UC Santa Cruz UC Santa Cruz Previously Published Works

Title

Comparative genomics reveals surprising divergence of two closely related strains of uncultivated UCYN-A cyanobacteria

Permalink https://escholarship.org/uc/item/7th6b8rt

Journal The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 8(12)

ISSN 1751-7362

Authors

Bombar, Deniz Heller, Philip Sanchez-Baracaldo, Patricia <u>et al.</u>

Publication Date 2014-12-01

DOI

10.1038/ismej.2014.167

Peer reviewed

1	Comparative genomics reveals surprising divergence of two closely related strains of
2	uncultivated UCYN-A cyanobacteria
3	Deniz Bombar ^{1,*} , Philip Heller ^{2,*} , Patricia Sanchez-Baracaldo ³ , Brandon J. Carter ¹ ,
4	Jonathan P. Zehr ¹
5	
6	Running title: UCYN-A genome comparison
7	
8	¹ Ocean Sciences Department, University of California Santa Cruz, 1156 High
9	Street, CA 95064, USA
10	
11	² Biomolecular Engineering Department, University of California Santa Cruz,
12	1156 High Street, CA 95064, USA
13	
14	³ Schools of Biological and Geographical Sciences, University of Bristol, UK
15	
16	*these authors contributed equally to this study
17	
18	Corresponding author: Jonathan P. Zehr, Ocean Sciences Department, University
19	of California Santa Cruz, 1156 High Street, CA 95064, USA, Tel.: +1 831 459
20	3128 Fax: +1 831 459 4882. Email: jpzehr@gmail.com
21	

22 Abstract

23 Marine planktonic cyanobacteria capable of fixing molecular nitrogen (termed 24 "diazotrophs") are key in biogeochemical cycling, and the nitrogen fixed is one of the 25 major external sources of nitrogen to the open ocean. Candidatus Atelocyanobacterium 26 thalassa (UCYN-A) is a diazotrophic cyanobacterium known for its widespread 27 geographic distribution in tropical and subtropical oligotrophic oceans, unusually reduced 28 genome, and symbiosis with a single-celled Prymnesiophyte alga. Recently a novel strain 29 of this organism was also detected in coastal waters sampled from the Scripps Institute of 30 Oceanography (SIO) pier. We analyzed the metagenome of this UCYN-A2 population by 31 concentrating cells by flow cytometry. Phylogenomic analysis provided strong bootstrap 32 support for the monophyly of UCYN-A (here called UCYN-A1) and UCYN-A2 within 33 the marine Crocosphaera sp. and Cyanothece sp. clade. UCYN-A2 shares 1159 of the 34 1200 UCYN-A1 protein coding genes (96.6%) with high synteny, yet the average amino 35 acid sequence identity between these orthologs is only 86%. UCYN-A2 lacks the same 36 major pathways and proteins that are absent in UCYN-A1, suggesting that both strains 37 can be grouped at the same functional and ecological level. Our results suggest that 38 UCYN-A1 and UCYN-A2 had a common ancestor and diverged after genome reduction. 39 These two variants may reflect adaptation of the host to different niches, which could be 40 coastal and open ocean habitats. 41 42 Key words: cyanobacteria/genome reduction/Nitrogen fixation/symbiosis/marine

43 **Subject category:** • Evolutionary genetics

45 Introduction

46	Marine pelagic cyanobacteria play a major role in biogeochemical cycling of
47	carbon and nitrogen (N) in the ocean. Prochlorococcus and Synechococcus together are
48	the most abundant phototrophic prokaryotes on Earth, and are responsible for a major
49	fraction of oceanic carbon fixation (Partensky et al., 1999; Scanlan and West, 2002;
50	Scanlan, 2003; Johnson et al., 2006). Likewise, cyanobacteria capable of fixing molecular
51	N ("diazotrophs") dominate global oceanic N2 fixation, although they are typically orders
52	of magnitude less abundant than Prochlorococcus or Synechococcus (Zehr and Paerl,
53	2008; Zehr and Kudela, 2011; Voss et al., 2013). Together with upward fluxes of deep-
54	water NO_3^- to the surface ocean, diazotrophs supply the N requirement of primary
55	productivity and quantitatively balance losses by sinking of organic material, which can
56	sequester CO ₂ from the atmosphere to deep waters (Karl et al., 1997; Sohm et al., 2011).
57	There are several groups of quantitatively significant diazotrophic cyanobacteria
58	in the open ocean, all of which thrive mainly in tropical and subtropical latitudes (Stal,
59	2009). Traditionally, the filamentous, aggregate-forming cyanobacterium Trichodesmium
60	sp. was viewed as the most important oceanic N_2 fixer, based on its wide distribution and
61	direct measurements of its N2 fixation capacity (Dugdale et al., 1961; Capone et al., 1997;
62	Bergman et al., 2013). Other diazotroph cyanobacteria discovered in early microscopic
63	studies are the filamentous heterocyst-forming types of the Richelia and Calothrix
64	lineages, which live in symbioses with several different diatom species (Villareal, 1992;
65	Janson et al., 1999; Foster and Zehr, 2006). More recently, molecular approaches resulted
66	in the discovery of unexpected and unusual cyanobacteria involved in oceanic N_2 fixation
67	(Zehr et al., 1998; 2001). These have usually been grouped as "unicellular" diazotrophic

68 cyanobacteria, but among them, different types have very different lifestyles, with 69 Crocosphaera watsonii being a photosynthetic and mostly free-living cell (but see Foster 70 et al. (2011)), while UCYN-A (*Candidatus* Atelocyanobacterium thalassa) is a 71 photoheterotroph that is symbiotic with prymnesiophyte algae (Thompson et al., 2012). 72 While the major biogeochemical role of all diazotrophic cyanobacteria is to provide new 73 N to the system, their different lifestyles suggest important differences regarding their 74 distribution in the ocean, and the fate of the fixed N and carbon (Glibert and Bronk, 1994; 75 Scharek et al., 1999; Mulholland, 2007). 76 As a diazotrophic cyanobacterium, UCYN-A (termed UCYN-A1 from here on) is

77 remarkable in several ways. Although somewhat closely related to Cyanothece sp. strain 78 ATCC 51142, the UCYN-A1 genome is only 1.44 Mb and lacks many genes including 79 whole metabolic pathways and proteins, such as the oxygen-evolving photosystem II and 80 Rubisco, i.e. features that normally define cyanobacteria (Tripp et al., 2010). The recent 81 identification of a symbiotic eukaryotic prymnesiophyte partner, to which UCYN-A1 82 provides fixed N while receiving carbon in return, is the first known example of a 83 symbiosis between a cyanobacterium and a prymnesiophyte alga (Thompson et al., 84 2012). Further, UCYN-A1 can be detected in colder and deeper waters compared to other 85 major N₂ fixers like *Trichodesmium* sp. and *Crocosphaera watsonii* (Needoba et al., 86 2007; Langlois et al., 2008; Rees et al., 2009; Moisander et al., 2010; Diez et al., 2012), 87 and is also abundant in some coastal waters (Mulholland et al., 2012). 88 There is now evidence that there are at least three *nifH* lineages of UCYN-A in

the ocean (Thompson et al., 2014). These different clades were previously unrecognized
because their *nifH* amino acid sequences are nearly identical, with sequence variation

91	primarily only occurring in the third base pair of each codon (Thompson et al., 2014). It
92	is unknown whether these strains represent different metabolic variants of UCYN-A,
93	analogous to observations in free-living cyanobacteria like Prochlorococcus and
94	Synechococcus, which have extensive heterogeneity in their genome contents that enable
95	them to occupy different niches along gradients of nutrients and light (Moore et al., 1998;
96	Ahlgren et al., 2006; Kettler et al., 2007). Phylotype "UCYN-A2" shares only 95% nifH
97	nucleotide similarity with UCYN-A1, and was discovered to be abundant and actively
98	expressing nifH off of the Scripps Institute of Oceanography (SIO) pier. This habitat
99	seems to generally lack UCYN-A1 and has environmental conditions that clearly differ
100	from the tropical/subtropical oligotrophic open-ocean during large parts of the year
101	(Chavez et al., 2002). UCYN-A2 is associated with a prymnesiophyte host that is closely
102	related to but not identical to the UCYN-A1 host (Thompson et al., 2014). Interestingly,
103	the known 18S rRNA gene sequences of the UCYN-A2 host generally fall into a 'coastal'
104	cluster while the UCYN-A1 host sequences almost exclusively cluster with sequences
105	recovered from open ocean environments (Thompson et al., 2014). Further, both UCYN-
106	A1 and its host appear significantly smaller than UCYN-A2 and its host (Thompson et
107	al., 2014). Based on these findings, Thompson et al. suggested that UCYN-A1 could be
108	an oligotrophic open ocean ecotype, whereas UCYN-A2 could possibly be more adapted
109	to coastal waters.

The present study represents the first opportunity to characterize the metabolic
potential of a new clade of UCYN-A, by analyzing the metagenome of a UCYN-A2
population sampled from waters off the SIO pier. This enabled us to test whether habitat
differences, or a distinct symbiont-host relationship, are reflected in genome features that

114	distinguish UCYN-A2 from UCYN-A1, and whether UCYN-A2 has the same lack of
115	genes as UCYN-A1. With the availability of the new UCYN-A2 metagenome, it was also
116	possible to perform phylogenomic analyses (including 135 proteins), to determine
117	whether UCYN-A2 and UCYN-A1 form a monophyletic group, and to establish how
118	these two organisms are related to other cyanobacteria.
119	
120	Material & Methods
121	
122	Sampling
123	After the initial detection of a new <i>nifH</i> phylotype similar to UCYN-A1 in coastal
124	waters off Scripps Pier and its classification as a new strain (UCYN-A2, Thompson et al.,
125	2014), we used the previously described cell-sorting approach (Zehr et al., 2008;
126	Thompson et al., 2012) to obtain cell sorts enriched in UCYN-A2 for genome
127	sequencing. Surface water samples (10L) were taken at Scripps Pier with a bucket, gently
128	poured into a polypropylene bottle, and immediately transferred to the laboratory at
129	Scripps. The sample was then concentrated by gentle vacuum filtration through a 0.22
130	μ m pore size polycarbonate filter and cells resuspended by vortexing the filter in 50 mL
131	of sterile-filtered seawater. The concentrate was flash-frozen in liquid N and shipped to
132	UCSC.
133	
134	Fluorescence activated cell sorting (FACS) and nifH quantitative PCR and

135 genome amplification

136	The concentrated seawater samples were thawed at room temperature and briefly
137	vortexed again immediately prior to cell sorting. Seawater samples were pre-filtered
138	using 50 μ m mesh size CellTrics filters (Partec, Swedesboro, NJ, USA) to prevent
139	clogging of the nozzle (70 μ m-diameter) with large particles. Samples were analyzed in
140	logarithmic mode with an Influx Cell Sorter (BD Biosciences, San Jose, CA, USA). Flow
141	cytometry sorting gates were defined using forward scatter (FSC, a proxy for cell size)
142	and chlorophyll fluorescence at 692 nm (Fig. 1). Chlorophyll autofluorescence was
143	excited using a 200 mW, 488 nm Sapphire laser (Coherent, Santa Clara, CA, USA).
144	A UCYN-A2-specific QPCR assay (Thompson et al., 2014) was used to screen
145	sorted events within each gate (between 100-200 events). Cells were sorted directly into
146	aliquots of 10 uL 5 kDa filtered nuclease-free water, and then amended with QPCR 1x
147	Universal PCR master mix (Applied Biosystems, Foster City, CA, USA) to a total
148	reaction volume of 25 uL, including UCYN-A2 specific forward- and reverse primers
149	(0.4 μ M final concentration), as well as TaqMan probes (0.2 μ M final concentration).
150	QPCR reactions were conducted in a 7500 Real-Time PCR instrument (Applied
151	Biosystems, Foster City, CA, USA). Reaction- and thermal cycling conditions were
152	carried out as described previously (Thompson et al., 2014; Moisander et al., 2010).
153	Abundances of <i>nifH</i> gene copies were quantified relative to standard curves comprised of
154	amplification of linearized plasmids containing inserts of the target $nifH$ gene, and
155	abundances of gene copies per sample calculated as described by Short and Zehr (2005).
156	Standards were made from serial dilutions of plasmids in nuclease free water (range: 1-
157	10^3 nifH gene copies per reaction), with 2 μ L of each dilution added up to 25 μ L qPCR

158	(total volume) mixtures. Duplicates of each standard were included with each set of
159	samples run on the qPCR instrument, as well as at least two no-template controls.
160	Using this approach, we detected a sort region relatively enriched in UCYN-A2
161	but still containing other organisms besides the target (Fig. 1). This region appears to
162	include single UCYN-A2 cells rather than populations in the picoeukaryote size fraction
163	as described in Thompson et al. (2014) (Fig. 1). The disruption of the UCYN-A
164	symbiotic association appears to be a typical result of the concentration- and freezing
165	protocol (Thompson et al., 2012), and proved advantageous for our genome amplification
166	and assembly. A sample taken on May 31, 2011 was used to obtain a cell sort enriched in
167	UCYN-A2 for genome amplification (Fig. 1). Approximately $3.5*10^4$ events were sorted
168	into a 1.5 mL microcentrifuge tube containing 90 μ L of TE buffer. Cells were pelleted at
169	14,000 rpm (21,000 x g) for approximately 45 min and the supernatant was discarded.
170	We used a Qiagen REPLI-g Midi kit for cell lysis and amplification of genomic DNA,
171	following the manufacturer's recommendations with few modifications. Briefly, the
172	pelleted cells were resuspended in 3.5 μ L PBS buffer and 3.5 μ L buffer D2 (0.09M
173	DTT), incubated at 65°C for 5 min, and immediately stored on ice after adding the kit-
174	provided "stop buffer". The amplification reaction was carried out in a thermal cycler at
175	30 °C for 6 hours after addition of 40 μ L Repli G mastermix to the tube. The quality, size
176	and quantity of the amplified DNA was checked using an Agilent 2100 Bioanalyzer
177	(Agilent Technologies, Santa Clara, USA) and again quantified using Pico Green
178	(Invitrogen Corp., Carlsbad, USA). The suitability of this sample for a genome-
179	sequencing run was indicated by the presence of 10^6 nifH gene copies of UCYN-A2 per
180	μL, measured by QPCR.

182 Illumina sequencing

183 Library preparation and paired-end sequencing were performed at the BioMicro Center of

- 184 the Massachusetts Institute of Technology (MIT,
- 185 <u>http://openwetware.org/wiki/BioMicroCenter:Sequencing</u>). The DNA sample was split
- 186 into two equal aliquots and prepared for sequencing using the SPRIworks system
- 187 (Beckman Coulter Genomics, Danvers, USA) with 150-350 bp and 250-550 bp inserts.
- 188 Ligated libraries were amplified and molecular barcodes added. Samples were pooled and
- 189 sequenced on an Illumina MiSeq v1 flowcell with 151 bp of sequence read in each
- 190 direction. Fastq files (illumina v1.5) were prepared and separated into the individual
- 191 libraries allowing one mismatch with the barcode sequences. Post-run quality control
- 192 includes confirmation of low sequencing error rates by analyzing phiX spike sequences,
- 193 checking for significant contamination from human, mouse, yeast and E. coli, and
- 194 confirming the presence of only the expected barcodes.
- 195 Please see the Supplemental Material section for a detailed description of sequence
- 196 assembly, annotation, and phylogenomic analyses. This sequencing project has been
- 197 deposited at DDBJ/EMBL/GenBank under the organism name "Candidatus
- 198 Atelocyanobacterium thalassa isolate SIO64986", accession number JPSP01000000.
- 199

200 **Results**

The aligned UCYN-A2 scaffolds to the UCYN-A1 reference chromosome covered nearly the entire UCYN-A1 sequence (Fig. 2). For the majority of the adjacent pairs of scaffolds, the last gene of the upstream scaffold and the first gene of the 204 downstream scaffold matched consecutive genes in the gene order of UCYN-A1 (30

cases), thereby conserving and extending the high synteny seen across the alignments. In
the remaining cases, adjacent scaffold ends carried partial genes that matched different
parts of the same gene in UCYN-A1 (43 partial genes in UCYN-A2 matching to 21 genes
in UCYN-A1).

209 Overall, the UCYN-A2 draft genome is highly similar to UCYN-A1 in gene 210 content, synteny, and basic genome features including GC content (31%), percent of 211 coding DNA (79.3 %), codon usage (supplemental Fig. 4), and overall gene count 212 including two rRNA operons (Fig. 2, Table 1). There is 99% 16S rRNA gene sequence 213 identity between both genomes. Seven RNA genes in UCYN-A2 had very similar but un-214 annotated sequences in UCYN-A1 (91-100% nucleotide identity over 97-100% of the 215 query sequence), and some annotated matching sequences exist in other cyanobacteria 216 such as *Calothrix* sp. PCC7507 and *Cyanothece* sp. 8801, 8802, and 51142. These consist 217 of one additional tRNA gene for methionine and six RNA genes annotated as non-coding 218 RNA (ncRNA) with unknown functions ("other RNA genes" in Table 1). 219 A total of 1159 of the 1200 UCYN-A1 proteins (Tripp et al., 2010) have closely 220 matching sequences in UCYN-A2, i.e. 96.6 % of UCYN-A1's genes are shared with 221 UCYN-A2. For these 1159 genes, the average amino acid sequence identity is 86.3% 222 (range 51-100%, Fig. 2). The most conserved genes (\geq 95% identity) include 223 housekeeping genes (ribosomal proteins, NADH dehydrogenase, ATP synthase), 224 Photosystem I subunits, and proteins involved in N_2 fixation (*nif* cluster). 225 The previously described UCYN-A1 genome was unusual and had extensive 226 genome reduction, lacking the genes encoding Photosystem II, Rubisco, biosynthesis

227 pathways for several amino acids and purines, as well as the TCA cycle and other key 228 metabolic pathways (Zehr et al. 2008, Tripp et al. 2010). The genes missing in the 229 UCYN-A1 genome were also absent in the UCYN-A2 draft genome. In addition to the 230 analysis of all rejected contigs, we used TBLASTN to search the full set of unassembled 231 sequencing reads for all 114 Cyanothece sp. 51142 genes reported missing in UCYN-A1 232 (Tripp et al. 2010), to test whether some of these genes might have escaped assembly. 233 Subject reads were compared to GenBank using BLASTN against the nt database, and 234 taxonomy was retrieved for the top 20 hits for each read. Matching reads were found for 235 only 13 different genes out of these 114 query genes (18 total hits, incl. 5 PSII genes). 236 Seven hits had 98-100% identity to known organisms (Synechococcus, Pelagomonas, 237 Thalassiosira pseudonana), and four hits to an uncultured marine prokaryote. The 238 remaining 7 hits had maximal identity ranging between 79 % and 89 % to sequences from 239 other organisms (Galdieria, Aureococcus, Acaryochloris, Flavobacterium, Nitrosomonas, 240 and *Monosiga*).

241 Apart from the 1159 genes shared by UCYN-A2, there are 41 UCYN-A1 genes 242 (including 25 hypothetical proteins) that appear to be pseudogenes in UCYN-A2. These 243 pseudogenes were either neighboring partial genes that aligned consecutively to a full 244 ORF of a UCYN-A1 gene, with interrupting stop codons and/or insertions between them 245 (a total of 21 partial genes in UCYN-A2 matching to 8 genes in UCYN-A1, not counting 246 genes at scaffold ends; Table 2), or short, un-annotated sequences that match only parts 247 of UCYN-A1 genes (remaining 33 UCYN-A1 genes). Although the evidence for 248 pseudogenes was strong, as the UCYN-A2 sequences were from good assemblies that 249 yielded high-coverage scaffolds, we additionally used PCR to amplify across nine

random examples of these pseudogenes, confirming that the interrupting stop codons
were present and were not artifacts of assembly (see Supplemental Material for details).
The genome comparison revealed that such pseudogenes also exist in UCYN-A1 (Table
2).

254 An interesting difference between both genomes is that for all UCYN-A1 genes, 255 at least short, unannotated remnants or pseudogenes can be found in UCYN-A2, while in 256 turn UCYN-A2 possesses 31 genes, of which 15 are hypothetical proteins, for which no 257 traces (pseudogenes or gene remnants) were found in UCYN-A1, indicating that they 258 have been completely lost from the genome (Table 2). The loss of these genes has in most 259 cases resulted in further genome compaction in UCYN-A1, i.e. they appear fully excised 260 instead of being replaced by non-coding DNA (examples shown in Fig. 3). The majority 261 of these unique UCYN-A2 genes had top BLASTP similarity to genes in different 262 Cyanothece sp. (16 genes) or in other Cyanobacteria (5 genes), while 10 short 263 hypothetical proteins (27-63 amino acids) had no clear phylogenetic affiliation. 264 In addition to interrupted genes, we note 132 genes that show differences in 265 amino acid length compared to orthologs in the other genome, i.e. they appear truncated 266 at either the C- or N-terminal end of the protein. For UCYN-A2, this was also confirmed 267 for a few examples by PCR amplification (Supplemental Material). Some of these 268 truncated genes might be pseudogenes as well. Thirteen genes in UCYN-A1 and 14 genes 269 in UCYN-A2 had less than 75% of the amino acids in the comparable protein sequence in 270 the other strain. A comparison of the ortholog pairs of UCYN-A1 and UCYN-A2 to 271 orthologs in *Cyanothece* sp. 51142 showed that the truncated versions of the genes almost 272 exclusively occur in one of the UCYN-A strains, but not in Cyanothece sp. 51142, while

273	the gene length of the longer ortholog in UCYN-A1/A2 correlated well with the gene
274	length in Cyanothece sp. 51142 (Fig. 4 A). Interestingly, UCYN-A1 generally possessed
275	the shortest versions of the gene among these three genomes (Fig. 4 B).
276	Overall, both genomes show extremely similar genome reduction, but there are
277	some differences regarding which genes have become pseudogenes, and UCYN-A1
278	appears to have a higher level of reduction, with fully excised genes at several loci and
279	overall greater truncation of genes. Functions affected by gene deletions or
280	pseudogenization differ for UCYN-A1 and UCYN-A2 (Table 2), with the latter genome
281	e.g. retaining genes involved in cell wall synthesis, vitamin import, and detoxification of
282	active oxygen species such as H ₂ O ₂ .
283	Maximum likelihood analyses confirmed that both UCYN-A strains belong to a
284	well-supported monophyletic group of marine planktonic cyanobacteria containing
285	Crocosphaera sp., Cyanothece sp. and other unicellular N_2 fixing cyanobacteria
286	(Sanchez-Baracaldo et al, 2014). The results of the analyses strongly support that UCYN-
287	A2 and UCYN-A1 form a monophyletic group that is a sister group to Crocosphaera sp.
288	and Cyanothece sp. (Bootstrap support 100; Fig. 5). This clade of marine unicellular N_2
289	fixers belongs to the previously described SPM group (Sanchez-Baracaldo et al, 2005)
290	containing Synechocystis, Pleurocapsas, and Microcystis (Fig. 5).
291	
292	Discussion

293 UCYN-A is likely one of the major oceanic N_2 fixers given that it has a wider 294 geographic distribution than *Trichodesmium* sp., diatom symbionts, or *Crocosphaera* sp., 295 and can be highly abundant at certain times and places (Church et al., 2009; Moisander et

296	al., 2010). The symbiotic relationship of UCYN-A with a eukaryotic, possibly calcifying
297	prymnesiophyte raises many important questions about the variability and regulation of
298	N_2 fixation in UCYN-A, the fate of the fixed N (and C) in the planktonic food web, the
299	role of UCYN-A in element export to the deep ocean, and its susceptibility to ocean
300	acidification (Thompson et al., 2012). Further, the recently recognized <i>nifH</i> sequence
301	diversity in the UCYN-A clade suggests that there could be different ecotypes of UCYN-
302	A in the ocean, which could potentially be very different in terms of genome composition
303	and physiology (Thompson et al., 2014). The genome comparison in this study addresses
304	this question, with the surprising discovery that both types have very similar gene
305	content, genome reduction, but also substantially divergent DNA sequences.
306	UCYN-A2 has very similar gene content to UCYN-A1 and also lacks
307	photosystem II genes, RuBisCo, TCA cycle components and other pathways. It therefore
308	represents a second, independently verified example of this kind of genome reduction in
309	UCYN-A symbionts. Together with the highly conserved gene order, which implies gene
310	function conservation, this suggests that UCYN-A1 and UCYN-A2 have similar
311	functions and metabolic interactions in the symbiosis with their haptophyte hosts.
312	Although it can be difficult to confirm that genes are missing in unclosed
313	genomes, we base the claim on several independent lines of evidence: 1) Many scaffolds
314	ended with partial genes that mapped to a single UCYN-A1 gene, or ended with full
315	genes that matched and preserved the gene order in UCYN-A1, suggesting that breaks
316	between scaffolds were not due to missing sequence. 2) Even though there is variability
317	in genome sequence coverage (26.7 on average, supplemental Fig. 2), it is highly unlikely
318	that there would be no coverage at all for the long stretches of target genome needed to

319	contain the many missing genes in UCYN-A1. 3) The rejected contigs had a GC content
320	of 44.7% (very different from the 31% found in UCYN-A1 and UCYN-A2), sparse
321	BLAST hits to UCYN-A1 or Cyanothece sp., (even at a very relaxed e-value threshold),
322	and any detected hits to UCYN-A1- or Cyanothece splike sequences were redundant
323	with genes already present in the UCYN-A2 draft genome; this ascertains that no UCYN-
324	A2 genes were missed. 4) Searching the sequence reads by TBLASTN for all 114
325	Cyanothece sp. 51142 genes that appeared to be missing in UCYN-A1 returned only
326	thirteen of the query genes, of which most had highest similarity values to different
327	organisms. 5) Recently obtained field data show peaks in <i>nifH</i> expression of UCYN-A2
328	during daytime, closely matching the temporal patterns of <i>nifH</i> expression determined for
329	UCYN-A1 in the open oligotrophic ocean around Hawaii (Church et al., 2005; Thompson
330	et al., 2014). This may be viewed as further confirmation for the absence of oxygen-
331	evolving PSII in UCYN-A2, given the oxygen sensitivity of the nitrogenase enzyme.
332	Each UCYN-A strain has only a handful of genes that are either absent or
333	disrupted in the other genome (Table 2). The loss of genes in symbiont genomes is a
334	gradual process, and highly reduced genomes characteristically exhibit slow gene loss in
335	the form of erosion of individual genes or operons, rather than larger deletions via
336	chromosomal rearrangements (Moran and Mira, 2001; Wernegreen et al., 2002; Moran,
337	2003). The pattern of lost, disrupted, or truncated genes seen in the UCYN-A strains
338	examined here appears consistent with such slow gene decay.
339	Gene inactivation and loss in symbionts mainly occurs because genes become
340	functionally redundant and therefore non-essential, e.g. due to metabolite exchange with
341	the host. Many of the functions encoded by pseudogenes in UCYN-A1/A2 indeed appear

342 dispensable when considered in the context of the symbiont-host relationship, such as 343 restriction endonucleases, pyrimidine synthesis, or cell motility (Table 2). However, the 344 intact versions of those genes in the other genome, and the unique genes in UCYN-A2, 345 raise the question whether they have been retained because their function is still 346 important, or whether they are also non-essential/redundant but have so far escaped 347 inactivation and elimination. Noteworthy examples are the genes involved in cell wall 348 biogenesis and cell shape determination in UCYN-A2. The latter genes occur in rod-349 shaped cells and also in *Cyanothece* sp. 51142. These genes could indicate that UCYN-350 A2 has a different morphology than UCYN-A1, and could point to differences in how it 351 is structurally associated with its host, which might also influence the fragility of the 352 association. Interestingly, genes involved in cell wall biogenesis, which have become 353 pseudogenes in UCYN-A1, are also among disrupted genes in the obligate cyanobacterial 354 endosymbiont of the diatom Rhopalodia gibba, (Kneip et al. 2008). Another interesting 355 case is the UCYN-A2 peroxidase gene 2528848519. Peroxidases act in detoxifying active 356 oxygen species such as H₂O_{2.}; e.g. the thioredoxin peroxidase in Synechocystis PCC6803 357 (68% nucleotide identity to UCYN-A2 gene) (Yamamoto et al., 1999). Active oxygen 358 species are formed during respiration and photosynthesis, but also many other processes 359 (Miyake and Yokota, 2000). The presence of a peroxidase could indicate that UCYN-A2 360 experiences higher intracellular oxygen concentrations than UCYN-A1. UCYN-A2 361 would then have to respire more oxygen in order to fix N_2 , and in the process would generate more reactive oxygen species, thus potentially relying on this peroxidase gene. 362 Based on searches in metagenomic and metatranscriptomic datasets, the UCYN-363 364 A1 genome was initially assumed to represent a global population with very similar

365 genome sequences (≥ 97 % nucleotide sequence identity, Tripp et al. 2010), analogous to 366 the low sequence diversity seen in Crocosphaera watsonii (Zehr et al., 2007; Bench et al., 367 2011). While the phylogenomic analysis strongly supports the two UCYN-A strains to be 368 sister species (Fig. 5), one of the striking results from our genome comparison is the 369 relatively large range of sequence similarity seen among shared genes in UCYN-A1 and 370 UCYN-A2 (Fig. 2). The combination of this sequence divergence with the extremely 371 high similarity in basic genome features, gene content, and synteny suggests that the 372 genome reduction occurred prior to the speciation event and genetic divergence. It is 373 therefore likely that the common ancestor of UCYN-A1 and UCYN-A2 was already a 374 symbiont. Vicariance might have triggered the genetic divergence in the course of 375 speciation of the prymnesiophyte host into strains that possibly are slightly better adapted 376 to different oceanic realms. This would have allowed the cyanobacterial genomes to 377 accumulate gene sequence mutations after driving forces causing large genome 378 rearrangements were no longer significant, which appears typical for symbiont genomes 379 that have already been highly reduced (Tamas et al., 2002; Moran, 2003; Silva et al., 380 2003). Interestingly, genes involved in N_2 fixation were among the most conserved 381 orthologs, likely reflecting the importance of this process in maintaining the symbiosis, 382 since it arguably represents the function most beneficial to the host and which must have 383 been vital in the initial formation of the symbiotic relationship. 384 Small, conserved and highly syntenic genomes exhibiting high amino acid 385 divergence can also be found in the free-living heterotrophic SAR11 clade (Wilhelm et 386 al., 2007; Grote et al., 2012). SAR 11 is an example for genome reduction due to

387 "streamlining", while the genome reduction seen in UCYN-A appears typical for

388	symbiont genomes (Giovannoni et al., 2014). The amino acid divergence between the
389	UCYN-A strains lies within the range seen in the SAR11 Ia cluster (which have 2% 16S
390	rRNA divergence, Grote et al., 2012). However, UCYN-A1 and UCYN-A2 have even
391	more conserved genome content than SAR11 Ia and are considerably more conserved
392	than members of the cyanobacterial Prochlorococcus group (Kettler et al., 2007), which
393	appears typical for obligate intracellular organisms (Grote et al., 2012). This evolutionary
394	pattern is unusual and suggests that the genomes of these UCYN-A strains are under
395	strong selection, since they are highly specialized symbionts of eukaryote algae.
396	Although <i>nifH</i> sequences of UCYN-A1 and UCYN-A2 can co-occur in some
397	samples from around the world, the question has been raised whether these two different
398	strains could be adapted to different nutrient regimes, and could therefore have
399	overlapping but different distributions in the ocean (Thompson et al., 2014). However,
400	we find no evidence in the genomes of UCYN-A1 and UCYN-A2 that would resemble
401	genetic differentiation analogous to that in e.g. the high-light or low-light ecotypes of
402	Prochlorococcus sp. (Moore et al., 1998; Kettler et al., 2007), or the 'coastal' ecotypes of
403	Synechococcus sp. (Ahlgren and Rocap, 2006; Palenik et al., 2006). This lack of genetic
404	differentiation, and the overall level of genome reduction, is characteristic for genomes of
405	obligate symbionts with high dependency on their host (Moran, 2003; Hilton et al., 2013),
406	and suggests that UCYN-A may not be directly exposed to, or affected by the external
407	environment. Analyzing the genomes of the host algae and other UCYN-A strains will be
408	necessary to identify genes that might represent adaptation to different environmental
409	conditions.

410 While the two strains show no immediately apparent gene adaptations to cope 411 with horizontal nutrient gradients or light quality, it is interesting that UCYN-A1 appears 412 to be smaller than UCYN-A2 (Thompson et al., 2014), has fully excised genes compared 413 to UCYN-A2 (Fig. 3) and greater truncation of genes (Fig. 4). The genomic signatures in 414 UCYN-A point to typical genome reduction in a symbiont via genetic drift, a mechanism 415 which is particularly enhanced under small effective population sizes (van Ham et al., 416 2003; Giovannoni et al., 2014). However, the further reduced genome of UCYN-A1 417 could also reflect an adaptation to the open ocean environment with very low levels of 418 nutrients. Comparative genomics and ecological studies (Scanlan et al., 2009), as well as 419 trait evolution analyses (Larsson et al., 2011), have shown a trend in genome reduction 420 among cyanobacteria adapted to oligotrophic environments. For the host of UCYN-A, the 421 ecological advantage of hosting a "diazoplast" would come at the cost of having to 422 sustain it with carbon energy, nutrients, and a range of metabolites. Thus, it appears 423 possible that more severe nutrient deprivation (especially for phosphorus, Scanlan et al. 424 2009) experienced by an open ocean ecotype of the host would also induce more 425 extensive genome compaction (i.e. streamlining) in the symbiont. Further studies are 426 necessary to fully understand these observations.

427

428 *Conclusions*

The genomes of the two UCYN-A strains show considerable divergence at the amino acid and nucleotide levels along with high conservation of genome structure, gene content, and basic genome features, suggesting that they had a common symbiotic ancestor and then were separated spatially in the course of speciation. While there is

433 some evidence for unequal distribution and possibly habitat-specific genomic 434 streamlining in these two strains, it remains unclear whether they occupy different or 435 overlapping niches. The genome size and the number of pseudogenes not yet fully 436 excised from the genome of both strains might suggest that UCYN-A is still in a 437 relatively early stage of symbiotic association with the eukaryotic host, analog to e.g. the 438 diazotrophic spheroid bodies found in rhopalodiacean diatoms (Kneip et al., 2008). 439 Genome sequencing of additional UCYN-A strains and of host genomes will show 440 whether the small differences in genetic potential reflect environmental adaptation in 441 these organisms, and whether genetic material from UCYN-A has migrated into the host 442 genome, as found in organelle-like stages of symbiosis (Nakayama and Ishida, 2009). 443 The existence of different UCYN-A strains associated with different prymnesiophytes 444 has implications for the trophic transfer and vertical export of N and C, and for the 445 distribution and regulation of N₂ fixation in the ocean. Further studies are needed for a 446 better understanding symbiotic N_2 fixation, and the genomic basis for UCYN-As role as a 447 globally important N₂ fixer.

448

449 Acknowledgements

We thank F. Malfatti and F. Azam at SIO for assistance with sampling and for providing lab facilities, Kendra Turk-Kubo for carrying out PCR reactions to confirm pseudogene sequences, S. Biller at MIT for assistance with sample handling, S. Bench for bioinformatics assistance, and A. Thompson, J. Tripp and J. Hilton for valuable discussions. Comments from three anonymous reviewers greatly improved the paper. This work was supported by a Gordon and Betty Moore Foundation Marine Investigator

456	Award (JZ), the MEGAMER facility (supported by GBMF) and the Center for Microbial
457	Oceanography: Research and Education (NSF grant 0424599).
458	
459	Conflict of Interest statement
460	The authors declare no conflict of interest.
461	
462	Supplementary information is available at ISMEJ's website.
463	
464	References
465 466 467 468 469	Ahlgren N, Rocap G. (2006). Culture isolation and culture-independent clone libraries reveal new marine <i>Synechococcus</i> ecotypes with distinctive light and N physiologies. Appl. Environ. Microbiol. 72(11):7193-7204.
470 471 472 473 474	Ahlgren NA, Rocap G, Chisholm SW. (2006). Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ. Microbiol. 8(3):441-454.
475 476 477 478 479	Bench SR, Ilikchyan IN, Tripp HJ, Zehr JP. (2011). Two strains of <i>Crocosphaera watsonii</i> with highly conserved genomes are distinguished by strain-specific features. Front. Microbio. 2:261.
480 481 482 483 484	Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. (2013). Trichodesmium - a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37(3):286-302.
485 486 487 488 489	Blank CE, Sanchez-Baracaldo P. (2010). Timing of morphological and ecological innovations in the cyanobacteria - a key to understanding the rise in atmospheric oxygen. Geobiol. 8(1):1-23.
490 491 492	Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ. (1997). <i>Trichodesmium</i> , a globally significant marine cyanobacterium. Science 276(5316):1221-1229.

493	
494	
495	Chavez FP, Pennington JT, Castro CG, Ryan JP, Michisaki RM, Schlining B, et al.
496	(2002). Biological and chemical consequences of the 1997-98 El Niño in central
497	California waters. Progress in Oceanography 54:205-232.
498	
499	
500	Church MJ, Mahaffey C, Letelier RM, Lukas R, Zehr JP, Karl DM. (2009). Physical
501	forcing of nitrogen fixation and diazotroph community structure in the North Pacific
502	subtropical gyre. Global Biogeochem. Cycles 23:GB2020.
503	
504	
505	Church MJ, Short CM, Jenkins BD, Karl DM, Zehr JP. (2005). Temporal patterns of
506	nitrogenase gene (<i>nifH</i>) expression in the oligotrophic North Pacific Ocean. Appl.
507	Environ. Microbiol. 71(9):5362-5370.
508	
509	
510	Diez B, Bergman B, Pedros-Alio C, Anto M, Snoeijs P. (2012). High cyanobacterial nifH
511	gene diversity in Arctic seawater and sea ice brine. Environmental Microbiology Reports
512	4(3):360-366.
513	
514	
515	Dugdale RC, Menzel DW, Ryther JH. (1961). Nitrogen fixation in the Sargasso Sea.
516	Deep-Sea Research 7:297-300.
517	•
518	
519	Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. (2011). Nitrogen
520	fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484-
521	1493.
522	
523	
524	Foster RA, Zehr JP. (2006). Characterization of diatom-cyanobacteria symbioses on the
525	basis of <i>nifH</i> , <i>hetR</i> , and 16S rRNA sequences. Environ. Microbiol. 8(11):1913-1925.
526	
527	Giovannoni SJ, Thrash JC, Temperton B. (2014). Implications of streamlining theory for
528	microbial ecology. ISME J. doi:10.1038/ismej.2014.60
529	
530	Glibert PM, Bronk DA. (1994). Release of dissolved organic nitrogen by marine
531	diazotrophic cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol. 11:3996-
532	4000.
533	
534	Grote J, Thrash C, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ. (2012).
535	Streamlining and core genome conservation among highly divergent members of the
536	SAR11 clade. mBio 3(5):e00252-12. DOI:10.1128/mBio.00252-12
= - =	

538 539	Hilton JA, Foster RA, Tripp JH, Carter BJ, Zehr JP, Villareal TA. (2013). Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont. Nat
540	Commun 4:1767
541	
542	
542 543	Janson S. Wouters J. Bergman B. Carpenter EI. (1999) Host specificity in the <i>Richelia</i> -
544	diatom symbiosis revealed by hetR gene sequence analysis Environ Microbiol 1(5):431-
545	438
546	
540	
548	Johnson ZI, Zinser FR, Coe A, McNulty NP, Woodward FMS, Chisholm SW, (2006)
540 5/19	Niche partitioning among <i>Prochlorococcus</i> ecotypes along ocean-scale environmental
550	gradients. Science 311(5768):1737-1740
551	gradients. Science 511(5766).1757-1740.
557	
552 553	Karl D. Lataliar P. Tunas I. Dara I. Christian I. Habal D. (1007). The role of nitrogen
555	fixation in biogeochemical evaluation in the subtropical North Desific Ocean Nature
555	200(6642).522 520
555 556	388(0042):353-358.
550	
337 559	Kettler CC Martiny AC Huges K Zusker I Coleman ML Badrieus S at al (2007)
550	Retterne and implications of some sain and loss in the avalution of <i>Ducklasses</i> and
559	Platerns and implications of gene gain and loss in the evolution of <i>Prochlorococcus</i> .
560	PLos Genet 3(12):e231.
561	
562	
563	Kneip C, Vobeta C, Locknart P, Maier U. (2008). The cyanobacterial endosymbiont of
564	Encluder algae <i>Rhopalodia gibba</i> snows reductive genome evolution. BMC
565	Evolutionary Biology 8(1):30.
500	
501	Langleis DL Hummer D. LaDasha I. (2008). Abundances and distributions of the
500	Langiois KJ, Hummer D, Lakocne J. (2008). Adundances and distributions of the
509	dominant <i>nijH</i> phylotypes in the Northern Atlantic Ocean. Appl. Environ. Microbiol.
570	/4(0):1922-1951.
571	
572	Lenson I. Nalandar I. Dansmar D. (2011). Compared flucture in second static sectors
5/5	Larsson J, Nylander J, Bergman B. (2011). Genome fluctuations in cyanobacteria reflect
574	evolutionary, developmental and adaptive traits. BMC Evolutionary Biology 11(1):187.
5/5	
5/6	Miyake C, Yokota A. (2000). Determination of the Rate of Photoreduction of O2 in the
5//	Water-Water Cycle in Watermelon Leaves and Enhancement of the Rate by Limitation of
5/8	Photosynthesis. Plant and Cell Physiology 41(3):335-343.
5/9	
580	
581	Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. (2010).
582 582	Unicellular cyanobacterial distributions broaden the oceanic N_2 fixation domain. Science
383	32/(39/2):1512-1514.

584	
585	
586	Moore LR, Rocap G, Chisholm SW. (1998). Physiology and molecular phylogeny of
587	coexisting <i>Prochlorococcus</i> ecotypes. Nature 393(6684):464-467.
588	
589	
590	Moran NA. (2003). Tracing the evolution of gene loss in obligate bacterial symbionts.
591	Curr. Opin. Microbiol. 6(5):512-518.
592	
593	
594	Moran NA, Mira A. (2001). The process of genome shrinkage in the obligate symbiont
595	Buchnera aphidicola. Genome Biol. 2:RESEARCH0054.
596	
597	
598	Mulholland MR. (2007). The fate of nitrogen fixed by diazotrophs in the ocean.
599	Biogeosciences 4(1):37-51.
600	
601	
602	Mulholland MR, Bernhardt PW, Blanco-Garcia JL, Mannino A, Hyde K, Mondragon E,
603	et al. (2012). Rates of dinitrogen fixation and the abundance of diazotrophs in North
604	American coastal waters between Cape Hatteras and Georges Bank. Limnol. Oceanogr
605	57(4):1067-1083.
606	
607	
608	Nakayama T, Ishida K-i. (2009). Another acquisition of a primary photosynthetic
609	organelle is underway in Paulinella chromatophora. Current biology : CB 19(7):R284-
610	R285.
611	
612	
613	Needoba JA, Foster RA, Sakamoto C, Zehr JP, Johnson KS. (2007). Nitrogen fixation by
614	unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean.
615	Limnol. Oceanogr. 52(4):1317-1327.
616	
617	
618	Palenik B, Ren QH, Dupont CL, Myers GS, Heidelberg JF, Badger JH, et al. (2006).
619	Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal
620	environment. Proceedings of the National Academy of Sciences USA 103(36):13555-
621	13559.
622	
623	
624	Partensky F, Blanchot J, Vaulot D. (1999). Differential distribution and ecology of
625	Prochlorococcus and Synechococcus in oceanic water: a review. Bulletin de l'Institut
626	oceanographique Special no. 19:457-475.
627	
628	

629 630	Rees AP, Gilbert JA, Kelly-Gerreyn BA. (2009). Nitrogen fixation in the western English Channel (NE Atlantic Ocean). Mar. Ecol. Prog. Ser. 374:7-12.
631	Ϋ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́
632	
633	Ruby JG, Bellare P, DeRisi JL. (2013). PRICE: Software for the Targeted Assembly of
634	Components of (Meta) Genomic Sequence Data. G3: Genes Genomes Genetics 3(5):865-
635	880.
636	
637	
638	Sanchez-Baracaldo P, Ridgwell A, Raven JA. 2014. A neoproterozoic transition in the
639	marine nitrogen cycle. Current Biology 24(6):652-657.
640	
641	
642	Sanchez-Baracaldo P, Hayes PK, Blank CE. (2005). Morphological and habitat evolution
643	in the Cvanobacteria using a compartmentalization approach. Geobiology 3:145–165.
644	
645	
646	Scanlan DJ. (2003). Physiological diversity and niche adaptation in marine
647	Synechococcus. In: Advances in Microbial Physiology, Vol 47, ACADEMIC PRESS
648	LTD: London, 47: 1-64.
649	
650	
651	Scanlan DJ. Ostrowski M. Mazard S. Dufresne A. Garczarek L. Hess WR. et al. (2009).
652	Ecological Genomics of Marine Picocyanobacteria, Microbiol, Mol. Biol. Rev.
653	73(2):249-299.
654	
655	
656	Scanlan DJ, West NJ, (2002). Molecular ecology of the marine cyanobacterial genera
657	Prochlorococcus and Synechococcus, FEMS Microbiol, Ecol, 40(1):1-12.
658	
659	
660	Scharek R. Tupas L. Karl DM. (1999). Diatom fluxes to the deep sea in the oligotrophic
661	North Pacific gyre at Station ALOHA, Mar. Ecol. Prog. Ser. 182:55-67.
662	
663	Short SM, Zehr JP, (2005), Quantitative Analysis of nifH Genes and Transcripts from
664	Aquatic Environments, In: R. L. Jared, (ed), Methods Enzymol, Academic Press: Volume
665	397: 380-394.
666	
667	
668	Silva FL Latorre A. Moya A. (2003) Why are the genomes of endosymbiotic bacteria so
669	stable? Trends in genetics : TIG 19(4):176-180
670	
671	
672	Sohm JA, Webb EA, Capone DG, (2011). Emerging patterns of marine nitrogen fixation
673	Nat Rev Microbiol 9(7):499-508
674	

675	
676	Stal L1 (2009) Is the distribution of nitrogen-fixing evanobacteria in the oceans related
677	to temperature? Environ Microbiol 11(7):1632-1645
678	to temperature. Environ. Whereboloi. $\Pi(\gamma).1052$ 1015.
670	
680	Stamatakis A (2006) PAYMI VI HPC: maximum likelihood based phylogenetic
601	Stalliatakis A. (2000). KAXIVIL- VI-IIFC. Illaxillulli likelihood-based phylogenetic
001	analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2088-2090.
082	
683	
684	Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, et al. (2002).
685	50 million years of genomic stasis in endosymbiotic bacteria. Science 296(5577):2376-
686	2379.
687	
688	
689	Thompson AW, Carter BJ, Turk-Kubo KA, Malfatti F, Azam F, Zehr JP. (2014). Genetic
690	diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its
691	prymnesiophyte host. DOI: 10.1111/1462-2920.12490
692	
693	
694	Thompson AW, Foster RA, A. K, J. CB, Musat N, Vaulot D, et al. (2012). Unicellular
695	cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337(6101):1546-
696	1550.
697	
698	
699	Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. (2010). Metabolic
700	streamlining in an open ocean nitrogen-fixing cyanobacterium. Nature 464(7285):90-94.
701	
702	
703	van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U et al. (2003).
704	Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100: 581-
705	586.
706	
707	Villareal TA. (1992). Marine nitrogen-fixing diatom - cyanobacteria symbioses. In: E. J.
708	Carpenter, D. G. Capone and J. G. Rueter, (ed). Marine Pelagic Cyanobacteria:
709	<i>Trichodesmium</i> and other Diazotrophs. Kluwer Academic Publishers: The Netherlands:
710	163-175.
711	
712	
713	Voss M, Bange HW, Dippner JW, Middelburg JJ, Montoya JP, Ward B. (2013). The
714	marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of
715	climate change. Philosophical Transactions of the Royal Society B: Biological Sciences
716	368(1621):20130121-20130121.
717	

719	Wernegreen JJ, Lazarus AB, Degnan PH. (2002). Small genome of Candidatus
720	Blochmannia, the bacterial endosymbiont of Camponotus, implies irreversible
721	specialization to an intracellular lifestyle. Microbiol. 148(8):2551-2556.
722	
723	Wilhelm LJ, Tripp HJ, Givan SA, Smith DP, Giovannoni SJ. (2007). Natural variation in
724	SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol. Direct.
725	2:27
726	
727	Yamamoto H, Miyake C, Dietz K-J, Tomizawa K-I, Murata N, Yokota A. (1999).
728	Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett.
729	447(2-3):269-273.
730	
731	
732	Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, et al. (2008). Globally
733	distributed uncultivated oceanic N ₂ -fixing cyanobacteria lack oxygenic photosystem II.
734	Science 322:1110-1112.
735	
736	
737	Zehr JP, Bench SR, Mondragon EA, McCarren J, DeLong EF. (2007). Low genomic
738	diversity in tropical oceanic N ₂ -fixing cyanobacteria. Proc. Natl. Acad. Sci. USA
739	104(45):17807-17812.
740	
741	
742	Zehr JP, Kudela RM. (2011). Nitrogen Cycle of the Open Ocean: From Genes to
743	Ecosystems. Annual Review of Marine Science, Vol 3 3:197-225.
744	•
745	
746	Zehr JP, Mellon MT, Zani S. (1998). New nitrogen fixing microorganisms detected in
747	oligotrophic oceans by the amplification of nitrogenase (<i>nifH</i>) genes. Appl. Environ.
748	Microbiol. 64(9):3444-3450.
749	
750	
751	Zehr JP, Paerl HW. (2008). Molecular ecological aspects of nitrogen fixation in the
752	marine environment. In: D. L. Kirchman, (ed). Microbial ecology of the oceans. Wiley-
753	Liss, Inc.: Durham, NC: 481-525.
754	
755	
756	Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, et al. (2001).
757	Unicellular cyanobacteria fix N_2 in the subtropical North Pacific Ocean. Nature
758	412(6847):635-638.

759 Figure legends

761	Figure 1: Work flow diagram describing the cell-sorting, genome sequencing, and
762	assembly approach used in this study. The chosen FCM sort gate was determined in
763	earlier experiments by screening different sorted populations for the presence of UCYN-
764	A2 nifH by QPCR, as described previously. The PRICE assembly was carried out as
765	described in Ruby et al. (2013).
766	
767	Figure 2: Circular map showing all 52 scaffolds of the UCYN-A2 draft genome aligned
768	to the UCYN-A1 chromosome. Each concentric ring represents a scaffold, with the color
769	code representing percent nucleotide identity. The scaffolds are sorted by length, with the
770	longest scaffold (249,164 nt) on the outermost ring, and decreasing in length towards the
771	center ring (shortest contig of 675 nt). The inlet graph is a histogram of % amino acid
772	identity for all 1159 ortholog genes.
773	
774	Figure 3: Examples of missing genes in UCYN-A1, demonstrating the resulting genome
775	compaction. A total of 31 genes was found to be unique in UCYN-A2. The alignment
776	was done using the Artemis Comparison Tool and shows closely matching gene
777	neighborhoods apart from the missing genes (percent nucleotide identity given for
778	aligned genes).

780	Figure 4: (A) Comparison of amino acid lengths of ortholog genes in UCYN-A1, UCYN-
781	A2, and <i>Cyanothece</i> sp. 51142. (B) The range of percent gene length of the UCYN-A1
782	and UCYN-A2 orthologs compared to the Cyanothece sp. 51142 orthologs.
783	
784	Figure 5: Phylogeny of 57 cyanobacteria based on a concatenated alignment of 135
785	highly conserved protein sequences. A detailed list and description of the genes can be
786	found in Blank and Sánchez-Baracaldo (2010). Maximum likelihood analyses were
787	performed using RAxML 7.4.2 (Stamatakis 2006). Bootstrap values are indicated above
788	branches. The vertical bar marks sequences belonging to a strongly supported clade of
789	marine unicellular N_2 fixers previously described as the SPM group (Synechocystis,
790	Pleurocapsas, and Microcystis).
791	

Table 1: Genome statistics of UCYN-A1 and UCYN-A2.

	UCYN-A1	UCYN-A2
Location	HOT station, 22. January 2008	Scripps Pier, 31. May 2011
Genome Size	1443806	1485499
Number of scaffolds	1	52
GC %	31	31
Coding Base Count %	81.41	79.32
Protein coding genes	1200	1246
RNA genes	42	49
rRNA genes	6	6
5S rRNA genes	2	2
16S rRNA genes	2	2
23S rRNA genes	2	2
tRNA genes	36	37
other RNA genes		6

Table 2: Annotated genes that are absent or possibly pseudogenes in the other genome. Also shown are 3 annotated genes in UCYN-A2 that match un-annotated regions in UCYN-A1. This table does not list hypothetical proteins, which account for another 25 UCYN-A1 genes that match pseudogenes in UCYN-A2, 15 genes unique in UCYN-A2, 13 genes that match pseudogenes in UCYN-A1, and 2 genes that match un-annotated ORFs in UCYN-A1 (supplemental table 1). Where given, the numbers in brackets next to the gene IDs depict the number of consecutive annotated partial genes in the other genome aligned to this particular gene sequence.

Function description	annotation	gene length (AA)	IMG gene ID	Category
protein related to alkyl hydroperoxide reductase (AhpC)	Peroxiredoxin	159	646530577	
defense	restriction endonuclease	167	646529831	
domain in ATP synthases	HAS barrel domain protein	207	646530256	
NurA domain, endo- and exonucleases	NurA domain-containing protein	398	646530363	
N_2 fixation, nif operon	NifZ domain-containing protein	103	646530393	
transcription factors, possibly regulation of primary metabolism	transcriptional regulator, GntR family	318	646530716	
function unknown	predicted ATPase	554	646530983	
17 Kegg pathways, aldehyde substrates, various functions	NAD-dependent aldehyde dehydrogenase	462	646530866	UCYN-A1 genesthat are possible pseudogenes in UCYN-A2

Glycerolipid metabolism, possibly involved in fermentation	glycerol dehydrogenase-like oxidoreductase	369	646530177 (3)
Pantothenate and CoA biosynthesis	phosphopantetheinyl transferase	236	646530270 (2)
Predicted membrane-associated HD superfamily hydrolase	uncharacterized domain HDIG- containing protein	812	646530030 (2)
pyrimidine synthesis	carbamoyl-phosphate synthase large subunit	1081	646530304 (2)
diverse reactions, energy production/conversion	Fe-S oxidoreductase	884	646530471 (5)
function unknown	predicted membrane protein	457	646530981 (2)
transmembrane protein, inorganic ion transport and metabolism	copper/silver-translocating P-type ATPase	749	646530499 (3)
Translation, ribosomal structure and biogenesis	lysyl-tRNA synthetase (class II)	514	646530912 (2)
function unknown	Predicted membrane protein	371	2528847256
osmoprotectant synthesis	glucosylglycerol phosphatase (EC 3.1.3.69)	430	2528847449
contains C-terminal domain of Mo- dependent nitrogenase	Tellurite resistance protein	236	2528847463
pyrimidine metabolism, DNA synthesis	thymidylate kinase	208	2528848101
cytoskeleton synthesis, cell shape determination	cell shape determining protein, MreB/Mrl family	347	2528848157
cytoskeleton synthesis, cell shape determination	rod shape-determining protein MreC	248	2528848158

	2528848159	186	rod shape-determining protein MreD	cytoskeleton synthesis, cell shape determination
UCYN-A2 genes absent in UCYN-A1	2528848382	427	folate/biopterin transporter	membrane transport
	2528848428	165	2TM domain	function unclear, transmembrane alpha helixes
	2528848397	56	Sigma-70, region 4	DNA directed RNA polymerase
	2528847785	344	folate-binding protein YgfZ	Predicted aminomethyltransferase, possibly glycine synthesis
	2528848398	63	Sigma-70 region 3	DNA directed RNA polymerase
	2528848519	215	Peroxiredoxin	detoxification of active oxygen species such as H2O2
	2528847715	231	Zn-dependent hydrolases, including glyoxylases	pyruvate metabolism
	2528848513	277	Tetratricopeptide repeat/TPR repeat	unclear function- involved in chaperone, cell-cycle, transciption, and protein transport complexes
	2528848259	94	RNA-binding proteins (RRM domain)	function unclear
	2528847640	38	Cytochrome B6-F complex subunit 5	photosynthesis, connects PSI and PSII in e ⁻ transport chain
UCYN-A2 genes that match un-annotated ORF's in UCYN-A1	2528848301	64	LSU ribosomal protein L33P	structural constituent of ribosome
	2528848058	470	Hemolysins and related proteins containing CBS domains	membrane protein, regulate activity of associated enzymatic transporters

	2528848162	211	Uncharacterized protein, similar to the N-terminal domain of Lon protease	proteolysis
	2528848190	165	Predicted RNA-binding protein	general function prediction only
	2528848352	86	Glutaredoxin-like domain (DUF836)	domain of unknown function
	2528848421	267	Helix-turn-helix domain	DNA binding, gene expression regulation
	2528848427 (2)	461	Domain of unknown function (DUF697)	function unknown
	2528847887 (2)	301	CAAX protease self-immunity	probably protease, transmembrane protein
UCYN-A2 genes that are possible pseudogenes in UCYN-A1	2528848219 (2)	396	Glycosyltransferases involved in cell wall biogenesis	Cell wall/membrane/envelope biogenesis
	2528847369 (2)	350	UDP-N-acetylglucosamine-N- acetylmuramylpentapeptide N- acetylglucosamine transferase	Cell wall/membrane/envelope biogenesis
	2528848143 (2)	294	competence/damage-inducible protein CinA C-terminal domain	transformation
	2528847937 (2)	196	Putative translation factor (SUA5)	Translation, ribosomal structure and biogenesis
	2528847508 (2)	140	Predicted endonuclease involved in recombination (possible Holliday junction resolvase in Mycoplasmas and B. subtilis)	Replication, recombination and repair
	2528848115 (2)	600	Subtilisin-like serine proteases	proteolysis or cell motility
	2528847345 (2)	385	phosphate ABC transporter substrate- binding protein, PhoT family (TC 3.A.1.7.1)	inorganic ion transport and metabolism

nearly the entire length of UCYN-A reference genome

250-550 bp library

UCYN-A1 reference genome

UCYN-A2 draft genome

2528848158 2528848159)

