field so as to match the prescribed value of fracture energy 

in a beam disallows the simulation of simultaneous failures of multiple beams. The initial fracture 

toughness of hexagonal lattices was shown to scale as �̅�2  and  the subsequent R-curves were 

extracted in both regular and irregular topologies (Schmidt and Fleck, 2001). More recently, 

Tankasala, Deshpande and Fleck (Tankasala et al., 2015)  extracted the initial fracture toughness 

of elastoplastic 2D lattices (triangular, kagome, diamond, and hexagonal) by combining the 

boundary layer analysis with two sets of failure criteria: (i) maximum local tensile strain and (ii) 

average tensile strain. They showed that the predicted fracture toughness is only sensitive to the 

choice of failure criterion for hexagonal lattices (which are bending-dominated) but not for 

triangular and kagome lattices (which are stretching-dominated). The initial fracture toughness of 

elasto-plastic 2D lattices was shown to scale with the relative density with the same power laws 

as for elastic brittle materials (Tankasala et al., 2015).   

We emphasize that all these boundary layer numerical studies make three fundamental 

assumptions: (i) regardless of the constituent material response (linearly elastic brittle or elasto-



plastic), the asymptotic stress field is governed by LEFM; (ii) the local fracture event is predicted 

using maximum stress/maximum strain criterion governed by a constituent material parameter 

such as tensile strength 𝜎𝑇𝑆, fracture strength 𝜎𝑓, or fracture strain 𝜀𝑓; (iii) the crack tip must lie 

within the empty space of a unit cell. Under assumption (i), the boundary layer technique in ductile 

materials is limited to small displacement analyses such that the plastic zone size remains confined 

at the crack tip (small-scale yielding). Furthermore, complexity in applying the K-dependent 

displacement boundary conditions in the periphery of a finite element mesh could rise significantly 

in complicated topologies such as those with anisotropic properties. Finally, despite few recent 

attempts (Choi and Sankar, 2005; Romijn and Fleck, 2007), this technique has yet to be proven as 

a viable approach for 3D lattice materials.  

 

2. The numerical model 

2.1 Synopsis 

In this work, we combine the maximum strain failure criterion with the single edge notched bend 

(SENB) specimen configuration to extract the initial fracture toughness, 𝐾𝐼𝐶, and the R-curve of 

cellular materials. We apply this technique to three isotropic 2D lattice topologies (triangular, 

kagome, and hexagonal), two constituent materials (silicon carbide (elastic brittle) and titanium 

alloy (power-law elasto-plastic)), and three different relative densities �̅� = 13%, 16%, and 20%). 

We verify that our predictions for initial fracture toughness agree with previous works summarized 

in Table 1 (Fleck, 2009; Tankasala et al., 2015), validating our numerical approach. In addition, 

we show that scaling relationships for fracture toughness, 𝐾𝐼𝐶, with relative density only depend 

on the lattice topology and not on the constituent material (i.e., the same scaling exits for elastic 

brittle and elastoplastic constituent materials). Furthermore, we demonstrate that triangular lattices 



exhibit toughening (rising R-curve) even when made of brittle constituent materials. When made 

of ductile elasto-plastic materials, triangular lattices have the largest initial fracture toughness and 

the most pronounced R-curves, with multi-stage stable crack propagations and significant spread 

of plasticity, while hexagonal lattices show nearly no toughening and very low resistance to crack 

growth. We conclude that the nature of crack propagation in lattices (brittle vs ductile) depends 

both on the constituent material and the lattice architecture. Finally, we emphasize that the 

numerical approach presented in this work is applicable to both 2D and 3D architected materials 

(whether truss or shell-based) made by both brittle and ductile constituent materials, with the only 

proviso that the crack tip must lie within the empty space of a unit cell (i.e., no stress singularity 

at the crack tip). These features make this approach ideally suited for further investigations on the 

toughness characteristics of a wide range of mechanical metamaterials. 

 

 

Table 1. Pre-factors, D, and scaling exponents, d, for mode-I initial fracture toughness, 𝐾𝐼𝐶 

(elastic brittle base materials) and 𝐾𝐽𝐼𝐶 (elastoplastic base materials) of triangular, kagome, and 

hexagonal lattices. Results are taken from I Fleck and Qiu, 2007, II Tankasala et al., 2015, * current 

work. The strain hardening exponent, p =16* is obtained by fitting the titanium alloy material 

properties used in this work to Ramberg-Osgood description. ℓ is the bar length. 𝜀𝑦𝑠 is the yield 

strength, and 𝜀𝑓 is the fracture strain.  

 

2.2 Specimen design 



Proper design of SENB specimens for fracture toughness investigations in cellular materials is 

dictated by several conditions: (i) the specimen aspect ratio must follow the ASTM E1820 standard 

for bulk materials (ASTM E1820, 2011), namely L = 4.5W = 9B, with L the in-plane specimen 

length, W the in-plane specimen width, and B the out-of-plane specimen thickness (B is only 

important if a physical experiment is conducted in accordance with the ASTM standard or in 

simulations of 3D lattices, but irrelevant in the 2D plane strain simulations discussed in section 

2.4); (ii) the number of unit cells must be sufficient to ensure that the K-field exists and is 

accurately captured (Choi and Sankar, 2005; O’Masta et al., 2017); (iii) the number of elements 

per bar (in the case of strut-based structures) must be sufficient to allow nonlinear finite strain 

analysis under large deformations (Tankasala et al., 2015); (iv) the degree of orthotropy of the 

cellular material must be carefully considered, given that K depends on a dimensionless function 

of  orthotropy (Bao et al., 1992; Quintana-alonso et al., 2010).  

In this study, SENB specimens made of three isotropic 2D lattices (kagome, triangular, and 

hexagonal) were treated as rigid frames of connected bars, ignoring the nodal geometry. The unit 

cell of each topology is shown in Fig. 1 (a). As these lattices are isotropic, K is only a function of 

the number of unit cells for a given set of ℓ, �̅� and 𝜎𝑦𝑠. First, we investigated the convergence of 

mode-I K-field with increasing number of unit cells, as detailed in Appendix A. Second, we 

investigated the convergence of the load-line displacement at which the maximum axial strain 

reached the fracture strain 𝜀𝑓, with increasing number of Timoshenko beam elements per bar, as 

detailed in Appendix B. The specimens were built by tessellating the unit cells of each topology 

according to the results from Appendix A. A notch with a = 𝑊/2 was subsequently cut in the out-

of-plane direction by removing bars. We ensured that a > ℓ2/𝑡all densities of all topological 

specimen, so that failures are toughness-controlled (Quintana-alonso et al., 2010). The final 



designs of specimens are shown in Fig. 1 (b). See Table 2 for full specimens’ specifications 

tabulated in Table 2. 

 

 

Fig. 1. (a) Unit cell topology and (b) SENB (single edge notched bend) specimen dimensions of 

triangular, kagome, and hexagonal specimens from top to bottom. Out-plane thicknesses are 

shown to illustrate the physical dimensions that would be required to perform a SENB experiment 

in accordance with ASTM standard; these thicknesses are irrelevant for the 2D plane-strain 

simulation performed in this work. 

 



 
Table 2. Specifications of triangular, kagome, and hexagonal specimens with bar length of (a) ℓ 

= 3 mm and (b) ℓ = 10 mm. 

 

2.3 Constitutive and damage models 

The mechanical behavior of the cell wall materials is described by two models: (i) a constitutive 

model, which governs the stress-strain behavior of the base material, and (ii) a damage model, 

which governs fracture of the base material, i.e. material degradation/removal of elements in the 

finite element analyses, as shown in Fig. 2 (a). The constitutive model is divided in two regions: 

(a) the linear elastic region, defined by the base material Young’s modulus, 𝐸𝑠 and Poisson’s ratio, 

𝜈𝑠, and (b) the power-law strain-hardening plastic region, i.e., 𝜎 =  𝜎𝑦𝑠(1 + 𝜀𝑝
 𝑛), with  𝜎𝑦𝑠 the 

initial yield strength, n the strain hardening power, and 𝜀𝑝 the plastic strain of the base material. 

The damage model is described in terms of the fracture strain, 𝜀𝑓, of the base material: fracture 

occurs when the maximum axial strain around the crack tip reaches 𝜀𝑓. To bracket realistic material 

behavior, two extremely different base materials were considered: (i) titanium alloy (Ti-6Al-4V), 

representative of ductile metals, with 𝐸𝑠  = 123 GPa, 𝜈𝑠  = 0.3, 𝜎𝑦𝑠  = 932 MPa, 𝑛 =0.7237 and  

𝜀𝑓 = 0.1105 (Dong et al., 2015), as shown in Fig. 2 (b); and (ii) silicon carbide, representative of 

elastic brittle ceramics, with 𝐸𝑠 = 410 GPa, 𝜎𝑓 = 550 MPa,  𝜈𝑠= 0.14, and no strain hardening 

(resulting in 𝜀𝑓 = 𝜎𝑓/𝐸𝑠 = 0.0013), as shown in Fig. 2 (c).  

 



 

Fig. 2. Representative stress-strain curves of (a) constitutive and damage model, (b) titanium alloy 

(Ti-6Al-4V), and (c) silicon carbide.  

 

 

 

 

 

2.4 Finite element methodology for extraction of the fracture toughness  

Mode-I fracture toughness of SENB specimens made of triangular, kagome, hexagonal lattices at 

�̅� = 13%, 16% and 20%, and ℓ = 3 mm and 10 mm was investigated by simulating three point 

bending experiments (as outlined in ASTM E1820 (ASTM E1820, 2011)) by finite elements 

analysis.  We used Abaqus/Explicit for all simulations, with mass scaling appropriately chosen to 

approach quasi-static response. To represent two-dimensional bars with rectangular cross sections 

in plane strain with one-dimensional beam elements, Es and 𝑣s of the base materials were replaced 

by modified Young’s modulus, 𝐸𝑠
′ = 𝐸𝑠/(1 − 𝑣s

2) and Poisson’s ratio, 𝑣s
′= 𝑣s/(1 − 𝑣s) (Fleck 

and Qiu, 2007; Timoshenko and Woinowsky-Krigerm, 1959). Three spreaders (defined as analytic 

rigid surfaces in Abaqus) were used to apply three-point-bending boundary conditions without 

suffering local indentations; this practice had been used previously for fracture toughness testing 

of strut-based lattices (O’Masta et al., 2017; Quintana-alonso et al., 2010) and was also 

recommended by ASTM C393/C393M (ASTM C393/C393M, 2016) for flexural testing of 

sandwich beams. Frictionless contacts were assumed between the spreaders and the specimen, to 



further reduce localized deformation. One spreader was placed at the top midspan above the 

sample notch, while the other two spreaders were placed four sample widths apart at the bottom 

of the specimen, as shown in Fig. 3 (a).  

Boundary conditions were applied as follows: (i) each bottom spreader could rotate around a fixed 

reference point, representing the center of a roller, and (ii) a sufficiently large load-line 

displacement was applied at the top spreader in the negative y-direction, until the final crack length 

is greater than the maximum crack capacity for fracture toughness calculations specified by ASTM 

E1820 (ASTM E1820, 2011), as shown in Fig. 3 (a). The damage model with maximum axial 

strain criterion (refer to Section 2.3) was used to describe the local fracture around the crack tip.  

For this criterion, accurate calculation of the axial stresses and strains in each beam is essential. 

For bending-dominated lattices, the maximum axial strain at the surface of each beam is 

significantly higher than the value at the neutral axis. As the default stress outputs for beam 

elements are at the neutral axis, an Abaqus user subroutine VUSFLD (vectorized user defined 

field) was created to extract beam surface stress and strain levels. As high frequency oscillations 

of the mechanical response could occur during a fracture event, we applied Butterworth real-time 

filtering with a cutoff frequency equals to the twice natural frequency of the specimen, extracted 

during quasi-static analyses. The natural frequency of each specimen was obtained by performing 

a linear perturbation analysis (see Appendix C). 

Following the procedures outlined for fracture toughness calculations in ASTM E1820 (ASTM 

E1820, 2011), and summarized in Appendix D, the load-line displacement and the load-line 

reaction force were extracted at the top spreader and used to calculate the J-integral, 𝐽, consisting 

of both elastic and inelastic contributions to crack resistance. As the specimens have simple 2D 

prismatic architectures, crack extensions were tracked visually in post-processing. The fracture 



toughness, 𝐾𝐽, was then calculated as 𝐾𝐽 =  √𝐸𝐽 where E is the effective Young’s modulus of the 

lattice material, simply extracted from the scaling laws of triangular, kagome, and hexagonal 

lattices (Fleck et al., 2010; Fleck and Qiu, 2007). The details of all fracture toughness calculation 

procedures are summarized in Appendix D. R-curves were constructed by plotting 𝐾𝐽(𝑖) against 

the change of crack length at instant (i), i.e., ∆𝑎(𝑖) = 𝑎(𝑖) − 𝑎(1), and fitted with a two-term 

power law equation:  

 𝐾𝐽 = 𝐾𝐽𝐼𝑐 + c(
𝑎(𝑖)−𝑎(1)

𝑎(1)
)m                                                                                                                   (1)        

where KJIC is the initial fracture toughness, c is the toughening coefficient, and m is the toughening 

power.                                                                                

 

Fig. 3. (a) Boundary conditions on a SENB specimen made of 2D lattices.  Three spreaders are 

used: one at the top midspan and two at the bottom locations distance 4W from each other, to 

prevent highly localized deformation. Load-line displacement are applied at the top spreader while 



each of the bottom spreaders can rotate around a reference point, representing the center of a 

roller. (b) Construction of R-curve with fracture toughness, KJ  against normalized change of crack 

length, 
∆𝑎

𝑎
. Two-term power law fit, KJ = KJIC + c(

∆𝑎

𝑎
)𝑚, where KJIC is the initial fracture toughness, 

c is the toughening coefficient, and m is the toughening power.  

 

3. Fracture toughness of 2D lattices 

 3.1 Mechanisms of deformation and damage and the size of the plastic region 

(a) Silicon carbide specimens 

The load-line reaction force, P, versus load-line displacement, v, curves for the three cellular 

specimens made of elastic brittle silicon carbide are shown in Fig. 4 (a). Two different relative 

densities are explored for each topology. Filtered and unfiltered curves are identical until the initial 

fracture event, at which point the unfiltered P-v  curves start to display high frequency response. 

In general, deformations are elastic brittle, such that P increases linearly with ν until initial fracture 

(denoted as point 1 in Fig. 4 (a)), followed immediately by catastrophic failure (significant loss of 

load-carrying capacity). The exception is the triangular specimen at �̅� = 20%, which retains most 

of its load-carrying capacity after initial fracture and requires additional, albeit small, load to come 

to catastrophic failure. We hypothesize that this unusual behavior is likely due to crack deflection 

and crack branching occurring right after the initial fracture event, as shown in Fig. 4 (c): after the 

first bar, which is aligned with the principal stress direction, breaks, the crack hits a node and the 

next failure event occurs at side bars which are slightly less loaded, requiring additional work to 

fracture. Clearly, this behavior can be modified by node design, which is absent in the FEM 

simulations presented herein. The implication is that careful architectural design can potentially 

increase the fracture toughness, even in the case in which the base material is elastic brittle. In Fig. 

4 (b), zoomed-in crack tip regions are drawn for each specimen to indicate initial fracture locations. 



These initial fracture locations agree well with those identified using boundary layer analyses in 

(Fleck and Qiu, 2007).  

(b) Titanium alloy specimens 

The specimens made of elastoplastic titanium alloy (Ti-6Al-4V) initially deform in a linear elastic 

manner, followed by yielding, strain hardening and subsequently initial fracture; afterwards, the 

specimens experience gradual damage propagation (rather than abrupt catastrophic load drop as in 

elastic brittle base materials), up to final failure (defined as significant loss of load-carrying 

capacity). As for the case of the brittle materials, both the filtered and unfiltered P- v curves are 

identical until the initial fracture events.  

Triangular lattices exhibit the most gradual transitions to final failures: after the initial fracture 

(denoted as point 1 in Fig. 5 (a)), P still increases with ν to a peak load followed by multiple stages 

of small load drops (denoted as points 2, 3, 4, and 5 in Fig. 5(a)). Each load drop is determined by 

fracture of a few bars, with the precise sequence indicated in Fig. 5(d). Kagome lattices display 

the second most gradual transition to final failure: after initial fracture (denoted as point 1 in Fig. 

5 (b)), P increases with 𝑣 up to a peak load, followed by a couple of load drops (denoted as points 

2 and 3 in Fig. 5(b)); each drop corresponds to fracture of a number of bars, which is generally 

larger than for triangular lattices, as shown in Fig. 5(e). Finally, hexagonal lattices show the most 

sudden transition to final failure: after the initial fracture event (denoted as point 1 in Fig. 5 (c)), 

P increases with 𝑣 up to a peak load, but is immediately thereafter followed by a catastrophic load 

drop (denoted as point 2 in Fig. 5 (c)). In addition, the corresponding crack extends and branches 

along two paths (both at a 45-degree angle to the horizontal) as shown in Fig. 5 (f). Interestingly, 

the hexagonal lattice is the only lattice that exhibits crack branching. 

 



 



Fig. 4. Deformation maps of topological specimens made of silicon carbide at �̅� =13% and 20%: 

(a) load, P, versus load-line displacement, v, were plotted till overall kinetic energy exceeds 5% 

of overall internal energy of each specimen in each simulation. Encircled number one corresponds 

to the initial fracture followed immediately by catastrophic failures (significant load drop) and(b) 

the corresponding initial fracture locations are represented by red dashed line (c) Illustration of 

crack branching of the �̅� =20% triangular lattice immediately after fracture.  All lattices are not 

drawn to scale. 

 



Fig. 5. Deformation maps of topological specimens made of Titanium Alloy (Ti-6Al-4V) at �̅� =13% 

and 20%: load, P, versus load-line displacement, 𝑣 , of (a) triangular specimens, (b) kagome 

lattices, and (c) hexagonal lattices were plotted till overall kinetic energy exceeds 5% of overall 

internal energy of each specimen in each simulation. Encircled number one corresponds to initial 

fracture and the subsequent encircled numbers correspond to each load drop. The fracture 

locations of each encircled number in (a), (b), and (c) are represented by corresponding colored 

dashed line in (d), (e), and (f) respectively; the lattices are not drawn to scale. 

 

These differences in crack propagation can be directly related to the size of the process zone ahead 

of the crack tip. The larger the process zone (i.e., the number of bars that are experiencing 

significant plastic deformation during crack propagation), the more gradual the loss of load 

carrying capacity in the sample, and the more pronounced the toughening response of the lattice. 

For the purpose of simple comparison between three lattices, we arbitrarily define the process zone 

as the rectangular region encompassing all the bars that attain the plastic strain limit, 𝜀𝑝𝑙𝑖𝑚𝑖𝑡 = 

0.01. The process zone size right before the initial fracture event for the three sample topologies 

at two relative densities is plotted in Fig. 6. Regardless of the relative density, the triangular 

specimens have the largest fractional area (defined as the process zone area normalized by the 

sample size) of 2.4%, about twice as large as that for kagome specimens; by contrast, the hexagonal 

specimens have extremely localized failures, with negligible process zone size.  

 

 

 



 



Fig. 6. Contours of absolute normalized plastic strain, 𝜀𝑝/𝜀𝑝𝑙𝑖𝑚𝑖𝑡,  around the crack tip between 

(a) triangular lattices, (b) kagome lattices, and (c) hexagonal lattices made of titanium alloy (Ti-

6Al-4V) with ℓ = 3 mm at relative density, �̅� = 20% and 13% right before the initial fracture. The 

corresponding location on the load-displacement curve of each contour is indicated by a red dot. 

Plastic strain limit, 𝜀𝑝𝑙𝑖𝑚𝑖𝑡 = 0.01 is used in the strain contours such that for all 𝜀𝑝/𝜀𝑝𝑙𝑖𝑚𝑖𝑡 > 1, 

the contour appears to be red. Red rectangles or circles are used to estimate the size of plastic 

regions. The inset lattices are not drawn to scale. 

 

3.2 Scaling relations for fracture toughness and R-curve 

(a) Silicon carbide specimens 

The fracture toughness of elastic brittle specimens was extracted using the J-integral method, only 

considering the elastic J component, Jel, (see Appendix D for details). The fracture toughness, 𝐾𝐼𝐶, 

scales with relative density, �̅� as �̅�1, �̅�0.5, and �̅�2 in triangular, kagome, and hexagonal specimens, 

respectively, as shown in Fig. 7 (a). In addition, we found that the fracture toughness is largest for 

the Kagome specimens and lowest for the hexagonal specimens. Furthermore, we verified that 𝐾𝐼𝐶 

depends linearly on the square root of the strut length, √ℓ  (Maiti et al., 1984), as shown in Fig. 7 

(b). All these findings are perfectly consistent with the results obtained using boundary value 

analysis in (Fleck and Qiu, 2007), and thus validate our numerical approach for the calculation of 

the fracture toughness in cellular materials specimens.  

 

(b) Titanium alloy specimens 

The initial fracture toughness, 𝐾𝐽𝐼𝐶, toughening coefficient, C, and toughening power, m, of the 

titanium alloy (Ti-6Al-4V) lattice specimens were extracted following the procedures discussed in 

section 2.4.  

The initial fracture toughness reveals some important results: (i) while the scaling relationships for  

𝐾𝐽𝐼𝐶 with �̅� remain the same as for the elastic brittle case, the actual values of 𝐾𝐽𝐼𝐶 are ~5 times 

larger, as shown in Fig. 8 (a); (ii) the difference between the performance of the triangular and 



kagome lattices is reduced relative to the brittle base material case, while the hexagonal lattice 

remains the least efficient design. The implication is that high initial fracture toughness can be 

achieved at low relative density by designing a triangular or kagome lattice made of a ductile base 

material. In addition, we show that even in the plastic case, 𝐾𝐽𝐼𝐶 still linearly depends on √ℓ, as 

shown in Fig. 8 (b). The superior efficiency of the triangular lattices can be attributed to the extent 

of the process zone ahead of the crack tip (Fig. 6), which more than compensates the elastic crack 

blunting that makes kagome designs preferred for brittle materials  (Fleck and Qiu, 2007). 

Similar scaling relationships can be extracted for the toughening coefficient, C, as shown in Fig. 

9 (a). Remarkably, the scaling exponents are the same as for the initial fracture toughness. 

Triangular lattices have the largest toughening coefficients, followed by kagome and hexagonal 

lattices. By contrast, the toughening exponent, m, does not substantially depend on the relative 

density or lattice topology, maintaining a value ~0.52-0.58. These features are evident in the R-

curves displayed in Fig. 9 (b). Notice the substantial difference between triangular and kagome 

lattices: while their initial fracture toughness is very similar, triangular lattices toughen much more 

strongly during crack propagation. Again, this can be attributed to the larger process zone 

dimension in triangular specimens. Consistently with their very isolated yielding events, hexagonal 

lattices display much lower fracture toughness than the other lattice classes, especially at low 

relative density. We should emphasize that our choice to define local strut fracture when a critical 

value of the strain is reached at the outer surface of the strut potentially penalizes bending-

dominated lattices made of ductile base materials, in which struts can still carry load after surface 

cracking has initiated. As hexagonal lattices are bending dominated, while triangular lattices are 

stretching dominated (with kagome lattices in between), this factor might contribute to the large 

performance difference among the three lattice topologies examined here. While in practice 



hexagonal and kagome lattices might perform a bit better than predicted here, we do not expect 

this contribution (if present) to affect any of the conclusions of this work.  

 

Fig. 7. Scaling relationships for initial fracture toughness in triangular, kagome, hexagonal 

specimens made in silicon carbides with (a) the relative density �̅� and (b) the square root of bar 

length, √ℓ. 

 

 



Fig. 8. Scaling relationships for initial fracture toughness in triangular, kagome, hexagonal 

specimens made in titanium alloys (Ti-6Al-4V) with (a) the relative density �̅� and (b) the square 

root of bar length, √ℓ. 

 

 

Fig. 9. (a) scaling relationships for toughening coefficients, C, and (b) R-curves of triangular, 

kagome, and hexagonal specimens made in titanium alloy (Ti-6Al-4V).  

 

It is instructive to compare the fracture toughness of lattices with the universe of existing materials. 

We plot both initial fracture toughness, KJIC, and fracture toughness at final failure, KJFC, of 

triangular, kagome, and hexagonal lattices of ℓ = 3 mm at �̅� = 13%, 16%, and 20% (corresponding 

to density of 585-900 kg/m3) made in titanium alloy (𝐸𝑠 = 123 GPa, 𝑣𝑠 = 0.3, 𝜎𝑦𝑠 = 932 GPa, n = 

0.7237,  𝜀𝑓 = 0.1105) as shown in Fig. 10. Both triangular and kagome lattices at this length scale 

outperform the majority of natural materials in terms of KJIC. When considering KJFC, triangular 

lattices approach the fracture toughness of bulk titanium alloy. In contrast, hexagonal lattices are 

comparable to other natural materials (e.g, paper) in terms of both KJIC and KJFC. The conclusion 

is that topology manipulations can significantly alter both KJIC and KJFC. However, this conclusion 



is here only proved for 2D lattices, and remains unexplored for 3D topologies, either strut-based 

or shell-based.  

 

Fig. 10. Material space charts for fracture toughness versus density. Three lattices are shown by 

their representative unit cell topologies: triangular (red), kagome (black), and hexagonal (blue). 

The prediction is based on titanium alloy material properties with the bar length, ℓ = 3 mm.  

 

 

4. Discussion 

In the case of elastic brittle base materials, the fracture toughness is governed by linear elastic 

fracture mechanics (LEFM) and in general depends linearly on the tensile strength of the base 



material. The fracture toughness of lattices predicted from the proposed numerical approach is in 

good agreement with solutions derived using boundary layer analyses for elastic brittle lattices as 

shown in Fig. 7 (Fleck and Qiu, 2007). The 24% discrepancy in the pre-factor, D (see Table 1) for 

kagome lattices between this work and Fleck and Qiu, 2007 is attributed to different density ranges 

over which the parameter was fitted (�̅� = 13% - 20% in the current analyses VS �̅� = 0.3% - 20% 

in (Fleck and Qiu, 2007), and the larger sensitivity of the parameter D over the density range in 

kagome lattices, due to the elastic blunting zone around the crack tip (Fleck and Qiu, 2007).  

In the case of elastoplastic constituent materials, the fracture toughness is still governed by LEFM 

if the plastic region size in front of crack tip is negligible compared to the crack length, i.e., small-

scale yielding (SSY); conversely, elasto-plastic fracture mechanics (EPFM) governs if the plastic 

region size in front of the crack tip grows comparable to the crack length. The simple criterion for 

the SSY conditions to be satisfied in SENB specimens can be derived by combining the ASTM 

specification that 𝑎, 𝐵 > 2.5(𝐾𝐼/𝜎𝑦𝑠)
2
 and the expression for the plane strain plastic zone size in 

a perfectly plastic solid, i.e.,  𝑟𝑝 =
1

3𝜋
(𝐾𝐼/𝜎𝑦𝑠)2, resulting in the condition a, B > 25rp. The plastic 

region sizes right before initial fracture in three lattices (Fig. 6) reveal that only the hexagonal 

lattice satisfies the SSY criterion. Hence the initial fracture toughness, 𝐾𝐽𝐼𝐶 , of hexagonal lattices 

derived from current numerical approach should be comparable to the results obtained using K-

field boundary layer analyses under small-scale yielding conditions in (Tankasala et al., 2015). For 

this reason, the D pre-factors for the hexagonal lattices obtained with the two approaches agree 

well for hexagonal lattices but deviate for triangular and kagome lattices (Table 1). These findings 

further validate the current numerical approach for elastoplastic materials. 

Finally, we emphasize that the numerical approach proposed herein can be easily extended to 3D 

cellular materials (strut or shell-based) with small modifications on the sample design (number of 



unit cells, number of elements, degree of isotropy) and boundary conditions. The only essential 

assumption is that the crack tip must be within the empty space of a unit cell, in order to avoid 

stress singularity and hence mesh-dependent damage in the finite element analysis. In the case of 

shell-based cellular materials, care must be taken to ensure the shell surfaces are sufficiently 

smooth to avoid sharp corners. We recognize two limitations of the proposed approach: (i) SENB 

specimens can only be used to predict mode-I fracture toughness, and (ii) progressive failure of 

individual struts can only be properly addressed by using continuum elements (not beam element 

as done in the current study), with significant increase in computational expense.  

 

5. Conclusions 

We proposed a versatile numerical approach for fracture toughness and R-curve modeling of both 

brittle and ductile cellular materials, combining J-integral calculations in SENB specimens and a 

local maximum strain damage model. The proposed model does not impose small-scale yielding 

restrictions, and hence does not require exceeding large numbers of unit cells for highly 

deformable constituent materials. This approach was applied in finite element modeling to 

investigate fracture toughness (R-curves) of three 2D isotropic lattices: triangular, kagome, and 

hexagonal lattices, made of both silicon carbide (elastic brittle) and titanium alloy (elastoplastic) 

constituent materials. First, specimen design studies were systematically conducted in order to 

extract the required number of unit cells, number of elements per bar and degree of isotropy, in 

order to ensure that accurate stress/strain fields are captured around the crack tip. Second, we 

validated the current numerical approach by comparing the predicted initial fracture toughness in 

both elastic brittle and small-scale yielding elasto-plastic cases with previous works (Fleck and 

Qiu, 2007; Tankasala et al., 2015). Finally, we extracted four key results: (i) toughening via 



topological designs of the lattice architecture seems possible even in elastic brittle lattices; (ii) the 

power-law scaling relations for initial fracture toughness and toughening coefficients with relative 

densities only depend on the topology of the lattice, and not the mechanical response of the base 

material; (iii) triangular lattices outperform both kagome and hexagonal lattices in terms of 

toughening (R-curve) in the range of �̅� = 0.13 – 0.2, and (iv) careful design of topology to exploit 

toughening mechanisms in cellular materials can significantly increase the steady-state fracture 

toughness that possibly exceed the initial fracture toughness or even the steady-state fracture 

toughness of the constituent material itself (especially true in the case of brittle base materials). 

We emphasize that the strength of the proposed approach lies in its versatility, allowing analysis 

of both 2D and 3D lattice materials with virtually any topology (both truss and shell-based) and 

any constituent material behavior, with the only restriction that the crack tip must be contained 

inside the unit cell. This topological condition could be relaxed with further development. These 

features make the proposed approach ideally suitable for the toughness calculation of shell-based 

lattice materials.  

 

 

Appendix A. Extraction of the minimum number of unit cells for accurate toughness 

modeling 

Linear elastic, small-strain finite element simulations were performed to calculate the minimum 

number of unit cells along the y-direction, 𝑛𝑦, of SENB specimens in order to secure accurate 

toughness measurements. The overall specimen dimensions follow the ASTM E1820 standard 

(ASTM E1820, 2011), with aspect ratio of  S = 4W, W = 2B and 𝑎/𝑊 = 0.5, as shown in Fig. A1 

(a). Displacement-controlled boundary conditions were applied as follows (see Fig. A1(a)): (i) A 



unit displacement of 1 mm was applied along the negative y-direction on the top surface node at 

the mid-span of the specimen; (ii) Two pin-jointed supports were applied at bottom nodes, 

distanced 𝑊/4 away from each end of the specimen, to prevent displacement in the y-direction. 

(iii) A fixed boundary condition was applied at one of the pin-jointed supports, to prevent rigid 

body motion in the x-direction. Each bar is represented by a single Euler-Bernoulli beam element 

(element B23 in Abaqus) with cubic interpolation; these elements can capture the deformation of 

a slender bar subjected to arbitrary bar end moments and forces in a small strain analysis. We 

varied the number of unit cells in the y-direction from 𝑛𝑦 = 4 to 𝑛𝑦 = 45, while keeping the unit 

cell size at ℓ = 3 mm and relative density at �̅� = 0.1. The pre-factor, D, for each topology was then 

calculated as D = KIC/(σTSρ̅√ℓ). As these are small-displacement linear elastic analyses, KIC/σTS 

can be replaced by KIC/σmax, where 𝐾𝐼 is the imposed mode-I stress intensity factor and 𝜎𝑚𝑎𝑥 is 

the maximum stress around the crack tip under the imposed displacement. Note that the constituent 

material properties are immaterial and would not change the results in these analyses. The 

normalized axial stress contours of triangular specimens with 𝑛𝑦 = 8 and 𝑛𝑦 = 40 were plotted in 

Fig. A1 (b). Maximum axial stress occurred immediately in front of the crack tip; the same 

conclusion can be drawn for hexagonal and kagome specimen (contours not shown here). The pre-

factors D for the three topologies were plotted against 𝑛𝑦 , and the minimum 𝑛𝑦  for sufficient 

accuracy is then determined as the number of unit cells at which the pre-factor is within 5% of the 

final converged value. The chosen 𝑛𝑦 for hexagonal, kagome, and triangular lattices are 40, 45, 

and 40 respectively, as shown in red circles in Fig. A1 (c) 

 



 

Fig. A1. Specimen design: number of unit cells. (a) Specimen aspect ratio. (b) Normalized axial 

stress contour of triangular specimens at number of unit cells, 𝑛𝑦  = 8 and 𝑛𝑦  = 40. (c) 

Convergence of the pre-factor, D, with number of unit cells, 𝑛𝑦. The chosen 𝑛𝑦 for the simulations 

are circled in black.  

 

Appendix B. Mesh sensitivity analysis 

Finite-strain elasto-plastic finite element simulations were performed to determine the number of 

elements per bar, 𝑛𝑒 , required to accurately capture the initial fracture response of SENB 

specimens. The minimum number of unit cells in the y-direction, ny, determined for each topology 

in Appendix 1 was used in all simulations, while keeping �̅� = 13% and ℓ = 3 mm. The boundary 

conditions described in section 2.4 were applied. Each bar, representing a Mindlin-Reissner 

isotropic plate (Mindlin, 1951; Reissner, 1945), was modeled with first-order Timoshenko beam 

elements (element B21 in Abaqus) for large strain and rotation analyses. To increase 

computational efficiency, only a rectangular region spanning approximately 10 x 13 unit cells in 

each in-plane direction around the crack tip has refined mesh, varying from 𝑛𝑒 = 4 to 𝑛𝑒 = 50 as 

shown in Fig. B1 (a) and (b). We ensured that this rectangular region encompasses the maximum 



crack length extension specified in ASTM E1820 (ASTM E1820, 2011). Outside of the rectangular 

region, each bar is modeled with one Timoshenko beam element. Such coarse meshing far away 

from the crack tip would only affect local deformation and simulated results would give the 

fracture response of an ideally scaled-up specimens. Titanium alloy (Ti-6Al-4v) is chosen as 

representative material, with plane-strain-modified Young’s modulus, 𝐸𝑠
′  = 135 GPa and  

modified Poisson’s ratio, 𝜈s
′= 0.43; the plastic behavior is modeled as σ =  σys(1 + 𝜀𝑝

 𝑛), where 

𝜎𝑦𝑠 = 932 GPa is the initial yield strength, n = 0.7237 is the strain hardening power, and εp is the 

plastic strain; a fracture strain 𝜀𝑓 = 0.1105 is assumed.  The load-line displacement at which the 

maximum axial strain around the crack tip reached 𝜀𝑓 was plotted against 𝑛𝑒. The minimum 𝑛𝑒 

was then determined as the number of elements per bar at which the load-line displacement is 

within 10% of the final converged value. The chosen minimum 𝑛𝑒 for hexagonal, kagome, and 

triangular lattices are 30, 20, and 4 respectively, as shown in red circles in Fig. B1 (c).  

 

 

Fig. B1. Specimen design: number of elements per bar. (a) Demonstration of refined mesh region 

around the crack tip. (b) Magnified views of mesh seeding around the crack tip with number of 

elements per bar, 𝑛𝑒 = 4 and 𝑛𝑒 = 50. (c) Convergence of the load-line displacement, at which 

the maximum axial strain around the crack tip reached 𝜀𝑓, with number of elements per bar, 𝑛𝑒. 

The chosen 𝑛𝑒 for simulations are circled in red. 



Appendix C. FE linear perturbation analysis to calculate the natural frequencies of 2D lattice 

materials 

Linear perturbation finite element simulations were performed to calculate the natural frequencies, 

𝜔𝑛, of all SENB specimens. Similar boundary conditions as defined in appendix A were applied, 

but without any loadings, as shown in Fig. C1. The minimum number of unit cells, ny, and required 

number of elements per bar, 𝑛𝑒, derived from appendix 1 and 2 were used. Titanium alloy (Ti-

6Al-4V) was used as constituent material, with modified Young’s modulus, 𝐸𝑠
′  = 135 GPa and 

Poisson’s ratio, 𝜈s
′ = 0.43, and density 𝜌𝑠 = 4,500 kg/m3. The ten smallest eigen-frequencies with 

corresponding eigen-modes were first extracted in each simulation. The smallest eigen-frequency 

with a physical eigen-mode was then taken as the natural frequency. Natural frequencies at each 

relative density and topology are reported in Table C1. For lattice specimens made of silicon 

carbide and/or with mass scaling (artificial increase of density in Abaqus to speed up simulation), 

natural frequencies were inferred proportionally, using 𝜔𝑛 = (𝐸𝑠
′/𝜌𝑠)0.5. 

 

Fig. C1. Illustration of boundary conditions applied in linear perturbation analyses: (i) two pin-

jointed supports at 4W distance apart to prevent translate in the vertical direction and (ii) a fixed 

boundary condition applied at the left pin-jointed support to prevent rigid body motion.  

 



 

Table C1. Natural frequencies of titanium alloy (Ti-6AL-4V) lattice specimens made of triangular, 

kagome, and hexagonal topologies, at �̅�  = 0.13, 0.16, and 0.2. Base material properties of 

modified Young’s modulus, 𝐸𝑠
′  = 135 GPa and Poisson’s ratio, 𝜈𝑠

′ = 0.43, and density  𝜌𝑠 = 

4,500 kg/m3 were used. 

 

Appendix D. Fracture toughness calculation procedures 

Fracture toughness calculation procedures are taken from ASTM E1820 (ASTM E1820, 2011) and  

summarized below with minor modifications. Fracture toughness is first quantified in terms of J-

integral, J. J is composed of an elastic part, Jel and a plastic part, Jpl:  

 J = Jel + Jpl                                                                                                                                                                                           (D.1) 

These components are calculated at instant (i), corresponding to each crack extension (load drop), 

as Jel (i) and Jpl (i) respectively. Jel (i), is related to mode-I stress intensity factor, KI as follows: 

 Jel (i) = 
(𝐾𝐼 (𝑖))2

𝐸
                                                                                                                               (D.2) 

where E is the effective Young’s modulus of the lattice specimens. KI (i) at each instant of crack 

extension is related to the load-line reaction force, P (i) as shown in Fig. D1 (a): 

 𝐾𝐼 (𝑖) =  [
4𝑃 (𝑖)

𝐵√𝑊
]  ∙  𝑓(

𝑎 (𝑖)

𝑊
)                                                                                                                     (D.3) 

where a (i) is the crack length at the instant (i) and the calibration factor 𝑓(𝑎 (𝑖)/𝑊) is calculated 

as,                                                             



 𝑓(
𝑎 (𝑖)

𝑊
) = 3√

𝑎 (𝑖)

𝑊
 ∙  

1.99 − 
𝑎 (𝑖)

𝑊
 ∙ (1 − 

𝑎 (𝑖)

𝑊
) ∙ (2.15 − 3.93

𝑎 (𝑖)

𝑊
+2.7(

𝑎 (𝑖)

𝑊
)

2
)

2(1 + 2
𝑎 (𝑖)

𝑊
) ∙(1 − 

𝑎 (𝑖)

𝑊
)1.5

                                          (D.4) 

As the specimens under investigation are 2D lattices, crack extensions can be visually determined 

in post-processing. Jpl (i) is related to the area under the load-line force / displacement curve, 𝐴𝑝𝑙 

(i), at instant (i) as follows (see Fig. D1): 

 Jpl (i) = 
2𝐴𝑝𝑙 (𝑖)

𝐵 ∙ (𝑊 − 𝑎 (𝑖))
                                                                                                                     (D.5) 

The fracture toughness at crack extension instant (i), KJ (i), is then calculated as KJ (i) = (E ∙ J 

(i))0.5. 

 



Fig. D1. Illustration of load-line reaction force, P, versus load-line displacement, v, at crack 

extension instant i = 1 and 2 with the area under the curve, 𝐴𝑝𝑙, at crack extension instant i = 1 

for J-integral calculations. 
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