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1. Introduction 

Didier de Fontaine 
Dept. of Materials Science 
and Mineral Engineering 
University of California 
Berkeley, CA 94720/USA 

Pure elements, metals for example, can exist in different phases: gas, liquid, 

solids of various crystal structure. In general, as the temperature is lowered, 

phases of high disorder (fluids) are replaced by phases of greater order (crystals). 

In alloys, chemical order (or disorder) can combine with the geometrical order (or 

disorder) mentioned above, to produce a wide variety of phases found at equilibrium 

in certain ranges of composition and temperature (or pressure). In addition to 

phases found in equilibrium phase diagrams, others, with free energy only 'slightly 

different from those of the equilibrium ones, can be made to appear under certain 

circumstances (rapid cooling, irradiation, and so on). The problem of phase stability 

in alloys is thus a very complex one which is inherently non-local; i.e. at fixed 

composition, if is not sufficient to ask which phase has the lowest free energy, it is 

also necessary to compare the stabilty of a given phase to that of a the mixture of 

two or more phases of different compositions (but with fixed average composition). 

The phase stability problem will be examined here for the case of prototype 

alloys containing two types of atoms, A and B, say. Only crystalline structures will 

be envisaged, and very simple ones at that: those based on the fcc and bee lattices. 

Furthermore, atomic displacements from ideal lattice sites will not be considered, 

hence neither elastic distortions nor vibrational entropy effects will be taken into 

account. Phase stability analysis will thus be confined to comparing the free 

energies of Ising models on different rigid lattice frameworks. 

These simplifications are necessary, at least at this stage of the investigation, 

because of the considerable complexity of the problem: indeed, we wish, ultimately, 

to perform first principles calculations of alloy free energies by performing both 

Quantum Mechanical and Statistical Thermodynamical calculations with the least 

possible number of empirical or adjustable parameters. This calls for electronic 

band structure calculations of disordered systems by coherent potential 

approximation (CPA) techniques. In principle, it is possible to perform ab initio 

calculations for each alloy composition by KKR-CPA methods, 1 but, at this stage, it 

seems preferable to consider the properties and electronic structure of the pure 

elements A and B as given (as determined by very accurate band structure 

calculations), and to obtain the alloy states as interpolations between those of the 
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pure elements. Therefore, a simple tight binding (TB) approximation will be used. 

As for the all-important configurational entropy contribution, it will be 

approximated by the cluster variation method (CVM), which has proved to be highly 

reliable,l unlike the Bragg Williams approximation, which can fail rather badly, 

especially in the case of fcc ordered superstructures. 

The outline of the present lecture notes follows roughly that of some previous 

papers by the author: 3
-

s State of Order (Sect. 2), Cluster Variation Method (Sect,3), 

Internal Energy (Sect. 4), Quantum Mechanical Interpolation (Sect.S), Ground States 

of order (Sect. 6), Construction of Phase Diagrams (Sect. 7), Prototype Diagrams 

(Sect. 8), Conclusion (Sect. 9). Much progress has been made since the earlier 

papers were written, however, as will be summarized below. 

2. State of Order 

Calculations of properties of pure elements and stoichiometric compounds has 

progressed considerably in recent years, but it is clear that alloys (mixtures of one 

or more elements) present additional difficulties. Pure crystals or compounds can be 

uniquely described by their unit cells, and completely disordered solid solutions can 

be described by specifying the average lattice and the average composition. For 

phase equilibrium calculations, however, it is essential to consider slates of partial 

order: arbitrary degrees of long-range order (LRO), with short-range order (SRO) 

present as well. 

In 1951, Kikuchi proposed the Cluster Variation Method 6 (CVM) which, initially, 

was regarded as a heuristic method for improving the traditional mean field 

approximations of statistical mechanics, such as the Bragg-Williams (BW) method. 

Lately, it has been shown' that the CVM, in a new formulation, actually provides a 

completely general and optimal way of describing partial compositional order, the 

basic idea being to represent partially ordered systems by sampling configuration 

space by means of' small clusters of crystal lattice sites. In its latest development,. 

the theory makes use of the decomposition of functions of configuration in terms of 

a complete set of orthonormal functions. This method will be summarized here, 

following the paper by Sanchez, Ducastelle and Gratias 7 (SDG). 

In SDG, multicomponent systems were considered. Here, for simplicity, only 

binary systems will be treated. Each lattice site (p) can then be occupied by either 

an A or a B atom, with corresponding "spin" variable O'p=+1 or -1. The complete 

crystal, of N sites, has instantaneous configuration fully specified by the vector 

0'=(0'1 ,O'z ''''O'N}' The scalar product of two functions of configuration, f(O') and g(O'), 

is defined as 

(1) 

where the "trace" operation is defined as a sum over all configurations 



(2) 

with normalization 

p~ = 2- N 

The scalar product definition (1) allows the construction of a complete 

orthonormal set (CONS) of functions. For a single lattice point, the set of functions 

is simply 

such that 

where the Kronecker delta is unity if i=j, zero otherwise. 

product, over all N lattice sites, 

(3) 

(4) 

Now form the direct 

(5) 

By (5), each function of the set t, except .0=1, is itself a product 

over the cluster a=lpl'PZ •..• Pn' of n points. 

From (1) and (4) we then have 

( 6) 

and the closure relation 

( 7) 

Hence, by (4) and (7) the set. is a CONS. It is convenient to treat separately the 

configuration independent function to=1. Then any function may be expanded as 

g(a) = go + r gQtQ(a) (8) 
Q 

with 

(9) 

For example, the Ising Hamiltonian may be expanded in terms of cluster' fucntions +0: 

as follows 

(10) 

the Va being cluster interactions given by 

where the Cola are numerical factors which may be introduced for convenience in 

comparing with other treatments. 

To evaluate averages, it is necessary to define a configuration density thus 
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p(a) = Z-l ( l2) 

with partition function 

(13) 

where kaT has its usual meaning. The density can also be expanded in orthonormal 

functions 

(14 ) 

where foc is a multiplet correlation function for cluster oc, defined as the average 

value of the product- of a variables over the cluster oc 

( 15) 

It is also useful to consider reduced densities obtained by performing the partial 

trace 

(16) 

i.e. by summing over all configurations except that, ap, of the n-point cluster {J 

envisaged. The partial trace operating on +oc in (14) equals (1/pp)+oc if oc is 

contained in p (cicP) and zero otherwise, where II pp=2". The reduced density can be 

regarded as the expectation value, in an ensemble of systems, of the cluster p 
having configuration ap. Thus, pp(ap ) is simply the average concentration of 

A (ap =+I) or B (ap =-I) atoms, at site p, over the ensemble. If all lattice points p 

are equivalent, then Pp is the crystal average. If long-range order is present, 

distinct sub-lattices must be defined, and averages taken only over all points of a 
given sublattice, p It say. By combining Eqs. (14) and (16) we then have, for cluster 

concentrations. or reduced densities, expressed in terms of correlations functions. 

pp(ap) = pp(l + r +oc(ap)~oc] occp 
(17) 

This important formula was first derived by Sanchez8 • The notion of partial trace 

was introduced into the CVM by Morita. 9 In practice, it is convenient to group all 

~OI which are identical because of the symmetry of the crystal structure. Equations 

(14) or (17) then take on a slightly different form, with appropriate sums of +01 

functions being regarded as elements of the so,-called configuration matrix. The 

crystallography of the problem is thus introduced into the statistical formulation by 

means of this matrix. 

~ustpr \'<..Ll"iation Method 

The energy and configurational entropy can be. written as, respectively, 

E[p] = Tr(N) pJ4 (18) 

" 
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and 

S[p] = -kg Tr(N)p In P (19) 

The free energy is then given by 

F'(p 1 = Tr(N) p[.N + kaT 'n p] (20) 

E, S and F are to be regarded as functionals in pIa), and will take on their 

eq uilibri\.lm (expectation) values if p corresponds to the correct equilibrium 

distribution of configurations. In traditional variational treatments, F[p] is minimized 

with respect to p subject to the constraint Trp=1. It was shown by SDG 7
, however, 

that the equilibrium free energy could be obtained by a purely algebraic procedure, 

as will now be demonstrated. In a sense, the "Variation" has now been taken out of 

the Cluster Variation Model. It is, of course, impossible to consider the full density 

function pIa) over all configurations on aU· lattice sites. Hence, some method must 

be devised for handling only a small number of configurations. In the CVM, this is 

accomplished by considering configurations over a few small clusters, up to some 

maximum-size cluster(s). Usually, the larger the clusters retained, the better will be 

the approximation to the free energy. 

In the energy expression, the approximation consists of neglecting interaction 

energies Va in Eq. (10) for all clusters not contained in the maximal cluster(s) (see 

justification, later on). The same simple procedure will not do for the entropy 

expression, however: the 'n p term cannot be written as a truncated sum of partial 

densities of the type (16), as no convergence is expected. 

Morita', we define new functions PfJ by writing successively 

with, finally 

P1Z = P1PZP1Z 

P = n POI. 
a 

Pol = IT PfJ fJea 

Instead, following 

(21) 

The CVM approximation consists in truncating the product (21), by assuming that 

the cumulant corrections P'Y for 'Y not contained in the maximal cluster(s) are equal 

to unity. Hence, 

~. 'n pill.. 'n PfJ (22) 

fJ 

the accent on the summation denoting a truncated sum. It is now necessary to 

relate the 'n PfJ (=OfJ' say) to 'n Pol (=J\a, say) which can be done by procedures 

already developed by Barker 10 and Hijmans and de Boer II, To this end, we write 

Eq. (22) as a sum over the J\a times some coefficients a oc , the latter being determined 

only by geometrical considerations: 

(23) 

Therefore, 



6 

(24) 

there being a separate Eq. (24) for each subcluster oc contained in the set of 

maximal clusters. Thus, the aoc can be determined uniquely by recursion, 

We have therefore derived an important expression 

In P = r' aa In Poc 
oc 

(25) 

whereby the logarithm of the density function is approximated by a weighted sum of 

reduced densities, i.e. cluster concentrations. By taking the logarithm of both sides 

of Eq. (12) we have 

'n P = -'n Z - L kBT 

or, using (25), 

kBT r t 
aoc 'n Poc = (-kBT 

a 

By the properties of the CONS we 

'n Z)+o -

therefore 

-kBT 'n Z = (1, kBT it aa 'n POI> 
a 

and 

the latter equation can be rewritten as 

~ r.JpVp+p 

have, as in Eq, (9) : 

(26) 

(27) 

(28) 

which is exactly the result which would have been obtained by direct minimization of 

the free energy with respect to the correlation functions tp. In the Eqs. (28), the 

POI must be replaced by their expressions in terms of the independent variables ~fl' 

There results a set of non-linear equations in as many unknowns as there are 

maximal clusters and their dist.inct subclusters. Solving t.his set. of equations by 

numerical t.echniques constitutes a major difficulty of the CYM, hence, in practice, 

clusters must be kept small and few in number. 

By a well-known result of statist.ical mechanics, Eq. (26) gives directly the 

equilibrium free energy: 

F = kBT i Sa Tr(a) 'n POI 
oc 

(29) 

The free energy functional itself is, from Eqs. (20). (10), (15) and (25), 

F(p) = ~ r.JpVfl~fl + kBT ~ Sa Tr(a) POI 'n POI (30) 

which is t.he classical CYM expression for t.he free energy. Note that. the two sums 

in Eq. (30) need not run over the same clust.ers; it is only required that the 

entropy sum contain the maximal cluster(s), and the energy sum include only 
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clusters contained in the maximal one(s). Of course, some of the aoc subclusters may 

vanish, as explained by SDG. 7 

4. Internal Energy 

In order to calculate phase diagrams, it is not sufficient to treat Ising models 

alone: it is required to evaluate cohesive energies of various phases, in various 

states of order, referred to the same reference energy, for instance the energy of 

an infinitely dilute gas of pure A and pure B atoms, respectively denoted EA CD and 

EeCD in Fig.!. EAoc and Eeoc are then the cohesive energies of pure A and B in the C( 

phase (fcc lattice, say) and EiJ and EBP are the corresponding cohesive energies in 

the f1 phase (bee, say). Linear interpolations between those pure states are 

indicated by dashed straight lines. Actually, the cohesive energy Ed j s of random 

mixtures of A and B, in " or f1 (denoted Eo" and Eof1 in Fig. I), as a function of 

concentration c of B atoms, will differ from the linear interpolation by amount 4Ed is 

(denoted EI'l" or 4EHf1 in Fig. I), the energy of completely random mixing. 

A 

o 

--------....... ...... ------
~--- ..... .................... 
, , 
'-' 

' .......... -_ .. -' 

.... ----

-,t... 
,=-..;>-:t'-.,..,~ 

Concentrotion c 

B 

Fig.!. Cohesive energies Eo" and EoP of completely disordered oc 
and P phases and of a possible compound 7 (full curves), and 
schematic representation of energies of (partially) ordered 
superstructures (dashed curves) as a function of concentration c. 
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Going beyond the simple Ising Hamiltonian (10), it is possible to use the 

concepts derived in Sects. 2 and 3 to obtain formal expressions for the physical 

energy parameters required, namely Ed is and the V 0(1 defined in (10) and (11). To 

that end, let E(cr) denote the cohesive energy of a particular configuration (a), on a 

given lattice (a,/3, ... ). The expectation value of E, for distribution p, will be 

<E) = Tr(N) p(cr) E(cr) (31) 

Inserting expression (14) for the density pinto (31) then yields 

(32) 

with 

(33) 

and 

(34) 

Note that, in this grand canonical averaging, because of the Trace operation, the 

energy Eo and the effective cluster interactions Eoc are not only configuration 

independent but even concentration independent. 

Let us rewrite (34) explicitely for the case of pair interactions Er , where" I' 

denotes the spacing between lattice points p and q of the pair: 

(35) 

where the trace. operation is carried out everywhere except at p and q. From Eq. 

(35) follows 

(36) 

where Vi j (i,j:A,B) represents the energy of the rth (i,j) 'pair embedded in an 

artificial medium in which all configurations are equally represented. Through Eq. 

(35), the pair interactions (or more general cluster interactions Eoc) may be related 

to the Va used in the Ising model of the previous sections. 

Unfortunately, Eqs. (34) or (35) cannot be used to calculate the cluster 

interactions since the configuration energies E(cr) are, of course, not known. Hence, 

a more direct method of computation for the Eoc is required. It has been 

argued 1 a, 13 that the proper way to calculate effective cluster interactions is by 

means of a perturbation expansion of a disordered medium of specified concentration 

c. It appears that the expansion is much more rapidly convergent if the states of 

(partial) order (dashed curves in Fig. 1) are considered as perturbations of the 

disordered states (full curves) rather than as perturbations of the pure states or 

their linear interpolations (dashed straight lines in Fig. 1), Quantum mechanical 

techniques suitable for performing such calculations will be outlined in the next 

Section. For now, let us merely show how Eqs. (31) to (35) must be modified 
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formally in order to obtain disordered state energies and concentration dependent 

cluster interactions. 

In a sample containing a large number N of atoms, it is expected that, at 

equilibrium, the concentration c of the systems in a grand canonical ensemble will 

hardly ever depart significantly from the equilibrium concentration cO. In other 

words, the density function p(a) will be very sharply peaked about configurations 

having average concentration c·. Hence, in Eq. (31), it is practically equivalent to 

sum only over those configurations (a'}, all of which have concent.rat.ion a": 

where the superscript (.) denotes canonical averaging, as it were. We now have 

<E> = E; -+- r E; fa (38) 
a 

with 

(39) 

and 

(40) 

The total number of configurations having fixed number (NA, Na) of A and B atoms.ds 

( 41) 

so that. the energy of the completely random state of concentration c·=Na/(NA+Na) is, 

by Eq. (38), 

(42) 

where f~ denote multiplet correlation functions in the fully disordered state. It is 

now apparent that the disordered energy Ed t 9 and the cluster interactions E; are 

concentration dependent since, in Eqs. (40) and (42), the Trace operation samples 

differentconiigurations at each concentration c. 

The term E; may be eliminated from Eq. (38) by means of Eq. (42): 

<E> = Edts + Bard (43) 

where the disordered state energy Ed isis the energy of the completely disordered 

medium, in a given crystal structure, calculated in a single-site coherent potential 

approximat.ion (CPA), for instance, and Eord is given by 

(44) 

where 

(45) 

since the correlation function, in the fully disordered state, for an a cluster of n 
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points is practically equal to nth power of the point correlation function 

~1=CA-c9=1-2c. The accent on the summation in Eq. (44) indicates that, because of 

Eq. (45), the point clusters are not included in the sum. Equations (43) to (45) 

were given previously by Sigli and Sanchez 14 • The Eo:, or V 0: in the notation of 

previous Sections, must now be calculated. 

this can be accomplished by perturbing 

so-called Generalized Perturbation Method 

As will be shown in the next Section, 

the single site CPA according to the 

(GPM) 12,13, Alternately, the Embedded 

Cluster Method 15 may be used since, by Eq. (40), each cluster interaction V I j in Eq, 

(36), rewritten for canonical averaging, as in Eq. (40), represents the energy of 

cluster' a embedded in a medium of random configuration of concentration c. 

The derivations given above may explain formally why pair interactions E r • for' 

large spacing. rj tend to. become . .,small in'magnitude: at large spacing in. a random 

medium, Vi j is approximately given by the sum of point energies Vi + V j' hence the 

linear combination V AA + V 9 B - 2V AS will tend to vanish. 

To complete the calculation of the internal energy, Eard must be evaluated, 

which requires, in addition to the E;, knowledge of the equilibrium correlation 

functions ~OI' These must. be obtained by minimizing the free energy, at given 

temperature and concentration, by solving the system of algebraic equations (28). 

In summary, then, E;1s and E; (or Va) can all be calculated by Quantum Mechanical. 

methods at absolute zero of temperature. The ea are calculated by the CVM with 

temperature independent parameters. Hence, the procedure described here achieves 

a, very convenient decoupling of the Quantum and_ Statistical Mechanical 

computations. 

5. Quantum Mechanical Interpolation 

The difficult problem remains of calculating Ed is and the effective cluster 

interactions Ea , It has been shown 16 that cluster interactions are generally smaller 

in magnitude than effective pair interactions (EPI), so that only the latter will be 

retained in the present analysis. The EPI, defined. formally by Eq. (36), will be 

calculated in the Generalized Perturbation Method (GPM)lZ,13 applied to a given 

Quantum Mechanical Model. Some recent progress has been made in implementing the 

GPM onto the KKR-CPA11 but thus far, most results have been obtained in the tight 

binding (TB) approximation. 

The TB scheme does not really qualify as a true first principles calculation, but 

as an interpolat.ion method in the following sense: suppose that very accurate 

electronic band structure calculations have been performed on the pure elements A 

and B in the same crystal structure. What then may we deduce for the band 

structure, in particular the electronic density of states (DOS), n(E), for the random 

mixture, of: A and B atoms .on the samet lattice, as. a function of concentration c? 

To simplify matters, consider only paramagnetic transition metal elements and 

., 
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assume that properties of interest (cohesive energy, EPI) are primarily dependent on 

d-electrons. Hydridization with the s band will thus be neglected. Under those 

conditions, the wave functions can be expanded in linear combinations of atomic 

d-orbitals (LCAO), with atomic wave functions denoted liA>, considered members of a 

CONS, with index i indicating the atomic site and A the atomic d-orbital. The tight 

binding Hamiltonian for the pure elements may thus be written 

(46) 

where l: i is l: A or l: B depending on which metal is considered and where {J11 are 

so-called hopping integrals. The energy levels l: i will be taken as the centers of 

gravity of the d band of the corresponding pure metal. The hopping integrals 

connect neighboring sites i and j but cannot be readily evaluated by matrix element 

integrals, although theory indicat.es that the magnitude of the (J's should decrease as 

the distance between atomic· sites increases. The Slater and Koster method of 

interpolation is therefore generally used: the Il'S are considered as adjustable 

parameters whose values are optimized .so as to fit the calculated band structures as 

closely as possible. Actually, the hopping int.egrals depend on a smaller number of 

parameters, the molecular ortibal-like parameters ddG', ddl'l' and dd618. Hence, in this 

first interpolation step, the electronic properties of pure. A and pure a are regarded 

as being determined entirely bya small set. of parameters, and by t.he number of d 

electrons per atom, NA or Na• 

The one-electron energy is given by 

(47) 

where Ef is the Fermi energy and where the electronic density of states n(E) (for d 

electrons) can be computed in the usual manner by taking the limit of the imaginary 

part. of t.he trace of the pure elenient Green's function, given formally by 

G(z) = (Z-H)-l (48) 

In the present study, the Green's function was calculated by the recursion 

method19,20. The computational procedure used to derive the results to be reported 

here is explained elsewhere21 ,22. In a recent study,a Sigli has proposed an 

approximate scheme for correcting the one-electron energy (47) for the effects of 

electron-electron and ion-ion interactions. These effects will not be taken into 

account here. 

In the alloy case, l: I and 1l11f in Eq. (46) become random parameters since, a 

priori, it is not known which atom, A or a, occupies sites i, j, etc... It thus 

becomes imperative t.o adopt an averaging procedure. Thus far, it has not proved 

feasible to use a CVM-like scheme, as given in Sect. 2, in the quantum mechanical 

context. Thus, a zerot.h order mean field approximation is used, the coherent 

potential approximation (CPA). In the single site CPA, parameters t i are replaced by 

an average energy dependent potential G' and the hopping integrals are assumed to 
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be independent of the nature of the atoms at i and j. Then, let the Grecn's 

operator cor'responding to that new Hamiltonian be denoted by G(z-<7). The potential 

C1' is determined self consistently by the condition on the scattering operatorsH 

(49) 

where 

tj = 1 - ~t,G (E-a) 
I 00 

Ilt; = tj - a (50) 

with 

Iteration- of (49) and (50) determines' a self-consistently. The~ diagonal elements of 

the Green's function are determined by the recursion method, as explained above. 

To calculate the EPI by the GPM, off-diagonal elements 

(52) 

are also required; these can be obtained, however, by combining appropriate 

diagonal elements. Finally, the EPI are given by the GPM formula 12 ,13 

(53) 

The CPA thus provides the ~equired compositional interpolation between pure A 

and pure B, on the same lattice (ex, say). If another crystal structure were 

required, the whole calculation would be repeated, including the hopping integral 

fits for the new lattice (fl, say). Of course, pure A and/or pure B may well be 

metastable on either or both ex and fl lattice. It is clear that the Green's function 

G(z-a) is concentration dependent through its dependence on a, which itself depends 

on average concentration (though not. on SRO), by Eqs. (49) and (50). Therefore, 

t.he energy of the purely disordered state, Ed I s' calculated from Eq. (47) with n(E) 

obtained from a of the CPA medium, must also be concentration dependent. 

Furthermore, the Fermi energy EF depends on the average d-band filling 

(54) 

For the same reason, then, the EPI V r (recall that the index r denotes the I i- j I 

distance) also depend on concentration. It is precisely because the GPM appears to 

be, at present, the preferred method of calculating ordering energies, that the 

original CVM formulation, with concentration independent Eex interactions, had to be 

replaced by concentration dependent ones, E;. The V r of Eq. (53) are thus the EPI 

defined by Eq. (36), but calculated formally according t.o t.he "canonical" averaging 

described in t.he previous Sect.ion. 

In addition t.o t.heir dependence on hopping_ int.egraL parameters, the. EPI also 

depend on the d-band filling Nd through EFi as mentioned, and on the-levels t.A and 

t.8 through Eq. (50), more properly on the normalized energy level 'difference, or 

.' 

.' 
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1> _ £e - £A 
ud - -W 

(55) 

where iii is the average of the half d-band width of the elements. The EPI should 

also depend on non-diagonal disorder 

o We - WA 
nd = W (56) 

but that dependence was neglected in preliminary studies reported upon here 21 ,a 2, 

If "canonical" Slater-Koster parameters are used, then iii turns out to be a 

normalization factor which fixes the energy scale, so that the EPI have the following 

functional dependence 

(57) 

The EPI thus depend only on the average alloy concentration c and on electronic 

parameters of the pure elements A and B. 

6. Ground States of Order 

The consequences of this functional dependence of the EPI on the various alloy 

system parameters have been investigated in detail (see Ref. 25, for example, and 

bibliography cited therein). Particularly interesting and quite accurate predictions 

have been made concerning ground states 01 order. By this expression is meant 

those ordered configurations of A and B atoms on the sites of a given fixed lattice 

which minimize the energy E, at zero absolute, given the st.oichiometry c and values 

of pair int.eractions V r' 

Kanamori 26,27, Allen and Cahn 28, Sanchez and de FontaineU , FineP 0 and others 

have determined ground stat.es of order on fcc and bcc lattices for first and second 

neighbor (also higher neighbor and multiplet) interactions. Given a set of V r (or 

Eoc), and c, the problem reduces to that of minimizing the internal energy (38) 

subject to constraints. Since (38) is linear in the pair correlation functions ~ r' the 

problem can be handled by techniques of linear programming, the constraints being 

derived from Eq. (17), for instance, by noting that the cluster concentrations are 

non negative: 

r .oc(~p)~; ~ - 1 occp 
(58) 

In principle, the minimization returns O-K equilibrium values ~; of the correlation 

functions which uniquely determine the ground state structures to be expected 

under the specified conditions. In practice, the mathematical technique just 

described sometimes produces "non-const.ruct.ible" st.ructures. Nevertheless, in most 

cases, maps in V r-parameter space are produced which indicate, for simple 
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stoichiometries, which ordered superstructures should be the stable ones for the 

chosen lattice (of the disordered state). Most commonly observed fcc and bee-based 

ordered superstructures can be predicted by this analysis. 

Since the EPI can be correlated with electronic parameters, the V r maps can be 

transformed into structure maps in Nd' ad' 0nd space<!5. Predictions for 

paramagnetic transition metal alloys agree remarkably well with experiment. In a 

very recent study 3 1, ordering maps were also successfully derived on the basis of 

calculations simply involving a rectangular band approximat.ion to the electronic DOS. 

7. Cons,truction of Phase Diagrams 

The determination of ordered superstructures is an essential first step in the 

construction of temperature-concentration phase diagrams. Indeed, in the 

minimization of the free energy, it is essential to limit the set of cluster variables 

~Ol: the members of the set are determined by the symmetry operations of the 

ordered ground state considered. Thus, given the range of EPI envisaged, to each 

disordered state lattice (ex, say), corresponds a set of ordered superstructures 

{cx';cx .. , ••• }. Then at each temperature T' and concentration c, the equilibrium 

correlations ~* are deter-mined by Eqs. (28), the chemical potential difference PB7'JAA.. 

is determined and the grand pot.entials 

(59) 

are calculated, where ~ 9 is a normalized sum of point correlations over'" distinct. 

sublattices. The free energy F in Eq. (59) is the sum Ed i 9 plus Eord minus T times 

t.he CVM configurational entropy, appearing as t.he second term of Eq. (30). The 

same procedure is repeated for other lattices and corresponding ordered 

superstructures ({J,{J' "J" p ••• ) and grand pot.ent.ials oa, 001', ofJ , ••• are compared at each 

temperature. Intersections of two O(p) curves denote phase equilibrium between t.he 

two structures. The lowest lying 0 curve between intersections determines which 

phase is expected to be the equilibrium one. Grand potential diagrams are then 

converted to phase diagrams in (e:-T) space by computing the concent.rations 

corresponding to the equilibrium ~~ obtained from Eqs. (28) for the equilibrium 

structures. 

Other correlation funct.ions determine, at equilibrium, expected cluster 

concent.rations by use of Eqs. (17), hence a measure of SRO can be obtained. Long 

range order paramet.ers are generally defined as appropriat.e linear combinations of 

point. correlations ~ 1 on the relevant. sublattices. 

This phase diagram construction is illustrated in the flow chart of Fig. 2. Only 

the tight binding TB portion has been implemented (top right hand side of Figure), 

not the KKR portion (left hand side). Satellite boxes indicate schematically possible 

experimental verification. 
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8. Prototype Diagrams 

As an illustration of the procedures outlined above, it was decided to perform 

some simple prototype phase diagram calculations involving the fcc lattice and its 

simplest ordered superstructures. Normally, the first nearest neighbor (nn) EPI, VI' 

is expected to be the dominant one in the fcc case, so that the calculation of dEord 

will be limited to that nn contribution only. It follows from ground state analysis 

that; . with' VI >0 (ordering case), the only ordered superstructures expected are the 

L12 (Cu3Au-type) and L10 (CuAuI). For the purpose of performing sample 

calculations, "canonical" Slater-Koster parameter.s were used 21 ,2l: dda:-1.385; 

dd7l'=%1 ddO' I, dd6=0. Charge transfer' is- expected to alter· the~ values of the pure 

element d-band centers of gravity tA and ta in the alloy. Therefore, since charge 

transfer was not calculated, the diagonal disorder 6 d was regarded as a variable 

parameter, whose influence on the phase diagram is to be studied systematically. 

Values of 6 d=1.0p 0.8 and 0.6 were chosen:!:!, Results of energy calculations were 

expressed in canonical units (cu); if an average band width of -5eV is taken, then 

lcu al4.5eV. This value was used to convert "canonical degrees" in the calculated 

phase diagrams to degrees absolute. 

By convention, 6d was taken to be positive: tahA' Therefore, we must 

necessarily have NA>Na, i.e., A and B belong to the end and the beginning of the 

transition metal series, respectively. The following pairs of numbers for d-band 

occupancy in the pure elements were' selected: (9,3), (7,3) and (9,4), the first 

number being the value NAJ the second Na• Since it was assumed that the number 

of s-electrons per atom in the solid was equal to one all across the transition metal 

series, the numbers NA and Na are simply one' less than the group number in the 

Periodic Table. 

Values of the energy of mixing liEd i 9 for the completely disordered state were 

obtained by subtracting the straight line interpolation between EA and Ea from the 

values Edts(c) calculated by the procedures described above for the three (N a, NA) 

pairs of values and the three 6 d selected. Next, the concentration dependent EPI 

V 1 (c) were calculated, by Eq. (53), for the same set of electronic structure 

parameters. 

the VI (c) 

Results are displayed in Fig. 3, in canonical units. As expected :z1,2:1, 

curves peak towards the center of the concentration axis whenever 

~(NA+Na)a;5 (half-filled alloy d-band), and towards the element with highest 

d-electron concentration for average band filling greater than %. It is also seen in 

Fig. 3 that the amplitude of the V 1 (c) profile increases with increasing values of ad' 

These results are expected to hold quite generally, and influence very significantly 

the shape of the phase diagrams. 

Several fcc-based phase diagrams have been calculated based. on the~ results. of 

Fig. 3 21 ,:12, Here, only the case NA =9, Na=3, 6d=1.0 will be presented (full curve for 

V I (c) in Fig. 3). The resulting phase diagram is shown in Fig. 4. The diagram 
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shows wide a (fcc) solid solubility, and three ordered phase regions: two of 

Lia-type (a ' ) with first-order transition temperatures, high for A3B, low for AB), at 

roughly stoichiometric concentrations, and an Llo ordered phase region appearing 

by peritectoid reaction around the center of the phase diagram (a"). A prominent, 

and unexpected feature of the phase diagram is the presence of a narrow miscibility 

gap, persisting to very high temperatures, between two disordered solid solutions of 

different average compositions. The transitions temperatures are, of course, 

extremely high. This simply means that, with 6d=O.1, melting would ocur before 

disordering could take place. Dashed curves in Fig. 4 refer to inherent "ordering" 

and "clustering" instabilities or spinodals l • 

EPI (c.u.l 
0.12,-----------------------------~ 
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0.06 

0.04 

0.02 

0.00 
0 0.2 0.4 0.6 
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- - -----
~ ... ec>_ 

_0 ___ 0.0 ••• 

................. 
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NA -7 NS - 3 «5 """ 0.6 
NA -7 NS -3 <5 == to 
NA -9 NS -3 <5 - 0.8 
NA -7 NS - 3 «5 - 0.8 
NA -9 NS -4 «5 -0.8 

Fig. 3. Effective pair interaction VI (in canonical units) as a 
function of concentration for the indicated values of electronic 
parameters. 

It is instructive to examine the various component curves of the total free 

energy, at given temperature, as a function of concentration. Figure 5 shows the 

"mixing" curves AEdl SI AEord ' -TAS and the sum total AF at l700K for the case 

depicted in Fig. 4. The full curves are for the disordered (ex) phase and the dashed 

curve for the ex' (L1 2 ) phase, the only ordered phase stable at this temperature. It 

is seen that the AEd I s curve, which is temperature independent, already contains a 

shallow. concave region. This means that a common tangent can always be 

constructed to the dF curves except at extremely high temperatures where the 

convex TdS contribution is expected to dominate. The dEord contribution enhances 

the concavity, as seen in Fig. 5. Also of interest is the fact that the configurational 

entropy in the ordered state tends to zero at the AlB stoichiometry, as expected. 
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Fig:- 4.. Prototype~ phase' diagram for~ NA=9, Na=3, 6 d=I.0.. Phase· 
011 is the fcc solid solution, 011' and OIl" are LI2 and LIe ordered 
superstructures, respectively. 

The phase diagram shown in Fig. 5 thus illustrates that, in a purely "ordering" 

system (V 1>0 for all c), a very persistent miscibility gap (MG) can appear due to the 

intrinsic variation of thermodynamic parameters with concentration, not through any 

inherent "clustering" tendency associated with negative EPI. These extraneous MG 

tend to disappear as the diagonal disorder decreases. Presumably, charge transfer 

will attenuate the tendency towards phase separation in "ordering" systems. 

9. Conclusion 

The calculation of phase diagrams from first principles constitutes a very 

critical test of accuracy of both quantum and statistical mechanical models. The 

theoretical problems are extremely challenging and the expected results of 

- considerable practical interest. 

On" performing the calculations, it becomes, evident that_ the- slightest variation of 

calculated energies- can result in drastic changes in the topology of phase diagrams:, 

the location of phase boundaries and even the nature of the phases in mutual 
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equilibrium is determined by the common tangent construction so that small 

alterations in the shape or relative positions of free energy curves can cause 

commong tangents to connect completely different sets of phases, structures, 

concentrations. In other words, phase diagrams result from "non-local minimization:" 

all possible free energy curves of all possible phases must be considered, at all 

concentrations, and compared to one another. 

CONCENTRATION 

0 .2 .4 .6 .8 1 
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"~rd 

-::a 
u -
>-

-.1 
0 a: w z 
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1700'C -.2 ________________ --' 

A B 

Fig. 5. Component curves of dF = dEdfs + dE ord - TS for the 
phase diagram of Fig. 4 at 1700K; full lines: solid solution ex, 
dashed lines: ordered phase ex". 

Whether or not sufficient accuracy can be attained to reproduce experimental 

diagrams remains to be seen. In the present study, only "prototype" systems were 

considered. The tight binding CPA was used as basic quantum mechanical 

framework, and the CVM was used for the statistical mechanical calculations. Both 

models can be improved. In particular, it. should be possible to take charge 

transfer and off-diagonal disorder into account. Furthermore, hopping integrals 

should be chosen that. correspond to real syst.ems to be modeled. St.ructures other 

than the fcc lattice and its simplest superstructures should be considered. In a 

very recent. st.udy, bot.h fcc and bcc latt.ices and corresponding ground stat.es were 

incorporated in t.he model, wit.h t.he result that. a reasonable approximation of the 

Ti-Rh phase diagram was calculat.ed, including some experimentally observed 

met.ast.able phases 32 • 
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An extended version of the methods outlined here was developed by Sigli and 

Sanchez.3 3, with the result that very good quantitative agreement was obtained for 

the miscibility gap in the W-Cr system. Remarkable agreement was also obtained 

with available experimental data for the enthalpy of mixing of other transition metal 

bcc binaries. 

Ultimately, it will be necessary to take vibrational entropy and elastic 

interactions into account. Perhaps the KKR-CPA will have to be brought into play 

for-accurate truly first-principles calculations. Clearly, much remains to be done. 

Acknowledgements.,.; 

The author has benefitted from many discussions with colleagues and present 
and former students, among them: F. Ducastelle, F. Gautier, A. Gonis, A. Finel, B. L. 
Gyorffy, L. M. Falicov, J. M. Sanchez, C. Sigli, M. Sluiter, G. M. Stocks and P. 
Turchi. Calculations on prototype phase diagrams were performed by P. Turchi and 
M. Sluiter with partial support from a Grant from the Lawrence Livermore National 
Lab. This work was supported by the Director, Office of Energy Research, Office of 
Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy 
under Cont.ract Number DE-AC03-76SF00098. 

References 

10 J. S. Faulkner, "The Modern Theory of Alloys," in Progress in Materials 
Sciencep J. W Christian, P. Haasen~and~T. B. Massalski, Eds., Vol. 27, pp., 1-87" 
Pergamon Press (1982). 

2; T. Mohri, J. M. Sanchez and D. de Fontaine, Acta Metall.,.33, 1171 (1985). 

3. D. de Fontaine, "Configurational Thermodynamics of Solid Solutions," in Solid 
State Phys., H. Ehrenreich, F. Seitz and D. Turnbull, Eds., Vol. 34, pp. 73-294, 
Academic Press (1979). 

4. D. de Fontaine, in Modulated Structure Materials, NATO ASI Series E, No. 83, 
T. Tsakalakos, Ed. pp. 43-80, Martinus Nijhoff (1984). 

5. D. de Fontaine, in High-Temperature Ordered Intermetallic Compounds, 
C. C. Koch, C. T. Liu and ·M. S. Stoloff, Eds., Materials Res. Soc. Symposium 
Proc. Vol. 39, pp. 43-64 (1985). 

6. R •. Kikuchi, Phys. Rev. 81, 988 (1951). 

7. J. M. Sanchez, F. Ducastelle and D. Gratias, Physica (Amsterdam), 128A, 334 
(1984). 

8. J. M. Sanchez and D. de Fontaine, Phys. Rev. B, 21, 216 (1980). 

9. T. Morita, J. Phys. Soc. Jpn. 12, 753, 1060 (1957); J. Math. Phys. 13, 115 (1972). 

10. J. A. Barker, Proc. Roy. Soc., A216, 45 (1953). 

11. J. Hijmans and J. De Boer, Physics 21, 471, 485, 499 (1967). 

12. F ... Ducastelle, J.,Phys.'C 8,3297"(1975) .. 

13. F. Ducastelle and F. Gautier, J. Phys. F 6, 2039 (1976). 

.' 

-' 



'. 
" 

21 

14. C. Sigli and J. M. Sanchez, CALPHAD 8, 221 (1984). 

15. A. Gonis, G. M. Stocks, W. H. Butler and H. Winter, Phys. Rev. B, 29, 555 (1984). 

16. A. Bieber, F. Gautier, G. Treglia and F. Ducastelle, Sol. St. Comm., 39, 149 (1981). 

17. P. Turchi, G. M. Stocks and A. Gonis (private communication). 

18. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954). 
'. 

19. R. Haydock, in Solid State Phys., H. Ehrenreich, F. Seitz and D. Turnbull. 
Eds., Vol. 35, pp. 215-294 (1980). 

20. P. Turchi, F. Ducastelle and G. Treglia, J. Phys. CIS, 2891 (1982). 

21. P. Turchi, These de Doctorat d'Etat es SCiences Physiques, Univ. Pierre et Marie 
Curie, Paris VI (1984). 

22. P. Turchi, M. Sluiter and D. de Fontaine (to be published). 

23. C. Sigli, Ph.D. TheSis, Columbia University, NY (1986). 

24. B. Velicky, S. Kirkpatrick and H. Ehrenreich, Phys. Rev. 175, 747 (1968). 

25. A. Bieber and F. Gautier, Acta Me tall. (in press). 

26. J. Kanamori, Progs. Theor. Phys. (Japan) 31, 66 (1966). 

27. J. Kanamori and Y. Kakehashi, J. Phys. (Paris) 38, C7-274 (1977). 

28. S. M. Allen and J. W. Cahn, Acta Metall. 20, 423 (1972); Scripta Metall. 7, 1261 
( 1973). 

29. J. M. Sanchez and D. de Fontaine in Structure and Bonding in Crystals, 
M. Q'Keeffe and A. Navrotsky, Eds., Vol. II, pp. 117-132, Academic, NY (1981). 

30. A. Finel (private communication). 

31. M. Sluiter, P. Turchi and D. de Fontaine (to be published). 

32. M. Sluiter, P. Turchi, Zehzong Fu and D. de Fontaine (to be published). 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



-' . 

LA WRENCE BERKELEY LABORA TOR Y 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

':4-- .. ~ ,,, 




