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Abstract   
We examine the properties and performance of LT Codes for use in a high performance 

distributed file system.  Different variations to the algorithm were created to achieve key 

characteristics, such as speed and data reliability.  Finally, we evaluate parameter choices 

in order to balance the system and network loads. 

 

I. Introduction 

As network bandwidth becomes more plentiful, high performance systems are able to 

rapidly transmit very large datasets between each other with high quality of service.  

Large-scale scientific applications can take advantage of this new capability to share and 

interact with massive amounts of information.  This is part of the motivating force behind 

the Optiputer project.  In order to meet the data transfer demands of high performance 

computing, steps must be taken to circumvent latency costs and take advantage of the 

maximum available bandwidth.  

 

As part of the Optiputer project [5], the RobuSTore distributed file system addresses these 

obstacles by producing redundant encoded data in such a way that clients need only to 

retrieve a certain amount of the encoding from any combination of storage sites in order to 

reconstruct the original file.  This allows an application to request data in parallel from 

every server that stores part of the encoding and then terminate the transfer after it has 

received a sufficient aggregate amount of information.  By retrieving the data in parallel, 

the maximum available bandwidth can be utilized, and since only a certain percentage of 

the encoding is needed, the client can avoid the overhead of waiting for a sluggish host.  

 

The current encoding implementation is a type of rateless erasure code known as a Luby 

Transform (LT) Code.  Using the LT code as a base, certain aspects of the algorithm were 

modified to specialize the encoding for the needs of RobuSTore. Running on dual-

processor Pentium-4 Xeon compute nodes, decoding speeds in excess of 200 MBps were 

obtained using reasonable encoding parameters. 

 

This paper explores different obstacles and solutions in the use of LT codes with 

RobuSTore.  We first look at the original LT algorithm in section II, and then define the 

essential criteria for RobuSTore in section III.  Next we will look at several modifications 

to the coding algorithm used to achieve RobuSTore’s goals.  Our testing procedure is 

described in section V.  The results from the speed-optimized implementations are then 

presented in section VI, followed by the results of the implementations with improved 

reliability in section VII.  Section VIII provides insight into the overall performance of the 

system when both computation speed and network bandwidth are considered.  We compare 

and contrast the work set forth in this paper to other implementations and uses of LT codes 
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in section IX.  Finally, section X gives a summary of our accomplishments and highlights 

future work in this area.  

 

II. Background on LT Codes 

The LT Coding algorithm produces a virtually unlimited number of encoded blocks from 

some k original data blocks via logical XOR operations.  The k original data blocks are 

obtained by partitioning the original data into k uniform segments and the creation of each 

encoded block, or “symbol”, will require (ln( / ))O k δ  logical operations on the original 

blocks.  To decode the original data with a 1 δ−  chance of success, any 
2( ln ( / ))k O k k δ+ encoded blocks should be sufficient [1].   

 

The encoding process is relatively straight forward. 

1. Choose some degree d for the next encoded block according to the Robust Soliton 

Distribution [1]. 

2. Randomly choose d different original data blocks and XOR them together to 

produce the encoded block. 

3. Repeat steps 1 and 2 until the desired number of encoded blocks have been 

produced. 

 

It should be noted that as each encoded symbol is produced, the identities of its sources 

must be stored as meta-data for the decoding process.  In our implementation, this 

information is represented as a bipartite graph with edges connecting nodes corresponding 

to original data blocks to nodes representing encoded blocks. 

 

The process of decoding the data is as follows: 

1. When an encoded block is received, XOR it with all of its neighbors in the bipartite 

graph which have been recovered, and remove the edges that join the XORed 

nodes. 

2. If the encoded block has only one remaining neighbor, then part of the original data 

has been recovered.  Copy its data to its sole neighbor and place that data node in a 

queue of original nodes to process. 

3. While the queue is not empty, choose a data node from the queue.  XOR each 

received neighbor’s data with the data in the original node and disconnect the 

nodes.  For each neighbor that is XORed, perform step 2. 

4. Continue receiving and processing encoded blocks until the original data has been 

completely recovered. 

 

A novel feature of the LT coding algorithm is the use of the Robust Soliton distribution.  

The basis for this distribution comes from the probability that an encoded symbol of some 

degree will be able to recover a data block from a set of data blocks that have yet to be 

recovered.  In order to balance minimal redundancy with the production of enough edges 

to keep the decoding successful within an established probability, Luby proposes an Ideal 

Soliton [1] distribution for k original blocks as: 
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However, in practice, the ideal distribution performs very poorly.  This ideal model does 

not handle variance well, and therefore results in high decoding failure [1,2]. To address 

this problem, the Robust Soliton Distribution was proposed.  For a given number of blocks, 

the ideal distribution was designed to keep the number of data elements waiting in the 

queue to be processed close to one.  In order to account for variance, the Robust Soliton 

Distribution aims to keep the size of the queue, R, around ln( / )R c k kδ= ⋅ for some 0c >  

[1].  The following distribution was proposed to augment the Ideal Soliton to achieve this. 
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The Robust Soliton Distribution, ( )iµ , is then the normalized sum of these two 

distributions. 
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III. LT Codes and RobuSTore 

RobuSTore has several requirements that must be met by any encoding scheme that it uses.  

These requirements ensure that RobuSTore can function properly as a distributed file 

system while providing fault-tolerant, high performance service.  Below are several criteria 

that our LT Code implementation must satisfy. 

 

1. Encoded blocks must be stored and distributed ahead of time. 

To achieve high parallel throughput and avoid latency, RobuSTore distributes encoded 

blocks among several storage devices.  In order to do this, a fixed number of encoded 

blocks must be produced when the original file is saved.  While LT Codes usually continue 

to produce encoded blocks until the decoding is complete, we only capture and store a 

fixed number of blocks which should be enough to decode with high probability. 

 

2. The decoder must run at high speeds. 

One of the key motivations for using erasure codes in the RobuSTore file system is to 

increase the performance by avoiding long network latencies and slow hosts.  In order to 

take advantage of these benefits, the decoder must have a throughput high enough to 

saturate the available network bandwidth. 

 

3. The algorithm must provide data reliability.  

Since we are developing a file system, any data lose is unacceptable.  The LT Coding 

algorithm is non-deterministic and, as such, there is no absolute guarantee that the original 
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data can be recovered from a fixed number of blocks.  Our implementation must ensure 

100% recoverability.   

 

4. The encoding should be robust. 

In order to provide fast decoding and fault tolerance, we defined the idea of “maximum 

degree of freedom”.  Simply put, there should be a maximum number of different 

combinations of encoded blocks that can be used to reconstitute the original data.  This 

degree of freedom ensures that there will be no encoded blocks that the decoder always 

depends in order to recover the data.  

 

 

IV. LT Codes in Practice 

In order to utilize the benefits of LT Codes and meet the requirements of the RobuSTore 

file system, the algorithm was modified in several ways.  The following are the variations 

that were implemented and tested. 

 

Optimized Scheduling: 

A key optimization to speed up the algorithm was scheduling the XOR operations.  After 

evaluating the original implementation with gprof, the obvious bottleneck in the system 

was performing memory operations, namely the logical XOR.  In order to reduce the 

number of memory accesses during decoding, we waited until all necessary blocks were 

present and then did the XOR operations all at once.  This improvement eliminated any 

work that would result in a data block that had already been recovered.  In addition, this 

method also leveraged memory and cache locality at the system level to reduce memory 

hits. 

 

Optimized memory XOR: 

To further drive down the time needed for XOR operations, we took advantage of the 

MMX instruction set and wrote a streamlined memory XOR function which used striping 

to maximize cache usage.  Additionally, the modified function reduced the number of 

necessary registers.  The striping provides consistent performance when the blocks are too 

large to fit into the cache. 

 

Coverage Threshold: 

To improve reliability and robustness, all of the original data nodes were checked after 

encoding to see if they met a “coverage” threshold.  We defined coverage as the degree of 

the data node.  If an original node did not have the minimum number of edges, it was 

included as a source for random encoded blocks until the threshold was met.  This process 

ensured that all of the data was present in the encoding.  Ensuring a certain degree of 

coverage improves, but does not guarantee, 100% decodability.   

 

Original Blocks: 

To ensure that the data is always recoverable, all of the original data blocks are copied into 

the encoded data.  By adding all of the original blocks, we can always ensure a successful 

decoding if no blocks are lost.  However, the average amount of useful redundant 
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information per encoded block is decreased and, on average, more blocks will be needed to 

perform a successful decoding. 

 

Guaranteed Decodability: 

A simple and effective solution for reliability was to run a light-weight version of the 

decoding algorithm on the bipartite graph during the encoding process.  New graphs were 

generated until a decodable solution was found.  Once an acceptable graph was created, the 

XOR operations were performed.  The time cost of performing the check and possibly re-

generating the coding graph is minimal compared to the cost of the XOR operations 

needed to produce the encoded blocks, making this is a reasonable solution. 

 

Uniform Coverage: 

To increase the degree of freedom, the idea of coverage was taken a step further.  Instead 

of ensuring a coverage threshold, data nodes were chosen in such a way that they would 

receive uniform coverage.  In order to accomplish this, a random permutation of the data 

nodes was created and place into a queue. As encoded nodes chose sources, data nodes 

were removed from the head of the queue and added to the encoded node.  Once the queue 

had been depleted, a new permutation was made and placed in the queue.  This process 

ensures that each of the original nodes is equally represented in the encoding. 

 

Choosing Coding Parameters: 
When using the LT Coding process, there are a number of parameters that can be specified 

and a number of criteria that are useful in evaluating the potential for a certain 

configuration.  The most important metrics for RobuSTore are the decoding speed and the 

number of encoding blocks needed to recover the original data.  However, high speed and 

a small number of blocks are opposing factors.    

 

The three parameters that affect these two metrics are k, the number of data blocks; C, a 

parameter for the creation of the Robust Soliton Distribution; andδ , the expected rate of 

failure if 2( ln ( / ))k O k k δ+ encoded blocks are evaluated.  While the Ideal Soliton 

Distribution is a strictly decreasing function that only depends on k, the Robust Soliton has 

an added spike, whose size and location is determined by C and δ .  As C increases and 

δ decreases the spike in the distribution occurs closer to one and increases in size.  This 

results in additional lower degree encoded nodes.  Figure 1 shows the average degree of an 

encoded node for different values of C and a givenδ .  Table 1 relates that average number 

of encoded blocks needed for decoding as multiples of k, the number of original blocks, for 

the original implementation.   
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Figure 1 – Average Node Degree vs. C for different Sigma 

 

 
Table 1 – Avg. Blocks Needed for Reconstruction for k=1024 (multiples of k) 

Sigma\C 0.1 0.5 1 1.1 1.2 1.3 1.4 1.5 1.7 2 3 5 

0.001 1.48 1.98 2.18 2.18 2.90 3.00 2.94 3.03 3.11 3.27 3.42 3.61 

0.002 1.45 1.90 2.11 2.17 2.20 2.89 2.97 3.02 3.10 3.15 3.43 3.55 

0.005 1.39 1.95 2.08 2.13 2.13 2.20 2.91 2.91 2.98 3.12 3.34 3.56 

0.007 1.37 1.90 2.10 2.14 2.17 2.16 2.83 2.84 2.92 3.10 3.29 3.54 

0.01 1.36 1.87 2.06 2.07 2.06 2.20 2.80 2.86 2.95 3.05 3.32 3.53 

0.02 1.32 1.75 2.05 2.06 2.09 2.06 2.14 2.78 2.85 2.94 3.23 3.53 

0.05 1.27 1.72 1.71 2.00 2.06 2.06 2.05 2.18 2.78 2.80 3.13 3.39 

0.07 1.26 1.67 1.71 1.73 2.00 2.05 2.10 2.09 2.68 2.78 3.15 3.46 

0.1 1.24 1.61 1.65 1.70 1.99 2.04 2.01 2.07 2.10 2.78 3.07 3.32 

0.2 1.21 1.57 1.63 1.69 1.65 1.97 2.01 2.01 2.10 2.61 3.05 3.27 

0.5 1.18 1.48 1.53 1.60 1.64 1.66 1.93 1.96 2.02 2.10 2.73 3.13 

0.7 1.17 1.43 1.50 1.58 1.63 1.64 1.63 1.89 1.95 2.01 2.74 3.11 

1 1.16 1.41 1.47 1.48 1.60 1.61 1.63 1.68 1.94 2.01 2.67 3.08 

 

Table 2 gives the product of the average node degree and the average number of blocks 

needed.  This is an important metric when evaluating speed as it is closely related to the 

number of XOR operations performed in the original algorithm.  It is important to notice 

that the implementations which include scheduled XOR operations have different 

behaviors which eliminate many of the XOR operations. 
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Table 2 – Product of Avg. Node Degree and Avg. Blocks Needed for Reconstruction 

Sigma\C 0.1 0.5 1 1.1 1.2 1.3 1.4 1.5 1.7 2 3 5 

0.001 17.68 10.49 7.56 7.50 7.53 7.63 7.39 7.45 7.47 7.60 7.51 7.57 

0.002 17.40 10.09 7.47 7.56 7.50 7.48 7.58 7.54 7.64 7.49 7.64 7.51 

0.005 17.01 11.73 7.53 7.53 7.41 7.52 7.60 7.48 7.49 7.62 7.58 7.61 

0.007 16.34 11.33 7.62 7.62 7.63 7.46 7.56 7.47 7.42 7.57 7.50 7.54 

0.01 15.88 11.18 7.59 7.47 7.28 7.63 7.57 7.61 7.60 7.61 7.67 7.60 

0.02 15.39 10.50 7.67 7.56 7.56 7.36 7.54 7.67 7.57 7.48 7.61 7.65 

0.05 14.55 11.25 7.65 7.67 7.67 7.52 7.48 7.75 7.65 7.50 7.52 7.48 

0.07 14.16 10.96 7.74 7.69 7.61 7.60 7.70 7.57 7.57 7.50 7.66 7.73 

0.1 13.93 10.56 7.58 7.64 7.59 7.64 7.52 7.58 7.50 7.54 7.57 7.42 

0.2 13.23 10.95 7.67 7.77 7.50 7.64 7.65 7.58 7.69 7.52 7.77 7.50 

0.5 12.23 10.75 8.15 7.63 7.66 7.65 7.71 7.75 7.71 7.69 7.43 7.41 

0.7 11.97 10.28 8.06 7.59 7.73 7.65 7.54 7.59 7.56 7.49 7.55 7.50 

1 11.68 10.61 8.02 7.92 7.71 7.64 7.56 7.70 7.70 7.63 7.55 7.54 

 

From Table 1, we see that smaller values of C and larger values of δ produce encodings 

that require fewer encoded blocks. This is expected since the average degree of the 

encoded blocks is highest for these values.  Table 2 shows that there is not much variation 

in the products for values of C greater than 1 and that these values give the lowest values, 

which translate into the least number of symbol operations.  From these observations, we 

can safely choose values of C greater than, but close to 1, and larger values for δ .  While 

these observations hold for the original implementation and serve as a good basis for 

testing, the modified algorithms exhibit different behavior to given choices of C and δ .   

 

The third parameter, k, affects several aspects of the algorithm.  Most importantly it relates 

to both the number of necessary blocks, 2( ln ( / ))k O k k δ+ ,  and also the number of 

symbol operations, ( ln( / ))O k k δ⋅  [1].  As k increases, the number of blocks and the 

number of symbol operations grow in a non-linear fashion.  Therefore, smaller values of k 

should result in relatively fewer necessary blocks and faster decoding times. 

 

V. Experiment Setup 

The following tests fixed the number of data blocks at k=1024 and the file size at 128MB.  

Based on the average number of encoded blocks needed to decode, we produced 5k 

encoded blocks to ensure that the tests would successfully complete with high probability.  

Encoded blocks were pushed to the decoder in random order.  Ten tests were run for each 

combination of parameters using dual Xeon 2.4GHz machines with 1GB of memory. 

 

VI. Results from Speed Optimizations 

The intension of these modifications was to improve the algorithm’s efficiency in order to 

achieve faster decoding times when using a reasonable number of blocks.  The 

optimizations performed on the LT Code algorithm took two forms, reducing the number 

of operations and performing the operations more efficiently.   
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1. The original implementation – Greedy Scheduled & Original XOR 

 
Table 3 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 67.88516 65.1774 72.42279 70.40005 71.03017 69.37574 75.36792 

0.2 69.56745 67.87941 69.37398 72.94715 73.02349 77.65614 73.15825 

0.5 67.5528 70.12628 69.07971 68.97836 73.83843 71.67508 73.76106 

0.7 64.70222 71.94008 68.43411 70.80492 69.89602 70.71551 72.33103 

1 67.92839 65.34122 69.00225 71.69747 67.93825 71.09644 71.51722 

 

 

2. Optimized Scheduling & Original XOR 

 
Table 4 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 187.2019 188.4609 196.6718 197.7784 202.3057 211.1028 203.1425 

0.2 185.3084 185.7814 182.276 187.6694 201.9992 200.8429 199.5137 

0.5 169.1851 182.5684 180.6636 186.5384 192.8676 187.4026 204.4487 

0.7 164.5086 185.0814 178.6015 191.4239 182.9313 196.9798 185.7542 

1 174.2982 172.3834 177.4054 190.4721 182.1788 179.9855 192.6644 

 

The dramatic speed up from the optimized scheduling algorithm can be explained by the 

reduction of XOR operations.  With this scheduling scheme over half of the original XOR 

operations can be eliminated.  Below are tables of the average number of 2-input XOR 

operations that were performed during the decoding process before and after the optimized 

scheduling was introduced.  While calls to the memory XOR function consume the 

majority of the processing time, the actual bottleneck for the system is the memory 

throughput required by the function.  For each XOR operation in the original scheduling, 

two reads and one write must be performed.  However, for the optimized scheduling, many 

of the memory reads can be avoided since the intermediate results remain in the cache.  

More precisely, for an encoding with k original data blocks, there will only be k memory 

write operations and (avg. XORs)k +  memory reads during the entire decoding process. 

 
Table 5 - Avg. XOR Operations – Greedy Scheduling (Original) 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.7 8216.54 7541.24 7637.93 7625.51 7604.23 7457.19 7465.07 

0.2 7726.09 7579.38 7571.47 7723.49 7593.58 7572.73 7426.41 

0.1 7713.39 7799.26 7769.66 7785.86 7817.45 7638.43 7541.22 

0.5 7976.1 7640.36 7577.77 7634.76 7661.36 7752.36 7447.94 

1 8134.86 8048.14 7813.82 7822.09 7599.22 7705.47 7831.12 

 
Table 6 -Avg. XOR Operations – Optimized Scheduling 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 3782.16 3743.89 3386.86 3403.97 3351.59 3137.05 3032.59 

0.2 3919.03 3878.25 3716.28 3436.42 3417.73 3216.78 3127.58 

0.5 4451.07 4006.23 3849.98 3952.8 3693.01 3557.17 3485.74 

0.7 4366.7 3976.05 4003.21 3911.45 3829.87 3565.12 3432.12 

1 4436.99 4357.59 4094.96 4025.7 3840 3845.2 3660.5 
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3. Optimized Scheduling & Optimized XOR  

 

The memory XOR function was modified in two ways.  First, the 2-input 32-bit operation 

was replaced with the Intel MMX 64-bit version.  This reduced the number of processor 

cycles devoted to computing the XOR and also made use of the processor’s special MMX 

registers, leaving the general register open for other values.  Second, data striping was 

introduced so that the operands and any intermediate results could stay in the cache until 

they were no longer needed.  Below are the results of the improved memory XOR 

operation. 

 
Table 7 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 182.8556 181.7817 197.934 206.3672 210.8067 202.2333 208.7896 

0.2 173.2348 193.8107 192.4676 199.893 197.0093 200.3505 205.4907 

0.5 172.3564 179.4596 181.2496 189.5616 192.2246 192.8085 202.6708 

0.7 167.2648 176.4274 174.8152 172.2848 172.2233 193.2714 197.0925 

1 174.6569 174.2886 181.3088 183.7134 185.6997 179.0326 196.1095 

 

The optimized XOR function does not show any notable performance benefit for these 

testing parameters since it has the greatest effect when used with larger data blocks 

(smaller values of k).  With the current parameters, the block size is 128KB, which is 

already a good match for the caches on the test machines.  For larger blocks, the optimized 

version can maintain higher throughput compared to the performance of the original XOR 

implementation, which deteriorates due to additional cache misses.  Ultimately, the 

performance is bounded by the memory throughput, thus utilizing the caches is critical. 

 

VII. Results from Reliability and Robustness Modifications 

After the speed optimizations had been integrated into the algorithm, several modifications 

were made to improve the reliability and robustness of the encodings.  The following 

results were obtained with the optimized scheduling and optimized XOR options enabled.   

 

1. Including the Original Blocks 

 

The encoder was set to include all of the original data blocks as encoded blocks.  Since all 

of the original blocks were already included in the encoding, we did not allow the encoder 

to produce any other encoded nodes with degree equal to one.  By including all of the 

original blocks, we can ensure that all encodings will be decodable. 

 
Table 8 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 194.8817 199.9829 207.171 221.7728 215.1289 223.6352 226.2422 

0.2 195.7527 194.4314 188.7477 211.542 212.5632 208.8365 214.9657 

0.5 170.8894 194.1178 198.2732 191.8115 204.8867 210.5193 205.5439 

0.7 180.2153 194.303 195.2366 190.9267 189.0547 192.2865 213.0392 

1 173.7224 181.5339 178.0226 181.3043 193.8084 187.1918 197.3282 
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Table 9 - Avg. Blocks as multiples of k 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 1.76123 1.669238 2.15791 2.114063 2.172363 2.229102 2.405957 

0.2 1.793359 1.695898 1.691504 1.932031 2.243457 2.273828 2.130078 

0.5 1.534863 1.842383 1.863672 1.875488 2.109473 2.038672 1.931738 

0.7 1.51582 1.739551 1.728418 1.972168 1.658496 1.991504 2.20459 

1 1.433496 1.521973 1.59502 1.699902 1.739258 1.808398 1.971484 

 

It is clear to see that more encoded blocks are needed on average in order to reconstruct the 

original data.  In addition, the decoding speeds are noticeably faster.  There results are 

expected since the inclusion of the original data blocks in the encoded data decreases the 

average node degree.  In this scenario, more blocks are needed to account for all of the 

original blocks, but few XOR operations are required. 

 

2. Specifying a Coverage Threshold 

 

During the encoding process, the algorithm makes sure that every data node is part of at 

least some number of encoded nodes.  For this test, we set the minimum coverage at three. 

This check ensures that none of the original blocks are missed during the random 

assignment of edges.  Furthermore, it makes sure that the entire decoding process is not 

dependent on a small number of encoded blocks that contain information about a poorly 

covered data node.  While this implementation reduces the possibility that the data can not 

be recovered, it does not fully eliminate it. 

 
Table 10 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 183.8205 183.3571 201.5032 199.1531 198.8691 202.7484 207.0833 

0.2 179.0851 179.8119 182.4829 189.5924 201.2879 194.2353 204.6021 

0.5 169.1483 177.1901 179.7195 184.3208 199.8105 185.4573 195.9053 

0.7 165.878 179.7948 172.9102 180.4744 186.5881 189.2392 185.057 

1 167.9597 166.8491 171.8411 175.4305 171.0451 174.0317 191.5861 

 
Table 11 - Avg. Blocks as multiples of k 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 1.69458 1.678613 2.041309 1.995264 1.943066 2.084814 2.109033 

0.2 1.640234 1.58457 1.719531 1.917725 2.007959 1.964551 2.068701 

0.5 1.553076 1.694434 1.638379 1.65 2.001807 2.016553 1.926074 

0.7 1.514111 1.500977 1.565967 1.666162 1.779102 1.851563 1.973096 

1 1.454688 1.510889 1.590674 1.522607 1.662842 1.706348 1.925732 

 

3. Including the Original Blocks and Specifying a Coverage Threshold 

 

While the results from the Coverage Threshold tests were very good, the possibility of 

losing data due to an unrecoverable encoding is unacceptable.  To address this problem, the 

encoder included all of the original blocks in the encoded data and made sure that every 

data node was part of at least three encoded nodes. Unlike the previous implementation 

which included the original blocks only once, we allowed the encoder to produce 
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additional nodes of degree one.  The original LT Coding algorithm does not check for 

identical encoded blocks, and in an effort to mimic that model, we did likewise.  

Unfortunately, this produces any abundance of lower degree nodes, which forces the 

decoder to use even more blocks during decoding.  One benefit to the numerous low 

degree blocks is fewer XOR operations, and hence a faster decoding throughput. 

 
Table 12 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 205.4863 205.0873 219.0133 224.481 228.8149 228.0048 237.1714 

0.2 191.0704 202.9727 194.6265 215.5549 208.6296 229.4761 226.5123 

0.5 192.7276 191.023 205.4291 202.4576 213.9331 213.5806 222.1768 

0.7 185.8853 199.9064 199.729 197.7476 186.2845 206.7715 209.5227 

1 178.2516 176.2841 200.591 189.8512 185.436 199.2595 212.8395 

 
Table 13 - Avg. Blocks as multiples of k 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 1.846387 1.958105 2.31709 2.278418 2.344922 2.38457 2.495996 

0.2 1.839551 1.885938 1.935352 2.302246 2.291504 2.435156 2.572461 

0.5 1.86709 2.025098 1.938379 2.021875 2.006738 2.423242 2.224707 

0.7 1.660059 1.95 1.946582 1.980273 2.041602 2.073047 2.130957 

1 1.768457 1.614746 1.892188 1.929102 1.863281 1.941211 2.081738 

 

4. Specifying a Coverage Threshold and Guaranteed Decodability 

 

In order to ensure decidability without the reception overhead of including all of the 

original blocks, a light-weight version of the decoding algorithm was run on the bipartite 

meta-data graph during the encoding process.  This check and the possible graph 

regeneration were very quick in comparison to the XOR operations.  This modification 

guarantees decodability but also maintains the decoding speed and reception overhead of 

the optimized original implementation. 

 
Table 14 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 185.525 187.6934 198.7276 209.3207 204.422 201.9158 213.1997 

0.2 184.1342 184.7919 180.1663 196.4269 204.5893 207.2135 207.9365 

0.5 167.23 180.3972 180.0027 186.9943 192.6963 192.3808 200.8509 

0.7 169.2232 176.2942 181.1987 185.9171 192.1051 195.8659 202.2354 

1 167.2817 170.4065 182.4955 184.1416 184.6647 183.4999 195.0134 

 
Table 15 - Avg. Blocks as multiples of k 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 1.658691 1.615869 1.949658 2.098877 2.150781 2.033252 2.056641 

0.2 1.660889 1.657959 1.636084 1.896045 2.005957 2.022559 2.0979 

0.5 1.559961 1.535205 1.660205 1.649219 1.948193 2.059326 2.035254 

0.7 1.554541 1.581055 1.568213 1.539502 1.632813 2.075049 2.021338 

1 1.512207 1.457715 1.499121 1.54292 1.568066 1.778906 1.911768 
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5.  Uniform Coverage and Guaranteed Decodability 

 

To increase the degree of freedom, the idea of coverage was taken a step further.  Instead 

of setting a lower threshold on a data node’s degree, we attempt to give all data nodes the 

same degree.  This ensures that all pieces of the original data are equally represented in the 

encoding.   

 
Table 16 - Avg. MBps 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 177.1758 185.8256 204.1372 200.8858 209.4234 217.0385 212.7888 

0.2 176.6163 175.1468 187.8626 201.1126 202.57 211.1644 205.471 

0.5 166.339 171.1617 184.316 176.5173 198.6438 191.7638 208.7998 

0.7 160.569 174.143 179.1221 182.7572 184.8161 197.1052 202.9509 

1 127.8182 168.0613 176.2462 182.5931 182.0857 174.389 195.6421 

 
Table 17 - Avg. Blocks as multiples of k 

Sigma\C 1 1.1 1.2 1.3 1.4 1.5 1.7 

0.1 1.52041 1.574219 1.545605 1.60625 1.725879 1.753906 1.791895 

0.2 1.396973 1.513184 1.544434 1.596191 1.727832 1.662695 1.839551 

0.5 1.534473 1.413672 1.451074 1.420313 1.686328 1.539551 1.627441 

0.7 1.453711 1.402539 1.516602 1.448145 1.4375 1.642578 1.689844 

1 1.431445 1.48584 1.370215 1.458203 1.368066 1.430078 1.547852 

 

It is interesting to note that while the computation speeds are very similar to the 

implementation with a coverage threshold, the average number of blocks needed for 

decoding is noticeably lower.  This suggests that the uniform coverage has provided some 

level of improvement in the degree of freedom for the encoding. 

 

VIII. Evaluation of Network and Computation Speeds 

In addition to the processing time needed to decode a set of encoded blocks, it is also 

important to consider the total time necessary to both receive and process the blocks.  As 

encoded blocks are received, some of the XOR operations can be performed while waiting 

for the rest of the necessary blocks.  Our goal is to balance the receiving and processing 

rates to optimize our efficiency and speed.  In order to apply our results to a wide variety 

of hardware configurations, our simulations used the ratio between the network bandwidth 

and the computation bandwidth as a parameter.  Several simulations were run using the 

guaranteed decodability and uniform coverage implementation and a wide range of values 

for C and δ  to investigate the overall performance when this parallelism is considered.   

 

Our results indicate that there is a relatively small window where network bandwidth and 

computation speed can be balanced using C and δ .  Experimentation showed that for 

ratios of network to computation speed less than 0.06, parameters giving very high average 

node degrees, and hence the fewest number of necessary blocks for decoding, provided the 

best performance.  This indicates that the system bottleneck is the network speed.  For 

network to computation ratios greater than 0.8 extremely low average node degrees gave 

the best performance.  For these configurations, a bottleneck in computation speed creates 
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a heavy reliance on the network to transport a large quantity of low degree nodes which 

can be rapidly evaluated.  Table 18 summarizes the best coding parameters along with the 

average node degrees for given network to computation bandwidth ratios. 

 

In order to see the benefits of scaling the 

network and computational bandwidth of a 

system, we evaluated the theoretical 

performance of our current test machines.   

For our systems, the measured memory 

bandwidth for the memory XOR operation is 

2.1 GBps and the network interface is 

specified at 1 Gbps (~128MBps).  The figures 

below show the total system throughput using 

the optimal coding parameters when scaling 

either network bandwidth or computation 

bandwidth. 

 

From the figures, we can see that significant 

increases in the memory bandwidth from 

2000MBps will produce no more than a 30% 

improvement in overall throughput.  However, 

doubling the network bandwidth will nearly 

double the system performance!   

Table 18 – Optimal Coding parameters 

Net2comp C Sigma Avg. Degree 

< 0.06 Small 1 High 

0.06 0.1 1 10.03576 

0.07 1.2 1 4.815068 

0.08 1.4 0.5 4.000171 

0.09 1.6 1 4.025548 

0.1 1.4 0.5 4.000171 

0.2 2 1 3.799221 

0.3 2 0.2 2.864407 

0.4 1.9 0.05 2.690313 

0.5 5 0.7 2.412966 

0.6 10 0.7 2.148624 

0.7 30 0.00001 1.969518 

0.8 100 0.00005 1.958965 

0.9 100 0.1 1.940646 

> 0.9 Large > 0.0001 Low 
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IX. Related Work 
The idea of using erasure codes for reliable storage is not a completely new one.  Material 

has been published about Lincoln Erasure Code implementations for distributed storage, 

and also on research done at the University of California, Berkley on the OceanStore 

project.  The OceanStore project has implemented Reed-Solomon codes and Tornado 

codes to provide data reliability [3], but the computation costs of these codes constrain 

their actual throughput [4].  Researchers at MIT’s Lincoln Labs have developed their own 

erasure code implementation, the Lincoln Erasure Code, which sends the original data 

blocks along with a specified number of parity blocks.  In their 2003 report, their 

implementation claimed an advantage over standard LT codes of 760 Mbps to 220 Mbps 

for a 13MB file on a 1.7GHz Xeon machine [4].   

 

X. Summary and Future Work 

Through our study of LT codes for RobuSTore we have investigated necessary 

components of a practical algorithm and worked to shape a specialized version of LT codes 

to meets those requirements.  Although Cooley, et. al., had misgivings about the speed and 

reliability of LT codes for distributed storage [4], our experiments show that LT codes can 

perform at high speeds with reasonable reception overheads.  Below is a summary of our 

different implementations evaluated on decoding speed and necessary blocks.   
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Throughput Summary 

(C=1.4, Sigma=0.2, k=1024, 128MB file)
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In addition, it is interesting to look at the trade off between decoding speed and necessary 

blocks.  For our later implementations, it becomes apparent that larger values of C 

produced faster decoding speeds, but also require more blocks.  In tests with extreme 

values of C, consistent decoding speeds as high as 324MBps were achieved with an 

average of 2.5 times the number of original blocks.  Conversely, low values of C and large 

values of sigma can produce encodings with low reception overheads (<1.2) while still 
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maintaining throughputs over 100MBps.  Based on our analysis of the overall reception 

and computation throughput, the values of C and sigma can be adjusted to give optimal 

performance for a given hardware configuration. 

 

Ongoing work for LT Codes to be used in RobuSTore should focus on the robustness of 

the encoding.  Developing a means to evaluate the maximum degree of freedom, as well 

as, better methodologies to achieve maximum freedom would ensure better data reliability 

and allow RobuSTore more flexibility when receiving data from storage sites.  The goal is 

to achieve this without significantly degrading the decoding bandwidth or increasing the 

average number of necessary blocks for decoding.  The implementations using uniform 

coverage should have improved degree of freedom but an accurate way to compare their 

performance to that of the other implementations is still needed. 

 

While obstacles still remain in creating a high-performance distributed file systems based 

on erasure coding, the work done thus far with LT Codes shows the feasibility and 

potential for such systems.  Without any special hardware, decoding speeds exceeding 

200MBps were achieved using fewer than 1.7 times the number of original blocks.  These 

speeds will come close to saturating 4-Gigabit links while providing low latency access to 

distributed data.  In addition, we see that even with our current compute capabilities, 

increasing memory bandwidth does not give much advantage while using a 1GBps 

network link.  However, the advance of network bandwidths will allow sizable 

improvements in the overall system speed using our current compute hardware.  With the 

current trends in the growth of network throughput versus processor speed, RobuSTore is 

in a position to offer excellent high performance, fault-tolerant service in the coming years. 
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Appendix A:  Function Headers 

 
Function: Encode() 

Description: Given a segment of original data, this function will encode it and return N encoded 

data blocks in pDataBlocks (memory space already allocated) and a serialized version of the 

coding graph. 

  

Returns: TRUE if the original data was successfully encoded, FALSE, otherwise. 

 

int Encode(void *pOrigData, int origSize, int K, int N, EncInfo **ppInfo, int* infoSize,  

                  DataBlock **pEncData); 

 

void *pOrigData        Original data chunk 

int origSize The number of bytes of original data 

int K Number of original data blocks 

int N Number of total encoded data blocks 

EncInfo **ppInfo Graph and file information produced when encoding, malloc() by 

this function, MUST be freed with EncRelease() after usage. 

int* infoSize Address of an int to pass back the size of the EncInfo 

DataBlock **pEncData N encoded blocks to be returned, memory space will be allocated 

and MUST be freed later. 

 

 

Function: DecInit() 

Description: Initializes the decoder by inputing the coding graph and specifying where to store 

original data segment. 

 

Returns: an initialized DecState object to be used with DecPush().  The returned memory MUST be 

deallocated with a call to DecRelease(). 

 

DecState* DecInit( EncInfo* pInfo, void *pOrigData ); 

 

EncInfo *pInfo Graph and block size produced when encoding. 

void *pOrigData Allocated memory space for reconstructed data. 

 

 

Function: DecPush() 

Description: Pushs an encoded block into the decoding ripple, and tell if it's ready to 

reconstruct the original data segment. 

 

Returns: True if enough blocks have been received to reconstruct the original data, and the 

data is available. 

 

int DecPush( DataBlock* pDataBlock, DecState* state ); 

 

DataBlock* pDataBlock  The next data block to evaluate 

DecState* state  State information from previous calls to DecPush() 
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