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Aims Ventricular activation patterns can aid clinical decision-making directly by providing spatial information on cardiac
electrical activation or indirectly through derived clinical indices. The aim of this work was to derive an atlas of the
major modes of variation of ventricular activation from model-predicted 3D bi-ventricular activation time distribu-
tions and to relate these modes to corresponding vectorcardiograms (VCGs). We investigated how the resulting
dimensionality reduction can improve and accelerate the estimation of activation patterns from surface electrogram
measurements.

...................................................................................................................................................................................................
Methods
and results

Atlases of activation time (AT) and VCGs were derived using principal component analysis on a dataset of simu-
lated electrophysiology simulations computed on eight patient-specific bi-ventricular geometries. The atlases pro-
vided significant dimensionality reduction, and the modes of variation in the two atlases described similar features.
Utility of the atlases was assessed by resolving clinical waveforms against them and the VCG atlas was able to accu-
rately reconstruct the patient VCGs with fewer than 10 modes. A sensitivity analysis between the two atlases was
performed by calculating a compact Jacobian. Finally, VCGs generated by varying AT atlas modes were compared
with clinical VCGs to estimate patient-specific activation maps, and the resulting errors between the clinical and
atlas-based VCGs were less than those from more computationally expensive method.

...................................................................................................................................................................................................
Conclusion Atlases of activation and VCGs represent a new method of identifying and relating the features of these high-

dimensional signals that capture the major sources of variation between patients and may aid in identifying novel
clinical indices of arrhythmia risk or therapeutic outcome.
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Introduction

An accurate patient-specific electrical activation map can help guide
diagnosis and therapy planning and is a pre-requisite of many patient-
specific cardiac models. For example, an accurate activation map is
needed to drive realistic, patient-specific models of cardiac electro-
mechanics,1 and these ‘digital twin’ models have shown promise for
understanding disease processes and clinical decision-making.2 The
gold standard method for obtaining patient-specific activation maps is

an invasive, catheter-based electroanatomic endocardial mapping
procedure. Non-invasive options exist including a multi-electrode
mapping vest (i.e. ECGI).3 One proposed alternative technique
matches simulated and clinical vectorcardiogram (VCG) waveforms
but requires the execution of thousands of computationally expen-
sive finite element simulations to identify early pacing sites and the
conductivity properties required for an optimal match.4

Statistical atlases have emerged as a powerful new tool for dimen-
sionality reduction with high-dimensional clinical or physiological
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datasets, and these methods may present a novel approach to simpli-
fying and accelerating this large inverse problem. Atlases are con-
structed using principal component analysis (PCA) to identify
components, or ‘modes’, of variation. In cardiac modelling and cardi-
ology, atlases have been used to characterize variations in ventricular
anatomy,5,6 fibre architecture,7 electrocardiogram features,8 and
wall motion.9 The promise of these methods is that they can more
rigorously and reproducibly describe population variation and may
provide novel indices to differentiate abnormal or pathological
features.

Here, we extend the use of atlases for dimensionality reduction
to identifying principal modes of ventricular electrical activation
patterns. We present a novel approach utilizing PCA of activation
time and VCG waveforms derived from the same training set of
finite element simulations of human bi-ventricular electrophysiol-
ogy. We then assess how efficiently the atlases are able to recon-
struct clinical and simulated data, and quantify the sensitivity of
the paired atlases using VCG waveforms generated from activa-
tion maps. Finally, we assess the feasibility of an atlas-based ap-
proach for accelerating the identification of 3D patient-specific
ventricular activation maps from measured VCG waveforms in
patients with bundle branch block.

Methods

Clinical data
A previously described cohort of eight patients was used for this
study.10 In brief, the patients (aged 66± 11 years) had NYHA Class II–
IV heart failure, reduced left ventricular ejection fraction (31 ± 8%),
prolonged QRS duration (137± 21 ms), and electrocardiograms with
conduction delays (three LBBB and five inter-ventricular/lateral con-
duction delay). Four had additional inferior infarct patterns. Patients
were recruited from the Veteran’s Administration San Diego
Healthcare System. The study was approved by the Institutional
Review Board, and all patients provided informed consent to partici-
pate in the study. Clinical data used herein were collected prior to
cardiac resynchronization therapy device implant. Standard 12-lead
electrocardiograms sampled at 1 kHz were converted to VCGs using
the Kors transformation.1,11 Ventricular anatomy was imaged using

computed tomography (CT, n = 6) or MRI (n = 2). Regions of infarcted
myocardium were determined using MIBI-SPECT scans (n = 4).

Electrophysiology models and simulations
A detailed description of the geometric model generation1 and verifica-
tion of the electrophysiology modelling approach have previously been
published.12 For the geometric models of the myocardium, high resolu-
tion, bi-ventricular, patient-specific computational meshes were gener-
ated from the cardiac CT or MRI scans. Cardiac fibre architecture was
incorporated using large deformation diffeomorphic mapping of an ex vivo
diffusion tensor MRI data set collected on a cadaver heart. Electrical
propagation was simulated by solving the monodomain equation with a
Galerkin finite element solver over tricubic Hermite basis functions.
Action potentials were modelled using the ten Tusscher ventricular myo-
cyte model.13 Conductivity in the myocardium was modelled as trans-
versely isotropic with the highest conductivity along the primary fibre
direction and an anisotropy ratio of 7 to the other two orthogonal direc-
tions. Myocardial infarct was simulated by reducing the monodomain
conductivity to 1/10th the value of healthy myocardium.

Electrophysiology simulations consisted of ectopic stimulation on the
right ventricular (RV) free wall (FW) endocardium to approximate elec-
trical activation during left bundle branch block (LBBB). This is a common
experimental14 and computational1 model of LBBB and dyssynchrony.
Each of the eight patient models had 181 different stimulus locations on
the RV resulting in a total of 1448 simulations. The activation maps and
simulated VCGs were derived from the voltage solution for each simula-
tion and retained for further analysis. Since the simulations focus on elec-
trical activation of the ventricles, only the QRS complex of the VCG was
considered.

The simulated VCG was calculated as follows:

uH ¼ �
ð

X

rirVtdX

where ri is the transversely isotropic intracellular conductivity, ut is the
transmembrane potential difference at time t, and X is the domain con-
sisting geometric model of the ventricular myocardium.

All simulations and analyses were performed in a model-centric frame
of reference. The origin of this reference frame is a point in the centre of
the left ventricular cavity at the midpoint between the base and apex. The
x-axis aligned with the long axis of the heart with the positive direction
towards the apex of the LV. The y-axis bisects the RV FW with positive
direction towards the RV. The z-axis is positive towards the posterior
LV. Clinical VCG data were rotated from the Kors reference frame into
this model-centric reference frame based on heart position in imaging
data.

Activation maps and VCGs were normalized using the total activation
time of non-infarcted myocardium to represent the percentage of the
QRS duration. Previous work has demonstrated that activation times
scale as the inverse square root of conductivity with minimal loss in acti-
vation pattern.12 Similar to normalizing geometric measurement to pa-
tient height,6 this removes a well-known and well-quantified feature from
the data prior to performing PCA.

Measures of vectorcardiogram difference

Two functions were used to quantify differences between VCGs. The
first was a root-mean-square (RMS) error comparing the sum of squared
differences for each of the three orthogonal VCG leads:

What’s new?

• Principal component analysis, commonly used for cardiac
shape analysis, can generate atlases of ventricular activation
time maps derived from monodomain simulations.

• Vectorcardiograms can be accurately reconstructed from
activation patterns reconstructed from the activation time
atlas, and patient vectorcardiograms can be accurately
resolved into model-derived vectorcardiogram atlas modes.

• Atlas-based dimensionality reduction may provide a new way
of efficiently identifying bi-ventricular activation times from
non-invasive surface electrocardiograms and anatomic scans
without the need for additional computationally expensive
monodomain simulations.

Patient-specific ventricular activation patterns i89
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The other objective function, h, was modified from Villongco et al.4
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is the reference heart vector at the peak of the R wave. When comparing
simulation-derived VCGs with clinical waveforms, the magnitude was
normalized to the peak of the R wave for both VCGs.

Principal component analysis
Principal component analysis algorithms require a single vector of data
(or features, p) for each sample (or simulation/patient, n). To obtain this n
� p matrix, the 3D activation time and VCG waveform data must be vec-
torized. Here, the input vectors to the PCA framework consisted of
nodal values of activation time (10 705 features) or concatenated vectors
of the three VCG leads (300 features) for the activation atlas and VCG at-
las, respectively, derived from the 1448 electrophysiology simulations.
The activation times were from consistent material points across the
eight geometries so that their 3D orientation is preserved by their order-
ing in the 1D feature vector. Principal components were computed using
singular value decomposition in Python using scikit-learn (https://scikit-
learn.org/). This results in a ranked list of orthogonal modes that describe
the variation in nodal activation times or VCG waveforms across the vir-
tual patients while accounting for correlations between the original fea-
tures in the data. In each atlas, the first mode explains the most variance,
the second mode the next most, and so on. The results of this analysis al-
low the complex features of the activation maps to be represented by a
condensed set of measures, or mode scores, which can provide insights
into the variability of ventricular activation patterns in the population.
Thus, the mode scores are the input features (ATs or VCG point) after
transformation into the principal component space. To assess the distri-
bution of the mode scores, the raw mode scores were normalized by di-
viding by their standard deviation, and histograms of the normalized
mode scores were generated for each mode.

Sensitivity analysis
A sensitivity analysis allowed the interdependency of the two atlases to
be quantified. This provided further insight into the dimensionality reduc-
tion. The covariation of the two atlases was quantified with a compact
Jacobian generated by systematically varying modes of the AT atlas about
its mean and quantifying the change in the VCG modes. Specifically, the
activation maps were determined for the 35th and 65th percentile of
each of the first 10 AT atlas modes. The recalculated VCG corresponding
to each of those maps was resolved against the VCG atlas. The resulting
differences in the first 10 VCG atlas modes were quantified as follows:

Ji;j ¼
oVCGmodej

oATmodei
¼ abs VCGmodej; 65% � VCGmodej;35%ð Þ

ATmodei; 65% � ATmodei; 35%

where the first 10 modes of the AT atlas (ATmodei) and the VCG atlas
(VCGmodei) are considered to calculate J, the Jacobian.

Optimization to patient vectorcardiogram
Finally, to demonstrate one application of the AT atlas, the atlas was used
to approximate patient-specific activation maps following a previously
published method that suggested matching simulated VCGs to clinical
VCGs yields patient-specific activation maps.4 For this section, a leave-
one-out cross-validation approach was applied by generating a new AT
atlas that excluded simulations originally run on the patient of interest.
This was repeated for all eight sets of patient data. The first five modes of
the AT atlas were then used to create an activation map, and a particle
swarm optimization routine was used to find the optimal selection of
mode scores by minimizing the error between the reconstructed VCG
and the patient VCG. To perform this optimization for a new patient, the
method requires a pre-computed AT atlas, the patient’s 12-lead ECG,
and a geometric model generated from CT or MRI imaging, but it does
not require additional finite element simulations.

Results

Simulated activation atlas
Activation maps from 1448 cardiac electrophysiology simulations of
ectopic pacing on the RV FW were used to generate an AT atlas. The
first five principal modes of variation in the AT atlas describe 52.6%,
25.9%, 12.1%, 4.0%, and 1.4%, respectively (Figure 1A). The top 10
modes of the atlas describe a cumulative 98.2% of the variation in the
underlying activation maps. Activation maps rendered on a bi-
ventricular cardiac geometry comparing the atlas mean with the 5th
and 95th percentile of the first four modes are shown in Figure 1B.
Histograms of normalized mode scores for the first four modes
(Figure 1C) reveal that the first three modes of variation are not nor-
mally distributed. Owing to the lack of normality, graphical represen-
tations and additional analysis were performed mode percentiles
rather than standardized mode z-scores.

Simulated vectorcardiogram atlas
Simulated VCGs derived from the same 1448 simulations as the AT
atlas were used to create a VCG atlas. The first five principal modes
of variation in the VCG atlas describe 63.2%, 14.3%, 8.6%, 5.2%, and
2.5%, respectively (Figure 2A). The top 10 modes of the atlas describe
a cumulative 97.7% of the variation in the underlying VCGs. VCGs
representing the 5th and 95th percentile of the first six modes are
compared with the atlas mean in Figure 2B. Histograms of the normal-
ized mode scores shown in Figure 2C show a different distribution
from those in the AT atlas. Figure 2D quantifies the difference in vec-
tor orientation between the mean VCG of the atlas and a span of
percentiles for the first six modes using the h difference function.
RMS error analysis on the VCG components demonstrates that
Mode 1 is responsible primarily for variation in the z-axis component
of the heart vector, Mode 2 is primarily responsible for variation in
the x-axis component of the heart vector, and Mode 3 is primarily re-
sponsible for variation in the y-axis of the heart vector (Figure 2E).

Clinical vectorcardiograms and the
simulated vectorcardiogram atlas
To assess the utility of the VCG atlas for dimensionality reduction
with clinical data, the eight patient VCGs were resolved against the
VCG atlas (Supplementary material online, Figure S1A). The VCG was
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then reconstructed using a cumulative number of atlas modes. Three
examples are provided in Figure 3A. The error between the original
clinical VCGs and the reconstructed VCGs was calculated using the h

difference function (Figure 3B) and the RMS error (Figure 3C). The
electrophysiology simulations comprising the atlases were originally
computed to find optimal matches between simulated and clinical
VCGs for each of the patients. In Figure 3B and C, the dashed horizon-
tal reference lines (h = 0.07 radians, RMS error = 0.55 mV) represent
the mean difference between the clinical VCG and the optimal simu-
lated VCG for the eight patients studied. Reconstruction of the VCG
falls below this error value with around eight modes in the
reconstruction.

Covariation of activation modes with
vectorcardiogram modes
Given that the two atlases are derived from the same set of simula-
tions, it is of interest to see how the principal modes of variation in
the atlases of the two modalities interact. To enable a direct, quanti-
tative comparison between the atlases, VCGs would need to be gen-
erated from an activation map. To determine if activation maps are
sufficient to faithfully recalculate the VCG, we regenerated a com-
plete voltage solution at each node in the finite element mesh by

shifting a single action potential waveform according to the activation
time. The resulting VCG recalculated using this artificial voltage solu-
tion is nearly imperceptibly different from the original simulated VCG
(Figure 4A). Repeating this for optimal simulations for each of the eight
patients, the average error between the original and reconstructed
VCG was h = 0.004 ± 0.001 radians and RMS error = 0.05 ± 0.02 mV.

This approach was also used to determine the efficiency of dimen-
sionality reduction using the AT atlas by computing how many modes
on AT atlas are required to faithfully reconstruct the VCG. Figure 4B
and C demonstrates that the error between the simulated VCG and
the VCG reconstructed from the activation maps decreases rapidly
and the reconstructed VCG is highly accurate with as few as four
modes of the activation atlas.

To assess the covariation of the activation modes with the VCG
modes, the Jacobian matrix was calculated by reconstructing VCGs
from the activation maps corresponding to the 35th and 65th percen-
tile for each of the first 10 modes of the AT atlas, resolving those
VCGs against the VCG atlas and subtracting the resulting percentiles
for each VCG atlas mode. This computation requires a patient-
specific geometry and thus the sensitivity matrix was calculated for all
eight geometries. The resulting mean sensitivity matrix is visualized as
a heatmap in Figure 4D, and the standard deviation of the sensitivity
matrix across different meshes is in Figure 4E.
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Figure 1 Simulated activation time (AT) atlas. Percent variance explained as a function of mode for an atlas composed of activation maps gener-
ated from 1448 electrophysiology simulations (A). Activation maps representing the 5th percentile, mean, and 95th percentile (B), and a histogram of
normalized mode scores (C) for the first four modes. Time is represented as a normalized QRS duration.
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Approximating patient-specific activa-
tion maps
Previous work has suggested that matching simulated VCGs to
patient VCGs can provide an approximate patient-specific activa-
tion map.4 To determine whether a reconstructed VCG derived
from a small number of modes of the activation time atlas can
match the clinical VCG without running any additional finite ele-
ment simulations, we performed a proof-of-concept optimization
using the first five modes of the AT atlas. A leave-one-out cross
validation strategy was applied, and the atlas was reconstructed
separately for each patient to exclude any patient-specific simula-
tions. The optimal matching VCG reconstructed with just five
modes of the AT atlas without running any patient-specific simula-
tions had an average error h = 0.057± 0.026 radians and RMS er-
ror of 0.43 ± 0.16 mV. This error was lower than the errors from
the original optimization that required running patient-specific fi-
nite element simulations were h = 0.070± 0.028 radians and RMS
error of 0.55± 0.15 mV.

Discussion

Here we generated PCA-derived atlases of activation patterns and
VCGs from a large database of electrophysiology simulations that in-
cluded variations in ventricular geometry and pacing location. Both
atlases demonstrated efficient dimensionality reduction of the under-
lying data. While atlas-based methods have extensively been applied
to cardiac shape analysis, this application to cardiac electrophysiology
is novel, to the best of our knowledge. As has been seen repeatedly
with statistical cardiac shape atlases,15–17 atlases of the major modes
of activation pattern variation could be useful for discovering new
ECG-derived clinical biomarkers. Activation atlases could also pro-
vide a new approximate approach to the inverse problem of cardiac
electrophysiology as shown here. Dimensionality reduction methods
have been extensively applied to electrocardiographic waveforms
(such as the 12-lead ECG). Fourier series, PCA, and linear discrimi-
nant analysis have all been used for dimensionality reduction, com-
pression, and classification of electrocardiographic waveforms.18,19

Here, by showing how VCG modes are coupled to activation modes

A

C

D E

B

Figure 2 Simulated QRS complex VCG atlas. Percent variance explained as a function of mode for an atlas composed of the QRS complex of
VCGs derived from 1448 electrophysiology simulations (A). VCGs representing the 5th percentile, mean, and 95th percentile (B), and a histogram of
normalized mode scores (C) for the first six modes of the QRS complex. Difference in vector orientation, h (D) and RMS error of x-, y-, and z-axis
components (E) between the mean VCG of the atlas and a span of percentiles for the first six modes of the QRS complex. Time is represented as a
normalized QRS duration. RMS, root-mean-square; VCG, vectorcardiogram.
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and the potential to combine them with cardiac shape modes, we
demonstrate new approaches that may allow more efficient and ac-
curate inverse cardiac electrical analysis in patients.

The first three principal modes for the two atlases describe the
same general variation with similar fractions of variance explained.
Mode 1 in the AT atlas describes variation between an early activa-
tion on the anterior wall of the heart (negative Z) and the posterior
wall (positive Z). This is consistent with the RMS error computed on
the VCG atlas in Figure 2E. Similarly, both atlases show variation in
the apical/basal (positive/negative X) direction for Mode 2 and RV/LV
(positive/negative Y) for Mode 3. Those three modes account for
91% and 86% of the variation in the underlying data for the AT atlas
and VCG atlas, respectively. For Modes 4 and above, a simple de-
scription of the variation represented in the modes is more difficult.
This lack of simple physical interpretation of the variation, especially
at higher modes, is a challenge with atlas-based methods, but it also
points to the limitations of the graphical visualization of 3D activation
patterns.

For both atlases, errors associated with the dimensionality reduc-
tion were less than the mean approximation error between the clini-
cal VCG and the optimal-simulated VCG for the eight patients in the
original study.10 Specifically, clinical VCGs reconstructed using the
first eight modes of the VCG atlas and VCGs calculated from activa-
tion maps consisting of five AT atlas modes all fell below this error
threshold.

Vectorcardiograms recalculated from monodomain simulation-
derived activation maps by assuming a constant action potential
waveform differed negligibly from the original simulated VCG.
Furthermore, using the AT atlas, a faithful recalculated VCG could be
reconstructed using less than five modes. This was a particularly use-
ful feature of the AT atlas, as resolving VCGs calculated this way into
VCG atlas modes, a compact Jacobian quantified the sensitivity of
model-derived VCG modes to activation time modes. The Jacobian
shows that some of the activation atlas modes (6, 8–10) have minimal
impact on the VCG mode percentiles, and some of the VCG atlas
modes are insensitive by changes in the first 10 AT atlas modes (e.g.
VCG atlas Mode 6).

Exploiting the ability to directly link the two atlases also allows for
novel methods to generate estimates of patient-specific ventricular
activation patterns from non-invasive clinical data. Since paired activa-
tion maps and VCGs can be generated without running additional fi-
nite element simulations, an optimization (such as the particle swarm
optimization performed here) can match the reconstructed VCG to
a clinical VCG to derive an approximate patient-specific activation
map. Inversion of the Jacobian matrix may also allow more rapid con-
version from a small number of VCG modes from a clinical VCG to
an approximated activation map.

The high computational cost of identifying accurate patient-specific
3D activation maps from simulations that match clinical electrocar-
diograms has led to other proposed methods for accelerating the

A

B C

Figure 3 Vectorcardiogram atlas-based reconstruction of clinical VCGs. The QRS complex from three representative clinical VCGs and approxi-
mate reconstructions of the clinical VCGs using a cumulative number of VCG atlas modes (A). Difference in vector orientation, h (A) and RMS error
(B) between the clinical and atlas-reconstructed QRS complex VCGs. Dashed horizontal reference lines represent the mean difference between the
clinical VCGs and the optimal simulated VCGs. RMS, root-mean-square; VCG, vectorcardiogram.
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problem. One simplified and computationally efficient modelling ap-
proach is the eikonal approximation.20 More recently, several groups
have used a multi-fidelity approach in which the majority of simula-
tions are computed on fast low-fidelity models with a much smaller
number run with a high-fidelity, computationally expensive
model.21,22 Another recent study leveraged transfer learning to rap-
idly estimate electrophysiology parameters based on a database of
5000 simulations on a reference geometry.23 This approach applied
an alternative dimensionality reduction strategy to accelerate
patient-specific electrophysiological inverse modelling and demon-
strated that a machine-learning algorithm trained with simulation
data could estimate activation patterns from body surface potential
maps that were in good agreement with ECGI estimates. Finally,
physics-informed neural networks have also been proposed recently
as a highly efficient method to create patient-specific activation
maps.24

Limitations
A limitation of the current analysis is that the variation in the activa-
tion maps and VCGs used to construct the atlases does not reflect
variability from a sampled patient population. The electrophysiology
simulations were derived from an optimization and only a small num-
ber of simulations closely approximated the eight patients in the
study. However, when the available patient data were resolved
against the VCG atlas, it could still be accurately reconstructed with a
small number of modes despite this limitation with the simulation
database.

The present work focused only on simulations using a single ec-
topic stimulus in the RV to simulation LBBB-like activation patterns.
While this limits the applicability of the specific atlases presented
here, this work serves as proof-of-concept for applying this atlas-
based approach more generally. These atlases could be generated
from simulations with any degree of complexity or targeted to

A

D E

B C

Figure 4 Covariation between the AT atlas and the VCG atlas. A reconstructed VCG of the QRS complex using an artificial voltage solution gen-
erated from an activation map derived from all modes of the AT atlas overlaid on a simulated VCG (A). Difference in vector orientation, h (B) and
RMS error (C) between simulated QRS complex VCGs and reconstructed VCGs from activation maps derived from a cumulative number of AT atlas
modes. Dashed horizontal reference lines represent the mean difference between the clinical VCGs and the optimal simulated VCGs. Heatmap of
the mean (D) and standard deviation (E) of the sensitivity matrix across eight patients derived by varying modes of the AT atlas modes about the
mean and calculating the resulting change in VCG atlas modes. AT, activation time; RMS, root-mean-square; VCG, vectorcardiogram.
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different conduction conditions. Furthermore, the use of the VCG in
the current work rather than the original ECG leads was primarily be-
cause the VCG can be computed from the model without knowing
lead locations. However, a PCA-derived atlas approach could equally
be applied directly to the clinical 12-lead ECG or, ideally, to data
from a multi-electrode mapping system.

The method presented here for generating approximate activation
maps, like all approaches to the inverse problem of cardiac electro-
physiology, suffers from the well-known challenge of non-
uniqueness. An additional limitation is that reconstructing the VCG
from an activation map presents a different non-uniqueness problem
as recalculating the VCG requires a specific cardiac domain and the
resulting VCG will be slightly different with different geometries. One
solution is to integrate this approach with a bi-ventricular shape atlas
(e.g. Mauger et al.6). The sensitivity of an inter-atlas Jacobian to the
shape of the heart could be systematically explored. This could be a
fruitful avenue for future work.

Conclusion

Principal component analysis can be used to derive atlases that
greatly reduce the dimensionality of model-predicted 3D bi-
ventricular activation times and corresponding VCGs, and permit an
accurate and efficient mapping between them to be derived. This
could provide an efficient way to estimate bi-ventricular activation
times from non-invasive surface electrocardiograms and anatomic
scans, shedding light on arrhythmia substrates, resynchronization
interventions, and pacing-mediated myocardial dysfunction.

Supplementary material

Supplementary material is available at Europace online.
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