UC Irvine
ICS Technical Reports

Title
Decompilation

Permalink
https://escholarship.org/uc/item/7tj12330

Author
Hopwood, Gregory L.

Publication Date
1978

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/7tj1233b
https://escholarship.org
http://www.cdlib.org/

/Dj;:COM?»ILATIOﬂN | é 22
0. /&
Gregory L. Itippwooﬁ e - o&

Technical Keport #118

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92717

March 1978

UNIVERSITY OF CALIFORNIA

Irvine

DECOMPILATION

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Information and Computer Science

by

Gregory Littell Hopwood

Committee in charge:
Professor Julian Feldman, Chairman
Professor Alfred M. Bork

Professor Fred M. Tonge

1978

Copyright (c) 1978

Gregory Littell Hopwood

All Rights Reserved

The dissertation of Gregory Littell Hopwood is approved,
and it is acceptable in quality and form for

publication on microfilm:
AP w. Bork
Feell V7). Dentge—
\MQ,_ Qs

Committee Chairman

University of California, Irvine

1978

ii

This dissertation is dedicated to Marsha

I Contents
ACKknowledgments . . v v v v v e e e e e e e P
l Vita. . o v v e e e e e e e e e e e e e e e e . Xid
I Abstract. . . .« .« o . 0 e v e e e e e e e e e e e . oxiid
Chapter 1: Motivation. « « « v o . . . 1
I Introduction. 1
Continued Use of Assembler Language 2
The Reasons Why 3
l Efficiency (,ons:Lder'atlons e e e e e 4
Optimizing Compilers. 4
Future Trends 5
' Aids to Understanding . . e e e e e e e e e e 6
Written Spe01flcatlons)
Program Text. 6
Flowcharts. 7
. The Dbecompiler. 8
Dissertation ubjectives 8
. Sumnmary ol rollowing Chapters 9
Chapter 2: Heprogramming Techniques
l ana Decompilation Systems 11
Introduction.« 0 0 e e e 11
. Simulation. L . 0 0 e e e e e e e e e 11
Emulation ¢ 0 00 0w e e e e 13
I Automatic Translation 14
I Semi-Automatic and Manual Translation 16
A Survey of Decompilation Systems 17
Halstead. « . « . . « O . . 0 .. 17
l Sassaman. .« . . v e e e e e e e e e e e e 18
IBM == ACCAP.+ « « o o v v v v ..., 19
Barbe -- PILEK. 20
ll iv

I Hollander+ « « 23

Housel.« . .« « . . 0 00000 27

Friedman. . . e e e e e e e e e e e e 29

' de Balbine -- The "Structuring Engine". . . . 30

-.—.Ultrasystems.+ + .+« v« v o« . 31

Ikezawa -- AMPIC. . . . e e e e e 35

I Proprietary Commercial becompller's e e e e 36

SUmMMary v e e e e e e e e e e e e e e 37

l Chapter 3: Decompiler Design Considerations. 36

' Introduction. + « . . . v o 0w e e e 38

Preparation or the Input. 39

Machine Language. « ¢ v « v « v « . 39

l Symbolic Information. 41

Formatting the Input. 43

Loading the Program « . .« « v « . . 4y

' Multi-Pass or Not?.« by

Segmenting the Program. + +v 4« 4 .+ . . 45

Information Sources v v v « v 4 W . . 46

l Representation Questions. 48

Node Information.+ « « . . 49

Control Intormation 50

Graph Implementation. 54

Program Transrformations 54

l Expression Condensation 57

Logical Expressions . . e e e 58

Standardization of Iteratlve Control. e e 59

l Repackaging Code Segments 62

GOTO-less Target Programs + + o + o . 64

Idiomatic Expressions« « .« .« « .« . . 65

l Creating the Output Program 56

Problems of Transflerability 67

l Word Lengths. . . . e e e e e e e e 69

Other Machine uepenaen01es e e e e e e e e 70

I Storage Structure Recognition 71

Statistics Gatnering. 72

I SUMMALY « & v v v v 4 v e e e e e e e e e e e 73
v

l Chapter 4: An Experimental Design. T4

Introductions « . . . ¢ e v v 0w . R T4

l Pr-epar*atlon of the Source Program 75

I Loading the Data. . . v & v v 4 v e e e e e e 7

Creating the Control Graph. + .« « v « o . 80

Stage One Control Graph 81

l Stage Two Control Graph 86

Creating the Intermediate Text Representation . . . 95

The IMTEXT Statement. 95

Translation to IMTEXT « « . « . . 98

Choice of IMTEXT Operations 100

Machine Dependent Operations. 104

I Side Effects. ¢ . . ¢ 104

More Complex IMTEXT Statements. 107

l Expression Condensation . . . e e+« . . 109
Assumptions and Conditions for

Forward Substitution. 110

Argument Evaluation Order 114

I Explicit Assignment Elimination 116

Value Equivalence . . . e A ke

Algorithmic Descrlptlons o e e e e e e e e 121

l Translation to the Target Language. 128

IMTEXT Statement Translation. . . .« o+« . . 128

l IMTEXT Control Structure Translation. 132

Postprocessing.‘. e Y

l SUmmary . .« .« ¢ ¢ v 4 4 4 4 e e e e e e e e e .o 139

Chapter 5: A Decompiler Implementation 141

l Introduction. 0 o . o . .1

l Choosing the Source and Target Languages. 141

Choosing a Decompiler Implementation Language . . . 142

l Size of the Decompiler. o . + o . . . 142

A Sample Program to be Decompiled 145

l Preparation of the Source Program 152

I Loading the Formatted Code. 153

Control. Urapt Ueneration. + v v v < W W . 153
Stage Une+ « v+« < 4 e v+« . . 154

Stage TWwo . . . v v v i v v e e e e e e e e e 5T
IMTEXT Generation « v v v « « « « « « « « 159
Forward Sugstitution. N
Target Cocde Generation. 165
Postprocessor « « . ¢ v e 4« v 4w v v . . . 68
SUMMALrY « + v v 4 4+ 4 o & « o o & o « v e W« v W o . 170
Cnapter 6: Decompilation Experiments 172
Introduction. 0. .. 172
ine Test Plan+ « . v v v v « v v v« w e « . 173
Choosing a Test Case. . . . « v . v v v o & « W« « & 174
The rFirst Test Case -- ISADCKA. « . 175
ISADORA Through the Decompiier: PO -> P1. 177

ISADORA Manual Changes: P1 -> P2. 178
Communication « + + « « +« +« 180

Interrugts. . C e e e e e e e e e e ..oo182
Self-Mouifying ‘Code . . e e e e e 4 e+ . o« . 186
Symbols . . e e e e e e e e . o.o.o189

Unlmpleugnted Operatlons e e e e e e e e e 191
Simple Optimizing of ISADORA: P2 -> P3. 191
Extensive Rewrite of ISADORA: P3 -> P4. 194
ISADGRA Code Size « v v v v v « « o v o v . 197
The Second Test Case -- TECO. 199
TECO Through the Decompiler: PO -> PV 199
TECO Manual Changes: P1 => P2 « « . . 200

Communication « « ¢« « +« « « « « . 200

Skip Returns. . . e e e e e e e e s e .. . 202

Self-mModifying Cooe e e e e e e e e e 4. .o. 203

Symbol Definitions. . . .« « . 2053

Unimplemented lnstructlon lranslatlon . e . . 204
Multiple kntry Points 204

vii

l Large Blocks of Code. . . e e e e e ... 205
Urlglnal TECO Coding brrors e e e e v e . . . 205
I Simple Optimizing of TECO: P2 => P3 208
kxteiisive hewrite of TECU: P3 => P4 21z
l TRCO COQE SI1ZE. v v v v v v o 4« v v o v 4 v « w v « 215
More hkesults and Comparative Data 2i5
l ilanual Intervention 215
Program Size Expansion. 219
Decompilation Speed . . . e e e e e e . . 22K
l Source vs, Target Program 'Iext. e e e e e .. 227
Comments and Formatting 231
l SURBAPLY +« . & v v v & 4 4 e e e e e e e e e e e .. 234
Chapter 7: Summary and Conclusions 235
l Introduction. « « « v v e v 4 4 e« e W+ . . 235
Pragmatics. . . s e e e e e e 4 e e ... 236
Source- Iarget Palrs c e e e e e e e e e e wo.o237
Manual Intervention 238
Code Volume . . e v e+ . .+ . . 250
Speed of Decompller Bxeoutlon e e e e e . o.o21
l Speed of the Target Program 22
Cost of 3Zuilding a Decompiler 243
l bxpected Uses of Decompilers. 244
Transferabdility 244
Documentation Aid 245
Evolutionary Path . . . e e e e e e e . . 2bb
I Validation and \/er'ltlcatlon e e e e e e . .. 246
Static Analysis« .+ .« . . . 2u7
l t'uture Kesearch Directions. . . e e e« e+ . .« . 247
bata Structure Abstractlon e e e e e e .. 247
Control Structure hkecognition
l and Transformation. . . . 248
High Level Source-to-Source 1ransformatlons . 249
Sof'tware Physics. 250
l Immediate Implications. . . e e e e e 4w .. 251
Structured Coding Technlques
Using Low Level Languages 251
l Software Evolution. 251
Conclusion. « ¢« v v v .. . 253

keferences..
Appenaix 1I:
Appendix.I1:
Appendix III:
Appendix IV:

Appendix V:

List of IMTEXT Statements.
Summary of 620/i Instruction Set

Summary of the MOL620 Language

Excerpt of ISADORA source program.

Decompiled ISADORA target program.

255
260
266
269
290

Acknowledgments

whéﬂbivbegan this dissertation in November 1972, I had
little 1idea it would be five years before I would write
these final words of thanks and acknowledgrient to my friends
and colleagues. These years have been exciting, challenging
and rewarding.

To Julian Felaman and Fred Tonge, my advisors and
triends, for ten years of patience, encouragement, and
guidance.

To Richard Hamming, whose energy and enthusiasm for
science serves as an example for us all.

To Ralph Hollis, physicist, computer scientist,
humanist, best friend, and best man.

To my parents, who gave me 1life and supported my
education for many years.

To fFrancis kggert, who taught me that science could be

my life.

To my dbrother, Christopher, who knew life is more than
science,

1o Alfred bBork, for serving on my dissertation

committee with good humor and interest.
To David Farber and Martin Kay, for many stimulating

conversations in our Irvine-Santa Monica car pool.

To Frank Friedman, Mike Ikezawa, Barry Housel, and

Clirff Hol%ander, for sharing your decompiler expertise.

To the - National Science Foundation, the UCI Graduate
Divisipﬂlm and the 'Computing Facility for financial
assistance, énd to the taxpayers of the state of California
for supporting the University and its endeavors.

To my fellow students at UCI, for thousands of
interesting hours -- especially Don Loonis, Larry Rowe,
Craig Schwerdt, Jim Hobbs, Alan Bell, Craig Will, Michael
Pepper, Dick Burton, John Vittal, Allan Foodym, Frank
Heinrich, Ken Larson, Bill Crosby, Bill Earl, Eric Olsen,
and Robert Ramos.

To the past and present staff of the Department of
Information and Computer Science -- especially Barbara Gray,
Rose Gagnon, Phyllis Siegel, Rose Allen, and to Virginia
Brakeley of the Computing Facility.

Finally, to Marsha, my wife, to whom this dissertation

is dedicated. It cbuld not have been done without you.

Gregory L. Hopwood
February 10, 1978

xi

Uctober 23,

1907

1967-1906

1968-1969
1969-1973

1972-1975

1975-1976

1976-

Vita

1§45 - born - San rrancisco, California

B.A., dMathematics, University of California,
Irvine

lember of the Technical Staff, North American
Kockwell Corporation, Anaheim, California

Lecturer, University of California, Irvine
National Science Foundation Trainee in
Information and Computer Science, University of

California, Irvine

Senior Programmer, Distributed Computing System
Project (NSF grant GJ-1045)

Senior Development Engineer, University of
California, Irvine

Senior Programmer Analyst, Sperry Univac
Minicomputer Operations, Irvine, California

Abstract of the Dissertation

DECOMPILATION
by
Gregory Littell Hopwood
Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 1978

Professor Julian Feldman, Chairman

A decompiler 1is a software tool which can be used to
translate programs written in a 1low level language into a
higher level language for the purposes of understandability,
documentation, or transferabilty. This software tool 1is
known as a decompiler because the effect it produces is
similar to reversing a compilation process.

The research ~reported 1in this dissertation addresses
the following questions about decompilation:

0 For what classes of source and target languages can

the translation be done?

o) What are the costs involved (human, machine)?

0 How complete a translation can be expected?

o What does the translator look like?

The motivation for this work and a history of

decompilation are discussed in the first two chapters.

General decompiler design considerations and the design of
the particular experimental decompiler built during this
researpé_uare presented 1in the next two chapters. The
implementatioh of the decompiler (using LISP on a
DECsysten-10 computer) is described and illustrated by
example in Chapter 5. The source programs are minicomputer
(Varian Data Machines 620/i) assembler language routines,
and the target 1language is a higher level machine oriented
language for the same minicomputer. The next chapter
details the results of decompiling two larger programs
totélling five thousand 1lines of assembler language text.
The performance of the decompiler is analyzed and compared
with data from other research projects. A summary of the
results of this research and possible future directions in
the area of decompilation are discussed in the last chapter.

The conclusion of the dissertation is that
decompilation can 'be a useful aid in the process of
evolutionary program improvement. This research should
prove helpful to others contemplating the construction or
use of decompilation tools for their own research or for

production purposes.

xiv

Chapter 1

MOTIVATION

INTRODUCTIOUN

Since the mid 1950°s much of the effort in the field of
programming languages has been directed toward the
definition, implementation and use of a class of translators
called compilers. These translators accept as input a
program written in a particular '"high level" language, and

they produce an assembler or machine language versicn of the

progran. Jean Sammet (1969, 1972) has catalogued over one

hundred such languages where each language has at least one
compiler and perhaps scores of different compilers, as do
F'URTRAN and COUBUL.

The reasons for the growth of the popularity of high
level languages are manifold. They include ease of coding,
self-documentation, progran transferability, ease of
debugging, and problem oriented syntax. Few high level
languages or systems for writing programs in high level
languages exhibit all of these attributes, but the use of
each language presents some advantage to 1its users over

programming in a lower level language such as assembler

code.

CUNTINULD USE O ASSEMBLER LANGUAGHL

An interesting question arises to challenge those who
might give ungqualified support to the concept that high
level language systems are such an advance over old
fashioned assembler language coding -- Why 1is so much
programming still being done in assembler language?
Philippakis (1973, 1977), in a survey of institutions which
do business data processing, reports that the amount of
effort devoted to assembler language programming is exceeded
only by COBUL programming.

In the area of systems programming, typically the
development of very 1large operating systems or systenm

utilities such as editors, debuggers and translators, we see

an eXxtensive wuse of assembler language in preference to

higher level languages. In the past several years there
have Dbeen some attempts to move to higher level languages
for system implementation. Languages used by manufacturers
for system 1implementation include PL/I (the principal
implementation language of the MULTICS system; also used by
IBM), ALGOL (Burroughs), PL/M (Intel), FORTRAN (CDC, Prime),
PL/S (IBM), DGL (Data General), BLISS (DEC), and SPL
(Hewlett-Packard). Most minicomputer manufacturers,

however, still write most systems routines in assembler

language to the general exclusion of higher level languages.

The Heasons. Why

There areé four major reasons for continued use of

assembler_language:

1. Codiné ef'ficiency -~ Many compilers do not create
code as efficient in terms of speed of execution or
storage size as a good human programmer coding in
assembler language.

2. No appropriate language or language compiler
available -- Many languages are not suitable for
systems programming because they do not allow the
programmer to access low level system elements such
as interrupts, channels, status words, etc. They
may also not provide tﬁe ability for the programmer
to describe and efficiently manipulate data
structures common to system tasks. Market lead
time for the product may not allow for the
definition ;nd/or creation of such a compiler.

3. Costs otf compilation -- The compiler time costs may
be excessive in terms of machine time or real time,.
In tne <case of minicomputer (or microcomputer)
manutfacturers, there may be no machine on which the
high 1level language programs may cémpile because
the minicomputer 1is too small to support the
compiler itself, no cross-compilers exist, and the
cost of developing and using one is excessive.

4. Compatibility -~ Much of the system software is

3

already coded 1in assembler language and new

releases and additions must be compatible.

Efficiency Considerations

The fact that there are high level languages in use for
systems programming work indicates that the above objections
to their uses are not all pervasive and unconquerable. Yet,
we must face the fact that assembler language programming is
extensively used and will continue to be so for quite a few
years to come because the most serious objection mentioned,
coding efficiency (or lack of it), affects the saleability
of a manutacturer’s product much more so than the system’s

maintainability or documentation. Coding efficiency

-directly af'tects system performance under benchmark tests,

one of the most widely used comparators for computer

selection (see Timmreck 1973).

Optimizing Compilers

The automatic production of efficient code by software
means is possible but expensive. It can be done with clever
compilers and optimizers. These tools cost money to build,
and more importantly in some cases, time to build. Most
computer manufacturers and users have not decided to spend
their resources 1in that direction. One quite well-known
optimizing compiler has been built by IBM for the FORTRAN

language (see Lowry and Medlock 1969). Although not built

for systems programming tasks, this optimizing compiler does

represent an attempt to create efficient code from a higher
level 1language. The optimizing pass of the compiler
represents .. such a large amount of overhead relative to a
simple compilation that 1its use 1s an option that is
normally avoided by a user who is debugging his program.
After the program is debugged then the optimizing pass is

pertformea.

Future Trends

The use of 1instruction set enhancement via writable
control store microprogramming techniques can greatly
increase the eftficiency of high level language programs. In

essence, the firmware interpreter is made to execute the

.operations of the high level virtual machine in an efficient

manner. For example, the FORTRAN DO loop mechanism, or the
stack operations required by an ALGOL program, can be
optimized with - special firmware instructions.
Microprogramming to create efficient execution environments
for the code produced by high level 1language compilers
promises to help close the efficiency gap so often cited as
a reason for continued use of assembler 1language.
Minicomputer manutacturers have pioneered this technique of
using firmware "accelerator" routines in combination with
writable control store micro-engines. Application of this

principle for the emulation of complete high level virtual

machines will become common place.

Tne ruture course of language use is clear. Low level
languages are on their way out but the neéd for writing and
maintaining programs in assembler language will probably
remain with us-for the next decade. Is there a tool which
can help us make the transition to the predominate wuse of
high level languages for system implementation and help us
move our present huge inventory of valuable 1low level

language software to our future machines?

AIDS TO UNDERSTANDING

Written Specifications

Programmers and software managers have long recognized

the pitfalls of assembler language programming. This has

‘led to various management dicta on how programs should be

written and documented. Management calls for programmers
and analysts to write specifications in natural language.
These specifications-are produced to describe several levels
of detail, functional, external and internal, yet the prime
source of information about a program continues to be the
program text itself. The is the final authority about what

the program does (rather than what it should be doing).

Program Text

Comments are included by good'programmers in the text
of the source program to give an alternate and more general

description about what the machine instructions are supposed

to be doing. Several problems may occur when trying to rely

on the program text for information, however. The program
text may not. actually represent the current object version
being used on the machine because of patches, programmer
failure ;6 Eeep the most up-to-date source version of the
program, or file system problems. In addition, the comments
on the listing may give the reader the wrong impression

about what the program is doing.

Flowcharts

An additional form of program representation, the
flowchart, has evolved to provide some additional aid to
people who must read programs rather than just write them.
Flowcharts describing the top level interaction of program
modules are often useful, but they only provide a program
overview and not the detailed informaion that is needed to
correct or improve a programn. Flowcharts written at lower
levels tend to degenerate into so many pages and off-page
connectors that comprehension of the flow of control is
almost impossible. Unfortunately, most automatic
flowcharters for assembler language programs create these
low level descriptions. These flowcharters do not
synthesize higher level structures such as expression
evaluations or loops into’a form that can fit on a few pages
of a printout. (Climenson (1973) has described a method for

reducing the number of off-page connectors in automatically

generated flowcharts.)

Since written descriptions, program comments, and
flowcharts are often inadequate aids to program
understanding, 1is there a tool which <can help us better

understand lo@ level language programs?

THE DECOMPILER

This dissertation is about a software tool which can be
used to translate programs written in a 1low level language
into a higher level language for the purposes of
understandability, documentation, or transferabilty. This

software tool is known as a decompiler because the effect it

produces is similar to reversing a compilation process. As
an example, Figure 1-A presents a segment of assembler
language code for a single accumulator machine and a
corresponding segment of code in a higher level language --
the possible output of a decompiler given the assembler code
as input. Most programmers would agree that the higher
level program segment is easier to read and more clearly

indicates what the program is doing.

DISSERTATION OBJECTIVES
This dissertation will attempt to answer the following
questions about decompilation:
0 For what classes of source and target languages can
the translation be done?

o} What are the costs involved (human, machine)?

o How complete a translation can be expected?

e} What does the translator look like?

SUMMARY OF FOLLOWING CHAPTERS

Chészéf 2 discusses what has already been done in the
area of decompilation by other groups or individuals.
Chapter 3 discusses general decompiler design
considerations. Chapter 4 describes the design of a
decompiler as an experimental vehicle tor the exploration of
various decompilation techniques. Chapter 5 describes the
implementation of the design presented in Chapter 4 and
illustrates the workings of the decompiler by passing a

small example through each step of the system. Chapter 6

presents some results of decompiling two larger production

.programs and compabes the performance of the decompiler with

other similar systems. Chapter 7 summarizes the results of

this study and discusses possible future research directions

in the area of decompilation.

Source Iarget
LbA X IF X+10 # Y THEN
ADD- =10
SUB Y
JAZ L1
JMPM SUBK CALL SUBR
JMP L2
L1: LDA J ELSE J := J+2 ;
ADD =2
STA J
L2: LuX I B[I+1] := C[I] - J ;
LDA Cc(Xx)
SUB J
IXR
STA B(X)
HLT g HALT;

Figure 1-A. Sample decompiler input and output.

10

e Chapter 2

REPROGRAMMING TECHNIQUES
AND
DECOMPILATION SYSTEMS

INTRODUCTION

Reprogramming is the general term under which we will
discuss the problem of transferring a program written for
one machine to another machine. This is also known as the

transferability or portability problem. A program which can

easily and automatically be transferred from one machine

(source) to another (target) is called machine independent.

As we shall see, machine independence is a goal which is
rarely completely attained. Because decompilers were
initially developed as a reprogramming tool, we include in
this chapter a discussion of other reprogramming techniques

along with a review of past decompilation efforts.

SIMULATION

Simulation is the most general reprogramming technique.
The source program 1is interpreted by the target (or more
descriptively, the host) machine via a software system which
examines each instruction of the source program and then

executes a set of host instructions which will produce the

11

desired effect. The simulator wusually consists of a
software representation of the control and functional
components ~of the target machine. A pseudo location
counter, memo;y, and state information are kept by the
program. The simulation is usually done at the bit level,
where every bit of information which is in the source
machine appears in the host machine. A functional
simulation, on the other hand, is concerned with producing
the same effect as the source program running on the source
machine, but every bit of information may not be faithfully
represented.

Simulation has several advantages in the context of a

reprogramming effort:

0 A simulator 1is weasily instrumented so that the
functions of the simulator can be easily traced.

0 The cost of building a simulator for a machine may
be quite low compared to a hardware implementation
(depending on the match between the source and host
machines), particularly if the entire source
machine is not modelled.

o] If the source program needs to be run only a few
times on the host machine, the cost of_simulating
the source program may be negligible, especially if
a simulator already exists.

o The source machine need not be a "real" machine.

Paper machine designs can be tested, at least at

12

the functional 1level, before they are built.

Knuth”s MIX machine (Knuth 1968) is an example of a

- .paper machine that is used for pedagogical purposes
in many colleges and universities.
Lisadvantages of simulation can be listed:

0 Since every hardware instruction of the source
machine is interpreted through a software routine,
the ratio of host machine cycles to source machine
cycles can be very high, typically 50 to 1 or
greater. This can lead to intolerable machine and
real time costs for production programs.

o) Hardware characteristics, such as time dependencies
and 1input/output de?ices, can often not be
simulated and may cause some programs to be

non-transferable even by simulation.

EMULATION

Emulation used to be wunderstood as the interpretation
of' the source machine code by a host which is hardwired to
perform the instructions of the source machine in almost a
one-for-one simulation. The introduction of microprogrammed
machines with writable control stores has blurred the
distinction between simulation and emulation, but the
distinguishing characteristic is the presence in an emulator
of a hardware capability in the host machine to interpret

the source machine code without a significant (order of

13

magnitude) degradation in performance.

Emulation is a capability sometimes offered by computer
manufacturers in order to attract customers away from the
competition with the promise of program compatibility.
Emulation 1is also wused to provide a way for current
customers to move software from obsolete machines to more
modern ones in a new product line. The IBM 360/65 emulation
of the older 7090 series machines was an example of the
latter case. The native instruction set of the 360 was
incompatible with the 7090 but the emulation feature of the
model 65 enabled 7090 customers to make the transition to
third generation hardware without a massive reprogramming

task. The software could be gradually translated or retired

from service without the necessity of running both real

machines simultaneously.

AUTOMATIC TRANSLATION

An automatic reprogramming system ftranslates code
written for the source machine into code which will execute
on the target machine, without any manual corrections being
required. This approach to portability works well as long
as the source and target machine architectures are similar,
that is, all operations which may be invoked on the source
machine have a corresponding operation or set of operations
which will cause the same net effect on the target machine.

In other words, the source machine operations are covered by

14

the host machine.

Most translators in existence today are examples of
this class of reprogramming aid. For instance, a FORTRAN
compiler transiates code written for a hypothetical FORTKAN
machine into a set of instructions for a real machine. The
det'inition of the FURTRAN machine has been standardized in
an attempt to provide the ability to transport FUKTRAN
programs from one host to another. The computer industry
has been partially successful in adhering to such standards
for FORTRAN, but the temptation for a manufacturer to
"improve" the definition of the FORTRAN machine is almost
overwhelming, so that many super-sets of the standard
FORTRAN exist. This leads to incompatibilites between
manufacturers. The desire of FORTRAN wusers to write their
programs 1in a machine dependent manner for the sake of
efficiency or expediency leads to FOKTRAN programs which
cannot be automatically translated. (In the above
discussion, the reader may substitute the name of almost any
higher level language for "FORTRAN.")

Unfortunately, the programs which are prime candidates
ror transportation to different computers are often those
which exhibit the obstacles to such a move. Because of
their production nature they were programmed to run
efficiently, and hence many machine dependent features were
used to save space and/or execution time. Automatic

translation of these programs becomes an unattainable goal.

15

SetI-AUTUMATIC ANv MANUAL TRANSLATION

It is often the case that a program written 1in one
dialect-.of FORTRAN or other high 1level language can be
translated almost completely and automatically by a compiler
for another dialect. Usually there remain small but
annoying changes which must be manually made to the program
before it will compile in toto or execute properly. The
advantage of these semi-automatic systems is that they do
most of the work.

The difficulty of applying semi-automatic translation
techniques to transport low level language programs from one
machine to another 1is proportional to the differences

between the source and target machine architectures and how

‘often those differences are important to the proper

execution (meaning) of the program. For example, the source
machine may use a signed magnitude representation of
integers, while the target machine uses two’s complement.
Wwhether the OKing of a one into the sign bit of a data item
is 1intended to do sign conversion or is just a logical bit
modification to be wused as a flag, determines how the
instruction will be translated.

When a semi-automatic translator seems useless because
of the incompatibilities between the source and target
machines, the only avenue left is manual translation. In

that case, a human being determines the algorithm the source

program represents and translates the algorithm (rather than

the program). The algorithmic representation may be
considered as’ some abstract representation which 1is

independent. of any real machine architecture.

A SURVEY OF DECOMPILATION SYSTEMS

bDecompilers fall into the class of semi-automatic or
automatic reprogramming aids. Figure 2-A 1illustrates how
the decompilation process can help to achieve pfogram
transferability. A decompiler is distinguished from the

other reprogramming aids mentioned earlier in that its modus

operandi involves the translation of 1low 1level language

programs into ones expressed in a higher level language.

This higher level language is then recompiled to run on the

.target machine. Housel (1973) has described the early

decompilation efforts preceding his work. Those earlier
efforts will be mentioned here in 1less detail. Housel s
work and others he "has not discussed will be presented in

more detail.

Halstead

The origin of the term "decompiler" has been attributed
to the 1960-1962 decompiling project at the Navy Electronics
Laboratory where a series of translators were developed by
Halsteaa, Englander, and Donnelly to aid in the conversion
of software for CDC, UNIVAC, and IBM machines to the NELIAC

language. This work 1is reported by Halstead (1962, 1967,

1970). This effort was successful in translating up to 98%

of some prograns, but manual editing of the results was
still otten necessary. (It is interesting to note that the
same M.-H. nalstead, 1in 1971 at Puraue University, became a
co-principal 1investigator of an NSF funded "Inverse
Compiling Study" (Grant GJ 31572) and has recently renewed
the academic interest in decompiling through this project
which has diréctly or indirectly produced several Ph.D.
dissertations in the area.)

low level source language (S)
for machine M

Decompiler
S ==> T

target language (T)

Compiler
T -=> M~

low levei language
for M’

Figure 2-A. Decompilation for program transferability
from machine M to machine M7,

Sassaman

In the case of the work of Sassaman (1966) at TRW, the
source language was IBM 7090-7094 assembler language and the
target language was FORTRAN. The motivation behind this
translation effort was to aid in the conversion of their

second generation software to a new third generation

18

computer. It appears to have been successful in its goal of
translating scientific application programs by performing
most of the . clerical drudge work of translation and 1in the
initial and final phase providing capability for human
editing and guidance if necessary. Unfortunately, this work
was never fully reported and the five page article
reterenced here (Sassaman 1966) does not present any

non-simple examples or statistics to indicate 1in detail the

structures, algorithms, or performace of the system.

IBi -~ ACCAP

Housel reports on the IBM ACCAP (IBM 1967) "Autocoder

to COBOL Conversion Aid Program"™ which has as 1its source

machine the decimal, variable word 1length 1400 series of

computers. This was another aid to relieve the shock of the
second/third generation computer transition. According to
Housel, ACCAP created inefficient, often one-to-one
translations which were on the average 2.1 times larger than
the source 1in terms of core storage usage. This type of
translation made hpman'optimization of the output desirable,
if’ not necessary.

The use of this type of translation can be justified on
several grounds, despite its inefficiencies. If the target
program will only have a short lifetime of use, inefficiency
can be tolerated. The mechanical translation phase frees

humans from the laborious task of total translation and

19

often human time 1is much scarcer than machine time. The
inefficiencies’ introduced may not be significant with regard
to the resources available. For example, if the output of a
decompiler is within the maximum bounds of space and time
ror the system on which the target program is to execute,
then the fact that the program may be three times larger or

two times slower than the original may be no real concern.

Barbe -- PILER

The PILER effort reported by Barbe (1969, 1974) is an
example of a system designed to handle a large class of
input languages and target languages. The structure of

PILER 1is shown in Figure 2-B. The 1input 1language is

decoupled from the system by an interpreter which converts

the machine language to a standard "micro-form" format.
This format 1is essentially a pseudomachine language for
compact representation of machine language instructions.
The analyzer reads micro-form text and converses via a
flow-chart language with a human operator. It builds a
program in an intermediate 1language which is input to a
phase called the converter. The converter decouples the
decompile analysis phase from the target language. It
accepts the intermediate language output by the analyzer and

translates that to the compiler language.

20

input program

Interpreter

micro-form format

Analyzer |e—-w=flowchart e—-—iHunan

L~ intermediate language

Converter

compiler language
Figure 2-B. The structure of PILER.

The design of PILERK is of special interest as a prototype
for future decompile;s which are built to handle more than
one source language/target language pair.

It is a classic example of a three-stage translator
where the first stage decouples the input from the inner
workings of the system, the central portion does all the
work in a standard format, and the final stage translates
the standard format into the ‘output language. Some
meta-compilers provide another example of this kind of
organization. The first stage reads syntax tables and

parses the 1input language into an intermediate (usually a

21

parse tree); format. This intermediate language is analyzed
and an assembler language is output which is then translated
by an assembler to the target machine. The wuse of a
standard asseﬁbler for the final translation frees the
meta-compiler from the chore of creating actual machine
code,

The interesting questions with regard to the PILER type

of translator organization are:

0 What 1is the ef'fort required to match the
interpreter to the input? Do we write some
subroutines and change some tables? Is the
structure of the interpreter itself unchanged?

0 What class of input languages can the interpreter
be expected to accept?

o) How much do we pay for generality in the execution
speed oi the translator?

0 Is the anaiysis phase really independent of the
input language and output language? If not, what
changes nmust ‘be made to accomodate different
source/target pairs? How many ad hoc¢ data
structures, or special case code segments appear in
the analyzer? This question really asks whether
the analyzer is completely decoupled from the
source and target languages.

o Can the output section be easily accomodated to

different target languages? What classes or

22

characteristics of the output language are
critical?

PILER s micro-form code seems its most obvious weak
point. This 1low 1level 36-bit compressed format 1is an
attempt to reach a 1lowest common denominator for machine
languages. The tight coding of the micro-form text does not

leave the PILER design adaptable to changing requirements

imposed by new source and target language pairs.

Hollander

In his Ph.D. dissertation, Hollander (1973) describes
a decompiler designed around a formal syntax-oriented

metalanguage. An implementation of a decompiler to

translate a subset of IBM 360 assembler language to ALGOL is

discussed.

Hollander s decompiler model was meant to be applicable
to a large number of source/target language pairs. His
design is significantly different from any other decompiler
system reported 1in the literature. Figure 2-C illustrates
the five phases of Hollander’'s decompilation process.
However, it is the implementation of each of these phases as
an interpreter of sets of meta-rules which distinguishes his
work.,

(The techniques of wusing meta-rules (or programs) to

separate the workings of an interpreter (or machine) from

any particular application of the interpreter was an early

fundamental. contribution of computer science to information
processing. The most common example of these techniques is
seen in--the. stored program computer. These techniques have
also been applied to the design of translators and are

summarized in Feldman and Gries (1968).)

Initial Phase

l

Scanning Phase je—e=|Parsing Phase je—=|Construction Phase

1

Generation Phase

Figure 2-C. Phases of Hollander's decompilation model.

Hollander, seeing the inherent commonality of processes
between the operations of a compiler and a decompiler, has
adapted some of the techniques used in contructing
translators to tne construction of his decompiler. On the
surface, this approach might seem to lead to a large pay-off
in the adaptation of well-developed and analyzed methods to
a new use. While the syntax-directed methods advocated by
Hollander are very useful 1in decompiling certain classes of
low level programs, there is a fundamental weakness in this
design leading from the basic differences in the nature of
compilation versus decompilation.

Syntax-directed translation is essentially a

pattern-matching operation where the static structure of the

24

text to be. translated is examinea through a "window" which
is moved over the text. When a pattern is recognized, the
text matched is replaced by a token symbol, some code may be
generated, or an error is signalled. In any case, the
syntax rules specify a structure (pattern) which the
programmer who produced the input text must have followed in
order to produce a legal program. Assembler language 1is a
weakly structured form for expressing computer algorithms
because the number of patterns which the programmer can
produce to create a given effect is not constrained by many
syntactical rules. Therefore, the meaning (semantics) or
intent of the sequence of assembler language statements (and
its decompiled form) may be less than clear.

Decompilers which wutilize a syntax-directed approach
can only hope to translate static patterns or structures
which appear in ;he low level programn. Hollander s
decompiler would work very well on translating the output of
a compiler Dback to the original source language (as he has
apparently done in some eXxperiments with an ALGOL-W
decompiler) because for every source statement in the higher
level language, the exact pattern of object 1level
instructions 1is known (assuming no optimization has been
applied). These patterns could be used in the syntax rules
of the decompiler to reverse the translation. As Hollander
states in the conclusion to his dissertation (p. 151):

"The principal limitation of the decompilation scheme
developed here is the inherent difficulty of mapping a

25

weakly structured (source) language into a more highly
structured (target) language. The disparity between
degrees of structure of the two languages introduces

difficulties into both the analysis and synthesis
aspects of decompilation."

So many spéciél cases of unexpected statement sequences
occur in most assembler language programs that they should
be handled by a global analysis phase which constructs the
control flow graph of the brograms -- looking for patterns
in the control graph rather than in the assembler language
program itself.

Une of the great benefits of structured programming is
that the control flow of a program is represented clearly in
the syntactic structure of the program text. 1In "GOTO-less"
programming, a control pattern has only one of a very few
counterparts in the higher level language. This one-to-one
mapping is what makes the understanding of well-structured
programs easier. The pieces of an unstructured program text
represent many possibié primitive control paths when viewed
through the small window of a syntax scanner. The whole
pattern of control flow may not be recognized because of
redundant or misleading statements which appear in the text.
These would be tiltered out if a control graph were used to
recognize structure.

Une way to relieve syntax-directed decompilers of this
problem of control flow recognition is to have a preparatory
phase which "re-writes" the assembler language

program by

putting it into 3 standard form for the parse rules to

26

recognize. - This phase would normalize the input to the
parsing phase and reduce the number of special case patterns
necessary.-to -recognize each type of target language
structure.

In summary, Hollander’'s decompiler is important in the
evolution of this type of translator, since it represents
the first reported attempt to apply the metalinguistic
techniques of compiler writing to the task of creating

decompilers.

Housel
The Ph.D. dissertation of Housel (1§73) represents an

approach to decompilation similar to that of Barbe’s PILER

and very much different from that of Hollander. Housel has

attacked the weak point of PILER, the micro-form text, and,
in addition, presented a major contribution to the
exposition of the hature of decompilation in general and the
process-directed (as opposed to syntax- or pattern-directed)
approach in particular. ,
The thrust of all of the decompilation efforts
discussed has been toward the use of decompilers for program
transferability. Housel’s decompiler is also oriented
toward that goal. Housel created an experimental decompiler
which translated Knuth’s MIXAL assembler language (Knuth

1968) to PL/I. The major phases of Housel’s decompiler are

shown in Figure 2-D.

MIXAL program

|

Partial Assembly

partially assembled program
and
symbol table

Analyzer

Intermediate text (IMTEXT)
and
tables from analysis

PL1GEN

PL/I program

Figure 2-D. Housel's decompiler model.

Note that the input language is not decoupled from the

analyzer as in the PILER model . However, from Housel’s

description of his decompiler it appears that most of the

work is done on the IMTEXT version of the input and thus

provides the buffering 1level neécessary for some machine

independence.

IMTEXT is a general "assembler language" which

Specifies data movement between storage elements and the

operations upon them. The format is flexible andg adaptable,

(In the course ot my early research I also independently

developed a similar approach to the encoding of program

information in

4 source-target machine independent format.,)

- - W wm “\““““““

The economy of storage of 1information shown 1in PILER
micro-code is traded for generality and ease of adaptation

to new regquirements.

Friedman

The Ph.D. dissertation of Friedman (1974) represents
an effort to transport minicomputer operating systems code
written in assembler language from one machine to another
within the same architectural class by modifying Housel’s
decompiler system (Housel 1973). Friedman follows the
prototype model of the transfer process illustrated in
Figure 2z-A. The target language of the decompiler is FRECL,

a systems implementation language designed by Friedman and

.oriented toward the class of machines (M), generally known

as minicomputers. Friedman built a FRECL compiler to
translate the output of the decompiler to the machine
language of the targét machine, a Microdata 1621 computer.

In his first experiment using the decompiler, Friedman
converted portions of the IBM 1130 Disk Monitor System to
FRECL and reported on the problems 1involved 1in the
translator process. 1In his second experiment, the operating
system of the Microdéta 1621 machine was translated to FRECL
and then compiled back into 1621 machine code. He reported
on the results of the various stages of this process.

Since - the work described by Friedman in his

dissertation closely resembles that conducted in my own

29

research, @& comparative study of the results of these two

projects will be presented in Chapter 6.

de Balbiﬁé“;- The "Structuring Engine"

A different facet of the uses of decompilation is
represented by the work done by Guy de Balbine (1975). The
"Structuring Engine" (about 30,000 1lines of PL/I_code)
restructures FORTRAN programs for IBM, CDC, UNIVAC, and
Honeywell computers into a super-set language called
S<FORTKAN. S-FORTRAN provides the structured coding
constructs which are missing from regular FORTRAN. The

translation process may rearrange or rewrite the program in

order to meet constraints imposed by structured programming

-techniques; however, the resultant program is functionally

identical to the original with respect to its execution
(ignoring possible timing considerations).

The S-FORTRAN version of a FORTRAN program 1is used as
an aid to understanding the original program. In addition,
the new S-FORTRAN version of the program text can become the
new working source for the program since an S-FORTRAN to
FORTRAN translator provides the user with the capability of
compiling the S-FORTRAN text back into FOKTRAN.

This technique of using decompilation to achieve a more
understandable representation of the source program, while

maintaining the ability to translate the resultant text into

executable code, 1is exactly the theme of the research

described in this dissertation. The "Structuring Engine" is
aimea at a relatively narrow range of source/target program
language pairs, nanmnely FORTRAN and S-FOKTRAN, but the volume
of coade writéen in FORTRAN 1is so substantial that the
usefulness of such a translator is obvious. The emergence
of a commercial product like this confirms my belief that

such translation systems are viable tools which will be

accepted by thne software community.

Ultrasystems

In the Spring of 1974, I consulted on a decompilation
project for Ultrasystems, Inc., (Newport Beach, California).

The purpose of this project was -to create a decompiler to be

~used as a documentation tool for the Trident submarine fire

control software systen. The decompiler was to translate
Trident assembler language to a higher level programming
language known as THLL (Trident Higher Level Language). The
Trident computer is a 32-bit word machine whose instruction
set can briefly be «described as a super-set of the IBHM
360/370 order code incluaing many "hardwired" trigonometric
and stack 1instructions not found 1in many commercial
computers,

This decompilation design effort was unique in several
respects:

1. The source language and its host computer were not

finalized in their designs. No production versions

31

2.

ot-. the machine existed.

The target language (THLL) was in the design stage.

3.- .The potential candidate programs for decompilation

The

would be those 1least amenable to decompilation,
since the bulk of programming for Trident would be
done in THLL and only those programs very critical
in time, space, or other operational constraints
would be programmed in assembler language. On the
other hand, these programs, due to their critical
nature, must be understood 1in detail by the
software staff engaged 1in the maintenance of the
sortware systenmn. The decompiler was to be one of
the aids to such understanding.

The source programs would be characterized by a
heavy use of macros which would not be symbolically
expanded.,

Trident control computer exhibited many

architectural traits which would make a comprehensive

decompiler a formidable program, for example:

a.

condition codes with many different meanings
assigned to the states depending on the instruction
being executed,

byte, half-word, double-word, integer, and floating
data items,

comprehensive stack instructions,

variable field instructions,

32

e. built-in trigonometric and matrix operations, and

f. built-in iterative operations.

The _flow of information through the Ultrasystems
decompiler 1is shown in Figure 2-£. The listing output (AL)
from the Trident assembler systen is input to a
preprocessor. Lata areas are recognized (by the
pseudo-operations declaring such areas) and passed to the
data dgeclaration section of the decompiler, The program
code (AL*) 1is then converted to an intermediate form (IM).
Arithmetic and 1logical expressions are built up from
subexpressions of single assembler language statements (IM¥*)
and the higher level language (THLL) is output along with
the data declarations and types gathered earlier. |

Since my task for the nine days I consulted with
Ultrasystems was to provide the design of the system, the
reader will note the similarities of this design to that
discussed later in éhapter 4, The Trident source machine
(and its assembler language programs) was much more complex
than the source machine used in my own research. This fact
required the creation of special algorithms and information
tables specific to the Trident computer. Of particular
concern was the nature of the side-eftfects of instructions
influencing the condition code settings. See Chapter 3 for

a discussion of this problem.

33

assembler listing output
of source program
(AL)

Normalize Input Data

prepared input data
(AL#*)

Create Intermediate Representation
and
Analyze Data Attributes

intermediate text (IM)
and
data attributes

|

Expression Condensation

condensed intermediate text
(IM¥*)

!

Match Control Structures
to those available in THLL
and
Create Symbolic
THLL Output Program

THLL output program

Figure 2-E. Ultrasystems decompiler model.

34

The Ultrasystems decompiler was not required to create

executable code in THLL. The output was to be used for
documentation purposes. The success of the effort must be
gauged according to that «criterion. Because of time

constraints, the expression condensation portion of the
decompiler was not coded and this affects the readability of
the output since all expressions are of the form "A" or "A
op b" where A ahd B are primitive names. The Ultrasystems
decompiler appears to be a good first attempt at creating
this type of translator for a very complex machine. These
pragmatic solutions to many of the problems in decombiling
Trident programs (problems which do not occur in many less

powertul computers) deserve an examination by any one

considering undertaking a similar task.

The Ultrasystems decompiler was written in AED and
executes on a CDC 6700 computer. Documents describing the

decompiler are listed under Ultrasystems (1974).

Ikezawa -- AMPIC

An interesting use of a decompiler-like system is shown
in the work of Michael Ikezawa and others at Logicon, Inc.
(Ikezawa and Kayfes 1975, Ikezawa 1977). AMPIC is a system
written in SnUBOL which translates assembler language to
FORTRAN and interacts with a user to analyze program patihs
and conditions required to take those paths through the

program. It does this by symbolically executing the

35

pgrogran. Many of the processes necessary to a decompiler
are present in AMPIC. Other parts of AMPIC are used in
verifying the existence of certain conditions or the truth
of predicates .introduced by the user. The main purpose of
AMPIC is the validation of low level language programs, such
as are used in small tactical computers. AMPIC has also
been used successfully to verify a FORTRAN compilation of a
larger program. This was done by running AMPIC on both the
source and object programs and automatically comparing the
AMPIC outputs (Ikezawa 1976).

In the case of AMPIC, we see a translator with many of
the features of a decompiler being used for the purposes of

analyzing a program 1in a quantitative and qualitative

‘manner. AMPIC enables a user to examine a program in new

and interesting ways: the program is structured, presented
as a flow diagram, paths can be traversed symbolically and
the low level prograé can be represented in a higher level
language. This blend of decompilation and verification
techniques is an important contribution to the technology of

program analysis.

Proprietary Commercial Decompilers

The importance of the work reviewed in this chapter
under the title "Decompilers" is that each was an attempt to

explicate in the public 1literature information about the

decompilation process so that the "wheel" will not have to

be reinvented each time around. The contribution of
proprietary commercial decompilers to the state of the art
has been__minimal because of the lack of publication in the
open literature. This secretiveness is understandable and
Justified by financial considerations. Contributions to
computer science, however, are only recognized as such when
someone besides a small group of insiders knows about them.
It there have been great advances 1in the technology of
decompilation by commercial interests, they will have to go
unknown as long as they are unpublished. We can only guess

at what goes on inside the commercial decompiler by reading

the advertisements in the trade magazines and newspapers.

SUMMARY
The viability of decompilers -- their usefulness
compared with other methods of reprogramming -- has been

demonstrated by their successful application in diverse
environments. Many decompiler applications have been ad hoc
and unpublished. Others like those reported here, have been
attempts to achieve more generality and to extend the

decompiler technology. This dissertation builds upon and

augments this work.

37

e Chapter 3

DECOMPILER DESIGN CONSIDERATIONS

INTRODUCTION

The purpose of this chapter is to provide a discussion
of the questions to be considered when designing a
decompiler. We will examine these questions under the
following topics

1. preparation of the source program,

2. loading of the source program,

3. internal representation of data in the decompiler,

4. transforzations on the internal representation,

5. translation to the target language, and

6. other considerations.

We Dbegin by defining a decompiler to be a translator

which accepts as its input some program (PL) written in a
low level language (L) and produces, possibly with the aid
of manual 1intervention and other external information, a
representation (PH) of PL in some higher level language (H).
The translation may be done to help a human to understand PL
and/or for documentation purposes. In that case, PH need
not be a program that runs on any machine. Its sole

function may be to represent PL in a form more easily

33

interpreted by human beings. The translation may also be
done for the purpose of transferring PL to a machine which
will be-able to interpret PH in an equivalent manner. The
two goals of decompilation, understandability and
transferability, are distinguished by the interpreter for

which the output is intended.

PREPAKATION OF THE INPUT

What will be the form and content of the input to the
decompiler? The primary choices are machine language,
symbolic text, or a mixture of both with or without
additional information about the program which might prove

usef'ul to the decompiler.

‘Machine Language

A compact representation for PL is its machine language
version. The decompiler could have a pseudo memory much
like a simulator might have that would contain the PL
machine language program bit-for-bit as it would appear in
the memory of the machine for which it was written. A four
thousand word 16-bit/word machine language program would
represent an assembler language program whose listing was
about seventy pages -- a fairly good sized program. This
program could be accomodated in machine language form in 64
thousand bits, or 2K words on a 32-bit machine. The use of
this metnod of representing PL would alleviate any need to

worry about wusing auxiliary memory such as disk for the

39

program text. It allows for the accessing of any portion of
the program without concern about whether that part is or is
not in @gpg_main store of the decompiler,. The decompiler
does not have éo be an assembler if a machine representation
is adopted.

The use of a machine language representation has some
disadvantages, however. When a program 1is assembled and
linked, all of the symbolic information which was present in
the assembler language source i1s translated into a machine
representation. Often this translation 1is many-to-one.
That 1is, several symbols in the assembler program may have

had the same assembly time value, but for mnemonic purposes

the names were different. This distinction is obliterated

"by the assembly process. The fact that certain values which

appear in the machine 1language program are absolute or
relocatable 1is also 1lost after a 1link step in the
translation. Where 6oes the symbolic information come from?
We can adopt a strategy similiar to disassemblers used with
dynamic debuggers, and keep a symbol table around without
the program source. This symbol table can be generated from
the output of an assembler or by a human.

If a symbolic source of PL 1is not available the
decompiler has to generate its own symbols, for example a
serialization using a root prefix. The declaration and
initialization of data areas of PH can be deduced from the

core 1image of PL and the patterns of variable usage and

4o

instruction. flow or from a symbolic source.

The decompiler can perform many functions without a
symbolie .source. For example, we may wish to know whether a
certain piece of code is in a loop, and if so, what is the
terminating condition of the loop. Such information can be
extracted from a machine 1language representation of the
program but for the purposes of human readability, a human

generated symbol table would be helpful.

Symbolic Information

This dissertation treats specifically the problem of
decompiling programs written in assembler or machine

language. A machine language and assembler language

.representation of PL describe the same set of Dbasicd

instructions for tne machine for which they are written.
The main difference between them 1is their symbolic or
mnemonic content.

The symbolic information contained in an assembler
language program cén be passed through the translation steps
of the decompiler and appear in the output. Labels,
comments and symbol wusage can be preserved faithfully.
Since most programs considered as candidates for
decompilation have a symbolic source form, this information
should be used.

A compelling reason to use the symbolic text of PL is

that form may contain information which yields valuable

41

clues about-the program structure or data attributes which

are obscured by the assembly process. Examples of this kind

of information are

O

a subroutine ENTRY statement indicating an entry
point to a subroutine;

a kKbTN statement indicating a subroutine return
which may be actually implemented as a common
indexed transfer;

a DATA statement indicating the initialization of a
variable in symbolic terms which will help
differentiate the data value from just another bit
pattern;

storage reservation statements indicating the
extent of aggregates;

a subroutine CALL statement including a 1list of
arguments;

macro calls which key invocation of special
routines 1in the decompiler to handle idiomatic
expressions. The arguments to the macro can be
used in the translation;

labels indicating a possible control path join
point which might not be reachable except via a
computed GOTO operation or from some external
routine;

symbolic constants, indicating the type of

variables and constants, which aid the decompiler

42

in. generating declarations;

The output 1listing of an assembler not only contains
the sour<e. program itself, but also wusually additional
information such as machine code, statement sequence
numbers, symbol tables, cross-reference information, and
macro expansions. This form of the 1input program seems
ideally suited for use by a decompiler, but the volume of
the 1information presents problems that would not be
encountered with a more compact input form such as machine

language alone.

Formatting the Input

A preprocessor can handle the details of interpreting

.the raw format of PL be it a core dump, load file, assembler

output listing, or some higher 1level language program. If
cross references or symbol tables are to be input to the
decompiler they must also be formatted. Such a preprocessor
is source language dependent but by translating the input
into a standard form it buffers the 1later portions of the
decompiler from input format details.

The exact format of input to the decompiler is not
important but the format should be easy to interpret and
contain all of the information present in the original form
that would be of wuse to the decompiler. In the next

chapter, a particular input format for assembler listing

information is described.

LOADING THE. PROGRAM

Pragmatically, the entire symbolic text of most
programs . of interest to the user of a decompiler are too
large to fit in the high speed memory of many computers.
Thus the decompiler might have to examine subportions of the
text. The maximum memory space available to the decompiler
detines the size of the "window" through which it can
examine the source text. Since in a real sense the window
size determines the amount of information a decompiler can
"know" at one time about the text in the window, several
questions arise:

1. Should the source be passed under the window more
than once as is done in multi-pass translators?

2. How is the information flow past the window managed
to facilitate natural segmentation of the program
text?

3. If analysis requires information outside the

window, what is done?

Multi-pass or Not?

We might consider the multi-pass approach to
decompilation because 1in a single pass system there are

certain kinds of information which are needed before the

text containing that information 1is read. Examples are

symbol definitions, variable usage information, and

call/return protocols in subroutines. The multi-pass
by

approach allows the decompiler to <collect this information
betore 1its starts generating code, but more than one pass
through. _the input data will most probably cause the
execution time of the decompiler to be longer than in a one
pass systen.

The approach taken in the experimental implementation
described in the following chapters is to pass through the
program once. Symbol definitions are extracted from the
symbol table in the listing from the assembler. Information
about variable usage that cannot be retrieved is defaulted.
Subroutines called from code segments under analysis are
considered black boxes which have read/write access to all

variables. Information about call/return protocols 1is

requested from the user.

Segmenting the Prcgram

We would like the physical program segments in the
window to represent a logical segment that can be treated as
a unit. The loading algorithm should be able to recognize,
from clues in the source text, the start and end of certain
logical units. For example, the most natural logical unit
to look for is the subroutine. If the start of a subroutine
is indicated by the wuse of a particular assembler pseudo=-op
(e.g., ENTRY), then the loading algorithm can cease loading
the last unit into the window when it sees such a statement.

(This type of heuristic is not applicable to pure machine

45

code without a symbolic source, because such clues do not
normally appear in the code.) After the information in the
window =isaprogessed, the loader proceeds to load the next
unit. Of course, given any window size, there are logical
units which can exceed that size. The analysis algorithms
must handle those cases where the window is too small, but
perhaps with decreased ability to recognize control
structures and variable usage in code which is not entirely

contained within the window.

Iniormation Sources

During the decompilation process, information about the

code segment wunder inspection is available from three

.sources
1. previously acquired information -- from examination
of previous program segments plus information
provided by the preprocessor, other passes through
the data, or other information sources;
2. the window -- the program segment itself;
3. the wuser -- the decompiler asks the user to supply

the information it requests. (The wuser is
interrogated when the data needed is not available

from the other two sources.)
Intormation needed by the decompiler can be classified

as helpiul or necessary. The distinguishing characteristic

between these two classes is that helpful information is not

46

absolutely . required whereas necessary information is
required.

bxamples of helpful information are cross-reference
pables, commegts, some kinds of variable usage information,
and symbolic names. If helpful information is not provided,
then the decompiler has a reserve strategy which can be
invoked. This strategy assumes the "worst" response to a
request for information, Regardless of the assumption,
however, lack of helpful information does not cause an error
to be committed. An example of such a case is a request for
information about the busy status of a variable on entry to
a subroutine. The "worst case" assumption for purposes of
substitution procedures might be "busy".

On the other hand, lack of necessary information can
lead to errors in some analysis or code generation procedure
in the decompiler. When the need for such information
arises and it cannot‘be supplied by an information source, a
reserve strategy of assuming a '"probable" response and
continuing might be acceptable in most instances. (Of
course, the decompiler could simply give up, but usually
some output is Dbetter than none at all, particularly when
assumptions made by the decompiler are clearly labelled
"caveat emptor".)

An example of necessary information needed by the
decompiler is given in the following scenario -- Suppose the

program under inspection has subroutine calls to procedures

u7

which never return to the calling routine. 1In effect, calls
to these routihes are logically similar to simple transfers
of control. Normally, control flow after a call to
subroutine res;mes after the call but a call to a routine
which does not return could be followed by a code (or data)
segment which 1s not a 1logical successor of the call
instruction. If information regarding the question of
whether a subroutine will return after it is called is not
available, then the decompiler might choose to assume that

it did return and thus cause the construction of an

incorrect control graph.

RhPHhSENfATIUN QUESTIONS

The semantics (or meaning) of the statements in the
source program must be represented to the decompiler. A
natural representation of such information has developed in
computer science --- the graph. The nodes of the graph
contain information about the functional transformations,
evaluations, and movements‘of data. The edges of the graph
represent the sequencing of those operations. A flowchart
is a familiar form of such a graph.

Assume that the decompiler uses a graph to represent
the source program. We have two questions we need to
answer. How is node information represented? How are the

interconnections determined?

48

Node Information

If the meaning of a statement 1in some language is
defined-hy .the interpreter of that language, the choice of
node representation is really a choice of an interpreter for
that representation. One representation we could use is the
input language itself. The interpreter of the statements in
tnat language is (presumably) well-defined corresponding to
some translator, executor pair (e.g., an assembler and a
machine). This choice binds the decompiler to a particular
source language and machine, but we would like to apply a
decompiler to a variety of input languages without rewriting
the routines which interpret the meaning of node statements.

Another alternative to the representation of the

'meaning of source statements is to standardize the language

in which the node statements are written and then translate
all 1input programs into this standard language. This
intermediate language should be simple so that the
interpreter of the statements can be simple. If, on the
other hand, this standard language is too primitive causing
one 1input statement to be converted to many standard
statemehts, then the efficiency of the decompiler will be
impaired. 1In the following chapter an intermediate language

representation is proposed and explained.

49

Control Inteormation

Control flow is determined by interpreting the
instructiens iq the program insofar as they would affect the
control element of the (source) native machine. Machine
defined control sequencing interpretation can be built into
the control graph generation routines and tables. This
information can be found in the machine reference manual and
is machine dependent. Examples of the type of sequencing
operations present in most computers are

1. "do the next instruction" (default sequencing),

2. halt,

3. explicit jump (GOTU) conditional or unconditional,

4. jump to subroutine and save return address.

befault Sequencing. Control interpretation is affected

by the size of the instruction executed. In a machine with
single word and double word instructions the program counter
advances to the next instruction by adding the instruction

size to the program counter.

Halts. Halt instructions are not common in many
programs, particularly ones designed to run in a timesharing
environment. These instructions may or may not have a next
instruction depending on whether it is meaningful to press

the "RUN" button on the machine when a halt occurs.

50

Multiple Successors. A node which has more than one

possible successor has more than one edge directed from it.
In the case of simple conditional transfers the two possible
successors of the conditional instruction are easily
determined from the transfer statement. There are many of
these statements in a common progran. We explicitly
represent the choice of the two alternate paths from a
conditional node by labelling two edges directed from the
node according to the value of the selection function, e.g.,
"true" and "false".

For a computed GOTO-like transfer, there may be many
possible successors of the transfer node determined by the

selection function, The procedure for discovering the

selection function as well as 1its domain and range is

non—trivigl. The best we can do would be to discover the
potential transfer targets by analyzing the possible values
which could be taken by the computed transfer index. We
label the edges emanating from the conditional node with the
value (or predicate) of the selector function which would

cause that path to be taken.

Subroutines. A serious problem in simulating the
control sequencing of a program is the determination of the
control attributes of a subroutine call. This is involved
with the subroutine protocol and linkage conventions used by

the programmer who created the code. There may be several

51

difterent protocols used throughout the program. When the
decompiler interprets a subroutine call, it tries to
retrieve a set of attributes associated with the subroutine
invoked and Qses this set to determine where the next
in-line instruction is. This subroutine attribute list must
be created from some knowledge which can be deduced from the
program by the decompiler or by a human. If such an
attribute list is not available, then the decompiler assumes
a default set of attributes and continues.

The subroutine attribute 1list should contain the

following information:

o) a list of data 1items which are used inside the
procedure, i.e., they are arguments to some
statement in the subroutine.

o) a list of data items changed inside the subroutine,
i.e., an instruction in the subroutine changes the
value of thé data item.

0 a list of data items which are used before they are
changed (if they are changed at all). These are
variables which correspond to a notion of
parameters or global arguments. The values of
these variables are generated outside the
subroutine before entry.

o a list of local variables. These are variables
which are initialized before they are used in the

subroutine and their value is not needed by any

52

calling routine after the subroutine exits. These
correspond to temporary variables of the
. .Subroutine.

o] a list of variables whose values are needed after
the subroutine exits. These correspond to returned
values or global variables set by the subroutine
for later use.

o how to calculate the "return" address for the
subroutine and where to put the value. In general,
thé return address is information which tells the
subroutine where it was called from and is related
to the next iten,

o the return point from the subroutine or how to
compute it given the return address and other
information. A normal return from a subroutine
would be to the return address given it by the
calling proéedure, usually the address Jjust after
the call. In some <cases, however, the return
address may be computed at run time by the
Ssubroutine. A common example of this 1is the
so-called "skip return". The subroutine call is

followed by an error exit instruction which is
skipped over by the return if an error did not
occur. A return past an in-line argument list (of
possibly variable length) is another example of a

computed return address mechanism. The subroutine

53

may not return at all, in which case a subroutine

call is more like an unconditional jump.
The dinformation about the variable usage is needed when
a subroutine c;ll is encountered while analyzing the control
graph for condensation of subexpressions. The information
about the return address 1is needed to determine where

control flow begins again after a subroutine call.

Graph Implementation

The implementation of the representation of the control
graph greatly influences the ease and efficiency with which
control graph transformations and analysis may be carried
out. For example,

0 the process of finding the successor(s) of a node

in the graph should be a simple operation;

o) two-way links should be considered for
representation of the edges so that access to the
predecessor(s) of a node is also easy;

o) the information in the node itself should be easily
read and modifiable;

0 . the inclusion of new structures and data generated

by the decompiler should be allowed.

PROGRAM TRANSFORMATIONS
The creation of the graph representation of the program
involves considerable effort interpreting the control

structure of PL and translation of PL statements into a form

54

to be used in the nodes of the graph. Once this
representation is built, there are natural transformations
of the _graph which are useful in the translation to a large
number of targét languages.

The application of transformations to PL must preserve
the functional meaning of the progran. Given the same
inputs, PL and PH should compute the same outputs. . (This
condition might be relaxed if the output of the decompiler
was not a program to be executed.) What does not have to be
preserved 1s the exact method of computing the output
values. The possible transformations on PL could range from

simple transliterations (identities) to the complete

substitution of one algorithm for another (.e.g., a binary

‘sort substituted for a bubble sort). I do not propose that

a decompiler can or should operate at either of these
extremes.

One of the distinguishing characteristics between low
level languages and higher level ones is their differing
ability to represent the procedure for performing a logical
unit of computation. In low 1level languages expression
evaluation usually consists of a linear stream of primitive
instructions specifying in detail the data movement and
functional transtormations needed to compute the desired
value. The problem with such a description is that the text
contains information about how the expression is to be

calculated relative to the rules of a primitive interpreter.

55

Higher level language statements are instructions to a more
sophisticated interpreter. Less information about how to
perform-the details of a computation needs to be explicitly
stated in a higher 1level language. These primitive
operational details should be suppressed in the output of a
decompiler.

We list some of the more general implementation details
which commonly appear in low level language programs

o use of temporary variables,

o concerns over data storage in fast registers versus
slower main memory,

o conditional or iterative control decisions based
upon peculiarities of a particular instructions
set,

o) movement of data due to incomplete data paths
between memory elements (e.g., lack of
memory-to-memory operations causes movement through
registers).

We distinguish items on the above list from others such
as I/0 programming, word length considerations, different
internal representations for data items, etc. The former
characteristics of a program are not formidable bars to
decompilation whereas the latter are. (See the following
discussion of the problems éf transferability.) We refer to
the former list as soft implementation characteristics, and

the latter as hard implementation characteristics. A

56

successful decompiler deals with these soft problems in a
standardized (non ad hoc) manner.
We-.list some of the transtormations upon PL (its
graphical form) which deal with soft implementation details:
1. condensation of separate subexpression evaluation
code segments into a more nested representation;
2. translation of series of conditional statements
into a logical expression;
3. standardization of control sequences for iteration;
4. "repackaging" of bulky code segments as
subroutines;
5. node splitting and synthetic substitution to avoid
undesirable transfers of control;
6. translétion of idomatic expressions into a standard

form.

Expression Condensation

One of the more important tasks of a decompiler is to

combine data movement and operation statements of the low

level language into expressions in the higher 1level
language. Figure 1-A shows an example of this kind of
condensation. Chapter 4 discusses the algorithms necessary

to perform this condensation. These algorithms are based on
analysis of the usage of variables in the low level program.
If the temporary uses of variables can be identified, they

can be eliminated. Most temporary uses are naturally in the

57

registers of the source progran. However, 1f a general
approach is taken to the analysis of data movement so that
nain memory and fast register distinctions are eliminated,
temporary usés of non-register variables can also be
detected. This is particulary important on machines with a
small number of accumulators where the usage of main memory

to hold partial results is common.

Logical Expressions

Conditional flow of control through a low level program
is often the concrete manifestation of a conputation
involving logical (Boolean) values. The task of converting

control statements into logical expressions in a higher

level language is more difficult than the task of expression

condensation. It 1is a superset of that problem. The
execution 1independence (defined in chapter u4) of control
statements and data manipulating instructions must be
determined if we expect to condense any but the most trivial
logical expressions.

The ©basic logical expression condensation techniques
involve recognizing some simple control patterns in the
sourcé program. Figure 3-A illustrates a pattern of control
based on serial tests which can be combined into one test
with a more complex conditional expression. Various
translations selected depend upon the sense of the tests

involved and the desired sense of the resultant test.

58

s2 exp3 82
c
cl
s1 31

a b exp3 (c=true) exp3 (c=false)
false false expl’ or exp2’ expl and exp2
false true exp1’ or exp2 expl and exp2
true false expl or exp2’ exp1’ and exp2
true true expl or exp2 exp1’ and exp2

Figure 3-A. Combining serial tests. Formation of
resultant values given sense of the tests.
Of course, the transformation of Figure 3-A can be applied
recursively to condense a series of more than two

conditional tests into a single test.

=tandardization of Iterative Control

One of the difficulties in understanding the iterative
flow inilow level languages is the fact that the programmer
usually has an almost unlimited selection of techniques and
instructions at his disposal when he creates a loop. The
higher level language may have only one type of iteration
statement. If this is the case, then a decompiler should be

equipped to perform the translation of a set of different

59

iterative control structures into the standard sequence in
the target language.

For example, suppose that our target language has only
one type of iterative statement -- one with a pre-test. Let
this statement be a WHILE statement of the form:

WHILE exp DO statement.
Consider source program loops of four kinds -- no test for
completion (infinite loop), test at top of loop (pre-test),
test 1in the middle of the loop (mid-test), and test at the
end of the loop (post-test). (The infinite loop appears in
systems programs where the occurrence of an external event
such as an 1interrupt causes an exit from the loop.) Figure

3-B illustrates flowcharts for each of these four loops and

‘their translation into the target language.

In the case of the infinite loop, a variable with the
constant value of true 1is 1inserted in the conditional
expression test of the loop. The pre-test loop translates
directly into the target language. The loop with the test
in the "middle" can be translated by a process of
node-splitting (S1 is duplicated). A similar process takes

place when the test is at the end of the loop.

60

P

intfinite loop

[¢)]

-

pre-test loop

S

mid-test loop exp

post-test loop @ -
T

WHILE true DO s;

WHILE exp DO s;

s1;
WHILE exp DO
BEGIN s2; s1 END;

S; WHILE exp DO s;

Figure 3-B. Looping control structures.

61

The process of node-splitting or copying nodes in the
body of the target program can be achieved two ways -- the
code can_.be physically copied so that it appears in two
locations, or it can be put into a subroutine and calls to
this synthetic subroutine are generated in the appropriate
places. The choice of which approach to use depends heavily
upon the volume of code in the copied statements. A large
volume of code stiould probably not be copied, but rather put
in a subroutine. On the other hand, if the statement were a
primitive 1in the target language, such as a simple
assignment statement, then the duplication of the code could
be tolerated. (Node splitting is a common technique used in

the optimization phase of a compiler. Aho and Ullman (1973)

‘describe this technique.)

KHepackaging Code Segments

For readability, the size of the code controlled by a
conditional test or iterative test should not exceed a
"comfortable" maximum. This maximum 1is a subjective
quantity, but I suggest from experience that the body of an
IF statement, for example, should probably not exceed thirty
dr forty lines or about one-half of a line-printer page. If
the body gets much larger than that, the physical position
of the controlling expression is not "close" to much of the
code controlled.

In the University we try to encourage students to write

62

modular prograns using subroutines and functions in order to
reduce the size of any one portion of code,. The same
philosophky.-can be programmed into a decompiler so that when
a single entry, single exit sequence of code exceeds a
certain size one or more portions of it are placed in
synthetic procedures. This approach becomes of particular
importance when the nesting level of certain expressions
such as IF...THEN...ELSE becomes greater than two or three
and the code contains tens (if not hundreds of source lines
as each level.

The suggestion is to try to repackage the code segments
into smaller portions, when the original programmer did not

use a modular programming technique. The critical question

is where should the code be broken? Can any measure be used

to determine a wmodularization process that will be any
better than a random choice? This subject relates to the
problem of partitioning digital circuits into sub-components
on several printed «c¢ircuit cards. This hardware design
problem has been reviewed by Breuer (1972). None of the
decompilation systems reviewed in the course of preparing
this dissertation (see Chapter 2) have attempted the
solution to this problemn. The experimental decompiler
described in later chapters does not perform this task

either. The topic has been left for future research.

63

GOTO=-less Target Prograns

In the discussion of standardization of iterative
control we mentioned the process of node splitting used to
transform an iterative control structure of the source
program into a standard forn. Another process of
standardization, the elimination of GUTO statements from the
target program, deserves some mention.

Knuth (1974) -elegantly summarizes the debate which has
raged the last few years over the GOTO statement in
programming languages. He 1lists 102 references to the
literature on this subject for the reader who wishes to

investigate the matter in great detail.

In our discussion of this matter, let us assume that we

‘wish to avoid generating any occurrences of GOTO statements

in the target program output by the decompiler. The node
splitting techniques help us when we have loops involved but

node splitting by 1itself cannot help us standardize certain

control graphs. (See Aho and Ullman 1973). The
introduction of synthetic control variables may be
necessary. The state of the control variable is altered to

cause certain paths through the program to be taken when it
is tested in a conditional target statement.

An example of the introduction of a synthetic control
variable to remove a GOTO statement is given in Chapter 4,
The real question 1is whether a decompiler should seek to

achieve a goal of creating GOTO-less target programs. The

64

weak structure ot low level languages almost assures that
the average programmer will write many control structures
which would need to be handled by such a mechanism. In the
node-splitting and synthetic control variable processes,
code would be created 1in the target program that had not
appeared in the source. If the decompiled program is used
for production purposes, one must consider the extra
run-time computation introduced into the target program. 1In
any case, as Knuth (1974) points out, we can expect the

result of removing the GOTO statements from a badly

structured program to yield a badly structured program.

Idiomatic Expressions

Housel (1973) cites a definition from Gaines (1965)
which describes an idiomatic expression as "a sequence of
instructions which form a logical entity, and which cannot
be derivea by considering the primary meaning of the
instruction." An interesting feature of a decompiler is the
recognition of these idioms 1in the source program and the
translation of the meaning of the statements rather than a
literal paraphrase in the higher level program.

If the source and target machines are very similar, it
is reasonable to expect that they will have many idioms in
common. In that case, a literal paraphrase would not be

incorrect in the target program, but would be less desirable

than a more general translation of the idiom. An example of

65

this type of idiom occurs on machines with two’s complement
arithmetic. The two’s complement value of a register can be
calculated by taking the one’s complement of the register
and adding one. Some machines provide this function as a
primitive operation, some do not. Another example is the
complement instruction itself. Some instruction sets do not
have a complement instruction, but rely upon the
exclusive-0OR of a word of all ones to perform this
operation.

An experienced assembler language programmer will have
a vrepertoire of many idioms in his bag of programming
tricks. Some of these may be codified in macros; most are

usually not. The more general and often used simple idioms

‘(such as those mentioned above) can be recognized by the

decompiler and converted into a standard phrase in the

target language.

CREATING THE OUTPUT PROGRAM

The decompiler should translate patterns of PL
instructions into the highest 1level constructs for PH
commensurate with program understandabilty. The kinds of
control structures to be generated are, of course, related
to the high level target language but some typical patterns
to be recognized and dealt with are expression evaluation
anda assignment, conditional statements, conditional and

iterative 1loops, subroutine calls (including argument

66

passing) and returns.

The main reason for choosing an intermediate language
representation for the input program 1is to provide some
independence oé the internal decompiler processes from the
details of the particular input language. The analysis
routines manipulate the intermediate graph structure. The
output routines translate this graph structure to the target
language. We have the problem of translating the control
structure information and node information while providing
some independence of the intermediate form from the target
language.

The use of table driven procedures and localization of

information regarding the specific target language can yield

Aoutput routines which are easily adapted to a wide range of

target languages. In the following chapter we discuss the

design of such a set of output routines.

PRUBLEMS OrF TRANSFEKABILITY

The translation of the recognized constructs, both data
and control, into the higher level language requires the
mapping of these patterns tc an equivalent construct in PH.
In the case of translation for wunderstandability, the
equivalent structures caﬂ be whatever representation is the
most convenient for illustrating the behavior of PL. Since

a human being is the interpreter of this output, details of

implementation can often be suppressed in order to present

67

the more general aspecﬁs of the algorithm.

In the case of decompilation for transferability, the
problem. is more difficult, especially with respect to data
structures. Two concepts to be mapped from PL to PH are
positions of data items in relation to others in memory and
the 1length of the data fields. A mechanical interpreter
must be presented with a procedure which it can follow to
generate the appropriate outputs given inputs in the domain
of PL. Each small side effect which may influence the
output of the procedure must be faithfully reproduced. This
is the general reprogramming problem discussed in Chapter 2.
These problems influence the quality of the output of the
decompiler along several dimensions

o) time and space -- often less efficient algorithms
must be used on the target machine;

0 readability -- —contortions appearing in PH to
simulate some feature used in PL may obscure the
purpose of the code;

0 unrepresentable algorithms -- some statements
appearing in PL may not have any analog in PH
(e.g., I/0 instruections).

Because of the difficulties of achieving a general

translation which is acceptable as a production program, the

use of a decompiler for transferability can only 1lead to

success if the interpreters for PL and PH are
"well-matched". This means that the differences between the
638

interpreters in the area of hard program implementation
characteristics are minimal. It is not sufficient for the
higher Ilewel iqterpreter to cover the lower level one. For
a production program it must cover the 1low level

inplementation features efficiently.

wWword Lengths

biffering word lengths pose a particularly difficult
problem for the decompiler. Either the word size of the
source machine must be simulated on the target machine
(time-consuming) or the algorithms and data structures must
be translated into something equivalent. For example, a

simple counter in PL whose value does not exceed 100 can be

.easily represented in practically every computer ever built.

If the range of values in the counter was 0-100,000 then the
16-bit word of a mini-computer would not be capable of
storing the value.

Assume we have a program PL which was written for a
machine with a native byte length of six bits and the target
machine on which the high level program is to be translated
has an 8-bit byte. What do you do? Do you assign each
b-bit byte to occupy one 8-bit byte and let the other two
bits per byte go unused? This would seem to be a natural
solution to the problem. However, what if the low level
program used the fact that the rightmost bit of the nth byte

was physically next to the leftmost bit of the n+1st byte?

69

Are we reduged to simulating the 6-bit/byte feature on the
§-bit/byte machine by creating subroutines and artificial
data strugtures which do not fit in with the native mode of
the target maéhine? That is what is done when we choose a
high level target language which has facilities for the
description of arbitrary data structures which do not match
the primitive structures and accessing methods of the

hardware. The attendant inefficiency associated with the

execution of the PH representation of PL program would make

- decompilation for the sake of transferability of most

production programs an unattractive alternative to
emulation. (Note that emulation is interpretation at the

hardware or micro-code level.)

Utner Machine Dependencies

Most programs use only a small number of tricks or
features of the interpreter which make them truly machine
dependent algorithms. A human being who wishes to translate
the program to another machine of dissimilar characteristics
searches the program for these and recodes the algorithm in
another manner which is amenable to the architecture of the
target machine. For example, consider the translation of a
program written for a 16-bit minicomputer which has byte
addressing, to a machine similar in other respects except
that it has a word addressing mode only. A human would

examine the program to be translated for all of the

70

expression calculations which are address computations and
adjust them to reflect the word addressing mode of the
target computer. He might change loop increments from two
to one for a word array access. All ©byte accessing
instructions might be changed to simple subroutine call or
in-line code consisting of load, and shift or mask
operations. The representation of byte pointers might have
to be changed to reflect the word addressing architecture,
but the bulk of the program logic is unaffected by the
machine differences.

If a decompiler can be programmed to simply recognize
the hard implementation characteristics of PL, and to fix

the ones it can and flag (or announce) the ones it cannot,

'the Jjob of transferring the program would be much easier for

humans. Of course, the more similar the architectures of
the two machines, the easier the task. As they get more
dissimilar the task becomes more difficult wuntil manual
reprogramming, emulation, or simulation is the only recourse

left.

STURAGE STRUCTURE RECOGNITION

The kinds of data access patterns which should be
recognized are indexing, indirection, bit, byte and word
accesses, as well as data structure accesses to stacks,
queues, deques, lists and arrays. Some data structures may

be equivalenced in PL, 1i.e., one structure may partially or

71

totally overlay another. For example, an array of items may
be treated as a string of bits one time, floating point
variables.another time, and bytes of character strings in
yet another part of the progran. Obviously, the kind of
manipulations of data items allowed by 1low 1level languages
are often difficult for a human being to properly interpret
so we should expect a decompiler to have difficulties in
this area also.

Patterns ofrdata access are only a clue to the extent
of a data structure such as an array, for example. Given no
other information, a set of simulations or the symbolic
execution of the program PL could indicate the total

possible set of values which an index variable might assume

'during a computation. A static determination could be made

in some cases (for example, a loop with constant initial and
final index values). The symbolic declarations of an
assembler language program would be helpful in determining

the extent of a storage structure.

STATISTICS GATHERING
The decompiler, in addition to creating the target
program, can gather statistical information about PL. Such

information might consist of the number of loops, jumps,

special idiomatic patterns recognized, frequency of

untranslatable code elements, frequency of reference to

certain variables, scope of wvariables, memory maps
72

indicating c¢ode and data areas, types of argument passing to
subroutines, e€tc. Since the decompiler is handling all of
this information and more in the normal course of the
translation, it should be simple to instrument the
decompiler to accumulate any information it may have into a
summary form to be displayed for the user. Such information
shoula reflect in some quantitative way the difficulty the
decompiler had 1in translating PL. This information can be
used to 1lead to 1improvements in the decompiler or as an

evaluation of the programmer who wrote PL.

SUMMAKY

In this chapter I have tried to present a synopsis of
the many design considerations associated with the
construction of a decompilation system. This chapter was a
natural outgrowth of the design work which went into the
experimental decompiler described in Chapter 4., It has been
an attempt to provide a checklist of items which should be
reviewed before a decompilation effort proceeds to the

implementation stage.

73

s Chapter 4

AN EXPERIMENTAL DESIGN

INTRODUCTION
This chapter discusses the design of various parts of
an experimental decompiler built during this research. The
decompilation process can be considered to consist of seven
steps:
1. preparation and formatting of the source program;
2. loading of the source program into the decompiler;
3. creation of a directed graph representing the
control flow of the program;
4. translation of the source program instructions into
an intermediate "machine independent" code;
5. analysis of variable usage for expression
condensation;
6. control structure recognition and translation to
the target language;
7. postprocessing of the output of the decompiler to
accomplish any agtomatic editing or manual changes.
We will treat each stépr in turn, focusing on the general
algorithms and data structures developed without subjecting

the reader to language or machine dependent details.

T4

Algorithms described in this dissertation will be written in
a notation which 1is a natural mixture of several modes of
presentation. The purpose of this notation is to convey to
the reader the- basic mechanisms of the process involved in
the algorithm without ©burdening him with implementation
details. Following chapters will discuss the particulars of
the implementation along with the results of some

experiments on real production prograns.

PREPARATION OF THE SOURCE PROGRAM

As discussed in Chapter 3, the preferred input to a
decompiler is the symbolic source program so that symbolic
names and comments may be preserved by the decompiler. The
output listing of an assembler is well suited to this use.
To buffer the later portions of the decompiler from vagaries
in listing format, a front-end routine is needed to arrange
the data in the form expected by the décompiler.

Consider a prototype format for the listing output of
an assembler. Each statement becomes a 1list of the
following elements:

<{sequence number>
<location address>
<label>

<opcode>

<operands list>

{comments>

75

<value 1list>
where
{sequence number> is an index 1indicating the relative
physiéal position of the assembler statement with
respect to the rest of the statements in the
progranm;
<location address> contains the address where code
generated by the statement is located. If no code
is generated, this field is empty;
<label> contains the symbolic label(s) used on this
statement. If no label is present, this field is
empty;
<opcode> contains the symbolic opcode of the assembler
language statement;
<operands 1list> 1is the 1list of symbolic operands
associated with the source statement;
{comments> 1is tﬂe on-line comment string, if any; and
{value 1list> is a list of the machine code generated by
the source statement (sequentially starting at
<location address>).
For example, assume the source statement
L43 STAE BLOC,1 SAVE LOCATION IN TABLE
when assembled in context with the rest of a program is
source line 110, generates code at location 34725:
006055
035310.

76

The preprocessor would generate a list of the form
(110,34725,L43,STAE, (BLOC, 1),
- "SAVE LOCATION IN TABLE",

(006055,35310)).

A simple comment statement on line 400

¥THIS IS A COMMENT
would generate a list of the form
(400,NIL,NIL;NIL,NIL,"*THIS IS A COMMENT",NIL).

Using the assembler source listing output, each line is
put into the prototype format by the preprocessor. (A
similar approach can be taken to format raw machine code.
The prototype format would not have to be so complex. It
coula consist of (address, con£ents) pairs. This approach
was taken early 1in this decompilation effort and worked
well.,)

In addition to the listing of the source program, many
assemblers provide useful information in the form of symbol
tables and cross-reference tables. If desired, these can be
formatted and provided as an additional source of input to

the decompiler.

LOADING THE DATA

Once the source input has been formatted, the
information can be presented to the analysis portions of the
decompiler. As each formatted 1list is read into the

decompiler, it is put into two vectors, the memory vector

77

(M) and the source vector (S). The memory vector acts as a
pseudomemory -- it contains the code present in the value
list of the input, i.e., the machine 1language and data
generated by the assembler. With each memory value 1is a
pointer to the source vector element containing the source
code which generated the memory value. The source vector
contains the symbolic 1label, opcode, operands 1list, and
comments for each statement. We define M and S more
precisely,
M = { m[i] = (value, Spointer) | i = O0,Mmax }
S = { s[i] = (label,opcode,operands list,comment)
i i = 0, Smax }.

Mmax and Smax indicate the size of the vectors. Two other
Variables, Mreloc and Sreloc, provide for the mapping of the
index of the real memory locations and source 1lines into M
and S as is shown in algorithm LOAD. These variables serve
as relocation factors. The vectors M and S comprise the

window on the source program. The decompiler examines the

source program through this window.

Algorithm LOAD. Given an input 1line L from the
preprocessor, we load the information of L into the vectors

M and S. (For clarity, we assume M and S are not full.)

1. Compute the index on S where we put the source
code.
p := <sequence number> -~ Sreloc.
78

2. We.move the aata from L to S.

s{pl] ~ := (<Klabel>, {opcode>, <operands 1list>,
_ {comments>).

3. 1If tﬁé <location address> is empty, then return.
(This source statement generated no code.)

4. Compute the index M where we start storing program
code and the pointers to S.
q := <location address> - Mreloc.

5. We store the code and source pointer pairs in M.
m{g+k] := (kth item on <value list>, p) for k=0, 1,

,(number of elements on <value list>) -=1.

6. Return.

The problems of window size discussed in Chapter 3 are
addressed by the loader by looking for subroutines headers
and page eject pseudo opcodes to find natural breaks in the
logical-physical structure of the program. The window (M
and S vectors) is loaded until one of these breaks is hit or
until the window is full. The program segment in the window
is then processed and the window is reloaded again. Figure
4-A shows the contents of M and S after loading some sample

input.

79

1

(110, 34725, Lu43, STAE, (BLOC, 1), "SAVE LOCATION IN TABLE",
(6055, 35310))

(111, 34727, NIL, TZA, NIL, "CLEAR AREG", (5001))

S[jl: L43

STAE

BLOC

"SAVE LOCATION
IN TABLE™"

M{i]: 6055 J

[i+1]:]35310 J
[i+2]:]5001 J+1
S[j+1]1: [NIL
TZA
NIL
"CLEAR AREG"
i = 34725-Mreloc Jj = 110-Sreloc

Figure 4-A. Memory variable (M) and source variable (S)
atfter being loaded with information from source
lines 110..111, memory locations 34725..34727.
CREATING THE COWTROL GKAPH
A decompiler nmnust be able to determine the flow of
control through the source progranm for two reasons:
1. to determine how the executed instructions affect
the data of the program, and
2. to recognize control patterns in a weakly
structured program.
The control flow in a program 1s implicitly determined by
tne source machine which executes a program written for it.
Une method of making this information explicit is to create
a control graph where the flow to the next instruction is

inaicated explicitly by an arc in a grapn and the

.instructions themselves correspond to the nodes. Flowcharts

80

are ftamiliar forms of such control graphs.

Stage Une Control Graph

Théngéﬁtroi flow graph created by the decompiler can be
considered to be, 1in the first stage, a directed binary
graph, where each node 1in the graph corresponds to an
instruction of the source program that has been "visited" by
the graph creation algorithm. We assume for the following
discussion, that these nodes can be classified into four

types:

1. normal node, one 1logical successor -- this would
represent all instructions which have one and only
one successor in the control sequence
(unconditional transfers excepted);

2. transfer node, one successor -- corresponds to an
unconditional simple jump.

3. conditional - node, two possible successors -- this
would represent a conditional branch or skip
instruction;

4. sink node, no top-level successors -- this would

represent an instruction which halts the machine,
performs indeterminant jumps (e.g., whose target is
computed at run time as illustrated by an indexed
or indirect jump).

If a node 1in the control graph has no predecessor, it is

called the root node. There is only one root node in a

81

58 N A EE = B O e

control graph. If a node has two or more immediate

predecessors, it is called a Jjoin node. A sink subgraph is

a subgraph where every leaf of the subgraph is a sink node.
(The common terms of graph theory will be used throughout

this discussion.)

The program example of Figure 1-A can be transformed
into a corresponding stage one control graph of the form

shown in Figure 4-B.

LDA X (root node)

ADD =10
SUB Y

JAZ L1 (conditional node)
F

L1
LDA J JMPM SUBR
ADD =2 JMP L2
(transfer node)

STA J

L2:

LDX I (join node)

LDA C(X)
SUB J
IXK

STA B(X)

HLT
(sink node)

rigure 4-B. Stage one control graph for program segment
of Figure 1-A. '

82

The node coqresponding‘ to "JAZ L1" 1is a conditional node.
The two directed arcs emanating from it are labelled "true"
and "false" to 1indicate the condition value needed to
traverse the é}c to the appropriate subgraph. The node
corresponding to YL2: LDX I" is a Join node because it has
two predecessors.

A typical stage one graph structure with a loop link is

illustrated for a program to compute the sum of integers

tfrom 1 to 10

done ©

The STAGE1 algorithm builds control graphs of the kind shown

in Figure 4-B and the above example.

Algorithm STAGET. Builds a stage one control graph.

has one argument, a node x. Returns a control graph rooted
at that node.
1. If x is nil, then return nil.
2. If x has been included in a previous invocation of
STAGE1, then return a link (join link or loop link)

to where x appears in the partial graph.

83

If x is a sink node, then return x.

Wy

4, If x is a conditional node, then return the

~ subgrapn
stagel of "true" stagel of "false"
successor of x successor of x

The STAGE1 algorithm 1is invoked for the "true"
successor first.

5. x must be a normal node or a transfer node. Return

7

STAGE1 of successor of x.

Algorithm STAGE1 obviously needs memory in order to
perform step 2 which keeps it from c¢ycling in an
interpretive 1loop. The supporting predicate evaluations
needed to determine- the type of node as well as the
successor function are dependent upon the interpreter of the
source language, e.g., the machine hardware, in the case of
a real machine language. This information is source machine
dependent and must be built into the decompiler in the form
of tables or functions in much the same manner as for a

software simulator. The successor function may have an

-undefined value if the successor node is outside the window

of the decompiler. In this case, a synthetic transfer node

to the remote successor is returned in the graph. This

84

might turn. into a GOTO statement in a higher 1level
representation.

The .- . definition of a sink node includes source
instructions whose successor cannot be determined by a
static trace algorithm such as STAGE1. A program control
graph would stop with an indexed jump instruction wused, for
example, to 1implement a computed GOTU through a branch
table. This essentially cuts off part of the program from
the control graph and only program structure contained in
the control graph can be decompiled. We are left with a
dilemma of serious proportions since indeterminant control
transfer is a basic capability of almost every source
machine language. What can be done?

Upon recognition of an indeterminant jump, the location
of this transfer node in the pseudo memory is remembered for
later processing and‘the control graph creation continues as
for a sink node. The control graph processing continues to
completion. Then the decompiler is left with tying together
the code segments which can be accessed through the branch
table.

Thé apbroach taken depends heavily upon whether or not
the source program to be decompiled 1is accompanied by
symbolic information such as a program listing. If it is,
then the decompiler can simply process in a sequential
manner the data and code items it cannot reach through the

control graph. The first code item it finds which it has

85

not yet decompiled becomes the root of a new control graph.
This assumption' is, of course, heuristic. However, all of
the code-segments which were in the original program will be
represented in the same sequence, relative to their disjoint
control graphs, as they appeared in the original program
itself. This strategy assumes that the decompiler can' find
the first code item not yet included in any previous control
graph. This can be done, (again heuristically) by examining
the symbolic operation code field of the source
instructions. Instructions represented in the source as
data items will appear as such in the decompiler’s output.
The assumption is that if a programmer meant
ADD X
he would have stated it that way instead of as
DATA 0120000+X.

If the source program is more akin to a memory dump,
with no symbolic information available, either the
decompiler or a human must determine the transfer function
of an indeterminant jump and its possible domain and range

in order to find the target.

Stage Two Control Graph

It 1is important in the process of decompilation to
identify paths between instructions and, in particular, to
identify Jjoin nodes. Join nodes represent a convergence of

several control paths which may conform to higher level

86

control structures such as loops, or represent the
continuation of a common path after following separate
branches _from a conditional node (e.g., the code sequence
following an IF...THEN...ELSE construct).

A stage two control graph is developed from a stage one

control graph by analyzing the occurrences of join nodes and
rearranging the structure of the graph so that later
inspection of' the graph by structure recognition routines
will be facilitated. The process transforms the binary
graph into a ternary one where the conditional nodes and
their subgraphs are rearranged so that the portion of the
subgraph at and below the join node is attached to the
conditional node common to Both entering paths. For
éxample, the first stage control graph of Figure 4-B is
transformed into that of Figure 4-C.

The stage two algorithm creates synthetic transfer
nodes to the join subgraph if such transfer nodes did not
exist already and are needed. In Figure 4-C, an explicit
"JMP L2" transfer node has been placed at the end of the
"true" subgraph. The subgraph rooted at join node "L2: LDX
I" is reattached as a third subgraph of the conditional node
"JAZ L1." This rearrangement can be interpreted as follows:

execution proceeds from the root node to the conditional

node.

87

LDA X
ADD =10
N SUB Y
JAZ L1
\\\
T F “s‘ J (join subgraph)
L1: , I -F
LDA J JMPM SUBR LDX I
JMP L2 LDA C(X)

SUB J

(synthetic) STA T

{
{
i IXR
i LDA T
STA B(X)
z HLT
Figure 4-C. Stage two control graph derived from
the stage one control graph of Figure 4-B.
If the condition is ‘true, the instructions of the "true"
subgraph are executed; if the condition is false, the
instructions in the “false" subgraph are executed. 1In
either case, execution of a leaf node which is not a sink
node 1in the "true" or "false" subgraph is followed by
execution of the join subgraph of the conditional node.
Thus a possible higher level representation
corresponding to a stage one and stage two graph of the

forms

88

Stage One

might be St;
if S2 then S3 else Si;
S5;
The graph above is really a convenient representation of the

familiar flowchart form

S1

S3 S S

I

The stage two control graph simply makes explicit the fact

that there 1is a join node reuniting the alternate paths
emanating from the conditional node.

It is important to note that in a stage one graph, join
links (links from the "true" or "false" subgraphs into the
join subgraph) always point from the "false" subgraph to the
"true" subgraph of a common conditional node ancestor. This
fact 1is imposed upon the structure by the arbitrary
convention to always trace the "true" branch of a
conditional node first (see algorithm STAGE1). (A decision

to trace the "false" branch first would yield join links

89

directed from the "true" subgraph to 1its "false" sibling.)
The fact that, wunder this convention, join links may only
point from the "false" subgraph to the "true" subgraph of a
conditional node simplifies the nature of the stage two
graph generation algorithm. The asymmetry of the graph
means that certain portions of the algorithm are only
required to examine one of the subgraphs of a conditional
node to find join nodes linked to the sibling subgraph.

It is sometimes the case, as shown in the example of
Figure 4-D, more than one Jjoin 1link from the "false"
subgraph to its "true" sibling, e.g., 4-7 and 5-6.
Application of the STAGE2 algorithm causes the subgraph
rooted at node 6 to become a join subgraph. After
épplication of the STAGE2 algorithm, join links not directed
to the root of the join subgraph of their own subgraph root

node will correspond to an explicit GOTO statement in a

higher level language. In the example of Figure 4-D, the

4-7 1link requires a GOTO statement. If a GOTO-like
statement is not available, then the graph must be
restructured by node splitting (e.g., duplicate node 7 and

attach it to node 4), or by the introduction of synthetic
nodes which can test or set new predicates and thus force

execution of the proper statements.

90

-Code Meaning

1 LDA X A:=X

2 JAZ 6 IF A=0 THEN GOTO 6;
3 LDA Y A:=Y;
-4 JAZ 7 IF A=0 THEN GOTO 7;
5 LDA Z A:=Z;

6 SUB W A:=A-W;

7 ADD =3 A:=A+3;

Stage one control graph

Figure 4-D. Example of links to two different nodes
in a join subgraph (2T-6, 4J-6, and 4T-7).

91

In some higher level language , the GOTO code for the
program segment ot Figure 4-D might be
IF (A:=X)#0 THEN
IF (A:=Y)=0 THEN GOTO L7 ELSE A:=Z;
A:=A-W;
L7: A:=A+3;
With the introduction of a synthetic variable P and an

additional test, the GOTOless form of the program would look

like
P:=FALSE;
IF (A:=X)#0 THEN
IF (A:=Y)=0 THEN P:=TRUE
ELSE A:=Z;
IF NOT P THEN A:=A-W;
A:=A+3;
Another possible higher 1level 1language representation
might be

IF (A:=X)#0 THEN
IF (A:=Y)#0 THEN BEGIN A:=Z; GOTO L6 END;
ELSE NULL
ELSE L6: A:=A-W;
A:=A+3;
This form 1is unacceptable because of the branch into the
scope of a conditional statement. The stage two graph
generation algorithm (STAGE2) prevents the creation of such
a structure so that there are no join nodes in the "true"
subgraph output by the stage two algorithm; they are moved
to the join subgraph.
A discussion of the reasons for and against the

creation of GOTOless programs can be found in an article by

Knuth (1974). Although the inclusion of steps in the stage

two control graph generation algorithm to create synthetic

control variables and statements could be implemented, this
has not been done in this research because such artificial
modification of the program simply to eliminate explicit
GOTOs does little to improve a human’s understanding of the
program structure. Variables and tests are introduced that
were not intended in the source program. A similar approach
is taken to the problem of node splitting to achieve
GOTOless code. It is not done although the control graph
structure would make node splitting simply a matter of
duplicating certain sequences of nodes and copying them into

other parts of the graph.

Algorithm STAGEZ2. Input a stage one control graph with
root x and output a stage two control graph.
1. If x is nil, return nil.
2. 1If x is a transfer node and the successor of x is
"inline" following x, then return STAGE2 of
successor of x.

3. If x is not a conditional node, return

P

STAGE2 of successor of x

4., x must be a conditional node.

Set A = STAGEZ2 of "true" subgraph of x.
Set B = STAGE2 of "false" subgraph of x.
Set C = STAGE2 of "join" subgraph of x.

(C will be nil if A and B are sink subgraphs.)

93

5. Set TARG = set of all join nodes in the graph A

which are reached from the subgraph B. (Remember,

-.8ll paths between A and B are directed from B to
A.) -

6. If TAKG is empty, return

7. Find the join node in TARG which has the most graph
structure beneath it. This is done by counting the
number of nodes below the join node. Call this
join node M.

8. Remove M from TARG.

9. Detach the subgraph in A rooted at M and attach it
to the join subgraph, C. Adjust join links in A
and B as necessary.

10. Go to step 6.

Step 2 causes a transfer node which has a successor
immediately following it via a normal link (not a join or
loop 1link) to be eliminated as being redundant. The
heuristic used in step 7 to choose the subgraph which will
become the join subgraph in the stage two representation is
easy to compute and seems better than choosing at random.
This causes the bulk of code that will appear in the join
subgraph to be placed above the first label for an explicit

jump from one of the other subgraphs.

9y

CREATING THE INTERMEDIATE TEXT REPRESENTATION

After the 'stage two control graph has been generated,
the decompiler associates with each node in the graph a
statement or sét of statements which express the semantics
of the source instruction represented by that node. The
decompiler translates the source instructions into
intermediate instructions called IMTEXT (after Housel s nane
for his intermediate 1language). IMTEXT must cover the
source language 1in the sense that all source language
statements must have some IMTEXT representation. The
details of the semantics of the source 1language are made
explicit in the IMTEXT code in terms of IMTEXT semantics.
Later analysis phases of the decompiler deal only with
IMTEXT statements and so are decoupled from the particular

source language input to the decompiler.

The IMTEXT Statement -

A basic IMTEXT statement is of the general form of a
quadruple:
(<loc>, <op>, <args>, <changes>)
where
<loc> indicates the position in the input text where
the source instruction occurred, e.g., the address
where the instruction begins;
<op> indicates the IMTEXT operator;

<args> is a list of arguments to <op>;

95

<changes> 1is a list of items changed by application of
<op> to <args>.
For example, a translation of the program of Figure 1-A is
given in Figuré 4-E (the control structure is not shown).

The IMTEXT language 1is designed to be as simple as
possible in rform and semantics. It emphasizes the
functional nature of the machine operations it represents --
some operation 1is applied to a set of operands and the
result effects certain state changes to memory elements
indicated in the <changes> 1list. The IMTEXT translation of
each source statement 1is placed in its corresponding
position 1in the stage two control graph as nodal
information.

The first instruction of Figure 4-E, "load the
A-register with the contents of memory location X," is
translated to (0, MOVE, X, AREG). This translation attempts
to make explicit the-names of all variables participating in
the movement of data. In this case the name AREG appears
explicitly in the IMTEXT translation. No distinction is
made Dbetween accumulators, index registers, or main memory
elements in IMTEXT. All variables are treated exactly the
same to avoid special case testing 1later on in the

decompiler.

96

Addr . Source IMTEXT

0 LDA X (0, MOVE, X, AREG)

1. .. . ADD =10 (1, ADD, (AREG, =10), AREG)
2 sué Y (2, SUB, (AREG, Y), AREG)
3-4 JAZ L1 (3.0, EQ, AREG, TMP)

(3.1, BT, (TMP, L1), NIL)

5-6 JMPM SUBR (5, CALL, SUBR, SUBR)
7-8 JMP L2 (7, B, L2, NIL)
9 L1: LDA J (9.0, LABEL, L1, NIL)

(9.1, MOVE, J, AREG)

10 ADD =2 (10, ADD, (AREG, =2), AREG)
11 STA J (11, MOVE, AREG, J)
12 L2: LDX I (12.0, LABEL, L2, NIL)

(12.1, MOVE, I, XREG)

13 LDA C(X) (13.0, INDEX, (C, XREG), TMP)
(13.1, MOVE, TMP, AREG)

14 SUB J (14, SUB, (AREG, J), AREG)

15 IXR (15, ADD, (XREG, =1), XREG)
16 STA B(X) (16.0, INDEX, (B, XREG), STMP)

(16.1, MOVE, AREG, STMP)
17 HLT (17, HALT, NIL, NIL)

Figure U4-E., Source instructions of Figure 1-A,
and their IMTEXT translations.

97

Iranslation. to IMTEXT

For every instruction in the source program a sequence
of corresponding IMTEXT instructions must be created. This
mapping is pro;ided by a set of functions which perform the
following tasks:

1. recognize the machine operation;

2. select the appropriate IMTEXT translation routine

for the operation;

3. form the argument and change 1lists from the

explicit and implicit operands;

4. create synthetic variables and control mechanisms

when necessary;

5. 1identify join nodes for the creation of IMTEXT

LABEL statements; and

6. recognize idiomatic expressions.

Depending wupon whether a symbolic source text is
provided with the séurce program input to the decompiler,
the recognition of the opcode can be directed toward the
binary form or the symbolic fornm. A combination of both
methods may help to disambiguate certain cases.

The mechanisms for selecting the appropriate IMTEXT
translation routine 1is similar to that of any machine
simulator -- the opcode is extracted from the instruction
and wused as an 1index into the proper routine through a
branch table. The operation codes determine the

interpretation of the rest of the instruection, 1i.e., which

98

are the arguments and which are the targets for the changes
effected by the operation.

The. creation of synthetic variables for use 1in a
one-to-many m;pping of source code to IMTEXT is
straightforward. Illustrations of this can be seen in
Figure 4-E (statements 3, 13, 16) and Figure 4-F. The use
of the synthetic variables TMP and STMP in the example
corresponds to the use of temporary variables to hold the
result of intermediate values while evaluating an arithmetic
expression. These synthetic variables provide symbolic
links between related IMTEXT expressions which can be used
to create more deeply nested expressions during the
expression analysis phase of decompilation. Synthetic
variables may appear 1in the change 1list of an IMTEXT
expression as well as in the argument list. (See statement
16 of Figure U-g£.) This facilitates handling of an indexed
expression used to calculate a target address.

The presence of a join node in the control graph causes
an IMTEXT LABEL statement to be generated. In addition, the
source program symbolic labels are retained in the IMTEXT
code. This provides for the inclusion of labels in the text
of the output program if they are needed. For example, in
Figure 4-E statements 9 and 12 include LABEL statements.

The recognition of idiomatic expressions can occur at
the time that the source program is translated into IMTEXT.

For simple idioms, this amounts to translating a sequence of

99

source code as a contextual unit to one or more IMTEXT
statements. A table of idioms and their translation can be
kept im-the decompiler, and a simple matching operation is
performed to recognize the start of a potential idiom. The
next few statements are examined to determined whether a
complete idiom is present. Only the recognition of simple
idioms is contemplated (non-looping, non-conditional, small
number of statements) but such a facility is not implemented
in the decompiler at this time. (See chapter 3 for some

examples of idioms which might be processed in this manner.)

Chojce of IMTEXT Operations

Some source instructions may require more than one

-IMTEXT statement to represent them. For example, the

instruction "JAZ L1" of Figure U4-E means "if the contents of
the A-register is zero, then jump to location L1." This has
the IMTEXT translation of
(3.0, EQ, AREG, TMP)
(3.1, BT, (TMP, L1), NIL).

For simplicity, only atomic symbols (e.g. names, numbers)
may appear in the argument or changes list of a basic IMTEXT
statement. Thé instruction is translated in two parts. The
first represents the calculation of a boolean value "Is AREG
equal to zero?" and the result of the calculation is stored
into a synthetic variable TMP. The second part of the

instruction is an IMTEXT control statement which means "if

100

the boolean-value of the first argument (TMP) is true then
branch to the location given by the second argument (L1)."
No memory-elements are affected except the location counter.
Since the location counter is affected by every instruction
executed it does not appear on the change list of an IMTEXT
statement.

One way to avoid generating multiple IMTEXT statements
for one source statement is to define a new IMTEXT operator
with the same meaning as the source statement. For example,
we might define an opcode BZ in the form

(<loc>, BZ, (argl, arg2), nil)

which would mean "if argl 1is zero then branch to arg2." But
there are many conditions which could be tested in some
hachine languages. The design of the IMTEXT language must
aim at some compromise between duplication of every possible
instruction of the‘ source language and a very simple
language of primitive operations. The latter would result
in frequent one-to-many mappings which would explode the
size of the IMTEXT representation and lead to slow
processing speeds during the analytic phase of the
decompilation. (See Appendix I for a summary of IMTEXT
statement types.)

A dramatic example of a source instruction which can
balloon into many IMTEXT statements is shown in Figure 4-F.
Up to nine conditions can be tested at one time by the jump

instruction of the Varian 620/i computer. The conditions

101

specified for testing must all be true (ANDed) in order to
take the jump. These conditions are: "overflow" on (resets
overflow _if tested), A-register greater than or equal to
zero, A-regisger less than zero, A-register equal to zero,
B-register equal to zero, X-register equal to zero, sense
switch 1 on, sense switch 2 on, and sense switch 3 on.
Figure 4-F illustrates the IMTEXT translation of a jump
instruction which tests all nine conditions. Nineteen
IMTEXT statements are created. Of course, this explosion of
code 1is the exception rather than the rule. The great
majority of jump instructions programmed for this machine
test only one (or none) of the possible nine conditions.

The 19:1 expansion ratio occurs because of the fact that

there is no IMTEXT counterpart for a nine condition test.

Since conditional tests are at the heart of program
structure it is best that they not be obscured under machine
dependent opcodes. for example, the IMTEXT statement

(0, BX, (777, ALPHA), NIL)
where BX is a new opcode which stands for the same thing as
the Varian JMP instruction simply obscures what conditions

are being tested.

102

Varian instruction : octal -- 001777, ALPHA
symbolic -- JIF 0777,ALPHA
- . IMTEXT representation:
— (0.1, MOVE, OF, T1)
(0.2, MOVE, =0, OF)
(0.3, GE, AREG, T2)
(0.4, AND, (T1, T2), T1)
(0.5, LT, AREG, T2)
(0.6, AND, (T1, T2), T1)
(0.7, EQ, AREG, T2)
(0.8, AND, (T1, T2), T1)
(0.9, EQ, BREG, T2)
(0.10, AND, (T1,T2), T1)
(0.11, EQ, XREG, T2)
(0.12, AND, (T1, T2), T1)
(0.13, MOVE, SS1, T2)
(0.14, AND, (T1, T2), T1)
(0.15, MOVE, Ss2, T2)
(0.16, AND, (T1, T2), T1)
(0.17, MOVE, SS3, T2)
(0.18, AND, (T1, T2), T1)

(0.19, BT, (T1, ALPHA), NIL)

Figure 4-F. Example of the translation of one source
instruction into many IMTEXT statements.

This causes the interpretation of the meaning of the
instruction to be deferred wuntil later in decompilation
process: —. . This example demonstrates that the IMTEXT
translation must be carefully considered so that the proper
mix between code volume and clarity of expression is

achieved.

Machine Dependent Operations

Some source machine operations are difficult to
generalize over a class of machines and 50 their
representation in IMTEXT 1is best accomplished through the
invocation of builtin subroutines. Instructions which fall
into this <c¢lass are shift operations, I/0 operations,
execute instructions, and operations on aggregates. Rather
than breaking such operations into a sequence of simple
IMTEXT instructions, a subroutine call might do very well as
a representation if the analysis routines of the later
decompiler stages will treat these operations as "black box"

functions.

Side Effed;s

The effect that the execution of an instruction has
upon the state of the machine can be decomposed into a
primary effect and possible side effects.

The primary effect is usually described by the name of
the instruction and involves either data movement or some

calculation or both. For example, the primary effect of the

104

instruction."ADD =10" in Figure 4-E is to add the value 10
to the A-register of the machine and store the resulting sum
in the A-register.

The side effects produced by execution of an
instruction are often associated with a condition code or
status register which contains information about results of
the operation performed. A side effect of the "ADD =10"
operation is that the overflow flag of the machine is set if
arithmetic overflow occurs.

Side effects can be classified into two sub-classes --

independent side effects and dependent side effects. The

independent side effect always occurs when the operation is
exXecuted. The state of the memory elemént affected is
élways changed in some way independent of the previous state
of that memory element. An example of this type of side
effect is given by the IBM 360/370 instruction LTR "load and
test register" which always changes bits 0-2 of the
condition code to reflect whether the value loaded was
equal, 1less than, or greater than zero. The state of the
condition code bits 0-2 after execution of the LTR is only a
function of the value loaded and is independent of the
previous state of the condition code.

A dependent side effect may or may not cause the state
of the affected memory location to be altered, depending on
the previous state of the machine. The overflow indicator

on most machines is an example of a memory element affected

105

by dependent side effects of arithmetic instructions. If
the overflow indicator is on and the machine instruction
does not _cause an overflow, then the indicator remains on.
The value of tﬁé overflow indicator 1is not necessarily set
or reset by an 1instruction such as "ADD =10." Its value
might or might not be a function of the 1last instruction
executed which could affect it.

The IMTEXT representation of an instruction provides
for the representation of the memory elements of the machine
affected by the execution of the instruction. The primary
effect 1is of most interest -- the value of some memory
element is changed. The side effects must be represented on
the change 1list also. Represeﬁtation of 1independent side
effects is provided by listing the memory elements affected
by the instruction on a sublist of the change list. Later
analysis of instructions which require information about
side effect state ‘changes (such as the BC "branch on
conditon" instruction of the 360/370) can refer to the last
instruction which caused the side effect of interest.
Representaton of dependent side effects produced by
instructions does not provide much information of use to the
decompiler because it cannot decide in general whether the
side effect will actually be produced by a particular
instruction without knowing the run-time variable history of
the program.

The issue of including information about dependent side

106

effects on-.the change list of an IMTEXT statement can be
resolved in two ways:

1. - pravide a complete description of all memory
elemenés of the machine which might possibly (but
not always) be affected by the execution of an
instruction. In this case a severe penalty is paid
in our ability to analyze the positional
relationships between instructions which have
similar side effects; or

2. 1ignore the dependent side effects of instructions
on the grounds that they are very infrequently used
in most programs and admit that decompilations of
programs which use such side effects may be in
error due to invalid assumptions made about the
usage history of variables.

For pragmatic reasons I have chosen to take the latter
course. In a sﬁbsequent discussion of expression
condensation and variable usage analysis, the reader will
see examples of how dependent side effects can influence the

creation of higher level IMTEXT constructs.

MORE COMPLEX IMTEXT STATEMENTS

This section deals with the algorithms for variable
usage analysis and expression condensation which are used to
create higher level IMTEXT statements. These new statements

are constructed from the basic IMTEXT statements described

107

previously.. They represent groupings of arithmetic and
logical statemeénts into expressions. The process can be
described-. as condensing a simple vertical non-nested
computational description into a more complex horizontal
nested description.

For example, the first three assembler language

statements of Figure 4-E compute the value of one

expression:
0 LDA X
1 ADD =10
2 SUB Y
represents AREG := X + 10 - Y ;.

The IMTEXT representation of the assignment statement after
éxpression condensation would be:
(2,SUB,((1,ADD, ((0,MOVE,X,AREG),=10) ,AREG),Y),AREG)

The intermediate sto§es to AREG can be removed because their
only purpose 1is to save a temporary result for the next
operation. The procedure for determining whether a variable
use 1is a candidate for substitution or elimination is
accomplished through variable usage analysis. This type of
analysis is common to most optimizers and decompilers and is
described in Aho and Ullman (1973), and Allen and Cocke
(1976). Based upon the information gathered by the variable
usage analysis algorithms applied to a section of the

program, the combination of two or more IMTEXT statements

may occur.

108

Expression Condensation

The method we use for expression condensation is called

forward _substitution. We will need a few derinitions for

the following discussion.

A variable V is used 1in an IMTEXT statement S if V

appears on the argument list of S.

A variable V is changed in an IMTEXT statement S if V

appears on the change list of S.

An IMTEXT control graph is a control graph with a
statement or sequence of statements associated with each
node of the graph in a natural manner -- each node
represents a source pregram instruction or sequence of
instructions translated into IMTEXT.

Given an IMTEXT control graph rooted at X, the value of
a variable V entering the graph at x is needed in the graph
if there exists a node y in the graph where V is wused and
there exists a path from x to y such that V is not changed
at any node along that path.

The primary element of the change 1list of an IMTEXT

statement represents that memory element which contains the
primary value produced by the application of the IMTEXT
operator to its arguments. The primary element of the
change 1list may be nil, as in the case of a branch
instruction.

Consider two statements S and T to be executed by

machine M. Let (S, T) be a program (of two instructions) in

109

which S is executed first, then T. Let (T, S) be a program
in which T is ’‘executed first, then S. S and T are said to

be execution order independent if for all possible initial

states of machine M, execution of the program (S, T) yields

the same final state of M as execution of the program (T,

S); otherwise they are execution order dependent.

Given two IMTEXT statements S and T, such that S
precedes T in their IMTEXT control graph, the symbolic
forward substitution of S for V on the argument 1list of T
means that S is removed from the graph and attached in place

of V on the argument list of T.

Assumptions and Conditions for Forward Substitution

For forward substitution of statement S in statement T
to maintain the functional meaning of a program, S must be
execution order independent of every statement on every path
from S to T 1in their control graph. This statement can be
expressed in more detail by a number of assumptions and
conditions necessary to guarantee that the meaning of a

program is not changed by forward substitution of S in T.

Assumption 1. There exists a path from statement S to

statement T in the IMTEXT control graph.

Assumption 2. S is not a transfer node and is not location

dependent.

Assumption 3. All names in IMTEXT statements occurring on

110

the paths(s) from S to T are unique. No two different

variable names refer to the same memory element.

Assumptiohhﬁ. " There is only one primary element, V, on the

change list of S. The primary effect of S is to change one

memory element.

Assumption 5. V' is a top level element of the argument

list of T.

There are six conditions under which forward
substitution <can occur given the above assumptions. The
above assumptions are also conditions which must be

satisfied for forward substitution to occur. They are

stated here as assumptions to simplify the following

discussions. In the <course of forward substitution the
decompiler must also determine that the assumptions hold as
well as the conditions stated below. In effect, the
assumptions define S and T as possible candidates for
forward substitution. The conditions examine the candidates
(and the paths between them) more closely to determine if
forward substitution may be accomplished. (In the following
examples we use simple Algol-like statements rather than
IMTEXT for clarity. The mapping between the two forms

should be apparent to the reader.)

Condition 1. The symbol V is identical to the symbol V~.

(We use the symbol V° to distinguish the occurrence of V in

statement T. Later we wWill relax the statement of this

condition so that V and V’° need not be identical symbols.)

Conditioﬂ é: No statement on the path(s) from S to T uses V

as an argument or relies on any side effect of the
evaluation of S. V does not appear on the argument list of
any statement on the path.

An example of a failure of condition 2:

S: V := A + B;
X C :=V ;
T: D := V™
Statement X requires V as an argument. The above sequence

of statements cannot be transformed into

X: C :=V

T: D (V := A + B) ;
without changing the meaning of the program. The value of V
to be stored 1into” C 1is generated by the execution of

statement S. Statement S must be executed before X.

Condition 3. No statement on the path(s) from S to T
changes the value of V. V does not appear on the change
list of any statement on the path.

An example of a failure of condition 3:

S: V := A + B ;
(¢ V := C ;
T: D := V™

Statement X changes the value of V from that generated at S.

112

Statement T.requires the V generated by X, not S, so the
faulty substitution yielding
XL, .. V := C ;

T: D (V := A + B) ;

assigns the wrong value to D in statement T.

Condition 4. There are no statements on the path(s) from S
to T that change any variables on the argument list of S.

An example of failure of condition 4:

S: V := A + B ;
X: A := C ;
T: D := V™

Statement X changes A which is an argument to S. The
execution order of S and X is thus fixed. A substitution of
S in T would lead to the sequence

X: A := C ;

T: D := (V := A + B) ;
The value of D 1is dependent on having the value of A (used

to compute V) before X is executed, not after.

Condition 5. All paths from the root node of the control
graph to T pass through S. Every path from S to T is a
subpath of any path in the graph which includes T.

An example of a failure of condition 5:

X0: V := 0 ;
X1: IF Y = 0 THEN GOTO X3 ;
S: V:= A + B ;

X2:. IF B > O THEN GOTO T ;
X3: "C :=D ;
Tz . E := V" ;

There are three paths to T in the control graph rooted at X0
-- (X0, X1, X3, T), (X0, X1, S, X2, T) and (X0, X1, S, X2,
X3, T). The value used for V in T is generated at X0 in the
first path, and by S on the other two. A substitution of S

in T yielding the sequence

X0: Vo= 0 ;

X1: IF Y = 0 THEN GOTO X3 ;
X2: IF B > O THEN GOTO T ;
X3: C := D ;

T: E := (V := 4 + B) ;

would cause E to receive the wrong value when the path (X0,

X1, X3, T) was executed.

Argument Evaluation Order

Arguments to basic IMTEXT statements are primitive
items such as numbers, variable names, 1logical constants,
and address constants. Once we allow the creation of more
complex arguments by forward substitution we must be careful
to consider the evaluation order of those arguments and be
sure that order is reflected in the target language
translation. For example, given the sequence.

X: V := 0 ;
S: V=1 ;

114

T: . A :=V +V

T: A iz (V 1) +V ;

by forward substitution, we can see that the operator "+ in
T can no longer be considered commutative because the result
of the evaluation of the arguments is order dependent. If
the target language compiler permits wundefined argument
evaluation order (e.g., to achieve optimization), we must

guard against violation of the following condition.

Condition 6. If there is more than one valid evaluation

sequence of the argument list of an IMTEXT statement, the

arguments must be evaluation order 1independent. (The

definition of evaluation order independence is similar to

that for execution order independence.)

The valid evaluation sequences allowed are a function
of the 1interpreters of the IMTEXT statement or 1its
isomorphic forms such as a higher level language statement.
In the example above, a strict left-right order preserves
the original meaning of the statement sequence while an
undefined order does not. An example of the violation of
this condition occurred while testing the decompiler. An
oversight in the target code generation procedure caused an
execution error in the target program. A two condition test

was translated into an

115

IF c¢1 AND c2 THEN ...
form of target statement. Forward substitution of an
assignment _expression into c¢2 was done. In the MOL620
target languagel the AND operator does not evaluate its
second argument if the first one is false. When the target
program executed and e¢1 was false, the substituted
assignment in c2 was not executed, thus causing the error.
The solution to this problem was to generate a call to a
builtin function AND, e.g., AND(c1,c2), where the argument

evaluation protocol insures that all arguments are

evaluated.

Explicit Assignment Elimination -
Assume statements S and T satisfy the above conditions
for the forward substitution of S into the argument list of

T as when

S: V := A + B ;
T: D :=V~ ;
becomes
T: D := (V := A + B) ;.

Under what conditions can we eliminate the intermediate
storage into variable V and change statement T to

T: D := A+ B ;?
The only reason for changing the value of a memory element
is to make that information available for later use. If it

can be determined that the value to be stored in memory

116

element V 1is not needed in V at some future time then the

assignment can-be eliminated. We add a new condition to the

list.
Condition 7. Assume S has been substituted for V in the
argument 1list of T. The explicit assignment of V in S can

be eliminated (leaving just the calculation of the value) if
there exists no statement X in the control graph rooted at T
such that X uses V, or given that there is a statement X
which uses V then ézggx path (T, X) (exclusive of X itself),
contains a statement which changes V.

An example of failure of condition T:

S: V := A + B ;
T: D := V™ ;
X: E :=V ;

The substitution with removal of the explicit assignment to

v
S: D := A + B ;
X: E =V ;
is invalid because X needs V as an argument. An example

where a valid substitution with removal of an explicit

assignment is:

S: V := A + B ;
T: D := V™ ;
X: V := E ;

which can be changed to

117

T: . D A + B ;
X: "V := E ;

0f course,. some higher level languages (e.g., FORTRAN) do
not support aésignment expressions but such a facility does
improve the ability of the language to describe the storage
of intermediate results involved in more complex
calculations. If the higher level language does not support
assignment expressions, then forward substitution is only

fruitful when condition 7 1is satisfied, i.e., when the

explicit assignment can be removed.

Value Equivalence
A common sequence of code in an initialization section
of a program is one which zeroes out a set of variables.

For example,

1 A =0 ;
2 E := 0 ;
3 C := 0 ;

After execution of statement 3, variables A, B, and C
contain the same value, namely zero.

In assembler language programs multiple assignments are
usually not expressible in one statement but in higher level
languages it is a common syntactic feature. We would 1like
to convert the above sequence of statements into a single

statement of the form

118

if the syntax of the ‘target language permits such a
statement. Note, however, that the assumptions and
conditions previously stated for forward substitution (our
only method of—creating complex expressions) prevent us from
combining the statements of our example. Specifically, the
change elements do not appear on any argument list so
condition 1 does not hold. We need to expand our notion of
symboliec equivalence to include the notion of value
equivalence.

Two data items are said to be value equivalent at node
x in an IMTEXT control graph if they always contain the same
value when execution (of the program described by the
control graph) along any path to x has proceeded to and
executed node x. In this context we consider a data item to
be a variable or a constant.

The relation of value equivalence between two data
items 1is naturally | an equivalence relation in the
mathematical sense of the term. The relation is reflexive
-- a data item is value equivalent to itself. The relation
is symmetric -- if a data item A is value equivalent to B
(at node x) then B is value equivalent to A (at node x).
The relation is fransitive -- if A is value equivalent to B
and B is value equivalent to C, then A is value equivalent

to C.

A value equivalence list (VEL) relative to node x in an

IMTEXT control graph is a list of elements each of which is

119

a list of _data items. All 1items on an element list are
value equivalent at x.

To..illustrate the notion of a value -equivalence list,
we provide the—following example with the program statements
on ﬁhe left and corresponding value equivalence list on the

right. We do not list simple reflexive elements (e.g.,

(A,A)) on the value equivalence list.

1 A :=0 ; ((4,0))

2 B := 0 ; ((A,0),(B,0)) =>
((4,B,0))

3 C :=0 ; ((4,B,0),(C,0)) =>
((4,B,C,0))

Y D:=D + E ; ((4,B,C,0))

5 C :=1D ; ((A,B,0),(C,D))

6 F :=B + 1 ; ((a,B,0),(C,D),(F,1))

At statements 2 and 3 the transitive nature of the value

equivalence relation is wused to combine elements of the

value equivalence list. At statement 4 the value of E is
undefined, so D 1is not entered on the VEL. Statement 5
causes the value of C to be changed. C is removed from its

old VEL element and a new element (C,D) is created to show
the value equivalence of C and D at statement 5. At
statement 6 we see that the VEL can be used to determine a
priori the value of F at statement 6. This is a feature of
many optimizers -- the evaluation of constant expressions at

compile time. In this case we know the value of B is zero

120

when statement 6 1is executed and the constant calculation
(0+1) can be performed and the element (F,1) can be added to
the VEL.. _

The notioh of value equivalence can be used to extend
the capability of a decompiler to perform symbolic
substitution. Condition 1 can be relaxed so the V and V°
need only be value equivalent at 1T rather than being

identical symbols. We state the new condition 1:

Condition 1°. V is value equivalent to V' at T.

Algorithmic Descriptions

The descriptions of the more important algorithms
involved 1in forward substitution are included in the
following text. The calling order is:

1. FWDSUB -- given a control graph, returns with all

substitutions made;

2. FWDSUB2 ~- substitutes a root node in its subgraph;

3. FWDSUB3 -- substitutes root node into its son;

4. NEEDP -- determines whether a variable is "needed"

in a graph;
a. USEDP -- determines whether a variable is
used in a graph;
b. CHANGEDP -- determines whether a variable is

changed in a graph.

121

Algorithm FEWDSUB. Given IMTEXT control graph X,

perform forward substitution on X and return the altered
graph. -Let.x be the root node of X.
1. It X has less thanvtwo nodes then return X. (There
is nothing to substitute.)

2. If x is a conditional node then return

O\

FWDSUB of FWDSUB of
"true"subgraph "false"subgraph
of x of x

3. Perform substitution of x into X.
Set X = FWDSUB2 of X.

4, If X is nil then x could not be substituted in its

P

FWDSUB sﬁbgraph
of x

subgraph. Return

5. FWDSUB2 was successful in substituting x. Return

FWDSUB of X~.

Algorithm FWDSUBZ2. Given an IMTEXT control graph X
with root node x, attempt to perform forward substitution of
x into X. Return the new graph if successful; otherwise
return nil. Apply FWDSUB3 repeatedly on successive
subgraphs of X.

1. Set B nil.

Set C

subgraph of x.

2. If the operator of x prohibits forward substitution
(e.g., branch, halt, label, etc.) then return nil.
3. .3et L to the graph returned by the application of

FWDSUB3 to

FWDSUB3 also returns an indication of the success
it had in trying to perform the substitution of x
into C.

4, If "failure" is returned, then return nil.

5. If "success" is returned, then return the graph

B

l

L
FWDSUB3 must have returned '"continue." We will
bypass the root of C and try to substitute x
further dowﬂ in its subgraph. If the root of C is
a conditional node then return nil. We do not try
to do forward substitution along both subtrees.
This assures condition 4 is satisfied.
7. Append the root of C to B.

8. Set C = subgraph of C.

9. Go to step 3.

Algorithm FWDSUBSJ. Given an IMTEXT control graph X

with root node x, determine whether a forward substitution

123

Il Bl I N S BN BN BN BN BN BN B BN D OE B e B =
(o)

of x in its.immediate successor is possible, Let y be the

successor of X. (Note: x is not a conditional node.) Let V

be the primary value of the change list of x.

1.

Check condition 1. Does y use V (or any variable
value equivalent to V) on its argument 1list? If
so, then go to step 5.

Condition 1 failed. Shall we do symbolic
substitution in the <change 1list of y? 1Is the
operation of x a member of a special group of
operations allowed to be substituted in a change
list (e.g., indexing or indirection on the left of
an assignment)? If so, then substitute x for V on
the change 1ist of y. In this case, V is a
synthetic variable and assignment elimination is
guaranteeaq. Return the control graph rooted at y
and the "success" indication.

Condition 1 failed and we did not substitute in the
change list of y. The node y does not use V as an
argument so condition 2 is not violated if x passes

y. Does y alter the change list or argument list

" of x so that condition 3 or 4 is violated at y if

we would try to substitute x past y? If so, then
return "failure."

Return the "continue" indication, i.e., forward
substitution of x did not succeed at y but y does

not preclude a further attempt to substitute x in

124

the graph beyond y.

Condition 1 has been satisfied at y. Conditions 2,

.3, and 4 are not relevant since y is the direct

successor of x. Condition 5 is not relevant
because we are guaranteed by higher 1level routines

(FWDSUB and FWDSUB2) that the path (x,y) has only

one entry, x. We check condition 6 (argument
evaluation order independence) assuming a
substitution of Xx in vy. With an undefined

evaluation order of arguments, then if any change
lists of non-primitive arguments of y intersect
with the argument lists or change list of x, then
return "failure." If the change list of x
intersects the argument list of y in more than one
place, return "failure."

We must determine whether condition 7 holds so that
the expliciﬁ assignment in x may be removed if
possible. We compute whether the variable
instances of the change list of x are needed in the
subgraph of y. Set NEED = result of call to NEEDP
with x and subgraph(s) of y as arguments.

Mark x as an explicit assigment to V if NEED is
true (i.e., condition 7 does not hold) else mark as
no assignment. Replace V with x in the argument

list of y. Return the new graph rooted at y.

Several assumptions and shortcuts are reflected in the

125

algorithms. . We assume that any control graph being
processed is completely specified -~ all branches and joins
are represented. This is valid only in the ideal case where
the window on Lhe program was large enough to encompass all
of the <c¢ode of an independent program segment and no
asynchronous external entries are made into the routine. We
Will discuss more about this matter in a later chapter.

We assure that substitution is only done in
straight-line code and stops at a fork (condition node) in
the control graph. The problems of substituting in more
than one subgraph at the same time are thus avoided.

Not all possible substitutions are performed. Second

order substitutions are not attempted, as illustrated in the

‘following example.

1 A := B ;
2 B :z C ;
3 D := A ;
4 E := B ;

Statement 1 cannot be substituted in statement 3 because of
statement 2 which changes the argument to statement 1 (i.e.,
B). The algorithm then attempts to substitute statement 2
in its subgraph. Statement 3 can be passed by 2 because no
conditions are violated. We can substitute statement 2 in
statement 4 and return the statement list

1 A := B ;

A

3 D :=

.
’

126

4 . E := (B := C) ;
Note that the substitution of statement 2 in statement 4 has
now unblogked the possible substitution of statement 1 in

statement 3. Another application of FWDSUB would yield

3 D := (A B) ;

4 E := (B C) ;

A change to algorithm FWDSUB3 could be made such that if
condition 4 1is violated we try to substitute the blocking

statement further down the graph and thus remove the block.

Algorithm FWDSUB3 step 3 (revised).

3a. Condition 1 failed. Does y change the change list
variables of x? If so then return "failure"
because y must always block x from passing it in
graph execution order.

3b. Does y change any of the arguments of x? If yes,
then cali FWDSUBZ2 of subgraph of x.

3c. If FWDSUB2 returned nil, then y could not be moved
forward. Return "failure."

3d. If FWDSUBZ2 succeeded 1in returning a substitution
graph, L, 1in which y has been moved forward, then

return FWDSUB3 of

L

Because of empirical observation of the utility of a revised

127

algorithm, this change was rejected as having a low payoff
for the extra computation. In addition, the unrevised
algorithm.prevents two substitutions in the same statement

where they might be in conflict due to undefined argument

evaluation order.

TKANSLATION TO THE TARGET LANGUAGE

After the substitution process described in the last
section is complete, the next step in the decompilation
involves translating the revised IMTEXT control graph to the
higher level target language. We have two related problems:

1. translation of the IMTEXT statements themselves,

-and
2. translation of the control structure represented by

the connections in the IMTEXT control graph.

IMTEXT Statement Translation

The decompiler must map every IMTEXT statement into a
statement in the target 1language to achieve a complete
translation. Of course, the IMTEXT statements generated are
influenced by the target language. For example, unless
imbedded assignment expressions are supported by the target
language, the analysis needed to generate such statements is
unnecessary. The use of builtin function calls to represent
operations not supported in the target language provides
escape from the target language. In a similar fashion, the

use of calls to assembler 1language routines from FORTRAN

128

programs provides the same escape mechanism.

Associated with each IMTEXT operator is a pattern which
determines. the target language text to be generated for the
operator as applied to 1its operands., A procedure
recursively evaluates the arguments to the IMTEXT operation,
if necessary. This yields translations of non-primitive
subexpressions built up 1in the expression condensation
analysis.

Some IMTEXT opcodes are "top-level" operations in that
they do not occur inside expressions. Examples of this type
of IMTEXT opcode are CALL, GOTO, HALT, and LABEL. Other
IMTEXT opcodes may appear inside expressions. Examples of
these are MOVE, ADD, and SUB, i.e., those corresponding to
ﬁhe primitive expression operators in most high level
languages.

Assume we wish to translate (out of context) an IMTEXT
statement from the control graph. Algorithm NODEGEN
describes the general process of translation. It uses the
IMTEXT opcode of the statement to select a list of elements
called a generation pattern. The elements of the pattern
are of two kinds:

1. primitive elements such as numbers, arithmetic
operators, and other strings, which require no
further evaluation, and

2. function calls which are evaluated. (The result of

the function evaluation is a primitive_element.)

129

Some examples of top-level generation patterns for a

language like Algol, given the IMTEXT statements, are:

IMTEX pattern
(-,ADD,(arg1,aré2),target) #<target>:= #<argl> + #<arg2>
(-,SUB,(arg1,arg2),target) #<target>:= #<argl> - #<arg2>
(-,LABEL,arg) arg
(-,CALL,arg) CALL arg
(-,BUMP,arg,target) #<target> := #<arg> + 1
(-,MOVE,arg,target) #<target> := {#<arg>

In the above patterns, the primitive elements are CALL,
=, 4+, =, 3, and 1. The non-primitive elements are
#<target>, #<arg>, #<argi>, and #<argz2>. The general

meaning of the function calls of the form #<x> is "evaluate

‘the item (selected by) x" and each is strictly defined by

its procedural definition in the decompiler. The majority
of these non-primitive items select a portion of the IMTEXT
statement and recursively call NODEGEN.

Argument level generation patterns for a language like
Algol are similar to those for top-level statements except
no assignment is made to the change 1list variables except
for the MOVEXP ("move explicit") opcode. IMTEXT statements
at the argument level got there by expression condensation.
The explicit assignment is indicated by imbedding an IMTEXT
statement in a MOVEXP statement. Some sample argument level

patterns are given below:

130

IMTEXT. pattern
(-,ADD, (argi1,arg2),-) (#<argl1> + #<arg2>)
(-,SUB,(argl,arg2),-) (#<arg1> - #<arg2>)
(- ,MOVE,arg,-) #<arg>
(-,MOVEXP,arg,target) (#<target> := {#<arg>)

Note that for nested expressions it is necessary to indicate
in the target language the order of evaluation of the
subexpressions. Parentheses in the pattern serve this

purpose.

Algorjithm NODEGEN. Given an IMTEXT statement, x,
generate a target language statement. On entry the output
list is empty.

1. If x is an argument to another higher level IMTEXT
statement, retrieve the argument generation pattern
using the opcode of x as a selector, otherwise
select the top-level evaluation pattern for x.

2. For all elements in the generation pattern:

a. 1if element is primitive, add it to the
output list, or

b. if element is non-primitive, evaluate it
and add the result to the output list.

3. Return the output list.

Note that NODEGEN is independent of the target language of

the decompiler. The generation patterns and any functions

necessary to implement the non-primitive elements are target

language dependent; however, the patterns will be very

similar over a wide variety of target languages.

IMTEXT Control -Structure Translation

The edges in an IMTEXT control graph represent the
execution paths between nodes. Since one of the goals of
this dissertation research is to create higher level control
structures as well as higher level statements, part of the
task of translating to the target language must include an
analysis of the possible paths through the graph to discover
control patterns which can be represented in the target
language.

We can consider this a pattern recognition problem.

Given the target 1language, we can define the primitive

control patterns implemented by its higher 1level control
statements. Examples of such statements are IF ... THEN
cen ELSE, WHILE, REPEAT, CASE, and FOK. Let us define this
set of target patterns as
P = { p[i] | izindex of pattern }.
We can approach the problem of finding elements of P in
the control graph in two ways:
1. Find pattern q in the control graph X such that g
exists in P, or
2. Find a transformation t on the control graph X such
that t preserves the 1logical execution equivalence

of the program and t(X) contains pattern q exists

132

in_P.
We define a relation (<) on the patterns of P such that if
p{i] < p[Jj]_ then pattern pl[i] is found in pattern p[jl. 1In
terms of proéfamming languages, the pattern of an IF
statement is found in the patterns for conditional iterative
statements. The pattern for a WHILE statement is found in a
FOR statement. We have
plIF] < p[WHILE] < p[FOR].

In decompilation it 1is usually desirable to try to find the
most complex pattern in a control graph. Therefore, the
order 1in which we attempt pattern matching should be
governed by the inclusion relationships of possible
patterns.

Associated with each pattern in P is a procedure which
will attempt to find that pattern in the IMTEXT control
graph and will generate target code based upon the mapping
of that pattern inﬁo the control statements of the target
language. The procedures for finding patterns and
generating code are mutually recursive so the subpatterns
are naturally processed. The pattern matching procedure
looks for characteristics in the <control graph under
examination. The starting characteristic of a pattern is a
top 1level coarse discriminator of what subgraphs might
possibly fit the pattern. For example, the starting
characteristic of a simple loop pattern is the fact that the

first node in the pattern is a join node.

133

Algorithm STRUCGEN describes the general ' process of
translating an IMTEXT control graph by successive

applications of pattern processors.

Algorithm STRUCGEN. Exémine the IMTEXT control graph X
for patterns in P and return the target language translation
of X.

1. If X is empty, then return nil.

2. Set Q@ = the set of patterns we are looking for,

i.e., P.

3. Select pattern(s) from Q such that the starting
characteristic of the pattern match in X. The most
complex pattern 1is tried first. Call this pattern
q.

4, Apply the pattern procedure for qg to X.

5. If q failed, then remove q from Q and go to step 3.
(Note that the simplest pattern of P will always
succeed. Its pattern procedure is NODEGEN. This
fact assures that every X has a translation.)

6. The processor for q succeeded. The pattern
processor returns X7, the subgraph of X not
translated (the pattern of q may only have been a
subpart of X), and T the target translation of the
pattern g matched. We translate the rest of X.
Return the append of T with STRUCGEN of X°.

Assume the basic control graph patterns of the target

134

language can be represented by P = {p[1], pl(2], p[3], p(4]},
where

-p[1] is a simple statement, single node, one entry,
one exit.

7

p[2] is a pattern for a conditional test (IF ...
THEN)

pl3] is a pattern for a simple loop (DO FOREVER...)

p[4] is a pattern for a loop with a pretest (WHILE
.. DO ...) J

oo

The starting characteristic of p[3] and pl4] 4is that the
first node of the pattern is a join node. A distinguishing
characteristic between p[3] and p[4] is that the first node
in p[4] is also a conditional node. Note the p[3] < p[4]
implies that p[4] Qill be tried first by STRUCGEN when the
starting characteristic in a control graph is a join node
and thus the patterns p[3] and p[l4] are selected.

We describe the basic mechanisms of a pattern procedure

135

for p[4] ---a loop with pretest.

Algorithm WHILE-DO. Matches pattern corresponding to a

loop with

é?pretest in a control graph X whose root node, x,

is a join node.

1.

Is the join (root) node also a conditional node?
If no, return "failure."
The join node is a conditional node. Search down
the "true" subgraph 1looking for a transfer node
branching back to x. If not found, then go to step
4,
The "true" subgraph loops back to x. Generate the
code

WHILE NODEGEN of argument of x

DO STRUCGEN of "true" subgraph of x ;

STRUCGEN of "false" subgraph of x.
This ccde 1is returned; It represents the complete
translation of X.
The "true" subgraph did not loop back. Try the
"false" subgraph. Search the "false" subgraph of x
for a transfer node branching to x. If not found,
then return "failure." The transfer node to x did
not exist in the graph X. The transfer to the join
node x must be from outside of X.

The "false" subghaph loops Dback. Generate and

return the code

136

WHILE negate of NODEGEN of argument of x
DO STRUCGEN of "false" subgraph of x ;
A STRUCGEN of "true" subgraph of x
Note that the condition represented in the IMTEXT
statement of x must be negated since the "false"
subgraph loops while the expression is not true.
There are many patterns which would occur in a source
program control graph which are not in P. We can define a
set of transformations, T, which can be applied to these
source program patterns and yield patterns in P. These
transformations should be applied to the IMTEXT control
graph before a search for the patterns of P is attempted.

Examples of such transformations are node splitting and

‘introduction of synthetic variables. The approach taken in

this experiment has been that such transformations yield
code and structure (by the process of node splitting or
synthetic variable creation) which is not present in the

original program.

POSTPROCESSING
After the entire source program has been decompiled,
the text may then be subject to two phases of
postprocessing:
1. automatic -- this involves modifying the output of
the code generator by running a program that will

a. create readable indented code structure,

137

b. place comments in appropriate positions in
the output listing to improve readability,
- m... €. transliterate symbol strings for
- readability or compatibilty with the uses
of the text;
2. manual -- a human examines the code and modifies it
to
a. eliminate self-modifying code (marked as
such by the decompiler),
b. adjust the code to account for information
lost due to inadequate window size,
c. correct any syntactical errors which may
have been created in the decompiled code.
The need for the postprocessor is purely pragmatic. It
cleans up details not considered in the code generation of
the decompiler. All changes made by the automatic processor
are low 1level formatting or naming considerations. The
manual processing involves some understanding of the source
program. Together these two phases of the postprocessor
change the program for readability (by formatting),
compilabilty (by removing syntax errors), and executability
(by adding or changing code).
In any decompilation system the manual intervention
necessary should be kept to a minimum but it is not
practical in most situations to éntirely remove the need for

manual editing because of the difficulties of implementing

138

these manual changes in an automatic program. An example of
the manual interventions required to decompile a substantial

program will be given in a following chapter.

SUMMARY

This chapter has described a design for an experimental
decompiler. The following topies have been discussed in
detail: preparation of the input source, 1loading the
prepared input into the decompiler, translation to a control
graph structure and intermediate 1language for further
analysis, condensation of the graph structure, pattern
matching and generation of the target code, and

postprocessing of the target program. The schematic diagram

for the information flow through this system is shown in

Figure 4-G.

The following chapter (5) describes an implementation
of this design. Specific source and target languages are
chosen and a small program is walked through the decompiler
step by step to show the reader a more concrete example.
Chapter 6 describes a substantial decompilation experiment
and discusses the results of the experiment in relation to

other results in the literature.

139

source program

PREPROCESSOR

formatted program

LOADER

window information

CONTROL GRAPH] .
GENERATOR

stage2 control graph

IMTEXT GENERATOR

IMTEXT
control graph

FORWARD SUBSTITUTION

condensed graph

CODE GENERATOR

preliminary target code

POSTPROCESSOR

final target program

Figure 4-G. Information flow through the decompiler.

140

L Chapter 5

A DECOMPILER IMPLEMENTATION

INTRODUCTION

Some of the decompiler design hypotheses presented in
earlier chapters have been tested in an experimental
decompiler system. The input text is a program (PL) written
in a language which compiles into code for the target
machine. The target language program (PH) will also compile

into code for the target machine. This approach provides

the opportunity for direct comparison of PL and PH in terms

of object program size, code efficiency, and
understandability and avoids questions that might arise due

to differences in machine architecture.

CHOOSING THE SOUURCE AND TARGET LANGUAGES

The source and target languages chosen for the initial
decompilation tests are languages for the Varian Data
Macnines 620/i (16-bit) minicomputer. The source language
is the assembler and machine language for the 620/i (Varian
Data Machines 1968). See Appendix II for a summary of the
620/1i instruction set. The target language is MOL620, a
machine oriented language for the 620/i developed at U.C.

Irvine (Hopwood and Hopwood 1971). See Appendix III for a

141

summary of the MOL620 language.

CHOOSING A DECOMPILER IMPLEMENTATION LANGUAGE

Thékg;gompiler itself was written in UCI LISP (Weissman
1967, Bobrow et.al. 1973) and runs on the DECsystem-10
computer. The LISP system was chosen because it 1is
interactive, accessible from a large number of terminals,
and provides for the easy construction and manipulation of
the complex data structures necessary for the decompilation
processes. UCI LISP provides the flexibility of an
interpreter during debugging but also includes a compiler
that can be used to achieve fast execution speeds and reduce
the cost of running the decompiler in a production mode.

The preprocessor and postprocessor were written in

SNOBUL (Griswold et.al. 1971) for ease of character

manipulation.

SIZE OF THE DECOMPILER

In order to give the reader some idea of the amount of
code in the decompiler, I have attempted to define a measure
of the size of each section.

The computation of the volume of the SNOBOL programs
(the pre- and post-processors) uses a typical metric.
(Since these programs are relatively small compared to the
rest of the decompiler any reasonable metric will do.) We
define the volume of a SNOBOL program to be the number of

lines of code in the progran.

142

It does not make much sense to count the number of
lines of code in a LISP program, since LISP is a free format
language - ..where the notion of a physical 1line of code is
meaningless. Counting the number of non-blank characters in
a LISP s-expression (a function is an s-expression) might be
a better metric but that method 1is sensitive to the
programmer s choice of symbolic names, e.g., a ten character
name would have ten times the mass of a one character name.
Similarly, a count of the number of functions defined in
each section of the decompiler is not a good measure of the
amount of code either.

We define another measure which does a better job of
indicating the number of logical units in a LISP
é—expression. All syntactic objects in LISP are either
atoms or lists, therefore we define the mass of a LISP
function to be

mass = # of atoms + # of lists.
For example the mass of the s-expression
(ABC (D (EF)G)H (1))
is thirteen (13). There are nine atoms and four lists in
the expression.

Table 5-A presents a summary of the mass of each
section of the decompiler. The percentages in the section
on the LISP programs were»calculated by dividing the mass of
the particular part of the program by the total mass of the

LISP code in the decompiler.

143

lTable 5-A. Sizes of various parts of the decompiler.

SNOBOL programs
Preprocessor
Postprocessor

of code lines
of code lines

86;
187

LISP programs

Driver -- sequences execution of other parts of

decompiler.

of functions = 17; mass = 1190; % = 10
Loader -- loads the window.

of functions = U4; mass = U434, % = U4
Stagel Trace -- creates stage one control graph.

of functions = 13; mass = 845; % = 7
Stage2 Trace -- creates stage two control graph.

of functions = 9; mass = 780; % =
IMTEXT Generation -- creates IMTEXT nodes in graph.

of functions = 33; mass = 2667; % = 22
Forward Substitution -- performs forward substitu-

tion in IMTEXT graph

of functions = 16; mass = 1389; %2 = 11

Code Generation -- target code is generated from

IMTEXT
of functions = 44;

Other -- service routines
one of the above
of functions = 40;

Total -- sum of above
of functions =176;

graph.
mass = 3620; % = 29

used by more than

sections.
mass = 1402; % = 11

mass =12327; % =100

The decompiler occupies 28K 36-bit PDP-10 words, not

including the LISP interpreter itself (15K) or any dynamic

storage.

Dynamic storage 1includes push-down stacks for

recursive function calls and storage for the information in

the decompiler window. The sample program presented in this

chapter was decompiled using

44K words of memory including

144

the LISP interpreter.

A SAMPLE PROGRAM TO BE DECOMPILED

Thé‘aéécriptive approach taken in this chapter will be
to show the reader the various stages in the decompilation
of a small segment of source code. A definition of the

algorithm used in the example follows.

Algorithm MOVE. Given three global arguments

P1 = starting address, source
P2 = ending address, source
P3 = starting address, target

move the contents of memory 1locations [P1,P2] to the
locations beginning at P3. We cannot move data to locations
‘higher than the address in variable H.
1. Exchange P1 and P2 if P1 > P2. (Call PCHK.)
2. If the address of the last target location
(P3+P2-P1) \is above H then 1load an error code
(“?H") and go to the error routine (ERR).
3. Move the data.

4. Return.

Figure 5-A is the assembler output 1listing of the MOVE
subroutine written in 620/i assembler language (DAS). The
first column of decimal numbers contains the sequence number
of the source line. The second column contains the octal

addresses where the code is generated. The third column of

145

octal numbers is the machine code itself. The rest of the
line is the sdurce statement -- label, opcode, operand(s),
and comments field. The meanings of the opcodes of Figure

5-A are given in Figure 5-B.

This sample program has been written to illustrate the
action of the decompiler. While its complexity is limited
for simplicity of description, it does have some interesting
features.

PCHK (lines 5 and 14) is an external subroutine. All
variables are considered global. The EQU statement (line 5)
simply gives a definition to the symbol PCHK for the
purposes of assembling this program fragment out of context.

ERK (lines 6 and 22) is as external error routine. It
is given an arbitrary definition at line 6.

Lines 20 ana 31 contain Jjump instructions using
location counter expressions for the jump address target
instead of a 1label. This practice 1is common in many
assembler language programs. The decompiler will use the
address field of the machine code to determine the target of
the Jjump.

Since there 1is no "jump if A-register 1less than or
equal to zero" instruction on the 620/i an "identity"
frequently used to accomplish this test is

A <= 0 implies A - 1K 0
(See lines 19-20.) There is a similar code sequence on lines

25-26 for testing whether the A-register is strictly greater

146

than zero.

The instructions sequences mentioned above (lines 19-20
and 25-26)...are examples of 1idiomatic sequences which are
soft implementation characteristics (see Chapter 3) of
programs written for the 620/1i. However, the "identity"
used fails when the contents of the A-register before the
DAR instruction is the largest negative number representable
on the machine, -32768. Subtracting one from this number
yields a positive number (32767) with overflow.

Identities of this type are used because they work for

most of the domain of variables to be tested. Extending the

code sequence of the test by adding another check for
overflow is almost never done because the extra code needed
Qould rarely be used. The programmer either forgets about
the possibility that the sequence might fail, realizes it
might fail but codes it anyway, or proves to himself that
the domain of the test does not ever include -32768
(although he may not be able to guarantee this fact for all
future revisions of the program).

The lack of complete instruction sets creates these
pitfalls; many programmers stumble into them sooner or later
as they try to code around missing instructions. The
problem is particularly acute on minicomputers where the
size of the instruction word is limited and designers cannot
put all of the instructions in the architecture which would

be desirable.

147

1 % —_
2 SAMPLE PRUGKAM TO DECOMPILE
3 *
L 000200 ,ORG ,0200 FIRST ADDRESS OF PGM
5 005000 PCHK,EQU ,05000 EXTERNAL SUBROUTINE
6 006000 ERR ,EQU ,06000 EXTEKNAL ERROR ROUTINE
7 *
8 *MOVE - M <STAKT.SGURCE> <END.SOURCE> <START.TARGET>
9 * MOVE WORDS [P1,P2] TO [P3,P3+P2-P1]
10 #* MUST HAVE P1<=P2, P2<=H, L<=P1, P3+P2-P1<=H
11 ELSE GOTO ERROR ROUTINE
12 #
13 000200 000000 MOVE,ENTR |, ENTRY POINT
14 000201 002000 ,CALL ,PCHK CHECK PARMS P1,P2
000202 005000
15 000203 010232 ,LDA P2
16 000204 120233 JADD ,P3
17 000205 140231 ,SUB ,P1
18 000206 140234 ,SUB ,H
19 000207 005311 ,DAR
20 000210 001004 ,JAN %46 (FINAL TARGET > H; ERROR.
000211 000216
000212 006010 ,LDAI ,“?H° ERROR CODE
000213 137710
22 000214 001000 ,JMP ,ERR TO ERROR ROUTINE
000215 006000
23 000216 010231 ,LDA ,P1 LOOP HEAD
24 000217 140232 ,SUB ,P2 CHECK TERMINATION
25 000220 005311 ,DAKR
26 000221 001002 ,JAP*¥ | MOVE DONE
000222 100200
27 000223 017231 ,LDA* P1 GET SOURCE WORD
26 000224 057233 ,STA* ,P3 STORE IT
29 000225 040231 ,INR ,P1 BUMP SOURCE PTR
30 000226 040233 ,INR ,P3
31 000227 001000 ,JMP ,%_9 LOOP AGAIN

000230 000216
32 #
33 000231 000000 P1 ,DATA
34 000232 000000 P2 ,DATA
35 000233 000000 P3 ,DATA
36 000234 000000 H ,DATA
37 000000 ,END

Figure 5-A. Sample source program to be decompiled.

148

N Il N N BN B BN BN N B D OE B BN B BE A BE e
n
—

Abb -- add memory to A-register; result to A.
CALL-- subroutine call. (See ENTR).
DAR -- decrement A-register.

DATA-- declares symbol and presets memory value.
END -- end.of assembler program.
ENTR-- entry point; return address put here by a CALL.

EQU -- gives definition to symbol.

INR -=- increment memory.

JAN -- jump if A-register negative (< 0).

JAP¥*-- jump indirect if A-register positive (>= 0).
JMP -~ unconditional jump.

LDA -- load A-register,

LDA*¥-- load A-register indirect.
LDAI-- load A-register immediate.

ORG -- sets origin address of program.
STA¥-- store A-register indirect.
SUB -- subtract memory from A-register; result to A.

Figure 5-B. Definition of sample program opcodes.

A decompiler has several options available to it when
translating these idiomatic sequences

0 flag the sequence as "dangerous";

o) assume the identity is true and use it to create

the higher level code; or

o) translate the code sequence without wuse of the

identity.
The experimental decompiler described here tries to use the
identity to simplify target expressions.

A more complex transformation of the source code from a
"natural" statement of the algorithm into an "efficient" one
is harder for a decompiler to recognize. For example
suppose that the source machine can only test the value of
an index register for zero (as is the case on the 620/i). A

common approach to coding iterative loops which modify an

149

indexed vector is to count down from the maximum index to
zero, or start with a negative index and count up to zero.
The problem for a decompiler 1is to recognize whether the
order of access to the vector is important or is the loop
simply a statement of "for all elements of the vector do
something." If the latter interpretation is the case, then
the details of indexing and accessing could be suppressed in
the target program under a suitable high level statement.
On lines 25-26 we see the use of the "identity"
A > 0 implies A - 1 >= 0.
In this test for loop termination, we could avoid executing
the DAR instruction every time through the loop by
incrementing P2 before the loop began and the test for
éompletion could be
P1 >= P2
instead of
P1 > Pp2.
This is another transformation of the "natural" code
sequence which yields more efficient execution but obscures
the real intent of the code. As modifications of the
program to achieve efficiency are carried out on a more
global scale, they are more difficult for the decompiler (or
a human) to relate to their purpose (e.g. test for loop
termination) and are simply translated without modification

to the target program.

150

*wedBoud oaTdues JoJ Jossaoouadaud syg Jo andang .oum,mg:wﬂm

((000000) TIN () ana 1IN 1IN *lE)
((000000) 1IN (0) viva H #£2000 ‘9€)
((000000) 1IN (0) vlvd €d £€2000 - °GE)
((000000) TIN (0) viva 2d 2£2000 ‘#€)
((000000) 1IN (0) viva. td 1£2000 "E€)
Q) ule¥n Q) TIN TIN TIN *2€)
_ (912000 000100) w¥NIVOV d0OOT%n (ub=gu) dHr 1IN L22000 *LE)
((£€2010) 1IN (Ed) UNY TIN 922000 ‘0f)
((1LE20%0) w$HId FAOUNOS dWNd%a (1d) UNI TIN 622000 *62)
((£€2L50) w$L1I AYOLSYu (£d) V1S TIN 422000 ‘g2)
((L€2L10) w$AQYOM ADHNOS 13AHY. (td) Va1 TIN £22000. °L2)
(002001 200100) u3ANOA%w (IAOH) sdve 1IN 122000 *92)
((11€500) 1IN @) uva TIN 022000 *Ge)
((2€20h1) WYNOILVYNIWMAL NIAHO%. (2d) ans TIN L12000 *Hhe)
((LE20L0) w%avaH don1%. (Ld) van 1IN 912000 ‘€2)
((000900 000L00) = w$ANILNOM HOHHA OL%u (MH9) dHe TIN ®12000 *22) S
((OL.LLEL 0L0900) w%3A0D HOMMA%. (n, B, u) Ivan TIN 212000 12) -—
(912000 %00100) u$9G0\HOUHT €LO\H < LGO\IADHVI TVNIJOSO\%u (uO+wu) NV 1IN 012000 ‘02)
(¢(11£500) TIN O uva 1IN 102000 *61)
((hE20ht) 1IN (H) ans TIN 902000 ‘gL)
((LE€2001) 1IN (Ld) ans TIN 602000 *LL)
((£€2021) 1IN~ (€d) aay 1IN 402000 ‘9l)
((2€2010) 1IN (2d) vaT . TIN £02000 *GlL)
((000500 000200) u¥2d‘Ld SHHVd ¥DAHOI%w (MHDJ) 110 TIN 102000 ‘Hi)
((000000) w$INIOd AUINTE. @] HINT dAOH 002000 *€1)
. _ Q) uwinba () TIN 1IN TIN *2l)
() w$EANILNOY YOHHE OL OlOH ASTH #%u () TIN 1IN 1IN ‘1)
: Q) wIH=>1d~2d+Ed ‘1d=>1 ‘H=>2d ‘2d=>id JAVH ISNH #%u () TIN 1IN TIN ‘0L)
(Q) wf(Ld~2d+E4‘Ed] OL [2d‘1Ld] SAYOM BAOH s%u () TIN 1IN TIN °6)
(() w¥<1IDUVIISO\LUVIS> <TDUNOSYSO\ANA> <FOUNOSISO\IHVIS> W = FNOHsLu () TIN TIN 1IN ‘g)
') _ (() uw¥afa () TIN TIN TIN *L)
] ((000900) #w3ANILNOH HOMMA TYNYAIXA%¥w (00090) noa . yya 1IN ‘9)
, ((000500) «%INILNOHANS TYNUALXI¥u (00050) noa IHOd TIN *q)
: ((002000) w$HOd 40 SSAYAQV ISHId¥w (0020) Yo, TIN TIN ‘h)
Q) wis¥a () TIN TIN TIN °€)
Q) u$3TIdNODEA OL WYHDOUd TTIHVS w%u () 1IN 1IN 1IN *2)
Q) nfadn Q) TIN TIN TIN ‘L)
(C) w¥a%u () TIN 1IN TIN °0)

PREPARATION-OF THE SOURCE PROGRAM
The source program of Figure 5-A is input to the
preprocessor for formatting as described in the previous
chapter. The _preprocessor generates a sequence of LISP
s-expressions where each s-expression corresponds to a line
of the source listing. The format of the s-expression
generated is
(<sequence number>
{location address>
<label>
<opcode>
<operands list>
<comments>
<value list>).
The item NIL or “()” on a 1list means that field is empty.
Figure 5-C shows the output of the preprocessor.
The source input listing is read from a disk file and
the output goes to a disk file. The preprocessor is a
one-pass program and handles one line of input at a time.
Its run-time memory requirement is independent of the length
of the source program. Its execution time is proportional
to the length of the input program.
Some remarks about Figure 5-C -- line 0 is a dummy
inserted into the code by the preprocessor. There are
certaih characters which are difficult to handle in LISP

because they have reserved meanings, e.g., (", “)°, °.°

152

tiiese are -.replaced with a coded representation which
consists of their three digit ASCII code prefixed with a
back-slash (“\7). (See lines 8 and 20.) They are changed
back by the postprocessor.

(006000 . ERR)

(000234 . H)

(000200 . MOVE)

(000231 . P1)

(000232 . P2)

(000233 . P3)

(005000 . PCHK)

Figure 5-D. Symbol table entries for sample program.

LOADING THE FORMATTED CODE

The preprocessor extracts the symbol table from the
assembler listing (see Figure 5-D). The symbol table is
input to the decompiler and then the source file created by
the preprocessor (see Figure 5-C) is 1loaded into the
decompiler window. ‘The window corresponds to the M and S
vectors described in Chapter 4. (The reader may wish to

refer to Figure 4-A.) 1In the case of this sample progranm,

the loader stops when it sees the end-of-file, Some source

lines in S are not pointed to from M. These correspond to
lines which do not generate any code, e.g., lines 1-12, 32,

37.

CONTROL GRAPH GENERATION

Once the window is loaded, the decompiler driver passes

control to the stage one control graph generation function.

153

That function will attempt to generate a control graph
rooted in the M vector at M[0] (M[0] will correspond to
program-- .location 200). Figure 5-E shows a graphical
representation and the internal LISP representation of the
stage one control graph. After this graph is generated, the
driver invokes the stage two function which will attempt to
indicate join nodes of the graph explicitly. Figure 5-F

illustrates the stage two graph.

Stage One

The control graph generation algorithm looks for the

first executable memory word in the M vector. This is at
- location 201. The ENTR pseudo-op indicates that location
200 1is not an instruction. Since location 201 is a CALL

instruction, the stage one algorithm seeks information
regarding the attributes of this subroutine from a service
function. If this information is not present in the data
available to the decompiler, the service routine asks the
user for the information. In this «case a short dialog
between the decompiler and the user takes place.

decompiler: "How many in-line arguments to subroutine
PCHK called from 2017?7"

user: "Q"

decompiler: "Does it return after the call?"

user: "yes"

These are the only two subroutine attributes the

decompiler 1is programmed to request. It remembers the

154

response to the questions 1in case it might need the
information 1later. The number of in-line arguments enables
it to -determine where control will commence after the CALL
returns, iff it does return. The procedures used to
determine subroutine attributes may be as complicated as
necessary. For example, if all argument lists are in-line
and the first word of the list is a constant count of the
number of words on the list, a small procedure could be
programmed to extract this information from the source
program itself without asking the user.

The stage one algorithm determines the successor of the
instruction at 201 is at 203. It continues interpreting the

control flow until it gets to the conditional instruction at

4210. The control flow splits here -- one path goes to the

error routine (ERKk), the other continues. By convention,
the "true" path (to_location 216) is traced first. Because
we have the machine code present, we do not have to
determine what "¥+6" means. Its value is the second word of
the "JAN" instruction which indicates the target of the jump
is 216. By having the machine code, we avoid having to

assemble the source code again.

155

(201

203

204

205 LISP s-expression representation

206 - ..

207

210

(216 217 220 221 (nil) (223 224 225 226 227 + * 216))
(212 214 + * 6000))

201

203

204
Graph representation

216 212
217 214
220 6000
221

.’;5/
nil

Figure 5-E. Stage one control graph for program
of Figure 5-A.

156

Continuing from 216, we encounter another conditional
instruction at 221. This is a conditional RETURN from the
subroutine.. Since the target of the jump is determined only
at execution time, the program trace cannot continue along
the "true" path from 221. The "false" path starts at 223
and continues to 227 where we have a loop back to 216. The
loop is recorded in the control graph and we back up to
trace the "false" path from 210 (having just exhausted the
"true" path from that location). Location 214 is a jump to
an address outside of the window and is treated as a sink
node since the trace cannot continue.

At this point, all of the executable instructions in

the window are included in the control graph. The only

locations not in the graph are 200, the mark word of the

subroutine, and 231-234, the data area. These statements,
as well as those which did not generate any code, are

handled in the code output section of the decompiler.

stage Two

The stage one gbaph has no transfers between sibling
subgraphs of a conditional hode, so the stage two algorithm
does not establish any explicit join nodes as described in
Chapter 4. Two nodes (214 and 217) are removed because they
are unconditional jump instructions. The control is

represented by the edges of the graph making unconditional

jump nodes redundant.

157

(201

203

204

205 LISP s-expression representation

206 - -

207

210

(216 217 220 221 (nil) (223 224 225 226 + * 216))
(212 + * 6000))

201

203

204

Graph representation

205

206

207

210

T F

216 2212
217 6000
220 T

0

21
AN
nil @

Figure 5-F. Stage two control graph for program
of Figure 5-A. (Every join subgraph is empty.)

158

IMTEXT GENERATION

The stage two control graph of Figure 5-F is passed to
the IMTEXT generation routines. The IMTEXT generation
routines fill— in the nodes of the graph with the
corresponding IMTEXT statement(s). The output of the IMTEXT
generation routine 1is shown in Figure 5-=G. This section
discusses properties of this IMTEXT graph.

The names of registers appear explicitly as AREG!,
BREG!, XREG!, OF!. Synthetic variables needed in the IMTEXT
statements are represented as !Tn or !Sn (n =0, 1, 2, ...).
Synthetic variables can be considered as temporary result

holders.

The instruction at location 207 (and 220) expands into

‘three IMTEXT statements

(207 0O MOVE AREG! 'T3)
(207 1 SUB (!T3 =1) IT3)
(207 2 MOVE !T3 AREG!)

At first glance, this may seem an over complicated sequence
to generate for an instruction which might be represented as
(207 0 SUB (AREG! =1) AREG!).

The 620/i instruction DAR belongs to a 1large group of
register transfer instructions which can conditionally apply
four transformations on the data from three register sources
and place the result in three register destinations. The
function which translates instructions of this group into

IMTEXT does this in a general fashion and does not check for

159

special cases. Of course, special case checks could be
added to reduce the number of IMTEXT instructions generated
for the .-.common simple cases such as DAR. It is also
interesting to note that this group of instructions has 512
(2%%9) combinations, but by using the machine code to
decipher the instruction rather than trying to recognize all
of the possible mnemonics, the IMTEXT generator is greatly
simplified. It can use the work the assembler has already
done.

Instruction 210 is translated into two parts also. The
condition predicate is evaluated and the result is stored in
the synthetic variable !T1 by

(210 O LT AREG! !T1).

The actual Jjump instruction is translated as a "branch

true," testing the boolean variable !T1:
(210‘1 BT (I1T1 "*¥46") NIL).
At location 216 we have a LABEL statement introduced

because 216 has more than one predecessor (210 and 226).

160

((201 0 CALL (PCHK) (PCHK))
(203 0 MOVE (P2) AREG!)
‘(204 0 ADD (AREG! P3) AREG!)
(205 0 SUB (AREG! P1) AREG!)
S (206 0 SUB (AREG! H) AREG!)
(207 O MOVE (AREG!) !T3)
(207 1 SUB (!T3 =1) IT3)
(207 2 MOVE (!T3) AREG!)
(210 0 LT AREG! !T1)
(210 1 BT (!T1 "#46") NIL)
((216 0 LABEL (216) NIL)
(216 1 MOVE (P1) AREG!)
(217 0 SUB (AKEG! P2) AREG!)
(220 0 MOVE (AREG!) !T3)
(220 1 SUB (!T3 =1) !T3)
(220 2 MOVE (!T3) AKEG!)
(221 0 GE AREG! !T1)
(221 1 INDIRECT (MOVE) !S1)
(221 2 BT (!T1 !S1) NIL)

((NIL NIL NIL WNIL NIL))

((223 0 INDIRECT (P1) 1S1)
(223 1 MOVE (1!S1) AREG!)
(224 0 INDIRECT (P3) !S1)
(224 1 MOVE AREG! !S81)
(225 0 BUMP P1 P1)

(226 0 BUMP P3 P3)

(NIL NIL B (216) NIL)))
((212 0 MOVE ("="?H"") AREG!)
(NIL NIL B (6000) NIL)))
Figure 5-G. IMTEXT control graph for sample program
derived from stage two control graph of Figure 5-F.

(This graph is in the form of a LISP s-expression.)

At 1location 221 the JAP* instruction illustrates an
example of a future forward substitution of a synthetic
IMTEXT statement into the argument list of a successor. The
target of the jump is indirect through MOVE. The meaning of

(221 1 INDIKECT (MOVE) !S1)
is "evaluate MOVE and store the result in !S1." The second

argument of

(221 2 BT (!'T1 !'S1) NIL)

161

is the forward substitution target of the INDIRECT
statement. The "true" subgraph of 221 is empty since the
target of-the {ndirect branch is indeterminant.

At statement 224 we see an example where substitution
will occur in the change list of an IMTEXT statement. This
corresponds to an expression evaluation on the left of an
assignment.

The branch instructions after 212 and 226 in the IMTEXT
graph are synthetic. In this case, they correspond to the
instructions 214 and 227 although synthetic branch
instructions do not have to have a counterpart in the source
code.

The IMTEXT statements generated at this step of the

4decompilation are all basic statements, i.e., they have only

simple arguments and change lists. Any nesting of

statements is done in the next step -- forward substitution.

FORWARD SUBSTITUTION

The revised IMTEXT control graph after forward
substitution is shown in Figure 5-H. Statements 203.0-210.0
compute the value of a predicate which is used to determine
whether the last location to be moved by the source program
is in the bounds delimited by variable H on the upper limit.
The address of the 1last target 1location for the move is
computed by (P2 + P3 - P1) and then is compared to H by

substracting (H + 1). The program is computing the

162

predicate

Is P2 + P3 - P1 <= H ?
The IMTEXT. . statements use temporary locations AREG! and
!T3. The forward substitution algorithms determine that all
uses of temporary variables can be suppressed and statements
203.0-210.0 can be condensed into the first argument of
210.1 -~ the conditional branch, BT.

It 1s weasy to see that AREG! can be eliminated
(statements 212 and 216 limit the downstream scope of the
variable use past 210). Built into the forward substitution
algorithm is the notion that a synthetic variable (e.g., !T3
in 207) only has scope over its immediate successors in the
same sﬁbsequence to which it belongs (e.g., 207.0, 207.1,
207.2). The synthetic variable value will never be needed
after the subsequence. Using this fact, I!T3 can be
substituted without gxplicit assignment at 207.1 and 207.2.
Without this convention, we would have to make explicit the
assignment to !T3 since we could not determine the busy
status of !T3 on exit from MOVE.

The condensation of statements 216.1, 217, 220, and
221.1 into 221.2 is similar to the above example except that
the busy status of AREG! is not known due to the
indeterminant branch at 221.2. We cannot know whether the
calling routine expects a value to be returned in the

A-register when MOVE returns.

163

((201 0 CALL™¢PCHK) (PCHK))
(210
1
BT
((210
0

LT
((207
2

MOVE
(($07

SUB
(207
Q

HOVE
((206
0

SuB
((205 0 SUB ((204 0 ADD ((203 0 MOVE (P2) NIL) P3) NIL) P1) NIL)
h)
NIL))
NIL)

(NIL))
((216 0 LABEL (216) NIL)
(221

BT
((221
0
GE .
((NIL
NIL

MOVEXP
((220
2

MOVE
((220
1

SUB
((220 0 MOVE ((217 0 SUB ((216 1 MOVE (P1) NIL) P2) NIL)) NIL) =1)
(1T3)))
NIL))
(AREG!)))
(1T1 AREG!))
* (221 1 INDIRECT (MOVE) (1S1)))
(NIL AREG!))
((NIL NIL NIL NIL NIL))
((%2» .

MOVE

((NIL NIL
MOVEXP
({223 1 MOVE ((223 0 INDIRECT (P1) (1S1))) NIL))
(AREG!)))

((224 0 INDIRECT (P3) 1S1) AREG!))

(225 0 BUMP P! P1)

(226 0 BUMP P3 P3)

(NIL NIL B (216) NIL)))

((212 0 MOVE ("="?H°") AKEG!) (NIL NIL B (6000) NIL)))

Figure 5-H. IMTEXT control graph in LISP
. s-expression form after forward substitution
. was applied to the graph of Figure 5-G.

164

This is an. example of helpful information which 1is not
available. (See Chapter 3 for the discussion of this

topic.) - If such information was included in the attribute

list of MOVE, e.g., "MOVE returns no information to the
calling routine in the A-register; The A-register |1is
destroyed," then we would know the explicit assignment to

AREG! at 220.2 is not needed. 1In fact, we do not know this
so we assume the worst case.

At statement 223.1 the same situation occurs.
Statement 221.2 is downstream of 223.1 (in the loop) so we
make the store to AKEG! explicit (MOVEXP).

Statement 224.0 has been substituted in the change list
of 224.1 for the synthetic variable !31.

Once the forward substitution has been completed, the

decompiler begins to generate the target code.

TARGET CODE GENERATION

The generation of the target code proceeds as follows.
The root of the IMTEXT control graph is at location 201.
Statements in the source program prior to line 14 (Figure
5-A), the line which generated the root node, are examined
by the pseudo-o0p processor and appropriate code is
generated. The output corresponds to lines 1-14 1in Figure
5-I.

The structure recognition algorithm theh attempts to

match structure patterns with the control graph as discussed

165

in Chapter -4. In the case of this sample program, the
structures recognized are the IF statement conditional
pattern -and-- thg pre-test WHILE loop pattern. The loop is
contained in the body of the conditional. An alternative
and equivalent pattern would have the loop outside the body
of the conditional and the error exit code inside. This
alternate structure might be favored over the one actually
selected, since‘it reduces the nesting level of a large
volume of code (the loop) and seems to make the error exit
more visible. If such stylistic conventions can be
codified, they can be added to the code generators to cause
certain equivalent constructs tq be favored over others.

An example of such a stylistiec transformation

programmed 1into the decompiler is one which, under

appropriate conditions, raises the level of an ELSE clause
in an IF statement if the last statement of the THEN clause

is an unconditional branch, i.e.,

IF exp THEN BEGIN S1; ... GOTO L; END;
ELSE S2;
becomes
IF exp THEN BEGIN S1; ... GOTO L; END;
S2;.

Similar transformations <c¢an be applied to argument
expressions. The output of the target c¢ode for the
predicate of the BT statement at 210 in the IMTEXT control
graph uses an "identity" discussed earlier in this chapter,

namely, for variables A and B

166

A-B-1<20
becones
e A-B<K=0
and finally,
A <= B.
The application of this transformation succeeds in

changing the expression

P2 + P3 - P1 - H-1X<K0

into

P2 + P3 - P1 <= H.
(line 16 of Figure 5-I), a considerable improvement in
readability.

The decompiler was not as successful in rearranging the

IMTEXT expression of statement 221 (Figure 5-H) to yield

line 22 of the target program (Figure 5-I). The explicit
assignment in
(AREG! := P1 - P2 -1) < O
defeats application of the transformation. We discussed
earlier that this explicit assignment was not really
necessary to the program although the decompiler did not
determine that fact due to the lack of information. The
predicate could be rewritten as
P1 <= P2

it the assignment were removed. This example illustrates
how 1lack of information at one stage of the decompilation

can affect later stages due to "worst case" assumptions. In

167

this case, -lack of helpful information causes stylistic
downgrading of the target program.

Aftepwthe-decompiler outputs the code for the procedure
itself, it calls the pseudo-op processor to output the data
declarations (target 1lines U40-45 of Figure 5-I) and the
decompiler writes the target program to a file to be read by

the post-processor.

POSTPROCESSOR

The input to the postprocessor contains many symbols
not in the target 1language (e.g., <<, “/]1°, AREG!), as
well as the transliterated symbols introduced by the

preprocessor. One of the tasks of the postprocessor 1is to

-translate these symbols into their proper representations.

Another important task of the postprocessor 1is to
format the target program according to some rules about
indentation, comment placement, and spacing which will make
the output more readable. Of course, these rules are
subjective for a free format language. As much or as little
effort can be expended in the formatting procedure as is
desired. The meaning of the program, in terms of 1its
executability, is unaffected by this process, but the value
of a well formatted presentation of the program should not
be underestimated with respect to its understandability.

. Figure 5-J shows the output of the postprocessor for

the sample program. No manual changes were needed.

168

T(("p*3")

2 ("p¥*%")

3 ("%* SAMPLE PROGRAM TO DECOMPILE%")

y (nz*gm)

5 (" /;-0KG /, (200) ~ ; "%FIKRST ADDRESS OF PGM%")

6 (EQU PCHK = (5000) ; "4EXTERNAL SUBROUTINE%")

7 (EQU ERR = (6000) ; "%EXTERNAL ERROR ROUTINE%")

8 ("%*%")

9 ("%*MOVE - M <START\056SOURCE> <END\O56SOURCE>
<START\O56TARGET>

10 ("%* MOVE WORDS [P1,P2] TO [P3,P3+P2-P1]1%")

11 ("%* MUST HAVE P1<=P2, P2<=H, L<=P1, P3+P2-P1<=zH%")

12 ("%%* ELSE GOTO TO ERROR ROUTINE%")

13 (n%*%n)

14 (PROCEDURE MOVE ; % ADDRESS 200 % "$ENTRY POINT%")

15 ((CALL PCHK ; "%CHECK PARMS P1,P2%")

16 (IF ((<< ((K< (P2 + P3) >>) = P1) >>) <= H)

17 "£\050FINAL TARGET\051 > H\O73 ERROR\056%"
18 THEN

19 BEGIN

20 ((LO01 : "%LOOP HEAD%")

21 (WHILE

22 ((<< (AREG! := ((<< (P71 = P2) >>) = 1)) >) < 0)
23 "$CHECK TERMINATION%"

24 "%4DUNE%"

.25 DU

26 BEGIN

27 (/L P3 /1) := _
28 (AREG! := (/[P1 /1))
29 ;

30 "4GET SOURCE WORD%"
31 " "ESTORE IT%")

32 (BUMP P1 ; "%BUMP SOURCE PTR%")
33 (BUMP P3 ;))

34 END;)

35 (RETURN ;))

36 END;)

37 (AREG! := "="?H"" ; "$ERROR CODE%")

38 (GOTO ERR ;))

39 ENDP;)

UO(("%*%")

41 (DECLARE P1 = (0) ;)

42 (DECLARE P2 = (0) ;)

43 (DECLARE P3 = (0) ;)

44 (DECLARE H = (0) ;)

45 (DONE \056))

Figure 5-I. Output of decompiler code generation routines
before postprocessing (line numbers added for reference).

% SAMPLE PROGRAM TO DECOMPILE %

",0RG,0200" ; % FIRST ADDRESS OF PGM %
EQU PCHK = 05000 ; % EXTERNAL SUBROUTINE %
EQU ERR-=_06000 ; % EXTERNAL ERROR ROUTINE %

% MOVE - M <START.SOURCE> <END.SOURCE> <START.TARGET> %
% MOVE WOKDS [P1,P2] TO [P3,P3+P2-P1] % ‘

% MUST HAVE P1<=P2, P2<=H, L<=P1, P3+P2-P1<=H %

% ELSE GOTO TO ERROR ROUTINE %

PRUCEDUKE MOVE ; % ADDRESS 200. ENTRY POINT %
CALL PCHK ; % CHECK PARKMS P1,P2 %
IF ((P2 + P3) - P1) <= H
% (FINAL TAKGET) > H; ERROR. %
THEN
BEGIN
L0071 : % LOOP HEAD %
WHILE (AREG := (P1 - P2) = 1) < 0
% CHECK TERMINATION %

% DONE %
DO
BEGIN
[P3] := AREG := [P1] ;
% GET SOURCE WORD %
% STORE IT %
BUMP P1 ; % BUMP SOURCE PTR %
BUMP P3 ;
END;
RETURN ;
END;
AREG := "?H % ERROR CODE %
GOTO ERR ;
ENDP;
DECLAKE P1 = 0 ;
DECLARE P2 = 0 ;
DECLAKE P3 = 0 ;
DECLARE H = 0 ;
DONE.

Figure 5-J. Output of postprocessor of decompiler.

SUMMARY
In this chapter we have presented some details of the
decompiler implementation and taken a small sample program

through each step of the decompilation process to its final

170

representation in the target language. A comparison of the
source program (Figure 5-A) with the target program (Figure
5-J) makes. c%ear what has been done. A linear sequence of
instructions has been transformed into an equivalent
representation in the target language. The scope of each
conditional and looping construct 1is clearly identifiable.
The computations involved in the conditional predicates have
been collected into expressions associated with the
instructions groups they control.

This example is quite simple and easy to understand in
its assembler language form. The target program contains
some extraneous information and might be rearranged slightly

to suit different tastes. However, most programmers would

‘probably agree that the target language program is more

readable and understandable than the original.

171

Chapter 6

DECOMPILATION EXPERIMENTS

INTRODUCTION

In the last two chapters we discussed the algorithms
ana details of the decompiler implemented during this
research. We illustrated the action of the decompiler on a
small sample progranm. In this chapter we present the
results of decompiling two larger source programs. The goal

of these experiments 1is to provide realistic information

regarding the following questions:

o] How much manual intervention is necessary, and what
kind?

0 What is the relationship of the machine code volume
of the source program to the machine code volume of
the recompiled target program?

o What can we say about the speed of the decompiler
itself?

o What is the relationship of language constructs of
the source program to those of the target program
text generated by the decompiler?

o} How do the experimental results presented here

compare with those of other decompilation efforts?

172

THE TEST PLAN

The test’ plan consists of using the decompiler to
produce- four different representations of the test program.
In adadition to-the initial source version, PO, we have

Pl--produced by the postprocessor of the decompiler.

P2--Manual changes are made to P11 which make the
resulting program compilable by MOL620 and cause it
to execute correctly after recompilation.

P3--Data movement which is "obviously redundant" is
removed from P2, This phase approximates what a
decompiler with more helpful information might
produce.

PU--The P3 version is rewritten maintaining functional
equivalence. This represents the results of
applying an "ultimate" decompiler to produce the
target program. Information which realistically
could only be expected to be gleaned by a human is
used to rearrange or rewrite entire functions or
groups of functions in a more readable and more
organized fashion.

P4 represents the best program we could hope a
decompiler to produce and thus serves as a limit point of
our expectations. The difference in the object code sizes
of PO and the recompiled version of P4 should be
attributable to the implementation language (barring some

gross deviation from the "best" algorithms possible which

173

could be expressed in the implementation language).

CHOOSING A TEST CASE
The attributes of a source program which would be a

satisfactory test case for the decompiler are

o relatively large -- over one thousand source
statements. This would insure that many different

code sequences would probably appear in the source
program and cause most of the parts of the
decompiler to be exercised.

o average quality -- representative of code that

might be produced by an "average" programmer, i.e.,
and not too full of tricks and not too well
structured.

o mature -- in use for a long period of time in a
production environment; patches and improvements
have been made by several different people over a
period of time.

o) useful -~ the task performed by the program is
currently useful to some community of users.

o testable -- proper operation of the target program
can be verified by executing it. It does not use
equipment (e.g., I/0 equipment) unavailable to the
tester.

o} familiar -- knowledge of the program’s structure

and performance would be helpful in assessing the

174

results of the decompilation.

0 candidate for evolutionary improvements -- a
. _Ssuccessful decompilation should make such

improvements easier to implement in the target

language.

THE FIKST TEST CASE -~ ISADORA

The first large program selected for decompilatién was
an interactive debugger for the Varian 620/i computer. This
program, called ISADORA, was written in assembler language
in 1969 by an undergraduate student in the UCI Department of
Information and Computer Science.

ISADORA contains 2041 source lines consisting of

523 comment lines,

49 listing control lines (e.g., EJECT),

70 non-code producing lines (e.g., EQU, ORG),
1199 machine instructions, and
200 data declarations (code producing).

The production version of ISADORA occupies 2268 16-bit words
of memory. | |

The coding style in ISADORA is typical of many programs
written by novice assembler language programmers. There are
some attempts to save code by tricks or non-obvious code
sequences. The program is more modular than most in that
there are many subroutines but entry, exit and variable
sharing among them is often wundisciplined. Some code
modification is done, particularly in in-line argument
lists. The nature of the programming environment on which

ISADORA was originally prepared influenced some of these

175

\

coding techniques. A slow, tedious paper tape I/0 system
with teletype -hard copy output contributed to the formation
of small code packets which could be edited (manually) and
assembled sepaéately. Lack of symbol table space in the
original 8K machine led to the use of many "¥%4+n" (location
counter relative) constructs instead of 1labels. For
example, "JMP ¥+19" was not an uncommon type of instruction
to appear in the program.

ISADORA, 1in use for six years on the departmental
minicomputer, had been modified or extended many times,
usually in small increments, by at least four students in

addition to the original author. The occurrences of

relative addressing mentioned above became a source of

maintenance problems and most of them were removed over the

years. (The memory on the 620/i system had been expanded to
32K and symbol table space was no longer a problem when
ISADORA was assembléd.) Some of these "¥4n" addressing
constructs still remained when the program was decompiled,
however,

ISADORA is the best debugger available to users of the
620/i and so is used often. The nature of the program made
it easy to verify correct operation. ‘The inclusion of the
620/i in the Distributed Computing System (DCS) research
network (Farber et.al. 1973) in 1972 meant the computer
was being used and programmed much more heavily than in the

past. Enhancements of a major nature to ISADORA were not

176

attempted because no one wished to undertake modification to
the assembler language program. A decompilation of ISADORA,
if successful, would translate the text into the system
implementation- language for the 620/i (developed after
ISADORA had already been written) and modification and major
improvements would be easier to make. (The DCS system is
programmed almost entirely in MOQOL620 (Hopwood 1971) and
MOLSUE (Hopwood 1976), two machine oriented higher level
languages.)

With the above qualifications, ISADORA was chosen as a

good candidate for the 1initial large scale test of the

decompiler.

.ISADORA THROUGH THE DECOMPILER: PO -> P1

The ISADORA source program (P0) was assembled on the
PDP-10 cross-assembler. (See Appendix IV for an excerpt of
the ISADORA program input to the decompiler.) The output
listing was passed through the preprocessor of the
decompiler to yield the formatted code and the symbol table.
This information passed through the LISP portion of the
decompiler as discussed 1in earlier chapters. Necessary
information regarding the nature of subroutine calls was
requested by the decompiler and entered by the user. (See
chapter 5 for an example.) Progress of the decompilation

was monitored on the user’s terminal. The output of the

code generation phase was then passed to the postprocessor

177

yielding P1.

Up to this point the information supplied to the
decompiler by the user was the assembler output listing, a
value for the maximum window size desired, necessary
information regarding subroutines, and names of input/output

files. Only six subroutines had attributes not covered by

the default attributes assumed by the decompiler.

ISADORA MANUAL CHANGES: P1 -> P2

The output of the postprocessor (P1) may be suitable
for the purposes of understanding or documentation but if we
wish to retranslate the target program back to machine
language and execute it, we must perform some manual
editing. In other words, the output of the decompiler is
not directly acceptable to the MOL620 compiler.

The manual changes needed to transform the output of
the decompiler into a compilable and executable program can
be classified into five groups:

1. communication with an undecompiled program,

2. 1interrupt service routines,

3. self-modifying code,

4, symbol definitions, and

5. unimplemented instructions.

The manual changes needed to change the output of the
postprocessor (P1) into a compilable, executable, target

program are summarized in Table 6-A.

178

Table 6-A. .Summary of manual changes made to P1 (ISADORA).
Environmerit transitions
subroutine calls 2
. ___interrupt service routines 14

Self-modifying code

computed jump addresses 4
temporary values 7
I/0 instructions 12
Symbols
duplicates 2
wrong place 5
new symbol definitions 1
equivalent symbols 3
entry points y

Unimplemented code

execute instruction 1
Total number of changes 55
Number of hours required 9

A manual change is considered to be a change to a string of
characters, wusually adding, deleting, or altering some
symbol in the target program. Some of the changes to
symbols were accomplished with one text editor command such
as "substitute for all occurrences..." operating on the
entire file. The important factor' in interpreting the
manual changes data is not the number of them but rather the
time réquired to produce the changes. The total time to
make the manual changes and verify that the result executed
correctly was about nine hours. (See Appendix V for a an
excerpt of the P2 version of the ISADORA source program.)

We now discuss each group of manual changes needed to

cause the P1 version of ISADORA to execute correctly.

179

Commynication

We define the memory environment of a program to be the

set of all _memory elements accessible by the program. Let
the environment of an executing decompiled program be the
decompiled environment. The environment of an executing
program which has not been decompiled 1is the external
environment. We assume the set of primitive operations
directed by each program are the same, i.e., they are both
written in the machine language of the same machine.

In order for two programs to communicate with each
other, their memory environments must overlap in a least one
place, e.g., a register, core location, 1/0 interface, or

satellite relay station. A communications protocol

)

establishes what parts of the overlapping environment are
used to transmit information, what time the information is
transmitted, and the nature of the contents of the shared
elements.

When a program is decompiled, its memory environment is
artificially changed so that operations to the physical
registers of 1its source machine are now performed upon
pseudo registers (e.g., the memory variables AREG, BREG,
XREG) . If the physical registers served as a communication
path with other programs whose environment has not been
altered in conformity with the decompiled program, then the

comhunications protocol is destroyed. The pseudo registers

of the decompiled program no longer overlap with the

180

registers of the undecompiled program with which it wishes
to communicate.

Figure 6-Aa illustrates the communication memory
environment ovérlap of programs D and P which communicate
through one memory element R. Figure 6-Ab shows the
decompiled version of D, D°, now attempting to communicate
with P through pseudo register R°, but R° is not in the
communication memory enviroment of P. P still attempts to
communicate with D” through R. The simple result of this
confusion is that P and D (D°) no 1longer communicate
correctly because their communications protocol is no longer
valid. Attempts to execute these programs together will
result in errors. Figure 6-A§ show the introduction of a
conduit process, C, which moves information between R and R’
at the appropriate times thus completing the path between
the two memory environments.

ISADORA communiéates with two external routines in the
620/i system which were not decompiled. A sequence of code
implementing a conduit process had to be placed at each call
site to the external routines to transfer subroutine
arguments from the pseudo registers to the machine

registers.

181

a. before decompilation

o T e
: ~® -

b. after decompilation
¢. conduit process inserted
Dr‘—.®‘—- C _—.®.—‘i P

Figure 6-A a,b,c. Communication between decompiled (D)
and undecompiled environments (P) through register R.

terrupts

We have seen that overlap of memory environments can

cause problems when decompiled programs try to communicate

with ones which were not decompiled. This problem has

another aspect which was revealed the first time the
decompiled ISADOKA was executed.

Program memory-environments may overlap for reasons
other than communications. Machine registers and status
words are almost always shared between different programs
operating in the same computer in a multiprogrammed
environment. irf these programs belong to different
execution environments this overlapped memory must be saved
and restored when execution environments are switched or the
programs will interfere with each other.

Figure 6-B shows a diagram indicating two execution

environments, D and P. The arrows indicate possible

182

transitions among various programs in these environments.
(The numbers on the arrows are labels.) For example, assume

interrupts can cause the transitions indicated.

'ocdiP-oX
3

Figure 6~B. Environment transitions due to interrupts.

Let the environment D correspond to the execution
environment ot ISADURA. Let the environment P correspond to
the execution environment of any programs not decompiled but

sharing processing time and some memory elements with

ISADORA. Such a system exhibits the transitions of Figure

6-B when external interrupts are allowed. An interrupt
service routine is executed, and control is returned to the
point of interruption with its context restored.

Transitions 1 and 2 are of 1interest here. How did the
decompilation of ISADORA affect the save/restore code in the
interrupt service routines of ISADORA? We can answer that
question by examining the memory environment of the
interrupt service routines and of the code which 1is
interruptable. Overlap of these memory environments implies
that the contents of the overlapped elements must be saved
and restored by the interrupt service routine.

Transition 1 interrupts are from the decompiled

183

environment. back into the decompiled environment. The
memory environment overlap in the interrqpt service routine
is the-.set. of physical registers and the pseudo registers.
The undecompil;d interrupt service routine saved and later
restored the physical registers. The decompiled service
routine saves and restores only the pseudo registers. The
physical registers are not saved and restored although they
need to Dbe. This must be done to avoid destroying the
context of the interrupted routine. The practical
resolution of this problem is to insert code sequences to
save and restore the physical registers into éll interrupt
service routines handling type 1 environment transitions.

The decompiled code which saves the pseudo registers is also

'still required.

~

Transition z interrupts are from the external
environment into the decompiled environment. The shared
memory environment consists of the physical registers. The
situation 1is similar to that described earlier for
subroutines communicating between the external and
decompiled environment. On entry to the decompiled
environment, the physical registers must be copied to the
pseudo registers. On return to the external environment the
pseudo registers must be <copied back to the physical
registers. (This is the action of the conduit process.)
The decompiled routine will save and restore the pseudo

registers to maintain the interrupted context.

184

Transition 3 interrupts from the decompiled environment
to the external environment do not cause any need for
change;__pg the programs involved. Only shared memory must
be saved and gestored and decompilation has not changed the
set of shared memory locations between the decompiled code
and external interrupt service routines. Transition 4
interrupts are not affected by the decompilation process and
so they are handled as before.

Figure 6-C shows two simple interrupt routines before
and after decompilation. The first handles transition 1
interrupts. The physical A-register is saved and restored
from the variable $A. The second handles transition 2

interrupts. The physical A-register is transferred to the

' pseudo register AREG. (Assume for simplicity that only the

accumulator is in the shared memory environment.)

The manual intervention needed to preserve or copy
information betweeﬁ the decompiled program and external
programs 1is somewhat tedious if there are many interrupt
service routines or calls to external routines. The
information about which routines are external and which are
interrupt service routines could be added to the subroutine
attribute information given the decompiler so that
appropriate code could be inserted automatically during
decompilation. The time needed to make manual changes for
environment transitions accounted for about one-half of the

total time expended making all of the changes to ISADORA.

185

Before Decompilation After Decompilation
Transition 1
ENTRY: ENTRY:

- S $A := (AR) ; %ADDED%
STA SAVEA SAVEA := AREG ;
<PROCESS INTRPT> <PROCESS INTRPT>
LDA SAVEA AREG := SAVEA ;

(AR) := $A ; %ADDED%
RETN RETURN;

DECLARE $A ;

Transition 2
ENTRY: ENTRY:

AREG := (AR) ; %ADDED%
STA SAVEA SAVEA := AREG ;
<PROCESS INTRPT> <PROCESS INTRPT>
LDA SAVEA AREG := SAVEA ;

(AR) := AREG ; %ADDED%
RETN RETURN ;

Figure 6-C. Changes needed in interrupt service routines
after decompilation.

Self-Modifying Code

Self-modifying code occurs in many assembler language
programs for two reasons -- to save space or to improve
execution speed. The decompiler developed in this research
recognizes self-modifying code by marking as "instruction”
memory locations which are traced in the control graph
generation routines. At IMTEXT generation time when
individual instructions are interpreted to determine their
meaning, those 1locations which would be modified by the
instruction are marked "writable." After processing the
window information and generating the target code, locations
which are marked "writable" and "instruction" are potential

targets of instruction modifications.

186

As implemented, this technique has two deficiencies:
1. Only " information about memory 1locations in the
- .eurrent window is kept. This means that
instr;ctions in the window which modify code
outside of the window are not detected.

2. Modification of code through indirection or
indexing, where the target of the modification is
unknown at decompilation time, is not detected.

The first problem can be solved by having the

decompiler keep information about the source program that is
not in the window (as is done with subroutine attributes).

This increases the memory requirements of the decompiler but

is feasible. The second problem is another variation of the

~difficulty of indeterminant addressing. Short of executing

(symbolically or actually) the program on its set of valid
input data we cannot hope to overcome this problem in
general. |
In ISADORA, self-modifying code appears for three
reasons: |
1. computing branch addresses in the second word of a
JUMP instruction,
2. using the second word of a double-word instruction
as a temporary variable, and
3. modifying 1I/0 instructions to change device
addresses.

In machines 1like the 620/i which do not have shift

167

instructions allowing variable shift counts, it is common to
modify the count field of the shift instruction; however, no
occurrences of this type of self-modification appeared in
ISADORA. -

The first two cases mentioned above were recognized by
the decompiler and announced in the target program text (P1)
with a warning message. The third case was not. The
moaifications to the 1I/0 instructions were done by a single
subroutine and all of the instructions modified were in
other routines outside of the window. It took only a few
minutes using an 1interactive text editor to eliminate this

routine and develop a more general equivalent scheme using

the built-in I/0Q functions and function calls generated for

‘the I/0 instructions by the decompiler.

The important point to emphasize in this discussion is
that self-modifying code which cannot be readily translated
by the decompiler dées not pose severe problems for human
beings to solve. In most programs written after the
introduction of machines with index registers,
self-modifying code appears very infrequently relative to
the entire code volume. It is easy to recognize this code
in the target program text. Manual changes to the code do
not take a significant amount of time to accomplish. Most
occurrences are flagged by the decompiler procedure
mentioned above. Those which are not detected by the

decompiler are easily recognized by reading the target code

188

itself.

>ymbols

Méﬁdgi{changes to the decompiled target program were
needed to change, add, or remove symbolic names from the
text. There are five reasons why changes to symbols had to
be made in ISADORA.

First, duplicates were removed. Under certain
conditions (when creating synthetic procedures) the
decompiler would output a label definition and then create a
procedure heading using the same symbol. For example,

NAME: PRCCEDURE NAME;
or
PROCEDURE NAME; NAME:
The label occurrence NAME should be deleted.

Second, labels sometimes appear 1in syntactically
incorrect positions and must be moved. For example, a label
may not appear in the following context in the target
language

IF exp THEN label: BEGIN ... END.
We move the label so that the statement is syntactically

correct, as in

IF exp THEN BEGIN label: ... END.
Third, symbol definitions were inserted at the
beginning of the progranm. In the source program, memory

locations may be referred to by actual numeric memory

189

address rather than by a symbolic name. The target language
does not permit this. The decompiler generates names of the
form "Lnnn" to use in place of the numeric addresses. These
definitions need to be put in the target program. The user
can choose more appropriate mnemonic names to replace the
"Lnnn" symbols if he wishes.

Fourth, the uses of equivalent symbols are changed in
certain contexts. When the decompiler looks up a numeric
address in the symbol table, there may be several names,
chosen by the programmer for mnemonic content, that have the
same numeric (assembly time) value. The decompiler chooses
the first one it finds. This may not be the symbol the

programmer wishes to use. The desired symbolic

‘substitutions can be made with a text editor. (This process

is not actually necessary for proper compilation or
execution of the target program as 1long as the equivalent
symbols are not 1later redefined so they are no longer
equivalent.)

Fifth, entry points are added to procedures. Entry
points to code 1in the window from code outside the window
are not labelled in the target program. The analysis of the
code 1in the window does not reveal entry points of this

type. Labels of statements in the source code without

multiple predecessors in the window are discarded as not
necessary since a join in the graph is not indicated. The

first recompilation of the target program will show these

190

entry points as undefined. The decompiler could copy all
labels in the source program into the target program but the
use of entry pqints into the middle of subroutines from some
external routine 1is bad programming practice. The code
should probably be modified to eliminate these entries.

The manual changes mentioned above could be eliminated
by altering the decompiler or the target language compiler.
However, the additional effort needed to accomplish this
editing is small. The added complexity to the decompiler is
probably not worth the savings anticipated except perhaps in

a high volume production system.

Unimplemented Operations

The decompiler does not attempt to translate the
Execute instruction of the 620/i into a compilable sequence.
When it occurs 1in a source program it is indicated in the
target program and is 1left for the user to rewrite. The
target language does not support the Execute instruction.
It occurs infrequently in 620/i programs (once in ISADORA).

Manual translation to an alternate statement is very easy.

'SIMPLE OPTIMIZING OF ISADORA: P2 -> P3

After making the manual changes necessary to compile
and execute the output of the decompiler, the next phase of
the experiment involved taking P2, the executing decompiled
ISADORA, and manually applying some simple transformations

to the code approximating the operation of a decompiler that

191

had more dinformation about the variable wusage in the
subroutines of ISADORA.

The ._majority of the changes involved removal of
unnecessary -assignments to the A-register. These
assignments appeared because the variable usage analysis
routines did not have enough information to determine that
the assignment could be eliminated. For example, in the
statements

VAK := AREG := Z ; CALL SUBR ;
might be changed to
VAR := Z ; CALL SUBk ;
because AKREG is not needed on entry to SUBR and is changed

inside of SUBR. The decompiler did not have information

‘about the use of AREG in SUBR so assumed that the value of

the AREG was needed.
A similar situation occurs on exit from a subroutine.
For example, in the statements

VAR

AREG := Z ; RETURN ;
the assignment to AREG can be eliminated if the value of
AREG after exit from the subroutine is not used.

Making these changes to the target program requires
that the variable wusage of the subroutines be understood.
Removal of a necessary assignment would cause incorrect
execution of the program. Table 6-B summarizes the number
and types of changes to P2 which produced P3. These changes

required approximately four hours to accomplish and verify

192

correct execution of the resulting program.

As might be expected for a single accumulator machine
such as-the. 620/i, the number of changes removing redundant
loads to the accumulator account for over halt of the total
nuniber. On the other hand, 1less than 15% of the number of
changes accounted for about one half of the total savings in
program size. These changes dealt with the code which
manipulated or tested the overflow indicator. In ISADORA
this indicator 1is wused as a one-bit flag rather than as
simply arithmetic status -- a somewhat risky programming
practice. The decompilation of overflow status manipulation
is particularly inefficient. This is due to the fact that

the overflow indicator has special instructions to set,

'reset, and test 1it. When the hardware bit is translated

into a pseudo variable, normal memory accessing instructions
must be used which are not as compact. The jump=-on-overflow
instruction also causes the overflow status to be reset.
This fact is faithfully represented in the target code by
several instructions, but ISADURA does not depend on this
side eftfect ot overflow testing. As a result, the
decompiler generated instructions had no real purpose in the

target program and were removed by hand during the

optimization of P2.

fable 6-B. . Summary of simple optimizations made to ISADOKA,

pe2 => P3.'

Remove redundant loads of AKEG 69

Remove redundant loads of BKEG 6

Remove redundant loads of XREG 8

BREG:=BREG+1 becomes BUMP BREG 1

XREG:=XREG+1 becomes BUMP XREG 1

+1+1 becomes +2 1

Rework overflow testing 14%
Miscellaneous 5

Total number of changes -755-
Number of hours 4

Number of words saved (out of 3161) 278

.* The overflow testing changes saved an average of 10 words
per occurrence.
EXTENSIVE REWRITE OF ISADURA: P3 -> PY4

The final step in the experiment with ISADORA involved
a manual rewrite of the program (P3) produced by simple
manual optimization described earlier. The goal of this
process was to produce a program which was better organized,
more easily modified, more compact, and a better candidate
for contemplated future improvements. The primary goal was
to 1improve the logical organization of the program (or
structure) which suffered from several deficiencies:

1. Global variables were wused by many different

routines in a confusing manner, particularly the

194

overflow indicator which was used as a flag. These
uses were eliminated or standardized.

2... There were many different ways subroutine arguments

were passed and values returned. These were
standardized using MOL620 argument passing
conventions, i.e., arguments were passed and

returned in the physical registers.

3. Subroutine entry and exit were undisciplined.
Entry was made 1into the middle of subroutines.
Many subroutines did not return at all but branched
off somewhere else thereby prohibiting multiple
uses of the routine. All routines except fatal
error handlers were recoded to return to the
caller.

In general, the organization and algorithms used in the
original ISADORA were retained or modified only in small
ways, but there were two important sections of ISADORA which
exhibited all of the deficiencies mentioned above. These
were the expression evaluation routines and the routines
which implemented the step and breakpoint features. The
step feature allowed a user to single-cycle the program
under test, i.e., execute one instruction at a time. It did

this by interpreting the instruction to be executed and then

returning control Dback to the wuser’s terminal. The
expression evaluation routines read arithmetic expressions

from the user’s terminal, evaluated them, converted types,

195

and performed the indicated arithmetic operations. Although
both of these portions of ISADORA executed correctly after
decompiling.. then, they were considered to be too poorly
coded to provide a firm foundation for future improvements.
The expression evaluation routines were rewritten. No
additional capability was provided but the organization of
the code was improved. The step and breakpoint features
were completely rewritten since the original version was
quite hopeless. The new structure of these functions
allowed the introduction of a new and very valuable
capability -- continuous interpretation. The entire step
function was made 1into a proper subroutine. Interpretation
consists of repeated execution of the step subroutine. This
new organization, combined with checks for instruction and
adaress validity (not present in the original) allows
interpretive execution of the program being debugged while
protecting the exterﬂal environment from being destroyed by
errant jumps or stores. This interpretive feature was
introduced at very low cost in terms of programming time and
program size after the step function had been reorganized.
The code of the breakpoint facility was rewritten and
became more flexible and easier to understand, although from

an ISADORA user’s viewpoint the only outward change was an
increase in the number of breakpoints which could be set in
his program. The number of breakpoints had previously been

programmed as constants into ISADORA in several different

196

subroutines. This fact had discouraged earlier attempts at
increasing the number of breakpoints.

This-reprogramming effort affected nearly every source
line of ISADORA in some fashion and took about forty hours
to complete and verify correct execution. (Later, as a
result of the increased readability and improved structure
of ISADORA, two more important improvements were made -- a
trace feature was added which keeps track of the jump
history of an interpreted program, along with a feature
which allows memory access keys (read, write, and execute)
to be set on intervals of memory addresses. The important
point to make regarding this part of the experiment is that

because of the decompilation of ISADOKA from assembler

‘1anguage into MOL620, the door was opened to a new round of

evolutionary improvement that had not been attempted in the

past.

ISADORA CODE SIZE

Table 6-C summarizes the effect the various stages of
reprogramming had updn the size of ISADORA in terms of the
number of 16-bit machine words needed to represent the
program on the 620/1i. The number of data words
(non-executable) remained unchanged for the P1, P2, and P3
versions. It increased slightly for the extensive rewrite,

Py,

197

Table 6-C. ISADORA machine code size summary.

ISADORA # words(a) expansion factor(b) hours

Version min max min max to create

PO (c) 2133 - 2268 1.00 1.00 -

(d) 1823 1958 1.00 1.00

P1T meee- not compiled or executed =-----

P2 3501 4294 1.64 1.89 9
3161 3954 1.73 2.02

P3 3223 3882 1.51 1.71 4
2883 3542 1.58 1.81

P4 2664 3004 1.25 1.32 39
2301 2641 1.26 1.35

Notes

a. min is minimum number of words in program using low
core pointers and literal pool.

max is maximum number of words in program using double
word instructions instead of single word instructions
with low core pointers or literals.

b. min expansion factor for program Pn is calculated as
min of version Pn

min of version FO

max expansion factor for program Pn is calculated as
max of version Pn

max of version PO

c. The first line of information refers to program size
including any data areas.

d. The second 1line refers to the program size without
data area, i.e., executable code only.

198

THE SECOND TEST CASE -- TECO

The second test program chosen for decompilation was
TECO, an-hintgractive text editor for the 620/i. This
program was originally written at the University of Oregon
(Eugene) and has been updated by several students at UCI
since 1972. The editor is very similar to TECO on the
DECsystem-10 including full macro capability.

TECO contains 3211 source lines consisting of

629 comment lines,
64 listing control lines (e.g., EJECT),
142 non-code producing lines (e.g., EQU, ORG),
1998 machine instructions, and
3798 data declarations (code producing).
‘'he production version of TECO occupies 4007 16-bit words of
nemory, excluding its 8K text buffer.

TECOU was translated from its initial assembler language
version, PO, using a test plan similar to that for ISADORA.
P1 was the output of the decompiler; P2 was the result of
manual changes made to P1 to cause it to compile and execute
correctly. P3 was the result of a minor manual optimization

pass. P4 translation was omitted. This was the extensive

rewrite phase in the case of ISADORA.

TECO THROUGH THE DECOMPILER: PO => P1

This first attempt ¢to translate TECO revealed some
latent problems with the decompiler in areas which the
ISADUKA translation had not exercised. These errors were

corrected 1in a few days, however, and the translation

199

proceeded smoothly thereafter. Only one subroutine in TECO
used an in-line calling sequence and thus needed more than

the default. information for its decompilation.

TeCC MANUAL CHANGES: P1 -> P2

The manual changes necessary td cause decompiled TECO
to compile and execute correctly can be classified into
eight groups under the following headings: |

1. communication with undecompiled programs,

2. skip returans,

3 self-modifying code,

y symbol definition,

5 unimplemented instructions,

6. multiple entry points,

7. large loops or blocks, and

8. original TECO coding errors.

Table 6-D summarizes the types and number of changes needed.

Communication

TkCO uses the services of a disk file system to perfornm
file I/0 (e.g., open file, read character, and close file).
The disk file system was not decompiled. This led to the
need for matching the contents of pseudo registers (AREG,
BREG, XREG) with the machine registers for the purposes of
argument passing. At the call site for the invocation of
the system subroutines, code was inserted to accomplish this

task. The changes were very simple.

200

Table 6-bL. Summary of manual changes made to P1 (TECO).
Environmerit transitions
subroutine calls 14
-~ .—..8Skip returns 3

Self-modifying code

computed jump addresses 6

target addresses 2
Symbols

wrong place 3

new symbol definitions 2

equivalent symbols 1

program block too big 3
Unimplemented code

execute instruction 10
TECO coding errors y
Rearrangement of code

due to multiple entry points 14

Miscellaneous 3
Total number of changes 65
Number of hours 15%

¥ an additional i8 hours was needed to find and correct
the original coding errors.
For example, the statement,
CALL CLOSE;

invoked the file close routine. This routine requires the
pointer to the file control ©block to be in the machine
A-register. The decompiler had generated the code to put
the pointer in the variable AREG. The statement needed to
be changed to

CALL CLOSE (AKREG);.

MOL620 compiles the code to place the argument value, in

201

this case AREG, in the machine’s A-register. Given a list
of these external routines and the arguments they accept,
the decompiler could perform this task automatically.

Unlike ISADORA, there were no interrupt handling
routines in TECO and this reduced the environment transition

modifications significantly.

Skip keturns

Some of the external routines with which TECO
communicates use a special return protocol which was not
present in ISADUGRA and was not programmed into the
subroutine attribute 1list mechanisms of the decompiler.
This protocol involves "skip returns" and is sometimes used
in assembler language programming. The instruction after
the call statement is itself a transfer instruction. The
called routine optionally returns control to this transfer
instruction or the following instruction (thus skipping over
the normal return point). For example, in assembler

language we might code a call to the disk READ subroutine as

follows:
JMPM READ
JMP EOQOF ;END OF FILE RETURN POINT
. ; SKIP RETURN POINT
As the decompiler analyzed this code, control graph

generation would proceed as if the end-of-file transfer was

always taken. This would cause the EOF code to be

202

aecompilea . in-line immediately after the c¢all, as for a
normal unconaitional transfer. The simplest manual
correction of this problem 1is to put two GOTU statements
after the deéompiled CALL. This was done for the three
CALLs of this type in TECO. A change to the decompiler to
include this case in its subroutine attribute list is a more
general solution if this type of call occurs frequently.

(See Chapter 3 for a complete discussion of subroutine

attribute lists.)

Self-Modifying Code
Self modifying code appeared in TECO to compute jump

addresses in the second word of a jump instruction or to set

the target address 1in the second word of a store

instruction. The decompiler discovered every case of
self-moaitfication and put warnings in the output listing
which identified the-location. The manual changes were easy

to make.

Symbol Definitions

Three symbol definitions were moved because they
appeared in the wrong place for proper MOL620 syntax. The
MOL620 compiler identified these syntax errors when the
program was compiled the first time. Small numeric offsets

used in indexed instructions were given symbolic names.

203

Unimplemented Instruction Translation

Execute instructions occurred more frequently in TECO
(ten times) than in ISADORA (only once). The manual changes

necessary were obvious and easily made with a text editor.

Multiple Entry Points

Four subroutines in TECO had multiple entry points.
Multiple entry points are not supported in MOL620 so a
change was necessary. Unfortunately, the assembler language
implementation of the multiple entry points involved
self-modifying code and very contorted control structures.
The routines were fairly short (less than thirty lines of
MOL620 code) and were rewritten. Each entry point became a
separate subroutine. The common code was put into a
subroutine which was called by each entry procedure. This
rewriting made the code much easier to understand and
introduced only a small amount of overhead relative to the
original.

The manual reworking of these routines was the most
time-consuming of the manual changes. The automatic
implementation of this translation seems to be quite
difficult and probably not worth the added complexity to the

decompiler.

204

Large Blocks of Code

The decompiler generated three program blocks inside in
a huge loop (a three page WHILE statement) which caused the
MOL620 compileg to exceed its compile-time stack allocations
while it was translating the P2 vérsion of TECO. The blocks
were easily broken into smaller non-nested pieces. An
alternative solution, increasing the working storage of the
MOL620 compiler, could have been done but would have
involved generating a new version of the compiler. In any
case, such large nested control structures are not desirable

for stylistic reasons.

Original TECQO Coding Errors

I was very familiar with ISADORA and had even written
some of the code in the assembler language program. There
were no known bugs in ISADUKA when it was decompiled. If
there had been an error in ISADORA, I would have been able

to trace it down quickly due to my familiarity with the

system as a user and programmer. TECO was not familiar to
me before 1 decompiled it. I had no knowledge of its
internal data structures or algorithms. It had been in use

for two years 1in our departmental computer laboratory.
Because of this, I assumed that there were no known bugs and
a casual survey of users confirmed my opinion.

After recompiling the P2 version of TECO, I set about

to test it on the 620/i computer. Eventually I discovered

205

three serious bugs in the editor -- two in features seldom
used and one general error which could cause intermittent
failure of. some searching functions.

The first error found was with the EP command. This
command causes the contents of a buffer to be listed on the
line printer instead of a terminal. An examination of the
decompiled EP subroutine immediately revealed the coding
error in the assembler language version. The mnemonic code
which causes the machine to output the contents of the
A-register (the character to be printed) to device LPT, the
line printer, is "OAR,LPT." The TECO programmer had
transposed the opcode into "ORA,LPT" which means

"inclusive-OR the A-register with the contents of address

LPT." The decompiled code looked like

AREG := AREG BOR LPT;.
If it had been ccded correctly in the original, it would
have been decompiled as
CALL OUTPUT (AREG, 6LPT);.

During a previous cursory inspection of the assembler
version I had failed to notice the transposition of the
opcode characters. This is an example of +the benefit of
having an alternative representation of the program. In the
decompiled form the error is obvious -- the routine did not
include an output statement. In the undecompiled program,
tne error escaped detection because the code 1looked right.

(In early versions of the 620/i machine reference manual,

206

this same transposition of letters occurred in a table of
opcode mnemoniés.)

The _second TECO error encountered was much more
difticult to fix. This‘occurred in the multiply and divide
expression evaluation routine. When the test of this code
failed, I examined and executed under the debugger (the new
ISADOKA) all of the code involved in the set up of this
routine, checking for a subtle decompiler error which might
have caused the problem. After a fruitless search for the
problem, I happened to try this function on the production
version of TECO. It did not work either and had apparently
never worked. The programmer had never debugged the

subroutine. It was a seldom wused function, so 1its

malfunction did not trouble the users. They Jjust stopped

trying to wuse it and had forgotten it didn“t work.
Proceeding under the knowledge that the original code was
wrong, 1 was able to correct the problem with one new line
of MUL620 code in the decompiled text.

Inis example suggests an obvious testing methodology.
If the decompiled program does not execute correctly, check
the execution of the original program to verify whether the
decompiler has introduced the error or the error has simply
been inherited from the original.

Finally, a third less serious TECO error was discovered
while trying to discover why multiply/divide did not work.

Briefly, 1in one routine a bufter pointer was used before it

207

was checked .for validity. In the case where it was pointing
to an empty buffer, it would be moved back over the contents
of a contiguous data area and a searching operation using
the spurious daka would be done. This was not too serious
since the search would "almost always" fail. Only a very
low probability combination of data would cause the search
on an empty buffer to succeed. This problem might not have
been noticed during the two years TECO had been in service.
No current user knew about it. The point to emphasize about
this case is that the MOL620 version of the program made it
clear that the pointer was being used before it was checked
and tinis was not at all obvious in the assembler language
version.

In this section we have indicated that the decompiler
does translate logic errors into the target language along
with the rest of the program. However, this experience with
TECO substantiates my contention that the higher level
representation does indeed aid a programmer in understanding
an unfamiliar piece of software and, while the decompiler
does not find the logic error in the source program, it puts
the program into a form which makes the diagnosis and

correction of those errors an easier task.

SIMPLE OPTIMIZING OGF TECO: P2 -> P3
As with ISADURA, the majority of changes made to the P2

version of TkCO involved removing redundant assignments to

208

the pseudo _accumulator, AREG. There were several cases in
PO which 1illustrate attempts to optimize the assembler
language version by the original programmer and, ironically,
these attempts iater caused inefficient code to be generated

by the decompiler. For example, the following code sequence

appeared in TeCO, version PO:

(case 1)
MERGE 0142 ;BREG := XREG + 1
IBR sBREG := BREG + 1
IBR :BREG := BREG + 1

This takes three memory cycles to fetch the instructions and
execute them. The decompiled code came out this way:

BREG := XREG + 1 + 1 + 1;

‘Recompiled without change, this would look like

(case 2)
LUA XREG ;2 cycles execution
IAK ;1 cycle
IAK ;1 cycle
IAR ;1 cycle
STA BREG ;2 cycles

for a total of 7 cycles.
Iff the decompiler had constant expression evaluation,
it might have generated:
BREG := XREG + 3;
or if MOL620 had an optimizer it would have generated the

same code translation:

209

(case 3)
‘LDA XREG ;2 cycles
- —es ADD =3 ;2 cycles
STA BREG ;2 cycles.

Here the code size is the same as case 1 (3 words), but the
execution time is 6 cycles. This is because XREG, =3, and
BREG are all 1located in memory and thus three extra memory
cycles are needed as opposed to case 1 where the operands
are 1in registers. By manually combining the constant
expression 1+1+1 we arrive at the case 3 code for P3 when
TECO 1s recompiled.

This last example illustrates the execution penalty

which a decompiled program pays when the real registers of a

machine are mapped 1into memory locations. Every reference

to a real register of the source machine becomes a memory
reterence in the decqmpiled program. Coding which optimizes
register usage may turn into a liability after
decompilation.

A programmer writing in assembler language uses

registers for four reasons:

1. economy of representation of operand address -- The
memory operand often requires an extra instruction
word to represent the full address, whereas the
register address can be c¢oded in a small number of
bits (e.g., four bits on a sixteen register

machine).

210

2. speed of execution -- Because a memory cycle is not

needed for accessing a hard register, instruction
- _execution speeds are greater.

3. operations available -- For example, many machines
require the arithmetic accumulator to be a
register. The 1index operation may require a
register specification. On some machines, the only
way to move data from one memory location to
another is through a register.

4., communication protocol with other routines -- Since
registers are fast global memory <cells, they are
often used to pass information between subroutines.

The programmer’s effort which went into tuning the

assembler language program register usage is completely lost

in the decompilation. In fact, as the above example shows,
an optimal choice of‘instructions in the PO program is often
less than optimal in the decompiled version. The reasons
for register usage are not valid in the context of a high
level target language such as MOL620. In MOL620 all data
items are variables. The instantiation of these variables
is the concern of the compiler, not the programmer. Since
the compiler cannot hope to be as <clever as a human
programmer, this leads to inefficiencies in the automatic
translation when compared to an all out human optimization

effort.

Targeting the decompilation to a more powerful machine

helps alleviate this efficiency problen. For example, a
sibling compiler of MOL620 is MOLSUE (Hopwood 1976). This
is a compiler which accepts a language similar to MOL620 but
creates code f;r a Lockheed Electronics SUE minicomputer.
MOLSUE uses only four of the seven hardware registers of the
SUE machine. The programmer can designate certain variables
to . be held in the remaining registers. This achieves a
dramatic reduction (50 to 66%) in storage space for
instructions which reference these register variables. If
the target of the decompilation of 620/i programs was
MOLSUE, we could naturally map the AREG, BREG, and XREG
pseudo registérs onto the unused registers of the SUE. The
execution times of instructions involving these registers
woula not suffer because of the decompilation.

The simple optimizing of P2 was completed and checked
out 1in approximately six hours. Table 6~-E summarizes the

number and type of changes made to the P2 version of TECO.

EXTENSIVE REWRITE OF TECO: P3 -> PY4

This part of the TECO experiment was not undertaken
because the benefit of having a rewritten TECO was not
significant in terms of increasing program execution speed,
reducing program size or providing for future evolution when

compared to the time needed to complete the rewrite

(estimated at fifty hours).

Table 6-E. . Summary of simple manual optimizations made to
TECO, P2 -> P3.

Remove redundant loads of AREG 123
Remove redundant loads of BREG 4
AREG:=AREG+1 becomes BUMP AREG 3
BREG:=BKEG+1 becomes BUMP BREG 2
XREG:=XRkG+1 becomes BUMP XREG 1
+1+1+1 becomes +3 3
+1+1 becomes +2 2
-1-1 becomes -2 1
Kemove save of overflow status 1
Miscellaneous 5
Total number of changes ;Hg-
Number of hours 6
Number of words saved (out of 4439) 170

In the case of ISADORA, the size of the program was

very important, since it occupied the same address space as

the program being debugged. There were also obvious
improvements which would enhance significantly the
usefulness of the program. On the other hand, TECO ran
alone in its memory partition. The decompiled P2 version

TECG was only approximately 1600 words larger than PO. This
1000 words would come out of a TECO text buffer area of 8K
words, thus reducing this area by about 20%. This reduction

is not very important since TECO does not need its whole

edit file in memory at one time.

213

Table 6-F. TECO machine code size summary.

TECU # words(a) expansion factor(b) hours
Version min max min max to create
PO (e¢) 40U7 4310 1.00 1.00 -

(d) 2852 3155 1.00 1.00

P1T ee—ea not compiled or executed -----

P2 5642 7148 1.41 1.66 15 (e)
4439 5945 1.56 1.88

P3 5472 6837 1.37 1.59 6
4269 5634 1.50 1.79

P4 eee- rewrite of P3 not attempted ----

Notes
a. min is minimum number of words in program using low

core pointers and literal pool.

max is maximum number of words in program using double
word instructions instead of single word instructions
with low core pointers or literals.

min expansion factor for program Pn is calculated as
min of version Pn

min of version PO

max expansion factor for program Pn is calculated as
max of version Pn

max of version PO

The first line of information refers to program size
including any data areas, but not the text buffer.

Tﬁe second 1line refers to the program size without
data area, i.e., executable code only.

An additional eighteen hours was needed to find the
cause of the problems due to the original coding
errors noted in the text of this chapter.

214

TECO CODE SIZE
Table 6-F ‘summarizes the effect the decompilation had

on the machine code size of the various versions of TECO.

MORE RESULTS AND COMPARATIVE DATA

This section contains more results regarding the
decompilation experiments described above. When comparable
data exists from the decompilation research of othefs, it

will be discussed in relation to my own.

Manual Intervention

The manual aspects of decompiling can be classified
into three stages:

1. preparation of the input data,

2. input of additional data requested by the

decompiler during the translation process, and

3. modifications to the target program.

Preparation of the input data is simply assembling the
source program and some minor formatting of the assembler
output listing by a utility program. This text is input to
the preprocessor of the decompiler. The formatted output of
the preprocessor together with the source program symbol
table is passed to the main routines of the decompiler. Up
to this point the manual efforts consist of passing files
through a set of programs. All of this preparation could be
automated tnrough the use of a command file executor.

While the analysis portion of the decompiler is

215

operating, it may request additional information. The
information supplied in these experiments was the data
defining _attributes of various subroutines (see Chapter 4,
"Stage One P;ocessing"). The default attributes sufficed
for all but one subroutine of TECO and six of ISADORA. The
information required was entered when requested by the
decompiler or it was supplied beforehand as initial values
of the subroutine attribute list so the decompiler could run
unattended.

The manual intervention required in the first two

stages is minimal. The real burden of manual intervention
falls in the third stage -- modifications to the target
program. The reasons for these changes were discussed

‘earlier in this chapter. From these experiments, it appears

that neither the number of changes nor the time required to
make them is excessive when compared to the amount of source
code involved. |

Une way to quantify this comparison is to determine the
ratio of time needed for changes to time needed to create
the original working program. Since these latter figures
were not recorded by the original programmers, we estimate
them for the purposes of exposition with a production rate
figure of ten lines per day of debugged assembler language
code. The reasonableness of this approximation is supported
by the study of Boehm (1973). Assuming eight hour days and

only counting lines of executable code we have the following

216

time ratios-.for third stage manual c¢hanges versus initial
costs
o 15/((1998/10)*8) = .0094 for TECO
and
9/((1199/10)%8) = .0094 for ISADORA.

This says that the time necessary to make manual changes to
transform the output of the decompiler (P1) into an
compilable and correctly executing program (P2) is really
insignificant (less than 1%) vrelative to the time expended
to create the original working program.

In his dissertation, Friedman (1974) provides a
detailed report of the manual interventions necessary during

his decompilation experiments. The intervention required in

AFriedman's experiment was done before decompilation -- the

changes were made to the low level source program (PO). The
changes made in my experiments were made after the
decompilation to the symbolic code of the target program
(P1). Certain of the changes made by Friedman were to
accomodate idiosyncrasies of his decompiler or FRECL, his
target language compiler. These changes are analogous to
some of the changes I made to the target program (P1->P2)
before compiling it with MOL620. Friedman s decompiler

required knbwledge of the targets of indeterminant transfers

of control (e.g.,' indexed jumps) whereas mine did not. My

decompiler treated such transfers as "out-of-window"

references and assumed worst case defaults regarding

217

variable usage and control structure information. A direct
representation’ of all of these types of indeterminant
transfers_can be written in MOL620.

Table 6-G—is a summary of some of the statistics we can
use to compare Friedman’s experiments with those reported
here. The figures on manual intervention indicate that
Friedman’s experience was similar to mine. Relative to the
number of executable source instructions in his 1input
program, his manual intervention effort was somewhat less
than mine. One would speculate that the ability to make
changes after the decompilation provides a more effective

method of modifying the program since the text is in a new

structufed form where it should be easier to understand. 1In

~addition, the decompiler and/or compiler can point out the

places where the changes should be made in many cases (e.g.,
self-modifying code, mid-procedure entry points, and
unimplemented instéuctions). At first glance, the
statistics of these experiments do not support this

contention. Friedman’s time required per change is one-half

of that required for a change to ISADORA and one third of
that required for a <change to TECO. After reflecting on
this anomaly, we should remember that since my changes were
made to the MOL620 version of the program, each such change
would affect at least two and possibly more 1low level
instructions. Taking this fact into account we see that the

time per change per low level instruction is comparable. In

218

any case, _for the programns decompiled, the manual effort
required 1is 1insignificant relative to the volume of code
decompiled and so such intervention is no great barrier to

transportability via decompilation.

Program Size Expansion

Of particular concern to those interested in the
portability applications of decompilers is the question of
how much bigger the program will get after it is decompiled
and then recompiled. The code size will expand for three
reasons:

1. the decompiler does not choose the best

representation of the program 1in the target
language relative to code volume (e.g., the
variable usage analysis is sometimes too

pessimistic),

2. the target language is not capable of representing
efficiently certain operations of the low level
program (e.g., nine-way parallel comparisons in one
machine instruction), and

3. the compiler itself does not generate the best code

that might be expected given the decompiled target

program.

Table 6-G. Some comparisons of thg TECO and ISADORA
experiments with Friedman s data.

TECO ISADORA Friedman
No. of executable
source instructions(PO) 1998 1199 4863(a)
No. of manual changes 65 55 288(b)
Time required .
for changes (hours) 15 9 24(c)
Time required ;
per change (hours) .23 .16 .08
No. of changes/instruction .033 .046 .059
No. of executable

instructions after
decompiling/recompiling 3369 2231 14297 (a)

Expansion factor due
to whole system 1.67 1.86 2.94(a)

Expansion factor due
to target language

and

compiler 1.25 1.25 2.12(d)

Expansion factor due

to decompiler alone 1.34 1.49 1.39(a)
Notes:
a. from Friedman (1974), page 143, Table 5D.
b. from Friedman (1974), page 136, Table 5B and personal
correspondence (Hopwood and Friedman 1976).
c. from Friedman (1974), page 141.
d. the expansion factors are related as follows:

The total expansion factor of the transport system is
the product of the expansion factors for the
decompiler and the target 1language compiler (e.g.,
2.94 = 1.39 * 2,12).

220

The last two points are very much related. Where to put the
blame for inéfficiencies 1in object code created by a
compiler is often unclear. Is the inefficiency the fault of
the language design or of a lack of optimization capability
in the compiler?

The number of executable statements in the machine
language program resulting from compiling the target program
output by the decompiler 1is recorded in Table 6-G. In the
case of TECO and ISADORA, the P2 MOL620 program was compiled
into 620/i machine code. In the case of Friedman’s program
the, the FRECL compiler produced Microdata 1621 machine
code. Since Friedman’s statistics are presented in terms of
the number of executable instrﬁctions rather than the size
of the executable code 1in storage units (program minus
data), I have done the same for comparison purposes. The
expansion factor, the ratio of the number of executable
statements after decompilation/recompilation compared with
the number before decompilation, shows rather marked
differences between the two systems (1.67 for TECO and 1.86
for ISADORA versus 2.94 for Friedman’s program).

These figures may be slightly misleading and should be
interpreted with care. Table 5-D of Friedman’s dissertation
(p. 143) contains information regarding program expansion.
The corrected version of that table was compiled (Hopwood
and Friedman 1976) and is reproduced here in Table 6-H for

the interest of any reader who may wish to read Friedman’s

221

work. Friedman attempts to quantify the reasons for
194% increase in program size (executable statements).

table is supported by several pages of explanation which
be summarized ;s follows. The expansion factor due to
decompiler itself is about 1.39. The expansion factor
to the FRECL language and compiler relative to the Micro
instruction set is about 2.12. The product of these

factors is the final expansion factor 2.94.

Table 6-H. rFriedman’s corrected Table 5D.

Program Size Increase Data
for the 0S/1621 Experiment

(1) Total number of executable statements (ES)

in the original 32 0S/1621 programs 48
(2) Total number of ES in the transported

0S/1621 programs 142
(3) Total ES increase: (2)-(1) 94
(4) Percent increase in ES: (3)/(1) 1

(5) Percent of the total ES increase (3) caused
by Microdata instruction set asymmetries

(6) Percent of the total ES increase (3) caused
by inefficient code generation for computations

(7) Percent of the total ES increase (3) from
causes other than (5) and (6)

(8) Total ES increase from causes other than
(5) and (6): 20%%(3) 18

(9) Percent increase in ES from sources other
than (5) and (6): (8)/(1)

Note--the 194% figure (line U4) corresponds to a
expansion factor.

the
The
can
the
due
data

two

63

97
34
9y

53

27

20

87

39
2.94

From my experience with MOL620 over a six year period,
a typical exparision factor due to the language and compiler
is about _1.25. (This is the same figure for the expansion
factor of the éﬂ version of ISADORA , the complete rewrite.
An expansion factor of 1.25 says that one can expect a
typical MOL620 program to produce code about 25% larger than
a program written to do the same thing in assembler
language.) Using this language/compiler expansion factor of
1.25 we have a decompiler expansion factor of 1.34 for TECO
and 1.49 for ISADORA. Of course, these estimates of the
expansion factors due to the target languages and compilers

are just that -- estimates. However, they do give us a

chance to isolate the decompiler inefficiencies and show the

'sensitivity of program size expansion due to each part of a

decompiler based transporting system.

The differences in expansion factors of the language
ana compiler for my system (1.25) versus Friedman’s (2.12)
can be explained in the following way. MOL620 was a very
mature system with a significant portion of its code
generator devoted to optimization of instruction selection.
FRECL was a recently built system which had not evolved to a
point where it could cope successfully with the asymmetries
in the Microdata instruction set or perform much
optimization. Given several more years of evolution one

could reasonably expect the efficiency of the FRECL compiler

to improve.

223

It is .interesting to see that the expansion factor
estimates for’ the two decompilers are very similar. My
experimenf _optimizing P2 versions of TECO and ISADORA
suggests that —the expansion factor of my decompiler cannot
be improved mnmuch more without a very substantial and
sophisticated redesign of the system. As indicated by the
simple optimization experiment, a 10% reduction of the
decompiler expansion factor to 1.20 seems the 1limit point
for this decompiler technology. Although Friedman did not
predict this figure I would expect the same to be true of

his decompiler as well.

bDecompilation Speed

During the course of these experiments I have recorded
the time necessary to perform the decompilation of TECO and
ISADORA. Table 6-1 summarizes the execution time
statistics. As the note on the figure suggests, these times
could be reduced by compiling the LISP code of the
decompiler rather than interpreting it. Friedman does not
comment on the speed of his decompiler but Housel (1973, p.
192) ‘reports a decompilation speed of 1080 source
instructions per minute on a CDC 6500 using about 23K words
of memory. These figures were gathered from experiments
decompiling very small programs (less than 100 statements).
Housel s decompiler was written in FORTRAN which compiled

into machine code which was then executed directly by the

224

CDC 6500. _Friedman used the llousel decompiler as a base to
build his own °'system so we should expect éimilar speeds.
(It should be noted here that the Housel/Friedman decompiler
does not preéerve source program comments in the target

program. The processing of comments consumes some cpu time

and a portion of the dynamic data area.)

Table 6-I. Execution speed of the decompiler.

TECO ISADORA

No. of source lines 3211 2041
No. of executable instructions 1998 1199
Main memory utilization

(1024 36-bit words) 68 55
Total cpu time (hours) 1.32 .56
Source lines/min 40.5 60.7
Executable instructions/min 25.2 35.7

The cpu time was for a DECsystem-10 KI processor with two
microsecond memory executing the LISP interpretive system.
Compiling the decompiler should yield execution speed
improvements of a 1least 10:1, and possibly 20:1 in certain
cases. In addition, compiled code is smaller.

There are other reasons why the decompiler presented
here is slow. In addition to being interpreted, it ran in a
virtual memory system where the execution time of the page
fault handler 1is charged to the user who faults. 1In a
heavily 1loaded system the page fault rate dramatically

increases and the observed speed of the decompiler is

reduced. This fact explains the difference in the

225

decompilation rates of TECO and ISADORA shown in Table 6-I.
TECCO was decompiled during a time of very heavy load on the
PDP-10 system -while ISADORA was decompiled at a time when
the system was lightly loaded. TECO required more pages of
memory than ISADORA and this increased the paging rate of
the decompiler.

Table 6-J lists the proportions of execution time spent
in each of +the decompiler activities (except pre- and
post-processing time, which was minimal). Of the total time
recorded in Table 6-I, U44% was overhead time -- I/0 time,
garbage collection time, page faulting, or time spent in
common general purpose shared routines. The remaining 56%

of the cpu time was divided into five activities -- stage

one control graph generation, stage two modifications to the

control graph, IMIEXT generation, forward substitution, and
target program code generation. (See Chapter 4 for details
about each of these activities.) Table 5-A shows the
breakdown of sizes of the decompiler components. If we
spread the overhead routines proportionally over the five
activities, the relative cpu times used by each activity are

roughly the same as their relative code volumes.

226

Table 6-J. Proportion of non-overhead cpu execution time
and code size for each decompiler activity.

Execution Time Code Size
Stage-One Processing 7.8% 9.1%
Stage Two Processing 4.4% 8.4%
IMTEXT Generation 23.3% 28.7%
Forward Substitution 20.1% 14.9%
Target Code Generation 4y, 8% 33.9%

Overhead time (I/0, garbage collection, etc.) accounted for
44g of the total cpu time. The activities above accounted
for the rest.

Source vs. Target Program Text

It 1is of some interest to compare the language

constructs appearing in the source and target program texts.

-In particular, what are the target statements created by the

decompiler and how do they relate to the source
instructions? From the cross reference listing output by
the 620/i assembler I was able to derive the frequency of
use of instructions in the source assembler language
programs. This information is 1listed in Table 6-K. I
instrumented the MOL620 compiler so that it would count the
number of each kind of high level statement it translated.
This information is listed in Table 6-L.

Two important questions can be answered with this data.
How well does the control structure recognition and

generation work? How well does the expression condensation

algorithm work?

227

Control Structure. The occurrence of jump instructions

and Jjump targeéts (indicated by labelled instructions) are
the significant symbolic keys to construction of the control
graph of the progran. An unconditional jump corresponds to
a break in the normal sequence of processing. A conditional
jump corresponds to a fork in the instruction stream. A
labelled instruction corresponds to a join of two or more
control paths.

There are several different target language constructs
that might be generated due to a jump instruction appearing
in the instruction stream analyzed by the decompiler. These
are listed below:

'unconditional direct GOTO direct
WHILE stmt

conditional direct IF exp THEN GOTO direct
IF exp THEN stmt
WHILE stmt

unconditional indirect GOTO indirect
RETURN

conditional indirect IF exp THEN GOTO indirect

IF exp THEN RETURN
Table 6-L lists the symbolic language constructs actually
generated from the source progranm. The number of GOTO
statements appearing in the target program represent a 62%
((714-269)/714) reduction in the number of the assembly
language analogs in the source program. Statement labels
were reduced by 68% ((370-118)/370). If we discount the

forty-six (46) labels which appear in the error routine of

228

TECO which cannot be removed under any reasonable rewriting
scheme, we have a reduction of 78% instead.

Where did the GOTOs go? They were replaced by the
control statemehts -- IF...THEN, IF...THEN...ELSE, RETURN,
and WHILE. The most difficult structures to recognize were
the IF statements with a block body and the WHILE statement.
The IF...THEN...ELSE construct accounted for only 17%
(34/(34+171)) of the non-simple IF statements generated.
Unlike the Housel/Friedman decompiler, my decompiler
attempts to avoid unnecessary levels of block indentation by
decomposing an IF...THEN...ELSE into two simpler statements
by using the following transformations:

IF E THEN...GOTO L ELSE S; => IF E THEN...GOTO L; S;
"IF E THEN S ELSE...GOTO L; => IF NOT E THEN...GOTO L; S;

The WHILE TRUE form of the while loop corresponds to a
loop with a test which does not occur at the beginning of
the loop. Mid- or pést-test loops were not supported in
MOL620 so the WHILE TRUE form was generated with an explicit
break from the interior of the 1loop by a GOTO or RETURN.
Only 24% (12/51) of the while 1loops generated fit the
pre-tesﬁ pattern. This seems to indicate that an attempt to
generate other types of control structures such as REPEAT
statements would lead to a greater fraction of the loops
fitting a standard pattern. From a brief ana;ysis of the
situations where the mid- and post-test 1loops are used, a

possible reorganization of the ordering of conditional

229

tests, generation of synthetic control variables or node
splitting (see Chapter 3) could be wused to force the loop
into a-pre-test or post-test form. In some cases, this
transformation_ would improve the clarity of the code, in
other cases the program would be more difficult to
understand.

Expression Condensation. Table 6-K records the number

of source program instructions which cause movement or
operations upon data in .registers or memory. In a
simple-minded decompiler with no ability to combine
components of expressions, we would expect the number of
assignment statements 1in the target program to equal the

number of data movement/operation instructions in the source

‘program. For example, we might expect the assembler

language sequence

LUA M
SUB N
STA P

to generate the target instructions

AREG := M;
AREG := AREG - N
P := AREG;

instead of the more appropriate statement
P := M - N;

Table 6-L indicates that the decompiler developed in this

research has achieved a 52% ((1959-945)/1959) reduction in

the number. of assignment statements that might have been
expected if theé expression condensation mechanisms were not
active. . _(This figure is 49% if we choose to remove the INR
opcode from th; figures, since this is translated directly
to the MOL620 BUMP statement and no forward substitution is
done on it.) This kind of improvement in the generation of
target expressions is well worth the effort invested in the
construction of the expression condensation forward
substitution algorithms (about 11% of the total decompiler
code) . Expression condensation makes explicit the
interdependencies of subexpression elements. Absence of
this capability (as in the Ultrasystems decompiler discussed

in Chapter 2) severely degrades the quality of a target

Aprogram when measured in terms of readability.

Comments and Formatting

As described in' Chapter 3, the symbolic source code of
the program to be decompiled provides much information not
present 1in the assembled binary object file. The comments
written with a program are valuable when it comes to
understanding what the program 1is doing. The decompiler
built 1in this research moves the comments to the target
program. If the comment was near a source instruction in
the original program, it will appear near the target

statement generated for that source instruction.

231

l Table 6-K. Frequency of symbolic language constructs in the
TECO and ISADURA source programs (P0O).

I TECO LISADORA Total
Source Lines - 3211 2041 5252

I comment lines 629 523 1152
listing control U 49 113

non-code defns 142 70 212

executable insts 1998 1199 3197

I data declarations 378 200 578
Jump instructions yy7 267 714

l uncondtl direct 108 64 172
uncondtl indirect 101 60 161

condtl direct 217 132 349

l condtl indirect 21 11 32
Subroutine call insts 278 207 485

uncondtl direct 255 196 451

l uncondtl indirect 20 5 25
condtl direct 3 6 9

condtl indirect 0 0 0

l Data Move/operate insts 1252 707 1959
load register 458 250 708

store register 270 147 417

l others(add,sub,...) 449 283 732
incr/replace(Iik) 75 27 102

l I1/0 instructions 1 12 13
Subroutines 99 73 172

l Instruction labels 273 97 370

232

Table 6-L. Frequency of symbolic constructs in the TECO and
ISADURA target programs (P2).

TE ISADORA Total

Source lines (a) 3863 2581 6UUY
Executable statements 1375 g40 2315
Non-executable stmts 409 148 557
definitions 99 22 121
declarations 310 136 446

IF statements 252 146 398
IF...THEN...ELSE 19 15 34
IF...THEN GOTO 106 40 146
IF...THEN CALL T 8 15
IF...THEN RETURN 20 12 32
IF...THEN (others) 100 71 171
WHILE statements 26 25 51
WHILE THUE... 20 19 39
WHILE exp... 6 6 12
BEGIN...END blocks 123 90 213
Assignment statements 563 382 945
Assignment expressions 373 164 537
GOTO statements (b) 185 84 269
direct 172 73 245
indirect 13 11 24
CALL statements (b) - 306 248 554
direct 288 240 528
indirect 18 8 26
RETURN statements (b) 107 64 171
BUMP statements 82 27 109
Procedures 145 100 245
Referenced stmt labels 97 (e) 21 118

Notes:
a. MOL620 statements are free form and may occupy several
lines of text.
b. includes counts for IF...THEN GOTO, CALL, RETURN, resp.
c. includes 4b counts for labels in TECO error routine.

233

This feature 1is lacking 1in all of the true decompilers
surveyed in this research. Since I estimate that it only
took about 5% of the total implementation effort to provide
this facility, it should be included in every such system
which reads symbolic code.

The formatting of the target program by the
post-processor 1is 1important to the readability of the
program, e.g., indentation of blocks, alignment of comments,
blank 1lines, labels placed at the 1left margin. These
formatting conventions are stylistic rearrangements of a
free format program. The rearrangements provide a visual
exposition of the 1logical structure of the program when it

is presented to the human eye.

SUMMARY

In this chapter, we have presented the results of
decompiling two production programs, TECO and ISADORA.
These programs were decompiled and then recompiled and
successtully executed. Necessary manual interventions, code
volume expansions, decompilation speeds, and language
constructs were analyzed. Where comparative figures
existed, they have been presented. The reader is referred
to Appendices IV and V to examine excerpts from the PO and

P2 versions of ISADORA.

234

e Chapter 7

SUMMARY AND CONCLUSIONS

INTRODUCTION

This work 1is an in-depth analysis of a translation
process called decompilation. Previous studies of this
process are summarized in Chapter 2. Chapter 3 is a guide
for others interested in building their own decompilation
systems. The suggestions and observations contained in

Chapter 3 were derived from the actual design and

implementation of the decompilation system described in

Chapters 4 ana 5. The results of the decompilation
experiments reported in Chapter 6 provide the most complete
set of measures available on the performance of a decompiler
and the first empirical demonstration that large production
programs for minicomputers can be decompiled then recompiled
so that they execute properly and with reasonable
efficiency. The subjective notions of readability and
understandability have been addressed in the description of
the experiments in Chapter 6. The decompiled program did
prove valuable in debugging the target programs and was the
preferred reference text after the decompilation.

Together with the -earlier studies of decompilation

235

(especially, Barbe, Housel, Friedman, and Ikezawa), this
work should prove to be a valuable reference volume to
others _ interested in decompilation. It represents a
documented suécessful attempt to solve the decompilation
problem in an important subset of the problem domain. It
shows that much can be accomplished despite the very
difficult problems of transferability (portability)
discussed in Chapter 3. Others should now have a better
idea of what to expect when they embark on the task of
building a decompiler.

In the rest of this chapter some important pragmatic

considerations which have been discussed in earlier chapters

(especially Chapter 6) will be discussed. We will also

‘discuss the expected uses of decompilers and their viability

as tools in the computing community, future decompiler
research directions, and the immediate implications of this

research.

PRAGMATICS

The first questions about decompilers from people
interested in its pragmatic applications usually focus upon
the following:

0 What languages can be decompiled? To what targets?

o How much manual intervention is necessary?

0 How efficient is the decompiler? What is the size

and speed of the decompiled program relative to the

236

original? How fast does the decompiler execute?
o} what does a decompiler system look like? How much
.. does it cost to build?
These questioné are answered 1in detail in the body of this

work and the conclusions are summarized below.

Source-Target Pairs

Those who work on decompilation systems believe that
the best results can be achieved by restricting the class of
source-target language pairs to those languages which are
compatible in most respects, i.e., the language constructs
appearing in the source program must have a rather simple

analog 1in the target language. If the source language is

.assembler language, the class of languages most suitable as

targets are machine oriented 1languages, such as the MOL620
language used in this research. As the name implies, these
languages are designed as efficient vehicles to represent
algorithms on a particular machine or machine family (see
van der Poel and Maarsen 1974).

Our experience with machine oriented languages for
minicomputers (MOL620, designed in 1969, was one of the
first for a minicomputer) indicates that programs written in
machine oriented 1languages are often quite portable and
amenable to automatic translation to other minicomputers.

The de facto sixteen bit word length standard and the rather

limited instruction sets of minicomputers are the two most

237

important reasons for this compatibility. One might argue
that a more -desirable target language for decompilation
would be_ a standard machine independent language such as
FORTRAN or COéOL. Some commercial companies offer such
services. The customer can be expected to pay for this
standardization with increased manual intervention costs,

unstructured code, 1larger target programs and run-time

inet'ficiencies. The costs for commercial decompilation are
often priced at several levels. The lowest cost service is
automatic translation only. The highest cost service is

complete translation and modification to make the target
program work according to a set of specifications. As we

have seen, the later service often requires manual

‘intervention and testing and may involve rewriting certain

portions of the program.

Manual Intervention

When the target language adequately covers the source
language, as is the case in the experiments presented here,
the manual intervention necessary during the decompilation
process is minimal. This work and that of Friedman have
quantified the manual effort involved. I would predict that
the effort required for manual intervention is proportional
to the difference between the source and target languages
and the source and target machines. For example, I would

expect that it would have taken significantly more manual

238

eftort to rework the decompiled output into a legal FORTRAN
program rather that the machine oriented language which was

used. e

Friedman (1974) reports on an effort to translate an
IBM 1130 Disk Monitor System (DMS) program into FRECL, his
machine oriented language for the Microdata 1621. On page
134 of his dissertation he states:

"...while it should be possible to transport the IBM
1130 DMS to ... the Microdata, the overall effort that
would be required to prepare the DMS system code for
input to the Transport System was for too great to be
completed in a reasonable amount of time. It seemed
more could be learned by using the Transport System to
obtain the FRECL representations of operating systems
code for one computer, and recompiling this code back
to the assembly language of the same computer."

He abahdoned the 1130 effort and concentrated on the

‘decompilation of the 1621 code. The match between the 1130

virtual machine and the FKECL virtual machine was not close.
For similar reasons, I rejected the notion of translating
620/i programs to FORTRAN or PL/I -- the projected manual
effort 1involved was too great. The machine oriented
language approach seemed to the the best compromise. Having
already written three machine oriented language compilers, I
knew that in the class of sixteen bit minicomputers, these
languages are often more portable than their names suggest.
Experience with the Distributed Computing System (Farber
et.al. 1973), a network utilizing three different
minicomputers demonstrated this fact. Software written for

one machine could be rewritten in a short period of time for

239

another machine using a similar language dialect. The
different dialects emphasized the architectural strengths of
the machines for which they were designed, but they
maintained a uAiformity of syntax and semantics with respect
to machine independent concepts such as expression

denotation and control structure syntax.

Code Volume

For the purposes of transferability, the expansion of
code volume caused by the decompilation process is an
important consideration. The match between the source and
target machine (language and interpreter) must be close to

prevent excessive inflation of program size as well as other

inefficiencies.

In the ISADORA experiment, an expansion ratio of 10:1
for overflow testing instruction translation was seen. The
match between the 620/i machine language and MOL620 was not
close in that case. The expansion factor for the total
ISADORA experiment ranged from 1.51 to 2.02 (see Table 6-C),
and from 1.37 to 1.88 (see Table 6-F) for TECO. Part of
this expansion was due to the decompiler and part due to the
MOL620 language and compiler. The inefficiencies present in
the target program are a result of the product of the
inetf'ficiencies of each translation step involved. This
observation suggests that efforts to reduce the size of

decompiled code should be directed at every translator in

240

the chain, not only at the decompiler itself.

The 1importance of the code size expansion problem
relative. Lo other aspects of the decompilation process such
as portability, understandability, or language 1level can
only be decided in the context of a pafticular application.,
For example, 1if transferring a program via decompilation
results 1in a program which cannot execute on the target
machine because it 1is too big, then the wuse of the
decompiler to achieve the transfer is not the proper
approacb. On the other hand, if the target program’s higher
level text is to serve as documentation for a redesign of
the program, then the fact that the decompiled output is too
large to execute is irrelevant.

OQur experiments show that the observed expansion factor
is sufficiently small that it will be acceptable in a large
number of contexts. Moreover, the space a program occupies
is rapidly becoming a secondary consideration in the light
of decreasing main memory costs and increasing software
production costs. The importance of code size expansion
should tend to diminish for many applications in the coming

years.

Speed of Decompiler Execution

The speed of a decompiler is not nearly as important as

the speed of a compiler, since a given program will not be

decompiled more than once or twice for transfer to another

241

language. .In 1its eventual evolved production form, a
decompiler similar to the one implemented in this research
should begin to approach the speed of an optimizing compiler
since many of —the control structures and variable usage
analysis algorithms are similar (see Chapter 6 for

comparative results).

Speed of the Target Program

The largest execution penalty in target program
execution is due to the mapping of variables from fast
access memory (e.g., registers) to slow main memory.
Control transfer instructions should normally incur no

degradation in execution time. Certain machine specific

.operations (such as overflow testing in the 620/i) which are

not easily represented in the target language, will incur a
higher penalty in execution speed since many more
instructions will be needed in the target language to
simulate the effect. As with program expansion, execution
speed degradation is partly effected by the target language
and target compiler as well as the decompiler. 1In this
research, execution speeds of the decompiled programs were
not noticeably different to a user of the target program
even though the target program was averaging about three
memory cycles in the target program for every one in the
source. These programs were interactive and I/0 bound in

execution.

242

Cost of bBuilding s Decompiler

The design of the decompiler built in this research is
outlined _in detail in Chapter 4, The designs of other
decompilers havé been discussed in Chapter 2. Discounting
the research and design time, the cost of building a
decompiler can be compared to that of building a good
optimizing compiler. Chapter 5 summarizes the amount of
code in each part of the decompiler in Table 5-A. Of
course, the effort per program unit differed depending upon
the task performed. For example, the effort expended per
line of code in designing and testing the forward
substitution algorithms was much greater than that expended
per line of service routine code. This difference is due to
the relative complexity of the algorithms. The amount of
time spent designing and implementing the decompiler was not
recorded, but an estimate of one man year to build such a
translator shoula Se approximately correct. Given that
decompiler designs are now available in the literature,
effort can be concentrated on refinement and implementation
enhancements rather than research into new methods.

Choice of language and computing system environments in
which to write the decompiler itself is important and can
significantly reduce or increase the amount of time needed
to produce a working system. LISP and the DECsystem-10 have

proven to be a good choice in this regard. Friedman (1974b)

has indicated FORTRAN on the CDC 6600 is not a good choice.

243

EXPECTED USES OF DECOMPILERS
The expected uses of decompilers can be divided into
two main categories (Hopwood 1976):
1. transéer of software to other languages and
machines, and
2. alids to understanding software ~- as documentation,

for wvalidation and verification, and for static

analysis of program features.

Transferability

The problem of manual intervention is obviously closely
related to that of transferablity. However, the question of

transferability can be separated from that of machine

independence. Transferring software from a particular

machine, M1, to another machine, M2, 1is a much easier
problem that the translation of M1 code into a universal
machine independent -language. The universal language does
not exist and is not 1likely to ever exist. (See Steel 1966
for more on UNCOL). With a particular target machine in
mind, the difficulties encountered arise because of
incompatibility between the source and target language
interpreters. Purely syntactic problems in the languages
are easily handled, the semantics are the problem. Chapter
3 addresses many of these difficulties in detail.

The most important task to be performed by an analyst

considering the use of a decompiler for transporting

24y

software is.to study the costs imposed on the translation by
the source/target differences. Assuming the source language
is given, _ it appears that a judicious choice of a target
language can réduce the cost of the translation and improve
the chances for satisfactory performance of the target
software along all dimensions. The widely recognized and
implemented languages such as FORTRAN, COBOL, ALGOL 60, and
PL/I are probably the 1initial candidates one would consider
for the target language. Housel (1973) translated to PL/I
and Hollander (1973) to a dialect of ALGOL. Sassaman (1966)
targeted to FORTRAN, Halstead (1962) to NELIAC, and several
commercial vendors advertise an IBM 1400 to COBOL

conversion. For the decompilation effort which does not

require machine independence, the many machine oriented

languages now in existence provide a suitable target for
moving the 1language 1level of a program up within a single
machine architecture family. The greater efficiency of
these languages relative to the machine independent ones is
a powertful incentive to choose this alternative (see van der

Poel and Maarsen 1974).

Docunientation Aid

The wuse of decompiled output to replace or supplement

traditional forms of documentation has been suggested

(Hopwood 1974), The Ultrasystems decompiler mentioned in
Chapter 2 was built for this purpose. In my opinion, the
245

use ot decompilers for the primary purpose of documentation
will be minimal for several reasons. In the future,
programnming in assembler language will become the exception
rather than thé rule. Higher level languages will be used
for almost all of the purposes for which low level languages
are now used. 0ld programs will be discarded in favor of
more modern replacements or will be translated into higher
level 1languages by hand or by automatic aids such as
decompilers. Only in rare cases will the assembler language

program be retained with the decompiled version used only

for documentation.

bvolutionary Path

The most promising use of a decompiler is for the
purpose of modernizing a body of assembler language software
where the original code is used as a reference model for
implementation of algorithms which should be retained in the
new version. In cases where the code must be very
efficient, the decompiled code can be used as a guide to a

complete manual rewrite.

Validation and Verification

As the work of Ikezawa (see Chapter 2) suggests,
another very promising area of decompiler application will
be 1in the field of software validation and verification.
The analysis which a decompiler performs, combined with

modern verification techniques, provides a valuable tool for

246

program inspection.

Static Analysis

The analysis algorithms of a decompiler can be used to
gather statistics about 1interesting features of programs.
gxamples of such information include the location of dead
code areas, number of different looping conventions used,
frequency and type of instruction modification, busy status
of variables, scope of conditional <control and exit
conditions from subroutines. This information is useful in
debugging, validation and verification, and program

transformations of low level source code.

FUTURE RESEARCH DIRECTIONS

'Data Structure Abstraction

An open area of research is the abstraction of data
structure from low level program descriptions. The use of
target languages such as Pascal (Jensen and Wirth 1975) or
PL/1 demands more sophistication from the decompiler for the
description of data structures than the simple
transliteration of assembler language definitions used in
this research. For example, assume an assembler language
program uses a data structure defined implicitly by symbolic
equates and instruction usage to correspond to the Pascal

record definition:

247

RECORD -
NAME : ARRAY[1..15] OF CHAR;
ID : '0..9999; (¥*FOUR DIGITS*)
HEIGHT : 36..96; (*INCHES#*)
. _WEIGHT : 50..400; (*POUNDS*)
SEX - : (FEMALE, MALE);

CITIZEN : BOCGLEAN
END;.

A programmer might deduce such a definition by examining how
the program accesses data, but the methods of automating
such analysis are far from understood. Housel (1973)
describes an attempt to determine the extent of arrays based
upon their indexed references. This is about as far as any
decompiler has gone and the results are still quite
primitive. It seems much more effective to simply look at

the symbolic storage reservation pseudo operations of the

source language progran. This was the approach taken in

this research. This works‘well because the target machine
is very similar to the source machine.

More researcn irito the methods of abstraction of data
structures from program referencing is needed. Some of the
work of those interested 1in using data abstraction to
produce high level program descriptions may prove helpful in

this area (see Rowe 1976).

Control Structure Recognition and Transformation

The main emphasis of this and previous decompilation
research is on the analysis of program control structure.
This research, and that of others reported here (except

Hollander) wuse a procedural oriented method of discovering

248

patterns in the control structure of the source program
being decompiled. For example, a procedure in an
algorithmicvlanguage (e.g., LISP) is written to find a WHILE
loop pattern, or an IF...THEN...ELSE pattern.

Hollander (1973) wused the pattern matching facilities
of a syntax directed parser. This method is weak because it
cannot recognize semantically equivalent but syntactically
different patterns. The work of M.D. Hopwood (1974)
suggests an alternative method of pattern matching based
upon a set of tree tranéformations applied to a semantic
tree representation of the source progran. A set of
patterns and transformations would replace the combinatorial
logic df special purpose procedures and would serve to

standardize this section of the decompiler.

High Level Source-to-Source Transformations

| The work of Standish (1976) and Loveman (1977) suggests
that programs expressed in highér level languages may be
improved by application of rewriting rules possibly guided
by humans. The use of a decompiler to translate valuable
assembler language programs into the higher 1level working
language for further automated refinement would be an

interesting marriage of the two systems.

249

Software Physics

The work 'of Halstead and Bayer (1972, 1973) and Bulut
et.al. - .L1974) suggest a theory of the thermodynamics of
algorithms, an information theoretic approach to the
quantification of such programming terms as '"program
volume," "language level," and "quality."

The source and target versions of a decompiled program
are different representations of the same algorithm. What
can be said about the effect of decompilation upon the
Halstead measures? Does program volume go up? Does
language 1level and internal quality increase? A set of
experiments dealing with these questions might lead to a

standard method of measuring the performance of a

decompiler. In addition, since the source and target
algorithms remain the same, and only the 1language
representation 1is different, the elimination of this

variable might lead to interesting validation of the
software physics theory itself. Do the measures agree with
what we believe is happening to the decompiled program?

The work (in thermodynamic terms) a decompiler must do
in ordef to discover certain relationships between variables
or control paths should be quantifiable in terms of software
physics. Research in this area might 1lead to a better
understanding of why certain programs are easier to
understand than others, i.e., a quantification of the

meaning of good programming style. If style can be

250

measured, then much greater automatic quality control can be
exercised over the style of programs produced in the
software .factories of the future. The ©benefits 1in the

reduction of maintenance costs are obvious.

IMMEDIATE IMPLICATIONS

Structured Coding Technigques Using Low Level Languages

Decompilation research has shown that low .level
programs can be translated into higher level languages. The
techniques used for such translations suggest an assembler
language coding methodology to that proposed for the higher
level languages, e.g., standardized control mechanisms and

restricted variable scope. Those software organizations

which persist in using low level languages would do well to

apply such standards to their programming efforts to assure

consistent, easy to understand, and decompilable programs.

Software Evolution

The decline of assembler language as a primary
programming language has begun. The declining cost of
hardware and the increasing costs of 1labor intensive
products assure that only the most primitive machines will
be programmed ih low 1level languages. The trend is clearly
seen in the medium and large scale machine environments. In
the minicomputer environment, the typical machine
configuration of today 1is more powerful by almost any

measure than the largest machines of the late 1950°s. The

251

minicomputer manufacturers are faced with similar software
development and maintenance problems similar to those of
mainframers and are gradually moving away from the use of
assembler langdages for system development. Microcomputers
are now being almost exclusively programmed in assembler
languages. Higher level languages, however, are being
designed for use on such small systems.

As manufacturers of all size machines begin to make use
of higher level 1languages 1in the next few years, we can
predict a resurgence of interest in decompilers similar to
that which accompanied the transition to the third
generation of computers in the mid 1960 s. Companies will
wish to save some of the softwére investment represented by
their assembler language libraries. Many of the older
programs will be obsolete and not worth carrying forward
into a new language, but some, particularly application
programs such as ediLors, compilers, and file systems might
be decompiled. Modernization of a software product might
very well call for the use of a decompiler as part of the
evolutionary process.

The manufacturers of small machines can afford to
produce hardware <closer to the current 1limits of the
technology than the larger mainframe manufacturers who only
introduce new central processor products every few years.
This fact will lead to the introduction of new machine

architectures which must be programmed either in a new

252

assembler language or a higher level language. The obvious
choice 1s to ‘begin use of a higher 1level language at the
introduction of a new machine line. 1In preparation for that
transition, tﬂé good programs from an older 1line can be

converted to the new system implementation language with the

help of decompilers.

CONCLUSION

The discussion of the benefits of decompilation must
necessarily be based upon subjective notions of what
comprises good program presentation (style) and how that
presentation is achieved, as well as the more pragmatic
considerations of the importance of code size expansion,
costs of decompilations, and uses of the final product.

In the wearlier discussions of the two experiments
conducted in this research, examples were given of why and
how the decompiled target program text was a more useful
representation of the program than the original assembler
language text. The decompiled program is more useful
because its control structures and expression evaluation
structures are more visible when expressed in the higher
level language. Although the decompiler does not attempt to
abstract data structures, the data structure is more easily
comprehended when viewed through the abstracted control and

evaluation structures. This last point was made clear while

attempting to debug the P2 version of the TECO program.

253

Although the decompiled programs are easier to
understand, it is clear that they would be considered to be
of low- _guality if produced by a competent professional
programmer. Tgis simply reflects the fact that the original
programs were not very well structured or implemented. A
decompiler reveals the structure of the source program. It
cannot rewrite 1it, except in trivial automatic ways, e.g.,
node splitting. It cannot turn a sow’'s ear into a silk
purse. If we put low level garbage into the decompiler, we
are very likely to produce high level garbage. To be sure,
the 1latter is better than the former, but is far from our
idea of what the ultimate decompiler should do.

In‘pragmatic terms, the experiments of this research
have shown that decompilation c¢an be a wuseful aid to
evolutionary program improvement. This was illustrated in
the case of ISADORA when the target program was
substantially enhanced after decompilation produced a higher
level language version. This means that a valuable
proauction program can be transformed over a period of time
from a poorly structured low level 1language implementation
to a well structured high 1level 1language program. The
decdmpiler is a tool to break through the initial barrier of

language level. A human continues the process.

254

References

Aho, A.V. and J.D. Ullman. The Theory of Parsing,
Translation, and Compiling, Vol. II: Compiling.
Englewood Cliffs, New Jersey: Prentice-Hall, 1973.

Allen, F.E. and J. Cocke. "A Program Data Flow Analysis
Procedure." Communications of the Association for

Computing Machinery, Vol. 19, No. 3, March 1976, pp.
137-147.

Barbe, P. "Techniques for Automatic Program Translation."
Software Engineering, Vol. 1. Ed. J.T. Tou. New york:
Academic Press, 1969.

Barbe, P. "The PILER System of Computer Program
Translation." NTIS Report No. AD/A-000294/9. Probe
Consultants Inc., Phoenix, Arizona, September 1974.

Bobrow, R.J., K.R. Burton, J.M. Jacobs, and D. Lewis. "UCI
LISP Manual." Department of Information and Computer
Science, University of California, Irvine, Technical
Report #21, October 1973.

Boehm, B.W. "Software and Its Impact: A Quantitative
‘ Assessment." Datamation, May 1973, pp. 48-59

Breuer, M.A., ed. Design Automation of Digital Systems, Vol.
1, Theory and Technigues. Englewood Cliffs, New Jersey:
Prentice-Hall, 1972.

Bulut, N., M.H. Halstead and R. Bayer. "Experimental
Validation of a Structural Property of FORTRAN
Programs." Proceedings of the Annual Conference of the
ACM, November 1974, pp. 207-211.

Climenson, W.D. "Irreducible Flowcharts." Department of
Information and Computer Science, University of
California, Irvine, Technical Report #35, April 1973.

de Balbine, G. "Better Manpower Utilization Using Automatic
Restructuring." Proceedings of the National Computer
Conference, Vol. 44, 1975, pp. 319-327.

Farber, D.J., J. Feldman, F.R. Heinrich, M.D. Hopwood, K.C.
Larson, and L.A.Rowe. "The Distributed Computing
System." Proceedings of the Seventh Annual IEEE
Computer Society International Conference, February
1973, pp. 31-34.

255

Feldman, J.A. and D. Gries. "Translator Writing Systems."
Communications of the Association for Computing
Machinery, Vol. 11, No. 2, February 1968, pp. 77-113.

Friedman, F.L. Decompilation and the Transfer of
Mini-Computer Operating Systems. Ph.D. Dissertation.
Department of Computer Science, Purdue University,
August 1974.

Friedman, F.L. Personal communications. May 1974b.

Gaines, K.S. "On the Translation of Machine Language
Programs." Communications of the Association for
Computing Machinery, Vol. 8, No. 12, December 1965, pp.
736=741.,

Griswold, R.E., J.r. Poage, and I.P. Polonsky. The SNOBOLY
Programming Language, second edition. Englewood
Cliffs, New Jersey: Prentice-Hall, 1971.

Halstead, M.H. and R. Bayer. "Algorithm Dynamics."
Proceedings of the Annual Conference of the ACM,
Atlanta, Georgia, 1973, pp. 125-135.

Halstead, M.H. Machine Independent Computer Programming.
Washington, D.C.: Spartan Books, 1962.

Halstead, M.H. '"Machine Independence and Third Generation
Computers." Proceedings of the Spring Joint Computer
Conference, 1967, pp. 587-592.

Halstead, M.H. "Using the Computer for Program Conversion."
Datamation, May 1970, pp. 125-129.

Hollander, C.R. Decompilation of Object Programs Ph.D.
Dissertation. Digital Systems Laboratory, Stanford

Electronics Laboratories, Stanford University,
SEL-73-029, Technical Keport No. 54, January 1973.

Hopwood, G.L. "Inverse Compiling for Program
Documentation." Oral presentation, Abstract in
Proceedings of the Annual Conference of the ACM, San
biego, California, November 1974, p. 751.

Hopwood, G.L. "Decompilers -- Tools or Toys?" Oral
presentation, ACM Computer Science Conference, Anaheim,
California, February 10-12, 1976.

256

Hopwood, G.L. "MOLSUE: A Machine-Oriented System
Implementation Language for the Lockheed Electronics
SUE Computer. Language Reference Manual." Department of
Information and Computer Science, University of
California, Irvine, Technical Report #86, March 1976
(revised February 1977).

Hopwood, G.L. and F. Friedman. Personal correspondence.
March, April 1976.

Hopwood, M.D. A Semantic Formalism and Associated Semantic
Process for the Specification and Translation of
Programming Languages. Ph.D. Dissertation. Department
of Information and Computer Science, University of
California, Irvine, 1974.

Hopwood, M.D. and G.L. Hopwood. "MOL620: A Machine Oriented
Language and Language Compiler for the Varian Data
620/1." Department of -Information and Computer Science,
University of California, Irvine, Technical Report #1,
September 1971 (revised November 1973).

Housel, B.C. A Study of Decompiling Machine Languages into
High-Level Machine Independent Languages. Ph.D.
Dissertation. Department of Computer Science, Purdue
University, Technical Report TR 100, August 1973.

IBM. "1400 Autocoder to COBOL Conversion Aid Program"
(360A-SE-19X), "Version 2 Application Description
Manual" (GH20-0352-2), White Plains, New York: IBM
1967.

Ikezawa, M.A. and R.E. Kayfes. "A Structured Calculus for
Program Analysis and Testing." Logicon, Inc., San
Pedro, California, Technical Report No. CSS-75019,
November 1975.

Ikezawa, M.A. Personal communications. January 1976.
Los Angeles Chapter ACM SIGPLAN speech. October 1976.

Ikezawa, M.A. "AMPIC for the Non-Programmer." Logicon,
Inc., San Pedro, California, Technical Report No.
R:CSS-77004, May 1977.

Jensen, K. and N. Wirth. Pascal User Manual and Report.
New York: Springer-Verlag, 1975.

257

Knuth, D.E._ "Structured Programming with go to Statements."
Computing Surveys, Vol. 6, No. 4, December 1974, pp.
261-301. -

Knuth,D.E. The Art of Computer Programming, Vol. 1.
Reading, Massachusetts: Addison-Wesley, 1968.

Loveman, D.B. "Program Improvement by Source-to Source
Transtormation." Journal of the Association for
Computer Machinery, Vol. 24, No. 1, January 1977, pp.
121-145.

Lowry, E.S. and C.wW. Medlock. "Object Code Optimization."

Communications of the Association for Computing
Machinery, Vol. 12, No. 1, January 1969, pp. 13-22.

Philippakis, A.S. "Programming Language Usage." Datamation,
October 1973, pp. 109-114,

Pnilippakis, A.S. "A Popularity Contest for Languages."
Datamation, Vol. 23, No. 12, December 1977, pp. 81,
86-87.

Rowe, L.A. A Formalization for Modelling Structures and the

Generation of Efficient Implementation Structures.

Ph.D. Dissertation. Department of Information and

Computer Science, University of California, Irvine,
1976.

Sammet, J.E. Programming Languages: History and

Fundamentals. Englewood Cliffs, New Jersey:
Prentice-Hall, 1969,

Sammet, J.E. "Programming Languages: History and Future."
Communications of the Association for Computing
Machinery, Vol. 15, No. 7, July 1972, pp. 601-610.

Sassaman, W.A. "A Computer Program to Translate Machine
Language Into Fortran." Proceedings of the Spring Joint

Computer Conference, 1966, pp. 235-239.

Standish, T.A., D.C. Harriman, D.C. Kibler, and J.M.
Neighbors. "Improving and Refining Programs by Program
Manipulation." Proceedings of the 1976 Annual

Conference of the ACM, October 20-22, 1976, pp.
509-516.

258

Steel, T.b., ed. Proceedings of the IFIP Working Conference
on Formal Languages for Computer Programming.
Amsterdam: North Holland, 1966.

Timmreck, E.M. "Computer Selection Methodology." Computing
Surveys, Vol. 5, No. 4, December 1973, pp. 199-222,

Ultrasystems, Inc. Newport Beach, California. "Decompiler
Program Development and High-Level Program Flow Charter
Specification Development:"

"Decompiler Program Design Requirements," A002,
document no. 74/6.29-2

"Decompiler Program Design Specification," A003,
document no. T4/6.29-5

"Decompiler Program Design Document," AOOUY,
document no. 74/6.29-9

"Decompiler Test Plan/Test Report," A005,
document no. T4/6.29-14,

Varian Data Machines. Varian Data 620/i Computer Manual.
Irvine, California, 1968.

van der Poel, W.L. and L.A. Maarsen, eds. Machine QOriented
Higher Level Languages, New York: American Elsevier
Publishing Co., Inc, 1974,

Weissman, C. LISP 1.5 Primer. Belmont, California:
Dickenson Publishing Co., Inec., 1967.

259

Appendix I

IMTEXT STATEMENTS

This appendix lists the IMTEXT statements implemented
for the experiments conducted during this research. The
statements are listed alphabetically by IMTEXT operator.
The following meta symbols are used to indicate classes of
items which may appear within a statement.

const -- a symbolic or numeric constant;

exp -- an IMTEXT statement appearing on the argument
list of an enclosing statement by process of
substitution, a variable name, or a constant;

ivar -- indexed variable name;

label -- a statement label;

nil == a placeholder for an unused item in the
statement;

sop ~-=- a symbolic shift operator of the target

language;

Svar =-- synthetic variable name;

texp -- a target designator; a variable name, or a
substituted target expression (e.g., an
INDEXED or INDIRECT expression);

tvar -- a target variable name;

Each statement is described with its prototype format,
a semantic description of its meaning followed by a target
language statement and/or expression into which the IMTEXT
statement might be translated. (MOL620 is used as the
target language.) See Chapter 4 for an introduction to the
concept and use of IMTEXT statements for decompilation.

(ADD, (expl, exp2), texp)
Add the value of expl to the value of exp2 and store
the result in the target designated by texp.
target statement: texp := expl + exp2;
target expression: (exp1 + exp2)

(AND, (exp1, exp2), texp)
Evaluate the boolean expressions expl and exp2. Form
the boolean product of these values and store the
result in the target designated by texp.
target statement: texp := expl AND exp2;
target expression: (expl AND exp2)

260

(B, texp, nil)

Branch to the designated location, texp. Texp may be a
label, an -indexed expression, or an indirect expression
corresponding to simple, indexed, or indirect jumps.
target statement: GOTO texp;

target expression: none

(BAND, (expt, exp2), texp)

(BOR,

(BT’

Evaluate exp1 and exp2. Perform a bitwise AND of these
values. Store the result in the location designated by
texp.

target statement: texp := expl BAND exp2;

target expression: (exp1 BAND exp2)

(exp1, exp2), texp)
Evaluate expl and exp2. Perform a bitwise OR of these
values and store the result in the location designated
by texp.
target statement: texp := expl1 BOR exp?2;
target expression: (exp1 BOR exp2)

(exp, label), nil)
Branch on true condition. This IMTEXT statement always
has three subgraphs attached to it in the control graph
where it appears -- the "true" subgraph, the "false"
subgraph, and the "join" subgraph (see Chapter 4). If
the value of the expression is true, the true subgraph
is executed, otherwise the false subgraph is executed.
Following execution of the true or false subgraph, the
Jjoin subgraph is executed. The label in the statement
is merely annotation.
target statements: IF exp THEN ...;

IF exp THEN ... ELSE ...;

WHILE exp DO ...;
target expressions: none

(BUMP, tvar, tvar)

The value of the location indicated by tvar is
incremented by one. Tvar may not be indexed or
indirect. (See BUMPI).

target statement: BUMP tvar;

target expression: none

(BUMPI, texp, texp)

This statement is a special case of the BUMP statement.
Texp is an indirect or indexed designator. Increment
the designated location by one.

target statement: BUMP texp;

target expressions: none

261

(BXOK, (expl, exp2) texp)
Evaluate expl1 and exp2. Perform the bitwise
exclusive-=-or of these values and store the result in
the location designated by texp.
target statement: texp := expl BXOR exp2;
target expression: (expl BXOR exp2)

(CALL, texpl1, texp2)
Call procedure designated by texpl. Return address is
stored in location designated by texp2.
target statement: CALL texpl; %texp2 is implicit%
target expression: none

(CALLT, (exp, texpl), texp2)
If value of exp is true, then call the procedure
designated by texpl. The return address is stored in
the location designated by texp2.
target statement: IF exp THEN CALL texp1;
target expression: none

(DIV, (exp, texpl, texp2), (texpl, texp2))
Divide the double length operand (texpl,texp2) by the
value of the expression exp. Store the double length
result in (texp1l, texp2).
target statement: CALL DIV(exp);
%texpl and texp2 are implicit%
target expression: none

(EQ, exp, texp)
If the value of exp equals zero, then set the location
designated by texp to true, else set texp to false.
target statement: texp (exp = 0);
target expression: (exp 0)

(EXC, (const1, const2), nil)
Perform the external control I/0 function const1 on
device const2.
target statement: CALL EXC (const1, const2);
target expression: none

(GE, exp, texp)
If the value of exp is greater than or equal to zero,
then set the location designated by texp to true, else
set texp to false.
target statement: texp := (exp >= 0);
target expression: (exp >= 0)

262

(HALT,

(INDE

(INDI

(INPU

(JF,

(LABE

const, nil)

Halt the machine with indication const.
target statement: " ,HLT,const";

target expression: none

X, (ivar, exp), svar)

This statement is always substituted in a following
IMTEXT statement either on the argument or change list.
Svar is a synthetic variable designator used in the
substitution. If this statement appears on an argument
list, then it means that the value of the vector
element (exp) in vector ivar is used. If the statement
appears on the change list, then that vector element is
modified by the execution of the enclosing statement.
target assignment: ivar[exp] := ... ;

target expression: ivar[exp]

RECT, exp, svar)

Like the INDEX statement described above, this
statement is always substituted in an argument list or
a change list of another statement. Svar is the
synthetic variable designator used in the substitution.
If this statement appears on an argument list, then it
means that the value of the location whose address is
given by the value of exp is used. If the statement
appears in the change list, it means the location whose
address is the value of exp is modified by the
execution of the enclosing statement.

target assignment: [exp] := ...;

target expression: [exp]

T, const, texp) .

Input data from device const and store the value in the
location designated by texp.

target statement: texp := INPUT(const);

target expression: INPUT(const)

(exp, label), nil)

Iff the value of exp is false then goto label.
target statement: IF NOT exp THEN GOTO label;
target expression: none

L, label, nil)

Defines a symbolic label on the next IMTEXT statement.
target statement: label:

target expression: none

263

(LT, exp, texp)
If the value of exp is less than zero, then set the
location designated by texp to true, else set texp to
false.
target statement: texp := (exp < 0);
target expression: (exp < 0)

(MOVE, exp, texp)
This is the most basic IMTEXT statement. The value of
exp is stored in the target designated by texp.
target statement: texp := exp;
target expression: (exp)

(MOVEXP, exp, texp)
Same as MOVE except the target is always explicitly
assigned. MOVEXP will always be substituted in the
argument list of some other statement. MQVEXP
corresponds to an assignment expression in a target
language.
target statement: none
target expression: (texp := exp)

(NUP, nil, nil)
No operation. Appears in timing loops or to allow I/0
to complete.
target statement: " ,NOP,";
target expression: none

(MUL, (exp, texpl, texp2), (texpl, texp2))
Multiply the double length operand (texpl, texp2) by
the value of exp. Store the double length result in
(texp1, texp2). -
target statement: CALL MUL(exp);
%texpl and texp2 are implicit%
target expression: none

(CUTPUT, (exp, const), nil)
Output the value of exp to device const.
target statement: CALL OUTPUT(exp, const);
target expression: none

(SHIFT, exp, texp)
Perform the shifting instruction indicated by the value
of exp. The result affects texp.
target statement: CALL SHIFT (exp);
$texpl is implied by exp%
target expression: none

264

(SHIFTO, (exp, const, sop), texp)
Special case of the shift statement used for the less
complex forms of the source instruction. The value of
exp is shifted using the symbolic operator, sop, by the
shift count, const. The result of the shift is stored
in texp. .
target statement: texp := exp "sop" const;
target expression: (exp "sop" const)

(SENSE (const1, const2), svar)
Always appears as an argument to a BT statement after
forward substitution has taken place. Svar is a
synthetic variable used in the forward substitution
process. The value of a SENSE expression is true if
status const1 is true for I/0 device const?2.
target statement: none
target expression: (SENSE(const1,const2))

(SUB, (exp1, exp2), texp)
Subtract the value of exp2 from the value of expl and
store the difference in the target designated by texp.
target statement: texp := expl - exp2;
target expression: (expl - exp2)

(XEC, label, nil)
Execute the instruction at location label (one
instruction subroutine). This IMTEXT statement is not
supported in the target translation.
target statement: XEC const;
%will be flagged as an error when compiled$%
target expression: none

(XIF, (exp, label), nil)
Execute the instruction at location label if the value
of exp is true. Like XEC above, this statement is
unsupported in the target language.
target statement: IF exp THEN XEC label;
%will be flagged as an error when compiled$%
target expression: none

265

Appendix II

SUMMARY OF 620/i INSTRUCTION SET

As explained in Chapter 5, the source machine/language
chosen for the decompilation experiments of this research
was the Varian Data Machines 620/i minicomputer. This
appendix describes the instruction set and relevant features
of that machine.

The 620/i was first delivered in 1968. It was a 16-bit
minicomputer implemented using TTL circuitry and based on an
earlier discrete component machine called the 620/A, one of
the first 16-bit minis. The 620/i has since been succeeded
by an upward compatible family of machines -- the 620/L,
620/F, and most recently the V70 series of computers
(1972-1977).

The 620/i has three programmable registers:

A-register: the general purpose 16-bit accumulator; may
not be used for indexing;

B-register: accumulator extension and index register;

X-register: index register.

The memory is word addressable to 32K 1locations. The
high order bit of an address word usually specifies
indirection. The original memory of the machine was
implemented in 1.8 microsecond synchronous core memory in 4K
modules.)

The instruction set is not symmetric in the sense that
the B and X registers are not general purpose registers and
only a partial set of condition testing/branching
instructions are implemented. There are five common
addressing modes for most functional instructions involving
the registers and memory:

direct -~ single word instructions may directly address

the first 2K of memory; double-word instructions
may reference the entire 32K.

indirect -- one word instructions may address the first

512 words of memory; double-word instructions may
reference the entire memory; multi-level
indirection is permitted to any level.

266

relative -- single word addressing relative to the
location counter up to 511 words forward;
double-word instructions may address the whole
memory space.

indexed -- single word addressing relative to the
‘contents of the B or X registers with a
displacement of 0-511 words; double-word
instructions include a full word of displacement.

immediate -- the operand is in the second word of the
instruction.

Program counter modification instructions (branch,
subroutine call, and execute) may be executed based upon the
contents of the registers. Nine simultaneous conditions may
be tested at once. (See Figure 4-F.) These instructions may
rererence the target directly or indirectly over the full
addressing range. All of these instructions are two words
long.

The only instruction provided for subroutine calling in
the 620/i is the "Jump and Mark" instruction. The return
address is stored in the first word of the subroutine and
execution begins at the second word of the subroutine. A
return is effected with an indirect jump through the "mark
word." (Of course, reentrant programming is impossible to do
with any efficiency on this machine due to the absence of a
subroutine calling instruction which does not modify
memory.)

Following is an alphabetical 1list of some of the more
commonly used instruction mnemonics of the 620/i and their
meanings: .

ADD -- Add memory to A-register.
ANA -- AND memory with A-register.
AQFA,AQFB,AQOFX -- Add overflow register to A, B, or

X-register.

ASLA, ASLB -~ Shift A or B left arithmetically 0-31 bit
positions.

ASRA,ASRB -~ Shift A or B right arithmetically 0-31 bit
positions.

CIA, CIAB, CIB -- 1Input data word from device to
cleared register.

CPA, CPB, CPX -- One’s complement register contents.

DAk, DBk, DXR -- Decrement register by one.

DIV -- Divide (A, B) pair by memory word. Remainder to
A, quotient to B.

ERA -- Exclusive-OR A-register with memory.

EXC --_I/0 device external control function.
HLT -- Halt the cpu.
IAR, IBR, IXR -- Increment the register by one.

INA, INAB, INB -- 1Inclusive-OR I/O data word to
~_register. :

INR == Increment a memory location by one.

JMP -~ Conditional and wunconditional jump (see Figure
4-F).

JMPM ~-= "Jump and Mark" subroutine call. Same
conditions as JMP.

LASL, LASR -- Long arithmetic shift (left and right) of
(A, B) pair, 0-31 bit positions.

LDA, LLB, LLX -~ Load register from memory.

" MUL -- Multiply the (A, B) pair by a memory word.

Double word product to (A, B).

NOP -- No operation.

OAB, OAR, OBK =-- Output word of data from register to
1/0 device.

ORA -- Inclusive-0OR memory word with A-register.

ROF, SOF -- Reset or set overflow flag.

SEN -- Sense status of I/0 device.
SOFA, ©SOFB, SOFX -- Subtract overflow register from A,

B, or X.

STA, STB, STX =-- Store register to memory.

SUB -- Subtract memory from A-register.

TAB, TAX, TBA, ... - Transfer register value to
another register.

XEC -- Execute a remote instruction. Same conditions
as for JMP.

ZERQO -- Zero a register.

268

Appendix III

SUMMARY OF THE
- MOL620 LANGUAGE

The MOQOL620 1language was designed in 1969 and must be
considered obsolete by current programming language
standards, even 1in the context of its intended purpose,
i.e., a machine-oriented replacement for assembler language.
Many missing features, such as variable type definition (ala
Pascal) and lack of local environments reflect the
inadequacies of the early versions of the metacompiler used
to implement the translator. However, a large amount of
reliable software was successfully written using MOL620.
The code generated by the compiler has been efficient enough
in time and space to keep programmers from slipping back
into assembler 1language. In addition, because of the
constant turnover of students in the University environment,
the improved readability of the MOL620 programs versus
assembler language has been very important.

A "superset language, MOLSUE (Hopwood 1976), was very
successfully used for five years by programmers on the
Distributed Computing System Project (Farber 1973) at UCI.
Many of the inadequacies of MOL620 were corrected in the
design and implementation of MOLSUE. The similarities
between the twc languages allowed programmers to use
knowledge of either language to easily write programs for
both the Varian 620/i and the Lockheed Sue, even though the
machines have very different architectures and native
instruction sets.

The following part of this appendix is an excerpt taken
from the report (Hopwood and Hopwood 1971) describing the
MOL620 language.

EXPRESSION EVALUATION

bxpression evaluation consists of combining operand values
according to the rules given by the operators in the
expression. The sequence of the application of the
operators to the operands is given by the hierarchy of the
operators, grouping of sub-expressions by parenthesization,
and normal left-right sequencing.

269

Operands

Uperands are -'symbols or expressions. The basic operands
are: identifiers, quoted names, numbers, and quoted
characters._
identifiers -- sequence of one to six alphanumeric
(A-Z,0-9) characters beginning with an alphabetic
character e.g. A, Q32, ICS, NAMELY

quoted names -- any string of characters enclosed in
double quotes. The string 1in quotes should be a
meaningful symbol to the 620/i DAS assembler. E.g.,
"CB", "GAMMA+S", "A-2". These names should not be
used in the normal course of c¢reating a MOL620
program.

numbers -- decimal, octal, and hexadecimal

decimal numbers -- sequence of decimal digits
optionally preceded by a + or - sign. Sixteen bit
limit implies decimal number of -32768 to +32767.

octal numbers -- sequence of octal digits preceded by a
zero. Range of 000000 through 0177777.

hexadecimal numbers -- one to four hex digits (0-9,A-F)
preceded by H” and followed by . For example,
H'FFFF", H ABC", H'EO’, H 1234".

quoted characters -- one or two ASCII characters
enclosed in- single quotes, e.g., A7, TAB’.
Characters are coded as eight bit quantities with
the high order bit on. A single character is right
Justified in a word of zeroes.

Special Names

There are several implementation dependent names which the
programmer may need to access on occasion

(AR) accumulator, A-register

(BR) auxiliary accumulator and index reg, B-register
(XR) index register, X-register.

Function Invocation

A function procedure is called with zero to three arguments
passed by value. The value of the function is the value

270

KETURNed by the procedure. (See RETURN statement.) The
parentheses after the function name are required in this
context. '

Examples,_

F()

F(A+B)

ALPHA(CHAR)

G(X, @W, Z+3)
The arguments are expressions. They are evaluated 1in an
undefined order. The evaluated argument values are passed

to the function in the A, B, and X registers, first argument
in the A-register, second in the B-register, third in the
X-register.

Array and QOffset Referencing

An array or offset reference is of the form: name [exp],
where name is an identifier and exp evaluates to an index if
the name specifies an array, or a pointer 1if the name
specifies an offset.

Examples,

TABLE[I]
MEM[PC()+G-5]

Indirection

An indirect expression has the form: [exp]. The value of
the indirect expression 1is the word value of the memory
location whose address 1is the value of the exp. For
example, the following two expressions are exactly
equivalent in that they both fetch (or store) a value from
the same physical memory location: A, [@A].

Assignment Expressions

Another type of operand in an expression is the assignment
expression. (See "Assignment Statement".) The assignment
expression has the form

(1) target name
(2) “:=", the assignment operator
(3) expression

271

The expression is evaluated and assigned to the target. The
value of the assignment expression 1is the value of the
assigned target.

Examples, _
A+{B:=C-D)
F(A:=X, 0)
A:= B (= C =D ;

In the first example, B is assigned (C-D) then the sum of A
and the value (C-D) is computed. In the second example, the
evaluation of the first argument to the function F causes A
to be assigned the value of X. In the last case A, B, and C
are assigned the same value, namely, that of D.

IF Expression

An IF expression has the form: IF expl THEN exp2 ELSE exp3.

If expl is true then the value of the IF expression is exp?

else the value is exp3. An IF expression may be used any
place an expression may appear.

Examples,
IF A THEN B ELSE C
IF B=1 THEN IF C=2 THEN 3 ELSE 1 ELSE 0
A := IF F(B) THEN C+D ELSE C-D ;
ABSA := IF A>=0 THEN A ELSE -A ;
MINAB := IF A<=B THEN A ELSE B ;

Note that wunlike the 1IF statement, the IF expression
requires an ELSE clause.

The last three examples are assignment statements using an
IF expression to calculate the assignment value.

Qperators

The only data type of MOL620 is a sixteen bit binary value.
No coercion of types is performed since there is only one
type. The operators can be classified into six groups:

(1) arithmetic-- two’s complement arithmetic

(2) relational-- comparing arithmetic quantities
(3) logical -- combining truth values

(4) bitwise -- masking, inserting bits

(5) shifting =-- logical and arithmetic shifts

(6) address -- get the physical address of a name

272

'he truth values are defined as:

true -- any non-zero value
false -- the zero value.

Arithmetic erators

+ exp unary plus

- exp unary minus

expl + exp2 summation

expl - exp?2 difference

expl * exp2 multiplication (one word result)
expl / exp2 division (quotient; remainder in BR)

Kelational Operators (arithmetic compare)

expl < exp2 true iff expl is less than exp2
expl <= exp?2 true iff expl is less than or
equal exp?2
expl = exp?2 true iff expl is equal exp?2
expl # exp? true iff expl is not equal exp?
expl >= exp2 true iff expl1 is greater than or
equal exp2
expl > exp2 true iff expl is greater than exp?2
NOTE -- if the absolute value of (expl-exp2) is greater than
32,767 the results of the relational operations (<,<=,>=,>)
are not valid in all cases due to overflow. If your data

might be 1in this range your program will have to test for
overflow or carry explicitly in assembly language.

Logical Operators

NOT exp true iff exp is false
exp1l AND exp2 true iff expl is true and
exp2 is true
exp1l OR exp2 true iff expl is true or
exp2 is true (inclusive-0R)
expl XOR exp2 true iff one (but not both) of
the operands are true (exclusive-OR)

Bitwise Operators

expl BAND exp2 bitwise AND
expl BOR exp?2 bitwise inclusive-0OR
expl BXOK exp2 bitwise exclusive-OR

273

The bitwise operators operate on all sixteen bits of the

operands in parallel. They are implemented by the machine
instructions ANA, ORA, and ERA. BAND is useful for masking
operations. BOR is used to insert bits in a word. BXOR is

useful for complementing bits of a word.

Shift QOperators

expl "LSKA" exp2 shift expl right 1logical exp2
places; insert zeroes on left

expl "ASLAY" exp2 shift expl left arithmetic exp2
places; 1insert zeroes on the
right

expl "ASRA" exp2 shift expl right arithmetic exp?2
places; 1insert zeroes on the
left

expl "LRLA"™ exp2 rotate expl left 1logical exp2
places;

The A/B 1long shifts LASL, LLRL, LASK, and LLSR are also
permitted.

Address Operator

€ symbolic constant assembly time value of the

constant

@ identifier physical address of identifier

@ identifier [exp] physical address of array
element

Assignment Operator

See "Assignment Expression".

Precedence of Operators

The precedence of operators is given in the following table.
When two operators seem to share the same operand the
operator with the highest binding will operate on the
operand.

274

unary +, -, @ highest binding
shift operators

BAND

BOR, BXOR

*, 7/

<y K=y, =, #, 2=, >

NOT

AND

OR, XOR
i= lowest binding

Operators at the same level are performed left to right.
Evaluation of the operands of an operator (except AND and
OR) may be done in either order by the compiler.

The logical operators, AND and OR, evaluate their operands
left to right. If the evaluation of the left hand operand
strictly determines the result of the operation, then the
right hand operand is not evaluated.

Examples,

A AND B A is evaluated. If false, the
result must be false and B is
not evaluated, else the result
is the value of B.

A OR B A 1is evaluated. If true, the
result must be true and B is not
evaluated, else the result is
the value of B.

Of course, parentheses may be used in an expression to group
operands with their respective operators.

PROGRAM

The top level syntactic entity which 1is accepted by the
MOL620 compiler is called a program. A program consists of
a set of compiler directives, global declarations (DECLARE,
EQU, SET, INTERNAL, and EXTERNAL statements), - DAS
statements, and procedures.

DONE statement
A program is terminated with a DONE statement. This has
two forms:

(1) DONE.
(2) DONE start.

where start is the name of the first (main) procedure to be

275

invoked when the program is 1loaded. If the main procedure
is not in the compilation file, the first alternative of the
DONE statement -should be used, i.e., no start name.

Semicolons ™

In MOL620 the semicolon (;) is used as a terminator rather
than a separator as in Algol. A semi-colon is used to
terminate every statement in the language (except the DONE
statement) in the same way a period is used in English. Two
or more semicolons never appear next to each other. One is
enough to terminate the top 1level of a nested statement.
The statement before an END keyword in a block always is
terminated with semicolon, unlike Algol.

PKOGRAM COMPONENTS

Compiler Directives

Compiler directives are used to inform the compiler about
various user desired compile time options. Compiler
directives may appear anywhere a DAS statement may appear.

Listing Control -- .LIST, .NOLIST

The .LIST directive causes following MOL620 source
code (including comments) to be inserted in the
assembly language output of the compiler as

comments.
.NOLIST turns off the listing option.

Tracing Control -- .TRACE, .NOTRACE
The .TKACE directive causes a " JMPM TRACE "
instruction to be generated at the beginning of each
procedure compiled while the trace directive is in
effect. The TRACE procedure is assumed to be
supplied by the user.
.NOTKACE turns off the trace option.

Literal Constant Generation Control -- ,LITERAL, .NOLITERAL

.LITERAL directs the compiler to generate
instructions using the literal pool built by the DAS
assembler. The statement

F := 10;

276

would compile as
’ LDA =10
STA F.

_.NOLITERAL directs the compiler to use double word

imiediate instructions. The statement

F := 10;
would compile as
LDAI 10
STA F.
Indirect Reference Control -- .INDIRECT=0, 1, or 2

Indexed

. INDIRECT=0 directs the compiler to generate
conditional assembly statements yielding a single
word instruction if the indirect word is 1located in
the first 512 1locations of memory. Otherwise, a
double word instruction is generated.

.INDIRECT=1 directs the compiler to generate single
word indirect instructions.

.INDIRECT=2 directs the compiler to generate double
word indirect instructions.

Reference Control -- .INDEXED=0, 1, or 2

. INDEXED=0 directs the compiler to generate
conditional assembly statements yielding a single
word instruction if the index displacement 1is an
absolute value in the range 0..2047. Otherwise, a
double word instruction is generated.

INDEXED=1 directs the compiler to generate single
word indexed instructions.

INDEXED=2 directs +the compiler to generate double
word indexed instructions.

Note--.INDEXED=0 and .INDIRECT=0 imply that the

‘'symbol involved in the conditional assembly time

testing is absolute and defined before it is used,
otherwise assembly phase errors may result.

Relocatability Control -- .ABSOLUTE, .RELOCATE

.ABSOLUTE tells the compiler that the code produced
will be assembled as an absolute binary image (not
relocatable).

-RELOCATE tells the compiler that the program is to

277

be relocated after assembly by a linking loader.
This mode 1is only valid for use with the UCI DASMR
assembler. To acheive standard Varian DASMR

compatible code, use the following directives:
_..ABSOLUTE, .INDIRECT=2, .INDEXED=2.

Comments

Comments are enclosed in percent signs (%). A comment may
appear anywhere 1in the source text. This implies a percent
sign may be used only as a comment delimiter.

Examples,
% THIS IS A COMMENT %
DECLAKE A, % SO IS THIS %
B, % AND THIS %
% AND THIS ALSO %
C; % AND THIS TOO %
IF A = O THEN % A COMMENT CAN GO HERE %
CALL SUBR (A, % OR HERE %
B, % OR HERE %
C) % OR HERE %;

ADAS statement

A DAS statement is a string of characters enclosed in double
quotes ("). The string is copied to the output file without
quotes. The DAS statement 1is wused to 1insert assembly
language statements into a MOL620 program.

Examples,
" SEN 0101,TTYOUT"; % sense teletype output ready
" NOP"; % a no-operation instruction %

SYMBOL DEFINITIONS AND VARIABLE DECLARATIONS

All symbols defined in a MOL620 program, including the
"formal" parameters of procedures, are global to the entire
program. There are no local symbols in MOL620.

INTEKNAL statement

The INTERNAL statement is used to define names to the
system linking loader . INTERNAL names are those defined in
the current compilation file but are needed by a program in
another load module.

278

The INTERNAL statement consists of two parts:

(1) the keyword INTERNAL
(2) name list -- one or more names separated by
commas

Example,
INTERNAL A, B, C;

EXTERNAL statement

The EXTERNAL statement is used to define names to the systen
linking loader. EXTERNAL names are those referenced in the
current compilation file but are defined in a separate
compilation file.

The EXTERNAL statement consists of two parts:
(1) the keyword EXTERNAL
(2) name list =-- one or more names separated by
commas
Example,
EXTERNAL A, B, C ;

EQU and SET statements

The EQU and SET statements are used to define symbols in
terms of other symbols which have previously been defined.
This statement is used in many ways to define values for
symbols at assembly time of the MOL620 program.

The EQU statement differs from the SET statement only in the
sense that EQU defines symbols which have not been defined
previously. SET redefines a symbol.

The EQU and SET statements consist of two parts:

(1) the keyword EQU or SET
(2) name-value list, one or more items separated by

commas
a. name
b, s’
c. name or constant (previously defined)
Examples, -
EQU A=0, B=1 ; ,
EQU TRUE=1, FALSE=0, YES=TRUE, NO=FALSE ;

279

DECLARE statement

The DECLARE statement is used to define symbols as the names
of memory locations. These symbols are variable names. The
variables ._may be assigned an initial value in the
declaration. At present, arrays of only one dimension may

be declared.

The DECLARE statement consists of two main parts:

(1) the keyword DECLARE
(2) declared item list --
a. 1identifier
b. dimension (optional)

a. [constant] (array size)
or
a’. [constant : constant] (low and high
indices)
c. initial value list (optional)
a. =
b. constant
or
b°. 1list of constants
a. (7
b. one or more constants separated by
commas
c.)’
Examples,
DECLARE A, B, C, D[5], E[0:10], F[-5:5] ;
DECLARE
TITLE = (19, "MOL620 VERSION 7.007),
MASK = 0177400, MAX = 99;

In the above examples A, B, and C are word scalars. D is
word array of five elements, singly dimensioned. D should
be referenced with indices zero through four. E is a vector
of eleven words indexed from zero through ten. F consists

of eleven words F[-5], ...,F[0], ...,F[5].

In the second example, TITLE is a vector long enough to hold
its initial values. The value 19 is stored in one word,
then the character string is packed two characters per word
into the next ten words.

Declarations of variables may be placed anywhere 1in the
progran. Because of the 620/i relative addressing mode, if
the declarations are placed after their references (but
within 512 woras), then single word instructions can be used
to reference them. The MOL620 compiler assumes all scalars
can be referenced in a single word and generates single word

280

instruction mnemonics.

Procedure

A procedufe is a closed subroutine or function. A procedure
may not contain another procedure. A procedure consists of
three parts:

(1) head

(2) body

(3) close.

The procedure head consists of the word PROC (or PROCEDURE)
followed by an identifier which serves as the procedure
name, followed by an optional list of 0 to 3 identifiers
enclosed in parentheses.

Examples of procedure heads,
PROC ALPHA(X);
PROCEDURE F(Q1,R,V);
PROC SUBt;

PROCEDURE SUB1();
PROC G3(X,,Z);

If a parameter list appears in the procedure heading, then
on entry to the procedure the A-register is stored in the
location specified by the first parameter, the B-register in
the second, the X-register in the third. The parameters are
not dummies in the sense that they are not local to the
procedure but have scope over the entire DAS progranm
generated.

The body of a procedure is empty or consists of a sequence
of statements, comments, and declarations.

A procedure is closed by the word ENDP;. This has the same
effect as the RETURN statement with no arguments.

Examples,
PROCEDURE ADD (ARG1,ARG2);
RETURN (ARG1+ARG2);
ENDP;)
DECLARE AKRG1,ARG2;

PROCEDURE LINEARSEARCH (FIRST,N,VALUE);
#THE ARGUMENTS ARE:

FIRST = ADDRESS OF VECTOR TO BE SEARCHED
N = SIZE OF ARRAY (1 TO N)
VALUE = VALUE TO BE FOUND.

WE USE A LINEAR SEARCH TECHINIQUE TO RETURN
THE INDEX OF THE VECTOR ELEMENT WHICH

281

CONTAINS THE VALUE. (ASSUME IT IS THERE)%
LAST:=FIRST+N-1; %ADDR OF LAST WORD IN VECTOR%
FOR I:=FIRST UNTIL LAST DO

IF [I]=VALUE THEN RETURN (I-FIRST+1);
~-ENDP;

DECLARE FIRST,LAST,I,N,VALUE;

A procedure should only be entered via a function call or
subroutine c¢all, and not by falling into it from preceding
code.

PROCEDURE COMPONENTS
Assignment statement

An assignment statement consists of three parts:

) one or more target symbols separated by commas
) “:=, the assignment operator
) an expression.

A target symbol for an assignment is an identifier followed
optionally by a bracketed index, or an indirect target -- an
expression in square brackets:

identifier (letters and numbers starting with a
letter)

identifier{exp] (an indexed name)

[exp] (an indirect target)

The assigned expression is evaluated and stored to the
target locations right to left on the target list.

Examples
B ;

, E := ALPHA / BETA ;

B :=C := 0 ; %same as A,B,C := 0 %
REACT := A OR B AND NOT C ;

_LINK[X], X := LINK[Y] ;

[Y+Z] := (N-2) "LSRA" 2 ;

’

B Q.
nomn

The assignment

LINK[X] , X := LINK[Y] ;
is equivalent to

T := LINK[Y] ; X := T ; LINK[X] := T ;
for some temporary variable T.

With the target form [exp], the expression in brackets is
evaluated, tne resultant value is the address where to store
the assigned value. (620/i multi-level indirection will

282

occur if the sign bit of the indirect word is on.)

BUMP STATEMENT

The BUMP statement provides a convenient way to increment
(by one) the value of a memory location. It consists of two
parts:

(1) the keyword BUMP
(2) a list of one or more target names separated by
commas.

Examples,
BUMP I ;
BUMP A, B, C[I-5] ;

The targets are incremented left to right on the target
list.

IF statement

Conditional execution of a statement or block of statements
can be accomplished through use of the IF statement. The IF

statement consists of four parts:

1) the keyword IF
2) a conditional expression
3) THEN part
a. the keyword THEN
b. statement
(4) ELSE part (optional)
a. the keyword ELSE
b. statement

Examples,
IF A=B THEN H:=1 ELSE H:=2 ;
IF F(N) THEN CALL SUB1(N) ;
IF ALPHA THEN BEGIN A:=1 ; GR:=-~77 ; END ;
IF FLAG#0 THEN RETURN ;
IF A=B THEN BEGIN V:=0 ; A:=B-1 ; END ;
ELSE A:=B;

The expression following the keyword IF is evaluated to a
boolean result . If the result is true, the THEN part is
executed. If the result is false and there is no ELSE part,
the following statement 1is executed. If the IF expression
is false and there is an ELSE part, that is executed.

283

ELSE clauses in nested IF statements are associated with the
closest preéeding If, (at the same syntactic level), that
has no ELSE associated with it. The NULL statement is
useful in providing an empty ELSE clause for an IF
statement.

Example,
IF A THEN IF B THEN C:=1 ELSE D:=1
means
IF A THEN
BEGIN
IF B THEN C:=1 ELSE D:=1;
END

FOR statement

A FOR statement is used for iteration across a statement or
group of statements. The FOR statement consists of five
parts:

he keyword FOR
he assignment part
variable name

(1)
(2)

. expression
(3) STEP part (optional)
the keyword STEP
expression
(4) termination part
a. the keyword TO
b. expression
or
a’. the keyword WHILE
b’. expression
(5) DO part
a. the keyword DO
b. statement

oM nOo ot

The variable name target in the assignment part is called
the index variable. It is initialized, and the test of the
termination part 1is executed, 1i.e., the test is always
executed before the DO part is performed.

If the test of the termination part is a TO form, then the
value of the 1index variable is compared with the TO
expression. If the index variable is less than or equal to
the value of the expression, (greater than or equal if the
STEP expression is negative), then the DO part is executed.
Otherwise, control passes to the statement after the FOR
statement.

284

If the test of the termination part is a WHILE form, the
value of the WHILE expression is computed. If the value of
the expression-is true, the DO part is executed. Otherwise,
control passes to the statement after the FOR statement.

Whenever ~the DO part has been executed, the index variable

is incremented by the value of the STEP expression. If the
STEP expression is missing, the index variable is
incremented by one. After the index variable is

incremented, control passes to the TO or WHILE test, and the
loop begins again.

Examples,
FOR I:=1 TO 10 DO A[I] := I%*I ;
FOR I:=N STEP -1 TO 1 DO A[I] := A[I]J/(I%*I) ;
FOR J:=K-3 STEP M+J WHILE V<R DO V=V+Jd ;

The first statement will set A[I]=I%*I FOR 1<=I<=10. The
second 1is an example of counting the index variable down.
The third uses a WHILE test to terminate the loop.

It 1is important to note that the expression of the STEP
part, and termination part as well as any expression
involved in calculating the effective address of the index

variable are evaluated each time through the loop. In the
third example M+J will be evaluated each time the STEP value
is needed. If such expressions are constant throughout the

execution of the FOR statement they should be assigned to a
simple variable for the sake of efficiency.

REPEAT statement

This statement provides a means of performing a statement as
long as some <condition 1is false. The condition is tested
after the statement 1is executed. The REPEAT statement
consists of four parts:

) the keyword REPEAT
) a statement

) the keyword UNTIL
) an expression.

PN NN N N
EWN -

Examples,
REPEAT A[I] := 0 UNTIL I > @MAX ;
REPEAT X := LINK[X] UNTIL X = 0 ;

285

The KEPEAT statement body is executed. The UNTIL expression
is then evaluated. If the result is false then the body is
executed again until the condition 1is true.

This statement is similar to the WHILE statement except the
body is always performed at least once, since the test for
termination is done after the statement is executed.

WHILE statement

This statement provides a means of performing a statement as
long as some condition is true. The condition is tested
first. The WHILE statement consists of three parts:

(1) the keyword WHILE
(2) a conditional expression
(3) DO part

a. the keyword DO

b. statement

Examples,
WHILE A < B DO CALL SUB1(€@A, @B) ;
WHILE I <= N DO BEGIN A[I] = I ; BUMP I ; END ;
WHILE X # 0 DO X := LINK X ; :

The WHILE condition is evaluated. If the result is true
then the DO part 1is executed. The test and execution are
repeatea until the WHILE expression is false. Control then
passes to the following statement.

CALL statement

The CALL statement 1is wused to invoke a procedure. It
consists of three parts:

(1) the keyword CALL
(2) a procedure name, or indirect target
(3) argument list (optional)
.a. ’(l
b. 1list of zero to three expressions separated
by commas (optional)
c.)7

Examples,
CALL SUB1 ;
CALL ABC (X, Y) ;
CALL F (€0P, @RESULT, D[X]+1) ;
CALL [PTAB[I]] (CHAR) ;

286

The arguments are evaluated in an undefined order and passed
by value to the called procedure. This first argument value
is passed in the A-register, the second in the B-register,
and the third in the X-register. CALLing a procedure is
equivalent to invoking the procedure as a function except
the RETURNed value (if any) is discarded.

In the last example PTAB 1is a table of procedure names
indexed by I. PTAB[I] is evaluated and the result is the
address of the target procedure. CHAR is passed by value to
this target procedure.

RETURN statement
Exit from a procedure, optionally returning an expression
value, 1is done with the RETURN statement. The RETURN

statement consists of two parts:

(1) the keyword RETURN
(2) an optional argument

a. (
b. expression (optional)
c.
Examples,
RETURN ;
RETURN () ; %same as previous stmt%
RETURN (EXPR) ;

If an argument is specified, it is evaluated and returned to
the invoking procedure in the A-register. If the procedure
was invoked as a function, then the value will be used,
otherwise it will be discarded.

NULL statement

The NULL statement creates no machine code. It may be used
as a dummy statement in an IF..THEN...ELSE construct or as
something to which a label can be attached.

Examples,
LABEL: NULL ;
IF A=5 THEN
IF B=3 THEN CALL SUB3
ELSE NULL
ELSE CALL SUBS5 ;

287

GUTO statement and labels

A label may be associated with a statement by preceding the
statement with an identifier and a colon. Unconditional
transfer of control to a labelled statement is done with the
GUTO. statement. The target of a GOTO may also be specified
with indirection.

Examples,
L: GOTO L ; #infinite loop%
GO TO LOOP ;
GOTO [J]
GO TO [TABLE{I]] ; %thru branch table%

In the form, GOTO[exp] the expression is evaluated and the
result is the address of the Jump target.

The use of the GOTO statement in MOL620 must be carefully
considered. Normally, all targets of a GOTO should be in
the same procedure with the GOTO statement.

STQP statement

The STOP statement is used to cause the machine to halt at
execution time.

Examples,
STOP ;
HALT ;

Ubviously, in a time-sharing program this statement should
not appear. ’

Compound Statement (Block)

A block is a group of statements preceded by the word BEGIR
and followed by the word END. A block is wused to group
statements 1logically together for the IF, WHILE, FOR, and
REPEAT statements. Blocks may be nested to any level.

Examples,
BEGIN A:=1; B:=z2; C:=3; END;
FOR I:=1 TO N DO
BEGIN A[I]J:=I; B[I]:=0; END;
IF X=0 THEN BEGIN Z:=F(B, C); X:=1; END;

288

Miscellany

DAS statement and declarations may also appear inside a
procedure . Compiler directives in a procedure are allowed.
Normally, of these top level statements, only DAS statements
are written inside the scope of a procedure.

CODE GENERATICN

Certain details of the code generation of the compiler are
useful to understand during the debugging phase of program
testing.

Expression evaluation -- all expressions are evaluated in
the A-register, unless the value may be directly
loaded into its target register (different than A).
If temporary variables are needed during the
expression evaluation, space for them is set asside
at the end of the procedure.

Subroutine 1linkage -- subroutines are called with the DAS
instruction " JMPM SUBR".

Argument passing -- is handled the same way for functions
and subroutine CALLs. The arguments are evaluated
and placed in the A, B, and X registers,
corresponding to the first, second, and third
argument. The 1imit on the number of arguments is
three.

Procedure prologue -- when a procedure is entered, after the
JMPM 1instruction 1s executed, the registers are
stored 1in the variables appearing in the "formal™
parameter list of the called procedure.

The return address is stored by the JMPM instruction
at the first location of the procedure.

Procedure epilogue -- the argument (if any) of the RETURN
statement 1is evaluated into the A-register. An
indirect Jjump through the "mark word"™ of the
procedure is executed. If execution of a procedure
reaches the ENDP statement, a RETURN is simulated.

289

Appendix IV

EXCERPT OF THE ISADORA
- SOURCE PROGRAM

This appendix contains the assembler 1listing output
text of the ISADGRA 620/i program used as a test case in the
decompilation experiment described in Chapter 6. The first
1226 lines of source listing (out of 2041) are reproduced
nere 1n a compressed format to reduce the volume of this
appendix.

See Appendix II or a 620/i Reference Manual (Varian
1968) for a description of the op code meanings.

See Appendix V for the decompiled text created from
this source data.

290

ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 1
| 1 .
2 - . ISADORA DEBUGGER -- ICS DEPT -~ UC IRVINE
3 - # VERSION 2.20
M . ORIGINAL AUTHOR: MICHAEL PEPPER .
l 5] ICS DEPT, UCI, 1969
6 [3
7 # LAST UPDATE: G.L. HOPWOOD
8 # 10-JUL=-75
9 L]
l 10 033000 BGNG ,EQU ,033000
1 000200 LO ,EQU ,0200
12 L0 ,SET ,END
13 syI ,EQU ,037777 UPPER BOUND OF USER AREA
14 032777 HI ,EQU ,BGNG-1 UPPER BOUND OF USER AREA
15 077630 BLD1 ,EQU ,077630 ADDR OF START OF LOAD ROUTINE
16 077434 BLD2 ,EQU ,07T7434 ADDR OF START OF DUMP ROUTINE
17 077540 MON ,EQU ,0775204+16
l 18 000000 PIM ,EQU ,0
19 000001 PMLA ,EQU .1
20 000006 PMLB ,EQU ,6
21 000375 MSKA ,EQU ,0375
I 22 000277 MSKB ,EQU ,0277
23 000004 IDVA EQU Wb SERIAL CONTROLLER INPUT IF SS3 I
24 000001 IDVB ,EQU .1 SERIAL CONTROLLER INPUT IF SS3 I
25 000004 ODVA ,EQU U SERIAL CONTROLLER OUTOQUT IF SS3
26 000001 ODVB ,EQU)1 SERIAL CONTROLLER OUTPUT IF SS3
I 27 : 000000 ODV ,EQU ,0 SERIAL CONTROLLER OUTPUT FOR 611
28 *USER SHOULD SPECIFY THE FOLLOWING PARAMETERS BEFORE ASS
29 # BGNG ORIGIN POINT FOR ISADORA
30 * PIM PIM GROUP NUMBER (0,1,2)
I 31 # PMLA INPUT PIM LINE FOR INPUT DEVICE IF SS3 IS OFF
32 # PMLB INPUT PIM LINE FOR INPUT DEVICE IF SS3 IS ON.
33 # MSKA PIM MASK IF SS3 IS OFF.
34 # MSKB PIM MASK IF SS3 IS ON.
35 % IDVA INPUT DEVICE NUMBER IF SS3 IS OFF.
36 # IDVB INPUT DEVICE NUMBER IF SS3 IS ON.
37 & QpvVA OUTPUT DEVICE NUMBER IF SS3 IS OFF.
38 # QDVB OUTPUT DEVICE NUMBER IF S33 IS ON.
39 # 611 ADDRESS OF 611 CHARACTER OUTPUT ROUTINE
l 40 * IF HE IS OUTPUTTING TO TEK SCOPE
41 £ Lo LOWER BOUND OF USER WORK AREA
42 * - HI UPPER BOUND OF USER WORK AREA
: 43 # BLD1 LOCATION OF START OF LOAD ROUTINE
I 4y # BLD2 LOCATION OF STAKT OF DUMP ROUTINE
45 *
46 #DEBUGGING PACKAGE - INITIALIZATION ROUTINE
ug #ROUTINE ENABLES AND OUTPUTS MASKS FOR ALL PIMS
4 -
I kg #THERE ARE THREE INTERRUPT SERVICE ROUTINES:
50 # INA -- INTERRUPTS WHILE RUNNING DEBUGGER COME HE
51 * INP -- INTERRUPTS WHILE RUNNING USER PGM "
' 52 : ANP3 - INTERRUPTS WHILE RUNNING ALL-NOT FUNCTION
53 :
54 033000 ,ORG ,BGNG ORG AT SPECIFIED LOC
55 000060 PMIA ,SET ,020%PIM+060
56 000062 PMIA ,SET , 2%*PMLA+PMIA PIM INT LOCATION IF SS3
l ISA220.DAS DAS-10.8 [UCI-2-JUN-75] 18:39 23-AUG-75 PACE 2
57 000060 PMIB ,SET ,020%PIM+060 .
l gg 000074 x;ms ,SET , 2*PMLB+PMIB PIM INT LOCATION IF SS3
291

60 Co.
61 .
62 033000 001000 START ,JMP ,INIT

03300+4.033004 i i
63 033002 131256 VERSN ,DATA , 2.20° IN CORE VERSION NUMBER

053003 131260

292

I 64 033004 INIT ,EQU , ¥
65 033004 005301 ,DECR ,1 ==1
66 033005 001400 ,JS83 ,DFLT INITIALIZE TTY
033006 033010
l 67 033007 005001 ,TZA . EXCHANGE SWITCH
68 033010 054147 DFLT ,STA ,TSWIT USING SENSE SWITCH 3.
69 033011 002000 ,CALL ,TTYEX SET UP I/0 FOR PROPER DEVICE
033012 033021 :
.70 033013 007400 , ROF .
71 033014 005007 ,ZERO ,07 ZERO ALL REGS AND CLEAR
72 033015 002000 ,CALL ,SAVE REGISTERS
033016 036143 .
73 033017 002000 ,CALL ,GCOM GO TO DEBUGGER
l Y 033020 035416 _
7
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-TS5 PAGE 3
75 .
76 % TELETYPE EXCHANGE ROUTINE: CHANGES I/0 DEVICE TO
7; : OTHER TTY THAN ONE SELECTED.
7 ¢ e
79 . :
80 033021 000000 TTYEX ,ENTR ,
81 033022 014135 ,LDA ,TSWIT IF THE TTY
82 033023 005211 ,CPA . TRANSFER
83 033024 054133 ,STA ,TSWIT SWITCH IS
I 84 033025 001010 ,JAZ ,ITYB A -1 THEN
033026 033054
85 033027 TTYA ,EQU ¥ SET UP FOR TTYA
86 033027 006010 ,LDAI ,02000 SET UP INTERRUPT AKEA
033030 002000
87 033031 050062 . ,STA ,PMIA
88 033032 006010 ,LDAI ,INA
_ 033033 033326
89 033034 050063 ,STA ,PMIA+1
90 033035 006010 ,LDAI ,MSKA SET APROPRIATE MASK
033036 000375
91 033037 054121 ,STA , AMSK
92 033040 100440 ,EXC ,0440 DISABLE
I 93 033041 010050 ,LDA ,050
94 033042 006110 ,ORAI ,0377-MSKB OR IN OTHER’S BIT
033043 000100 .
95 033044 050050 ,STA ,050
96 033045 100240 ,EXC ,0240
97 033046 006010 ,LDAI ,0DVA OQUTPUT DEVICE
033047 000004
98 033050 006020 ,LDBI ,IDVA INPUT DEVICE
033051 000004
l 99 033052 001000 ,JMP ,TTY2
033053 033077
100 033054 TTYB ,EQU , '
101 033054 006010 ,LDAI ,02000 SET UP INT LOC
I 033055 002000 :
102 033056 050074 ,STA ,PMIB
103 033057 006010 ,LDAI ,INA
033060 033326
l 104 033061 050075 ,STA ,PMIB+1

006120 TTY2

105 033062 006010-
033063 000277
106 033064 054074
107 033065.1Q0440
108 033066 010050-
109 033067 006110
033070 000002
110 033071 050050
111 033072 100240
112 033073 006010
033074 000001
113 033075 006020
033076 000001
114 033077
033100 101100
115 033101 054244
ISA220.DAS DAS-10.8
116 033102 006120
033103 002000
117 033104 054272
118 033105 054170
119 033106 005021
120 033107 006120
033110 102500
121 033111 054060
122 033112 054215
123 033113 006057
033114 034570
124 033115 001000
033116 133021
125
ISA220.DAS DAS-10.8
126
127 033117 000000
128 033120 100440
129 033121 054040
130 033122 010050
131 033123 154035
132 033124 050050
133 033125 103140
134 033126 014033
135 033127 100240
136 . 033130 001000
033131 133117
137
138 033132 000000
139
140 033133 100440
141 033134 054025
142 033135 014023
143 (33136 005211
144 033137 110050
145 033140 050050
140 033141 103140
147 033142 014017
148 033143 100240
149 033144 001000
033145 133132
150
151 033146 000000
152 033147 014010

(UCI 2-JUN-75]

{UCI 2-JUN-T5]

.
ON

]
OFF

WEC

,LDAI

,STA
,EXC
,LDA
,ORAI

,STA
,EXC
,LDAI

,LDBI
,ADDI
,STA

,ADDI

,STA
»STA
,TBA
,ADDI

,STA
,STA
»STAE

s JMP#

,ENTR
»EXC
ySTA
yLDA
»ANA
,STA
,OAR
,LDA
,EXC
yJMP#*

»ENTR

,EXC
,STA
,LDA
,CPA
, ORA
,STA
,OAR
,LDA
,EXC
, JMP#*

»ENTR
»LDA

, MSKB

, AMSK
,0440
,050
,037T=MSKA MASK OTHERS INT

,050
,0240
,0DVB

,IDVB
,0101100 " CHANGE: OUTPUT SENSE IN

» SENO
18:39 23-AUG-75 PAGE 4

,02000 OUTPUT CHAR INSTRUCTION

,OAR1

,OAR2

’ GET INPUT DEVICE NUMBER

,0102500 AND ALL INPUT CHAR INSTR

»CIA1
»CIA2
»CIA3

,TTYEX RETURN
18:39 23-AUG-75 PAGE 5

’ TURN ON OUR INTERRUPT
,OU40 DISABLE

» TMP

,050 GET MASK

» AMSK OUR MASK

,050

,040

, TMP

,0240 ENABLE PIM

,ON RETURN

, TURN OFF OUR INTERRUPTS

OTHERS REMAIN ON
,0440 DISABLE
» TMP
, AMSK
’ COMPL OF OUR MASK
,050

,0240 ENABLE PIM
,OFF

’ CHANGE INT VECTOR ADDR TO B-REG
» TSWIT

293 ' ’

153 033150 001010 yJAZ ,WEC2
033151 033155
154 033152 060063 ,STB ,PMIA+1 DEVICE A.
155 033153 001000 ,JMP® | WEC
033154 133146
156 033155 060075 WEC2 ,STB ,PMIB+1 DEVICE B
157 033156 001000 ,JMP® |WEC DONE
033157 133146
158
159 .
160 033160 000000 TSwWIT ,DATA ,O TTY TRANSFER SWITCH
161 033161 000375 AMSK ,DATA ,MSKA ACTUAL PIM MASK
162 033162 000000 TMP ,DATA ,0 .
163 . .
164 ® COMMAND T
165 * ALLOWS USER TO CHANGE I/0 DEVICE DURING EXECUTION
166 .
167 033163 000000 TTY ,ENTR
168 033164 002000 ,CALL ,TTYEX CALL TELETYPE EXCHANGER
033165 033021
169 033166 002000 ,CALL ,GCOM" RETURN
033167 035416
170
ISA220.DAS DAS-1C.8 [UCI 2-JUN-75] 18:39 23-AUG-T5 PAGE 6
171 * g :
172 . .
173 ®INPUT CONTROLLER AND I/0 SUBROUTINES
174 *TTY INTERRUPTS COME HERE WHEN RUNNING USER PROGRAM
175 .
176 % - .
177 033170 000000 INP ,ENTR 1/0 CONTKOLLER
178 033171 054152 ,STA , SAVE PRES A_VALUE

A
179 033172 102504 CIA1 ~ ,CIA ,IDVA INPUT FROM DEVICE IDVA INITIALLY
180 033173 002000 ’ »CALL ,OFF
033174 033132

181 033175 006110 ,ORAIL ,0200 PUT IN PARITY BIT
033176 000200

182 033177 002000 - ,CALL ,LCASE CHECK FOR LOWER CASE
033200 033247

183 033201 006147 »SUBE »$1 IF CONTROL-N THEN
033202 036535

184" 033203 001010 yJAZ ,DBUG PREPARE TO ENTER DEBUGGER
053204 033212 . v

185 033205 DBG2 ,EQU , RESTORE AND RETURN

186 033205 014136 ,LDA yA

187 033206 002000 ,CALL ,ON OUR INTS ON
033207 033117

188 033210 001000 ,JMP# , INP RETURN TO USER’S PROGRAM
033211 133170

189 - 033212 DBUG ,EQU .

190 033212 006017 ,LDAE » INP GET ADDR WHERE INTERRUPTED
033213 033170

191 033214 006147 ,SUBE » $H WAS IT IN OUR AREA?
033215 036534

192 033216 001002 yJAP ,DBG2 NO, JMP TO RETURN
033217 033205 .

193 * INTERRUPT WAS FROM OUR AREA, GET SET FOR DEBUGGE

194 033220 014123 »LDA yA SET VARIABLES IN TABLE TO

195 033221 002000 s CALL ySAVE USER’S VALUES.
033222 036143 ' .

196 033223 006020 ,LDBI » INA

033224 033326

294 ' : .

197 033225 002000 ,CALL ,WEC RESET INT VECTOR
033226 033146 :
198 033227 006017 ,LDAE ,INP
033230 033170
199 033231 006057 ,STAE ,$P
033232 036544 :
200 033233 002000 ,CALL ,CRLF OUTPUT <%> AND GO TO DEBUGGER
033234 033545 L.
201 033235 006010 ,LDAI ,«*
033236 136252
202 033237 002000 ,CALL ,COUT
033240 037204 T
203 033241 006010 ,LDAI ,>° . :
033242 000276
204 033243 002000 ,CALL ,0UT
033244 033345
205 033245 002000 ,CALL ,GCOM TO DEBUGGER, NO RETURN

033246 035416
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 7

206 .
207 . CHECK A~HEG FOR LOWER CASE LETTER AND CHANGE TO
208 bl UPPER CASE IF NECESSARY. JUNE 30 1971. GLH
209 .
210 033247 000000 LCASE »ENTR "
211 033250 006140 ,SUBI ,0341 v -
033251 000341 .
212 033252 001004 yJAN » 46
033253 033260
213 033254 006120 +ADDI ,0301
: 033255 000301
214 033256 001000 sy JMP , el
033257 033262 .
215 033260 006120 ,ADDI ,0341
033261 000341
216 033262 001000 s JMP® »LCASE
033263 133247
217 ;
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 8
218 hd
219 i IN CONTAINS THE IDLE LOOP FOR DEBUGGER INPUT
220 * WHEN USER IS TALKING DIRECTLY TO ISADORA.
221 * ROUTINE "INA” GETS THE INTERRUPT AND STORES THE
222 hd CHARACTER IN °"CHAR".
223 *
224 033264 000000 1IN »ENTR ’ INPUT CHAR FOR DEBUGGER
225 033265 005001 » TZA ’
226 033266 054054 ,STA »CHAR ,
227 033267 002000 y CALL »ON ENABLE OUR INT
033270 033117
228 033271 005000 » NOP N
229 033272 005000 ,NOP , IDLE LOOP FOR INTRPT
230 033273 014047 ,LDA » CHAR
231 033274 001010 yJAZ 1 ¥=3 IDLE

033275 033271
232 033276 103104 OAR2 ,OAR ,ODVA ECHO

233 033277 006140 ~ ,SUBIL ,0212

033300 000212
234 033301 001010 yJAZ » IN2 LF

033302 033311 : :
235 033303 006140 »SUBI '3

033304 000003

295 o :

236
237
238
239
240
241
242

243
244

245

ISA220.DAS DAS-10.8

246
247
248
249
250
251
252
253

254

255
256
257
258
259
260
261
262
263
264

265
266

267
268

269
270
271
272
273
274
275

033305
033306
033307

033310°

033311
033312
033313
033314
033315
033316
033317
033320
033321
033322
033323
033324
033325

033326
033327
033330
033331
033332
033333
033334
033335
033336
033337
033340
033341
033342

033343
033344
033545
033346

- 033347

033350
033351
033352
033353
033354
033355
033356
033357
033360
033361
033362
033363
033364
033365
033366
033367
033370
033371
033372

001010

033317
001000

033323

006010
106615
002000
037204
001000
033323
006010
000212
002000
033345
014017
001000
133264

000000
054014
102504
002000
033132
006110
000200
002000
033247
054003
014003
001000
133326

000000
000000

000000
101104
033353
005000
001000
033346
054027
006150
000377
006140
000212
001010
033376
006140
000003
001010
033376
006140
000023
001002
033376
006010

,JAZ

, JMP

IN2 ,LDAI
 ,CALL

, JMP

ING ,LDAI
,CALL

ING yLDA
- ,JMPH®

{UCI 2-JUN-75]

INA ,ENTR
,STA
,CIA
,CALL

CIA2

»ORAIL
»CALL
»STA

,LDA
,JMP®

CHAR ,DATA

A yDATA
&

ouT »ENTH
SENO » SEN

» NOP
»JMP

»STA
yANAI

ySUBIL
yJAZ
»SUBI
»JAZ
»SUBI
»JAP
+LDAL

,ING
,IN6
,0106615
,CouT

, IN6
,0212
,0UT

, CHAR
»IN

7
»A
,IDVA
,OFF
,0200
yLCASE
,CHAR
»A

» INA
»0

0

)83

,OUTA
y0377

,0212
,OUT2
,0215-02
yOUT2
, O T=021
,OUfZ

rne
s ¢

296

CR

ECHO CR CR WITH LF

ECHO LF WITH CR

ORIGINAL CHAR
RETURN

18:39 23-AUG-T75 PAGE 9

SAVE AREG

INPUT FROM DEVICE IDVA INITIALLY
OUR INTS OFF, OTHERS ON

OR IN PARITY BIT
CHECK FOR LOWER CASE LETTER

RESTORE AREG
RETURN

SAVE AREA FOR A REG

’ OUTPUT CHAR FOR DEBUGGER
,0100+0DVA,%+5 OQUTPUT TO DEVICE ODVA IN

LF?

12 CR

5

>=BLANK
MAKE A ?

DEBUGGER INTERRUPTS NORMALLY COME HERE
WHILE ISADORA IS RUNNING

033373 000277

276 033374 001000 ,JMP ,O0AR1

033375.033377

277 033376 014004 oOUT2 ,LDA ,OUTA RESTORE CHAR

278 033377 103104 OAR1 y OAR ,ODVA
279 033400 014002 ,LDA ,OUTA RESTORE AREG
280 033401 001000 ,JMP#® ,OUT
033402 133345
281 033403 000000 OQUTA yDATA »0 SAVE AREG

282
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE }0

283 »

284 *

285 *PARAMETER TABLE

286 *

287 033404 CMPT »EQU ¥

288 033404 035667 $$DISP ,DATA »GLCA,GTYP,DSLR < OR /
033405 035721

033406 034243

289 033407 036072 $$EQ ,DATA »GVAR,GEXP,STVR
033410 035640

033411 034403

290 033412 035667 $$SET ,DATA »GLCA,DSLR >
033413 034243 -
291 033414 035640 3QU ,DATA ,GEXP,GTYP,DEXP ?

033415 035721

033416 034414

292 033417 035651 $$AN »DATA ,GLCE,GLCF ,GEXP,GTYP,ALNT A,N
053420 035575

033421 035040

033422 035721

033423 034451

033424 035622 $3B s DATA »GNUM,GLCA,GEXP,BKPT B
033425 035667

033426 035640

033427 034665

294 033430 035622 3C - ,DATA ,GNUM, CLR c
033431 035335 :
295 033432 035651 $$F ,DATA +GLCE,GLCF,GEXP,FILL F

033433 035575
033434 035640
033435 034647

296 033436 035704 $3G ,DATA ,GLCP,GO G
033437 035230

297- 033440 034156 $$R ,DATA ,PREG R

298 033441 033554 $$S ,DATA ,STEP S

299 033442 034141 SSCMNT ,DATA ,CMNT :

300 033443 035640 $$L ,DATA ,GEXP,BLDE L
033444 034133

301 033445 035651 $$D ,DATA ,GLCE,GLCF,GEXP,BDMP D

033446 035575
033447 035640
033450 034423
302 033451 033163 $3T »DATA o TTY T.
303 033452 035651 $$M »DATA +GLCE,GLCF,GLCE,MOVE M
033453 035575
033454 035651
033455 034617
304

ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 17
305 ’ *

297 . .

Il I T N E R e D B B TE e e E e I A ue e
n
(Ve
w

306 - . ®COMMAND TABLE - HOLDS POINTERS TO CMPT

307 * TO GET AN INDEX INTO THIS TABLE TAKE THE COMMAND CHAR
l 308 % AND SUBTRACT “:°. THE ENTRY AT THAT LOCATION IN THIS
309 e : TABLE POINTS TO THE PARAMETER TABLE ABOVE.
10 -
311 033456 133442 CMT ,DATA ,($$CMNT)*® : .
312 033457 000000 ,DATA ,0 ;
313 033460 133404 ,DATA ,($$DISP)*® <
314 033461 133407 »DATA , ($$EQ)* =
315 033462 133412 ,DATA ,($$SET)*® >
316 033463 133414 - »DATA ,($$QU)* ?
317 033464 000000 ,DATA ,0 @
318 033465 133417 ,DATA ,($$AN)® A
319 033466 133424 ,DATA ,($$B)* - B
320 033467 133430 ,DATA ,($$C)® c
I 321 033470 133445 ,DATA ,($$D)* D
322 033471 000000 ,DATA ,0 E
323 033472 133432 »DATA s ($3F)* F
324 033473 133436 »DATA ,($$G)® G
325 033474 000000 ,DATA ,0 H
326 033475 000000 : ,DATA ,0 I
327 033476 000000 ,DATA ,0 J
328 033477 000000 ,DATA ,0 K
329 033500 133443 ,DATA ,($$L)® L
330 033501 133452 ,DATA ,($$M)® M
331 033502 133417 ,DATA [($$AN)® N
332 033503 000000 ,DATA ,0 0 .
333 033504 000000 ,DATA ,0 P
l 334 033505 000000 ,DATA ,0 Q
335 033506 133440 ,DATA ,($$R)* R
. 336 033507 133441 yDATA ,($$S)#* S
337 033510 133451 ,DATA ,($$T)® T
l 338 033511 000000 ,DATA ,0 U
339 :
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-T5 PAGE 12
340 ¥
341 #)
332 *ERRORS IN EXECUTION SUBROUTINES
343 *
344 #
l 345 . .
346 033512 DERR ,EQU ,*
347 033512 006010 LERK ,LDAI ,” ?° ADDRESS < LO
033513 120277
348 033514 002000 ,CALL ,COUT
033515 037204
349 033516 006010 ,LDAI ,°<L”
033517 136314
350 033520 002000 ,CALL ,COUT
I 033521 037204
351 033522 001000 ,JUP , BANG
033523 035567 :
352 &
l 353 033524 006010 HERR ,LDAI ,” ?° ADDRESS > HI
033525 120277
354 033526 002000 ,CALL ,CoOUT
033527 037204
l 355 033530 006010 . ,LDAI ,°>H"
033531 137310 '
356 033532 002000 ,CALL ,COUT .
033533 037204
l 357 033534 001000 , JMP ,BANG
298

033535 035567

299

358 .
II 359 .
360 . *
361 o . :SPECIAL QUTPUT SUBROUTINES
362 .
i oGmmoamm o omm o omTa
36 3 :
033540 000272 ’ ’
365 033541 002000 ,CALL ,0UT
033542 033345 .
366 033543 001060 ,JMP®* CBK RETURN
033544 133536
367 » . '
368 033545 000000 CRLF JENTR OUTPUT A CR/LF
I 369 8%;23? ?ggglg - ,LDAI ,0106612
370 033550 002000 ,CALL ,COUT
033551 037204
I 371 gggggg ?g;ggg ,JMP* ,CRLF RETURN
372
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 13
II 373 . '
374 . S
375 #STEP - INSTRUCTION EXECUTION SUBROUTINE
376 #STEP EXECUTES THE INSTRUCTION WHOSE 1ST WORD 1S STORED
377 - *#THE LOCATION GIVEN BY P. UPON EXECUTION THE B AND A RE
g;g :CONTAIN THE 1ST AND 2ND WORDS OF THE INSTRUCTION(S) RES
TIVELY. . .
-380 033554 000000 STEP ,ENTR ’
l 381 033;22 802233 , LDXE » 3P LOAD X REG _UITH P
033 3 :
382 033557 025000 . ,LDB ,0,1 LOAD B REG WITH WORD AT P
583 033560 004151 'LSRB .9 CHECK FOR HALT INSTR
l 384 8%_}22; gglggg ,JBZ »HALT JMP IF HALT
3
385 033563 025000 . ,LDB ,0,1 RELOAD
386 033564 015001 ,LDA y 1,1 LOAD A REG WITH WORD AT P+1
387 gggggg 8%?23? ,CALL + STPP STEP
3
l 388 033567 002302 ,CALL ,GCOM RETURN
' 033570 03541 ,
. 389 *
390 #STPP -~ STEP EXECUTION ROUTINE
391 #STPP EXECUTES THE INSTRUCTION WHOSE 1ST WORD IS IN THE
392 #B REG AND WHOSE 2ND WORD IF ANY IS IN THE A REG AS IF
ggﬁ :HERE LOCATED AT P. SUBROUTINE IS USED BY STEP AND BREA
I 395 033571 000000 STPP JENTR
ggg 8%%2;5 82:“31343 ,ggA , INST+1 SAVE INSTRUCTION DATA
A SCND
398 033574 064240 "STB " INST
399 * CHECK FOR SEN, IME, OME
400 033575 005021 , TBA ’ GET 1ST WORD OF INST
Vo2 033577 Oosatn - lmaxh 08 LERoEIS
SAVE
l 403 83%28? 88‘1’:};8 . :SUBI :01020 IS IT 1020XX (IME) ?
3
§0u 033602 001010 sJAZ » XME YES
033603 033633
I 405 033604 006140 ,SUBI ,010 IS IT 1030XX (OME) ?

406

407
408
409

410

411
412
413
414

415
516
417

ISA220.DAS DAS-10.8

418
419

420
421

422
423

424
425

426

427
428
429
430

431

432
433
434
435
436

437

438

439
440
441

442
443
44k

445
446

447
448
449

033605 00001Q
033606 001010
033607 033633
033610 005041
033617004343
033612 006140
033613 000101
033614 001010
033615 033703

033616 005001
033617 OO4444
033620 001010
033621 033655

033622 005001
033623 004443

033624 144304
033625 001010
033626 033637

033627 006010
033630 005000
033631 001000
033632 034031

033633 006047
033634 036544
033635 001000
033636 034033

033637 014175
033640 006150
033641 000777
033642 006127
033643 036544
033644 054171
033645 044170
033646 014166
033647 004351

. 033650 006110

033651 006007
033652 054162
033653 001000
033654 034033

033655 004443
033656 001010
033657 033627

033660 144251
033661 001004
033662 033703

033663 001010
033664 033672

033665 144244
033666 001010

,JAZ ,XME YES
,TXA , GET BACK INST (LEFT 10 BITS)
,LSRA ,3 LEFT 7 BITS NOW
,SUBI ,0101 IS IT 101XXX (SEN) ?
,JAZ ,JMP YES, TREAT LIKE JMP INST

* OTHERWISE CHECK SOME MORE TO SEPARATE INST TYPES
,TZA .
,LLRL
,JAZ ,OPZ DOUBLE WORD INSTRUCTION
TEST IF ADDRESS RELATIVE TO P
,TZA ,
,LLRL ,3

[UCI 2-JUN-75] :8:39 23-AUG-75 PAGE 14

,SUB , VIER
,JAZ ,REL IF A=0 THEN REL TO P

* SET NO-OP AS 2ND WORD

BACK ,LDAI

»05000

, JMP +BAC1 PROCESS INSTRUCTION
= .'- -
INST WAS IME OR OME, BUMP P-REG AND GO
XME ,INRE ,$P

,JMP ,BAC2
*
. RELATIVE ADDRESS MAKE TWO WORD DIRECT
REL ,LDA ,INST

,ANAI ,0777

,ADDE ,$P

,STA ;INST+1

,INR , INST+1

,LDA ,INST

,LSRA ,9

,ORAI ,06007

,STA ,INST

,JMP ,BAC2
. _ OP-CODE 1S ZERO; TEST IF SINGLE NON-ADDRESS
OPZ ,LLRL ,3

,JAZ ,BACK
* TEST IF JUMP TYPE (<3)

,SUB , THRE

,JAN ,JMP
* TEST EXECUTE (=3)

,JAZ ,EXEC)
* TEST EXTENDED (=6)

,SUB , THRE

,JAZ ,EXT

300)

450
451

452
453

454

455
456

ISA220.DAS DAS-10.8

457

458
459

460
461

462
463

464

465
466

467
468
469
470

471
472

473
474
75

476
477

478
479

480
481

4862
433
484
485

033667 033772

033670 001000
033671-033627 .

033672
033673
033674
033675
033676
033677
033700

033701
033702

033703
033704
033705
033706
033707

033710
033711
033712
033713

033714
033715
033716
033717

033720
033721
033722
033723
033724
033725
033726
033727

033730.

033731
033732
033733
033734
033735
033736
033737
033740
033741
033742
033743
033744
033745
033746
033747
033750
033751
033752
033753
033754

006047 EXEC
036544
002000
034016
054137
006047
035334

001000
034033

006047 JMP
036544
005111
001010
033714

006010
033720
001000
034031

L

006010 JMPM
033755
001000
034031
- ®
002000 JMPR
034016

006057

036544
034205
006015
035023
006147
036544
001010
033740
001040
133571
005344
001000
033725
006077 JPBK
035303
006017
033571
054007
006015
035310
006057
036544
002000
035115
001000
100000

MUST BE SINGLE
+ JMP ,BACK

EXECUTE TYPE INCREMENT P FOR DOUBLE WORD
» INRE » $P
,CALL ,ADDR GET OPERAND ADDRESS

,STA »INST+1 STORE EFFECTIVE ADDR IN 2ND WORD
» INRE ,STIF NO CHECK FOR STORE, INR IMMED

[UCI 2-JUN-75] 18:39 23-AUG-T5 PAGQ 15

»JMP ,BAC2 EXECUTE SETUP INSTRUCTION

JUMP TYPE TEST IF JUMP AND MARK
»INRE ,$P

» IAR ’
yJAZ » JMPM

SET RETURN FOR JUMP
,LDAI »JMPR

» JMP +BAC1

SET RETURN FOR JUMP AND MARK -
,LDAI »JMPS

» JMP »BAC1

- RETURN FROM JUMP; PROCESS POSSIBLE INDIRECT

,CALL »ADDR
,STAE ' $P

,LDX , THRE TEST TO MAKE SURE IT DOES
,LDAE ,BKRT,1 JUMP INTO BKPT ROUTINE

» SUBE » $P
s JAZ »JPBK
yJXZ® ,STPP

,DXR ,
, JMP , JMPR+5

, STXE yCNT
,LDAE » STPP

,STA , 848
,LDAE ,BLOC,1
,STAE ,$P
,CALL ,BKP
,JMP®* |0

~

RETURN FROM JUMP AND MARK; PROCESS INDIRECT

301 ' :

486
487

488
489
490

ISA220.DAS DAS-10.8

491
492
493
494

495

496
497

498
499
500
501
502

503

504
505

/506

507
508
509

510
511

512
513
514
515
516

517
518
519
520

521

532

033755
033756

000000
002000

033757 034016

033760
033761
033762

033763
033764
033765
033766
033767
033770
033771

033772
033773
033774
033775
033776
033777
034000
034001
034002
034003

034004
034005
034006
034007
034010
034011
034012
034013
034014
034015

034016
034017
034020
034021

1034022

034023
034024
034025
034026
034027

034030
034031
034032

034033
034034

034035
034037

005014

006017
036544

005111
055000
005144
006077
036544
001000
133571

006047
036544
004u446
005001
oo4443
144131
001010
034004
001000
034033

014030
006110
000007
054025
014025
006127
036544
005111
001000
034031

000000
014010
001002
134016
006150
077777
005014
015000
001000
034020

000000
054004
005000

002000
036154

000000
002000

JMPS ,BSS)1
,CALL ,ADDR

. STORE MARK IN JUMP ADDRESS SET P

y TAX ’
,LDAE »$P

[UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 16

»IAR ’
»STA 40,1
»IXR ’
,STXE $P

,JMP# ,STPP

* EXTENDED ADDRESSING; TEST IF RELATIVE
EXT » INRE » $P

,LLRL ,6

yTZA ’

,LLRL »3

»SUB s VIEK
»JAZ »EREL

, JMP ,BAC2

* IS RELATIVE MAKE DIRECT
EREL ,LDA- ,INST : :
,ORAL ,7

,STA » INST
,LDA s INST+1 .
»ADDE »$P

»IAR ’
yJMP ,BAC1

'GO THROUGH POSSIBLE INDIRECT ADDRESS CHAIN STARTING IN
LEAVE RESULT IN A REG.

ADDR ,ENTR
,LDA ,SCND

ADRR ,JAP¥ »ADDR

,ANAI s 077777

, TAX ,

,LDA ,0,1

,JMP ,ADRR
* DATA FOR STPP
SCND ,BSS)1
. STEP EXECUTION
* STORE REVISED SECOND WORD
BAC1 ,STA ,INST+1

, NOP
.. RESTORE REGISTERS
BAC2 ,CALL ,LOAD LOAD ALL REGS AND OVFLW
. STEP THROUGH INSTRUCTION
INST ,BSS ,2

SAVE REGISTERS; INCREMENT P; RETURN
yCALL ,SAVE SAVE ALL REGS AND OVFLW

302 ' : .

034040 036143
533 034041 006047 ,INRE
ISA220.DAS DAS-10.8 [UCI 2-JUN-T75]

034042 036544

, $P
18:39 23-AUG-75 PAGE 17

534 . TEST TO SEE IF STEP INST WAS A STORE OR INR IMMD
535 034043 006017 ,LDAE ,STIF IF IN BKP IGNORE TEST
034044 035334
536 034045 001010 ,JAZ , ekt
034046 034051
537 034047 001000 ,JMP* STPP
034050 133571 : n
536 034051 002000 - ,CALL ,TSTI TEST IF STI OR INRI
034052 034075
539 034053 001020 ,JBZ* ,STPP NO RETURN
034054 133571
540 034055 006037 ,LDXE ,$P ELSE STORE 2ND WORD OF INST
034056 036544
541 034057 005344 ,DXR , BACK INTO USER’S PROGRAM
542 034060 055000 ,STA ,0,1 ‘
543 034061 001000 ,JMP* STPP RETURN
034062 133571
54y *
545 034063 HALT ,EQU . TRIED TO STEP A HALT INSTR
546 034063 006010 ,LDAT ,“HA"
034064 144301
547 034065 002000 ,CALL ,COUT PRINT MSG
034066 037204
548 034067 006010 ,LDAI ,°LT’
034070 146324
549 034071 002000 ,CALL ,COUT
034072 037204
550 034073 002000 ,CALL ,PREG PRINT REGS, NO RETURN
034074 034156
551 .
552
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 18
553 *
554 $TSTI - TEST IF A STORE OR INCR IMMEDIATE INSTRUCTION
555 *
556 034075 000000 TSTI ,ENTR
557 034076 005002 ,TZB . CLEAR B REG AS FLAG
558 034077 006017 ,LDAE ,INST LOAD A REG WITH INST
© 034100 034035
559 034101 006067 ,STBE ,INST CLEAR INST IN CASE OF 2ND PASS
034102 034035
560 034103 006140 ~ ,SUBI ,06000 IF INST<06000 THEN NOT
034104 006000 '
561 034105 001004 ,JAN®* ,TSTI AN EXT OR IMM INST
034106 134075
562 034107 006140 : ,SUBI ,0100 IF INSTSTILL + THEN CANNOT BE
034110 000100
563 034111 001002 ,JAP* | TSTI A LOAD STORE INR INST
034112 134075 :
564 034113 006120 ,ADDI ,040 IF INSTCO THEN INST IS A STORE
034114 000040
565 034115 001004 ,JAN®* ,TSTI QR INR EXT OR IMM
034116 134075 ,
566 034117 154011 ,ANA ,VIER IF 2 BIT ON THEN EXTENDED ELSE
567 034120 001010 ,JAZ ,%+4 IMMEDIATE .
034121 034124
568 034122 0061000 ,JMP®* TSTI EXTENDED RETURN
303 .

034123 134075
569 034124 006017 ,LDAE ,INST+1 IF IMM THEN LOAD A REG WITH
034125 034036
570 034126-.005122 ,IBR , INST OPER AND TURN ON FLAG
571 034127 001000 ,JMP®# TSTI RETURN
l 034130 134075
572
573 034131 000004 VIER ,DATA 4 CONSTANT 4
ST74 034132 000003 THRE ,DATA ,3 CONSTANT 3
575
l ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 19
576 . bt
577 o
l 578 #EXECUTION SUBROUTINES
579 *
580 #*BLDE - LOAD A TAPE ON HIGH SPEED READER
581 ®#COMMAND CHARACTER - L
582 *SUBROUTINE LOADS A TAPE FROM THE HIGH SPEED READER
l 522 :INTO CORE USING THE BINARY LOADER.
) 5
585 034133 000000 BLDE ,ENTR
586 034134 005001 ,TZA , CLEAR A REG FOR RETURN
587 034135 002000 ,CALL ,BLD1 LOAD THE TAPE
034136 077630 i
588 034137 002000 ,CALL ,GCOM RETURN TO GET NEW COMMAND
034140 035416 ‘o
589 * .
I 590 #CHNT - COMMENT EXECUTION ROUTINE
591 ®COMMAND CHARACTER - :
592 #*ROUTINE ALLOWS ANYTHING TO BE TYPED AFTER COMMAND CHARA
593 *TO TERMINATE COMMENT PRESS CR. TO CONTINUE A COMMENT 0
I 594 ®NEXT LINE PRESS LF.
595 *
596 034141 000000 CMNT ,ENTR
597 034142 002000 ,CALL ,IN INPUT COMMENT CHAR
034143 033264 _
598 034144 006140 _ ,SUBI ,0212 IS IT ALF
034145 000212
599 034146 002010 ,JAZM ,GCOM YES THEN END COMMENT
034147 035416
I 600 0341507006140 ,SUBI ,03 IS IT A CR
034151 000003
601 034152 002010 ,JAZM ,GCOM YES THEN END COMMENT
034153 035416
602 034154 001000 ,JMP ,CMNT+1 AND GO BACK AND GET NEXT CHAR
034155 034142
603 * '
604 ®PREG - PRINT ALL REGISTERS SUBROUTINE
605 ®COMMAND CHARACTER - R
606 *SUBROUTINE PRINTS THE A B X AND P REGISTERS AND THE OVF
607 * :
608 034156 000000 PREG ,ENTR '
609 034157 002000 ,CALL ,CRLF CR/LF BEFORE PRINTING
l 034160 033545
610 034161 006030 ,LDXI ,3 USE X REG AS POINTER
034162 000003 .
611 034163 074055 ,STX ,RIDX TO SHOW REGISTER TO PRINT
612 054164 006015 " ,LDAE ,RTAB,1 GET REG TO OUTPUT
034165 034235
613 034166 002000 ,CALL ,0UT AND PRINT INDICATOR CHAR
034167 033345
I 614 034170 054051 ,STA ,RTYP SAVE IND CHAR TO GET INDEX
304 -

615 034171 002000 ,CALL ,CBK PRINT A : AND 2 BLKS
034172 033536 ,

616 034173 014046 ,LDA ,RTYP GET IND CHAR

617 034170006140 ,SUBI ,’@ GET INDEX IN VAR TABLE

034175 000300
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 20

618 034176 005014 » TAX ' SET X REG = INDEX

619 034177 006015 »LDAE »$,1 SET A KREG TO VAR DATA
034200 036524

620 034201 002000 ,CALL ,0TC OUTPUT DATA IN OCTAL
034202 037117 Cot

621 034203 014176 ,LDA ,TBK QUTPUT .2 BLANKS FOR

622 034204 002000 »CALL ,COUT SPACING
034205 037204

623 034206 034032 © ,LDX »RIDX LOAD X REG WITH IND PTR

624 034207 001040 yJXZ y %45 IF X=0 THEN PRINT OVFLW
034210 034214

625 034211 005344 »DXR , ELSE DEC PTR AND

626 034212 001000 » JMP: ,PREG+5 GO BACK AND PROCESS NEXT REG
034213 034163

627 034214 006010 yLDAL , 07 LOAD AND PRINT OVFLW
034215 000317

628 034216 002000 »CALL ,OUT IND CHAR
034217 033345 -

629 034220 002000 »CALL ,CBK PRINT : AND 2 BKS
034221 033536 .

630 034222 006017 yLDAE ,$0 LOAD A REG WITH OVFLW
034223 036543 . : ’

631 034224 001010 yJAZ y¥+3 IF 0=0 THEN OVFLW OFF

A 034225 034227

632 034226 005101 » INCR , 1 ELSE SET 0=1 TO INDICATE

633 034227 006120 . ,ADDI , 07 .
034230 000260

634 034231 002000) »CALL ,OUT
034232 033345

635 034233 002000 »CALL ,GCOM RETURN

034234 035416 .
636 034235 000320 RTAB ,DATA ,’P","X",’B","A"
034236 000330
034237 000302
034240 000301
637 034241 000003 RIDX ,DATA ,3
638 034242 000000 RTYP ,DATA ,0

639
ISA220.DAS DAS-10.8 [UCI 2-JUN-T75] 18:39 23-AUG-75 PAGE 21
640 .
641 #DSLR - DISPLAY AND SET LOCATION SUBROUTINE
642 *COMMAND CHARACTERS DISPLAY - < SET - >
643 . *SUBKOUTINE PRINTS LOCATION VALUE AT LOCATION IF DISPLAY
6uy ®WAITS FOR A VLUE TO BE SET TO THE LOCATION. TO DEFAULT
645 *BLANK FOLLOWED BY A CR OR LF IS NECESSARY. INPUTTING J
236 :A CR OR LF DOES NOTHING TO THE SPECIFIED LOCATION.

7

648 034243 000000 DSLR »ENTR ’ .
649 034244 006017 . » LDAE » COM LOAD A REG WITH < OR >
034245 035533

650 034246 006140 . »SUBI A SUBTRACT OFF 4 >°
034247 000276 :

651 034250 005002 »TZB , CLEAR B REG TO IND FLAG

652 034251 001010 »JAZ y%+3 IF A=0 THEN SET ELSE

‘034252 034254

305 | - .

653 034253 005122 ,IBR , DISPLAY AND SET FLAG TO 1

654 034254 064123 ,STB ,DSFG SAVE FLAG FOR LATER

655 034255 006017 JLDAE ,P1 GET LOC PARM
034256035527

656 034257 006057 ,STAE ,$ UPDATE €
034260 036524

657 034261 052115 ,STA__ ,DSLC STORE AS INIT LOC FOH DISPLAY

658 034262 006017 LDAE® ,$
034263 136524 ’ ’

659 034264 006057 ,STAE ,$C
034265 036527

660 034266 DISP ,EQU ,® .

661 034266 002017 . JLDAE ,$H LOAD A REG WITH H
034267 036534

662 034270 144106 ,SUB ,DSLC SUBTRACT OFF LOC PARM

663 034271 001004 ,JAN JHERR IF A<O THEN H<S ERROR
034272 033524

664 034273 014103 ,LDA ,DSLC LOAD A REG WITH LOC TO PRINT

665 034274 002000 ,CALL ,0TC OUTPUT LOC IN OCTAL
034275 037117 _

666 034276 oozoog ,CALL ,CBK OUTPUT A : FOLLOWED 2 BKS
034277 03353)

667 034300 024077 ,LDB ,DSFG LOAD B REG WITH COM FLAG

668 034301 001020 . JBZ ,SET IF B=0 THEN SET AND SKIP DISPLAY
034302 034312]

669 034303 006017 ,LDAE®* ,DSLC LOAD A REG WITH DATA AT LOC
034304 134377 .-

670 034305 002000 ,CALL® P2 AND OUTPUT IT IN SPECIFIED FORM
034306 135530

671 034307 014072 ,LDA ,TBK SPACE 2 BLANKS

672 034310 002000 ,CALL ,COUT
034311 037204

673 034312 006017 SET ,LDAE®* ,DSLC LOAD A REG WITH DATA AT LOC
034313 134377

674 034314 054061 ,STA ,SLOC STORE AT SLOC AS DEFAULT ON SET

675 034315 oogooo ,CALL ,EXPR CALL EXPR ANYZR TO PROCESS SET
034316 036255

676 034317 054061 . ,STA ,DSTP SAVE RESULT OF ANALYSIS

677 034320 006017 ,LDAE ,DEF LOAD A KEG WITH DEFAULT FLAG TO

034321 037025 .
ISA220.DAS DAS-10.8 [UCI 2-JUN=-75] 18:39 23-AUG-75 PAGE 22

678 034322 001004 s JAN S el SEE IF ANYTHING WAS PROCESSED
034323 034326

679 034324 014054 ,LDA ,DSTP IF NOTHING DONT SET LOC TO ANYTH

680- 034325 054050 ,STA »SLOC ELSE SET LOC TO NEW DATA

681 034326 005021 ’ ,TBA ’ LOAD A REG WITH SADD INDEX

682 034327 006140 : »SUBI 9 DEC BY 9 TO.SEE IF BK LF OR CR
034330 000011 .

683 034331 001004 »yJAN »ROE IF A< OR = O THEN CR OR LF OR °
034332 034337

684 034333 005001 »TZA ’ ELSE A BLANK SO ZERO A REG

685 034334 054041 »STA »SLOC AND STORE AS DFAULT IN SLOC

686 034335 001000 »JMP sSET+3 GO BACK AND PROCESS NEW VALUE
034336 034315 . .

687 034337 034036 ROE ,LDX »SLOC LOAD X REG WITH NEW LOC VALUE

88 034340 006077 ,STXE®* ,DSLC STORE IT AS NEW LOC VALUE
034341 134377 :

689 034342 005021 » TBA ’ ,

690 034343 006140 »SUBI » 7 SUB INDEX OF CRLF
034344 000007 :

691 034345 001004 »JAN »DSFH IF A<O THEN CR DONE

034346 034365

306 : .

692 034347 001010 ,JAZ ,ROE2 LF

034422 035416
734 N
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 24

307 ' y

l 034350 034362 "
693 034351 014025 ,LDA ,DSLC MUST BE
694 034357005311, ,DAR) GO BACKWARDS
695 034353 054023 ,STA ,DSLC
696 034354 006147 ,SUBE ,$L CHECK LOWER BOUND -
034355 036540
697 034356 001004 ,JAN ,LERR TOO LOW
034357 033512
698 034360 001000 ,JMP ,DISP DISPLAY MORE
034361 034266
699 034362 ROE2 ,EQU,#* .
700 034362 Ou4014 s INR ,DSLC INCR TO NEW LOC
701 034363 001000 ,JMP ,DISP JUMP TO PROCESS NEW LOC
l 034364 034266
702 034365 014011 DSFH ,LDA ,DSLC LOAD A REG WITH FINAL LOC
703 034366 006057 ,STAE ,$ UPDATE € WITH NEW LOC
034367 036524 ~
704 034370 006017 ,LDAE® $
034371 136524
705 034372 006057 ,STAE ,$C
034373 036527
706 034374 001000 » JMP ,GC3 RETURN
I 034375 035423
707 034376 000000 SLOC ,DATA ,0 NEW LOC DATA BUFFER
708 034377 000000 DSLC ,DATA ,0 LOC HOLDER
709 034400 000000 DSFG ,DATA ,0 FLAG TO SHOW 'COM O0=SET 1=DISPLA
710 034401 000000 DSTP ,DATA ,0 TEMP DATA HOLDER
711 034402 120240 TBK ,DATA , ’ 2 BLANKS. USED FOR SPACING.
712
. ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 23
ll 713 . .
T14 ®#STVR - SET A VARIABLE
715 - ‘COMMAND CHARACTER - =
716 SUBROUTINE SETS A VARIABLE DESIGNATED BY THE INDEX IN
I 71g 'PARM 1 EQUAL TQ THE VALUE IN PARM 2
71
719 034403 000000 STVR +ENTR
720 034404 006037 ,LDXE ,P1 LOAD X REG WITH VAKIABLE INDEX
034405 035527
721 034406 006017 ,LDAE ,P2 LOAD A KEG WITH NEW VAR DATA
034407 035530
722 034410 006055 s STAE +$,1 ° STORE NEW DATA IN VARIABLE
034411 036524 - E ’ .
I 723 034412 001000 »JMP ,GC3 ~ RETURN
034413 035423
724 * .
725 . #DEXP - DISPLAY A VALUE OF AN EXPRESSION
I 726 #COMMAND CHARACTER - ?
727 #COMMAND DISPLAYS THE VALUE OF AN EXPRESSION IN PARMZ IN
728 *FORMAT SPECIFIED BY PARM 1.
729
730 034414 000000 DEXP ,ENTR ,
I 731 034415 006017 LDAE ,P1 LOAD A REG WITH DISPLAY VALUE
034416 035527
732 034417 002000 ,CALL® ,P2 OUTPUT IN SPECIFIED TYPE
034420 135530
I 733 034421 002000 ' ,CALL ,GCOM RETURN

308

735 ..
736 #BDMP - BINARY DUMP ROUTINE
737 #COMMAND CHARACTER - D .
738 e #ROUTINE PUNCHES AN OBJECT TAPE USING THE BINARY DUMP
759 ’ . ¥®ROUTINE. CONTENTS OF A B X REGS ARE SET BY THE
750 *PAKRAMETER VALUES.
T41 *
l T42 034423 000000 BDMP JENTR , '
T43 034424 002002 ,CALL ,GCOM NO DUMP ANYMORE
- 034425 03541
I T44 033326 006033 ,LDAI ,0102204 SUPPRESS PRINT TEMPORARI
034427 1022 .
745 034430 002000 ,CALL ,COUT .
034431 037204 :
l 746 034432 006017 ,LDAE ,P1 LOAD A REG WITH START LOC
034433 035527 _
T47 034434 006027 ,LDBE , P2 LOAD B REG WITH END LOC
034435 035530
748 033336 006037 ,LDXE ,P3 LOAD X REG WITH EXEC LOC
034437 035531
I 749 034440 007401 » SOF ’ SET OVFLW FOR PUNCH
750 033::31 002300 ,CALL ,BLD2 BINARY DUMP
034442 077434
I 751 033333 006010 ,LDAI ,0201 TURN PRINT BACK ON
03 000201
752 034445 002000 ,CALL ,OUT -
034446 033345 ‘.-
l 753 83:2#7 0%.;3(1)(6) ,CALL ,GCOM GET NEW COMMARD
34450 0 ‘ . .
754
AISAZZO.DAS DAS-10.8 [UCI 2-JUN-T75] 18:39 23-AUG-T75 - PAGE 25
II 755 »)
756 _ ’ #A N <START ADDR> <FINISH ADDR> <VALUE-LOOKING~FOR> <OUT
757 #*aLNT - ALL AND NOT EXECUTIUN SUBKROUTINES
758 #COMiMAND CHARACTERS ALL - A NOT - N
759 *D1SPLAYS ALL ADDRESSES & VALUES OF DATA THAT WHEN PARM
760 ® AR I}NDED EQUAL TO THE DATA AT THE GIVEN ADDRESS. ERRO
761 *LATA AND M ARE ANDED SHOULD EQUAL PARM 3. ALL PRINTS A
762 #OCCURRENCES OF EQUALITY AND NOT PRINTS ALL OCCURRENCES
l ;2133 :INEQUAI.ITY.
! 765 034451 000000 ALNT »ENTR)
766 034452 005001) ,TZA ,
. 767 034453 054123 »STA JACNT ZERO COUNT
I 768 8%332; 8%%22(; ,CALL ,CRLF CR/LF BEFORE PRINTING
769 ggﬁ‘;g? OOﬁgOO ,CALL , PCHK CHECK PARMS P1,P2
034603
l 770 8%322({ 833252 ,LDBI ,ANP3 SET UP INT LOC
771 034462 002000 ,CALL , WEC
034463 033146
I 772 8%3322 8(3)2(5);'3{ , LDAE , COM LOAD A REG WITH COM CHAR
173 833325; 888;?(6) ,SUBI , N’ TO DETERMINE WHTHER ALL OR NOT
3 .
774 034470 005002 ,TZB , CLEAR B REG FOK FLAG
l 775 g.}ﬁt;] gog‘g;g . sJAZ , 443 IF A=0 THEN NOT ‘ELSE
» 34472 03
776 034473 005322 ,DBK ’) ALL. SET FLAG = =1
777 034474 064103 s STB , ANFG SAVE FLAG FOR LATER
I 778 034475 006017 ,LDAE ,P1 ‘LOAD A REG WITH §(START LOC)

034476 035527

779 034477 054101 ,STA ,ANLC SAVE STARTING LOC

780 034500 002000 ,CALL ,ON OUR INTS ON
034501-033117

781 ogusoz 024075 ANPS ,LDB ,ANFG LOAD B REG WITH COM FLAG

782 034503 006217 ,LDAE®* ,ANLC LOAD A REG WITH DATA AT LOC
034504 134601 ,

783 034505 006157 ,ANAE ,$M AND WITH MASK M
034506 036541

784 034507 006147 ,SUBE ,P3 SUBTRACT OFF VALUE
034510 035531

785 034511 001010 LJAZ , %46 IF A=0 THEN TEST IF ALL
034512 034517 .

786 034513 001020 ,JBZ , %46 IF NOT ‘THEN PRINT LOC
034514 034521

787 034515 001000 , JMP ,ANP2 ELSE DONT PRINT LOC
034516 034546

768 034517 001020 ,JBZ ,ANP2 FOUND BUT NOT THEN SKIP PRINT
034520 034546

769 034521 014057 ,LDA ,ANLC IF VALID FOR OUTPUT THEN

790 034522 002000 ,CALL ,0TC LOAD A REG WITH LOC PRINT IN
034523 037117

791 034524 002000 ,CALL ,CBK OUTPUT “: °
034525 033536

792 034526 006017 ,LDAE® ,ANLC GET VALUE OF LOCATION

ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 26

034527 134601) '
793 034530 002000 ,CALL® P4 OUTPUT VALUE IN FORMAT

034531 135532
794 034532 01404y ,LDA ,ACNT ACNT = NUMBER OF WDS ON LINE
795 034533 005111 JIAR
796 034534 006150 JANAI ,3 MODULO 4
034535 000003
797 034536 054040 ,STA ,ACNT
798 034537 006017 ,LDAE ,TBK 2 BLANKS
034540 034402
799 034541 002000 . ,CALL ,COUT
034542 037204
800 034543 014033 \LDA ,ACNT
801 034544 002010 ,JAZM ,CRLF 4 WORDS ON THIS LINE
034545 033545 :
802 034546 ANP2 ,EQU = ,*
603 034546 014032 ,LDA ,ANLC CHECK FOR TOO HIGH
804 - 034547 006147 ,SUBE ,P2
. 034550 035530
805 034551 001002 ,JAP ,ANP4 DONE
034552 034556 ,
806 034553 044025 ,INK ,ANLC NEXT LOC
807 034554 001000 ,JHP ,ANPS
034555 034502
808 034556 ANPH ,EQU ,®
809 034556 006020 ,LDBI ,INA
034557 033326
810 034560 002000 ,CALL ,WEC RESTORE REG INTERRUPT
034561 033146 ' »
811 034562 002000 ,CALL ,GCOM ENTER DEBUGGER
034563 035416 .
812 . :
813 034564 000000 ANP3 ,ENTR COME HERE ON INT OR WHEN DONE WI
814 034565 054014 ,STA ,AA SAVE A \
815 034566 002000 ,CALL ,OFF OUR INTS OFF

034567 033132

309 ‘ .

816 034570 102504 CIA3 ,CIA ,IDVA CLEAR INPUT REG

034646 034633

310 ’ :

817 034571 006017 ,LDAE ,P2 LAST ADDR FOR SEARCH
034572 035530
818 034573-054005 ,STA ,ANLC CAUSE ALNT TO STOP NEXT TIME
819 034574 014005- ,LDA yAA RESTORE A
820 034575 001000 ,JMP* ANP3 RETURN
l 034576 134564
821 *
822 034577 000000 ACNT ,DATA ,0 COUNT # WORDS ON LINE
823 034600 000000 ANFG ,DATA ,0 COMMAND FLAG 0=NOT -1zALL
824 034601 000000 ANLC ,DATA ,0 SEARCH LOC HOLDER
§25 034602 000000 AA ,DATA ,0 SAVE A REG -
826 : :
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 27
Il 827 &
828 ®PCHK -- ‘UTILITY ROUTINE TO CHECK IF P1 <= P2. IF NOT, T
829 * WE - EXCHANGE P1 AND P2.
830 .
831 034603 000000 PCHK ,ENTR ,
832 034604 014723 , LDA , P2
833 034605 .144721 ,SUB ,P1
834 034606 001002 ,JAP®* PCHK OK
034607 134603
835 034610 014716 ,LDA P1
836 034611 005012 , TAB ,
837 034612 014715 ,LDA , P2 S
838 034613 054713 , STA yP1
l 839 034614 064713 ,STB ,P2 P1 AND P2 EXCHANGED
840 034615 001000 ,JMP® | PCHK RETURN
A 034616 134603 :
841
l ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 28
842 : .
843 #MOVE - M <STAKT.SOURCE> <END.SOURCE> <STAKT.TARGET>
844 & MOVE WORDS [P1,P2] T0 [P3,P3+P2-P1]
gus * . MUST HAVE P1<=P2, P2<=H, L<=P1, P3+P2-P1 <= H
46 »
847 034617 000000 MOVE ,ENTR
648 034620 002000 ,CALL ,PCHK CHECK PARMS P1,P2
l 034621 034603
849 034622 014705 ,LDA ,P2
850 034623 124705 ,ADD P3
851 034624 144702 ,SUB ,P1
l 852 034625 006147 ,SUBE ,$H
034626 036534
853 034627 005311 ,DAR , :
854 034630 001002 , JAP ,HERR P3+P2-P1 (FINAL TARGET)
034631 033524
855 034632 034674 ,LDX ,P1 MOVE IT
856 034633 005041 MV1 , TXA ,
857 034634 144673 ,SUB ,P2
858 034635 005311 ,DAR ,
I 859 034636 002002 ,JAPM ,GCOM FINISHED
034637 035416
860 034640 015000 ,LDA ,0,1 SOURCE
861 034641 006057 ,STAE* ,P3 TO TARGET
034642 135531 '
862 034643 005144 » IXk ,
863 034644 044664 , INK ,P3 » .
I bb4 034645 001000 , JMP MV NEXT WORD

311

86 :
l 192220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 29
866 e .
867 -
868 ®FILL - FILL LOCATIONS EXECUTION SUBROUTINE
l 869 * F <START.LOC> <END.LOC> <VALUE>
870 *SUBROUTINES FILLS LOCATIONS PARM 1 THROUGH PARM2 WITH T
871 *VALUE IN PARM 3.
872 b
l 873 034647 000000 FILL ,ENTR , .
874 * WE USE THE MOVE ROUTINE
875 * Pt := START (P1)
876 . P2 := FINISH (P2) -1
877 * P3 := START (P1) +1
l 878 L . [P1] := VALUE (P3)
879 034650 002000 ,CALL ,PCHK CHECK THE PARMS P1,P2
034651 034603
880 034652 014655 ,LDA P2
l 861 034653 005311 DAR
862 034654 054653 'STA P2
883 034655 014653 JLDA ,P3
884 034656 006057 STAE® .P1
034657 135527
885 034660 014646 ,LDA ,P1
866 034661 005111 JIAR
867 034662 054646 'STA .P3
868 034663 002000 JCALL .MOVE NO RETURN
. 034664 034617 4 . _
889
'ISA220.DAS DAS-10.8 [UCI 2-JUN=75] 18:39 23-AUG~75 - PAGE 30
890 *
891 *
892 #BKPT - SET BREAK POINT SUBROUTINE
893 2SETS UP BREAKPOINT INFO.
894 *BLOC HOLDS BREAKPOINT LOCATION.
895 “BWD1 AND BWD2 HOLD INSTRUCTIONS REPLACED BY JUMP TO
896 * BREAKPOINT PROCESSING.
897 ¥BCNT HOLDS COUNT OF TIMES THROUGH BREAKPOINT.
898 *BLMT HOLDS LIMIT ON TIMES THROUGH BREAKPOINT.
l 899 *BTYP HOLDS FLAG ON TYPES OF INSTRUCTIONS REPLACED.
_ 900 * _1 = DOUBLE WORD INSTRUCTION
901 * 0 = TWO SINGLE WORD INSTRUCTIONS
: 902 % 1 - SINGLE FOLLOWED BY A DOUBLE WGRD INSTRUCTION
903 *CNT IIS USED ON ENTRY TO BREAKPOINT PROCESSING TO
304 * INDICATE WHICH BREAKPOINT WAS ACTIVATED.
905 .
906 034665 000000 BKPT ,ENTR
907 034666 014640 JLDA .P1 CHECK PARM 1
908 034667 001004 'JAN .BKQ IF NEG, LIST BRKPTS
034670 034770 -
909 034671 034166 ,LDX ,iRES TEST TO MAKE SURE A
910 034672 BKP2 .EQU %
l 911 034672 006015 'LDAE ,BLOC,1 BRKPT HAS NOT BEEN SET
034673 035310 .
912 034674 144633 ,SUB P2 AT THIS LOC PREVIOUSLY
913 034675 001010 JAZ .BERR YES THEN ERKOR
034676 035406
914 034677 001040 ,JXZ ,BKP5S
034700 034704 :
915 034701 005344 ,DXR
I 916 034702 001000 "JMP .BKP2

034703 034672

917 034704 BKP5 »EQU Y

918 034704 034622 »LDX yP1

919 034703 006015 ,LDAE ,BLOC,1 TEST TO SEE IF PREVIOUS BKPT
034706 '035310

920 034707 001002 ,JAP »BERR AT P1
034710 035406

921 034711 014617 »LDA +P3

922 034712 006055 »STAE »BLMT, 1
034713 035330

923 034714 005001 » TZA ’

924 034715 006055 »STAE »BCNT, 1
034716 035324 .

925 034717 054363 »STA sCNT

926 034720 024607 , LDB P2

927 034721 006067 »STBE »$ UPDATE @
054722 036524

928 034723 016000 ,LDA »0,2

929 034724 006057 »STAE »$C
034725 036527

930 034726 006065 »STBE »BLOC, 1
034727 035310

931 034730 016000 ,LDA »0,2

932 034731 006055 ySTAE »BWD1,1

034732 035314)
1SA220.DAS DAS-10.8 [UCI 2-JUN-75] 78:39 23-AUG-75 PAGE 31

933 034733 006010 ,LDAI ,01000 LOAD A REG WITH JMP INSTR
034734 001000

934 034735 056000 ,STA ,0,2

935 034736 016001 ,LDA 1,2

‘936 034737 006055 ,STAE ,BWD2,1
034740 035320

937 034741 006015 ,LDAE ,BKRT,1
034742 035023

938 034743 056001 ,STA 1,2

939 034744 006025 ,LDBE ,BWD1,1
034745 035314

940 SGET TYPE FLAG FOR 1ST WORD

941 034746 002000 ,CALL ,TYPaA
034747 035027

942 034750 006055 ,STAE ,BTYP,1
034751 035304

943 #EXIT IF DOUBLE WORD

944 034752 001004 ,JAN , BKPF

. 034753 034766

945 034754 006025 ,LDBE ,BWD2,1
034755 035320

946 *GET TYPE FLAG FOR 2ND WORD

947 034756 002000 ,CALL ,TYPA
034757 035027

948 ¥EXIT IF ANOTHER SINGLE WORD

949 034760 001010 ,JAZ ,BKPF
034761 034766

950 #SET FLAG FOR SINGLE THEN DOUBLE

951 034762 005111 ,IAR , ‘

952 034763 005111 ,IAR ,

953 034764 006055 ,STAE ,BTYP,1
034765 035304

954 *TERMINATE COMMAND AND RETURN

955 034766 002000 BKPF ,CALL ,GCOM

034767 035416

956 b

312 ' '

957 ' . QUTPUT LOCATIONS WITH BRKPTS ON THEM
.8 .

329 034770 005004 BKQ ,TZX , START AT BRKPT 0

960 034771 006015 ,LDAE ,BLOC,1 GET LOCATION ADDRESS
034772°°03531Q

961 034773 001004 ,JAN ,BKQY4 NOT A BREAK PT
034774 035012

962 034775 005041 , TXA '

963 034776 006120 ,ADDI , 0°
034777 120260

964 035000 002000 ,CALL ,COUT OUTPUT #:
035001 037204

965 035002 002000 ,CALL ,CBK
035003 033536 .

966 035004 074015 ,STX ,BKQX SAVE X

967 035005 006015 ,LDAE ,BLOC,1 GET BRK PT LOC
035006 035310

968 035007 002000 ,CALL ,0TC OUTPUT IT IN OCTAL
035010 037117 '

969 035011 034010 ,LDX ,BKQX RESTORE X

ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 32

970 035012 005144 BKQY , IXR , NEXT

971 035013 005041 , TXA ,

972 035014 006140 , SUBI U DONE?
035015 000004 .

973 035016 001004 ,JAN ,BKQ+1 NO ..
035017 O347T1 .

974 035020 002000 ,CALL ,GCOM BACK TO TOP LEVEL

035021 035416
972 035022 000000 BKEX yDATA 0
.97 »
977 *DATA FOR SETTING JUMP
978 035023 035064 BKRT »DATA ,{BKO),(BK1),(BK2),(BK3)
035024 035063
035025 035062
035026 035061

979
ISA220.DAS DAS-10.8 ([UCI.2-JUN-75] 18:39 23-AUG-75 PAGE 33
980 *
981 035027 000000 TYPA ,ENTR ,
982 ’ ETYPE ANALYSIS SUBROUTINE; 1ST WORD IN B REG; ON EXIT
983 *A REG HOLDS -1 IF DOUBLE 0 IF SINGLE.
984 035030 005001 »yTZA ’
985 035031 0044y ,LLRL U
986 *IF NON-ZERO OP IS SINGLE WORD SO EXIT ZERO
987 035032 001010 yJAZ , TYPB

035033 035037
988 035034 005001 TYPF »TZA ’
989 035035 001000 yJMP# »TYPA

035036 135027
990 ®*0P ZERO IF M = 0 4 5 7 STILL SINGLE WORD
991 035037 004443 TYPB » LLRL »3
992 035040 001010 yJAZ® »TYPA

035041 135027
993 #TEST IF LESS THAN 4
994 035042 144015 »SUB »TRES
995 035043 001010 ,JAZ »TYPD

035044 035047 ’
996 035045 0031002 s JAP y TYPC

035046 035053 A
997 *SET -1 AND EXIT

313

998 035047 005001 TYPD ,TZA ’

035127 035171

314

999 035050 005311 ,DAR ,
I 1000 035051 001000 'JMP® . TYPA
035052 135027 '
1001 . %= 27" sy IS 4 OR GREATER; IF 6 SET DOUBLE WORD FLAG.
1002 035053 144004 TYPC , SUB ,TRES
l 1003 035054 001010 " JAZ TYPD
035055 035047
1004 035056 001000 ,JMP ,TYPF
035057 035034
1005
l 1006 035060 000003 TRES ,DATA ,3 CONSTANT 3
1007 .
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-T5 PAGE 34
II 1008 .
1009 * EXECUTED BHEAKPOINTS COME HERE
1010 * WE EXPECT CNT TO BE ZERO
1011 035061 044221 BK3 ,INR ,CNT
1012 035062 044220 BK2 "INR .CNT
1013 035063 044217 BK1 JINK .CNT .
1014 #SAVE REGISTERS
1015 035064 002000 BKO ,CALL ,SAVE SAVE THE REGISTERS
035065 036143
I 1016 #TEST IF SHOULD TAKE BREAKPOINT
1017 035066 034214 ,LDX ,CNT
1018 035067 006015 'LDAE .BLOC,1
035070 035310
I 1019 035071 006057 ,STAE ,$P
035072 036544 ‘
1020 035073 006015 ,LDAE ,BCNT, 1
: 035074 035324
1021 035075 006145 ,SUBE ,BLMT, 1
035076 035330
1022 035077 001002 ,JAP ,BKA
035100 035200
1023 *SUNT BREAK; EXECUTE BREAKPOINT INSTRUCTIONS
l 1024 035101 006045 ,INKE ,BCNT,1
035102 035324 .
1025 035103 006020 ,LDBI ,INP
035104 033170
1026 035105 002000 ,CALL ,WEC SET UP INT LOC
035106 033146
: 1027 035107 002000 ,CALL ,BKP
. 035110 035115
1028 035111 002000 ,CALL ,ON OUR INTS ON
035112 033117
1029 035113 001000 ,JMP® _$P RETURN TO USER PGM
035114 136544
1030 *
I 1031 *PROCESS BREAKPOINT; BK # IN X REG AND CNT
1032 -
1033 035115 000000 BKP JENTR
1034 035116 005001 "TZA CLEAR DOUBLE WORD FLAG
1035 035117 05k214 'STA 'STIF
1036 035120 006015 'LDAE .BTYP,1
035121 035304
1037 035122 006025 - JLDBE ,BWD1,1
035123 035314
I 1038 035124 001004 . ,JAN ,BDBL
035125 035164
1039 035126 001010 yJAZ , BSNG

1040 .
1041 035130 002000
035131 033571
1042)
1043 035132-034150
1044 035133 006025
035134 035320
1045 035135 006035
ISA220.DAS DAS-10.8
035136 035310
1046 035137 015002
1047 035140 002000
035141 033571
1048
1049 035142 034140
1050 035143 006015
035144 035304
1051 035145 001002
035146 035155
1052 035147 002000
035150 034075
1053 035151 001020
035152 035155
1054 035153 006055
035154 035320
1055
1056 035155 005001
1057 035156 054155
1058 035157 054123
1059 035160 002000
‘ 035161 036154
1060 035162 001000
035163 135115
1061
1062 035164 006015
035165 035320
1063 035166 Ou4145
1064 035167 00100C
035170 035140
1065
1066 035171 002000
035172 033571
1067 035173 034107
1068 035174 006025
035175 035320
1069. 035176 001000
035177 035140
1070 :
1071 035200 005001
1072 035201 006055
035202 035324
1073 035203 002000
035204 033545
1074
1075
1076 035205 006010
035206 000z74
1077 035207 002000
035210 033345
1078 035211 014071
1079 035212 006110
035213

000260

#SINGLE FOLLOWED BY DOUBLE; STEP THROUGH SINGLE
,CALL ,STPP

®SET UP AND STEP THROUGH DOUBLE
,LDX ,CNT
"LDBE ,BWD2,1

» LDXE ,BLOC, 1 .
[UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 35

,LDA ,2,1
BKB ,CALL ,3TPP
®TEST TO SEE IF DOUBLE WORD. IF SO THEN STI OR INRI?
,LDX ,CNT TEST IF DOUBLE WORD

,LDAE ,BTYP,1

,JAP , BKD NO THEN SKIP CHECK

,CALL y ISTI TEST TO SEE IF STI OR INRI

yJBZ yBKD . IF NOT THEN CONTINUE PROCESSING
»STAE ,BWD2,1 ELSE UPDATE 2ND OF BKPT

¥RESTORE REGISTERS AND GO

BKD »TZA ’ CLEAR CNT AND DOUBLE WORD FLAG
s STA ,STIF
ySTA ,CNT

,CALL ,LOAD LOAD ALL REGS AND OVFLW
,JMP# ,BKP

230UBLE WORD INSTRUCTION
EDBL ,LDAE ,BWD2,1

»INR +STIF TURN ON DOUBLE WORD FLAG
,JMP » BKB

#SINGLE WORD INSTRUCTIONS
BSNG ,CALL ,STPP

,LDX ,CNT
,LDBE ,BWD2,1

y JMP + BKB
*TAKE BREAK; RESET COUNT TO ZERO
BKA yTZA ’

,STAE ,BCNT, 1

,CALL ,CRLF

* PRINT BREAK POINT NUMBER THAT WAS EXECUTED
* E.G. <0> FOK BREAKPOINT ZERO.
,LDAI ,°<’ ‘

,CALL ,OUT

,LDA ,CNT
,OKAI ,°0°

315

1080 035214 002000 ,CALL ,0UT

035215 033345 .
1081 035216 006010 ,LDAI

1SA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 36
035217 000276

1082 035220 002000 ,CALL ,OUT
035221 033345
1083 035222 006C20 ,LDBI ,INA
035223 033326
1084 035224 002000 ,CALL ,WEC SET UP INT ADDR
035225 033146
1085 035226 002000 ,CALL ,GCOM
035227 035416
1086)
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 37
1087 . '
1088 %GO ROUTINE; CHECK IF BREAKPOINT
1089 035230 000000 GU ,ENTR ,
1090 035231 002000 ,CALL ,CRLF
035232 033545
1091 035233 034273 ,LDX ,P1
1092 035234 006077 ,STXE ,$P
035235 036544
1093 035236 006030 ,LDXI 4
035237 000004
1094 035240 005344 BGOB ,DXR .
1095 035241 006015 ,LDAE ,BLOC,1
035242 035310
1096 035243 144263 ,SUB ,P1
1097 035244 001010 ,JAZ ,BGOA
035245 035270
1098 035246 001040 ,JX2Z e
035247 035252
1099 035250 001000 , JMP ,BGOB
035251 035240
1100 035252 006010 ,LDAI ',GEND
035253 035264)
1101 035254 006057 ,STAE ,BKP
035255 035115
1102 035256 006020 ,LDBI ,INP POINT INPUT TO INPUT CNTRLR
035257 033170
1103 035260 002000 ,CALL ,WEC INT LOC PTS TO INP
035261 033146
1104 035262 001000 , JMP ,BKD

035263 035155

1105 035264 002000 GEND ,CALL ,ON
035265 033117 ,

1106 035266 001000 ,JMP#® »$P
035267 136544

1107 035270 074012 BGOA » STX sCNT

1108 035271 006020 ,LDBI » INP
035272 033170
1109 035273 002000 ,CALL s WEC
035274 033146
1110 035275 002000 ,CALL , BKP
035276 035115
1N 035277 002000 ,CALL ,ON
035300 033117 ‘
1112 035301 00.1000 ,JMP# »$P TO USER AGAIN
035302 136544
1113 ®*DATA STORAGE FOR BREAKPOINT
316

1114 035303 000000 CNT ,BSS)1
1115 035304 000000 BTYP 'DATA ,0,0,0,0
035305 000000
035306 000000
035307 .000000
1116 035310 177777- BLOC MZE y=1,=1,=1,=1
035311 177777
035312 177777
035313 177777
1117 - 035314 000000 BWD1 ,DATA ,

,0,0,0
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:

0
23-AUG~T5 PAGE 38

o,

39
035315 000000
035316 0000G0O
035317 000000

1118 035320 000000 BWD2 ,DATA ,0,0,0,0
035321 000000 :
035322 000000
035323 000000

1119 035324 000000 BCNT ,DATA ,0,0,0,0
035325 000000
035326 000000 '
035327 000000 '

1120 035330 000000 BLMT ,DATA ,0,0,0,0
035331 000000
035332 000000
035333 000000

1121 #*) : . RS

1122 635334 000000 STIF ,DATA ,0 DOUBLE WORD FLAG

1123 : . .

ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 39

1124 *

1125 #CLEAK BREAKPOINT SUBROUTINE

1126 * ‘

1127 035335 000000 CLR ,ENTR,

1128 035336 014170 ,LDA ,P1

1129 035337 001004 ,JAN ,CLK2 JMP IF WE CLEAR ALL
035340 035345

1130 035341 002000 * ,CALL ,CLEAR CLEAR JUST ONE
035342 035364

1131 035343 002000 ,CALL ,GCOM NO RETURN

035344 035416
1132 035345 005001 CLR2 ,TZA

?

1133 035346 054160 »STA ,P1

1134 035347 002000 ,CALL ,CLEAR ©
035350 035364

1135 035351 044155 »INR yP1

1136 035352 002000 yCALL ,CLEAR 1
035353 035364

1137 035354 044152 » INR P 1

1138 035355 002000 ,CALL ,CLEAR 2
035356 035364

1139 035357 044147 » INR »P1

1140 035360 002000 ,CALL ,CLEAR 3
035361 035364

1141 035362 002000 ,CALL ,GCOM RETURN TO TOP LEVEL
035363 035416 .

1142 b

1143 035364 000000 CLEAR , ENTR ,

1144 035365 034141 » LDX yP1

1145 035366 006015 , LDAE ,BLOC, 1

035367 035310

317

035451 035456

318

l 1146 035370 001004 ,JAN® ,CLEAR RETURN, NO BKPT SET
035371 135364
1147 035372 005012 ,TAB ,
l 1148 035373 006015 ,LDAE ,BWD1,1
035374 035314
1149 035375 056000. ,STA ,0,2
1150 035376 006015 ,LDAE ,BWD2,1
035377 035320
1151 035400 056001 ,STA ,1,2
1152 035401 005301 ,DECR ,1 PUT -1 IN BLOC
1153 035402 006055 ,STAE ,BLOC,1
035403 035310
1154 035404 001000 , JMP# ,CLEAR RETURN
035405 135364
1155
1156 035406 002000 BERR ,CALL ,CRLF
l 035407 033545 ..
1157 035410 006010 ,LDAI °PB PREVIOUS BKPT ERROR
035411 150302
1158 035412 002000 ,CALL ,COUT
035413 037204
1159 035414 001000 , JMP , BANG
035415 035567
1160
l ISA220.DAS DAS-10.86 [UCI 2~JUN-75] 18:39 23~-AUG-75 PAGE 40
1161 »
1162 * o
1163 #GCOM - COMMAND CONTROLLER AND PROCESSOR ROUTINE
l 1164 *SUBRGUTINE INPUTS AND CHECKS COMMAND CHARACTERS. PROCE
1165 ®OF THE COMMAND BY GETTING THE PROPER PARAMETERSOFF THE
1166 *COMMAND POINTER TABLES(CMT AND CMPT) AND BRANCHING TO T
116g *PROPER COMMAND EXECUTION SUBROUTINE.
116 *
I 1169 035416 000000 GCOM ,ENTR
1170 035417 002000 ,CALL ,ON OUT INTS ON
035420 033117
1171 035421 002000 ,CALL ,CRLF OUTPUT CR/LF TO TERMINATE PREVIO
l 035422 033545
1172 035423 GC3 " LEQU , ‘
1173 035423 005002 ,TZB , CLEAR B REG AND RESET
1174 035424 006067 ,STBE ,PDEF PERMANENT DEFAULT FLAG
I 035425 037026
1175 035426 007400 ,ROF , RESET OVFLW IND IF IT WAS ON
1176 035427 006010 ,LDAI , #° PROMPT SIGN
035430 000243
1177. 035431 002000 ,CALL ,ouT OUTPUT CHAKACTER
035432 033345
1178 035433 002000 ,CALL ,IN INPUT COMMAND CHAR
035434 033264
1179 035435 054075 ,STA , COM SAVE COM CHAR FOR LATER
l 1180 035436 006140 ,SUBI ,0203 IF CONTROL-C
035437 000203
1181 035440 001010 ,JAZ ,GMON GO TO MON
035441 035517
I 1182 035442 014070 ,LDA , COM RESTORE COMMAND CHARACTER
1183 035443 006140 ,SUBI , 7 / IS SYNONYM FOR <
. 035444 000257 .
1184 035445 Q01010 ,JAZ ,GCH
035446 035452
1185 035447 014063 ,LDA , COM
1186 035450 001000 , JMP , 246

1187 035452 GCh ,EQU K

1188 035452 006010 ,LDAI <’
035453 000274
1189 035454 001000 , JHP ,GC5
035855 -035464 A
1190 035456 002000 ,CALL ,ILC,”:",°U’ TEST FOR LEGAL COM CHAR

035457 036452
035460 000272
035461 000325

1191 035462 001001 , JOF ,BANG IF NOT THEN ERROR
035463 035567

1192 035464 GC5 +EQU "

1193 035464 006140 ,SUBI , :’ ELSE GET AN INDEX ON CMT
035465 000272 . .

1194 035466 005012 , TAB s AND STORE INDEX IN B REG .

1195 035467 006016 ,LDAE ,CMT,2 LOAD A REG WITH PARM PTR
035470 033456

1196 035471 001010 ,JAZ ,BANG IF A=0 THEN ILLEGAL COMMAND

035472 035567
ISA220.DAS DAS-10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 41

1197 035473 054032 ,STA ,PADR ELSE STORE POINTER TO GET PARMS

1198 035474 006010 ,LDAT ,” ° OUTPUT SEPARATOR BLANK
035475 000240

1199 035476 002000 ,CALL ,0UT OUTPUT BLANK
035477 033345)

1200 035500 005002 GPEM ,TZB CLEAR B REG AND

1201 035501 064023 ,STB ,PLDR PARM STORAGE ‘INDEX

1202 035502 006010 ,LDAI ,GP8 LOAD EXPR WITH DUMMY
035503 035510

1203 035504 006057 ,STAE ,EXPR ERROR RTN ADDRESS

A 035505 036255

1204 035506 002000 ,CALL* ,PADR GET 1ST PARM VALUE
035507 135526

1205 035510 Gr8 ,EQU ,

1206 035510 034014 ,LDX ,PLDR LOAD X REG WITH PSI

1207 035511 006055 ,STAE ,P1,1 STGRE RESULT IN PARM
035512 035527

1208 035513 044011 . ,INR ,PLDR INCR PARM STORAGE INDEX

1209 035514 Qu44011 s INR , PADR POINT TO NEXT PADR LOC

1210 035515 001C00 , JNP ,GPRH+2 PROCESS NEXT PARM

035516 035502
1211 035517 002000 GMON ,CALL ,OFF
035520 033132

1212 035521 002000 ,CALL®* ,MON TO MONITOR
035522 177540
1213 * COME HERE IF P AT MONITOR LEVEL
1214 035523 001000 y JMP » GCOM+1
035524 035417
1215 *
1216 *SPECIAL DATA AREAS
1217 b
1218 035525 000000 PLDR ,DATA 0
1219 035526 000000 PADR ,DATA ,0
1220 035527 000000 Pt ,DATA ,0 PARAMETER STORAGE AREAS
1221 035530 000000 P2 »,DATA 0
1222 035531 000000 P3 ,DATA 0
1223 035532 000000 PH ,DATA 0 .
1224 035533 000000 COM »DATA ,0 COMMAND STORAGE AREA
1225

ISA220.DAS DAS~10.8 [UCI 2-JUN-75] 18:39 23-AUG-75 PAGE 42
1226 . ‘

319

Appendix V

DECOMPILED ISADORA
- TARGET PROGRAM

This appendix contains the decompiled MOL620 program
generated from thne ISADORA source program listed in Appendix
Iv. The first two pages are the bvbuilt-in procedures
ref'erenced by tne aecompiled code and are appended to the
front of the decompiled text for recompilation.

This decompiled program corresponds to the P2 version
of ISADORA describea in Chapter 6. The only changes made to
the P1 version (direct from the decompiler) are those needed
to make the program compile and execute correctly. These
changes are tabulated in Table 6-A.

Many labels appearing in this program are unused and
could be removed if desired. These labels are underlined in
the listing.

See Appendix III for a summary of the MOL620 language.

320

DECLAKE
EQU
PROC EXC

ENDP;
PROC OUT

ENDP;
DECLARE

PROC INP

- ENDP;

PRUC SHI

ENDP;

PROC SEN

ENDP;

PROC MUL

BUILT-IN DEFINITIONS AND PROCEDURES USED BY THE
DECUMPILEK GENERATED CODE 2

AREG,BHEG, XREG, OFLUW,T1,T2,T3 ;
TRUE=1,FALSE=0; 4THUTh VALUES$

; $EXTERNAL CONTROL
Ak = FUHCTION CODE
BR = DEVICE ADDRESS 4

" LRLA,6" ; %MOVE FUNCTION CODE}

" MEKRGE,031" ; %A_A,b FOR DEV ADDR%

" OHAI,0100000" ; $EXC OPCODE%

" STA, *+1" 4STCRE INSTRUCTION%

" EXC,0"; $EXECUTE IT BY FALLING INTO IT%

PUT ; $OUTPUT TO DEVICE BR THE VALUE OF AR%
",STA,QUTS$" ;

",LDAI,0103100" ; $OUTPUT INST%

" ,MERGE,031" ; %PUT IN DEVICE}

",STA,*+2" ; $MAKE INSTRUCTION%

" ,LDA,OUT$" ; %GET VALUE%

",0AR,0" ; 4OUTPUT INSTR EXECUTED HERE$

"OUT$" ; $LOCAL TO OUTRUTS

uT ; ZINPUT TO AR FROM DEVICE AR%

", OKAI,010250G" ;

M,STA,¥+1"

",CIA,O" ; »INSTRUCTION MADE HERE%

FT ; $AK HAS THE ACTUAL SHIFT INSTRUCTION IN IT;

THE DATA TO BE SHIFTED IS IN VAKIABLES
’ AREG AND BhKEG; RESULTS RETURNED IN SAME}
",STA,%*+3"; #STORE SHIFT INST TO BE EXECUTED%

v LDA,AKEG" ;

" LDB,BREG" ; $GET DATA%

x,ggi," ; $SHIFT HERE%
,STA,AKEG" ; .

n STB.BREG" : $RESULTS BACK%

SE ; %SENSE DEVICE
AR = FUNCTION CODE
BR = DEVICE ADDR
RETURNS TRUE OR FALSE DEPENDING ON RESULT OF

SENSE :

" LRLA,G" ; 4FN CODE;
v MERGE,031"; $0R IN DEV ADDR%
?,g¥ﬁ140291000" ; ¢SENSE OP%

'y +2% 3 A
" INCR,1" ; %TRUE$
" SEN,O,%+3" ; %SENSE HERE$
" OTZA," ; $FALSE%

; $MULTIPLY AREG,BREG BY AK%
" STA,%+4"; .STURE DAT
":LDA,A;EGL ; * As
" LUB,BREG" ;
" MULI,O" ; $MULTIPLIER IN SECOND WOkD GF INST%

321

" STA,AREG" ;
;

v STB,BREG"
ENDP;
PROC DIV ; _ $DIVIDE AREG,BREG BY ARY
" STA,; ®+ln; 4STORE DATA%
» LDA,AREG" ;
v LDB,BREG" ;
» DIVI,O" ; 4DIVISOR IN SECOND WORD OF INST%
* STA,AREG"
" STB,BREG"
ENDP;
PROC AND (); ¢RETURN LOGICAL AND OF AR,BR%
" _JAZ® AND" ; 4 AR IS FALSE %
" TBA," ; % RESULT IS BR %
ENDP; :
PRUC "$SAVE" (AREG,BREG,XREG) ; 4SAVE PHYSICAL MACHINE REGISTERS
IN VIRTUAL REGISTERS%
OFLUW := (OF) ;
(AK) := AREG ;
ENDP;
PRUC "$LOAD" ; 9MOVE VIRTUAL REGISTERS TO PHYSICAL REGS%
(OF) := OFLOW ; ; _
KETURN (AKEG,BREG,XREG) ;
ENDP;
PROC "$$SAVE"™ ("AR"™, "BR", "XR") ; - 4SAVE PHYSICAL REGS
LOCALLY%
"OF" := (OF) ; ’
(AR) := "ARS" ; ZRESTORE A%
ENDP; .
PROC "$$LOAD" ; 4L0AD PHYSICAL REGS$%
(OF) := "OFs" ;
RETURN ("$AF.$", "BR", "XR") ;
ENDP; .

DECLARE "AR", "BR", "XR", "OF" ;

g END OF BUILT-IN STUFF §

322

3
THIS FILE FROM DECOMPILER WITH
STAGE-TWO MANUAL FIXUPS (SYNTAX, SELF MODIFYING, DECOMP ERRORS) %
EQU ZERO=0 , ONE=1 , $SMALL OFFSETS NEEDED$
TWO=2 ; :
EQU L001=050 ; 4LOCATION (LOO01) WHERE TO SAVE PIM MASK%
5 ISADURA DEBUGGEK -- ICS DEPT -- UC IRVINE §
9 VERSION 2.20 %
% OKIGIWAL AUTHOR: MICHAEL PEPPEK %
9 ICS DEPT, UCI, 1969 %
4 LAST UPDATE: G.L. HOPWOOD %
4 10-JUL=-T5 %

EQU BGNG = 033000 ;

EQU LO = 0200 ;

% LO,SET,END %

$ HI,EQU,037777 UPPER BGUND OF USER AREA %

EQU HI = "BGNG=-1" ; % UPPER BOUND OF USER AREA %

EQU BLD1 = 077630 ¢ ADDR OF STAKT OF LOAD ROUTINE %
EQU BLD2 = 077434 % ADDR OF START OF DUMP ROUTINE $%

wo we

EQU MON = "077520+16" ;
EQU PIM = O ;
EQU PMLA = 1 ;
EQU PMLB = 6 ;
.EQU MSKA = 0375 ;
EQU MSKB = 0277 ;
EQU IDVA = &4 ; 9 SEKIAL CONTROLLER INPUT IF SS3 IS
. : OFF. %
EQU IDVB = 1 ; % SERIAL CONTHOLLER INPUT IF SS3 IS
ON. %
EQU OLVA = 4 ; 4 SERIAL CONTROLLER OQUTOUT IF SS3
IS OFF.
EQU ODVB = 1 ; % SERIAL CONTROLLER OUTPUT IF SS3 5
IS ON.
EQU ODV = 0 ; % SERIAL CONTROLLER OUTPUT FOKk 611
SCOPE %

USER SHOULD SPECIFY THE FOLLOWING PARAMETERS BEFORE ASSEMBLY: %
BGNG ORIGIN POINT FOR ISADORA %

PIM PIM GROUP NUMBER (0,1,2) %

PMLA INPUT PIM LINE FOR INPUT DEVICE IF SS3 IS OFF. %
PMLB INPUT PIM LINE FOR INPUT DEVICE IF SS3 IS ON. %
MSKA PIM MASK IF SS3 IS OFF. %

MSKB PIM MASK IF SS3 IS ON. %

IDVA INPUT DEVICE NUMBER IF SS3 IS OFF. %

IDVE INPUT DEVICE NUMBER IF SS3 IS ON. %

ODVA OUTPUT DEVICE NUMBER IF SS3 IS OFF. %

ODVB OUTPUT DEVICE NUMBER IF SS3 IS ON. %

C611 ADDRESS OF 611 CHARACTER OUTPUT ROUTINE %

IF HE IS OUTPUTTING TO TEK SCOPE %

LO LOWER BOUND OF USER WORK AREA %

HI UPPER BOUND OF USER WOKK AREA %

BLD1 LUCATION OF START OF LOAD ROUTINE %

BLDL2 LOCATION OF START OF DUMP ROUTINE §%

DEBUGGING PACKAGE - INITIALIZATION ROUTINE %
KGUTINE ENABLES AND OUTPUTS MASKS FOR ALL PIMS %

. WP W B" 2R BQ YA BR VR B VA R WA P A A BA PO

323

% THEWE ARE THHEE INTERRUPT SERVICE ROUTINES: %

4 INA -- INTERKUPTS WHILE RUNNING DEBUGGER COME HERE %
% INP -~ INTEKRUPTS WHILE RUNNING USER PGM " %

¢ ANP3 - INTERRUPTS WHILE RUNNING ALL-NOT FUNCTION 3

"% GRG,BGNGT 7§~ _ % ORG AT SPECIFIED LOC %
SET PMIA = "020%*PIM+060" ;
SET PMIA = "2%*PMLA+PMIA" ; % PIM INT LOCATION IF SS3 IS OFF. %
SET PMIB = "020%PIM+060" ;
SET PMIB = "2%PMLB+PMIB" ; ¢ PIM INT LOCATION IF SS3 IS ON. %
DECLARE VERSN = "°2.20°" ; ¢ IN CORE VERSION NUMBER %
PROCEDURE START $SYNTHETIC% ; % ADDRESS 33000 %
AREG := =1 ; % A=-1 %
IF NOT (SS3) % INITIALIZE TTY % THEN AREG := 0 ; % EXCHANGE SWITCH
DFLT : ' ¢ USING SENSE SWITCH 3. %
E— TSWIT := AREG ; '
CALL TTYEX ; % SET UP I/0 FOR PROPER DEVICE %
AKEG := BKEG := XREG := (OF) :z 0 ; $ ZERO ALL REGS AND CLEAR $%
CALL SAVE ; % REGISTERS %
CALL GCOM ; % GO TO DEBUGGER %
ENDP;

% TELETYPE EXCHANGE RUUTINE: CHANGES I/U DEVICE TO §%
% OTHek TTY THAN ONE SELECTED. %

PROCEDURE TTYEX ; % ADDRESS 33021 %
IF (TSWIT := AREG := TSWIT BXR 0177777) = O

% IF THE TTY %
% TRANSFER %
% SWITCH 1S %
: 4 A -1 THEN %
THEN
BEGIN
PMIB := 02000 4 SET UP INT LOC %
"PMIB+1" := GINA ;

AMSK := @MSKB ;

_CALL EXC (4, o40) ;

L0071 := LOO1 BOR €"0377-MSKA™ ; % MASK OTHERS INT %
CALL EXC (2, 040) ;

OUTDEV := 60DVB ;

INDEV := @IDVB ;

END;
ELSE
BEGIN :
PMIA :z 02000 ; % SET UP INTERRUPT AREA %
"PMIA+1" := @INA ;
AMSK :=z @MSKA ; % SET APROPRIATE MASK %
CALL EXC (4, 040) % DISABLE %

L001 := LOO1 BOR 950377-MSKB" ; 9 OR IN OTHER'S BIT %
CALL EXC (2, 040) ;

OUTDEV := €0DVA ; % OUTPUT DEVICE %
INDEV := @IDVA ; % INPUT DEVICE %
END;
%...THIS SECTiON TAKEN OUT SINCE IT WAS MODIFYING PGM

TTY2 : #4# CHANGE: OUTPUT SENSE
: INSTRUCTION ###
OAR2 :=
OAR1 := AREG := (SENO := AREG := AREG + 0101100) + 02000 ;

324

OUTPUT CHAR INSTRUCTION

CIA3 :=
CIA2 := CIA1 := AREG := BREG + 0102500 ;
GET INPUT DEVICE NUMBER
) ### AND ALL INPUT CHAR INSTRUCTIONS
o ###
RETURN ; ~ ¢ RETURN %
ENDP; . :
PROCEDURE ON ; ¢ ADDRESS 33117. TURN ON OUR
INTERRUPT %
CALL EXC (4, 040) ; % DISABLE %
TMP := AHKEG ;
CALL OUTPUT (LOO1 := AREG := LOO1 BAND AMSK, 040) ; % GET MASK. OUR
: MASK %
AREG := TMP ;
CALL EXC (2, 040) 4 ENABLE PIM %
RETURN ; ' % RETURN %
ENDP;
¢ OTHERS REMAIN ON %
PROCEDURE OFF ; % ADDRESS 33133. TURN OFF OUR
INTERRUPTS %
CALL EXC (4, 040) ; . % DISABLE %
TMP := AREG ;

CALL OUTPUT (LOO%1 := AREG := (AMSK BXR 0177777) BOR L001, 040) ; %
COMPL OF OUR MASK %
AREG := TMP ;

CALL EXC (2, 040) % ENABLE PIM 5

we

. RETURN ;
ENDP;
PROCEDUKE WEC ; 4 ADDRESS 33146. CHANGE INT VECTOR
ADDR TO B-REG VALUE %
IF (AKEG := TSWIT) .=
THEN
BEGIN
WEC2 : % DEVICE B % "PMIB+1" := BREG ; RETURN ; % DONE %
. END;
"PMIA+1" := BREG ; 4 DEVICE A %
RETURN ;
ENDP;

DECLARE TSWIT = O ; ¢ TTY TRANSFER SWITCH %
DECLARE AMSK = MSKA ; % ACTUAL PIM MASK %
DECLARE TMP = 0 ;

% COMMAND T %
¢ ALLOWS USER TO CHANGE I/0 DEVICE DURING EXECUTION %

PROCEDURE TTY ; % ADDRESS 33163 %
CALL TTYEX ; % CALL TELETYPE EXCHANGER % CALL GCOM ; % RETURN %

ENDP;

325

% INPUT CONTROLLBK AND I/0 SUBRUUTINES %
9 TTY INTEKRUPTS COHME HERE WHEN KUNNING USER PROGRAM i

PROCEDURE INP ; % ADDRESS 33170. I/0 CONTROLLER %
CALL ""$SAVE" ; $1{ANUAL INSERT. SAVE REGISTERSS
:= AREG ; % SAVE PRES A VALUE %
CIAl : % INPUT FROM DEVICE IDVA INITIALLY

AREG := INPUT (INDEV) ;
CALL OFF ;

AREG := AREG BOR 0200 ; 4 PUT IN PARITY BIT §
CALL LCASE ; ¢ CHECK FOR LOWER CASE %
IF AREG = ZI
’ ¢ IF CONTROL-N THEN %
¢ PREPARE TO ENTER DEBUGGER %
THEN
IF INP < ZH
% GET ADDR WHERE INTERRUPTED %
4 WAS IT IN OUR AREA? %
3 NO, JMP TO RETURN %
THEN
BEGIN
% INTERRUPT WAS FROM OUR AREA, GET
SET FOR DEBUGGER §%
AREG := A ; % SET VARIABLES IN TABLE TO %
"CALL SAVE ; % USEK'S VALUES. %
BKEG := @INA ;
CALL WEC ; $ RESET INT VECTOR %
ZP := AREG := INP ;
CALL CHKLF ; % OUTPUT <*> AND GO TO DEBUGGER %
AREG := “<%°
CALL COUT ;
AREG := > ;
CALL OUT ;
CALL GCOM ; % TO DEBUGGER, NO RETURN %
END;
% RESTORE AND RETURN %
DBG2 :
Ra— AREG := 3 .
CALL ON ; 4 OUR INTS ON %
CALL "$LOAD" ; 3MANUAL INSERT. LOAD
) PHYSICAL REGISTERS%
RETURN ; % RETURN TO USER’S PROGRAM %
ENDP;

% CHECK A-REG FOR LOWER CASE LETTER AND CHANGE TO %
% UPPER CASE IF NECESSARY. JUNE 30 1971. GLH %

PKROCEDURE LCASE ; $ ADDKESS 33247 %
IF (AREG := AREG - 0341) < 0 THEN AKEG := AREG + 0341 ; ELSE AREG
:= AREG + 0301 ;

RETURN ;
ENDP;

% IN CONTAINS THE IDLE LOOP FOR DEBUGGER INPUT %

% WHEN USER IS TALKING DIKECTLY TO ISADORA. §

% ROUTINE “INA™ GETS THE INTERRUPT AND STORES THE §
% CHARACTER IN ‘CHAR’. %

326

PROCEDURE IN ;° ¢ ADDRESS 33264. INPUT CHAR FOR

! DEBUGGER $%
CHAR := AREG := 0 ;
CALL ON ; ¢ ENABLE OUR INT %
L003 : ’
— WHILE -€TRUE
DO -
BEGIN
" , NOP , n ;
" NOP," ; 4 IDLE LOOP FOR INTRPT %
IF (AREG := CHAR) # O
% IDLE ¢
THEN :
BEGIN
OAR2 : % ECHO %
—— CALL UUTPUT (AKEG, OUTDEV) ;
IF (AKEG := ARRG - 0212) = 0
$ LF %
THEN
BEGIN
IN2 : § ECHO CR CR WITH LF % AREG := 0106615 ; CALL COUT ;
. END; A
ELSE
IF AREG = 3
2 CR %
THEN :
BEGIN -)
ING : 4 ECHO LF WITH CR $ AREG := 0212 ; CALL OUT ;
B END;
ING : ¢ ORIGINAL CHAR %
T AREG := CHAR ; :
RETURN ;) % RETURN ¢
END;
END;
ENDP; ‘ .

%2 DEBUGGER INTEKRRUPTS NORMALLY COME HERE %
% WHILE ISADORA IS RUNNING %

PROCEDURE INA 3 % ADDRESS 33326 %
CALL "$$SAVE" ; $MANUAL INSERT. SAVE REGISTERS%
A := AREG ; % SAVE AREG %
CIa2 : % INPUT FROM DEVICE IDVA INITIALLY

AKEG := INPUT (INDEV) ;

CALL OFF ; 4 OUR INTS OFF, OTHERS ON %
AREG := AREG BOK 0200 ; 4 OR IN PARITY BIT %
CALL LCASE ; % CHECK FOR LOWER CASE LETTER $% ;
CHAR := AREG ;
AKEG := A ; 4 RESTORE AREG %
CALL "$$LOAD" ; 4MANUAL INSERT. RESTORE REGS$
RETURN ; % RETURN %
ENDP;
DECLARE CHAR = 0 ; DECLARE & = 0 ; $ SAVE AREA FOR A REG %
PROCEDURE OUT ; 4 ADDRESS 33345. OUTPUT CHAR FOR
. DEBUGGER %
SENO : $ OUTPUT TO DEVICE ODVA INITIALLY %

WHILE NOT (SENSE (1, OUTDEV)) DO ",NOP," ;

IF (AKEG := ((QUTA := AREG) BAND 0377) - 0212) # 0
% LF? %

THEN

327

IF (AKEG := AREG - €"0215-0212") # 0

% CR %
ThEN
IF AREG < €"° ‘-0215%
~ 4 >=BLANK %
THEN .
BEGIN
AKEG := “?° ; % MAKE A ? % GOTO OAR1? ;
END;
ouT2 : ¢ RESTORE CHAR %
B AREG := OUTA ; :
OAR1 :
CALL OUTPUT (AREG, OUTDEV) ; ‘
AREG := OUTA ; % RESTORE AREG %
RETURN ;
ENDP;
DECLARE OUTA = 0 ; ¢ SAVE AREG %
DECLARE OUTDEV, %4 OUTPUT DEVICE NUMBER %
INDEV ; 4 INPUT DEVICE NUMBER %
4 PAKAMETER TABLE %
EQU CMPT = vw&n . $PARAMETER TABLES
DECLARE ZZDISP = (GLCA, GTYP, DSLR) ;- % < OR / %
DECLAKRE ZZEQ = (GVAK, GEXP, STVR) ; 3 =9
DECLAKE ZZSET = (GLCA, DSLR) ; %> 9%
DECLAKE ZZQU = (GEXP, GTYP, DEXP) ; %29
DECLAKE ZZAn = (GLCk, GLCF, GEXP, GTYP, ALNT) ; % A,N §
DECLAKE ZZB = (GNUM, GLCA, GEXP, BKPT) ; % B %
"DECLAKE ZiC = (GNUM, CLR) ; $C3$%
DECLAKE z4F = (GLCh, GLCF, GEXP, FILL) ; # F %
DECLARKE ZzG = (GLCP, GU) ;. %G %
DECLAKE ZZR = PREG ; $R Y%
DECLARE Z.S = STEP ; 2S%
DECLAKE ZZCMNT = CMNT ; % : %
DECLARE ZZL = (GEXP, BLDE) ; $ LS
DECLARE ZZD = (GLCE, GLCF,.GEXP, BDMP) ; $ D &
DECLAKRE Z2ZT = TTY ; £ T$%

DECLARE ZZIM (GLCE, GLCF, GLCE, MOVE) ; ¥ M %

% COMMAND TABLE - HOLDS POINTERS TO CMPT %

% TO GET AN INDEX INTO THIS TABLE TAKE THE COMMAND CHARACTER %
% AND SUBTRACT “:°. THE ENTRY AT THAT LOCATION IN THIS %

% TABLE POINTS TO THE PARAMETER TABLE ABOVE. %

DECLARE CMT = "(ZZCMNT)®» ; % : %
DECLARE * = 0 ; Y 3 |

DECLARE # = "(ZZDISpP)#» ; 2<%
DECLARE ¥ = ""(ZZEQ)*" ; 9 = %
DECLARE # = "(ZZSET)#" P> %
DECLAKE # = “(ZZQU)%" ; 75
DECLAKE ® = 0 ; % @92
DECLAKE * = "(ZZAN)#®*n" ; %A%
DECLAKE ® = nw(zZzB)#n 2 B3
DECLAKE * = "(ZZC)%» ; - 2C#%
DECLAKE #® = "(ZzD)®v ; D%
DECLARE * = 0 ; $E%
DECLARE # = “w(ZZF)®#» ; Y F %
DECLARE ® = "(ZlG)s" ; 2G5S
DECLARE * = 0 ; S HS

328

DECLARE * = 0 ; $ 1%
DECLARE # = 0 ; $J%
DECLARE * = 0 ; $ K%
DECLARE *® = "(ZZL)*" ; PL3
DECLARE # = "(ZZM)*®*" ; * M3
DECLARE * =" "(ZZAN)%" ; TN %
DECLARE * = 0 ; $0%
DECLARE # = 0 ; ¢ P37
DECLARE * = 0 ; 2 Q%
DECLARE ® = "(ZZR)*" ; 2RY%
DECLARE # = ®(ZZS)%" ; 2 S %
DECLARE #® = "(ZIT)®*» ; $T%
DECLARE ® = 0 ; YU %

% EKRORS IN EXECUTIUN SUBROUTINES %

PhROCEDUKE LERR %SYNTHETIC% ; % ADDRESS 33512 %
DEKK : NULL ;
% ADDRESS < LO %
AREG := ~ 27 ;
CALL COUT ;
AKEG := “<L° ;
CALL COUT ; .
GOTO BANG ;
ENDP;

PROCEDURE HERR $SYNTHETICS ; % ADDRESS 33524 %
: % ADDRESS > HI %
AREG := ~ 2?7 ;
CALL COUT ;
AREG := >H’ ;
CALL COUT ;
GOTO BANG ;

ENDP;
$ SPECIAL OUTPUT SUBROUTINES %

PROCEDURE CBK ; % ADDRESS 33536. OUTPUT A : %
AKEG :z “:° ; CALL OUT ; KETURN ; % RETURN %

ENDP;

PRUCEDURE CRLF ; % ADDRESS 33545. OUTPUT A CR/LF %
AKEG := 0106612 ; CALL COUT ; KETURN ; % RETURN % :

ENDP;

4 STEP - INSTRUCTION EXECUTION SUBROUTINE %
¢ STEP EXECUTES THE INSTRUCTION WHOSE 1ST WORD IS STORED IN %
¢ THE LOCATION GIVEN BY P. UPON EXECUTION THE B AND A REGS %
4 CONTAIN THE 1ST AND 2ND WOKDS OF THE INSTRUCTION(S) RESPEC- %
% TIVELY. %
PROCEDURE STEP ; 4 ADDRESS 33554 %
9 LOAD X REG WITH P. LOAD B REG
WITH WORD AT P %
% ; % CHECK FOR HALT INSTR %
THEN GOTO HALT ;

BREG := ZERO [XREG := ZP]

CALL SHIFT (04151) % LSRB
IF BREG = 0 % JMP IF HALT

»R 0

329

BHEG := ZEKO [XREG] ; 4 RELOAD %

AKEG := ONE [XREG] ; % LOAD A REG WITH WORD AT P+ONE %
CALL STPP ; % STEP %
CALL GCOM ; % RETURN %

ENDP;

% STPP - STEP EXECUTIUN ROUTINE 3

% STPP EXECUTES THE INSTRUCTIGN WHOSE 1ST WORD IS IN THE §

% B KREG AND WHUSE 2Nu WORD IF ANY IS IN THE A REG AS IF IT %

% WEKE LOCATED AT P. SUBKOUTINE IS USED BY STEP AND BREAKPOINT. %

PROCEDURE STPP ; % ADDRESS 33571 %

SCND := "INST+1" := AREG ; 9 SAVE INSTRUCTION DATA %
§ CHECK FOR SEN, IME, OME % AREG := INST := BREG ; % GET 1ST WORD
OF INST %
CALL SHIFT (04346) % LSRA 6 % ; % LEFT 10 BITS %
IF (AREG := (XREG := AREG) - 01020) # ©
9 SAVE %
¢ IS IT 1020XX (IME) 7 %
% YES %
THEN
IF (AREG := AREG - 010) # 0O
2 IS IT 1030XX (OME) ? %
% YES ¢
THEN ,
BEGIN
AREG := XREG ; $ GET BACK INST (LEFT 10 BITS) %
CALL SHIFT (04343) % LSRA 3 %-; % LEFT 7 BITS NOW %
IF (AKEG := AKEG - 0101) # O . :
¢ IS IT 101XXX (SEN) ? §
% YES, TREAT LIKE JMP INST %
THEN
BEGIN

% OTHEXWISE CHECK SUME MORE TO SEPAKATE INST TYPES % AREG

- -
«= '

CALL SHIFT (O4444) % LLRL 4 % ;

IF AREG = 0
. ¢ DOUBLE WORD INSTRUCTION %
THEN
BEGIN
4% OP-CODE IS ZERO; TEST IF SINGLE NON-ADDRESS $%
QOPZ :
R CALL SHIFT (04443) ¢ NIL NIL % ;
IF AREG # O
THEN
BEGIN
IF (AREG := AREG - THRE) < 0 THEN GOTO JMP ;
IF AREG = 0
THEN
BEGIN
4 EXECUTE TYPE INCREMENT P FOR DOUBLE WORD %
EXEC :
— BUMP ZP ;
CALL ADDR ; % GET OPERAND ADDRESS %
"INST+1" := AREG ; % STORE EFFECTIVE ADDR IN

2ND WORD OF INST %
BUMP STIF ; % NO CHECK FOK STORE, INR IMMED 3
GOTO BAC2 ;
EwD;
IF (AKEG :=z AREG - THRE) = 0
THEN
BEGIN

330

I ¢ EXTENDED ADDRESSING; TEST IF RELATIVE §
EXT :
E— BUMP ZP ;
. CALL SHIFT (OL4446) % LLRL 6 % ;
AREG := ; :
T i CALL SHIFT (O4443) % LLRL 3 % ;
IF (AREG := AREG - VIER) = 0
THEN'
I BEGIN
¢ IS RELATIVE MAKE DIRECT %
EREL :
E— INST := INST BOR 7 ;
l AREG := ("INST+1" + ZP) + 1 ;
GOTO BAC1t ;
END;
GOTO BAC2 ;
l END;
END; -
GOTO BACK ;
END;
4 TEST IF ADDRESS RELATIVE TO P % AREG := 0 ;
CALL SHIFT (0O4443) % LLRL 3 % ;
IF AREG = VIER -
% IF A=0 THEN KEL TO P %
THEN
I BEGIN ‘
4 RELATIVE ADDRESS MAKE TWO WORD DIRECT %
REL :
— "INST+1" := (INST BAND 0777) + ZP ;
I BUMP "INST+1" ;
AREG := INST ; ‘
CALL SHIFT (04351) % LSRA 9 % ;
INST := AREG := AREG BOR 06007 ;
l GOTO BAC2 ;
END; .
GOTO BACK ;
: 4 SET NO-OP AS 2ND WORD %
BACK :
I AREG :z 05000 ;
GOTO BAC1 3
END;
% JUMP TYPE TEST IF JUMP AND MARK %
JMP :
. BUMP ZP ;
: IF (AKEG + 1) = 0
. THEN
BEGIN
% SET RETURN FOR JUMP AND MARK %
JMPH : AREG := @JMPS ; GOTO BAC1 ;
R END;
% SET RETURN FOR JUMP % AREG := @JMPR ;
l _GOTU BAC1 ;
END;
% INST WAS IME OR OME, BUMP P-REG AND GO %
XME :
I BUMP ZP ;
GOTO BAC2 ;
ENDP;
9 RETURN FROM JUMP; PROCESS POSSIBLE INDIRECT %
PROCEDURE JMPK $SYNTHETIC% ; % ADDRESS 33720 %
CALL ADDR ; v
ZP := AREG ;
I XREG := THRE ; % TEST TO MAKE SURE IT DOES $%
331

Look : ' ' $ JUMP INTO BKPT ROUTINE %

- WHILE (AREG := (BKRT [XREG]) - ZP) # O
0
BEGIN
... __JF.XREG = O THEN GOTO [STPP] ; XREG := XREG - 1 ;
END; -
JPBK : i
ZP := AREG :s BLOC [CNT := XREG] ;
CALL BKP ;
GOTO [STPP] ;
ENDP;

% RETURN FROM .JUMP AND MAKK; PROCESS INDIRECT %
PROCEDUKE JHPS %SYNTHETICS ; % ADDRESS 33755 %
CALL ADDR ; % STORE MARK IN JUMP ADDRESS SET P % XREG := AREG ;
ZERO [XKkEG) := AREG := ZP + 1 ;
ZP :z XREG := XREG + 1 ;
GOTO [STPP] ; .
ENDP;

% GO THROUGH POSSIBLE INDIRECT ADDRESS CHAIN STARTING IN SCND. * LEAVE
RESULT IN A REG. %

PROCEDURE ADDR ; %4 ADDRESS 34016 % .
AREG := SCND ; ADRK : WHILE AREG < O DO AREG := ZERO [XREG := AREG
- BAND 0777771 ;
ENDP;

4 DATA FOR STPP %
DECLARE SCND [1] ;
% STEP EXECUTION %

"% STOHRE REVISED SECOND WORD %

PRUCEDURE BAC1 $SYNTHETIC$; % ADDRESS 34031 %
"INST+1" := AKEG ; :
",NOP," ;
' RESTORE REGISTERS %

BACZ : % LUAD ALL KEGS AND OVFLW %

CALL LOAD ;
CALL "$LOAD"™ ; ’ % RESTORE PHYSICAL REGISTERS %
% STEP THROUGH INSTRUCTION %
INST :
",HLT,O" ;
" ,HLT,O" ;
CALL "$SAVE" ; % SAVE PHYSICAL REGISTERS IN
VIRTUAL ONES %
% SAVE REGISTERS; INCREMENT P; RETURN % CALL SAVE ; % SAVE ALL REGS
AND OVFLW %
BUMP ZP ;
IF (AREG := STIF) = 0 ’
4 IF IN BKP IGNORE TEST %
THEN
BEGIN
CALL TSTI ; 4 TEST IF STI OR INRI %
IF BREG = O THEN GOTO [STPP] ; % NO RETURN %
ZERO [XREG := ZP = 1] :=
AREG ;
4 ELSE STORE 2ND WORD OF INST §
% BACK INTO USER’S PROGRAM %
GOTO [STPP] ; . 4% RETURN $%
END;
GOTO [STPP] ;
ENDP;

332

. 4 TRIED TO STEP A HALT INSTR %
PROCEDURE HALT ZSYNTHETIC% ; % ADDRESS 34063 %
AKEG := "HA ;

CALL COUT ; % PRINT MSG %

AREG :2 ‘LT ;

CALL COUT ; _

CALL PREG ; - 4 PRINT REGS, NO RETURN %

ENDP;

¢ TSTI - TEST IF A STORE OR INCR IMMEDIATE INSTRUCTION %

PROCEDURE TSTI ; % ADDRESS 34075 %
AREG := INST ; % LOAD A REG WITH INST %
INST := BREG := ; 4 CLEAR B REG AS FLAG. CLEAR INST

IN CASE OF 2ND PASS §

IF (AKEG := AREG - 06000) < 0
THEN RETURN ; ¢ IF INST<06000 THEN NOT. AN EXT OR
IMM INST %

IF (AREG := AREG - 0100) >= 0
THEN RETURN ; 9 IF INSTSTILL + THEN CANNOT BE. A
. LOAD STORE INR INST %
IF (AKEG := AREG + 040) < 0
THEN RETURN ; - % IF INST<O0 THEN INST IS A STORE.
OR INR EXT OR IMM %

IF (AREG := AREG BAND VIEK) = 0
% IF 2 BIT ON THEN EXTENDED ELSE %
% IMMEDIATE %
THEN :
BEGIN
AREG := "INST+1" ; % IF IMM THEN LOAD A REG WITH %
BREG := BREG + 1 ; % INST OPER AND TURN ON FLAG $%
RETURN ; % RETURN %
END;
RETURN ; % EXTENDED RETURN %

ENDP;
DECLARE VIER = U4 ; % CONSTANT 4 % DECLARE THRE = 3 ; % CONSTANT 3 %

% EXECUTION SUBROUTINES %

% BLDE - LUAD A TAPE ON HIGH SPEED READER §

% COMMAND CHARACTER - L %

% SUBKUUTINE LUADS A TAPE FROM THE HIGH SPEED READER %
% INTU COkE USING THE BINAKY LOADER. %

PROCEDUKE BLDE ; % ADDRESS 34133 %

CALL bLL1 (0) ; % LOAD THE TAPE %

CALL GCOM ; % RETURN TO GET NEW COMMAND %
ENDP;

% CMNT - COMMENT EXECUTION ROUTINE %

% COMMAND CHARACTER =~ ¢

%4 ROUTINE ALLOWS ANYTHING TO BE TYPED AFTER COMMAND CHARACTER. %
4 TO TERMINATE COMMENT PRESS CK. TU CONTINUE A COMMENT ONTO %

% NEXT LINE PRESS LF. % :

333

PROCEDURE CMNT ;
L006 :)
=== WHILE @TRUE
DO
"BEGIN
“-CALL IN ;
IF (AREG := AREG - 0212) = 0
THEN CALL GCOM
;
IF (AKEG := AREG = 3) = 0
THEN CALL GCOM
;
END;
ENDP;

% PREG - PRINT ALL REGISTERS SUBROUTINE
% COMMAND CHARACTER - R %

Al

%

ADDRESS 34141 %
INPUT COMMENT CHAR %

IS IT A LF %
YES THEN END COMMENT %

IS IT A CR %
YES THEN END COMMENT %

4 SUBROUTINE PRINTS THE A B X AND P REGISTERS AND THE OVFLW IND. %

PROCEDURE PREG ;
CALL CRLF ;
XREG := ;
LOQ7 :
R WHILE @TRUE
DO
BEGIN .
AREG := RTAB [RIDX := XREG]
CALL OUT ;
RTYP := AREG ;.
CALL CBK ;.
AKEG :=
Z [XREG := RTYP - “€°] ;
CALL OTC ;
AREG := TBK ;
CALL COUT ;
IF (XREG := RIDX) = 0
THEN
BEGIN
AREG := "0 ;
CALL OUT ;
CALL CBK ;
IF (AREG := 20) # 0O
THEN AREG := 1 ;
Lo1o :
AREG := AREG + 07 ;
CALL OUT ;
CALL ‘GCOM ;
END;
ELSE XREG := XREG - 1 ;
END;
334

BR A PR R R WR W

BABA R VR PP A TR W WA

BAVADL W WRW

»

ADDRESS 34156 %

CR/LF BEFORE PRINTING %

USE X REG AS POINTER %

TO SHOW REGISTER TO PRINT §%

4 GET REG TO OUTPUT %

AND PRINT INDICATOR CHAR $%
SAVE IND CHAR ‘TO GET INDEX $%
PRINT A : AND 2 BLKS %

GET IND CHAR &%

GET INDEX IN VAR TABLE %
SET X REG = INDEX %

SET A REG TO VAR DATA §
OUTPUT DATA IN OCTAL §%
QUTPUT 2 BLANKS FOR %
SPACING 3

LOAD X REG WITH IND PTR §%
IF X=0 THEN PRINT OVFLW %

LOAD AND PRINT OVFLW %
IND CHAR %
PRINT : AND 2 BKS §

LOAD A REG WITH OVFLW %

IF 0=0 THEN OVFLW OFF %
ELSE SET O=1 TO INDICATE %

RETURN %

ELSE DEC PTR AND %~

ENDP;

DECLAKE RTAB LES DAL RS Gl - RN nepTmy
DECLAKE hkIDX
DECLAKE RIYP =

nnon
ow~
we we

DSLR - DISPLAY AND SET LOCATION SUBROUTIKNE % .

COMMAND CHARACTERS DISPLAY - < SET - > %

SUBKOUTINE PRINTS LOCATION VALUE AT LOCATION IF DISPLAY AND %
WAITS FOR A VLUE TO BE SET TO THE LOCATION. TO DEFAULT A %
BLANK FOLLOWED BY A CR OR LF IS NECESSARY. INPUTTING JUST %

A CR OR LF DOES NOTHING TO THE SPECIFIED LOCATION. %

WA VR W VAW WA

335

PROCEDURE DSLR ; 4 ADDRESS 34243 §
BREG := 0 ;. ¢ CLEAR B REG TO IND FLAG %
I IF COM # ">~
¢ LOAD A REG WITH < OR > %
4 SUBTRACT OFF A >° §
4 IF A=0 THEN SET ELSE %
THEN BREG := BREG + 1 ; 4 DISPLAY AND SET FLAG TO 1 %
LO11 : 3 SAVE FLAG FOR LATER %
- DSFG := BREG ;
ZC :=
[DSLC := := AREG := P1] ;
% GET LOC PARM %
% UPDATE € % .
4 STURE AS INIT LOC FOR DISPLAY 3%
DISP : % LOAD A REG WITH H %
I WHILE (AKEG := ZH - DSLC) >= 0 -
% SUBTRACT OFF LOC PARM %
$ IF A<O THEN H<S ERROR %
DO
BEGIN
AREG := DSLC ; % LOAD A REG WITH LOC TO PRINT §
CALL OTC ; $ QUTPUT LOC IN OCTAL %
CALL CBK ; ¢ QUTPUT A : FOLLOWED 2 BKS %
IF (BREG := DSFG) # O
4 LOAD B REG WITH COM FLAG %
¢ IF B=0 THEN SET AND SKIP DISPLAY.
THEN
l BEGIN
AREG := [DSLC] ; ¢ LOAD A REG WITH DATA AT LOC %
CALL [P2] ; 4 AND OUTPUT IT IN SPECIFIED FORM %
AREG := TBK ; ¢ SPACE 2 BLANKS %
CALL COUT ;
END;
SET : 4 LOAD A REG WITH DATA AT LOC %
SLOC := AREG := [DSLC] ; ¢ STORE AT SLOC AS DEFAULT ON SET %
L012 : ¢ CALL EXPR ANYZR TO PROCESS SET %
WHILE
€TKUE
DO
BEGIN
l CALL EXPR ;
DSTP := AREG ; % SAVE RESULT OF ANALYSIS %
IF DEF >= 0
4 LOAD A REG WITH DEFAULT FLAG TO %
) ¢ SEE IF ANYTHING WAS PROCESSED 3%
THEN SLOC := AREG := DSTP ; % IF NOTHING DONT SET LOC TO
' ANYTHING. ELSE SET LOC TO NEW DATA %
L0113 : % LOAD A REG WITH SADD INDEX %
l -_— IF BREG < 9

¢ DEC BY 9 TO SEE IF BK LF OR CR_ %
4 IF A< OR = O THEN CR OR LF OR ~ %

THEN

BEGIN .
¢ LOAD X REG WITH NEW LOC VALUE %

ROE =
i {DSLC] := XREG := SLOC ; % STORE IT AS NEW LOC VALUE 3
IF (AREG := BREG - 7) < O
‘ 9 SUB INDEX OF CRLF %
¢ IF A<O THEN CR DONE %
THEN
BEGIN
DSFH : ¢ LOAD A REG WITH FINAL LOC %
2C := AREG := [Z := DSLC] ; % UPDATE € WITH NEW LOC$
GOTO GC3 ;
END;
IF AREG = O
% LF %
THEN
BEGIN
RUE2 BUMP DSLC ; % INCK TO NEW LOC % GOTO DISP ;
- END;
IF (AREG := (DSLC := AREG := DSLC - 1) - ZL) < O
4 MUST BE ~ ¢
4 GO BACKWARDS ¢
9 CHECK LOWER BOUND %
- 4 TOO LOW §%
THEN GOTO LERR ;
GOTO DISP ;
END; '
SLOC := AREG := 0 ; 4 ELSE A BLANK SO ZERO A REG. AND
. STORE AS DFAULT IN SLOC %
END;
END;
GOTO HERR ; .
ENDP;
DECLARE SLOC = 0 ; ¢ NEW LOC DATA BUFFER %
DECLAKE DSLC = 0 ; ¢ LOC HOLDER %
DECLAKE DSFG = 0 ; % FLAG TO SHOW COM 0=SET 1=DISPLAY
DECLARE DSTP = 0 ; ¢ TEMP DATA HOLDER %
DECLARE TBK = "° " ; 4 2 BLANKS. USED FOR SPACING. %

5 STVR - SET A VAKIABLE %

% COMMANL CHAKRACTER - = 3

¢ SUBROUTINE SETS A VAKIABLE DESIGNATED BY THE INDEX IN §

% PAkM 1 EQUAL Tu THE VALUE IN PAKM 2 % .

PROCEDURE STVR ; 4 ADDRESS 34403 %
Z [XREG := P1] :=
AREG := P2 ;

4 LOAD A REG WITH NEW VAR DATA %

¢ LOAD X REG WITH VARIABLE INDEX %

¢ STORE NEW DATA IN VARIABLE %

GOTO GC3 ;
ENDP;

¢ DEXP - DISPLAY A VALUE OF AN EXPRESSION %
% COMMAND CHARACTER - ? %
4 COMMAND DISPLAYS THE VALUE OF AN EXPRESSION IN PARM2 IN THE %

% FORMAT SPECIFIED BY PAKM 1. %

336

PROCEDURE DEXP ; ¢ ADDRESS 34414 §
AREG := P1 ; % LUAD A REG WITH DISPLAY VALUE %
CALL [P2] ; % OUTPUT IN SPECIFIED TYPE %
CALT "GCOM ;. % RETURN %
ENDP;
% BDMP - BINARY DUMP ROUTINE %
% COMMAND CHARACTER - D %
% ROUTINE PUNCHES AN OBJECT TAPE USING THE BINARY DUMP %
4 ROUTINE. CONTENTS OF A B X REGS ARE SET BY THE $%
¢ PARAMETER VALUES. §
PROCEDURE BDMP ; 9 ADDRESS 34423 %
CALL GCOM ; ¢ NO DUMP ANYMORE %
ENDP; '
PROCEDURE LO14 $SYNTHETIC% ; % ADDRESS 34426 %
AREG := 0102204 ; ¢ SUPPRESS PRINT TEMPORARILY %
CALL COUT ;
(OF) := 1 ; ¢ SET OVFLW FOR PUNCH %
CALL BLDZ2 (P1, P2, P3) ; % BINARY DUMP %
AREG := 0201 ; % TURN PRINT BACK ON %
CALL OUT ; '
CALL GCOM ; 4 GET NEW COMMAND %
ENDP;
% A,N <STAKT ADDR> <FINISH ADDK> <VALUE-LOOKING-FOR> <OUTPUT-TYPE> %
% ALNT - ALL AND NOT EXECUTION SUBKOUTINES %)
% COMMANU CHARACTEXS ALL - A NOT = N §
% DISPLAYS ALL ADDHKESSES & VALUES OF DATA THAT WHEN PARM 3 AKD MASK M ¥
w» AKE ANDED EQUAL TU THE DATA AT THE GIVEN ADDRESS. ERROGR - %
v DATA AND M ARE ANDED SkUULD EQUAL PARM 3. ALL PRINTS ALL %
% OCCURRENCES OF EQUALITY AND NOT PRINTS ALL OCCURKENCES OF %
4 INEQUALITY. %

PROCEDURE ALNT ; . 4 ADDRESS 34451 %
ACNT := AREG := 0 ; % ZERO COUNT %
CALL CRLF ; 4 CR/LF BEFORE PRINTING %
CALL PCHK ; % CHECK PARMS P1,P2 §
BREG := @ANP3 ; $ SET UP INT LOC %
CALL WEC ;
BREG := ; ¢ CLEAR B REG FOR FLAG %
IF COM # N
% LOAD A REG WITH COM CHAR %
¢ TO DETERMINE WHTHER ALL OR NOT %
4 IF A=0 THEN NOT ELSE %
THEN BREG := BREG - 1 ; % ALL. SET FLAG = -1 %
LO15 : . ~ 4 SAVE FLAG FOR LATER %
ANFG := BREG ;
ANLC := AREG := P1 ; % LOAD A REG WITH S(START LOC).
SAVE STARTING LOC %
CALL ON ; % OUR INTS ON §
ANPS : % LOAD B REG WITH COM FLAG %
- WHILE @TKUE :
Do
BEGIN

BREG := ANFG ;

IF ([{ANLC] BAND ZM) = P3

LOAD A REG WITH DATA AT LOC %
AND WITH MASK M $%

W R

337

THEN

9 SUBTRACT OFF VALUE %
¢ IF A=0 THEN TEST IF ALL %

IF BREG = O % FOUND BUT NOT THEN SKIP PRINT % THEN GOTO ANPZ2 ;

__ ELSE NULL ;
“ELSE

IF BREG # 0 % IF NOT THEN PRINT LOC % THEN GOTO ANP2 ;

L016
AREG := ANLC ;

CALL OTC ;
CALL CBK ;

AREG := [ANLC] ;
CALL [P4] ;

ACNT := (ACNT + 1

AKEG := TBK ;

CALL COUT ;

IF (AREG := ACNT)
ARP2

¢ IF VALID FOR OQUTPUT THEN %

% LOAD A REG WITH LOC PRINT IN §
% OUTPUT “: ~ ¢
¢ GET VALUE OF LOCATION %
% OUTPUT VALUE IN FORMAT %
) BAND 3 ; % ACNT = NUMBER OF WDS ON LINE.
MODULO 4 %
¢ 2 BLANKS %

= O THEN CALL CRLF ; % 4 WORDS ON THIS LINE %
% CHECK FOR TOO HIGH %

IF (AKEG := ANLC - P2) >= 0

THEN
BEGIN
ANP4 : BREG := @INA
CALL WEC ;
CALL GCOM ;
END;
ELSE BUMP ANLC
END;

ENDP;

PROCEDURE ANP3 ;

CALL "$$SAVE" ,
AA := AREG ;

CALL OFF ;

CIA3 : :
AREG := INPUT (INDEV)
ANLC := P2 ;
AREG := AA ;
CALL "$$LOAD" ;
KETURN ;

ENDP;

DECLAKE ACNT = 0 ;

DECLARE ANFG = 0 ;

DECLARE AKRLC = 0 ;

DECLARE AA = 0 ;

% PCHK -- UTILITY ROUTINE TO
% WE EXCHANGE P1 AND P2. %

PROCEDURE PCHK ;
IF (AKEG := P2 - P1)
BREG := P1
P1 := AREG
P2 := BREG
RETURN ;

= P2 ;

% DONE %

49 RESTORE REG INTERRUPT $%
4 ENTER DEBUGGER $%

; % NEXT LOC %

¢ ADDRESS 34564, COME HERE ON INT
OR WHEN DONE WITH ALNT §
$SAVE PHYSICAL REGISTERS.MANUAL

INSERT%
4 SAVE A %
% OUR INTS OFF %
$ CLEAR INPUT REG %
' % LAST ADDR FOR SEARCH. CAUSE ALNT

TO STOP NEXT TIME %
% RESTCORE A %
%LOAD PHYSICAL REGISTERSS
% RETURN %

4 COUNT # WOKDS ON LINE %

% COMMAND FLAG 0=NOT -1=zALL %
4 SEARCH LOC HOLDER %

% SAVE A REG %

CHECK IF P1 <= P2. IF NOT, THEN §

¢ ADDRESS 34603 %
>= 0 THEN RETURN ; % OK §

% P1 AND P2 EXCHANGED %
4 RETURN %

338

ENDP;

% MOVE - M <START.SOURCE> <END.SOURCE> <START.TARGET> %
5 MOVE WURDS [P1,P2] T [P3,P3+P2-P1] %
§ MUST HAVE P1<=P2, P2<=H, L<=P1, P3+P2-P1 <= H §

PROCEDUKE MOVE ; . % ADDRESS 34617 %
CALL PCHK ; % CHECK PARMS P1,P2 §%
IF (AREG := (((P2 + P3) = P1) = ZH) = 1) >= 0
9 P3+P2-P1 (FINAL TARGET) > ZH §
THEN GOTO HERR ; .
XREG := P1 ; § MOVE IT §

WHILE €TRUE
DO
BEGIN
IF (AREG := (XREG = P2) - 1) >= O THEN CALL GCOM ; % FINISHED %

[P3] := AREG := ZERO [XREG] ; % SOURCE. TO TARGET %
XREG := XREG + 1 ;
BUMP P3 ;

END;

ENDP;

FILL - FILL LOCATIONS EXECUTION SUBROUTINE %

F <START.LOC> <END.LUC> <VALUE> %

SUBROUTINES FILLS LOCATIONS PARM 1 THROUGH PARM2 WITH THE %
VALUE IN PARM 3. %

ELR TR RTY

wE USE THE MOVE ROUTINE §%
P1 := START (P1) %

P2 := FINISH (P2) -1 %

P3 := START (P1) +1 %
[P1] := VALUE (P3) %

ROCEDURE FILL ; % ADDRESS 34650 %
CALL PCHK ; § CHECK THE PARMS P1,P2 §
P2 := P2 -1 ;
[P1] := P3 ; -
P3 := AREG := P1 + 1 ;
CALL MOVE ; 4 NO RETURN %

ENDP;

BKPT - SET BREAK POINT SUBROUTINE %

SETS UP BREAKPOINT INFO. %

BLOC HOLDS BREAKPOINT LOCATION. %

BWD1 AND BWD2 HOLD INSTRUCTIONS REPLACED BY JUMP TO $%
BREAKPOINT PROCESSING. %

BCNT HOLDS COUNT OF TIMES THROUGH BREAKPOINT. %

BLMT HOLDS LIMIT ON TIMES THROUGH BRKEAKPOINT. %

BTYP HOLDS FLAG ON TYPES OF INSTRUCTIONS REPLACED. %
-1 = DOUBLE WORD INSTRUCTION %

0 = TWO SINGLE WOKD INSTRUCTIONS %

1 = SINGLE FOLLUWED BY A DOUBLE WORD INSTRUCTION %
CNT IIS USED ON ENTRY TO BREAKPOINT PROCESSING TO %
INDICATE WHICH BREAKPOUINT WAS ACTIVATED. &

B0 P8 B R VR R B VA A R VA RV

PRUCEDURE BKPT ; ‘ % ADDKESS 34665 %
IF P1 >= 0
% CHECK PARM 1 %
§ IF NEG, LIST BRKPTS %

339

Al BEE BN AN BaN BN I Tan BEn N BN BN N AN T I A A e
lacl ik L L L

THEN
BEGIN :
XREG := TKES ; 4 TEST TO MAKE SURE A %
BKP2 : % BRKPT HAS NOT BEEN SET %
- _ WHILE (AREG := (BLOC [XREG]) - P2) # 0
M , 4 AT THIS LOC PREVIOUSLY %
¢ YES THEN ERROR %
DO
IF XREG = O
THEN
BEGIN
IF (AREG := BLOC [XREG := P1]) >= 0
4 TEST TO SEE IF PREVIOUS BKPT %
¢ AT P1 &

THEN GOTO BERR ;
BLMT [XREG] := P3 ;
CNT := BCNT [XREG] := AREG := 0 ;
ZC := ZEKO [Z := BREG := P2] ; % UPDATE € %
BwD1 [XREG] := ZERC [BLOC [XREG] := BREG] ;
ZEKO [BKEG] := 01000 ; % LOAD A REG WITH JMP INSIR %
BwD2 [XREG] := ONE [BREG) ;
ONE [BREG] := AkkG := BKRT [XREG] ;
BKEG := BWD1 [XREG] ;
§ GET TYPE FLAG FOR 1ST WORD § CALL TYPA ;
IF (BTYP [XREG] := AKEG) >= O
THEN
BEGIN -
BREG := BWD2 [XREG] ;
4 GET TYPE FLAG FOR 2ND WORD § CALL TYPA ;
IF AREG # O THEN BTYP {XREG] := AREG := (AREG + 1) + 1
’
END; .
4 TERMINATE COMMAND AND RETURN %

CALL GCOM ;
END; . :
ELSE XREG := XREG - 1 ;
GOTO BERR ;
END;
% OUTPUT LOCATIONS WITH BRKPTS ON THEM %

BKQ : % START AT BRKPT 0 %
XREG := 0 ;
LO17 : 4 GET LOCATION ADDRESS %
WHILE €TRUE
DO .
BEGIN
IF (BLOC [XREG]) >= 0
4 NOT A BREAK PT %
THEN ‘
BEGIN
AKEG := XREG + ~ 07 ;
CALL COUT ; 4 OUTPUT #: %
CALL CBK ;
AREG := BLOC [BKQX := XREG) ; % SAVE X. GET BRK PT LOC %
CALL OTC ; % QUTPUT IT IN OCTAL %
XREG := BKQX ; 4 RESTORE X ¥
END;
BKQY4 : 4 NEXT %
— IF (AREG := (XREG := XREG + 1) = 4) >= 0
% DONE? %
: 4 NO % ’
THEN CALL GCOM ; ¢ BACK TO TOP LEVEL §
END; :

ENDP;

340

Il i Bl N B N A I B I B EE TR e T B A Eam e
&
Fal
v
o}

DECLARE BKQX = 0 ; .

¢ DATA FOR SETTING JUMP %
DECLAKE BKRT = ("(BKO)", "(BK1)", n(BK2)", "(BK3)") ;

% TYPE ANALYSIS SUBROUTINE; 1ST WORD IN B REG; ON EXIT %
% A KEG HOLDS -1 IF DOUBLE O IF SINGLE. %
PRUCEDURE TYPA ; % ADDRESS 35030 %

AREG := H
CALL SHIFT (Ou4u4) % LLRL 4 3 ;
IF AREG = O
THEN .
BEGIN
§ OP ZERO IF M = 0 4 5 7 STILL SINGLE WORD %
TYPB :
- CALL SHIFT (O4443).% NIL NIL % ;
IF AREG = O THEN RETURN ;
IF (AKEG := AKREG - TRES) = 0 THEN GOTO TYPD ;
IF AREG < O THEN GOTO TYPD ;
¢ M IS 4 OR GREATER; IF 6 SET DOUBLE WORD FLAG. %
TYPC :
D— IF AREG = TRES THEN GOTO TYPD ;
END;
TXPF : .
AREG := 0 ; -
RETURN ;
% SET -1 AND EXIT %
TYPD :
AREG := =1 ;
RETURN ;
"ENDP;

DECLARE TRES = 3 ; % CONSTANT 3 %

% EXECUTED BREAKPOINTS CUME HERE %
% Wk EXPECT CNT TO BE ZERO %
PKOCEDURE BK> $SYNTHETIC% 5 % ADDRESS 35061 %

INSTRUCTIONS %

BUMP CNT ;
BK2 :
BUMP- CNT ;
BK1 :
BUMP CNT ;
% SAVE REGISTERS %
BKO : $ SAVE THE REGISTERS §%
CALL "$SAVE" ; ¢ SAVE PHYSICAL REGISTERS %
CALL SAVE ;
ZP := BLOC [XREG := CNT] ;
IF (AREG := (BCNT [XREG]) - (BLMT [XREG])) >= O
THEN GOTO BKA ;
¢ DONT BREAK; EXECUTE BREAKPOINT
BCNT [XREG] := (BCNT [XREG]) + 1 ;
BREG := @INP ;
CALL WEC ; 4 SET UP INT LOC %
CALL BKP ;
CALL ON ; 4 OUR INTS ON %
CALL "$LOAD" ; . ¢ LOAD PHYSICAL REGS %
GuTOo [ZP] ; % RETURN TO USER PGM %
ENDP; .

4 PROCESS BREAKPOINT; BK # IN X REG AND CNT %

341

PROCEDURE BKP ; : 4 ADDRESS 35115 %
STIF := H 4 CLEAR DOUBLE WORD FLAG %

0 ;
BWD1 [XREG] ;

BREG :
IF (AKEG := BTYP [XREG]) < 0
THEN -
BEGIN v
4 DOUBLE WORD INSTRUCTION %
BDBL :
I AREG := BWD2 [XREG] ;
BUMP STIF ; ¢ TURN ON DOUBLE WORD FLAG %
"END;
ELSE
IF AREG = 0
THEN
BEGIN
% SINGLE WORD INSTRUCTIONS %
BSNG : CALL STPP ; BREG := BWD2 [XREG := CNT] ;
—— END;
ELSE
BEGIN
$ SINGLE FOLLOWED BY DOUBLE; STEP THROUGH SINGLE % CALL STPP ;
BHKEG := bWD2 [XREG := CNT] ;
AREG := TWO [XRRG := BLOC [XREG]] ;
END; .
BKB :
I CALL STPP ; . .
IF (AREG := BTYP [XREG := CNT]) < O
¢ TEST IF DOUBLE WORD %
: § NO THEN SKIP CHECK %
THEN '
BEGIN))
CALL TSTI ; 4 TEST TO SEE IF STI OR INRI %
IF BREG # O
¢ IF NOT THEN CONTINUE PROCESSING %
THEN BWD2 [XREG] := AREG ; % ELSE UPDATE 2ND OF BKPT %
END;
4 RESTORE REGISTERS AND GO %
BKD : ¢ CLEAR CNT AND DOUBLE WORD FLAG %
CNT := STIF := AREG := 0 ;
CALL LOAD ; ¢ LOAD ALL REGS AND OVFLW %
RETURN ; A
ENDP;

% TAKE BREAK; RESET COUNT TO ZERO %
PROCEDURE BKA %SYNTHETIC% ; % ADDRESS 35200 %
BCNT [XREG] := AREG := 0 ;

CALL CRLF ;
’ ¢ PRINT BREAK POINT NUMBER THAT WAS

EXECUTED %
4 E.G. <0> FOh BREAKPOINT ZERO. %
AKEG := <7 ;
CALL OUT ;
AREG := CNT BOR “0° ;
CALL OUT ;
AREG := >° ;
CALL OUT ;
BHEG := @INA ;
CALL WEC ;) % SET UP INT ADDR %
CALL GCOM ;
ENDP;

% GO ROUTINE; CHECK IF BREAKPOINT %

342

PROCEDURE GO ; % ADDRESS 35230 %
CALL CRLF ;
ZP := P1 ;
XREG := H

- WHILE (AREG := (BLOC [XREG := XREG - 1]) - P1) # 0
DO
IF XREG = 0
THEN
BEGIN
BKP := AREG := 6GEND ;
BREG := @INP ; % POINT INPUT TO INPUT CNTRLR ¥
CALL WEC ; $ INT LOC PTS TO INP §
GOTO BKD ;
END;

[+
(]
O
b

CNT := XREG ;
BREG := 8INP ;

CALL WEC ;

CALL BKP ;

CALL ON ;

CALL "$LOAD" ; % LOAD PHYSICAL REGS %
GoTO [zZP] ; ¢ TO USER AGAIN %
ENDP;

PROCEDURE GEND $SYNTHETIC% ; % ADDRESS 35264 %
CALL ON ; . .
CALL "$LOAD" ; 4 LOAD PHYSICAL REGS §%
GOTO [ZP] ;

ENDP;

% DATA STORAGE FOR BREAKPOINT %
DECLARE CNT [1]
DECLARE BTYP
DECLAKE BLOC
DECLAKE BWD1
DECLAKE BWD2
DECLARE BCNT
DECLAKE BLHMT

2 O
20

0, 0)
L L
0, 0)
0, 0)
0, 0)
0, 0)

Do
]
s
=

, "e1m) .

LU T T TR TR 7]
NN N N
OOOO'

-

C I —
L

e we we we

OO0

DECLARE STIF DOUBLE WORD FLAG §%

]
(=]
wa

% CLEAR BREAKPOINT SUBROUTINE %

PRUCEDURE CLR ; % ADDRESS 35335 %
IF (AKEG := P1) < O
JMP IF WE CLEAR ALL %

R

THEN
BEGIN
: P1 := AREG
.CALL CLEAR ;
BUMP P1 ;
CALL CLEAR
BUMP P1 ;
CALL CLEAR
BUMP P1 ;
CALL CLEAR ;
CALL GCOM ;
END;
ELSE
BEGIN
ENgALL CLEAR ; % CLEAR JUST ONE % CALL GCOM ; % NO RETURN %
’ .

E?

"
o

03
1%
2 %

-e

W W@ W W
w

RETURN TO TOP LEVEL %

343

ENDP;
PROCEDURE CLEAR ; % ADDRESS 35364 §
IF (AREG := BLOC [XREG := P1]) < 0 THEN RETURN ; % RETURN, NO BKPT .
SET
BREG := AREG ;)
ZERG [BKEG] := BwD1 [XREG] ;
ONE [BREG] := BWD2 [XREG] ;
BLOC [XREG] := AREG := -1 ; ¢ PUT -1 IN BLOC %
RETURN ; % RETURN %
ENDP;

PROCEDURE BERR $SYNTHETIC$; % ADDRESS 35406 %
CALL CRLF ; AREG := 'PB° ; % PREVIOUS BKPT ERROR % CALL COUT ; GOTO
. BANG ;

ENDP;

9 GCOM - COMMAND CONTROLLER AND PROCESSOR ROUTINE %

%4 SUBROUTINE INPUTS AND CHECKS COMMAND CHARACTERS. PROCESSING %
% OF THE COMMAND BY GETTING THE PROPER PARAMETERSOFF THE %

3 COMHAND POINTER TABLES(CMT AND CMPT) AND BRANCHING TO THE %

% PHUPER COMMAND EXECUTIUN SUBROUTINE. %

PRUCEDURE GCOM ; % ADDRESS 35416 %
Lo20 : % OUT INTS ON %
WHILE E6TKUE
DO
BEGIN
CALL ON ;
CALL CRLF ; % OUTPUT CR/LF TO TERMINATE
) PREVIOUS COMMAND %
GC3 : ()$INSERTED BY HAND; EXTERNAL ENTRYS
OF) :=

PDEF := BREG := 0 ;

4 CLEAR B REG AND RESET %

% PERMANENT DEFAULT FLAG %

4 RESET OVFLW IND IF IT WAS ON %
AREG := “#° ; % PROMPT SIGN %
CALL OUT ; 4 OUTPUT CHARACTER %

CALL IN ; - - ¢4 INPUT COMMAND CHAR §

IF (AREG := (COM := AREG) - 0203) = 0O
9 SAVE COM CHAR FOR LATER %
4 IF CONTROL-C %
% GO TO MON %

THEN
BEGIN
GMON : CALL OFF ; CALL [MON] ; % TO MONITOR %
END;
ELSE
BEGIN
IF CoM = /°
4 RESTORE COMMAND CHARACTER $%
% / 1S SYNONYM FOR < %
THEN
BEGIN GCU4: AREG := ‘<’ ; END ;
_ ELSE
BEGIN

AREG := COM ;
*,CALL,ILC, :","U"" ; % TEST FOR LEGAL COM CHAR %

34y

T1 := (OF) ; % IF NOT THEN ERROR %
- (OF) := 0 ;
IF T1 THEN GOTO BANG ;
END; .
GCS : . % ELSE GET’AN INDEX ON CMT %

d ’,

IF (AREG := CMT [BREG := AREG - ":7]) = 0

% AND STORE INDEX IN B REG %
% LOAD A REG WITH PARM PTR %
% IF A=0 THEN ILLEGAL COMMAND %
THEN GOTO BANG ;
PADR := AREG ; % ELSE STORE POINTER TO GET PARMS §
AREG := ~ 7 % OUTPUT SEPARATOR BLANK %
CALL OUT ; % OUTPUT BLANK $%
GPRM : % CLEAR B REG AND %
PLDR := BEREG := 0 ; % PAKM STORAGE INDEX %
Lo21 : % LOAD EXPR WITH DUMMY %
WHILE @TRUE
DO :
BEGIN
EXPR := AREG := €GP8 ; % ERROR RTN ADDRESS §%
. CALL [PADR] ; % GET 1ST PARM VALUE §
GP8 : #INSERTED BY HAND; EXTERNAL ENTRY%

P1 [XREG := PLDR] :=
AREG ;

% LOAD.X REG WITH PSI %

% STORE RESULT IN PARM %
BUMP PLDR % INCR PARM STORAGE INDEX %
BUMP PADR %

END;

POINT TO NEXT PADR LOC %

ENDP;

DECLARE PLDR
DECLARE PADR
LECLAKE P1
DECLARE P2
DECLAKRE P3
DECLARE P4
DECLARE COM = 0 ; » COMMAND STORAGE AREA %

% PARAMETER STORAGE AREAS §

[N =NoNaNTIN
“ wsus e OO

345

I ' 4 SPECIAL DATA AREAS % : .

	Z699.C3_118
	Z699-C3_118004

