UCLA UCLA Electronic Theses and Dissertations

Title

Medication Discrepancies during Hospital to Skilled Nursing Facility Transitions

Permalink https://escholarship.org/uc/item/7th8p6k8

Author Lara, RoseMarie

Publication Date 2021

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Los Angeles

Medication Discrepancies during Hospital to Skilled Nursing Facility Transitions

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Nursing Practice

by

RoseMarie Lara

© Copyright by

RoseMarie Lara

ABSTRACT OF THE DISSERTATION

Medication Discrepancies during Hospital to Skilled Nursing Facility Transitions

by

RoseMarie Lara Doctor of Nursing Practice University of California, Los Angeles Professor Mary Cadogan, Co-Chair Professor Janet Mentes, Co-Chair

Background: The literature has shown that at least one medication discrepancy occurs in 75% of hospital-to-skilled nursing facility (SNF) admissions. Medication discrepancies are responsible for over 1.5 million adverse drug events costing the United States health care system over \$3.5 billion. The use of an electronic health record (EHR) to minimize medication discrepancies lends one of many avenues for further studies to evaluate means of reducing these discrepancies thereby improving patient care and outcomes. **Objectives**: This pre and post study design project evaluated the efficacy of an EHR on decreasing medication discrepancies during transition of care (TOC) of patients from the hospital to the SNF. **Methods:** Evaluation of the impact of a

practice change (implementing the new EHR) focused on comparing medication discrepancies on patients admitted to one SNF from two related Los Angeles area hospitals. The pre-EHR group was compared to the post-EHR group for number and type of medication discrepancies. Documents reviewed included the hospital discharge (DC) summary, the hospital interfacility transfer summary, and finally the SNF admission orders for accuracy of medication lists. **Results:** Four types of medication discrepancies were significantly lower in the post-EHR sample compared to the pre-EHR sample. Specifically, discrepancies were lower post-EHR for omissions (p = .03), additions (p = .004), incorrect doses (p = .04), and missing frequencies (p = .04) .01). Although the chi square analysis was not statistically significant at the p=.05 level, from a clinically significant standpoint two times as many post-EHR patients (34.1% versus 16.3%) had no medication discrepancies compared to pre-EHR patients. These results provide an indication that further projects exploring the implementation of an EHR to reduce medication discrepancies may be a valuable tool to aid in and improve patient care and outcomes specifically in relation to maintaining accurate medication lists. Conclusion: An EHR implemented into routine SNF care can reduce medication discrepancies on patients being admitted to the SNF from the hospital when used by SNF nurses to input newly admitted patient medication lists. Keywords: skilled nursing facility, medication errors, transition of care, medication reconciliation.

iii

The dissertation of RoseMarie Lara is approved.

Wendie Robbins

Yeonsu Song

Mary Cadogan, Committee Co-Chair

Janet Mentes, Committee Co-Chair

University of California, Los Angeles

In dedication to my late father who was the inspiration for me returning to school. "You got your doctor Daddy!"

To my two children, Jake and Jill, never give up. Thanks for believing in me when I wanted to quit. I love you always. You are my inspiration!

"You will get there when you are meant to get there and not one moment sooner...so relax, breathe, and be patient." -Mandy Hale

"Sometimes adversity is what you need to face in order to become successful." -Zig Ziglar

Philippians 4:13 "I can do all things through Christ who strengthens me."

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION
CHAPTER TWO: THEORETICAL FRAMEWORK
CHAPTER THREE: REVIEW OF LITERATURE
Synthesis of Literature Review
CHAPTER FOUR: METHODS
Sample and Setting14
Procedure
Analysis17
CHAPTER FIVE: RESULTS
Additional Analysis
CHAPTER SIX: DISCUSSION
Limitations
CONCLUSION
APPENDICES
Appendix A
Appendix B
Table of Evidence
REFERENCES

List of Figures and Tables

1 Iguit 1. Insitigram for Number of Medications per I alteri Olven	ure 1: Histogram for Number of Medications per Patient Given	19
--	--	----

Table 1: Description of Medication Errors	16
Table 2: Descriptive Statistics for Medication Discrepancy Types	19
Table 3: Mann-Whitney Tests Comparing Frequency of Pre-EHR and Post-EHR Discrepancies	20
Table 4: Frequency Distribution of Total Number of Discrepancies per Chart	21
Table 5: Chi-Square Test Comparing Total Number of Discrepancies Pre and Post-EHR	

Acknowledgements

I would like to begin by thanking the UCLA School of Nursing for creating a Doctor of Nursing Practice (DNP) program where I could earn my terminal degree. I have now spent eight of my fourteen years of college education at UCLA and can truly call this place my academic home. I would especially like to thank Dr. Nancy Jo Bush and Dr. Suzette Cardin for pioneering the DNP program. You both have been pivotal in the foundation for future nurse leaders to become prepared before advancing into the communities with their newfound and improvedupon professionalism.

Next, I would like to thank Fireside Health Care Center in Santa Monica for hosting me as my primary place of employment. During my 9 years there, I have seen many changes in staff members, patients, and leadership; however, the overall environment remained a warm and friendly home for many to recover and rehabilitate from injuries and illnesses. This facility was the setting for my project and has inspired me to improve health care situations for our older adult community.

Dr. Mary Cadogan, thank you for the many Zoom sessions throughout the pandemic in order to complete my manuscript. Your feedback and suggestions for improving this document to the final product made the overwhelming experience much more manageable. I appreciate your work behind the scenes in coordinating the committee for the review of my manuscript and for attending my oral defense. Thank you Dr. Mentes, Song, and Robbins for your feedback and input to further clarify my project and outcomes to a much more presentable final product. I would also like to show my appreciation to both Dr. Roger Lee and Mary Noli, the head hospitalist in Santa Monica and the Department Head of the Care Coordination Department at UCLA. You both have been so supportive and flexible with my work schedule in allowing me to

viii

balance out the time between my school and personal obligations. I appreciate the kindness extended to me as I completed the project in the expanded length of time required to implement the data collection related to this new practice change.

What a wild ride this has been working in the epicenter of the pandemic of the United States! Not only was this project implemented in Los Angeles County but at a skilled nursing facilities, the primary clinical type setting where the majority of Covid-19 deaths were occurring. Thanks be to God that I was kept safe and healthy and never carried the virus, though my loved ones and patients exposed me to this horrid disease on more than one occasion. By God's grace, I never contracted the virus and was able to complete this project in His time, not mine. Praise be His name, now and forever, and to Him all the glory...

VITA

ACADEMIC AND PROFESSIONAL PREPARATION

- Sept 2018- University of California, Los Angeles (UCLA)
- Present Los Angeles, California Doctor of Nursing Practice (in progress)
- 2000-2002 University of California, Los Angeles (UCLA)

Los Angeles, California

Master of Science, Nursing

Acute Care, Emphasis in Emergency Medicine and Cardiology

- 1999-2000 University of California, Los Angeles (UCLA)Los Angeles, CaliforniaBachelor of Science, Nursing
- 1996-1999 University of California, Los Angeles (UCLA)

Los Angeles, California

Major: Microbiology and Molecular Genetics

1991-1996 Ventura Community College

Ventura, California

Associate in Science, Nursing

Associate in Arts, General Liberal Arts & Science

PROFESSIONAL EXPERIENCE

April 2012-present

Westwood UCLA, Department of Care Coordination 757 Westwood Blvd Suite B788 Los Angeles, CA 90095 Nurse Practitioner II Work for the Department of Care Coordination. Round on UCLA patients at a local skilled nursing facility after discharge from Ronald Reagan or Santa Monica UCLA Medical Center. Perform physical exams, assess laboratory results/radiological results and write orders on inpatients at the Skilled Nursing Facilities. Report to the attending physician daily on the condition of the patients at the Skilled Nursing Facility. Work to avoid readmissions to the hospital and improve discharge planning for UCLA patients. Attend weekly interdisciplinary team meetings at the SNF to plan for the safe discharge of UCLA patients. Review admission and transfer orders on UCLA patients transferring to the Skilled Nursing Facilities. Transfer emergency conditions to the emergency room via 911, when necessary, and communicate with the paramedics upon arrival and the ER staff before transfer.

LICENSURE AND CERTIFICATION

- 2012 AANP National Certification Adult Nurse Practitioner
- 2005 DEA Registration Number ML1197816
- 2004 Pediatric Advanced Life Support
- 2003 California Nurse Practitioner and Furnishing Number 13828
- 2002 Basic Life Support
- 2002 Advanced Cardiac Life Support
- 2002 Certification in Botox and Collagen Administration
- 1995 California Nursing License Number 508763

AWARDS

- 2019 Dr. Nancy Jo Bush Doctor of Nursing Practice Scholarship
- 2019 UCLA Fiscal Year 2019 Staff Incentive Award

CHAPTER ONE: INTRODUCTION

Improving communication between the acute care hospital and the skilled nursing facility (SNF) is a key factor for achieving optimum patient outcomes (Dizon, Zaltsmann, & Reinking, 2017). Developing a partnership between these two settings would ensure a smooth transition for the patient. SNF services are integral for the care of patients not ill enough for a hospital bed but too disabled to return home. More than five million people transfer from the hospital to the SNF annually (King et al., 2013). Improving patient outcomes is vital to maintaining the health and well-being of this rather large number of individuals utilizing SNF services as an alternative to the direct discharge home. Several areas of communication are available for improvement during this crucial period of transferring care, but this intervention will focus primarily on communication related to the reduction of medication errors on patients transitioning from the hospital to the SNF.

Previous literature has shown that at least one medication discrepancy, such as medication omissions or inconsistencies, occurs in 75% of hospital-to-SNF admissions (Kerstenetsky, Birschbach, Beach, Hager, & Kennelty, 2018). Poor communication and rushed transitions between the hospital and the SNF staff increases the likelihood of medication discrepancies, missed lab tests or imaging studies, and higher readmission rates due to voids in information (Gadbois et al., 2018). According to Kerstenetsky et al. (2018), medication discrepancies are responsible for over 1.5 million adverse drug events which cost the United States health care system over \$3.5 billion and approximately 40% of these discrepancies are thought to be related to inadequate medication reconciliations during the transition of care (TOC) period. Given the high costs associated with medication discrepancies, and the high numbers of medication discrepancies that occur during TOC, this clinical problem is an important topic that

needs to be addressed especially by a Doctor of Nursing Practice (DNP) nurse in this specialty focus using leadership, collaboration, and research skills to implement process changes.

Using national Medicare data, out of 1,530,824 discharges between September 2009 and August 2010, 321,709 or 21% patients were readmitted to the hospital from the SNF within 30 days (Neuman, Wirtalla, & Werner, 2014). The 2010 Affordable Care Act (ACA) established penalties of ~0.74%, which in dollars is an average cost of \$13,800, for hospitals with higher than expected readmission rates for Medicare patients (Clark, Baron, Tynan-McKiernan, Britton, Minges, & Chaudhry, 2017). Reducing medication errors is one aspect in the TOC period that can aid in improving patient outcomes and reducing readmission rates while simultaneously saving valuable health care dollars. Practitioners in different settings work independently from one another and do not ever have complete knowledge of services and medications provided in previous settings and therefore this communication during TOC is vital to relaying lifesaving and valuable health care information (Desai, Williams, Greene, Pierson, & Hansen, 2011). The following PICO question provided focus for the project. Do SNF patients transferred from an acute care hospital whose admission medication list is entered into an EHR have fewer medication discrepancies compared to patients who receive usual care?

CHAPTER TWO: THEORETICAL FRAMEWORK

Avedis Donabedian's conceptual model was an appropriate focus for the implementation of this study. This framework is a model to evaluate the quality of health care using the triad of structure, process, and outcome. Donabedian (1988) clearly and thoroughly described the three components of his conceptual model by dividing them into categories. First, "structure" was described as the material resources such as settings and equipment, human resources such as the

number and qualifications of providers, and organizational structure such as administrative systems through which patient care is provided. Next, "process" was defined as the components of care being delivered to the patient, specifically what is being done in giving and receiving care. For patients, this would be the process involved in seeking care and carrying out the care that is provided. For providers, the process would involve making the diagnosis, recommending care, and providing the care. Lastly, "outcome" was considered to be the survival, recovery, and restoration of function in Donabedian's triad. The outcome would specifically be the patient and population effects from the care that was given.

The change in today's health care system will require adaptation of both health care providers and patients alike to adjust to a new form of extended patient care to improve outcomes. The older population of patients are more likely to necessitate a step down unit such as a SNF placement after an inpatient hospital stay. The first part of Donabedian's model, listed as the "structure" for evaluating health care quality, was the hospital and the SNF in this case. Further descriptors of Donabedian's "structure", relevant to this enhanced medication communication intervention included the hospital discharge nurses and SNF nurses caring for the patient. The last portion of Donabedian's definition of "structure" in this particular setting was the administrative systems from both the hospital and SNF involved in the TOC of the older adult patient. The "process" portion of Donabedian's conceptual model, defined as the components of care delivered, in this instance was the medication lists transferred with the patient from the hospital to the SNF. An accurate review of this list of medications was another component of the "process" portion of Donabedian's model which ensured that medications would be properly administered to the patient in order to provide optimum patient outcomes. The "outcome" of this proposal, according to Donabedian's model, was the recovery, restoration of

function, and survival. Relating his model to this proposal, the "outcome" was the number of medication discrepancies both before and after implementation of the intervention using the interfacility transfer summary list of medications.

Using Donabedian's model provided a structured method to review the outcomes of this proposal's intervention. Structure, process, and outcomes were solid measurable entities involved in this research project. Evaluating the quality of health care before and after implementation provided the necessary feedback to determine the impact of this intervention in improving patient outcomes by reducing medication discrepancies. Reproducing this intervention at other institutions will be strengthened if this framework is utilized to evaluate the implementation of this process and will be especially valuable if the outcomes for all involved are positive.

CHAPTER THREE: REVIEW OF LITERATURE

The literature review was conducted using PubMed and CINAHL databases. The keywords and phrases used for the Boolean search included the following terms: "skilled nursing facility or assisted living or nursing home", "medication errors", and "transitions of care". Initially, thousands of articles were revealed when search terms were viewed separately. When the search terms were combined into one search, CINAHL provided 11 articles and PubMed had 66 articles that were relevant to the topic.

The search was narrowed by adding limitations to the last 10 years, human species, and English language. These articles were then reviewed for their relevance to the DNP project which focuses on interfacility communication from the hospital to the SNF and the medication errors that occur during TOC from the hospital to the SNF. Of these articles, nine were included

in this review of literature because of their relevance to the topic of medication errors and the need for improved communication during TOC from the hospital to the SNF. The other articles were relevant for background information but not included in this review of literature as they were not as relevant to medication errors and communication during transition of care but had other foci such as reducing readmission rates and specifying the categories of medication errors that occurred most frequently during TOC.

Anderson and Ferguson (2020) crafted a study where a nurse practitioner (NP) led medication reconciliation, on each admission to a single SNF-during a one month time period was performed to determine if readmission rates would decrease with the given intervention. The results did show a decrease in readmission rates though the Chi-square analysis was not statistically significant, due to the short period of time and the small sample size. The study did show that nurse practitioners have the necessary education and skills to improve quality measures and provide quality care in SNF settings. Through medication reconciliations performed repeatedly on newly admitted patients at the SNF, readmissions were reduced. These results demonstrated the need for further studies such as enhanced communication from hospital nurse to SNF nurse by reviewing medication lists as a means of improving patient outcomes and reducing medication errors. In the study by Anderson and Ferguson, of readmissions to the hospital, the cause was found to be related to medication errors or the medication reconciliation process further strengthening the message that reducing medication errors can improve patient outcomes.

The study by Clark et al. (2017) sought to gain perspective from clinicians working at the SNF. These clinicians were questioned as to what they considered to be the main factors leading patients towards being readmitted to the hospital from the SNF. A structured interview tool was

used to interview 28 SNF clinicians who cared for the readmitted patients from 15 different SNFs to one hospital. Amongst the responses by these clinicians, poor communication was a common theme blamed for patient readmissions, in particular poor communication between the SNF and the hospital. For example, discrepancies between discharge summaries and patient instructions were cited as possible causes for readmissions to the hospital. The limitations of this study were the fact that only one hospital was used and that no one intervention was listed as a solution. Because of these gaps, further research is needed to develop interventions and measure which interventions are successful at reducing readmissions.

One study by Desai, Williams, Greene, Pierson, & Hansen (2011) described medication errors that occurred during TOC to nursing homes. These study patients transitioning their care into a nursing home were found to be at an increased risk for medication errors. The researchers analyzed medication errors in North Carolina nursing homes that were reported to the Medication Error Quality Initiative (MEQI) from 2007 through 2009. The results of this study found that the communication among staff members, order transcription discrepancies, availability of a given medication, issues with the pharmacy, and name confusion were pertinent aspects contributing to the development of medication errors during TOC to a nursing home for the older adult patient. Medication errors, in this study, were found to more frequently involve registered nurses rather than physicians, physician assistants, pharmacists, and pharmacy technician.

Gadbois et al. (2019) also illustrated the need for improved communication during TOC for the patient transferring from the hospital to the SNF. This research team processed interviews of patients, their families, and hospital and SNF staff to determine the barriers to smooth transfers of care. The patients, families, and staff members all claimed chaotic transfers, rushed

transfers, and poor communication from one facility to the next. The overall theme of this study was to include the patients and the families in the TOC and to improve the communication from the hospital to the SNF. There was no mandated form of direct communication from the hospital to the SNF but rather a nurse to nurse telephone report, a written discharge summary from the hospital, and an interfacility transfer summary were the main components used for communication during TOC. These methods are often skeletal, incorrect, missing crucial health care details, or not updated on current clinical conditions for the patient. The limitations of this study was the fact that the patients included in the study were the individuals who were willing to participate and may not be generalizable.

King et al. (2013) further reiterated poor quality discharge communication as a major barrier for quality patient care. In this study, 27 nurses from five Wisconsin SNFs were interviewed regarding their perceptions of how they transition patients into the SNF from the hospital. Difficult hospital to SNF transitions were considered the norm by these nurses. Multiple inadequacies and deficiencies were noted by these nurses in the written discharge information provided to them by the hospital. Repeated phone clarifications were needed from the hospital staff by the SNF nurses creating frustrations and delays in care. The need for quality communication (including clear medication orders and opioid prescriptions, thorough patient psychosocial/functional history, and accurate information regarding the patient's current health status) during transition of care was a highlight of this research study focusing on the care of patients admitted from the hospital to the SNF, further strengthening and supporting the need for studies and research to resolve this critical clinical problem.

One study by Kreckman et al. (2018) convincingly found that reviewed medication lists during TOC, using a registered nurse led intervention, reduced medication errors during hospital

admission, hospital discharge, and at the ambulatory care post-hospital follow up visit. These researchers utilized a TOC team devised solely of registered nurses who were responsible for overseeing the medication reconciliation process. These nurses reviewed ambulatory medication lists at the time of admission and compared the list to the hospital medication list on a select group of patients, engaging the patient and their family as well as other care providers and pharmacists. Next, these same nurses in the TOC team reviewed the discharge medication list within 24 hours of discharge from the hospital and compared this to the hospital medication list. Lastly, the nurses reviewed the medication list at the hospital follow up visit to verify medications and provide optimum patient continuity of care. The percentage of medications with error after implementing the TOC team was reduced from 131/386(33.9%) to 147/787(18.7%) at the time of hospital admission, 81/354 (22.9%) to 42/834 (5.0%) at the time of discharge from the hospital and 43/337 (12.8%) to 6/809 (0.7%) at the follow-up visit after discharge from the hospital. The percentage of charts without any medication errors increased at time of hospital discharge from 8/31 (25.8%) to 46/70 (65.7%) and at the time of hospital follow up visits from 16/31 (51.6%) to 64/70 (91.4%). The results of this study pointed most precisely to the specific role that nurses could play in reducing medication errors for patients who are in the process of TOC and that providing ownership to this task would leave a much clearer understanding of who routinely would be responsible for overseeing this process. Also, the continuity of care and the flow of the medication reconciliation process allowed more accuracy in keeping records of the patients' medication lists more accurately than what was originally being done.

Further work by Lane, Troyer, Dienemann, Laditka, and Blanchette (2014) evaluated the structure and process related factors which contributed to medication errors and the resulting

patient harm from these errors that occurred during transitional periods for patients at a SNF. Their results concluded that SNF chain affiliation was associated with a reduced number of errors during the transition period. One third of all reported transition medication errors occurred during the medication administration phase of the medication process, where dose omissions were most common. Dose omissions caused less harm, however, than wrong dose errors. Prescribing errors were not as common as medication administration errors but were far more likely to cause patient harm. These results point to the fact that nursing plays an important role in reducing medication errors in patient care during TOC. The study also concluded that medication errors during TOC could be minimized by improving both prescribing and transcription processes as well as the actual documentation of orders. This conclusion coincides with the goal and purpose of this proposal which is to minimize medication errors by improving both the transcription processing of medication orders as well as the documenting process of medications specifically in regards to the nursing profession who are ultimately highly responsible for the accurate administration of patient medications. The above mentioned study points to the need for further research on improving the processes involved in transcription and documentation, specifically related to nursing.

Further research related to the etiology of patient medication errors during TOC was performed by Sinvani et al. (2013). In this study, randomized chart reviews were performed using electronic medical records and paper chart medication reconciliations. Medication records were evaluated at three time points including hospital admission to discharge, hospital discharge to SNF placement, and SNF admission to discharge home or long term care. These researchers demonstrated the wide spread number of medication discrepancies at all three time points of TOC. Out of 1,696 medications reviewed in the transition period of 44 patients, 1,002

discrepancies were identified. For study related purposes, Sinvani et al. (2013) defined discrepancies as any medication omission, duplication, or failure to change medication regimen back to original regimen when indicated. The conclusion of this study, which specifically looked at medication reconciliations and medication records, was that the current reconciliation process for medications needs to be revised and reevaluated in order to provide optimum patient care to the older adult patient as they transition throughout the health care system. Adding a nurse to nurse review of the medication list when patients transition from the hospital to the SNF is one method to aid in the refining of the medication reconciliation process as suggested by this study and as addressed by this proposal with the end goal of reducing patient medication errors.

Ward et al. (2008) formulated a protocol to aid in medication administration related to the TOC of patients transferring from the hospital to the SNF. Their protocol was to have the medication orders transmitted to the SNF pharmacy before the patient's arrival to the SNF. Though an intervention was sought to improve the administration of medications at the SNF and to avoid omission of medications, the implementation was not successful as the actual orders were not transmitted to the SNF pharmacy prior to the patient's arrival. The implication of this study, which allowed for an actual attempt at an intervention to improve medication administration and patient outcomes at the SNF while decreasing the delay in medication administration, was unsuccessful but displays the need for some form of intervention to reduce delays in patient care specifically in regards to medication errors. This study was chosen in the review of literature as it is yet another attempt using staff outside of nursing and pharmacy to assist in elimination of the errors that occur in medication administration at the SNF. The frequent turnover of key health care professionals at the SNF proved to be a major barrier to the

successful implementation of the intervention. Further interventions developed to combat medication errors will need to survive the ever changing staff turnover rate at the SNF level.

Synthesis of Literature Review

The articles in the literature review focused on interfacility communication during transitions of care and medication errors. A common theme in the literature resulting in medication errors was miscommunication, or complete lack of communication, regarding the patient upon discharge from the hospital and upon admission to the SNF. Clark et al. (2017) concluded through SNF clinician interviews that lack of coordination and limited information exchange between the SNF and the hospital were thought to be root causes contributing to patient readmissions. Their study was not primarily focused on medication errors but rather the evidence that medication errors were consequences of chaotic TOCs. Desai et al. (2011) concluded, similarly to Clark et al. (2017), that effective communication processes were vital during TOCs to improve patient outcomes and reduce medication errors. The difference in the two studies was the fact that Desai et al. (2011) described the actual medication errors that occurred during TOC to compare characteristics of these errors and to evaluate the impact of these errors on patient outcomes. Gadbois et al. (2019) utilized interviews of hospital and SNF staff but also included the patient perspective via interviews in regards to TOC from the hospital to the SNF. Their conclusions from the interview results displayed four problematic areas, one of them being problems with timing of medication administration. Programs to address the areas of inefficiencies were mentioned by staff in the interviews but no clarification regarding the exact nature or evaluations of these programs were described. King et al. (2013) again found communication as a common barrier to the smooth TOC for patients coming into the SNF from the hospital. In this particular study, interviews were again conducted but solely involving SNF

nurses unlike the other studies in the review of literature. Kreckman and colleagues' study (2018) implemented a method to reduce medication errors. Similar to King et al. (2013), nurses were the focus, and these nurses were used in the intervention. The nurses served as the TOC team to oversee the medication reconciliation process. The percentage of medication errors was successfully decreased following the intervention using this TOC team at three different time points that were all TOC time points. These time points included admission to the hospital, discharge from the hospital, and outpatient hospital follow up appointment. Lane et al. (2014) had a slightly different focus that evaluated structure and process related to medication errors. Unlike the Kreckman et al. (2018) study, no intervention was implemented but rather characteristics of medication errors were described. Similarly, Sinvani et al. (2013) evaluated medication errors during TOC at three different time points, hospital admission to hospital discharge to SNF admission, and SNF discharge to home or long term care facility, similar to Kreckman et al. (2018).

Gaps in the literature evolve around finding a direct intervention to impact the number of medication errors that exist when a patients transitions from the hospital to the SNF and evaluating this intervention for the effectiveness. The limitations when studying a specific intervention include correlation from factors that affect the number of medication errors such as number of medications, accuracy of medication reconciliation, accuracy of medication list prior to transition, patient cognition, experience of staff reviewing the medication list, and involvement of family members or friends of the patient who are well informed about the patients' medication list. Because these numerous factors all may play a role in causality for medication errors, determining if a potential intervention or the listed factors helped to reduce the errors would be difficult to ascertain in future research. Implications from the studies listed

above display the need for and evaluation of interventions to reduce medication errors during TOC. Future research involving the nursing profession seems to be implicated as feasible for reducing medication errors during TOC. The state of the science as evidenced by the literature is still in the phase of evaluating root causes for errors and gaining perspective from clinicians, nurses, families, and patients to the perceived causes for these errors. Scarce availability for interventions proven to reduce the errors is available but seems to point to nursing and communication during the TOC periods for patients.

CHAPTER FOUR: METHODS

This study was originally designed as a pre-post study design using an enhanced communication tool, the interfacility transfer summary medication list, to evaluate if medication discrepancies decreased during TOC as a result of nurses using this tool during telephone report. However, as a result of the 2020 Covid-19 pandemic, the original intervention was not implemented due to the heightened stress that occurred at the SNF level. Administration at the project site needed to focus on the impact of the Covid-19 pandemic and implementing the new medication communication process for nurses was not permitted. During this already stressful period of the pandemic, a new electronic health record (EHR) was introduced to the staff nurses at the SNF. This EHR was utilized to input medications into the computer then printouts of these medications were placed into the paper charts as admission orders. An opportunity to modify the original DNP project became available. The newly introduced EHR replaced the initially planned intervention of the interfacility transfer summary for comparison purposes of medication discrepancies before and after the introduction of this new system. The revised DNP project evaluated the impact of a practice change focused on direct input of medications into the EHR.

The pre-EHR group was compared to the post-EHR group for medication discrepancies. The following PICO question provided focus for the project. Do SNF patients transferred from an acute care hospital whose admission medication list is entered into an EHR have fewer medication discrepancies compared to patients who receive usual care? The usual care, prior to introduction of the EHR, was the SNF nurse receiving telephone report from the hospital nurse then reviewing the DC summary and the interfacility transfer summary medication lists, then manually entering medications into SNF admission orders without an organized program or EHR.

Sample and Setting

Data for this practice change project were obtained through medical abstraction of medication documents associated with discharge from the acute care hospital and admission to the SNF. Records associated with SNF admissions for eighty-eight patients were determined to be an adequate sample size by using a G*power analysis in order to detect statistical significance. However, 87 charts were ultimately reviewed due to the lack of availability of pre-EHR records at the SNF. By the time of the review, many SNF medical records been moved to offsite storage and were unavailable. All charts used for each review were independent and did not track specific residents over time.

The SNF is a 66 bed facility located on the Westside of Los Angeles. Approximately 50% or greater of the census at the SNF are from the two related Los Angeles area hospitals. Of this population, the majority are short term residents residing at the SNF admitted for rehabilitation services such as physical, speech, and/or occupational therapy. The average length of stay for residents in this sample and at this SNF is 24 days. All records collected in the data

sample were from the patient population admitted from these two related Los Angeles area hospitals.

Procedure

This practice change project examined the prevalence of medication discrepancies before and after the introduction of a new process for SNF nurses to input medication information received from the hospital directly into the EHR. Full exemption from the UCLA Institutional Review Board (IRB) was obtained prior to initiating the medical records review.

The three TOC medication documents included for review pre and post-EHR were:

- 1. Hospital DC summary medication list
- 2. Interfacility transfer summary medication list
- 3. SNF admission orders medication list

The hospital DC summary is the narrative note, written by the discharging hospital clinician, summarizing the patient's hospital stay and includes a medication list that the patient was taking during the hospital stay and on the day of discharge. The interfacility transfer summary is a compact document summarizing the patient's stay in the hospital. This document includes a discharge list of medications that the patient was taking while in the hospital and includes medications that have been started, stopped, and will continue after discharge from the hospital (see Appendix A). The interfacility transfer summary typically has the most updated list of medications to be taken by the patient once out of the hospital. The SNF admission orders is the list of tasks to be performed once the patient is residing at the SNF and includes the list of medications to be taken while the patient is at the SNF.

Medical records for all patients were assigned a number without any identifying data to maintain compliance with confidentiality of medical records. The SNF admission orders

medication list was compared to the hospital DC summary medication list and the interfacility transfer summary medication list. During this process, the medication name, dose, route, frequency, start date, and end date were reviewed for each patient in the sample. The priority document, or document for final review, was the SNF admission orders in which the medication discrepancies were noted when comparing to the two hospital documents (the hospital DC summary and the interfacility transfer summary). An example of a medication discrepancy that occurred during the review process was that if a medication occurred on the hospital DC summary and on the hospital interfacility transfer summary and this particular medication was missing on the SNF admission orders, then this would be an example of a medication omission.

At baseline, medication lists from the hospital discharge summary, interfacility transfer summary, and the written SNF admission orders were all compared for accuracy. Through this process, the presence or absence of medication discrepancies were identified. After initiation of the EHR, the process was again conducted to evaluate the number and types of medication discrepancies. Medication discrepancies, for purposes of this study, were defined as omissions of medications, additions of unnecessary or unwarranted medications, incorrect dosages, missing dosages, incorrect or missing routes, duplicate medications, incorrect or missing frequencies, missing stop dates-when warranted, and missing start dates-when needed. These types of discrepancies were quantified per chart, then totaled from all charts in an Excel spreadsheet format (see Appendix B). See table below for description of medication errors.

Table 1:	Description	of Medication	Errors
----------	-------------	---------------	--------

Incorrect / Missing Dosage	Wrong or absent strength of medication.
Incorrect / Missing Frequency	Wrong or absent number of times medication to be administered.

Incorrect / Missing Start Date	The date to begin the medication is wrong or absent.
Incorrect / Missing End Date	The last date of medication administration is incorrect or missing where applicable.
Incorrect / Missing Route	The location for medication administration is incorrect or missing.
Duplicate	Same medication listed more than once.
Omission	Missing medication on the list.
Addition	Extra medication that should not be on the list.

Analysis

Data were analyzed using descriptive statistics, Mann-Whitney tests, and Spearman correlations. The descriptive statistics involved summarizing the data for the number of medications, types of medication discrepancies, and total number of medication discrepancies per patient's chart. Thirteen types and frequencies of medication discrepancies were quantified in a table and labeled as: 1) omissions, 2) additions, 3) incorrect doses, 4) missing doses, 5) incorrect routes, 6) missing routes, 7) duplicates, 8) missing or incorrect start dates, 9) missing or incorrect end dates, 10) missing frequencies, 11) incorrect frequencies, 12) missing indications, or 13) incorrect indications. Mann-Whitney analyses to compare differences in types of medication discrepancies pre and post-EHR were conducted. Chi Square analysis was conducted to compare differences in total number of medication discrepancies per chart pre and post-EHR. Spearman Correlation analysis was done to examine the relationship between number of medications and type of medication discrepancies. A *p*-value <0.05 was considered statistically significant for the Mann-Whitney and Spearman Correlation analyses.

CHAPTER FIVE: RESULTS

The purpose of this practice change project was to evaluate differences in medication discrepancies before and after introduction of a new EHR process for SNF nurses to enter medication information during transitions from the hospital to the SNF. Results are organized in the following tables. First, the number and range of medications presented in Figure 1 provides context for the subsequent presentation of data related to frequency and types of medication discrepancies. Frequencies of medication discrepancies for the entire sample are presented in Table 2. A series of Mann-Whitney analyses comparing pre-EHR to post-EHR medication discrepancies were conducted with statistically significant results by type of discrepancy shown in Table 3. Following the analyses that compared individual discrepancies, a separate analysis was done to examine total discrepancies within charts. Table 4 shows the distribution of number of discrepancies and Table 4 shows comparison of total discrepancies pre-EHR and post-EHR.

Finally, results of a Spearman Correlation analysis that examined type of discrepancies by number of medications is described.

Figure 1: Histogram for Number of Medications per Patient Given

Figure 1 displays the histogram for number of medications prescribed to SNF patients on TOC. Number of medications per patient ranged from 4 to 39 with a mean of M = 17.00 (SD = 7.32).

	Table	2:	Descriptiv	e Statistics	for	Medication	Discrepanc	y Types
--	-------	----	------------	--------------	-----	------------	------------	---------

Variable	М	SD	Low	High
Number of incorrect frequencies	0.60	0.97	0.00	4.00
Number of omissions	0.59	1.60	0.00	13.00
Number of additions	0.49	1.51	0.00	9.00
Number of incorrect doses	0.47	0.82	0.00	3.00
Number of missing frequencies	0.14	0.46	0.00	3.00
Number of duplicate medications	0.10	0.53	0.00	1.00
Number of missing/incorrect end dates	0.08	0.27	0.00	1.00

Number of incorrect routes	0.03	0.18	0.00	0.00
Number of missing doses	0.02	0.15	0.00	0.00
Number of incorrect indications	0.01	0.11	0.00	1.00
Number of missing/incorrect start dates	0.00	0.00	0.00	
Number of missing routes	0.00	0.00	0.00	
Number of missing indications	0.00	0.00	0.00	

Note. n= 87.

Table 2 displays the descriptive statistics for each of the 13 discrepancy types. Number of medications given ranged from 4 to 39 with a mean of M = 17.00 (SD = 7.32). Highest means among the 13 discrepancy types were for number of incorrect frequencies, or timing of medication administration (M = 0.60), number of omissions (M = 0.59), number of additions (M = 0.49), and number of incorrect doses (M = 0.47). Three types of discrepancies were not found in any chart. Specifically, these types were missing routes, missing/incorrect start dates, and missing indications.

Indicator	Time	n	М	SD	Z.	р
Omissions frequency					2.12	.03
	Pre-EHR	43	5.07	9.16		
	Post-EHR	44	1.76	3.86		
Additions frequency					2.87	.004
	Pre-EHR	43	8.98	26.96		

Tabl	e 3:	Mann	-Wh	itney	Tests	Con	iparing	g Free	juency	of	`Pre-EHR	and	Post	-EHR	Discre	pancies
------	------	------	-----	-------	-------	-----	---------	--------	--------	----	----------	-----	------	------	--------	---------

	Post-EHR	44	0.43	1.67		
Incorrect doses frequency					2.08	.04
	Pre-EHR	43	4.58	8.19		
	Post-EHR	44	1.47	3.23		
Missing frequencies frequency					2.47	.01
	Pre-EHR	43	1.58	4.61		
	Post-EHR	44	0.15	1.01		

Note. n = 87.

A series of 13 Mann-Whitney analyses were done to compare differences between pre-EHR and post-EHR medication discrepancies. Four types of medication discrepancies were significantly lower in the post-EHR sample compared to the pre-EHR sample. Specifically, discrepancies were lower post-EHR for omissions (p = .03), additions (p = .004), incorrect doses (p = .04), and missing frequencies (p = .01).

Discrepancies	п	%	
0	22	25.3	
1	22	25.3	
2	15	17.2	
3	11	12.6	
4	3	3.4	

Table 4: Frequency Distribution of Total Number of Discrepancies per Chart

5	6	6.9
6	1	1.1
7	2	2.3
11	1	1.1
12	1	1.1
14	1	1.1
16	1	1.1
21	1	1.1

Note. n = 87.

Note. Number of Discrepancies: M = 2.54 (SD = 3.59).

Table 4 displays the frequency distribution for the total number of medication discrepancies per chart. The number of discrepancies ranged from 0 to 21 (M = 2.54, SD = 3.59). Twenty-five percent of charts reviewed had no medication discrepancies. Seventy-five percent of charts reviewed had at least one medication discrepancy, and twenty percent had four or more discrepancies.

	Pre-E	Post-EHR			
Number of Discrepancies	n	%	n	%	
None	7	16.3	1	.5	34.1
One Error	11	25.6	1	1	25.0

Table 5:	Chi-Square	Test	Comparing	Total I	Vumber c	of Discrep	pancies	Pre and	Post-EHR
	1		1 0						

Two errors	6	14.0	9	20.5
Three errors	6	14.0	5	11.4
Four or more errors	13	30.2	4	9.1

Note. χ^2 (4, *N* = 87) = 8.35, *p* = .08. Cramer's *V* = .310.

Table 5 displays the chi-square test comparing number of discrepancies with time period pre-EHR versus post-EHR. Although the chi square analysis was not statistically significant at the p=.05 level, from a clinically significant standpoint two times as many post-EHR patients (34.1% versus 16.3%) had no medication discrepancies compared to pre-EHR patients. In addition, pre-EHR patients were three times more likely (30.2% versus 9.1%) to have four or more medication discrepancies.

Additional Analysis

As an additional set of exploratory analyses, each of the 13 discrepancy types were correlated with the number of medications using Spearman correlations to determine if the number of medication discrepancies increased with higher number of medications. No table is included for this analysis. Spearman correlations were used instead of the more common Pearson correlation due to positively skewed data for many of the variables. The correlational analysis was done three times: entire sample (N = 87), pre-EHR sample only (n = 43) and post-EHR sample only (n = 44).

In the entire sample, number of medications was positively related to number of incorrect frequencies (r_s [85] = .34, p = .002). In the pre-EHR only sample, none of the 13 discrepancy types were related to the number of medications. However, in the post-EHR only sample, the

number of medications was positively related to the number of incorrect doses (r_s [42] = .36, p = .02) and to the number of incorrect frequencies (r_s [42] = .40, p = .007).

CHAPTER SIX: DISCUSSION

Medication discrepancies are prevalent during transitions of care from the hospital to the SNF. Reducing these discrepancies will inevitably improve patient care. Communication has been found to be at the core of these existing discrepancies and one form of conveying, communicating, or relaying the medications from the hospital to the SNF involves entering these medications into an EHR. Ways to improve on patient care and decrease medication discrepancies using an EHR have only begun to be explored. As communication has been found to be key in multiple studies, improving this communication from the hospital to the SNF leaves much room for future explorations for methods to enhance this communication, including use of the EHR. Also, since the majority of discrepancies both before and after implementing this practice change were medication omission and incorrect dosing, further exploration focusing on these two areas would be helpful for further interventions. An example of a recurrent medication discrepancy that occurred on SNF admission orders was the inadvertent entering of an incorrect dose of acetaminophen. The original required dose was 1000 milligrams every six hours as needed on the interfacility transfer summary and DC summary from the hospital, yet the SNF nurse entered this into the computer on admission orders as 500 milligrams every six hours as needed, then this was counted as a medication discrepancy during the data collection.

Reduction in medication discrepancies would be an expected finding after integrating this EHR as one more step in the TOC to enhance patient safety during the process. Of course, the level of nurse competence and experience will have an effect on medication knowledge in

relation to doses, frequency, and indications. The more experienced nurse may tend to have less medication discrepancies due to their knowledge of medications despite the use of this EHR. As a result of the in-service provided to the nurses in this particular setting, nurses may have had a heightened alert to medication components necessary to prevent discrepancies during the process of entering admission medication lists.

The types of discrepancies that decreased significantly after the introduction of the EHR to the SNF nurses included medication omissions, medication additions, incorrect medication doses, and missing frequencies. Further exploration into these specific types of medication discrepancies during TOC from the hospital to the SNF appears useful in determining whether or not these improvements were directly or indirectly related to implementation of the EHR at the SNF. Determining methods for reducing other forms of medication discrepancies that were not significantly reduced after introduction of the EHR would assist in future ideas to specifically decrease the different types of discrepancies that were not affected by introduction of the EHR.

Implementing new methods for decreasing medication discrepancies during the transfer from the hospital to the SNF will be a vital role that the Doctor of Nursing Practice (DNP) nurse will be well equipped to develop. As many aspects are involved in formulating an accurate medication list on admission to the SNF, the DNP nurse will be able to touch upon each aspect of this process in order to reduce these discrepancies while presumably improving patient outcomes. Because many aspects are involved, using evidence based literature in formulating future projects to reduce medication discrepancies will be key for the DNP nurse to develop future interventions and gather the data necessary to prove the positive outcomes of the interventions. Leadership and interprofessional collaboration skills characteristic of the DNP

nurse will aid in the altruistic approach to these important projects to protect patients during their transitions from the hospital to the SNF.

Limitations

The patient population, chosen by convenience sampling, may not represent all SNF admissions as a whole. The results may not be reproducible in other SNFs depending on the EHR used at the SNF and the competency of the nurses inputting the admission medications at the SNF. Patients with less medications and less diagnoses may present with a less complicated list of medications to review and therefore the possibility of having less medication errors is present in this patient population. Those patients with multiple medications and multiple diagnoses may pose a more complicated review of medication lists than their counterparts potentially skewing the results to having more medication errors than their counterparts. Nurses' level of education, length of time as a nurse, length of time working in the SNF setting, and length of time working at this particular SNF were not measured in this project so the impact of these factors is unknown. Also, level of experience with the EHR in use may also affect the outcome of medication errors.

Clinicians caring for the patients in the hospital may have varying levels of efficiency when performing medication reconciliations. Furthermore, different medical departments in the hospital may prioritize medication reconciliations during TOC more than other medical departments. Further research replicated in other facilities on many more patients will be necessary to conclude the adequacy of the EHR in improving and minimizing the number of medication discrepancies that occur during the TOC period. Perhaps collecting data on which patients, how many medications, how many diagnoses, which medical departments in the hospital, what level of nurse and nurse experience have the majority of medication discrepancies

will provide further insight into decreasing medication discrepancies during TOC from the hospital to the SNF.

The short duration of this study may limit the results. The use of one single SNF and two related Los Angeles area hospitals will limit generalizability. One potential threat to external validity will be the fact that the SNF providers have access to the medical records on the patients admitted from the two Los Angeles area hospitals. The generalizability to other SNFs and hospitals may be limited by the fact that providers may limit these medication discrepancies by having access to the patient's hospital records and can readily correct discrepancies with improved access to hospital information. Some SNF clinicians may not have access to the hospital records of their SNF patients. With the increased development of EHRs and access to these EHRs by both clinicians and patients, this limitation will be minimized as other SNF clinicians may also have access to hospital records.

The newly incorporated EHR had some safety features that appeared to be capable of reducing medication errors regardless of the user's efficiency. First of all, medications entered into the EHR on admission were required to have a medication name, dose, route, frequency, and start date. Due to these new requirements incorporated into the EHR's safety features, the possibility of having a **missing** dose, frequency, or route was lower post-EHR. Although these safety features were present, the possibility of an **incorrect** dose, frequency, or route were still possible if input incorrectly by the SNF nurse. Other safety features to this new EHR could assist in reducing **incorrect doses** as the system would prompt the user if a dose for a particular medication were highly inappropriate or not feasible due to unavailable medication formularies. Duplicate medications were another type of medication discrepancy that was nearly impossible to have happen with the new EHR system. The new system would not allow the exact same

medication to be entered by the nurse without giving a notification to the nurse to review. Omissions of patient medications and additions of unnecessary medications were still discrepancies that could occur with the new system incorporated into the entering of admission medications as the new system was not linked to any history of the patient's most current hospital medication list.

The Covid 19 pandemic also caused a major limitation to this study as the originally planned intervention could not be implemented. However, as noted in the literature review, direct nurse to nurse communication during patient transition from the acute care hospital to the SNF remains an important focus to improve patient safety and quality of care.

CONCLUSION

In conclusion, the results of this project suggest that the EHR is a valuable component to aid in reduction of medication discrepancies during TOC from the hospital to the SNF. The literature validates the high incidence of medication discrepancies during TOC and their resultant high cost to health care institutions as well as their negative impacts on the quality of patient care. Financial constraints at the SNF level may be a hindrance to these health care settings in purchasing a high quality EHR. However, the cost savings by improving patient care, satisfaction, and outcomes would be a valuable benefit to explore in persuading the use of an EHR in the SNF setting. Ultimately, the SNF nurses would likely be more satisfied with implementing an EHR, as less time would foreseeably be spent correcting SNF medication discrepancies as their numbers are reduced.

APPENDICES

Appendix A

Interfacility Transfer Orders 11/19/2019		water and a second s
What To Do With The Medications		
STOPPED Medications		
aspirin 81 mg chewable tablet	STOP takin	g these medications
cephalexin 500 mg capsule Commonly known as: keflex		
STARTED Medications		
and the second	Dose	Instructions Comments Dx Association
ampicillin 500 mg capsule	500 mg	Take 1 capsule (500 mg total) by mouth every six (6) hours for 20 doses.
calcium carbonate 500 mg chewable tablet Commonly known as: Tums	500 mg	Chew 1 tablet (500 mg total) by mouth every four (4) hours as needed (Dyspepsia) Calcium Carbonate 500 mg is equivalent to 200 mg elemental Calcium.
docusate 100 mg capsule Commonly known as: Colace	100 mg	Take 1 capsule (100 mg total) by mouth two (2) times daily as needed for Constipation.
enoxaparin 30 mg/0.3 mL injection Commonly known as: Lovenox	30 mg	Inject 0.3 mLs (30 mg total) under the skin two (2) times daily.
HYDROcodone-acetaminophen 5-325 mg tablet Commonly known as: Norco	1 tablet	Take 1 tablet by mouth every six (6) hours as needed for Moderate Pain (Pain Scale 4-6). Max Daily Amount: 4 tablets

Appendix B

	Patient Identifier	001	002
A	# of Medications	16	13
В	# ommisions	1	0
С	# additions	0	0
D	# incorrect doses	0	0
Е	# missing doses	0	0
F	# incorrect routes	0	0
G	# missing routes	0	0
Н	# duplicate medications	0	0
I	# missing/incorrect start dates	0	0
J	# missing/incorrect end dates	0	0
K	# incorrect frequencies	0	0
L	# missing frequencies	0	0
М	# missing indications	0	0
Ν	# incorrect indications	0	0
	Total errors / discrepancies	1	0

Table of Evidence

CITATION	PURPOSE	SAMPLE/SETTING	METHODS	RESULTS	DISCUSSION,
			(Design,		INTERPRETATION,
			Interventions,		LIMITATIONS
			Measures)		
Anderson, R. &	To determine	37 patients admitted to	Pre and post	Hospital	Small sample size over
Ferguson, R. (2020).	whether an NP-led	a 90-bed for-profit	implementation	readmission rate	small period of time,
A nurse practitioner	medication	SNF in rural	data collected	19.2%	though readmissions
led medication	reconciliation on	Tennessee during	included chart	preimplementation	reduced. No
reconciliation	admission would	March 2018.	review for age,	, 13.5% post	readmissions due to
process to reduce	reduce hospital		gender, number of	implementation, a	medication errors/
hospital	readmissions from		diagnoses among	29.7% decrease in	medication
readmissions from a	a SNF.		the top 10 reported	a 30-day period	reconciliation process.
skilled nursing			by the facility,	when NP-led	Lack of medical
facility. Journal of			admission and	medication	providers and processes
the American			discharge date, and	reconciliation was	for accountability and
Association of Nurse			discharge	instituted. Chi-	adequate medication
Practitioners, 32(2),			disposition. Post-	square analysis	reconciliation with
160-167. doi:			intervention data	revealed no	resultant medication
10.1097/JXX.00000			added whether or	statistically	changes are a serious
0000000264			not medication	significant	concern. Further
			reconciliation was	difference (x2	research needed to
			done within 24-72	(1,N=89)=0.50; p	improve this process.
			hours of admission.	= .48) between no	Because each facility
			NP completed	medication	has different dynamics,
			stabilization visits	reconciliation done	results may not be
			with medication	vs a medication	generalizable.
			reconciliation on	reconciliation	
			each admission.	done.	

CITATION	PURPOSE	SAMPLE/SETTING	METHODS	RESULTS	DISCUSSION,
			(Design,		INTERPRETATION,
			Interventions,		LIMITATIONS
			Measures)		
Clark, B. W., Baron,	To understand the	Consecutive	Qualitative study,	Common theme	SNF clinicians
K., Tynan-	perspectives of	readmissions from 15	prospectively	was a lack of	identified a broad range
McKiernan, K.,	clinicians working	skilled nursing	identified	coordination	of factors contributing to
Britton, M., Minges,	at SNFs regarding	facilities (SNFs) to a	consecutive	between	readmissions.
K. E., & Chaudhry,	factors	single tertiary-care	readmissions from	emergency	Addressing these may
S. I. (2017).	contributing to	hospital in the general	SNFs to single	departments (EDs)	lower patients' risk of
Perspectives of	readmissions.	internal medicine	tertiary-care	and SNFs with	readmission from SNFs
clinicians at skilled		service were reviewed.	hospital.	limited	to hospitals. Improved
nursing facilities on		28 SNF clinicians who	Admissions/	information	communication during
30-day hospital		cared for the	readmissions to	between SNF and	transition of care was
readmissions: A		readmitted patients	general medicine.	hospital, and SNF	seen as a common
qualitative study.		(pts) were interviewed	SNF clinicians who	process/cultural	thread to improve
Journal of Hospital		about root causes of	cared for	factors.	patient outcomes. A
<i>Medicine</i> , <i>12</i> (8),		readmissions using	readmitted patients		multi-faceted approach
632-638. doi:		structured interview	identified/		is needed to reduce
10.12788/jhm.2785		tool.	interviewed about		readmissions.
			causes of		
			readmissions using		
			structured interview		
			tool. Transcripts of		
			interviews analyzed		
			with grounded		
			theory		
			methodology.		

CITATION	PURPOSE	SAMPLE/	METHODS	RESULTS	DISCUSSION,
		SETTING	(Design,		INTERPRETATIO
			Interventions,		N, LIMITATIONS
			Measures)		
Gadbois, E. A., Tyler,	To understand	138 staff in 16	Qualitative study	Pts' perspectives include	Hospital and SNF
D. A., Shield, R.,	the	hospitals and 25	with semi-	4 problematic areas of	staff reported
McHugh, J., Winblad,	experiences of	SNF's in 8 markets	structured	hospital-SNF transitions:	perspectives that
U., Teno,J. M., &	patients (pts)	across the country	interviews to	pts rushed in making	programs to address
Mor, V. (2019). Lost	transitioning	were interviewed,	understand	SNF decisions, did not	problems were
in transition: A	from the	and 98 newly	transition between	feel prepared about	successful though
qualitative study of	hospital to the	admitted, previously	hospital and SNF.	hospital-SNF transition	impact unknown.
patients discharged	skilled	community dwelling	Interviews included	or educated about post-	Hospital staff did not
from hospital to	nursing	SNF pts and/or their	all aspects of the	acute needs, experienced	seem to adequately
skilled nursing	facility (SNF).	family members in 5	discharge (DC)	chaotic transitions	prepare pts for
facility. Journal of		of those markets were	process & SNF	including problems with	transition to SNF.
General Internal		interviewed.	placement process:	timing and medications.	Inadequate
Medicine, 34(1), 102-		Research team	who involved, how	Hospital & SNF staff had	communication with
109. doi:		included 5 PhDs and	decisions made,	similar opinions. Staff at	pts and their families
10.1007/s1160601846		1 MD, and included	pts' experience,	some facilities reported	and between hospital
95-0		1 geriatrician, 1	hospital-SNF	programs to address	and SNF. Medication
		cultural	communication, &	these issues but efficacy	discrepancies are
		anthropologist, 1	programs to	unknown.	highly prevalent in
		political scientist,	improve transition.		transition from
		and 1 gerontologist,	64 with hospital		hospital to SNF.
		with levels of	staff, 74 with SNF		More room for
		experience from new	staff, 98 with SNF		studying impact and
		junior faculty to	pts and/or pts'		success of programs
		highly senior	families.		implemented to
		investigators. All	Interviews		address these
		members participated	analyzed for		problems. A
		in most aspects of the	overarching		structured instrument
		research, including	concepts/theme.		to measure domains
		data analysis.			of care needed.

CITATION	PURPOSE	SAMPLE/	METHODS	RESULTS	DISCUSSION,
		SETTING	(Design,		INTERPRETATIO
			Intervention,		N, LIMITATIONS
			Measures)		
King, B. J., Gilmore-	To examine	5 Wisconsin SNFs in	Qualitative study	Difficult hospital to SNF	This study evaluated
Bykovski, A. L.,	how SNF	3 counties, 27	using ground	transitions are normal.	SNF nurses' work
Roiland, R. A.,	nurses	registered nurses	dimensional	Poor discharge (DC)	processes. A limited
Polnaszek, B. E.,	transition		analysis (GDA). In-	communication is a	number of hospitals
Bowers, B. J., & Kind,	patients (pts)		depth interviews	major barrier.	were used in this
A.J. (2013). The	admitted from		collected	Information needed by	study with similar
consequences of poor	the hospital,		individually or in	nurse is missing,	geographical regions.
communication during	the barriers		groups.	inaccurate, inconsistent,	For profit nursing
transitions from	they			incomplete. Nurses	homes were not
hospital toskilled	encounter,			reported problems with	utilized. No
nursing facility: A	and different			medications (including	demographics were
qualitative study.	outcomes			lack of opioid	collected on nurses
Journal of the	with varying			prescriptions). Inaccurate	interviewed. Further
American Geriatric	quality of			DC information results in	research needed to
Society, 61, (7), 1095-	transitions of			care delays, increased	quantify the effects of
1102. doi:	care.			workload, risk for	poor communication
101111/JGS.12328				rehospitalization,	at time of discharge
				pt/family dissatisfaction,	on pt outcomes.
				negative SNF image.	
				Nurses developed a list	
				of information necessary	
				for a safe TOC.	

CITATION	PURPOSE	SAMPLE/	METHODS	RESULTS	DISCUSSION,
		SETTING	(Design,		INTERPRETATION,
			Interventions,		LIMITATIONS
			Measures)		
Kreckman, J., Wasey,	To evaluate a	Family Medicine	Chart reviewed	% of medications	The success of this RN
W., Wise, S., Stevens,	method to	Hospitalist Service	preintervention	errors reduced at	led intervention was as
T., Millburg, L., &	improve the	(FMHS) at a 500-bed	data. TOC team of	admission, DC, and	effective as pharmacy-
Jaeger, C. (2018).	medication	tertiary-care in	RNs. Pre-post	follow-up. Admission	led interventions.
Improving medication	reconciliation	Illinois. Transition of	design,	errors reduced 33.9%	FMHS reframed
reconciliation at	process,	Care Team composed	convenience	to 18.7% (two-	medication
hospital admission,	utilizing a	of registered nurses.	sampling. Two-	proportion test,	reconciliation into a
discharge and	Transition of	Team engaged patient	proportion tests to	p<0.001). At DC,	single continuous
ambulatory care	Care (TOC)	(pt) and family,	determine	errors reduced 22.9%	process beginning at
through a transition of	Team	contacted pts'	differences in	to 5.0% (two-	admission and
care team. BMJ Open	composed of	pharmacies and their	medications with	proportion test,	continuing through DC
<i>Quality</i> , 7(2),	registered	providers, reconciled	errors comparing	p<0.001). % errors at	and the follow-up visit.
e000281.	nurses (RNs)	the pts' hospital	those without	follow-up reduced	Results cannot be
doi:10.1136/bmjoq-	to oversee the	medication list with	errors. Team did	from 12.8% to 0.7%	generalized since only a
2017-000281	medication	ambulatory list at	ambulatory	(two-proportion test,	single institution was
	reconciliation	hospital admission	medication	p<0.001). % of charts	used. Further research
	process.	and within 24 hours	reconciliation at	without any errors	should be aimed at
		of discharge (DC),	admission, DC, and	improved at hospital	ownership of the
		and attended the	hospital follow up.	DC from 25.8% to	medication
		hospital follow-up	Pt and pt's family	65.7% (two-proportion	reconciliation process
		visit to verify	engaged to address	test, $p < 0.001$) and at	and continuity from
		medications and	discrepancies.	hospital follow-up	admission to post
		provide continuity of	Within 24 hours of	visit from 51.6% to	discharge follow up for
		care. 70 pts included	DC, team reviewed	91.4% (two-proportion	medication
		in the study.	reconciled	test, p<0.001.	reconciliations.
			ambulatory record		
			against DC record.		

CITATION	PURPOSE	SAMPLE/	METHODS (Design,	RESULTS	DISCUSSION,
		SETTING	Interventions,		INTERPRETATION,
			Measures)		LIMITATIONS
Lane, S. J., Troyer,	To evaluate	The Medication	Data for medication	138 SNFs reported	Limitations of this study
J. L., Dienemann, J.	structure and	Error Quality	errors/potential errors	581 errors. 1/3 during	were that the first 7 days
A., Laditka, S. B.,	process related	Initiative (MEQI)	during 7-day transition	administration phase,	of admission were
& Blanchette, C.	factors that	data for North	for residents entering	omissions most	examined but study did
M. (2014). Effects	contribute to	Carolina nursing	North Carolina SNFs	common. Rate of	not identify which of the
of skilled nursing	medication	homes was used.	collected from	errors for chain-	7 days the error
facility structure	errors and	MEQI data are	Medication Error	affiliated SNFs was	occurred or where
and process factors	harm during	statutorily	Quality Initiative -	$\sim 2/3$ the rate of errors	resident was admitted
on medication	transition	mandated self-	Individual Error	in non-chain SNFs	from. Also, errors were
errors during	periods at a	reported	(MEQI-IE) October	(IRR = 0.67; 95%	self-reported. Transition
nursing home	skilled nursing	medication errors	2006-September 2007.	confidence interval	periods of differing
admission. Health	facility (SNF).	and potential	Variables were type of	[CI]. The rate of	lengths, resident acuity,
Care Management		errors for all SNFs	medication error, phase	errors in chain for-	or whether error was
Review, 39(4), 340-		licensed in North	in medication process,	profit SNFs was <	repeated were data not
351. doi:10.1097/-		Carolina. Only	personnel involved,	errors in non-chain,	identified. Chain
HMR		medication errors	and causes of errors.	for-profit SNFs (IRR	affiliation reduced
000000000000000000000000000000000000000		reported as	Types of errors in 7	= 0.68; 95% CI. SNFs	errors. Interpersonal
		occurring during	categories: wrong pt,	with >151 beds had	climate and
		the first 7 days of	wrong drug, omission,	more than 2x the	organizational culture
		admission were	wrong dose, wrong	medication errors	can contribute to
		used. The dataset	administration, wrong	(Model 1, IRR =	openness to discuss
		contained only	follow-up, and other.	2.12; Model 2, IRR =	errors. Limitations were
		non-government-		(2.11) in SNFs with $<$	small sample size and
		owned SNFs (i.e.,		or $=100$ beds.	timeframe.
		not-for-profit and			
		for profit SNFs).			

CITATION	PURPOSE	SAMPLE/	METHODS (Design,	RESULTS	DISCUSSION,
		SETTING	Interventions,		INTERPRETATION,
			Measures)		LIMITATIONS
Sinvani, L. D.,	To study and	Subacute patient (pt)	Randomized chart	Medication	This study
Beizer, J., Akerman,	evaluate	medication records	review of electronic	discrepancies=357	demonstrated the
M., Pekmezaris, R.,	medication	reviewed through 3	medical records and	(time I), 315 (time	widespread prevalence
Nouryan, C., Lutsky,	discrepancies	transition care points	paper chart medication	II), and 330 (time	of medication
L., Wolf-Klein,	and errors	at a large health care	reconciliations across	III). All pts	discrepancies at all 3
G. (2013).	during	system, including	3 transitions of care.	experienced	transition of care
Medication	clinical	hospital admission	Medication	discrepancies,	points. Outcomes of the
reconciliation in	transitions	to discharge (DC;	discrepancies	86% had at least 1	current reconciliation
continuum of care	across a large	time I), hospital	identified and	unintentional	process need to be
transitions: a moving	health care	discharge to skilled	categorized by	discrepancy. The	reexamined to ensure
target. Journal of the	system.	nursing facility	principal investigator	average number of	safe delivery of care to
American Medical		(SNF; time II) and	and pharmacist.	medications per pt	the complex geriatric pt
Directors		SNF admission to	Discrepancies defined	increased at time I	during transition of care
Association, 14(9),		discharge home or	as unexplained	from 6.5 to 10.7	throughout health care
668-672.		long term care	documented change in	(P < .001),	systems.
doi:10.1016/j.jamda		(LTC; time III).	pts' medication lists	increased at time	
2013.02.021		Average age was	between sites and	II from 10.7 to	
		71.4 years and 68%	unintentional	12.6 (<i>P</i> <.0174),	
		were female. Median	discrepancies defined	and decreased at	
		hospital stay was 5.5	as omission,	time III from 12.6	
		days and 14.5 SNF	duplication, or failure	to 8.9 ($P < .001$).	
		days. Total	to change back to	Pts, on average,	
		medications at	original regimen when	had 8.1, 7.2, and	
		hospital admission,	indicated.	7.6 medication	
		hospital discharge,		discrepancies at	
		SNF admission, and		times I, II, and III,	
		SNF discharge were		respectively.	
		284, 472, 555, and			
		392, respectively.			

CITATION	PURPOSE	SAMPLE/	METHODS (Design,	RESULTS	DISCUSSION,
		SETTING	Interventions,		INTERPRETATION,
			Measures)		LIMITATIONS
Ward, K. T., Bates-	To develop,	Patients aged	A dc protocol was	None of the med	The intervention was not
Jensen, B., Eslami, M.	implement,	≥ 65 years	developed by hospital	orders were	successfully
S., Whiteman, E.	and evaluate	discharged	MD residents, hospital	transmitted to the NH	implemented. Orders
Dattoma, L.,	the impact of	from 2	dc planners, and NH	pharmacy before pts'	were not transmitted to
Friedman, J. L.,	a pilot	university-	staff. The protocol was	arrival at NH.17 pts	the NH pharmacy before
Moore, A. A. (2008).	intervention	affiliated	to ensure med orders	with meds ordered to	pt arrival to the NH.
Addressing delays in	to improve	hospitals to a	were transmitted to	be administered in	Frequent turnover of key
medication	patient (pt)	single	NH pharmacy before	the evening had ≥ 1	health care professionals
administration for	safety by	proprietary	pts' arrival. This was	dose omitted after	at the NH served as a
patients transferred	reducing	NH. 10	compared with	arrival at the NH. The	major barrier to
from the hospital to	delays in	patients from	standard protocol.	mean (SD) delay	successful
the nursing home: A	administration	each of the	Outcomes were time	from arrival at the	implementation of the
pilot quality	and omission	hospitals were	between arrival to NH	NH to administration	intervention. There is a
improvement project.	of	dc'd to the	and administration of	was 12.5 (7.45)	need for further research
The American Journal	medications	NH were	meds; # of omitted	hours. Mean # of	into the reasons for and
of Geriatric	(meds) among	included.	meds; # of pts	doses of different	possible solutions to
Pharmacotherapy,	patients		experiencing med	meds omitted per pt	delays in med
<i>6</i> (4), 205-211. doi:	discharged		omissions; and # of pts	was 3.4 (2.60). 67	administration during
10.1016/j.amjopharm	(dc'd) from		with omitted meds that	doses of meds were	transitions to the NH, as
2008.10.001	the hospital to		had potential for	omitted; 53 involved	well as the impact of
	a nursing		negative	1 dose of a med. 33%	delays on pt outcomes,
	home (NH).		consequences.	of omitted involved	including adverse drug
				meds with highest	events, emergency
				potential for negative	department visits, and
				consequence.	rehospitalizations.

REFERENCES

- Anderson, R. & Ferguson, R. (2020). A nurse practitioner led medication reconciliation process to reduce hospital readmissions from a skilled nursing facility. *Journal of the American Association of Nurse Practitioners*, 32(2), 160-167.doi: 10.1097/JXX.0000000000264
- Clark, B. W., Baron, K., Tynan-McKiernan, K., Britton, M., Minges, K. E., & Chaudhry, S. I. (2017). Perspectives of clinicians at skilled nursing facilities on 30-day hospital readmissions: A qualitative study. *Journal of Hospital Medicine* 12(8), 632-638. doi: 10.12788/jhm.2785
- Desai, R., Williams, C. E., Greene, S. B., Pierson, S., & Hansen, R. A. (2011). Medication errors during patient transitions into nursing homes: Characteristics and association with patient harm. *The American Journal of Geriatric Pharmacotherapy*, 9(6), 413-422. doi:10.1016/j.amjopharm.2011.10.005
- Dizon, M. L., Zaltsmann, R. & Reinking, C. (2017). Partnerships in transitions: acute care to skilled nursing facility. Professional Case Management, 22(4), 163-173.doi: 10.1097/NCM.00000000000199
- Donabedian, A. (1988). The quality of care: How can it be assessed? *The Journal of the American Medical Association*, 260(12), 1743-1748. doi: 10.1001/jama.1988.03410120089033
- Gadbois, E. A., Tyler, D. A., Shield, R., McHugh, J., Winblad, U., Teno, J. M., & Mor, V. (2019). Lost in transition: A qualitative study of patients discharged from hospital to skilled nursing facility. *Journal of General Internal Medicine*, 34(1), 102-109. doi: 10.1007/s11606-018-4695-0
- Kerstenetzky, L., Birschbach, M. J., Beach, K. F., Hager, D. R., & Kennelty, K. A. (2018).
 Improving medication information transfer between hospitals, skilled-nursing facilities, and long-term-care pharmacies for hospital discharge transitions of care: A targeted needs assessment using the Intervention Mapping framework. *Research in Social and*

Administrative Pharmacy, 14(2), 138-145. doi:10.1016/j.sapharm.2016.12.013

- King, B. J., Gilmore-Bykovski, A. L., Roiland, R. A., Polnaszek, B. E., Bowers, B. J., & Kind,
 A.J. (2013). The consequences of poor communication during transitions from hospital to skilled nursing facility: A qualitative study . *Journal of the American Geriatric Society*, 61(7), 1095-1102. doi: 101111/JGS.12328
- Neuman, M. D., Wirtalla, C., & Werner, R. M. (2014). Skilled nursing facility quality and hospital readmissions. *The Journal of the American Medical Association*, 312(15), 1542-1551. doi: 10.1001/jama.2014.13513
- Ward, K. T., Bates-Jensen, B., Eslami, M. S., Whiteman, E. Dattoma, L., Friedman, J. L., ...
 Moore, A. A. (2008). Addressing delays in medication administration for patients transferred from the hospital to the nursing home: A pilot quality improvement project. *The American Journal of Geriatric Pharmacotherapy*, 6(4), 205-211. doi: 10.1016/j.amjopharm.2008.10.001