
1

Evaluation of a High Performance Erasure Code Implementation

Frank Uyeda, Huaxia Xia, Andrew A. Chien

Computer Science and Engineering Department

University of California, San Diego

{fuyeda, hxia, achien}@ucsd.edu

September 9, 2004

Abstract
We examine the properties and performance of LT Codes for use in a high performance

distributed file system. Different variations to the algorithm were created to achieve key

characteristics, such as speed and data reliability. Finally, we evaluate parameter choices

in order to balance the system and network loads.

I. Introduction

As network bandwidth becomes more plentiful, high performance systems are able to

rapidly transmit very large datasets between each other with high quality of service.

Large-scale scientific applications can take advantage of this new capability to share and

interact with massive amounts of information. This is part of the motivating force behind

the Optiputer project. In order to meet the data transfer demands of high performance

computing, steps must be taken to circumvent latency costs and take advantage of the

maximum available bandwidth.

As part of the Optiputer project [5], the RobuSTore distributed file system addresses these

obstacles by producing redundant encoded data in such a way that clients need only to

retrieve a certain amount of the encoding from any combination of storage sites in order to

reconstruct the original file. This allows an application to request data in parallel from

every server that stores part of the encoding and then terminate the transfer after it has

received a sufficient aggregate amount of information. By retrieving the data in parallel,

the maximum available bandwidth can be utilized, and since only a certain percentage of

the encoding is needed, the client can avoid the overhead of waiting for a sluggish host.

The current encoding implementation is a type of rateless erasure code known as a Luby

Transform (LT) Code. Using the LT code as a base, certain aspects of the algorithm were

modified to specialize the encoding for the needs of RobuSTore. Running on dual-

processor Pentium-4 Xeon compute nodes, decoding speeds in excess of 200 MBps were

obtained using reasonable encoding parameters.

This paper explores different obstacles and solutions in the use of LT codes with

RobuSTore. We first look at the original LT algorithm in section II, and then define the

essential criteria for RobuSTore in section III. Next we will look at several modifications

to the coding algorithm used to achieve RobuSTore’s goals. Our testing procedure is

described in section V. The results from the speed-optimized implementations are then

presented in section VI, followed by the results of the implementations with improved

reliability in section VII. Section VIII provides insight into the overall performance of the

system when both computation speed and network bandwidth are considered. We compare

and contrast the work set forth in this paper to other implementations and uses of LT codes

2

in section IX. Finally, section X gives a summary of our accomplishments and highlights

future work in this area.

II. Background on LT Codes

The LT Coding algorithm produces a virtually unlimited number of encoded blocks from

some k original data blocks via logical XOR operations. The k original data blocks are

obtained by partitioning the original data into k uniform segments and the creation of each

encoded block, or “symbol”, will require (ln(/))O k δ logical operations on the original

blocks. To decode the original data with a 1 δ− chance of success, any
2(ln (/))k O k k δ+ encoded blocks should be sufficient [1].

The encoding process is relatively straight forward.

1. Choose some degree d for the next encoded block according to the Robust Soliton

Distribution [1].

2. Randomly choose d different original data blocks and XOR them together to

produce the encoded block.

3. Repeat steps 1 and 2 until the desired number of encoded blocks have been

produced.

It should be noted that as each encoded symbol is produced, the identities of its sources

must be stored as meta-data for the decoding process. In our implementation, this

information is represented as a bipartite graph with edges connecting nodes corresponding

to original data blocks to nodes representing encoded blocks.

The process of decoding the data is as follows:

1. When an encoded block is received, XOR it with all of its neighbors in the bipartite

graph which have been recovered, and remove the edges that join the XORed

nodes.

2. If the encoded block has only one remaining neighbor, then part of the original data

has been recovered. Copy its data to its sole neighbor and place that data node in a

queue of original nodes to process.

3. While the queue is not empty, choose a data node from the queue. XOR each

received neighbor’s data with the data in the original node and disconnect the

nodes. For each neighbor that is XORed, perform step 2.

4. Continue receiving and processing encoded blocks until the original data has been

completely recovered.

A novel feature of the LT coding algorithm is the use of the Robust Soliton distribution.

The basis for this distribution comes from the probability that an encoded symbol of some

degree will be able to recover a data block from a set of data blocks that have yet to be

recovered. In order to balance minimal redundancy with the production of enough edges

to keep the decoding successful within an established probability, Luby proposes an Ideal

Soliton [1] distribution for k original blocks as:

3

(1) 1/

For all 2,..., , () 1/ (1)

k

i k i i i

ρ
ρ

=

= = −

However, in practice, the ideal distribution performs very poorly. This ideal model does

not handle variance well, and therefore results in high decoding failure [1,2]. To address

this problem, the Robust Soliton Distribution was proposed. For a given number of blocks,

the ideal distribution was designed to keep the number of data elements waiting in the

queue to be processed close to one. In order to account for variance, the Robust Soliton

Distribution aims to keep the size of the queue, R, around ln(/)R c k kδ= ⋅ for some 0c >

[1]. The following distribution was proposed to augment the Ideal Soliton to achieve this.

/ for 1,..., -1

() ln(/) / for /

0 for / 1,...,

R ik i R

i R R k i k R

i k R k

τ δ

=


= =
 = +

The Robust Soliton Distribution, ()iµ , is then the normalized sum of these two

distributions.

1

(() ())
()

() ()
k

j

i i
i

j j

ρ τ
µ

ρ τ
=

+
=

+∑

III. LT Codes and RobuSTore

RobuSTore has several requirements that must be met by any encoding scheme that it uses.

These requirements ensure that RobuSTore can function properly as a distributed file

system while providing fault-tolerant, high performance service. Below are several criteria

that our LT Code implementation must satisfy.

1. Encoded blocks must be stored and distributed ahead of time.

To achieve high parallel throughput and avoid latency, RobuSTore distributes encoded

blocks among several storage devices. In order to do this, a fixed number of encoded

blocks must be produced when the original file is saved. While LT Codes usually continue

to produce encoded blocks until the decoding is complete, we only capture and store a

fixed number of blocks which should be enough to decode with high probability.

2. The decoder must run at high speeds.

One of the key motivations for using erasure codes in the RobuSTore file system is to

increase the performance by avoiding long network latencies and slow hosts. In order to

take advantage of these benefits, the decoder must have a throughput high enough to

saturate the available network bandwidth.

3. The algorithm must provide data reliability.

Since we are developing a file system, any data lose is unacceptable. The LT Coding

algorithm is non-deterministic and, as such, there is no absolute guarantee that the original

4

data can be recovered from a fixed number of blocks. Our implementation must ensure

100% recoverability.

4. The encoding should be robust.

In order to provide fast decoding and fault tolerance, we defined the idea of “maximum

degree of freedom”. Simply put, there should be a maximum number of different

combinations of encoded blocks that can be used to reconstitute the original data. This

degree of freedom ensures that there will be no encoded blocks that the decoder always

depends in order to recover the data.

IV. LT Codes in Practice

In order to utilize the benefits of LT Codes and meet the requirements of the RobuSTore

file system, the algorithm was modified in several ways. The following are the variations

that were implemented and tested.

Optimized Scheduling:

A key optimization to speed up the algorithm was scheduling the XOR operations. After

evaluating the original implementation with gprof, the obvious bottleneck in the system

was performing memory operations, namely the logical XOR. In order to reduce the

number of memory accesses during decoding, we waited until all necessary blocks were

present and then did the XOR operations all at once. This improvement eliminated any

work that would result in a data block that had already been recovered. In addition, this

method also leveraged memory and cache locality at the system level to reduce memory

hits.

Optimized memory XOR:

To further drive down the time needed for XOR operations, we took advantage of the

MMX instruction set and wrote a streamlined memory XOR function which used striping

to maximize cache usage. Additionally, the modified function reduced the number of

necessary registers. The striping provides consistent performance when the blocks are too

large to fit into the cache.

Coverage Threshold:

To improve reliability and robustness, all of the original data nodes were checked after

encoding to see if they met a “coverage” threshold. We defined coverage as the degree of

the data node. If an original node did not have the minimum number of edges, it was

included as a source for random encoded blocks until the threshold was met. This process

ensured that all of the data was present in the encoding. Ensuring a certain degree of

coverage improves, but does not guarantee, 100% decodability.

Original Blocks:

To ensure that the data is always recoverable, all of the original data blocks are copied into

the encoded data. By adding all of the original blocks, we can always ensure a successful

decoding if no blocks are lost. However, the average amount of useful redundant

5

information per encoded block is decreased and, on average, more blocks will be needed to

perform a successful decoding.

Guaranteed Decodability:

A simple and effective solution for reliability was to run a light-weight version of the

decoding algorithm on the bipartite graph during the encoding process. New graphs were

generated until a decodable solution was found. Once an acceptable graph was created, the

XOR operations were performed. The time cost of performing the check and possibly re-

generating the coding graph is minimal compared to the cost of the XOR operations

needed to produce the encoded blocks, making this is a reasonable solution.

Uniform Coverage:

To increase the degree of freedom, the idea of coverage was taken a step further. Instead

of ensuring a coverage threshold, data nodes were chosen in such a way that they would

receive uniform coverage. In order to accomplish this, a random permutation of the data

nodes was created and place into a queue. As encoded nodes chose sources, data nodes

were removed from the head of the queue and added to the encoded node. Once the queue

had been depleted, a new permutation was made and placed in the queue. This process

ensures that each of the original nodes is equally represented in the encoding.

Choosing Coding Parameters:
When using the LT Coding process, there are a number of parameters that can be specified

and a number of criteria that are useful in evaluating the potential for a certain

configuration. The most important metrics for RobuSTore are the decoding speed and the

number of encoding blocks needed to recover the original data. However, high speed and

a small number of blocks are opposing factors.

The three parameters that affect these two metrics are k, the number of data blocks; C, a

parameter for the creation of the Robust Soliton Distribution; andδ , the expected rate of

failure if 2(ln (/))k O k k δ+ encoded blocks are evaluated. While the Ideal Soliton

Distribution is a strictly decreasing function that only depends on k, the Robust Soliton has

an added spike, whose size and location is determined by C and δ . As C increases and

δ decreases the spike in the distribution occurs closer to one and increases in size. This

results in additional lower degree encoded nodes. Figure 1 shows the average degree of an

encoded node for different values of C and a givenδ . Table 1 relates that average number

of encoded blocks needed for decoding as multiples of k, the number of original blocks, for

the original implementation.

6

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

C

A
v
e

ra
g

e
 A

u
x
 N

o
d

e
 D

e
g

re
e

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

Figure 1 – Average Node Degree vs. C for different Sigma

Table 1 – Avg. Blocks Needed for Reconstruction for k=1024 (multiples of k)

Sigma\C 0.1 0.5 1 1.1 1.2 1.3 1.4 1.5 1.7 2 3 5

0.001 1.48 1.98 2.18 2.18 2.90 3.00 2.94 3.03 3.11 3.27 3.42 3.61

0.002 1.45 1.90 2.11 2.17 2.20 2.89 2.97 3.02 3.10 3.15 3.43 3.55

0.005 1.39 1.95 2.08 2.13 2.13 2.20 2.91 2.91 2.98 3.12 3.34 3.56

0.007 1.37 1.90 2.10 2.14 2.17 2.16 2.83 2.84 2.92 3.10 3.29 3.54

0.01 1.36 1.87 2.06 2.07 2.06 2.20 2.80 2.86 2.95 3.05 3.32 3.53

0.02 1.32 1.75 2.05 2.06 2.09 2.06 2.14 2.78 2.85 2.94 3.23 3.53

0.05 1.27 1.72 1.71 2.00 2.06 2.06 2.05 2.18 2.78 2.80 3.13 3.39

0.07 1.26 1.67 1.71 1.73 2.00 2.05 2.10 2.09 2.68 2.78 3.15 3.46

0.1 1.24 1.61 1.65 1.70 1.99 2.04 2.01 2.07 2.10 2.78 3.07 3.32

0.2 1.21 1.57 1.63 1.69 1.65 1.97 2.01 2.01 2.10 2.61 3.05 3.27

0.5 1.18 1.48 1.53 1.60 1.64 1.66 1.93 1.96 2.02 2.10 2.73 3.13

0.7 1.17 1.43 1.50 1.58 1.63 1.64 1.63 1.89 1.95 2.01 2.74 3.11

1 1.16 1.41 1.47 1.48 1.60 1.61 1.63 1.68 1.94 2.01 2.67 3.08

Table 2 gives the product of the average node degree and the average number of blocks

needed. This is an important metric when evaluating speed as it is closely related to the

number of XOR operations performed in the original algorithm. It is important to notice

that the implementations which include scheduled XOR operations have different

behaviors which eliminate many of the XOR operations.

7

Table 2 – Product of Avg. Node Degree and Avg. Blocks Needed for Reconstruction

Sigma\C 0.1 0.5 1 1.1 1.2 1.3 1.4 1.5 1.7 2 3 5

0.001 17.68 10.49 7.56 7.50 7.53 7.63 7.39 7.45 7.47 7.60 7.51 7.57

0.002 17.40 10.09 7.47 7.56 7.50 7.48 7.58 7.54 7.64 7.49 7.64 7.51

0.005 17.01 11.73 7.53 7.53 7.41 7.52 7.60 7.48 7.49 7.62 7.58 7.61

0.007 16.34 11.33 7.62 7.62 7.63 7.46 7.56 7.47 7.42 7.57 7.50 7.54

0.01 15.88 11.18 7.59 7.47 7.28 7.63 7.57 7.61 7.60 7.61 7.67 7.60

0.02 15.39 10.50 7.67 7.56 7.56 7.36 7.54 7.67 7.57 7.48 7.61 7.65

0.05 14.55 11.25 7.65 7.67 7.67 7.52 7.48 7.75 7.65 7.50 7.52 7.48

0.07 14.16 10.96 7.74 7.69 7.61 7.60 7.70 7.57 7.57 7.50 7.66 7.73

0.1 13.93 10.56 7.58 7.64 7.59 7.64 7.52 7.58 7.50 7.54 7.57 7.42

0.2 13.23 10.95 7.67 7.77 7.50 7.64 7.65 7.58 7.69 7.52 7.77 7.50

0.5 12.23 10.75 8.15 7.63 7.66 7.65 7.71 7.75 7.71 7.69 7.43 7.41

0.7 11.97 10.28 8.06 7.59 7.73 7.65 7.54 7.59 7.56 7.49 7.55 7.50

1 11.68 10.61 8.02 7.92 7.71 7.64 7.56 7.70 7.70 7.63 7.55 7.54

From Table 1, we see that smaller values of C and larger values of δ produce encodings

that require fewer encoded blocks. This is expected since the average degree of the

encoded blocks is highest for these values. Table 2 shows that there is not much variation

in the products for values of C greater than 1 and that these values give the lowest values,

which translate into the least number of symbol operations. From these observations, we

can safely choose values of C greater than, but close to 1, and larger values for δ . While

these observations hold for the original implementation and serve as a good basis for

testing, the modified algorithms exhibit different behavior to given choices of C and δ .

The third parameter, k, affects several aspects of the algorithm. Most importantly it relates

to both the number of necessary blocks, 2(ln (/))k O k k δ+ , and also the number of

symbol operations, (ln(/))O k k δ⋅ [1]. As k increases, the number of blocks and the

number of symbol operations grow in a non-linear fashion. Therefore, smaller values of k

should result in relatively fewer necessary blocks and faster decoding times.

V. Experiment Setup

The following tests fixed the number of data blocks at k=1024 and the file size at 128MB.

Based on the average number of encoded blocks needed to decode, we produced 5k

encoded blocks to ensure that the tests would successfully complete with high probability.

Encoded blocks were pushed to the decoder in random order. Ten tests were run for each

combination of parameters using dual Xeon 2.4GHz machines with 1GB of memory.

VI. Results from Speed Optimizations

The intension of these modifications was to improve the algorithm’s efficiency in order to

achieve faster decoding times when using a reasonable number of blocks. The

optimizations performed on the LT Code algorithm took two forms, reducing the number

of operations and performing the operations more efficiently.

8

1. The original implementation – Greedy Scheduled & Original XOR

Table 3 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 67.88516 65.1774 72.42279 70.40005 71.03017 69.37574 75.36792

0.2 69.56745 67.87941 69.37398 72.94715 73.02349 77.65614 73.15825

0.5 67.5528 70.12628 69.07971 68.97836 73.83843 71.67508 73.76106

0.7 64.70222 71.94008 68.43411 70.80492 69.89602 70.71551 72.33103

1 67.92839 65.34122 69.00225 71.69747 67.93825 71.09644 71.51722

2. Optimized Scheduling & Original XOR

Table 4 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 187.2019 188.4609 196.6718 197.7784 202.3057 211.1028 203.1425

0.2 185.3084 185.7814 182.276 187.6694 201.9992 200.8429 199.5137

0.5 169.1851 182.5684 180.6636 186.5384 192.8676 187.4026 204.4487

0.7 164.5086 185.0814 178.6015 191.4239 182.9313 196.9798 185.7542

1 174.2982 172.3834 177.4054 190.4721 182.1788 179.9855 192.6644

The dramatic speed up from the optimized scheduling algorithm can be explained by the

reduction of XOR operations. With this scheduling scheme over half of the original XOR

operations can be eliminated. Below are tables of the average number of 2-input XOR

operations that were performed during the decoding process before and after the optimized

scheduling was introduced. While calls to the memory XOR function consume the

majority of the processing time, the actual bottleneck for the system is the memory

throughput required by the function. For each XOR operation in the original scheduling,

two reads and one write must be performed. However, for the optimized scheduling, many

of the memory reads can be avoided since the intermediate results remain in the cache.

More precisely, for an encoding with k original data blocks, there will only be k memory

write operations and (avg. XORs)k + memory reads during the entire decoding process.

Table 5 - Avg. XOR Operations – Greedy Scheduling (Original)

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.7 8216.54 7541.24 7637.93 7625.51 7604.23 7457.19 7465.07

0.2 7726.09 7579.38 7571.47 7723.49 7593.58 7572.73 7426.41

0.1 7713.39 7799.26 7769.66 7785.86 7817.45 7638.43 7541.22

0.5 7976.1 7640.36 7577.77 7634.76 7661.36 7752.36 7447.94

1 8134.86 8048.14 7813.82 7822.09 7599.22 7705.47 7831.12

Table 6 -Avg. XOR Operations – Optimized Scheduling

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 3782.16 3743.89 3386.86 3403.97 3351.59 3137.05 3032.59

0.2 3919.03 3878.25 3716.28 3436.42 3417.73 3216.78 3127.58

0.5 4451.07 4006.23 3849.98 3952.8 3693.01 3557.17 3485.74

0.7 4366.7 3976.05 4003.21 3911.45 3829.87 3565.12 3432.12

1 4436.99 4357.59 4094.96 4025.7 3840 3845.2 3660.5

9

3. Optimized Scheduling & Optimized XOR

The memory XOR function was modified in two ways. First, the 2-input 32-bit operation

was replaced with the Intel MMX 64-bit version. This reduced the number of processor

cycles devoted to computing the XOR and also made use of the processor’s special MMX

registers, leaving the general register open for other values. Second, data striping was

introduced so that the operands and any intermediate results could stay in the cache until

they were no longer needed. Below are the results of the improved memory XOR

operation.

Table 7 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 182.8556 181.7817 197.934 206.3672 210.8067 202.2333 208.7896

0.2 173.2348 193.8107 192.4676 199.893 197.0093 200.3505 205.4907

0.5 172.3564 179.4596 181.2496 189.5616 192.2246 192.8085 202.6708

0.7 167.2648 176.4274 174.8152 172.2848 172.2233 193.2714 197.0925

1 174.6569 174.2886 181.3088 183.7134 185.6997 179.0326 196.1095

The optimized XOR function does not show any notable performance benefit for these

testing parameters since it has the greatest effect when used with larger data blocks

(smaller values of k). With the current parameters, the block size is 128KB, which is

already a good match for the caches on the test machines. For larger blocks, the optimized

version can maintain higher throughput compared to the performance of the original XOR

implementation, which deteriorates due to additional cache misses. Ultimately, the

performance is bounded by the memory throughput, thus utilizing the caches is critical.

VII. Results from Reliability and Robustness Modifications

After the speed optimizations had been integrated into the algorithm, several modifications

were made to improve the reliability and robustness of the encodings. The following

results were obtained with the optimized scheduling and optimized XOR options enabled.

1. Including the Original Blocks

The encoder was set to include all of the original data blocks as encoded blocks. Since all

of the original blocks were already included in the encoding, we did not allow the encoder

to produce any other encoded nodes with degree equal to one. By including all of the

original blocks, we can ensure that all encodings will be decodable.

Table 8 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 194.8817 199.9829 207.171 221.7728 215.1289 223.6352 226.2422

0.2 195.7527 194.4314 188.7477 211.542 212.5632 208.8365 214.9657

0.5 170.8894 194.1178 198.2732 191.8115 204.8867 210.5193 205.5439

0.7 180.2153 194.303 195.2366 190.9267 189.0547 192.2865 213.0392

1 173.7224 181.5339 178.0226 181.3043 193.8084 187.1918 197.3282

10

Table 9 - Avg. Blocks as multiples of k

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 1.76123 1.669238 2.15791 2.114063 2.172363 2.229102 2.405957

0.2 1.793359 1.695898 1.691504 1.932031 2.243457 2.273828 2.130078

0.5 1.534863 1.842383 1.863672 1.875488 2.109473 2.038672 1.931738

0.7 1.51582 1.739551 1.728418 1.972168 1.658496 1.991504 2.20459

1 1.433496 1.521973 1.59502 1.699902 1.739258 1.808398 1.971484

It is clear to see that more encoded blocks are needed on average in order to reconstruct the

original data. In addition, the decoding speeds are noticeably faster. There results are

expected since the inclusion of the original data blocks in the encoded data decreases the

average node degree. In this scenario, more blocks are needed to account for all of the

original blocks, but few XOR operations are required.

2. Specifying a Coverage Threshold

During the encoding process, the algorithm makes sure that every data node is part of at

least some number of encoded nodes. For this test, we set the minimum coverage at three.

This check ensures that none of the original blocks are missed during the random

assignment of edges. Furthermore, it makes sure that the entire decoding process is not

dependent on a small number of encoded blocks that contain information about a poorly

covered data node. While this implementation reduces the possibility that the data can not

be recovered, it does not fully eliminate it.

Table 10 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 183.8205 183.3571 201.5032 199.1531 198.8691 202.7484 207.0833

0.2 179.0851 179.8119 182.4829 189.5924 201.2879 194.2353 204.6021

0.5 169.1483 177.1901 179.7195 184.3208 199.8105 185.4573 195.9053

0.7 165.878 179.7948 172.9102 180.4744 186.5881 189.2392 185.057

1 167.9597 166.8491 171.8411 175.4305 171.0451 174.0317 191.5861

Table 11 - Avg. Blocks as multiples of k

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 1.69458 1.678613 2.041309 1.995264 1.943066 2.084814 2.109033

0.2 1.640234 1.58457 1.719531 1.917725 2.007959 1.964551 2.068701

0.5 1.553076 1.694434 1.638379 1.65 2.001807 2.016553 1.926074

0.7 1.514111 1.500977 1.565967 1.666162 1.779102 1.851563 1.973096

1 1.454688 1.510889 1.590674 1.522607 1.662842 1.706348 1.925732

3. Including the Original Blocks and Specifying a Coverage Threshold

While the results from the Coverage Threshold tests were very good, the possibility of

losing data due to an unrecoverable encoding is unacceptable. To address this problem, the

encoder included all of the original blocks in the encoded data and made sure that every

data node was part of at least three encoded nodes. Unlike the previous implementation

which included the original blocks only once, we allowed the encoder to produce

11

additional nodes of degree one. The original LT Coding algorithm does not check for

identical encoded blocks, and in an effort to mimic that model, we did likewise.

Unfortunately, this produces any abundance of lower degree nodes, which forces the

decoder to use even more blocks during decoding. One benefit to the numerous low

degree blocks is fewer XOR operations, and hence a faster decoding throughput.

Table 12 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 205.4863 205.0873 219.0133 224.481 228.8149 228.0048 237.1714

0.2 191.0704 202.9727 194.6265 215.5549 208.6296 229.4761 226.5123

0.5 192.7276 191.023 205.4291 202.4576 213.9331 213.5806 222.1768

0.7 185.8853 199.9064 199.729 197.7476 186.2845 206.7715 209.5227

1 178.2516 176.2841 200.591 189.8512 185.436 199.2595 212.8395

Table 13 - Avg. Blocks as multiples of k

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 1.846387 1.958105 2.31709 2.278418 2.344922 2.38457 2.495996

0.2 1.839551 1.885938 1.935352 2.302246 2.291504 2.435156 2.572461

0.5 1.86709 2.025098 1.938379 2.021875 2.006738 2.423242 2.224707

0.7 1.660059 1.95 1.946582 1.980273 2.041602 2.073047 2.130957

1 1.768457 1.614746 1.892188 1.929102 1.863281 1.941211 2.081738

4. Specifying a Coverage Threshold and Guaranteed Decodability

In order to ensure decidability without the reception overhead of including all of the

original blocks, a light-weight version of the decoding algorithm was run on the bipartite

meta-data graph during the encoding process. This check and the possible graph

regeneration were very quick in comparison to the XOR operations. This modification

guarantees decodability but also maintains the decoding speed and reception overhead of

the optimized original implementation.

Table 14 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 185.525 187.6934 198.7276 209.3207 204.422 201.9158 213.1997

0.2 184.1342 184.7919 180.1663 196.4269 204.5893 207.2135 207.9365

0.5 167.23 180.3972 180.0027 186.9943 192.6963 192.3808 200.8509

0.7 169.2232 176.2942 181.1987 185.9171 192.1051 195.8659 202.2354

1 167.2817 170.4065 182.4955 184.1416 184.6647 183.4999 195.0134

Table 15 - Avg. Blocks as multiples of k

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 1.658691 1.615869 1.949658 2.098877 2.150781 2.033252 2.056641

0.2 1.660889 1.657959 1.636084 1.896045 2.005957 2.022559 2.0979

0.5 1.559961 1.535205 1.660205 1.649219 1.948193 2.059326 2.035254

0.7 1.554541 1.581055 1.568213 1.539502 1.632813 2.075049 2.021338

1 1.512207 1.457715 1.499121 1.54292 1.568066 1.778906 1.911768

12

5. Uniform Coverage and Guaranteed Decodability

To increase the degree of freedom, the idea of coverage was taken a step further. Instead

of setting a lower threshold on a data node’s degree, we attempt to give all data nodes the

same degree. This ensures that all pieces of the original data are equally represented in the

encoding.

Table 16 - Avg. MBps

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 177.1758 185.8256 204.1372 200.8858 209.4234 217.0385 212.7888

0.2 176.6163 175.1468 187.8626 201.1126 202.57 211.1644 205.471

0.5 166.339 171.1617 184.316 176.5173 198.6438 191.7638 208.7998

0.7 160.569 174.143 179.1221 182.7572 184.8161 197.1052 202.9509

1 127.8182 168.0613 176.2462 182.5931 182.0857 174.389 195.6421

Table 17 - Avg. Blocks as multiples of k

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7

0.1 1.52041 1.574219 1.545605 1.60625 1.725879 1.753906 1.791895

0.2 1.396973 1.513184 1.544434 1.596191 1.727832 1.662695 1.839551

0.5 1.534473 1.413672 1.451074 1.420313 1.686328 1.539551 1.627441

0.7 1.453711 1.402539 1.516602 1.448145 1.4375 1.642578 1.689844

1 1.431445 1.48584 1.370215 1.458203 1.368066 1.430078 1.547852

It is interesting to note that while the computation speeds are very similar to the

implementation with a coverage threshold, the average number of blocks needed for

decoding is noticeably lower. This suggests that the uniform coverage has provided some

level of improvement in the degree of freedom for the encoding.

VIII. Evaluation of Network and Computation Speeds

In addition to the processing time needed to decode a set of encoded blocks, it is also

important to consider the total time necessary to both receive and process the blocks. As

encoded blocks are received, some of the XOR operations can be performed while waiting

for the rest of the necessary blocks. Our goal is to balance the receiving and processing

rates to optimize our efficiency and speed. In order to apply our results to a wide variety

of hardware configurations, our simulations used the ratio between the network bandwidth

and the computation bandwidth as a parameter. Several simulations were run using the

guaranteed decodability and uniform coverage implementation and a wide range of values

for C and δ to investigate the overall performance when this parallelism is considered.

Our results indicate that there is a relatively small window where network bandwidth and

computation speed can be balanced using C and δ . Experimentation showed that for

ratios of network to computation speed less than 0.06, parameters giving very high average

node degrees, and hence the fewest number of necessary blocks for decoding, provided the

best performance. This indicates that the system bottleneck is the network speed. For

network to computation ratios greater than 0.8 extremely low average node degrees gave

the best performance. For these configurations, a bottleneck in computation speed creates

13

a heavy reliance on the network to transport a large quantity of low degree nodes which

can be rapidly evaluated. Table 18 summarizes the best coding parameters along with the

average node degrees for given network to computation bandwidth ratios.

In order to see the benefits of scaling the

network and computational bandwidth of a

system, we evaluated the theoretical

performance of our current test machines.

For our systems, the measured memory

bandwidth for the memory XOR operation is

2.1 GBps and the network interface is

specified at 1 Gbps (~128MBps). The figures

below show the total system throughput using

the optimal coding parameters when scaling

either network bandwidth or computation

bandwidth.

From the figures, we can see that significant

increases in the memory bandwidth from

2000MBps will produce no more than a 30%

improvement in overall throughput. However,

doubling the network bandwidth will nearly

double the system performance!

Table 18 – Optimal Coding parameters

Net2comp C Sigma Avg. Degree

< 0.06 Small 1 High

0.06 0.1 1 10.03576

0.07 1.2 1 4.815068

0.08 1.4 0.5 4.000171

0.09 1.6 1 4.025548

0.1 1.4 0.5 4.000171

0.2 2 1 3.799221

0.3 2 0.2 2.864407

0.4 1.9 0.05 2.690313

0.5 5 0.7 2.412966

0.6 10 0.7 2.148624

0.7 30 0.00001 1.969518

0.8 100 0.00005 1.958965

0.9 100 0.1 1.940646

> 0.9 Large > 0.0001 Low

14

IX. Related Work
The idea of using erasure codes for reliable storage is not a completely new one. Material

has been published about Lincoln Erasure Code implementations for distributed storage,

and also on research done at the University of California, Berkley on the OceanStore

project. The OceanStore project has implemented Reed-Solomon codes and Tornado

codes to provide data reliability [3], but the computation costs of these codes constrain

their actual throughput [4]. Researchers at MIT’s Lincoln Labs have developed their own

erasure code implementation, the Lincoln Erasure Code, which sends the original data

blocks along with a specified number of parity blocks. In their 2003 report, their

implementation claimed an advantage over standard LT codes of 760 Mbps to 220 Mbps

for a 13MB file on a 1.7GHz Xeon machine [4].

X. Summary and Future Work

Through our study of LT codes for RobuSTore we have investigated necessary

components of a practical algorithm and worked to shape a specialized version of LT codes

to meets those requirements. Although Cooley, et. al., had misgivings about the speed and

reliability of LT codes for distributed storage [4], our experiments show that LT codes can

perform at high speeds with reasonable reception overheads. Below is a summary of our

different implementations evaluated on decoding speed and necessary blocks.

15

Throughput Summary

(C=1.4, Sigma=0.2, k=1024, 128MB file)

73.02

197.01

212.56

201.29
208.63

204.59 202.57

0.00

50.00

100.00

150.00

200.00

250.00

Original Speed Optimized Original Blocks Coverage

Threshold

Coverage

Threshold &

Original Blocks

Coverage

Threshold &

Guaranteed

Decodability

Uniform

Coverage &

Guaranteed

Decodability

M
B

p
s

MBps

In addition, it is interesting to look at the trade off between decoding speed and necessary

blocks. For our later implementations, it becomes apparent that larger values of C

produced faster decoding speeds, but also require more blocks. In tests with extreme

values of C, consistent decoding speeds as high as 324MBps were achieved with an

average of 2.5 times the number of original blocks. Conversely, low values of C and large

values of sigma can produce encodings with low reception overheads (<1.2) while still

Avg. Blocks Needed

(C=1.4, Sigma=0.2, k=1024, 128MB file)

2.01 2.01

2.24

2.01

2.29

2.01

1.73

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

Original Speed

Optimized

Original Blocks Coverage

Threshold

Coverage

Threshold &

Original Blocks

Coverage

Threshold &

Guaranteed

Decodability

Uniform

Coverage &

Guaranteed

Decodability

M
u
lt
ip

le
s
 o

f
k

Avg. Blocks

16

maintaining throughputs over 100MBps. Based on our analysis of the overall reception

and computation throughput, the values of C and sigma can be adjusted to give optimal

performance for a given hardware configuration.

Ongoing work for LT Codes to be used in RobuSTore should focus on the robustness of

the encoding. Developing a means to evaluate the maximum degree of freedom, as well

as, better methodologies to achieve maximum freedom would ensure better data reliability

and allow RobuSTore more flexibility when receiving data from storage sites. The goal is

to achieve this without significantly degrading the decoding bandwidth or increasing the

average number of necessary blocks for decoding. The implementations using uniform

coverage should have improved degree of freedom but an accurate way to compare their

performance to that of the other implementations is still needed.

While obstacles still remain in creating a high-performance distributed file systems based

on erasure coding, the work done thus far with LT Codes shows the feasibility and

potential for such systems. Without any special hardware, decoding speeds exceeding

200MBps were achieved using fewer than 1.7 times the number of original blocks. These

speeds will come close to saturating 4-Gigabit links while providing low latency access to

distributed data. In addition, we see that even with our current compute capabilities,

increasing memory bandwidth does not give much advantage while using a 1GBps

network link. However, the advance of network bandwidths will allow sizable

improvements in the overall system speed using our current compute hardware. With the

current trends in the growth of network throughput versus processor speed, RobuSTore is

in a position to offer excellent high performance, fault-tolerant service in the coming years.

Acknowledgements:

Supported in part by the National Science Foundation under awards NSF Cooperative

Agreement ANI-0225642 (OptIPuter), NSF CCR-0331645 (VGrADS), NSF ACI-

0305390, and NSF Research Infrastructure Grant EIA-0303622. Support from the

California Institute for Telecommunications and Information Technology, UCSD Center

for Networked Systems, BigBangwidth, and Fujitsu is also gratefully acknowledged.

17

Appendix A: Function Headers

Function: Encode()

Description: Given a segment of original data, this function will encode it and return N encoded

data blocks in pDataBlocks (memory space already allocated) and a serialized version of the

coding graph.

Returns: TRUE if the original data was successfully encoded, FALSE, otherwise.

int Encode(void *pOrigData, int origSize, int K, int N, EncInfo **ppInfo, int* infoSize,

 DataBlock **pEncData);

void *pOrigData Original data chunk

int origSize The number of bytes of original data

int K Number of original data blocks

int N Number of total encoded data blocks

EncInfo **ppInfo Graph and file information produced when encoding, malloc() by

this function, MUST be freed with EncRelease() after usage.

int* infoSize Address of an int to pass back the size of the EncInfo

DataBlock **pEncData N encoded blocks to be returned, memory space will be allocated

and MUST be freed later.

Function: DecInit()

Description: Initializes the decoder by inputing the coding graph and specifying where to store

original data segment.

Returns: an initialized DecState object to be used with DecPush(). The returned memory MUST be

deallocated with a call to DecRelease().

DecState* DecInit(EncInfo* pInfo, void *pOrigData);

EncInfo *pInfo Graph and block size produced when encoding.

void *pOrigData Allocated memory space for reconstructed data.

Function: DecPush()

Description: Pushs an encoded block into the decoding ripple, and tell if it's ready to

reconstruct the original data segment.

Returns: True if enough blocks have been received to reconstruct the original data, and the

data is available.

int DecPush(DataBlock* pDataBlock, DecState* state);

DataBlock* pDataBlock The next data block to evaluate

DecState* state State information from previous calls to DecPush()

18

References

[1] Luby, Michael, “LT Codes”, 43
rd

 Annual IEEE Symposium on Foundations of

Computer Science, 2002.

[2] Khisti, Ashish, “Tornado Codes and Luby Transform Codes”

[3] Kubiatowicz, J., et. al. “OceanStore: An Architecture for Global-Scale Persistent

Storage.” Proceedings of the Ninth International Conference on Architectual

Support of Programming Languages and Operationg Systems (ASPLOS 2000),

November 2000, 190-201.

[4] Cooley, Joseph A., et. al. “Software-base Erasure Codes for Scalable Distributed

Storage”. Twentieth IEEE/Eleventh NASA Goddard Conference on Mass Storage

Systems & Technologies, April 2003

[5] Chien, Andrew, et al. “OptIPuter System Software Framework”, UCSD Technical

Report CS2004-0786

