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Usp9x regulates a peri-implantation switch in PRC2 activity 
 

Trisha Anne Macrae 
 

Abstract 
 

How does a cell narrow from many possible fates to one? This question is highly relevant 

to pluripotent stem cells, which generate all tissue types of the adult organism. One 

answer is that pluripotent cells in vitro and in the peri-implantation mouse embryo undergo 

global rewiring of their chromatin landscape to prepare for lineage commitment. In this 

dissertation, I explore molecular mechanisms that regulate chromatin state during early 

development. 

 

The emergence of permissive chromatin and hypertranscription in pluripotent cells 

enables rapid proliferation and lineage induction. We found that cellular growth pathways, 

most prominently translation, perpetuate the euchromatic state and hypertranscription of 

mouse embryonic stem (ES) cells. Inhibition of translation rapidly depletes euchromatic 

marks and reduces nascent transcription in ES cells and blastocysts. Our results identify 

a positive feedback loop between chromatin state and translational output, whereby high 

translational output sustains levels of unstable euchromatin regulators and may set the 

pace of proliferation at peri-implantation.  

 

The transition to a permissive chromatin state coincides with widespread loss of 

facultative heterochromatin. Repressive histone H3 lysine 27 tri-methylation 

(H3K27me3), deposited by Polycomb Repressive Complex 2 (PRC2), is redistributed 

from broad distal blankets to mark the promoters of developmental genes. In this thesis, 
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I report a post-translational mechanism for control of PRC2. I found that the 

deubiquitinase Usp9x regulates PRC2 stability and activity in ES cells, and Usp9x levels 

capture the molecular transitions at implantation with remarkable fidelity. Transcriptome 

and chromatin analyses reveal that Usp9x-high cells bear a molecular signature of the 

pre-implantation embryo, whereas Usp9x-low cells resemble the post-implantation, 

gastrulating epiblast. These findings indicate that physiologic decline of Usp9x expression 

destabilizes PRC2 and helps constrict H3K27me3 during lineage induction. Deletion of 

Usp9x in pluripotent epiblast cells results in delayed repression of early lineage genes 

and developmental defects by embryonic day 9.5. 

 

Studies in ES cells and early embryos provide insight into the regulatory logic that not 

only shapes embryonic development, but also underlies cell fate transitions more 

generally. The mechanistic interdependence of euchromatin, transcription and translation 

may apply to other fast-proliferating cells. Usp9x recurs as a marker of “stemness”; is 

essential for fly, mouse, and human development; and is mutated in various neurological 

disorders and cancers. Thus, the work described in this thesis has implications for 

stem/progenitor cell compartments, stem cell-based therapeutics, tissue regeneration 

and engineering, and cancer. 
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General Introduction 
 

It is not birth, marriage, or death, but gastrulation, which is truly the most important time in your life. 

– Lewis Wolpert (1986) 

 

 It is impossible to say which stage of mammalian embryonic development is the most 

important. Some argue that it is gastrulation, or the establishment of the three embryonic germ 

layers. It is difficult to refute this point: mechanisms that drive gastrulation help form the body 

plan, meaning that they literally set the stage for subsequent development. To be clear, 

gastrulation is indeed a fascinating stage of development. Another candidate for the most 

important stage may be the “phylotypic stage” of development, the point at which vertebrate 

embryos attain a stereotyped form and are nearly indistinguishable from each other. The 

existence of a phylotypic stage suggests that major evolutionary pressures are at work to 

conserve certain features of embryonic development. In the mouse, the phylotypic stage occurs 

~3-4 days after the embryo implants into the uterus, and it is also one that we will return to later 

in the text. Progression to first to gastrulation and then to the phylotypic stage, however, is 

predicated upon surviving the first few embryonic cell divisions. Let us not forget that all organisms 

begin as a single cell.  

 

Development of the early mouse embryo 

The first week is a dramatic time for the developing embryo (Fig. 1). The meeting of the 

sperm and the egg (oocyte) marks the time of fertilization, which in the mouse sets the 

developmental clock at embryonic day (E) 0. Within about 5 days, the large single-cell embryo (1-

cell zygote) of the developing mouse segregates into embryonic versus precursor extraembryonic 

cells, in so doing transitioning from having cells of equivalent developmental potential to cells with 

specialized function (differentiation); it transitions from relying on RNA and protein molecules 
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stored in the cytoplasm, inherited from the oocyte, to transcribing genes from its own diploid 

genome; and, finally, it implants into the uterus. It is time to gastrulate. 

One thing that does not occur within the first 5 days is growth. The dramatic changes in 

cell fate occur with minimal net gain of biomass. After fertilization, the zygote undergoes several 

rounds of cleavage cell division, meaning that the cells of the embryo divide without growing. 

Compaction begins at the morula stage (~E2.5), when adjacent cells form specialized 

attachments to each other and the mass of ~16 cells forms a tight clump of cells. Although all 

cells, or blastomeres, of the embryo possess near-identical developmental potential at this stage, 

there are now distinct biological differences between inner cells and outer cells of the morula 

(Cockburn and Rossant, 2010). The first irreversible lineage segregation event, or irreversible 

separation between cell types, occurs in the mouse by E3.5, when the embryo transitions from 

morula to the blastocyst. The newly formed blastocyst has two cell types, which are now set to 

give rise to distinct cell types in the subsequent embryo: outer cells now represent the nascent 

trophectoderm, which will generate extraembryonic tissues such as the placenta, while the cluster 

of cells in the inner cell mass (ICM) are now restricted to form only tissues of the embryo proper. 

The embryo also contains a large fluid-filled cavity called the blastocoel, formed by solute-

pumping activity of the outer cells (Manejwala et al., 1989). The small group of inner cells, or 

pluripotent cells, is the central focus of this dissertation.  

Now that the first lineage event has occurred, the floodgates to cellular specialization have 

opened. The next irreversible lineage segregation happens between E3.5 and E4.5 with the 

partitioning of the ICM into sub-populations that express either Nanog or Gata6 (Chazaud and 

Yamanaka, 2016). Nanog-positive cells now represent the pluripotent cells of the epiblast, which 

will generate all the embryonic germ layers. Gata6-positive cells abut the epiblast cells to line the 

blastocoel, and they represent another extraembryonic tissue called the primitive endoderm (PrE). 

The PrE will specialize into the visceral endoderm, which emits inductive cues to help pattern the 
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embryo after implantation and contribute to the yolk sac, an important nutritive tissue for the post-

implantation embryo (Rossant and Tam, 2009). 

 

 

 

 Whereas cell divisions of the cleavage-stage embryo occur slowly, early post implantation 

epiblast cells cycle extremely rapidly. To account for the rapid growth of the post-implantation 

mouse embryo, on average cells must divide once per ~5.1 hours. The actual division rate varies 

depending on cell type: epiblast cells located just anterior to the primitive streak divide at the 

astonishingly fast rate of once per 2-3 hours so that they can replenish the cells migrating through 

the primitive streak to form mesoderm and endoderm precursors (Snow, 1977). Thus, the embryo 

grows from about 150 cells at E5.5 to nearly 15,000 at E7.5 (Snow, 1981). Our lab has proposed 

that hypertranscription, or an elevation of a large part of the transcriptome, helps sustain 

E0.5 1.5 2.5 3.5 5.54.5 9.56.5

IMPLANTATION

Stages of pluripotency: 

Pluripotency genes
Differentiation genes

Naïve Formative Primed 

Figure 1. Timeline of early mouse development. 
The fertilized egg at E0.5 undergoes cleavage division until ~E3.5, when the embryo 
becomes a blastocyst and begins to grow in volume. Three lineages are evident at 
E4.5: nascent trophectoderm (outer cell layer), primitive endoderm (line of cells 
touching blastocoel cavity), and the inner cell mass. The late blastocyst implants into 
the uterus ~E4.5-E5.5, at which point epiblast cells commence rapid mitoses. 
Gastrulation at the primitive streak begins at E6.5 (dark purple in figure), establishing 
the three germ layers and specifying primordial germ cells. Bottom: epiblast cells 
progress through stages of pluripotency, defined in large part by graded expression of 
pluripotency versus lineage genes. See text for details. 
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metabolic demands of the rapid-amplifying post-implantation epiblast (Guzman-Ayala et al., 2014; 

Percharde et al., 2017). 

 This short period of rapid growth poses several interesting developmental challenges. 

First, it places a critical demand on the mother. As the embryo implants and grows in size, it also 

extracts more nutrients from the uterine environment. Does it follow that embryos unlikely to give 

rise to viable offspring, either due to an intrinsic growth defect in the embryo or due to poor nutrient 

availability on the maternal side, should be pruned before implantation? Alternatively, is there a 

module in mammalian development that matches optimal uterine conditions to timing of 

embryonic development? (The answer to this question is yes—see, e.g., Bulut-Karslioglu et al. 

(Bulut-Karslioglu et al., 2016)). Second, what mechanisms help the embryo sustain this rapid 

embryonic growth? Finally, what mechanisms help control this rapid growth? Hypertranscription 

is a relative state, one that the embryo enters into and must exit from in order for development to 

proceed. We will consider aspects of these questions in chapters 1 and 2.  

 

Model systems for early embryonic development 

 Pluripotency is difficult to study in vivo as it is transient and occurs in few cells. Much of 

our understanding of pluripotency derives from mouse embryonic stem (ES) cells cultured in vitro, 

first derived in 1981 (Evans and Kaufman, 1981; Martin, 1981). ES cells are defined by two major 

properties: the ability to generate both more of themselves (self-renewal) and three germ layers 

plus the germline of the developing embryo (pluripotency) (Bradley et al., 1984). Unlike 

pluripotency in vivo, pluripotent ES cells propagate essentially indefinitely under specific culture 

conditions. Since ES cells are also amenable to various manipulations and genetic perturbations 

and can be expanded, they make an ideal model for studying mechanisms of pluripotency.  

 An in-depth discussion of the emergence, maintenance, and exit from pluripotency is 

beyond the scope of this thesis. A major finding from mouse ES cell culture is that pluripotency 

exists along a spectrum, ranging from “naïve” to “primed” pluripotency, the latter term referring to 
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priming of lineage gene expression (Fig. 1) (Nichols and Smith, 2009). A defined culture medium 

supplemented with a Mek/Erk inhibitor and a Wnt agonist (two inhibitors, 2i) along with leukemia 

inhibitory factor (LIF) maintains a ground state of naïve pluripotency (Ying et al., 2008). This state 

is defined by low global levels of DNA methylation, low expression of lineage markers, and high 

expression of naïve pluripotency factors such as Nanog and Zfp42 (Rex1) (Marks et al., 2012). 

Molecularly, 2i ES cells resemble the ICM of the pre-implantation blastocyst (Boroviak et al., 

2014). Culture in serum/LIF serves as a reasonable proxy for the fast-growing epiblast cells of 

the peri-implantation embryo described above. These cells show heterogenous morphology and 

expression of pluripotency, and at the molecular level they largely resemble the early post-

implantation epiblast. 

Primed pluripotency refers to the pluripotent cells of the post-implantation epiblast. These 

cells are functionally pluripotent, i.e. can generate all three germ layers, but they show reduced 

self-renewal and ability to contribute to embryo chimeras, characteristics reflecting their distinct 

molecular identity (Brons et al., 2007; Tesar et al., 2007). Embryos lose their ability to generate 

primed epiblast stem cells (EpiSCs) soon after the end of gastrulation, ~E8.25 (Kojima et al., 

2014), corresponding to the loss of teratogenic potential (a proxy for pluripotency) observed by 

embryo transplant experiments (Beddington, 1983; Damjanov et al., 1971). Ectopic reactivation 

of Oct4 expression extends pluripotency up to E13.5 (Osorno et al., 2012), suggesting that 

vestiges of the developmental plasticity program linger past the normal interval of pluripotency. In 

sum, although it is difficult to study pluripotency in vivo, it is likely that ES cells reflect the trajectory 

of developmental competence in the developing embryo (Smith, 2017). 

Other cellular models for pluripotency include primordial germ cells (PGCs), the 

precursors to the gametes (oocytes and sperm). In vitro, PGCs can give rise to Embryonic Germ 

Cells, which are functionally pluripotent. Additionally, under conditions of unrestrained growth 

PGCs can form germ cell carcinomas, including teratocarcinomas, or tumors composed of all 

three germ layers. These rare cancers were the source of embryonal carcinoma cells that served 



 7 

as the first in vitro model for pluripotency and are still used today (Kleinsmith and Pierce, 1964). 

More recently, several groups have established methods to culture expanded-potential stem cells 

as a model of the totipotency-to-pluripotency transition, as these cells are capable of contributing 

to extraembryonic as well as embryonic tissues (Choi et al., 2017; Yang et al., 2017).  

 Within the last 15 years, another paradigm for pluripotency has emerged in the form of 

induced pluripotent stem cells (iPSCs). Building on decades of work that established that 

differentiated cell types can be induced to de-differentiate, or reprogram, and defined pathways 

of pluripotency came the discovery of pluripotency induction by ectopic expression of key 

pluripotency factors (Takahashi and Yamanaka, 2006). iPSCs hold great promise for a range of 

biomedical applications. They can be derived with relative ease from somatic human tissue, and 

thus they sidestep the need for human embryos, which have raised ethical concerns in the United 

States even though only discarded embryos from fertilization clinics are used for research. 

 The work presented in the subsequent chapters is aimed to explore mechanisms of 

chromatin regulation in early development, using mouse ES cells as a primary model system. 

Although my interest in pluripotency stems from a general interest in these cells that generate the 

entire embryo, they are important for other reasons. The transition from pluripotency to 

differentiation is a good model for cell fate transitions more generally, which are relevant to tissue 

development, homeostasis, and regeneration/repair. Moreover, pluripotent embryonic stem cells 

have essential parallels to other somatic and adult stem cells, especially those that involve 

activation and expansion of the stem cell compartment. They can also provide insight into cancer 

stem cells and other states of cellular quiescence. 
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Chapter 1:  
 
The transcriptionally permissive chromatin state of embryonic stem cells is 
acutely tuned to translational output 
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Summary 
 
A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation 

of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide 

screen to systematically dissect the regulation of the euchromatic state of ESCs. The results 

revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic 

state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic 

marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and 

reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin 

accessibility, which decreases at a subset of active developmental enhancers and increases at 

histone genes and transposable elements. Proteome-scale analyses revealed that several 

euchromatin regulators are unstable proteins and continuously depend on a high translational 

output. We propose that this mechanistic interdependence of euchromatin, transcription and 

translation sets the pace of proliferation at peri-implantation and may be employed by other 

stem/progenitor cells. 
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Introduction 
 

Stem and progenitor cells often display a distinct chromatin landscape associated with high levels 

of transcriptional activity (Gaspar-Maia et al., 2011; Percharde et al., 2017a). This chromatin state 

has been extensively studied in embryonic stem cells (ESCs) cultured in serum, which represent 

the rapidly proliferating pluripotent cells of the peri-implantation embryo (Smith, 2017). ESCs and 

pluripotent cells of the blastocyst display a remarkably decondensed chromatin pattern with low 

levels of compact heterochromatin (Ahmed et al., 2010; Efroni et al., 2008) and high levels of 

histone marks associated with transcriptional activity, such as H3/H4 acetylation and H3K4me3 

(Ang et al., 2011; Lee et al., 2004). In agreement, ESCs are in a state of hypertranscription 

(Percharde et al., 2017a) that includes global elevation of nascent transcriptional output (Efroni 

et al., 2008). 

 

Several factors have been implicated in the regulation of the permissive chromatin state of ESCs, 

including the histone acetyltransferases Tip60/p400 (Fazzio et al., 2008) and Mof (X. Li et al., 

2012), the trithorax group protein Ash2l (Wan et al., 2013) and the ATP-dependent chromatin 

remodelers Ino80 (Wang et al., 2014) and Chd1 (Gaspar-Maia et al., 2009; Guzman-Ayala et al., 

2014). We have shown that Chd1 binds broadly to the transcribed portion of the genome and 

promotes hypertranscription by both RNA Polymerases I and II in ESCs (Gaspar-Maia et al., 

2009; Guzman-Ayala et al., 2014). This Chd1-driven state of elevated transcription is essential 

for growth of pluripotent epiblast cells of the mouse embryo at the time of implantation (Guzman-

Ayala et al., 2014) and of hematopoietic stem/progenitor cells emerging from the endothelium at 

mid-gestation (Koh et al., 2015). These data indicate that a permissive chromatin associated with 

global hypertranscription is required for developmental transitions that involve rapid proliferation 

of stem/progenitor cells. While ESC chromatin has been the subject of many studies, the 

regulation of their permissive, hypertranscribing chromatin state has not been dissected on a 
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genome-wide scale. Moreover, a key question remains to be answered: how is hypertranscription 

set to the needs of rapidly proliferating pluripotent stem cells? In other words, how do pluripotent 

stem cells, such as ESCs, sense when not enough or too much transcription is occurring, and 

adjust their chromatin state accordingly? 

 

We report here a genome-wide RNAi screen to systematically probe the permissive chromatin 

state of ESCs. Integrated analyses at the functional, chromatin, transcriptional and proteome level 

reveal that the growth capacity of ESCs, specifically the translational output, directly promotes a 

permissive chromatin environment, at least in part by maintaining the levels of unstable 

euchromatin regulators. The results reveal a dynamic positive feedback loop between permissive 

chromatin and translation that drives proliferation of pluripotent cells and may be tuned by 

signaling and availability of nutrients.  
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Results 
 

A genome-wide RNAi screen identifies new regulators of euchromatin in ESCs  

We sought to generate a live-cell reporter for euchromatin that would allow dissection of the 

dynamics and regulation of the euchromatic state of ESCs. The histone mark H3K4me3 is 

associated with active transcription, is directly and specifically bound by the double 

chromodomains of Chd1 (Flanagan et al., 2005) and is present at high levels in undifferentiated 

ESCs (Ang et al., 2011). We therefore generated mouse ESCs expressing a fusion between the 

Chd1 chromodomains and EGFP (referred to as Chd1chr-EGFP). As a control, we used ESCs 

expressing an Hp1a-EGFP fusion protein (Bulut-Karslioglu et al., 2014), which recognizes 

H3K9me3, a mark of constitutive heterochromatin. As anticipated, fluorescence in Chd1chr-EGFP 

ESCs displays a diffuse nuclear pattern, whereas it is restricted to DAPI-dense heterochromatin 

in Hp1a-EGFP ESCs (Figure S1A). Moreover, Chd1chr-EGFP signal positively correlates with 

endogenous Chd1 expression, H3K4me3 levels and nascent transcription (Figure S1B).  

 

To assess whether the Chd1chr-EGFP reporter responds to manipulations of the chromatin state, 

we first knocked down Wdr5, a core component of MLL complexes that deposit H3K4me3 (Ang 

et al., 2011). Wdr5 knock-down completely depletes H3K4me3 levels and leads to a specific 

decrease in Chd1chr-EGFP reporter intensity within 3 days, with the Hp1a-EGFP reporter 

remaining unaffected (Figure S1C, D). Similarly, we observed a rapid decrease in Chd1chr-EGFP 

intensity along with reduced H3K4me3 levels upon retinoic acid (RA)-mediated differentiation of 

ESCs for 2 days, prior to any detectable changes in the activity of the Hp1a-EGFP reporter (Figure 

S1E, F). Taken together, these results indicate that the Chd1chr-EGFP reporter responds as 

expected to perturbations of the euchromatic landscape of ESCs. 

 



 13 

To uncover regulators of the euchromatic state of ESCs, we next used the Chd1chr-EGFP ESCs 

to perform a genome-wide RNAi screen (Figure 1A). ESCs were infected with an ultra-complex 

lentiviral shRNA library comprised of ~30 shRNAs per gene. Cells were cultured for 3 days in 

serum/ leukemia inhibitory factor (LIF) medium and subsequently sorted into GFPlow and GFPhigh 

populations by flow cytometry. Integrated shRNAs were isolated, amplified and sequenced. 

Differential enrichments in shRNAs per gene recovered from the GFPlow and GFPhigh populations 

were used to estimate effect size, using HiTSelect (Diaz et al., 2015) (see methods for details). 

We previously used a similar approach to systematically identify barriers to human iPS cell 

generation (Qin et al., 2014).  Applying this method at a 5% false discovery rate (FDR) cutoff, we 

identified 461 genes whose knockdown is associated with lower Chd1chr-EGFP fluorescence 

(Figure 1B. These genes are thus putative positive regulators of the euchromatic state of ESCs. 

In validation of the screen, this set of genes includes several previously described regulators of 

ESC chromatin, including Chd1 itself (Gaspar-Maia et al., 2009), Tip60/Kat5, p400 (Fazzio et al., 

2008) and Mll4/Kmt2b (Denissov et al., 2014). Several other known euchromatin regulators, 

including Hira (Meshorer et al., 2006), Ino80 (Wang et al., 2014) and Hat1 (Nagarajan et al., 

2013), are enriched at FDR<7.5% (Figure 1B).  
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Figure 1.1. A genome-wide RNAi screen identifies regulators of euchromatin in ESCs. 
(A) RNAi screen workflow. (B) Results of the RNAi screen for the genes with shRNAs enriched in 
the GFPlow fraction. Each circle denotes a gene tested in the screen. Published regulators of open 
chromatin in ESCs are indicated by arrows. See Table S1 for the full screen results. (C) Gene 
ontology (GO) terms associated with significant RNAi screen hits. See Table S2 for the full list of 
GO terms. (D) Protein interaction network of significant RNAi screen hits, generated using 
STRING. (E) Secondary siRNA screen results. Genes were selected to represent each of the 
major pathways enriched in (C) and (D). Upper panel shows knockdown levels by qRT-PCR, 
normalized to scrambled siRNA control. Lower panel shows fluorescence level of the Chd1chr-
EGFP reporter upon each knockdown. Readouts for both assays were measured on day 3 post-
knockdown (red) or on day 2 (blue) if the knockdown was lethal by day 3. See methods and Table 
1 for details. Error bars show mean ± standard deviation (SD) of 4 technical replicates. Graph is 
representative of 2 biological replicates. Statistical test performed is two-tailed t-test. *, p<0.05; **, 
p<0.01; ***, p<0.001; ****, p<0.0001.  
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To further refine the RNAi screen hits, we selected genes with robust RNA expression levels in 

ESCs (>1 FPKM in serum/LIF, (Bulut-Karslioglu et al., 2016)). The resulting 303 genes were 

clustered according to functional annotations (Gene Ontology, GO) and protein interaction data 

(Figure 1C and D. As expected, regulation of transcription and chromatin emerge as key 

processes modulating ESC euchromatin. Intriguingly, many factors involved in cellular growth and 

protein synthesis, notably RNA Polymerase (Pol) I complex components, ribosomal proteins and 

translation factors, are significantly enriched within screen hits. mTor, a key nutrient sensor and 

positive regulator of translation (Laplante and Sabatini, 2012), is the top hit in the screen. 

Validation of the RNAi screen was carried out by independent single gene knockdowns, using 

siRNAs that differ in sequence from the shRNAs used in the original screen. Importantly, 

knockdown of individual genes involved in translation and growth leads to significant decreases 

in Chd1chr-EGFP reporter intensity within 2-3 days, and in some cases the effect is stronger than 

loss of individual chromatin regulators (Figure 1E). These results suggest that translation and 

growth positively regulate euchromatin in ESCs. 

 

Translation, mTor and Myc activities promote euchromatin in ESCs  

We sought to expand upon the RNAi screen results using small molecule inhibitors of several 

growth-associated processes (Figure 2A). We found that inhibition of protein synthesis, mTor 

activity or Myc/Max complex activity leads to a rapid decrease in Chd1chr-EGFP fluorescence 

within 3 hours, while fluorescence of the Hp1a-EGFP reporter and an EGFP-only control remain 

unaltered during this acute time frame (Figure 2B and S2A). Activity of the Chd1chr-EGFP 

reporter closely follows the extent of translation inhibition as a result of each inhibitor treatment 

(Figure 2C and S2B). Chd1chr-EGFP fluorescence partially recovers by 24h of continuous 

inhibition, possibly due to a cellular adaptation to a lower growth state (Figure S2C). In contrast, 

inhibition of RNA Pol I or Pol II activity has no discernible effect on Chd1chr-EGFP fluorescence 

until 24h of treatment (Figure S2D). Chd1chr-EGFP signal recovers after release from translation 
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inhibition, with no impact on cell survival (Figure 2D and S2E). Co-treatment with the proteasome 

inhibitor MG132 partially rescues the decrease in Chd1chr-EGFP intensity induced by CHX, 

indicating that the Chd1chr-EGFP fusion protein itself may undergo partial turnover within this 

timeframe (Figure 2E, S2F). In contrast, Chd1chr-EGFP mRNA and chromatin-bound protein 

levels are only mildly affected after 3h of CHX treatment (Figure S2G, H). Taken together, the 

results suggest that the decrease in overall Chd1chr-EGFP fluorescence upon translation 

inhibition may be due to a combination of delocalization of the reporter protein within and away 

from the chromatin compartment, as well as protein turnover. Similar responses of the Chd1chr-

EGFP reporter are observed in ESCs cultured in the presence of Gsk3 and Mek/Erk inhibitors (2i) 

(Figure S3), a condition that mimics the ground state of pluripotency (Ying et al., 2008). Thus, the 

Chd1chr-EGFP construct is a sensitive reporter that integrates the high levels of euchromatin, 

nascent transcription and nascent translation that characterize the undifferentiated state of ESCs. 

Given the higher levels of nascent transcription, steady-state RNAs (Bulut-Karslioglu et al., 2016) 

and Chd1chr-EGFP fluorescence in serum/LIF relative to 2i/LIF (Figure S3A), we focused on the 

acute impact of reduced translation on the chromatin state and transcription of ESCs in serum/LIF 

for the remainder of this study. 

 

Euchromatic histone marks are rapidly depleted upon inhibition of translation  

We next explored the dependency of euchromatin on translation in a reporter-free system, using 

wild-type ESCs. Notably, inhibition of translation using CHX for 3h leads to a reduction in the 

levels of histone marks associated with active promoters and enhancers, such as H3K4me3 and 

H3/H4 acetylation, without affecting overall histone H3 levels or repressive H3K9me2 (Figure 3A 

and S4A). We confirmed the global reduction in acetylated H4 by immunofluorescence and 

intracellular flow cytometry (Figure 3B and S4B). Pluripotent cells in the ICM of the E4.5 blastocyst 

respond similarly to a 3h inhibition of translation, with rapid reductions in H4K16ac and H3K4me3 

(Figure 3C and S4C). H3K36me2 levels rise with increasing concentrations of CHX in a manner  
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Figure 1.2. Translation, mTor and Myc dynamically regulate euchromatin reporter activity.  
(A) Schematic of small molecule-mediated inhibition. (B) Response of the Chd1chr-EGFP, Hp1a-
EGFP and control EGFP ESCs to inhibition of translation, mTor, or Myc/Max at the indicated 
doses for 3 hours. Cells were treated with DMSO as control. Statistical significance was 
determined by Student’s t-test. (C) Levels of nascent protein synthesis in wild-type ESCs by L-
homopropargylglycine (HPG) incorporation during 3h inhibition of translation, mTor or Myc at the 
indicated doses. Median fluorescence intensity (MFI) was normalized to no-HPG controls and 
represented as a fraction of control (DMSO-treated) cells for each experiment. Each point 
represents a biological replicate. Error bars show mean ± SD. (D) Recovery of Chd1chr-EGFP 
reporter fluorescence following CHX (100 ng/ml) removal. (E) Proteasome inhibition partially 
rescues the effect of CHX on Chd1chr-EGFP intensity. Chd1chr-EGFP reporter ESCs were 
treated with DMSO or CHX ± MG132 (proteasome inhibitor) for 3h at the indicated doses. 
Graphs depicts mean ± SD of median fluorescence intensity (MFI) normalized to control cells of 
4 technical replicates and is representative of 2 biological replicates (B, D) or 3 biological 
replicates (E). Statistical significance was determined by Student’s unpaired t-test. *, p<0.05; **, 
p<0.01; ***, p<0.001; ****, p<0.0001. 
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 anti-correlated with H3/H4 acetylation (Figure 3A and S4A), in agreement with the observation 

that H3K36me2 recruits histone deacetylases to prevent spurious transcription (B. Li et al., 2009). 

 

Serum starvation, which is known to reduce translational output and mTor activity, also leads to 

a decrease in H3K4me3 and H3K27ac within 3-6 hours (Figure S4D). Direct mTor inhibition in 

ESCs and blastocysts using INK128 also leads to dynamic changes in histone acetylation within 

3 hours. H3K27ac and H3K9ac levels acutely decrease upon mTor inhibition (Figure S4E, F). 

Although there can be specific differences in the responses between ESCs and ICM cells as well 

as between distinct manipulations, the overall response indicates that the euchromatic 

compartment is acutely sensitive to perturbations of translational output in pluripotent cells.  

 

The analyses above indicate that histone acetylation is particularly sensitive to CHX and mTor 

inhibition. To gain insight into the genome-wide impact of inhibition of translation on histone 

acetylation, we performed ChIP-seq for H4K16ac after 3h of CHX treatment (Figure 3D-F and 

S4G, H). As previously described (X. Li et al., 2012), H4K16ac is concentrated around the TSSs 

of active genes and correlates well with expression levels (Figure 3D). We found that genes highly 

transcribed in ESCs undergo the strongest reductions in H4K16ac levels upon CHX, especially in 

the region immediately upstream of the TSS (Figure 3D). Ribosomal protein genes are particularly 

affected (Figure 3E and S4H). ChIP-qPCR confirmed these findings as well as the dose response 

of H4K16ac levels to the concentration of CHX initially observed by western blot (Figure 3A, F). 

By contrast, H3K4me3 is only slightly reduced at TSSs upon CHX treatment (Figure S4F). Thus, 

H4K16 acetylation at highly transcribed genes is acutely tuned to the levels of translational output 

in ESCs.   
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Figure 1.3. Inhibition of translation rapidly induces depletion of euchromatin marks in 
ESCs and blastocysts. 
(A) Levels of indicated histone modifications upon 3 hours of CHX treatment at 0.1, 1 or 
10μg/ml. See Figure S4A for biological replicates and quantifications. (B) Immunofluorescent 
detection and quantification of H4 acetylation (H4 K5/8/12) in DMSO- or CHX-treated ESCs. (C) 
Immunofluorescent detection of H4K16ac in control or CHX-treated (3 hours) E4.5 blastocysts 
and quantification in each Oct4+ cell (right panel). A representative z-section of each embryo is 
shown. (D) Correlation of CHX-induced H4K16ac changes with quartile of gene expression in 
ESCs (Bulut-Karslioglu et al., 2016). Profiles depict ChIP-seq tag density over annotated TSSs 
extended 2.5 kb upstream and downstream (3 hours CHX, 1 μg/ml). 1st quartile = highest 
expression, 4th quartile = lowest expression. (E) Representative genome browser view depicting 
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documenting a dose-dependent response of H4K16ac following 3 hours of CHX. Error bars 
show mean ± SD of 3 technical replicates. Scale bars denote 50 μm. Statistical tests are two-
tailed t-tests with Welch’s correction. **, p<0.01; ****, p<0.0001. 
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Translational output positively feeds back into nascent transcription 

The results above led us to ask whether acute inhibition of translation impacts nascent 

transcription. Remarkably, 3h inhibition of translation results in a ~60% decrease in global nascent 

transcription, assessed by measuring incorporation of the ribonucleotide analog 5-ethynyl uridine 

(EU) (Figure 4A). Nascent transcription of both Pol II-transcribed mRNA and Pol I-transcribed 

rRNA transcripts is ~90% decreased upon treatment with CHX for 3h (Figure 4B). Steady-state 

levels of the same mRNA and rRNA transcripts remain relatively stable within this time frame 

(Figure 4C). Thus, inhibition of translation, a manipulation often used to study protein stability and 

turnover, has an unexpected and rapid impact on nascent transcription in ESCs. 

 

A reduction in nascent transcription could be due to increased pausing of RNA Pol II at the TSS 

or decreased occupancy at the TSS or along the gene body. ChIP-qPCR for total or elongating 

(S2p) RNA Pol II revealed that inhibition of translation leads to an overall decrease in polymerase 

occupancy at the TSS and gene body of highly expressed genes but not to increased promoter 

pausing (Figure 4D). We conclude that the decrease in nascent transcription is due to diminished 

recruitment or retention of RNA Pol II, which may be due to turnover of RNA Pol II subunits or of 

some of its recruiters/activators (see below).  Similar to ESCs, pluripotent cells of the blastocyst 

display significant decreases in nascent transcription (Figure 4E) and elongating RNA Pol II levels 

(Figure 4F) upon 3h inhibition of translation. Taken together, our data document that acute 

inhibition of translation not only alters the euchromatin landscape but also leads to a strong 

repression of nascent transcription in pluripotent cells.  

 

The permissive chromatin state of undifferentiated ESCs is particularly sensitive to acute 

inhibition of translation 

The remarkably strong reduction in nascent transcription in ESCs upon inhibition of translation 

led us to further probe the status of pluripotency and differentiation markers. Oct4 and Nanog  
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protein levels are reduced upon 3h CHX treatment (Figure S5A, B), in agreement with the 

reported instability of these proteins (Buckley et al., 2012). However, a time-course analysis 

revealed that Oct4 and Nanog protein levels recover rapidly, within 1 hour after CHX withdrawal, 

in a pattern that closely resembles H4K16ac levels (Figure S5A, B) and Chd1chr-EGFP 

intensity (Figure 2D, S5B). Importantly, the steady-state mRNA levels of pluripotency factors 

and lineage commitment markers are not significantly changed upon 3h CHX (Figure S5C). 

Acute CHX treatment does not alter the ability of ESCs to differentiate into Embryoid Bodies 

(EBs), as EBs derived from DMSO- or CHX-treated cells show similar down-regulation of 

pluripotency markers and up-regulation of lineage markers (Figure S5D). Moreover, we have 

previously documented that long-term inhibition of mTor in ESCs and blastocysts is compatible 

with pluripotency (Bulut-Karslioglu et al., 2016). These results suggest that acute inhibition of 

translation has a profound impact on euchromatin and nascent transcription in ESCs but does 

not impair their developmental potential. 
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Figure 4 Nascent transcription is acutely sensitive to inhibition of translation in 
pluripotent cells.
(A) Levels of global nascent RNA synthesis assessed by EU incorporation in DMSO- or CHX-
treated (3 hours) ESCs. MFI was normalized to no-EU controls for each experiment. Each 
point represents a biological replicate. (B) Nascent RNA capture followed by qRT-PCR in 
DMSO- or CHX-treated cells. Error bars show mean ± SD of 3 biological replicates. (C) 
Steady-state mRNA levels of genes shown in (B) in DMSO- and CHX-treated cells. No 
statistically significant differences were detected by Student’s t-tests with the Holm multiple 
comparisons correction. (D) Enrichment of total or elongating (S2p, lower panel) RNA Pol II at 
TSSs and gene bodies (GB) of selected genes in DMSO- or CHX-treated cells. Graph depicts 
mean ± SD of 3 technical replicates and is representative of 2 biological replicates.
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Figure 1.4. Nascent transcription is acutely sensitive to inhibition of translation in 
pluripotent cells.  
(A) Levels of global nascent RNA synthesis assessed by EU incorporation in DMSO- or CHX-
treated (3 hours) ESCs. MFI was normalized to no-EU controls for each experiment. Each point 
represents a biological replicate. (B) Nascent RNA capture followed by qRT-PCR in DMSO- or 
CHX-treated cells. Error bars show mean ± SD of 3 biological replicates. (C) Steady-state 
mRNA levels of genes shown in (B) in DMSO- and CHX-treated cells. No statistically significant 
differences were detected by Student’s t-tests with the Holm multiple comparisons correction. 
(D) Enrichment of total or elongating (S2p, lower panel) RNA Pol II at TSSs and gene bodies 
(GB) of selected genes in DMSO- or CHX-treated cells. Graph depicts mean ± SD of 3 technical 
replicates and is representative of 2 biological replicates. 
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We next compared ESCs with non-pluripotent cells to assess the relative sensitivity of 

euchromatin and nascent transcription to translation inhibition across different cell types. We 

analyzed the levels of histone marks and nascent transcription as before in the following cell 

types: i) ESCs removed from LIF and treated with RA to induce differentiation for 3 days, ii) 

primary mouse embryonic fibroblasts (MEFs) derived from E12.5 embryos, and iii) multipotent 

neural stem/progenitor cells (NSPCs) isolated from the E12.5 mouse cortex (Hudlebusch et al., 

2011). While ESCs rapidly deplete euchromatin marks and sharply reduce nascent transcription 

within 3 hours of CHX treatment (Figure 3A, 4A, S4A, S5E), these other cell types are overall less 

sensitive, with the exception of consistent reductions in H3K27ac (Figure S5E-G). Relative to 

ESCs, these other cell types have lower levels of basal nascent transcription, which displays a 

muted response to translation inhibition (Figure S5E-G). These results are in agreement with our 

observation that ESCs cultured in serum/LIF are hypertranscribing relative to a panel of multiple 

cell lines and tissues tested (Percharde et al., 2017b). We conclude that, while the response 

observed is not strictly specific to ESCs, their permissive, hypertranscribing chromatin state is 

particularly sensitive to acute inhibition of translation.  

 

Several key euchromatin regulators are unstable proteins 

The sensitivity of euchromatin to reductions in translational output in pluripotent cells, and the 

partial rescue of Chd1chr-EGFP reporter levels observed upon proteasome inhibition (Figure 2G), 

led us to hypothesize that key euchromatin regulators may be unstable proteins that require 

continuous synthesis. To test this, we quantitatively assessed proteome-wide changes in ESCs 

(E) Levels of nascent RNA synthesis assessed by EU incorporation in DMSO- or CHX-treated (3 
hours) E4.5 blastocysts. A representative z-section of each embryo is shown. Scale bar denotes 
50 μm. Right panel shows quantification of the EU signal in the ICM (indicated by white dotted 
lines). (F) Levels of elongating Pol II S2p in DMSO- or CHX-treated (3 hours) E4.5 blastocysts. 
Bottom panel shows quantification of the Pol II S2p signal in each Oct4+ cell. Statistical tests are 
two-tailed t-tests with Welch’s correction when applicable. *, p<0.05; **, p<0.01; ***, p<0.001; 
****, p<0.0001.  
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after inhibition of translation using stable isotope labeling with amino acids in cell culture followed 

by mass spectrometry (SILAC-MS). We used a full block of translation (35 µg/mL of CHX) for 

either 1h or 3h to define the set of unstable proteins in ESCs (Figure 5A). We identified 4,078 

unique proteins that were consistently depleted or enriched in the proteome at both time points of 

CHX treatment (Figure 5B). Cell cycle factors are over-represented in the depleted proteins, a 

finding that is expected given that cell cycle progression is predominantly regulated by short-lived 

proteins. Indeed, 3h inhibition of translation in ESCs moderately reduces the proportion of cells in 

S phase, with a concomitant increase in G0/G1 (Figure S6A, B). Fractionation of live cells in 

different stages of the cell cycle using a FUCCI reporter system (Nora et al., 2017) revealed that 

the impact of inhibition of translation on chromatin and transcription is observed throughout the 

cycle, although it is particularly evident in S/G2/M (Figure S6C-E).  Regulators of chromatin, 

transcription and stem cell maintenance are also over-represented in the set of proteins rapidly  

depleted upon inhibition of translation (Figure 5B). Overall, these results are in agreement with 

protein turnover data from S. cerevisiae and mouse fibroblasts, where cell cycle and transcription 

factors were found to be preferentially unstable (Belle et al., 2006; Schwanhäusser et al., 2011). 

Interestingly, a block in translation leads to a relative enrichment in the proteome of proteins 

associated with translation and mRNA/rRNA processing (Figure 5B). The translation machinery 

is generally stable, and is potentially least affected by changes in protein synthesis rate 

(Schwanhäusser et al., 2011).  
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Figure 1.5. Key euchromatin regulators are unstable proteins that are rapidly depleted at 
the chromatin upon translation inhibition in ESCs. 
(A) Schematic of SILAC-MS workflow. (B) Scatter plot for proteins detected by SILAC-MS 
following 1 or 3 hours of CHX treatment. CHX-enriched or -depleted proteins are shown in red or 
blue, respectively. Graphs show associated GO terms. (C) Venn diagram for the intersection of 
RNAi screen hits with unstable proteins as determined by SILAC-MS (blue set in B). 60 such 
genes were identified. (D) GO terms associated with the 60 overlapping genes in (C). (E) 
Western blots showing the abundance of indicated proteins in cellular fractions in DMSO- or 
CHX-treated (3 hours) cells. Left panel shows RNAi screen hits that are among the 60 proteins at 
the intersection shown in (C).  
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We next intersected the set of unstable proteins (Figure 5B, blue) with the RNAi screen hits 

(Figure 1B). This analysis yielded 60 proteins that are unstable euchromatin regulators (Figure 

5C, D). They include several known regulators of euchromatin and transcriptional activation in 

stem and progenitor cells, including Chd1 itself (Gaspar-Maia et al., 2009; Guzman-Ayala et al., 

2014; Koh et al., 2015), the Tip60-p400 acetyltransferase complex (Fazzio et al., 2008), and the 

Brd1 component of the MOZ/MORF acetyltransferase complex (Mishima et al., 2011). We 

validated a representative subset of unstable proteins by western blotting after treatment with 3h 

CHX (Figure 5E). Interestingly, RNA Pol II is also selectively depleted from the chromatin fraction 

upon CHX treatment, in line with ChIP experiments (Figure 4D). In contrast, control proteins such 

as H3, Gapdh and b-actin, as well as the heterochromatin regulators Hp1a, Ezh2 and G9a, remain 

largely unchanged upon 3h CHX treatment. Thus, several key euchromatin regulators of ESCs 

are preferentially unstable proteins in situ, providing a mechanism for the acute dependence of 

permissive chromatin and hypertranscription on translation.  

 

A reduction in translational output rapidly deactivates developmental enhancers and 

primes transposable elements  

Our studies to this point documented that a reduction in transcriptional output rapidly decreases 

the levels of activating histone marks and RNA Pol II at the promoters of highly expressed genes 

(Figures 3D-F, 4D), with a concomitant reduction in their nascent transcription (Figure 4B). 

However, the set of acutely unstable proteins in ESCs identified by SILAC-MS includes many 

sequence-specific transcription factors and chromatin regulators that are known to bind 

enhancers as well as promoters (e.g., Klf5, Gbx2, Zic1, Tip60/p400, Chd1, RNA Pol II, several 

Mediator subunits; see Figure 5). These results suggested that enhancer elements might also be 

sensitive to rapid shifts in translational output. We therefore carried out Assay for Transposase 

Accessible Chromatin with high throughput sequencing (ATAC-seq) to determine whether and 

how the landscape of chromatin accessibility in ESCs responds to acute (3h) inhibition of 
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translation (Figure S7A). We identified 454 regions that reproducibly lose accessibility and 734 

regions that gain accessibility upon CHX treatment (Tables S7 and 8). Interestingly, most of these 

regions of differential accessibility are located 50-500 kb away from TSSs (Figure S7B).  

 

Regions that become less accessible upon CHX treatment (CHX-lost) are associated with genes 

annotated with developmental functions (Figure 6A). To probe the chromatin environment of CHX-

lost regions, we analyzed published datasets (see Methods). This analysis revealed that CHX-

lost regions are active enhancers in wild-type ESCs (Calo and Wysocka, 2013), given their 

enrichment for DNase-hypersensitivity, H3K4me1, H3K27ac and p300 (Figure 6B). Thus, a 

subset of active enhancers associated with developmental functions in ESCs loses accessibility 

upon acute reduction in translational output. CHX-lost regions are highly enriched for DNA binding 

motifs of the transcription factors Klf4/5 and Zic1/3 (Figure 6B). Among those, Klf5 and Zic1 were 

detected at the protein level by SILAC-MS and are depleted upon 1h and 3h CHX treatment. Klf4 

has previously been shown to be an unstable protein (Chen et al., 2005). Reduced accessibility 

at active developmental enhancers upon inhibition of translation may be due to turnover of both 

euchromatin regulators and specific transcription factors with functions during development. 

 

Regions that become more accessible upon CHX treatment (CHX-gained) are generally not 

associated with any gene or functional signature, with the exception of histone clusters (Figure 

S7C). There is no significant accumulation of activating histone modifications on the majority of 

CHX-gained peaks. Rather, CHX-gained regions are embedded in domains of high levels of 

H3K9me3 (Figure 6C). We speculated that these regions might overlap genomic repeats. Indeed, 

CHX-gained peaks reside immediately upstream of long (~5kb) unmappable regions (Figure 6D). 

Moreover, ~50% and ~30% of CHX-gained peaks overlap with transposable elements (TEs) of 

the LINE1 and LTR families, respectively, and active subfamilies such as L1Md_T/F/A and IAP 

are particularly enriched (Figure 6E). Despite increased chromatin accessibility, the nascent 
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expression of histone clusters and TEs is still suppressed upon CHX treatment, albeit to a lesser 

extent than mRNAs from non-repetitive genes (Figure S7D, E). The gains in chromatin 

accessibility upon acute inhibition of translation may be due to the fact that these regions are 

enriched for AA/AT dinucleotides, which tend to repel nucleosomes (Valouev et al., 2011), and 

are marked by H3.3 and (acetylated) H2A.Z, histone variants associated with nucleosome 

instability (Jin et al., 2009) (Figure 6C). Taken together, our results reveal that the open chromatin 

landscape of ESCs is rapidly reprogrammed upon partial inhibition of translation, with decreased 

accessibility at active enhancers associated with development and increased accessibility at 

histone genes and transposable elements.  
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Figure 1.6. Inhibition of translation in ESCs induces reprogramming of chromatin 
accessibility at developmental enhancers, histone genes and transposable elements. 
(A) Functional terms associated with regions with loss of chromatin accessibility, determined 
by ATAC-seq, upon CHX treatment for 3 hours. (B, C) Heatmaps for enrichment of indicated 
histone modifications, variants and DNase-accessible sites on CHX-lost (B) or CHX-gained 
(C) ATAC-seq peaks. Right panels show enriched DNA motifs. (E) Heatmaps showing levels 
of mappability of CHX-lost or CHX-gained ATAC-seq peaks. The CHX-gained heatmap is 
divided into three clusters to denote regions of distinct mappability. (F) Enrichment of 
repetitive elements over CHX-gained ATAC-seq peaks.  
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Discussion 
 

We report here that the transcriptionally permissive chromatin state of ESCs is acutely tuned to 

the levels of translational output. Our findings point to a positive feedback loop between chromatin 

and translation, whereby the permissive, hypertranscribing chromatin state in ESCs not only 

promotes an elevated translational output but also depends directly on such elevated translation 

(Figure 7A). We propose that this feedback loop, in turn, sets the rapid pace of proliferation in 

ESCs and of embryonic growth at peri-implantation. 
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mTor inhibition
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Active developmental enhancers
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(mTor, other)
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Figure 7 Proposed model for the dynamic feedback between translation, chromatin and 
transcription in ESCs. (A) The permissive chromatin state of ESCs promotes growth by 

sustaining hypertranscription and ribogenesis, whereas growth promotes the permissive 

chromatin state by sustaining high levels of translational output. Signaling and nutrient sensors 

such as mTor act as rheostats of this positive feedback loop.  (B) The permissive chromatin 

state of ESCs responds rapidly to changes in translational output, in part due to the instability 

of euchromatin regulators. See Discussion for details. 

Figure 1.7. Proposed model for the dynamic feedback between translation, chromatin and 
transcription in ESCs.  
(A) The permissive chromatin state of ESCs promotes growth by sustaining hypertranscription 
and ribogenesis, whereas growth promotes the permissive chromatin state by sustaining high 
levels of translational output. Signaling and nutrient sensors such as mTor act as rheostats of this 
positive feedback loop.  (B) The permissive chromatin state of ESCs responds rapidly to changes 
in translational output, in part due to the instability of euchromatin regulators. See Discussion for 
details.  
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Our results document a remarkably fast response of euchromatin and transcription to 

perturbations of translation output in ESCs, whereas heterochromatin and its regulators appear 

to be more stable overall (Figure 7B). Histone acetylation may be a key integrator of the status of 

translation and nutrient availability in this context, given the instability of components of histone 

acetyltransferase complexes such as Tip60, p400 or Brd1 (Figure 5E) and the fact that histone 

acetylation is directly dependent on the glycolytic state of undifferentiated ESCs (Moussaieff et 

al., 2015). Moreover, histone acetylation controls the highly dynamic nature of euchromatin, but 

not heterochromatin, in ESCs (Melcer et al., 2012). The intricate relationship between different 

histone modifications associated with transcription, notably histone acetylation and H3K4me3 

(Crump et al., 2011), likely contributes to propagate the impact of altered translational output 

across various layers of regulation of chromatin activity. 

 

Considering the profound changes in levels of activating histone marks and nascent transcription 

after 3 hours of inhibition of translation, it is interesting that the overall landscape of chromatin 

accessibility at promoters and gene bodies is largely unaffected. These results suggest that, on 

a short time scale, nucleosome occupancy in these regions is relatively resistant to changes in 

chemical modifications of histones and RNA Pol II activity. At distal regions, acute inhibition of 

translation in ESCs induces loss of chromatin accessibility at a subset of developmental 

enhancers and gain at repeats. The net effect may be to limit spurious differentiation and prime a 

return to the high level of expression of histone genes and repeat elements that is typical of 

proliferating ESCs (Efroni et al., 2008), once translational output is re-established. In addition, it 

is possible that reduced translational output primes the chromatin of conserved LINE1 and LTR 

elements for retrotransposition, potentially as a stress response. It will be interesting to determine 

to what extent ESCs that recover from inhibition of translation are distinct from normally growing 

ESCs, including with regards to chromatin accessibility and TE activity. 
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While our findings document that protein instability is a key tuner of the euchromatic state of 

hypertranscription in ESCs, other layers of regulation such as RNA stability, signaling or 

metabolism are expected to play important roles. It is also important to note that reductions in 

translational output can have effects not limited to chromatin and transcription, notably on the cell 

cycle. Within 3 hours of inhibition of translation, the proportion of ESCs in S phase is reduced, 

with an accumulation of cells in G0/G1 (Figure S6A, B). Nevertheless, for the levels of CHX used 

here the proportion of ESCs in S phase remains high (40-60%) and, importantly, nascent 

transcription and euchromatin marks are reduced upon inhibition of translation in both populations 

of G0/G1 and S/G2/M cells (Figure S6D, E). Interestingly, histone acetylation is required for efficient 

activation of replication origins during S phase (Unnikrishnan et al., 2010), and loss of histone 

acetylation drives yeast in nutrient-limiting conditions to enter quiescence (McKnight et al., 2015). 

In addition, the major H4K16 acetyltransferase MOF directly binds to and maintains the 

expression of genes required for cell cycle progression in proliferating mouse embryonic 

fibroblasts (Sheikh et al., 2016). Such links between euchromatic histone marks, transcription, 

translation, glycolysis and cell cycle may serve to coordinate overall biosynthesis with rapid 

proliferation in ESCs in vitro and epiblast cells in vivo. 

 

The highly dynamic levels of euchromatin regulators may be due both to the reported inefficiency 

of translation in ESCs (Sampath et al., 2008) and to control by the ubiquitination and sumoylation 

pathways (Buckley et al., 2012; Vilchez et al., 2012). Several proteins with roles in these pathways 

are hits in the RNAi screen. For example, Usp9x is a deubiquitinase required for early 

development (Pantaleon et al., 2001) and self-renewal of NSPCs (Jolly et al., 2009). Topors is an 

E3 SUMO/Ubiquitin ligase that targets chromatin modifiers (Pungaliya et al., 2007) and is itself 

unstable in ESCs (Figure 5E). These and other proteins may help coordinate an 

euchromatic/transcriptional response to perturbations in translational output via modification of 

chromatin factors. It will be of interest to dissect the role of the instability of specific euchromatin 
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regulators such as Tip60/p400 or Chd1, as well as the function of ubiquitination/sumoylation 

factors such as Usp9x or Topors, in maintaining the permissive chromatin state of ESCs. 

 

The positive feedback loop between permissive chromatin and translational output identified here 

may drive rapid proliferation of undifferentiated pluripotent cells, but it cannot be perpetuated 

indefinitely. In this regard, it is noteworthy that mTor is the top hit in the RNAi screen. mTor may 

directly regulate permissive chromatin and hypertranscription, given its role in promoting histone 

hyperacetylation at the nucleolus and high levels of ribosomal RNA transcription (Tsang et al., 

2003). Moreover, it was the identification of mTor as a key regulator of permissive chromatin in 

this study that led us to the finding that inhibition of mTor induces a reversible state of 

hypotranscription and developmental pausing in blastocysts and ESCs (Bulut-Karslioglu et al., 

2016). The centrality of mTor in growth signaling, nutrient sensing, ribogenesis and translational 

regulation (Laplante and Sabatini, 2012) make it an ideal rheostat for the positive feedback 

between euchromatin and translation during development. 

 

Beyond ESCs and early embryos, hypertranscription is employed by germline and somatic 

stem/progenitor cells during phases of growth and regeneration (Percharde et al., 2017b; 2017a). 

Recent studies have shown that rapidly expanding lineage-committed progenitors often have 

elevated levels of transcriptional and translational outputs relative to their parental stem cells 

(Blanco et al., 2016; Signer et al., 2014; Zhang et al., 2014). In contrast, a global reduction in 

translational output is characteristic of dormant states, such as developmental pausing (Bulut-

Karslioglu et al., 2016; Scognamiglio et al., 2016) or hibernation (Frerichs et al., 1998)  and can 

be induced by environmental stresses including nutrient deprivation, hypoxia, viral infection or 

exposure to toxins (Laplante and Sabatini, 2012; Olsnes, 1972). We speculate that the acute 

dependence of euchromatin and transcription on translational output may be a recurrent feature 

in stem/progenitor cells that is modulated by environmental perturbations. 
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Supplemental Figures 
 

Figure S1. Characterization of Chd1chr-EGFP and Hp1a-EGFP reporters in ES cells.
(A) Fluorescence imaging of the Chd1chr-EGFP and Hp1a-EGFP reporters. (B) Correlation 
of Chd1chr-EGFP reporter signal with endogenous Chd1, H3K4me3 and nascent 
transcription (EU). Single-cell quantification of immunofluorescence for the indicated markers 
was performed and normalized to DAPI. Cells with background levels of EGFP signal (grey 
points) were removed from the analysis. 
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Figure S1.1. Characterization of Chd1chr-EGFP and Hp1a-EGFP reporters in ES cells. 
(A) Fluorescence imaging of the Chd1chr-EGFP and Hp1a-EGFP reporters. (B) Correlation of 
Chd1chr-EGFP reporter signal with endogenous Chd1, H3K4me3 and nascent transcription (EU). 
Single-cell quantification of immunofluorescence for the indicated markers was performed and 
normalized to DAPI. Cells with background levels of EGFP signal (grey points) were removed 
from the analysis. (C) mRNA and protein expression levels of Wdr5, a component of the MLL1 
complex that deposits H3K4 methylation, upon transduction of ES cells with non-targeting or 
Wdr5-specific shRNAs. (D) Flow cytometry analysis of Chd1chr-EGFP and Hp1a-EGFP reporter 
fluorescence levels upon knock-down of Wdr5. Fluorescence was assayed 3 days post-
transduction. (E) Analysis of chromatin marks upon RA-mediated differentiation of ES cells for 2 
days. ES cells grown in serum/LIF were used as control. (F) Analysis of reporter fluorescence 
upon RA-mediated differentiation of ES cells for 2 days. ES cells grown in serum/LIF were used 
as control. Wild-type, non-fluorescent ES cells were used as negative controls for flow cytometry. 
A minimum of two biological replicates were performed for all experiments. 
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Figure S1.2. Characterization of the reporter response to small molecule-mediated 
inhibition of indicated cellular pathways. 
(A) Response of the Chd1chr-EGFP, Hp1a-EGFP and control EGFP ES cells to inhibition of  
translation or mTor for 3 hours using independent inhibitors from those in Figure 2. Cells 
were treated with DMSO as control. Graphs show mean ± SD of 3-4 technical replicates and 
are representative of 2 biological replicates. Statistical significance was determined by a two-
tailed Student’s t-test.  
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(B) Fluorescence imaging of nascent translation by HPG incorporation upon DMSO or CHX 
treatment. Scale bars represent 20 μm. Right panel shows quantification of HPG signal. 
Statistical analysis performed is Mann Whitney U test. Error bars represent mean ± SD of at 
least 3 technical replicates.  (C) Chd1chr-EGFP reporter fluorescence levels upon treatment 
with translation, mTor and Myc inhibitors for up to 24 hours. Cells were treated with DMSO as 
control. (D) Chd1chr-EGFP reporter fluorescence levels upon treatment with varying doses of 
Pol I and Pol II inhibitors for up to 24 hours. Cells were treated with DMSO as control. (E) 
Assessment of cell death of CHX-treated ES cells by SYTOX Blue incorporation. Error bars 
show mean ± SD of 4 technical replicates and are representative of at least 3 biological 
replicates. (F) Partial rescue of Chd1chr-EGFP fusion protein levels in whole-cell extracts 
upon inhibition of translation (CHX) ± inhibition of the proteasome (MG132). Error bars show 
mean ± SD of 2 biological replicates. Statistical tests are two-tailed t-test with Welch’s 
correction when applicable. **, ***, **** = p<0.01, 0.001, 0.0001. (G) Chd1chr-EGFP protein 
levels in the cytoplasm, nucleoplasm and chromatin upon DMSO or CHX treatment (1 mg/ml) 
for 3 hours. Asterisk denotes the specific band with correct molecular weight. (H) Chd1chr-
EGFP mRNA expression levels upon DMSO or CHX treatment for 3 hours. Error bars show 
mean ± SD of 3 technical replicates. Graph is representative of 2 biological replicates. 



 37 

  

Figure S1.3. Reporter expression and sensitivity to inhibition of translation and growth 
pathways in 2i conditions.  
(A) EGFP reporter expression in cells cultured in 2i or serum conditions. Fluorescence signal was 
normalized to wild-type (non-fluorescent) E14 cells. Error bars show mean ± SD of at least 8 
technical replicates. (B) Normalized fluorescence levels of the Chd1chr-EGFP reporter in 2i/LIF 
upon small molecule-mediated inhibition of indicated pathways for 3 hours. (C) Normalized 
fluorescence levels of the Chd1chr-EGFP reporter in 2i/LIF upon partial rescue of the effects of 
CHX ± proteasome inhibition by MG132. Data represent mean ± SD of 2 biological replicates. *, 
**, *** = p<0.01, 0.001, 0.0001; ns = not significant.   
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Figure S1.4. Chromatin response to inhibition of translation in ES cells and blastocysts.   
(A) Biological replicates of the western blot analysis shown in Figure 3A. Right panel shows 
quantification of the 3 biological replicates. 
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  (B) Intracellular flow cytometry analysis of H4 acetylation (H4K5,8,12) in DMSO- or CHX-treated 
(3 hours) ES cells. Data shown are representative of 2 biological replicates. Statistical 
significance was determined by Mann Whitney U test. **** = p<0.0001. (C) Immunofluorescent 
detection of H3K4me3 and H3K9ac in control or CHX-treated (3 hours, 1 mg/ml) E4.5 
blastocysts. Scale bars denote 50 μm. Bottom panels show quantification of the H3K4me3 or 
H3K9ac signal in each Oct4+ cell. Statistical significance was determined by Welch’s two tailed 
t-test. **, *** = p<0.01, 0.001. (D) Western blot analysis of euchromatin marks in response to 
serum starvation for the indicated durations. Histone extracts from unstarved cells were used as 
controls. Figure represents two biological replicates. (E) Western blot analysis of euchromatin 
and heterochromatin marks in response to 3h treatment with the mTor inhibitor INK128. Data 
are quantified and reported as in (A). (F) Quantification of immunofluorescence staining of 
chromatin marks and nascent transcription (EU) in E4.5 blastocysts incubated with INK128. 
Blastocysts were treated as in Figure 3C. (G) Heatmap of H4K16ac ChIP-seq replicate 
correlation at the top 1000 most highly expressed genes in ES cells. (H) H4K16ac ChIP-seq 
read abundance over all expressed genes or gene subsets.  (I) ChIP-qPCR for H3K4me3 
enrichment over TSSs and gene bodies in DMSO- or CHX-treated cells (1 μg/ml, 3 hrs). Error 
bars show mean ± SD of 3 technical replicates. Graph is representative of 2 biological 
replicates. 
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Figure S1.5. Effects of translation inhibition on ES cell pluripotency and on non-
pluripotent cells. 
(A) Quantification of Oct4 immunofluorescence in wild-type ES cells treated with DMSO or 1 
μg/ml CHX for 3 hours. (B) Western blot analysis and quantification of Nanog, Oct4 and 
H4K16ac levels during addition of and release from CHX. (C) Cell number normalized qRT-
PCR analysis of pluripotency and lineage markers in ES cells upon 3h of CHX. Data were 
normalized to Ctrl (DMSO). Error bars show mean ± SD of at least 2 biological replicates, 
each the mean of 3 technical qPCR replicates. No significant differences were detected by 
Student’s t-test with multiple testing correction. (D) Schematic and results of acute CHX 
treatment and differentiation of wild-type ES cells into Embryoid Bodies (EBs). qRT-PCR 
analysis revealing no differences in pluripotency gene repression and lineage marker 
induction in EBs derived from ES cells treated for 3h with DMSO or CHX. 
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(Ecto. = ectoderm, Endo. = endoderm, Meso. = mesoderm). Data were normalized to the 
average of Ubb and Rpl7 and are reported as log2-fold change relative to wild-type ES cells. 
Error bars show mean ± SD of 2 biological replicates, each the mean of 3 technical qPCR 
replicates. No significant differences were detected by Student’s t-test with multiple testing 
correction. (E) Analysis of the chromatin, transcriptional, and translational responses to CHX 
in RA-treated ES cells. (F) Analysis of the chromatin, transcriptional, and translational 
responses to CHX in primary mouse embryonic fibroblasts (MEFs). (G) Analysis of the 
chromatin, transcriptional, and translational responses to CHX in neural stem/progenitor cells 
(NSPCs) isolated from E12.5 mouse cortex. 
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Figure S1.6. Impact of acute inhibition of translation on the cell cycle in ES cells. 
(A) Representative flow cytometry plots depicting cell cycle distributions of wild-type ES cells 
upon DMSO or CHX treatment. (B) Quantification of cell cycle stage distributions in DMSO- or 
CHX-treated ES cells. Error bars show mean ± SD of 2 biological replicates. Statistical 
significance was assessed by Chi-square test. **p<0.01. (C) Schematic of the FUCCI cell line 
used in this study. (D) Nascent RNA capture followed by qRT-PCR in the indicated FACS-
isolated populations of DMSO- or CHX-treated (1 μg/ml, 3h) FUCCI. Error bars show mean ± 
SD of 2 biological replicates. Statistical test performed was two-tailed t-test. *** = p<0.001.  (E) 
Levels of indicated histone modifications in FACS-isolated populations of DMSO- or CHX-
treated (1 μg/ml, 3h) FUCCI cells. Blots show 2 biological replicates. 
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Figure S7. Characterization of chromatin accessibility and expression changes upon inhibition of 
translation in ES cells.
(A) Unsupervised clustering of individual ATAC-seq replicates upon DMSO or CHX treatment for 3 hours. 

The top 10,787 most variable regions, as determined by Macs14 algorithm, were used for clustering analysis. 

(B) Distance of CHX-gained or CHX-lost regions from transcription start sites (TSS). (C) Functional 

annotation of ATAC-seq peaks lost upon CHX treatment for 3 hours. See Table S9 for the full list of terms. 

(D) Levels of nascent transcription of indicated transposable elements in 3h DMSO- or CHX-treated ES cells, 

assessed by EU labeling followed by capture and qRT-PCR. Dotted lines represent the average level of 

downregulation for mRNAs depicted in Figure 4B. (E) Levels of nascent transcription of indicated histone 

genes in 3h DMSO- or CHX-treated ES cells, assessed by EU labeling followed by capture and qRT-PCR. 

Dotted lines represent the average level of downregulation for mRNAs depicted in Figure 4B.

Figure S1.7. Characterization of chromatin accessibility and expression changes upon 
inhibition of translation in ES cells. 
(A) Unsupervised clustering of individual ATAC-seq replicates upon DMSO or CHX treatment for 
3 hours. The top 10,787 most variable regions, as determined by Macs14 algorithm, were used 
for clustering analysis. (B) Distance of CHX-gained or CHX-lost regions from transcription start 
sites (TSS). (C) Functional annotation of ATAC-seq peaks lost upon CHX treatment for 3 hours. 
See Table S9 for the full list of terms. (D) Levels of nascent transcription of indicated 
transposable elements in 3h DMSO- or CHX-treated ES cells, assessed by EU labeling followed 
by capture and qRT-PCR. Dotted lines represent the average level of downregulation for mRNAs 
depicted in Figure 4B. (E) Levels of nascent transcription of indicated histone genes in 3h 
DMSO- or CHX-treated ES cells, assessed by EU labeling followed by capture and qRT-PCR. 
Dotted lines represent the average level of downregulation for mRNAs depicted in Figure 4B. 



 44 

Table 1.1 Oligonucleotide sequences 
 

Secondary siRNA screen 
Target Fwd sequence Rev sequence 
EGFP CAAGGACGACGGCAACTACA TTGTACTCCAGCTTGTGCCC 
Ago2 ACCGTGGACACGAAGATCAC AGGTATGGCTTCCTTCAGCG 
Arrb2 GACACCAACCTGGCTTCCA TAAGGTACCCTCTCCCAGCC 
Clp1 GGTCGGAGGTTTCCAGAGGT GAGAGGCCTCCACCTCAAAT 
Cpsf1 TATGTGTACCGCCTGAACCG GTGCCTGGGTCATACTCCAC 
Cpsf2 GTTCCACTAGGGGTTGGGAA AACCCCAGAGAGGGTGGTTA 
ctps2 ACTGCGAGGGGAAGATTGC TAATCACCGCGCCTCTCTTT 
Cxxc1 AAGTCCGAGAAGAAGAAGGAGG AAGTAGCTTCTTGCCGTGCT 
Dnmt3a CAGCTATTTACAGAGCTTCGGG CATCGTCGGCTGCTTTGGTA 
Eif4g1 GGGACCCTAATGTGGCACC TTGGGATCCAGCAGGGTAGA 
Eif4g2 AGATGACAACTCCGCAGCAA GCTGAGCATACAGCGAGCTA 
Ep400 CAGCAACAGCAGAGTCCTCA GTGCCTGCAGCTGAGAAGTA 
Fbxo3 CTGTCAGTTGGACAGTCGCT ACCTAAACAAAGATGGTTGGTCTT 
Gbx2 CAACTTCGACAAAGCCGAGG CTTGCCCTTCGGGTCATCTT 
Hdac9 ACGCACAGACAGATAGGAGG AAAGGTGAGATGGGCTCCAG 
Igf1 CTGCCTGGGTGTCCAAATGT TCCGGAAGCAACACTCATCC 
Jmjd1c CGTCATTTGCTGCTCACAGG TGGTATGGCTGAAAGGCACT 
Kat5 GGAGGTGGGGGAGATAATCG CCCTACGGGCTGACCCATT 
Kdm6a CCATGAACACAGCACAGCAGAA TAGGACAGGCAGTGTGGACTC 
Kmt2b AGTCCCAGTGGCATCACTATTC CATGGGGATTCAGAGGTGGC 
Lhx9 TCGGTCTTTTCCCTCTCAAGTAGA GGGCTGAGAGGGGGCATAC 
Med14 GACACACATCCTCCGGGACT ACCATCTACTGCTCATGTACCTT 
Med16 GAGGGCCTTCCTGTGAACAA AGTGAGATGGGCAGTTTCGG 
Mtor ATCCGCTACTGTGTCTTGGC TTGATTCTCCCAATGCCGCT 
Mycbp CACGCTGACGAAAGTGTTGG TGCCAATTCTAGGCGAAGCA 
Nxf1 CGTGCTTCGCCGGATAAATG ACCTACGATTCCCCTCACCA 
Olfr1188 TCCCCTTGCTACAACTTGCC TTCCTCCCTGCAGTGCTATG 
Olfr958 CCCTCTTCGGTACTCGGTCA AGGTATCAGCAGACGCCAAT 
Papola GGCGCCATGTTAGGACGAA TTGTTGTGATCCCTGCGTTG 
Polr1b CGCTACCTCTCCCATTTCCG CAAGGCTGGAATAGATGCCG 
Polr1c GTTTGGGGTTCGCAATGTCC GACGAGGATCAGCGAGGATG 
Polr2i GATTACCAGCAGGAAGCCGA TGGGGCAGTGCAAACATAGT 
Polr2m CTGTCCGTTTCCGGCATTTC ATGGCAGCTTTCAGTTTGGC 
RnaseH2a ACTCCGATTATGGCTCAGGC AAAGCACTCGGTCCACTTCT 
Rpl10a GTCAGGCTCAAGTCCACCC CCAGGATACGTGGGATCTGC 
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Target Fwd sequence Rev sequence 
Rpl34 CGAGATCAAACCCGGCTTCC GACACACTTGGCACACATGG 
Rpl35a GATTGCTGGGGCCTGCT ACCATACCGCTGTTTCCGTG 
Rps28 CAGCCGCTCTATCATCCGAA CCAGAACCCAGCTGCAAGAT 
Rps29 CTGGAGTCACCCACGGAAGT CAGTCGAATCCATTCAAGGTCG 
Srsf1 GTGGAAGCTGGCAGGACTTA AGGCAGTTTCTCCCTCGTGA 
Ssu72 CCACTCTGGGAGCATTCCTT GTGGAGAGAAAAGGGCCAACA 
Trim28 TGCCCTGTCTACATTCGGC TCGCTCTCCATCTCGAGTCT 
Usp7 CCGAGGACATGGAGATGGA TCACTCAGTCTGCTGAAGCG 
Usp9x TCGCCATATTGACGAGGCTG CCCTGGTTGTCATTCCCTCC 
Yy1 ACAGGCAAGAAACTCCCTCC TTTGAGCTCTCAACGAACGC 
Zfp467 GGCATCCACACAGAACAAGC GAGCAGGCATCAGGAGACAT 

ChIP-qPCR 
Target Fwd sequence Rev sequence 
Pax6 CTAATCTGCCGAGCTGAACC GCAGGCGCTAACTTTCCTTA 
Gata4 CCTGGAAAATGTTGGGTAGC TAGACAAAAGGGTGGGGAGA 
Kcna2 TCCGGGACACAGGGATCTAA CGAATTAAAGGGGCCGGCTG 
Rps10 CACAGGGTGAAAACGCCAGA ACAGCAGATACATGGGTGCC 
Rps12 GTGACGCCGAATCTTGAACG GAGTGTGATCCCAGCTCGTG 
Rpl5 GAGTCTGGCCCTGTTTTCAGA TAAACCGGGCTCAAATGGCA 
Rpl3_TSS1 CGCAGATAGAGAGCGACCA AAAGAGAGACAAGGCGGTTG 
Rpl3_TSS2 GCCATCCCTACCAGACTGAC GAATGGGCTGTTTTGTGCTT 
Rpl3 GB CTGGGGGCACATCTCATAGT AGATAGGTCCCCTGCCTCTG 
Rps9_TSS1 CGTCACTACAAGGCGACGTT GGAGCCATCACTTGGCTTTA 
Rps9_TSS2 GGTTGTGGAACAATCCCATT CTCGGCTCTCAGAGAAATCC 
Rps9 GB TCAAGCAGCTGGACAGGTAA TGACTCCAATCTCCCTCCAG 
Gapdh CGCCCTTGAGCTAGGACTG ATGAAGGGGTCGTTGATGGC 
Rps5 TCCTGTCTGTATCAGGGCGG TCTTCTGAACTCCGTGTCCC 
Kcna2 TCCGGGACACAGGGATCTAA CGAATTAAAGGGGCCGGCTG 
rDNA prom CCTTTGAGGTCCGGTTCTTT TCCAGGTCCAATAGGAACAGAT 
Nanog_TSS CCTGCAGGTGGGATTAACTGTG CCTCAAGCCTCCTACCCTACC 
Nanog_TSS CTGGGTGCCTGGGAGAATAG CAACGGCTCAAGGCGATAGA 
Oct4_TSS-F ATAGCGCTCGCCTCAGTTT GGGACGGTTTCACCTCTCC 
MajSat GACGACTTGAAAAATGACGAAATC CATATTCCAGGTCCTTCAGTGTGC 
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RT-PCR 
Target Fwd sequence Rev sequence 
Rpl3 GATGAGTGTAAAAGGCGCTTC CTTGGTGAAAGCCTTCTTCTT 
Rps9 CGTCTCGACCAGGAGCTAAA CTTGACCCTCCAAACCTCAC 
Actg1 CCTGAACCCCAAAGCTAACA ACATGGCTGGGGTATTGAAG 
Taf1d TGGATGATGATGGTTCACTTTC GCCTGAGGATTTGTTGCTTC 
eIF4a2 GAATTCCGATCAGGGTCAAG CACTTGTTGCACGTCAATCC 
28S rRNA AAATGTGGCGTACGGAAGAC CGTGCCGGTATTTAGCCTTA 
pre-rRNA TGTCGTTGTCACACCTGTCC AAATAAGGTGGCCCTCAACC 
Oct4 AGCCGACAACAATGAGAACC TGGTCTCCAGACTCCACCTC 
Sox2 GAACGCCTTCATGGTATGGT TCTCGGTCTCGGACAAAA 
Rpl7 AGCGGATTGCCTTGACAGAT AACTTGAAGGGCCACAGGAA 
Ubb GCGGTTTGTGCTTTCATCAC GGCAAAGATCAGCCTCTGCT 
Nanog TCAGATAGGCTGATTTGTTTGCC CCTTGTCAGCCTCAGGACTTG 
Rex1 AATAGGTAGAGCGCATCGCA CACTGATCCGCAAACACCTG 
Fgf5 TGCATCTGCTCTGCTCTAAGAAA TCATCACATTCCCGAATTAAGCT 
Otx2 TGGGCTGAGTCTGACCACTT GCCCTAGTAAATGTCGTCCTCTC 
Pax6 TTATTATCCGAGGGGGTCTGT CAGGTTGCGAAGAACTCTGTT 
Nestin GGAGAGTCGCTTAGAGGTGC GGAGAGTCGCTTAGAGGTGC 
Gata6 TTAACACTGATTGCTGCAACG GTTCATCGTAACGTGGCTGA 
FoxA2 CATGGGACCTCACCTGAGTC CATCGAGTTCATGTTGGCGTA 
FoxA1 GAAAGGCTAGCCAGCTAGAGG AGATGCAGCTGAGATTCGTG 
T TCAATGGAGGGGGACAGATCA CCCCATTGGGAATACCCCG 
Hist1h1e CTTCCGGCTCGAGTTCTCTC AGCCTTGGTGATGAGTTCGG 
Hist1h1a ACAACAGCCGCATCAAACTG GTTTCTTAGCAGCCCCGGAT 
Hist3h2ba AACAAGCGCTCGACCATCAC GAAAAGAGCCTTTGGGTTGGGG 
Hist3h2a GTTTTCGCTAGGTTTCTTTTCTGT TATTCTAGCACAGCCGCCAG 
Hist1h3i TAGTGTACTGAGATGGCTCGT CTCGGTCGACTTCTGGTAGC 
Hist2h4 CGTGGTGTGCTGAAGGTGTT GAGCGTACACCACATCCATAG 
Hist1h2bb CCCTCACTGCCTACCAGTTTC ACCGAATAGCTCTCCTTGCG 
L1 prom ACTGCGGTACATAGGGAAGC TGTGATCCACTCACCAGAGG 
L1 ORF CACTCCCACCCCACCTAGT TAACTCTTTAGCAGTGCTCTCCTGT 
IAP TATGCCGAGGGTGGTTCTCTA TGCGGCAAAACTTTATTGCTT 
MMETn TCAGACTGAAAGCCACATGC CCGGAGACTAGCCTCAGCTT 
MajSat TGGAATATGGCGAGAAAACTG AGGTCCTTCAGTGGGCATTT 
SINE B1 GTGGCGCACGCCTTTAATC GACAGGGTTTCTCTGTGTAG 
Chd1chrom
o F 

TTATTCCGCTAGCATGCAGCCTGAG
GAC - 

EGFP 
reverse - CTCCTCGCCCTTGCTCACCA 
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Materials and Methods 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Mice  

Swiss Webster females (6- to 12-week-old) and males (6 week- to 6 month-old) were used. 

Animals were maintained on 12 h light/dark cycle and provided with food and water ad libitum in 

individually ventilated units (Lab Products at UCSF) in the specific-pathogen free facilities at 

UCSF. All procedures involving animals were performed in compliance with the protocol approved 

by the IACUC at UCSF, as part of an AAALAC-accredited care and use program (protocol 

AN091331-03).  

 

Mouse embryonic stem cells 

Wild-type E14 male ESCs (source: Bill Skarnes, Sanger Institute) were used for all reporter-free 

experiments. ES-FBS cells were cultured in DMEM GlutaMAX with Na Pyruvate, 15% FBS, 0.1 

mM Non-essential amino acids, 50 U/ml Penicillin/Streptomycin, 0.1 mM EmbryoMax 2-

Mercaptoethanol and 2000 U/ml ESGRO supplement. For the experiments in 2i medium, E14 

ESCs initially grown in serum were passaged at least 4 times in 2i medium before use. 2i medium 

was composed of DMEM/F-12, Neurobasal medium, 1x N2/B27 supplements, 1 µM PD0325901, 

3 µM CHIR99021, 50 µM Ascorbic acid and 2000 U/ml ESGRO supplement. Cells were cultured 

in 0.5% FBS for serum starvation experiments. Cells were not authenticated and tested negative 

for mycoplasma contamination.  

 

Chd1chr-EGFP reporter cell line 

A single PCR fragment containing the double chromodomains of Chd1 (amino acids 262 to 460) 

was isolated and cloned in frame into the pCAGGS-EGFP-IRES-Puro plasmid. Stable Chd1chr-
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EGFP expressing ESC lines were generated by transfecting 4 μg PvuI-linearized vector into 106 

wild-type E14 ESCs, followed by Puromycin selection.  

 

 

Mouse embryonic fibroblasts 

Primary MEFs were derived from CD1 E12.5 mouse embryos and used at passage 3-6. MEFs 

were cultured in DMEM GlutaMAX with Na Pyruvate, 10% FBS, 0.1 mM Non-essential amino 

acids, 50 U/ml Penicillin/Streptomycin. 

 

Neural stem/progenitor cells (NSPCs) 

Early-passage NSPCs (p5-p10), originally derived from mouse E12.5 cortex (Hudlebusch et al., 

2011), were cultured on poly-D-lysine and laminin coated plates in medium containing: 50% 

DMEM/F12, 50% Neurobasal, 1x N2 and B27 supplements, 0.1 mM Non-essential amino acids, 

50 U/ml Penicillin/Streptomycin, 0.11 mg/ml Na Pyruvate, 5 mM HEPES, 1x GlutaMAX, 0.1 mg/ml 

Fraction V BSA, 2 μM EmbryoMax 2-Mercaptoethanol, 20 ng/ml bFGF, 10 ng/ml EGF and 2 μg/ml 

Heparin sodium salt.   
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METHOD DETAILS 

 

Embryo culture 

Wild-type mice were mated, blastocysts were collected at E3.5 after detection of the copulatory 

plug by flushing uteri of pregnant females using M2 medium (Zenith Biotech) supplemented with 

2% BSA (Sigma). Subsequent embryo culture was performed in 3.5-cm plates under light mineral 

oil (Zenith Biotech) in 5% O2, 5% CO2 at 37°C in KSOMAA Evolve medium (Zenith Biotech) with 

2% BSA until E4.5.  

 

Wdr5 knock-down 

Wdr5 shRNAs were designed based on the siRNA sequences from Ang et al (Ang et al., 2011). 

Control shRNA includes non-targeting sequence (Qin et al., 2014). shRNAs were cloned into the 

pSicoR-mCherry plasmid and constructs was packaged into lentivirus. Chd1chr-EGFP and Hp1a-

EGFP ESCs were transduced with the lentiviral vectors.  mCherry-positive cells with integrated 

shRNAs were sorted and knock-down was confirmed by qRT-PCR 72h post-transduction. EGFP 

fluorescence levels were analyzed on day 3 on an Avalon S3 Cell Sorter (Propel Labs). 

 

Retinoic-acid mediated differentiation 

Chd1chr-EGFP and Hp1a-EGFP ESCs were used. LIF was withdrawn from ES-FBS medium and 

retinoic acid was added at a final concentration of 5 μM. EGFP fluorescence levels were analyzed 

on day 3 on an Avalon S3 Cell Sorter (Propel Labs). For nascent transcription and chromatin 

analyses, LIF was withdrawn from ES-FBS medium for 1 day and 5 μM retinoic acid was added 

for 2 days before 3h DMSO or CHX treatment.  
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Western blot analysis 

For histone analysis, histones were acid extracted and TCA-precipitated as follows: 7x106 cells 

were washed in ice-cold PBS with 5 mM Na Butyrate. Cells were lysed in Triton Extraction Buffer 

(PBS, 0.5% Triton X-100, 1x Protease Inhibitor Cocktail, 1 mM PMSF, 5 mM NaVO4 and 5 mM 

NaF) for 10 minutes and centrifuged. The pellet was resuspended in 0.2N HCl and histones were 

extracted overnight. Extracted histones were precipitated with TCA, washed with ice-cold acetone 

and resuspended in water. For analysis of cellular fractions, cytoplasmic, nucleoplasmic and 

chromatin fractions were isolated as previously described (Méndez and Stillman, 2000). Cells 

were initially resuspended in Buffer A (10 mM HEPES pH7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M 

sucrose, 10% glycerol, 1 mM DTT, 0.1% Triton X-100, 1x Halt protease inhibitor cocktail (Thermo 

Fisher Scientific), 1 mM PMSF, 5 mM NaF and 1 mM NaVO4). Cells were incubated for 5 minutes 

on ice, then spun down at 1,300 g for 5 minutes at 4oC. Cytoplasmic fraction (supernatant) was 

transferred to new tubes. Pellets (nuclei) were resuspended in buffer B (3 mM EDTA, 0.2 mM 

EGTA, 1 mM DTT, 1x Halt protease inhibitor cocktail, 1 mM PMSF, 5 mM NaF and 1 mM NaVO4). 

Nuclei were incubated for 5 minutes on ice, then spun down at 1,700 g for 5 minutes at 4oC. 

Nucleoplasmic fraction (supernatant) was transferred to new tubes. Pellets (insoluble chromatin) 

were resuspended in 1x Laemmli Buffer with 5% b-mercaptoethanol and sonicated using the 

Bioruptor for 5 minutes with settings high, 30 seconds on, 30 seconds off. Extracts were loaded 

into 4-15% Mini-Protean TGX SDS Page gels (Bio-Rad). Proteins were transferred to PVDF 

membranes. Membranes were blocked in 5% milk/PBS-T buffer for 30 min and incubated either 

overnight at 4oC or for 1 hour at room temperature with the following antibodies: H4K16ac 

(RRID:AB_310525), H3K4me3 (RRID:AB_1163444), H3K9me2 (RRID:AB_449854), Hp1a 

(RRID:AB_11213599), Gapdh (RRID:AB_2107445), H3K27ac, (RRID:AB_2716381) H3K9ac 

(RRID:AB_2716379), H3 (RRID:AB_302613), H4 (RRID:AB_305837), H3K36me2 

(RRID:AB_1280939), b-actin (RRID:AB_2305186), RNA Pol II (RRID:AB_306327), RNA Pol II 
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S2P (RRID:AB_304749), G9a (RRID:AB_2532211), Ezh2 (RRID:AB_10694683), Topors 

(RRID:AB_10852342), Chd1 (RRID:AB_11179073), Btf3 (RRID:AB_2067525), Brd1 

(RRID:AB_2618449), Tip60 (RRID:AB_1950610), EGFP (RRID:AB_221569) and anti-

rabbit/mouse/goat secondary antibodies (RRID:AB_2307391; RRID:AB_2338504; 

RRID:AB_656964). Membranes were incubated with ECL or ECL Plus reagents and exposed to 

X-ray films (Thermo Fisher Scientific). Quantification of WB bands were carried out using the 

Gimp image analysis software.  

 

For analysis of FUCCI ESCs, cells were plated overnight before 3h treatment with CHX at 1 µg/ml 

or DMSO. Cells were collected by trypsinization and sorted on a FACS AriaII (BD Biosciences) 

into mCherry+ (G0/G1) and BFP+ (S/G2/M) cell fractions. 4x105 cells of each fraction were sorted 

for histone extraction and western blotting as above. 

 

Genome-wide shRNA screen 

The ultracomplex EXPANDed shRNA library targeting the mouse genome was designed similarly 

to human shRNA libraries described before (Bassik et al., 2009). In brief, the library contains 

approximately 30 independent shRNAs per gene for all mouse protein-coding genes, for a total 

of �600,000 shRNAs, hence the term “ultracomplex.” The full list of shRNA sequences present in 

the library is available upon request. Pooled sequences coding for the shRNAs were cloned 

downstream of a U6 promoter in a modified pSicoR lentiviral vector containing a EF1a-Puro-T2A-

mCherry cassette. All vectors were pooled to generate one lentiviral library representing the 

600,000 shRNAs. The entire pooled library was then used to generate lentiviruses at the UCSF 

ViraCore. 6.6x107 Chd1chr-EGFP ESCs were infected at an MOI (multiplicity of infection) £ 1 with 

the shRNA library, such that each shRNA is targeted to 100 cells (100x coverage). Cells were 

plated on thirteen 15 cm cell culture plates at a density of 5x106 per 15 cm plate. Culture medium 
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was changed daily; cells were harvested for analysis on day 3. mCherry-positive cells were sorted 

into GFPlow and GFPhigh populations on an Avalon S3 Cell Sorter (Propel Labs). Integrated 

shRNAs were isolated by PCR using oligos which contained sequencing adapters and barcodes. 

Screen results were analyzed as described before (Diaz et al., 2015). 

 

Single-gene knock down experiments 

siRNAs were ordered as pools of 4 sequences from GE Dharmacon’s Cherry-Pick libraries. 

Chd1chr-EGFP ESCs were transfected with the siRNAs in 96-well plates. qRT-PCR and flow 

cytometry analyses were performed on day 2 or 3 as indicated. Fluorescence was analyzed on a 

BD Dual Fortessa. 

 

Inhibitor treatments 

Cells were incubated for indicated durations and concentrations with the following inhibitors: 

INK128 (Medchem), 10058-F4 (Sigma), Cycloheximide (Amresco), a-amanitin (Sigma), CX-5461 

(Selleckchem), MG-132 (Selleckchem), Homoharringtonine (Sigma), and AZD8055 

(Selleckchem). Control cells were treated with DMSO. Inhibitors were withdrawn and cells were 

washed just prior to downstream analyses. For all CHX release experiments, cells were treated 

with DMSO or CHX for indicated durations. Cells were washed with PBS before addition of fresh 

medium and harvesting at indicated time points. For all embryo experiments, inhibitors were 

added to E4.5 blastocysts for the last 3 hours of culture. 

 

Global nascent transcription and translation analysis 

For measurements of global transcriptional and translational output, wild-type E14 cells, RA-

differentiated ESCs, MEFs, or NSPCs were plated and cultured overnight in their respective 

medium. E3.5 blastocysts were cultured ex vivo to E4.5 as described above. 5-ethynyl uridine 

(EU) was added at a final concentration of 1 mM or L-homopropargylglycine (HPG) at a final 
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concentration of 25 μM, both for the last 45 minutes of 3h treatments. During nascent translation 

experiments, normal media were replaced with media containing Met-/Cys-free DMEM 45 

minutes prior to the addition of HPG. Cells were trypsinized and processed according to the 

instructions of the Click-iT RNA (or HPG) Alexa Fluor 488 or 594 HCS Assay kits. For each 

experiment, cells without EU or HPG added were processed in parallel and subjected to the Click 

reaction as a control. Data were collected on a BD Dual Fortessa flow cytometer, analyzed using 

FlowJo v10, and plotted using Prism 7. Datasets show similar variance. All fluorescence values 

are reported as median fluorescence intensity (MFI). All graphs shown represent fold-change MFI 

of sample relative to no-EU or no-HPG controls. 

 

Nascent RNA capture followed by qRT-PCR 

To measure nascent transcriptional changes at specific loci, ESCs were analyzed using the Click-

iT Nascent RNA Capture Kit. 4x105 cells were plated and cultured overnight. The next day, EU 

was added at a final concentration of 200 μM and cells were incubated for 30 minutes during 

DMSO or CHX treatment. Cells were washed, harvested by trypsinization and counted (Bio-Rad 

Automated Cell Counter TC20, Bio-Rad). Total RNA was isolated from the same number of 

DMSO- or CHX-treated cells using the Qiagen RNeasy Micro Kit (Qiagen) and processed 

according to the manufacturer’s instructions. RNA was quantified using a Qubit 2.0 Fluorometer. 

qPCR was performed with KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems) and amplified 

on a 7900HT Real-time PCR machine (Applied Biosystems).  

 

For analysis of FUCCI ESCs, cells were plated overnight before 3h treatment with CHX at 1 µg/ml 

or DMSO. EU was added at a final concentration of 200 μM for the last 30 minutes of drug 

treatment. Cells were collected by trypsinization and sorted on a FACS AriaII (BD Biosciences) 

into mCherry+ (G0/G1) and BFP+ (S/G2/M) cell fractions. 2x105 cells of each fraction were sorted 

for RNA isolation and used for nascent RNA capture as above. 
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Immunofluorescent staining and imaging 

Wild-type E14 ESCs were plated on gelatin in 8-chamber polystyrene vessels. Adhered cells were 

incubated with DMSO or CHX at the indicated concentrations for 3 hours. Cells were then fixed 

in 4% paraformaldehyde for 10 minutes, washed with DPBS and permeabilized with 0.2% Triton 

X-100 in PBS for 5 minutes. After blocking in PBS, 2.5% BSA, 5% donkey serum for 1 hour, cells 

were incubated overnight at 4oC with anti-H4K5/8/12ac antibody (Millipore, RRID:AB_870989). 

Cells were washed in PBS-Tween20, 2.5% BSA, incubated with fluorescence-conjugated 

secondary antibody for 2 hours at room temperature and mounted in VectaShield mounting 

medium with DAPI (Vector Laboratories). Imaging was performed using a Leica SP5 confocal 

microscope with automated tile scanning. Blastocyst staining and imaging was performed as 

described before (Bulut-Karslioglu et al., 2016) using blastocysts flushed at E3.5 and cultured 

until E4.5 (see Embryo Culture for details). CHX or DMSO was added in the last 3 hours of culture. 

All quantifications were performed using the Cell Profiler software (Carpenter et al., 2006). 

 

Intracellular flow cytometry 

Wild-type E14 ESCs were cultured overnight in FBS/LIF before a 3h incubation in either CHX 

(100 ng/ml or 1 μg/ml) or DMSO (diluted to 1:10,000). Cells were fixed in 4% PFA for 15 minutes, 

permeabilized in 0.2% Triton X-100 for 3 minutes on ice, and blocked in 1% BSA in PBS. Primary 

incubation was performed with anti-H4K16ac antibody (Millipore, RRID:AB_310525) diluted 

1:1000 in blocking solution, overnight at 4˚C. Cells were washed and incubated in secondary 

antibody (AlexaFluor 488, Life Technologies) and fluorescence intensity was measured on a BD 

Dual Fortessa flow cytometer. Data were analyzed using FlowJo v10. All fluorescence values are 

reported as median fluorescence intensity (MFI).  
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Cell cycle staging 

Wild-type E14 ESCs were cultured overnight before a 3h incubation in DMSO or CHX (1 μg/ml 

and 10 μg/ml). 5-ethynyl 2’-deoxyuridine (EdU) was added to a final concentration of 10 μM during 

the final hour of drug treatment. Cells were trypsinized and processed according to the 

instructions of the Click-iT EdU Alexa Fluor 488 Flow Cytometry Assay Kit. FxCycle Violet Stain 

(diluted 1:1000) was used to detect DNA content, per manufacturer’s instructions. Data were 

collected on a BD Dual Fortessa flow cytometer, analyzed using FlowJo v10, and plotted using 

FlowJo v10 and Prism 7. Statistical analysis by Chi-square test was conducted in Prism 7. 

 

H4K16ac ChIP-seq  

H4K16ac ChIPs were performed according to the recommendations of the Diagenode low-cell 

ChIP kit. Briefly, wt E14 cells were plated and cultured overnight. Cells were treated with CHX 1 

μg/ml or DMSO diluted 1:10,000 in FBS/LIF medium for 3h. 105 cells were harvested per IP. Lysis 

and IP were performed in the presence of 1x Halt Protease inhibitors and sodium butyrate. 

Chromatin was sheared to an average size of 300 bp by a Covaris sonicator with the settings 

Duty 2, Intensity 3, 200 cycles per burst for 8 minutes. Shearing efficiency was checked by 

agarose gel. Fixed, sonicated chromatin was obtained from HEK 293 cells using the same 

method. IPs were performed using antibodies against H4K16ac or rabbit IgG. Following overnight 

IP and washes, genomic DNA was treated with RNase A. Reverse cross-linking was performed 

in the presence of Proteinase K at 65˚C overnight. Genomic DNA was cleaned up using Qiagen 

Minelute Columns and quantified by Qubit. Two biological replicates were collected per condition.  

 

RNA Pol II ChIP-qPCR 

ChIP was performed as described before (Brookes et al., 2012). After aspiration of culture 

medium, cells were washed with PBS and fixed on the culture dish using 1% formaldehyde in 
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PBS for 10 minutes at room temperature (RT). Glycine was added to a final concentration of 125 

mM to quench formaldehyde for 5 minutes at RT. Cells were washed twice with ice-cold PBS, 

incubated in Swelling Buffer (25 mM HEPES pH 7.9, 1.5 mM MgCl2,�10 mM KCl,�0.1% NP-40 

with 1x Halt protease inhibitor cocktail (Thermo Fisher Scientific, Cat # 78425), 1 mM PMSF, 5 

mM NaF and 1 mM NaVO4) for 10 minutes, scraped, passed through an 18Gx11/2” needle (5x) 

and spun down at 3,000g, 4oC, 5 minutes. Nuclei were resuspended in Sonication Buffer (50 mM 

HEPES pH 7.9, 140 mM NaCl,�1mM EDTA,�1% Triton X-100, 0.1% Na-deoxycholate 0.1% SDS 

with 1x Halt protease inhibitor cocktail, 1 mM PMSF, 5 mM NaF and 1 mM NaVO4) and sonicated 

using a Covaris S2 sonicator with settings 5% duty cycle, intensity 4, cycles per burst 200, 

frequency sweeping. 20 µl chromatin was incubated sequentially with 1 µl RNaseA and 5 µl 

proteinase K in 100 µl total volume at 37oC for 30 min and 65oC for 1h, purified using a Qiagen 

PCR purification kit and DNA content was quantified using a NanoDrop. Fragment size distribution 

was checked on a 1% agarose gel. Chromatin was snap frozen if not immediately used for IP. 

Chromatin volume equivalent to 25 µg DNA was used for each IP. Chromatin was 

immunoprecipitated using total 2 µg RNA Pol II (Abcam, RRID:AB_306327) and RNA Pol II S2p  

(Abcam, RRID:AB_304749) antibodies and 30 µl Protein A Dynabeads per IP in 500 µl total 

volume of Sonication Buffer overnight at 4oC. Beads were washed 3x with low salt buffer (0.1 % 

SDS, 1% Triton, 2 mM EDTA, 150 mM NaCl, 10 mM Tris-HCl pH 8.0), 1x with high salt buffer (0.1 

% SDS, 1% Triton, 2 mM EDTA, 500 mM NaCl, 10 mM Tris-HCl pH 8.0), 1x with TE buffer (10 

mM Tris-HCl pH 8.0, 1 mM EDTA), then resuspended in 100 µl Elution Buffer (50 mM Tris pH 7.5, 

1 mM EDTA, 1% SDS). Resuspended beads were sequentially incubated with 1 µl RNaseA 37oC 

for 30 min with and 5 µl proteinase K at and 65oC for 4h to overnight. Eluate was separated from 

beads and purified using Qiagen PCR purification columns.  
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SILAC-Mass Spectrometry 

To differentially label wild-type E14 ESCs with light, medium and heavy amino acids, we replaced 

the following components in the ES-FBS culture medium (see above): DMEM formulated without 

lysine and arginine instead of DMEM, dialyzed serum instead of regular FBS, lysine and arginine 

added separately to light (regular L-lysine and L-arginine), medium (L-lysine 4,4,5,5-D4 and L-

arginine 13C6) and heavy (L-lysine 13C6, 15N2 and L-arginine 13C6, 15N4) media. All SILAC 

reagents were purchased from Cambridge Isotope Laboratories. L-proline was included in all 

media (included in with other non-essential amino acids) and the absence of arginine-to-proline 

conversion was verified by MS. Complete labeling (>99%) was confirmed by MS before starting 

the experiment. To quantitatively identify changes in protein levels upon inhibition of protein 

synthesis, cells were treated with DMSO (light) or 35 μg/ml CHX for 1h (medium) or 3h (heavy). 

Cells were washed with PBS and lifted in ice-cold PBS with 1x protease inhibitor cocktail (Roche). 

108 cells from each condition were pelleted and snap-frozen until MS analysis. Harvested cells 

were lysed in 8M urea in 80 mM NH4HCO3, sonicated on ice (3 pulses at 35% power, 20 s each) 

and centrifuged at 15000g for 10 min. Supernatant was collected and protein concentration 

estimated with BCA. Equal amounts (100 ug) of the 3 SILAC labeled samples were combined, 

and the proteins treated with 5 mM DTT at 56C for 10 min, and then with 10 mM iodoacetic acid 

at RT for 1 h, then diluted 4 times to 2 M urea and digested o/n with trypsin (2% of total protein) 

at 37C. Samples were acidified with 5% formic, and peptides were extracted using SepPack 

cartridges. 200 ug of tryptic peptides where resuspended in 20 mM ammonium formiate pH 10.3, 

and separated in a 1 x 100mm Gemini 3um C18 column (Phenomenex) in a MeCN gradient (2 to 

30 % in 60 min) in the presence of 20 mM ammonium formiate pH 10.3. 70 fraction were collected 

and combined in 18 final fractions, evaporated, resuspended in 0.1 formic acid and analyzed by 

LCMSMS in a Q Exactive Plus mass spectrometer. Peptides were loaded in a 200 cm monolithic 

C18 silica column (GL Sciences, Tokyo, Japan), and separated in a gradient of acetonitrile 
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(288min 2 to 25%, 36 min to 32%, 18 min to 40%, 18 min to 60%, 5 min to 8%) in 0.1% formic 

The liquid chromatography eluate was interfaced with a 7 µm ID EasySpray emitter (Thermo 

Scientific) to the MS. Samples were analyzed in positive ion mode, and in information-dependent 

acquisition mode to automatically switch between MS and MS/MS acquisition. MS spectra were 

acquired in profile mode in the m/z range between 350-1500 m/z at 70,000 resolution.  All samples 

were analyzed with a TOP10 method, the 10 most intense multiple charged ions over a threshold 

of 17000 counts were selected to perform HCD experiments. Product ions were analyzed in 

centroid mode with resolution R=17500. Isolation window was set to 4 Th. A dynamic exclusion 

window was applied that prevented selection of the same m/z for 10s after its acquisition. 

 

ATAC-seq  

ATAC-seq was performed as described before (Buenrostro et al., 2015) on 50,000 cells each of 

DMSO- or 1 μg/ml CHX-treated E14 ESCs, in quadruplicates. A total of 11 cycles of amplification 

was performed. Library quality and quantity were analyzed by Bioanalyzer (Agilent) and KAPA 

library quantification kit for Illumina platforms (KAPA Biosciences). Samples were sequenced on 

a HiSeq 4000 using single-end 50 bp sequencing reads.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

H4K16ac ChIP-Seq 

HEK 293 chromatin was spiked in to a final concentration of 2.5% before library preparation. 

Sequencing libraries were prepared using the NEBNext ChIP-seq Library Prep for Illumina Kit 

(New England Biolabs) following manufacturer’s instructions. Libraries were constructed from 3 

or 5 ng of DNA and quality was assessed by High Sensitivity DNA Assay on an Agilent 2100 

Bioanalyzer (Agilent Technologies). Samples were sequenced on a HiSeq 4000 using single-end 

50 bp reads. Sequencing reads that passed quality control were trimmed of adaptors using Trim 

Galore! and aligned to mm9 and hg19 using bowtie2 (Langmead and Salzberg, 2012) version 
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2.2.4 with no multimapping. Normalization factors for each sample, excluding inputs, were 

calculated from the ratio of total reads aligning to mm9 compared to total reads aligning to hg19 

(Orlando et al., 2014). Reads were deduplicated using samtools (H. Li et al., 2009) and analyzed 

by custom R scripts, available upon request. Read coverage was assigned using the 

featureCounts function of the Rsubread package (version 1.24.1) (Liao et al., 2013) in R 

Bioconductor (Huber et al., 2015), using all coding genes of mm9 with a 2kb 5’ extension and 

disallowing multiple overlap. Read abundance over each gene was scaled by the respective 

normalization factor and then divided by the read abundance in the corresponding input. Replicate 

correlation was assessed by Pearson correlation between the top 1000 most-enriched genes, 

and replicates were pooled by summing the featureCounts of each replicate. Merged samples 

were used to produce all plots shown. Top-expressed genes were based on published CNN RNA-

seq of E14 ESCs (Bulut-Karslioglu et al., 2016). Tag density plots were produced using deepTools 

on Galaxy (http://deeptools.ie-freiburg.mpg.de/) (Afgan et al., 2016; Ramirez et al., 

2016). Boxplots were produced in R. Tracks were visualized using the UCSC Genome Browser. 

 

SILAC-mass spectrometry 

Peaklists were generated using PAVA in-house software (Guan et al., 2011) based on the 

RawExtract script from Xcalibur v2.4 (Thermo Fisher Scientific). The peak lists were searched 

against the human subset of the UniProt database as of June 17, 2013, (73955/36042779 entries 

searched) using in-house ProteinProspector with settings described below. A randomized version 

of all entries was concatenated to the database for estimation of false discovery rates in the 

searches. Peptide tolerance in searches was 20 ppm for precursor and 30 ppm for product ions, 

respectively. Peptides containing two miscleavages were allowed. Carboxymethylation of 

cysteine was allowed as constant modification; acetylation of the N terminus of the protein, 

pyroglutamate formation from N terminal glutamine, oxidation of methionine, and loss of the 

protein initial methionine, were allowed as variable modifications, as well as 2H(4) labelling in 
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lysine and 13C(6) labelling in arginine, and 15N(2) 13C(6) labelling in lysine and 15N(4) 13C(6) 

labelling in arginine, limiting the allowed combination of labels: if K and R occur in the same 

peptide, Protein Prospector only allows pairing of K0 with R0, K4 with R6 and K8 to R10. In all 

cases, the number of modification was limited to two per peptide. A minimal ProteinProspector 

protein score of 20, a peptide score of 15, a maximum expectation value of 0.05 and a minimal 

discriminant score threshold of 0.0 were used for initial identification criteria. FDR was limited to 

1%. Quantification: SILAC quantification measurements were extracted from the raw data by 

Search Compare in Protein Prospector. Search Compare averaged together MS scans from -10 

s to +30 s from the time at which the MS/MS spectrum was acquired in order to produce 

measurements averaged over the elution of the peptide. SILAC ratios were calculated, and base 

2 logarithms of these values were used for further analysis. If quantitative data are available from 

isotopic envelopes identified as different charge states of the same peptide, the median of the 

log2 of the calculated SILAC ratios was used for that peptide. For proteins, the median of all the 

log2 ratios for peptides unique to that protein was calculated, and the distribution of log2 ratios 

normalized by its median value. 

 

ATAC-seq 

Raw reads were trimmed of adaptors and aligned to the mouse genome build mm10 using 

Bowtie2 version 2.2.4. Reads were deduplicated, sorted, and converted to bigWig format using 

samtools. BigWig files from individual replicates were used to assess correlation strength between 

replicates (Figure S6) using deepTools/multibigwigsummary and plotCorrelation tools. Peak 

calling was performed on each biological replicate pair using Macs14. Peaks from different 

biological replicates were then intersected. Peaks which were detected in at least 3 out of 4 

replicates were selected for further analysis. As such, 734 peaks were found to be gained and 

454 peaks were found to be depleted upon CHX treatment. Gene ontology analysis of these 

peaks was performed using GREAT software (McLean et al., 2010). The region-gene association 
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was confined to 5 kb upstream and 1 kb downstream of each gene. To compare enrichment of 

histone marks, variants and DNase-seq signal over our ATAC-seq peaks, we used the datasets 

indicated in the Key Resources Table. All heatmaps were generated using the deepTools 

package (Ramirez et al., 2016) on the Galaxy platform (Afgan et al., 2016). Motif analysis was 

done using Homer version 4.7 (Heinz et al., 2010). Analysis of repeats was done using repeat 

annotations from UCSC, custom R scripts and Galaxy Bedtools. 

 

Other 

All other replications and statistical analyses are explained in Figure Legends. 

 

DATA AND SOFTWARE AVAILABILITY 

Sequencing data have been deposited in Gene Expression Omnibus (GEO) under accession 

number GSE98358.  

 

  

 

 

 
  



 74 

Chapter 2:  
 
Usp9x regulates a peri-implantation switch in PRC2 activity 
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Introduction 
 
Chromatin state transitions are central to stem cell fate determination (Chen and Dent, 2014). 

Pluripotent stem cells in vitro and in the peri-implantation embryo undergo extensive rewiring of 

their chromatin landscape in preparation for lineage commitment (Gökbuget and Blelloch, 2019). 

Crucially, this remodeling includes a global redistribution of repressive histone H3 lysine 27 tri-

methylation (H3K27me3) from broad distal blankets to promoter-proximal peaks at developmental 

genes (Zheng et al., 2016) (van Mierlo et al., 2019), raising questions about the molecular 

mechanisms that regulate facultative heterochromatin in peri-implantation development. Here we 

report that the deubiquitinase Usp9x promotes activity of Polycomb Repressive Complex 2 

(PRC2), the highly conserved complex that deposits H3K27me3. We show that Usp9x levels 

capture the molecular transitions at implantation with remarkable fidelity. Transcriptome and 

chromatin analyses reveal that Usp9x-high mouse embryonic stem (ES) cells bear a molecular 

signature of pre-implantation, including elevated PRC2 activity and H3K27me3 deposition. 

Usp9x-low ES cells resemble the post-implantation, gastrulating epiblast. Usp9x deletion in the 

pluripotent epiblast manifests as developmental delay by embryonic day 9.5, and mutant embryos 

show evidence of delayed repression of early lineage genes. Mechanistically, we show that Usp9x 

deubiquitinates core members to promote pervasive H3K27me3 deposition. Usp9x recurs as a 

marker of “stemness” (Blanpain et al., 2004; Ramalho-Santos et al., 2002); is essential for fly, 

mouse, and human development (Fischer-Vize et al., 1992; Nagai et al., 2009); and is mutated in 

various neurological disorders and cancers (Murtaza et al., 2015). The regulatory axis outlined 

here may therefore apply to other settings where Usp9x and PRC2 regulate transitions in cell fate. 
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Results 
 
We identified Ubiquitin Specific Protease 9x (Usp9x) in a recent RNAi screen for regulators of the 

chromatin state of ES cells cultured in serum with leukemia inhibitory factor (LIF) (Bulut-Karslioglu 

et al., 2018), which mimic the fast-growing pluripotent cells of the peri-implantation epiblast. To 

explore the roles of Usp9x in these cells, we established an auxin inducible degron (AID) model 

for targeted, tunable depletion of Usp9x at the protein level (Nishimura et al., 2009) (Fig. 1a). In 

ES cells homozygous for the OsTir1 auxin receptor, we tagged endogenous Usp9x with enhanced 

green fluorescent protein (GFP) and a minimal AID or a 3x Flag tag (AID-Usp9x or Flag-Usp9x 

herein). Auxin drives Usp9x depletion within hours (Fig. S1a), although a subpopulation of cells 

resists degradation (Usp9x-high). We chose 8 hours (h) of auxin as the standard treatment 

duration and sorted Usp9x-high and Usp9x-low fractions by GFP expression (Fig. 1a, S1b-c).  

 

Serum ES cells represent a heterogeneous mixture of “metastable” pluripotent cell states, and 

subpopulations are usually interconvertible. Usp9x-high and Usp9x-low fractions express 

comparable Oct4, but the latter show reduced Nanog (Fig. 1b). In colony formation assays, 

Usp9x-low ES cells show a ~5-fold self-renewal deficit relative to Usp9x-high or untreated ES 

cells (Fig. 1b). Surprisingly, isolated Usp9x-low cells did not re-distribute along a spectrum of 

expression after a 48h recovery without auxin (Fig. S1d-e), unlike the dynamics of some naïve 

pluripotency markers (Hackett and Surani, 2014).  

 

To characterize Usp9x-high and Usp9x-low cells, we performed spike-in RNA-sequencing (RNA-

seq). By principal component analysis (PCA), replicates cluster according to Usp9x status, and 

sorted control cells—including AID-Usp9x cells without auxin and Flag-Usp9x cells after auxin 

treatment—form an intermediate cluster (Fig. 1c). We calculated differential expression (DE) in 

Usp9x-high or Usp9x-low ES cells versus controls and compared their profiles to molecular  
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Figure 2.1. Usp9x level in ES cells captures a molecular signature of peri-implantation 
development.  
a) Schematic of an auxin-inducible degron (AID) system for acute Usp9x depletion in mouse 
embryonic stem (ES) cells homozygous for OsTir1, the auxin receptor. See Methods for details. 
b) Usp9x-low ES cells show a self-renewal deficit. Representative images and quantification of 
colony formation assays (CFA) 5 days after plating at clonal density. Error bars depict mean ± 
SD of 4 replicate CFAs performed in two independent sorts. ****p < 0.0001 by one-way ANOVA 
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signatures of development using Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 

2005). We observed striking polarity based on Usp9x status; whereas the Usp9x-high state 

correlates to pre-implantation embryonic stages, Usp9x-low ES cells resemble the post-

implantation epiblast and early lineages (Fig. 1d, S1e). Importantly, Usp9x expression itself 

declines from pre- to post-implantation in wild-type embryos (Fig. 1e)3, highlighting the 

physiologic relevance of this correlation.  

 

The opposing molecular signatures Usp9x-high and Usp9x-low cells are reinforced after the 48h 

recovery (Fig. S1d). A salient difference between the two populations is a global difference in 

steady-state transcript levels. Usp9x-high cells settle into a state of hypotranscription (Bulut-

Karslioglu et al., 2016), showing a suppression of the majority of the transcriptome relative to 

control cells. By contrast, Usp9x-low cells demonstrate relative hypertranscription, including 

ribosomal protein gene induction (Fig. S2a-b) (Percharde et al., 2017a) (Percharde et al., 2017a; 

2017b). They also upregulate genes associated with differentiation- and development-related 

Gene Ontology (GO) terms, while the pattern of downregulated genes is reminiscent of a 

hypomethylated, naïve state of pluripotency driven by vitamin C addition to naïve (2i) ES cell 

and multiple t-test comparisons to the no-auxin condition. c) Principal Component Analysis (PCA) 
of gene expression by spike-in normalized RNA-seq in the indicated samples. Each point 
represents a biological replicate. 8h: 8h auxin treatment. No-auxin: AID-Usp9x cells with vehicle 
(water) treatment. 48h: 8h auxin treatment followed by 48h recovery in serum/LIF medium. Flag: 
Flag-Usp9x cells after 8h auxin and 48h recovery. All cells were sorted. d) Transcriptional 
signatures of Usp9x-high or Usp9x-low ES cells correlate with different embryonic stages by 
Gene Set Enrichment Analysis (GSEA). Genes were ranked by differential expression (DE) and 
compared to gene lists representing the indicated stages of wild-type development. See Methods 
for references. NS, not significant (false discovery rate (FDR) > 0.05). e) Usp9x mRNA 
expression in the epiblast declines from pre- to post-implantation. Data are from (Boroviak et al., 
2015; Zhang et al., 2018). Error bars depict mean ± SD of 3-4 replicates. *p < 0.05, **p < 0.01 by 
Student’s t-test with Welch’s correction. f) Usp9x-high and Usp9x-low ES cells share many (248) 
DE genes that are targets of Polycomb Repressive Complex 2 (PRC2). Bar graph depicts the 
results of ChIP Enrichment Analysis by the Enrichr suite. A sample Suz12 dataset is shown in the 
Venn diagram at left, using the top-enriched factor from Enrichr. 172 of 248 overlapping DE 
genes (72%) are Suz12 targets (P < 2.2x10e16 by Fisher exact test) (Pasini et al., 2010a). 
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culture (Fig. S2c) (Blaschke et al., 2013). Taken together, these results show that Usp9x level 

models the molecular progression at implantation.    

 

We wondered if the transcriptional signature of the acute (8h) time point held clues to the gene 

regulatory network establishing divergent cell fates. Consistent with their diametric GSEA 

signatures, Usp9x-high and Usp9x-low ES cells show polarized expression of many of the same 

genes. Of the 277 significantly downregulated genes in Usp9x-high cells, 248 (90%) are 

significantly DE but induced in Usp9x-low cells. ChIP-X Enrichment Analysis (ChEA) revealed 

that the divergent genes are highly enriched for Polycomb target genes, especially those bound 

by PRC2 (Fig. 1f) (Chen et al., 2013; Kuleshov et al., 2016; Pasini et al., 2010a). PRC2 is 

considered dispensable for pluripotency, as PRC2-knockout ES cells can be propagated in 

serum/LIF, albeit with precocious activation of lineage genes (Boyer et al., 2006; Leeb et al., 

2010). Derepression of PRC2 target genes in Usp9x-low ES cells, however, leads to spontaneous 

differentiation (Fig. S2d), behavior that resembles PRC2 deletions in primed mouse or human ES 

cells (Collinson et al., 2016; Moody et al., 2017; Shan et al., 2017). Taken together, these data 

suggest that Usp9x-high ES cells represent a highly PRC2-repressed, pre-implantation-like state 

of pluripotency, while premature activation of PRC2 targets in Usp9x-low ES cells promotes 

precocious differentiation. 

 

We turned to the mouse embryo to study the consequences of Usp9x loss for developmental 

progression. To avoid possible roles in pre-implantation and trophectoderm development  (Abed 

et al., 2019; Pantaleon et al., 2001), we crossed Sox2-Cre males with Usp9xfl/fl females to delete 

Usp9x strictly in epiblast derivatives of offspring (Hayashi et al., 2002). We genotyped and 

catalogued the morphology of mutant (mut, Usp9x∆/X) versus control (ctrl, Usp9xfl/X) embryos at 

several post-implantation stages (Fig. 2a, S3a). 
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Deviation from the expected (1:1) ratio arose by E11.5, at which point mutants accounted for only 

~25% of recovered embryos and showed morphological abnormalities with 100% penetrance. 

Mutants that survive to E11.5 were relatively well-formed but show extensive hemorrhaging. The 

remainder showed pericardial edema, cerebral edema, and severe delay, pointing to a much 

earlier developmental arrest (Fig. 2b). At E9.5, Usp9x mutants showed developmental delay 

(delayed turning, open anterior neuropore) or gross abnormalities, including blunted posterior 

trunk development and exencephaly (Fig. 2b). These pleiotropic outcomes align with the 

phenotypes of chimeras derived from Usp9x-gene-trapped ES cells by E9.5 and the ubiquitous 

expression of Usp9x at E9.5 (Cox et al., 2010; Wood et al., 1997). 

 

Going back one day in development to E8.5, Usp9x mutants appeared morphologically normal 

(Fig. S3c). This stage corresponds to the early stages of organogenesis, just after the dissolution 

of pluripotency (Beddington, 1983; Damjanov et al., 1971; Kojima et al., 2014). To find molecular 

changes anticipating later developmental delay, we performed whole-embryo RNA-seq on litter-

matched controls and mutants from 2 litters (Fig. S3c). Mutants largely cluster away from controls 

by PCA and unsupervised hierarchical clustering (Fig. 2c, S3d). Thus, even though mutants 

appear normal at E8.5, they are readily distinguished from controls at the transcriptional level. 

 

To account for staging differences between litters, we called DE genes between mutants and 

controls within each litter, applied a statistical cutoff (adjusted P < 0.1), and overlapped the gene 

lists to obtain refined sets of 71 upregulated and 66 downregulated genes in all mutants (Fig. 2d). 

Upregulated genes include targets of homeodomain-containing transcription factors (Isl1, F-box, 

Sox, T-box) that serve lineage-specific regulatory roles (Fig. 2e). The most-enriched factor is Isl1, 

an early marker of cardiac progenitor cells (Cai et al., 2003), consistent with GO analysis 

demonstrating upregulation of cardiac development among mesoderm and endoderm terms (Fig. 

S3e). As the heart is one of the first organs to develop, we wondered if Usp9x mutants still express 
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early genes at E8.5. Indeed, the genes upregulated in Usp9x mutants typically decline between 

E6.5 and E8.5 in wild-type embryos (Fig. 2f) (Beccari et al., 2018).   

 

Figure 2.2. Usp9x-mutant embryos are slow to repress early lineage programs. 
a) Schematic of genetic cross to delete Usp9x in epiblast derivatives of embryos. Below, 
quantification of male (XY) embryos at several post-implantation stages. We focused on XY 
embryos to extend our findings from XY mouse ES cells. b) Representative images of ctrl. 
Scale bar = 250 µm for E9.5, 2.8 mm for E11.5. Quantification is shown at right. c) PCA plots of 
mutants (mut) and controls (ctrl), numbered by litter. d) Outline of method to obtain 
differentially-expressed gene lists between mutant and control embryos. e) Output of Enrichr 
analysis for transcription factor (TF) binding enriched at genes up-regulated in Usp9x mutants. 
The 15 top-enriched features are shown. e) Expression of genes up- or down-regulated in the 
mutants during wild-type development (Beccari et al., 2018). f) During wild-type development 
(Wang et al., 2018), H3K27me3 accumulates over the genes upregulated in Usp9x mutants. 
Bottom panel: quantification of H3K27me3 signal over genes +10kb upstream.   
P-values obtained by χ2

 
test (a, b), Student’s t-test with Welch’s correction (f), and Wilcoxon 

rank-sum test (g). Lines show mean ± S.E.M. of 2-3 replicates per condition (f, g).  
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Delayed gene repression evokes the phenotype of PRC2-hypomorphic ES cells, which 

differentiate poorly due to inefficient repression of early genes and alternate lineage programs 

(Pasini et al., 2007; Thornton et al., 2014). In zebrafish and Xenopus (Akkers et al., 2009; Rougeot 

et al., 2019), PRC2 is essential for stage- and spatially-restricted expression of developmental 

regulators after gastrulation. The roles of PRC2 in the post-implantation epiblast remain obscure, 

as early reports observed peri-gastrulation lethality of constitutive PRC2-knockout embryos 

(Faust et al., 1995; O'Carroll et al., 2001; Pasini et al., 2004), although these findings are 

confounded by requirements for PRC2 in extraembryonic tissues (Rugg-Gunn et al., 2010). 

Intriguingly, recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies documented a 

wave of de novo and spatially-regulated heterochromatin deposition after implantation in wild-

type mouse embryos  (Wang et al., 2018; Yang et al., 2019). We mined these data for the 

expected H3K27me3 dynamics over genes dysregulated in Usp9x mutants (Wang et al., 2018). 

The upregulated genes normally amass significant H3K27me3 by E8.5 (Fig. 2g), suggesting that 

heterochromatin helps repress them over time.  

 

One upregulated gene reported to accumulate H3K27me3 in a spatial manner is Nodal (Yang et 

al., 2019), the TGF-beta superfamily member (Fig. S3f). Ongoing expression of factors such as 

Nodal may directly impede development. Consistent with this notion, the 66 genes downregulated 

in mutants are enriched for repressive chromatin factor binding, are normally induced between 

E6.5-E8.5, and correspond to protein metabolism and neuron morphogenesis GO terms (Fig. 2f, 

S3e,g-h). Taken together, these results suggest that Usp9x-mutant embryos are slow to repress 

early lineage genes. One explanation is that Usp9x promotes timely H3K27me3 deposition in 

early organogenesis.  
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peak set of the same size (2566), or all peaks found in ES cells at baseline (no auxin). 
c) Heatmaps depicting H3K27me3 chromatin immunoprecipitation (ChIP) signal spreading 
outside of peaks in Usp9x-high ES cells. Peaks are the same set in (b). 
d) Profile plot depicting the mean signal of coverage shown in (c). 
e) Pre-implantation embryos show global enrichment of H3K27me3 compared to post-
implantation stages (E6.5 epiblast and E7.5 epiblast, epi). Plots show H3K27me3 reads 
falling in non-overlapping 10kb bins across the genome, adjusted for library size or 
exogenous spike-ins as relevant. 
f) PCA plots clustering Usp9x-high and Usp9x-low ES cells among the samples shown in (e) 
based on H3K27me3 distributions. PC1 separates pre-implantation-like from post-
implantation-like states. Each point represents a biological replicate.
Data from embryos as well as 2i and serum ES cells are from published sources (Liu et al., 
2016; van Mierlo et al., 2019; Wang et al., 2018). ****p < 2.2x10-16 by Wilcoxon rank-sum test 
(b) or Kolmogorov-Smirnov (KS) test (e). KS tests were performed on the average of 
replicates and the average of pre-implantation vs post-implantation states. 

Figure 2.3. Usp9x promotes pervasive H3K27me3 deposition. 
a) CNN western blots for PRC2 proteins in whole cell extracts, representative of 3 biological 
replicates. b) H3K27me3 coverage in Usp9x-high or Usp9x-low cells over bivalent peaks, a 
random peak set of the same size (2566), or all peaks found in ES cells at baseline (no auxin).  
c) Heatmaps depicting H3K27me3 chromatin immunoprecipitation (ChIP) signal spreading 
outside of peaks in Usp9x-high ES cells. Peaks are the same set in (b) and normalized to 
consistent lengths.  d) Profile plot depicting the mean signal of coverage shown in (c). e) Pre-
implantation embryos show global enrichment of H3K27me3 compared to post-implantation 
stages (E6.5 epiblast and E7.5 epiblast, epi). Plots show H3K27me3 reads falling in non-
overlapping 10kb bins across the genome, adjusted for library size or exogenous spike-ins as 
relevant. f) PCA plots clustering Usp9x-high and Usp9x-low ES cells among the samples shown 
in (e) based on H3K27me3 distributions. PC1 separates pre-implantation-like from post-
implantation-like states. Each point represents a biological replicate. Data from embryos as well 
as 2i and serum ES cells are from published sources (Liu et al., 2016; van Mierlo et al., 2019; 
Wang et al., 2018). ****p < 2.2x10-16 by Wilcoxon rank-sum test (b) or Kolmogorov-Smirnov (KS) 
test (e). KS tests were performed on the average of replicates and the average of pre-
implantation vs post-implantation states.  
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We returned to ES cells to explore how Usp9x regulates PRC2 activity. Consistent with a 

transcriptional signature of PRC2 derepression (Fig. 1f), Usp9x-low ES cells express PRC2 

proteins at lower levels and show reduced H3K27me3 compared to Usp9x-high ES cells (Fig. 3a, 

Fig. S4a-b). We mapped changes between cell states using ChIP-seq. Usp9x-high cells show 

relative enrichment of H3K27me3 over bivalent promoters (Fig. 3b) (Marks et al., 2012), canonical 

PRC2 targets in ES cells. Gains are not limited to bivalent genes, however, as Usp9x-high cells 

are marked by higher H3K27me3 over all peaks present at baseline (no-auxin) as well as up- and 

down-stream of peaks (Fig. 3c, Fig. S4c). They also show H3K27me3 enrichment over repetitive 

elements (Fig. S4d)  (Walter et al., 2016). 

 

The pattern of Usp9x-high ES cells resembled recent reports that early embryos and naïve ES 

cells in 2i carry H3K27me3 in diffuse domains, not just at promoter-proximal peaks (Højfeldt et 

al., 2019; Kumar and Elsässer, 2019; van Mierlo et al., 2019; Zheng et al., 2016). Cumulative 

enrichment plots confirm the global elevation of the mark in Usp9x-high cells, resembling the 

pattern in 2i versus serum ES cells. Remarkably, a similar contrast emerges between pre-

implantation stages and the post-implantation epiblast at E6.5 and E7.5 (Fig. 3e). PCA separates 

pre-implantation and post-implantation embryos along PC1. ES cell data follow this trajectory, 

with Usp9x-high and 2i ES cells aligning with pre-implantation while Usp9x-low and serum ES 

cells cluster with post-implantation stages (Fig. 3f). These results indicate that H3K27me3 

enrichment across large swathes of the genome is a hallmark of pre-implantation pluripotency 

(Erhardt et al., 2003; Saha et al., 2013; Zhang et al., 2009).  

 

Given the above results, we hypothesized that Usp9x is a PRC2 deubiquitinase. In co-

immunoprecipitation assays on endogenous proteins, Usp9x interacts with Ezh2 and Suz12 in 

nuclear extracts from ES cells (Fig. 4a, S5a). Acute Usp9x depletion using the AID system led to 
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gain of poly-ubiquitinated forms of Suz12 and Ezh2 (Fig. 4b). Finally, loss of Usp9x activity in wild-

type ES cells, either by the small molecule catalytic inhibitor WP1130 or overexpression of a 

mutant catalytic domain (C1566S), leads to accumulation of poly-ubiquitinated Ezh2 (Fig. S5b-c, 

Fig. 4c). Gain of ubiquitin tends to correlate with destabilization of Suz12 and Ezh2 (Fig. 4b-c). 

Taken together, these biochemical assays suggest that Usp9x acts as a PRC2 deubiquitinase in 

mouse ES cells.  

 

 

  

Figure 4. Usp9x is a PRC2 deubiquitinase and binds to PRC2 sites??.
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Figure 4 Usp9x is a PRC2 deubiquitinase.
a) Reciprocal co-immunoprecipitation (co-IP) of Ezh2 and Usp9x in wild-type ES cells. Both 
proteins also pull down Suz12. 
b) Acute auxin depletion over at time course from 0-8h leads to gain of ubiquitin at PRC2 
proteins. HA-Ubiquitin (HA-Ub) was expressed at low levels to enable immunoprecipitation 
(IP). The high molecular weight smears represent ubiquitinated species of Suz12 and Ezh2 
(designated by (Ub)n). Input samples show destabilization of Suz12 and Ezh2. 
c) Comparison of overexpressing a wild-type (wt) versus catalytic-mutant (C1566S) form of 
the Usp9x catalytic domain in wild-type ES cells. 
All western blots are representative of at least 2 biological replicates. 

Figure 2.4. Usp9x is a PRC2 deubiquitinase. 
a) Reciprocal co-immunoprecipitation (co-IP) of Ezh2 and Usp9x in wild-type ES cells. Both 
proteins also pull down Suz12. b) Acute auxin depletion over at time course from 0-8h leads to 
gain of ubiquitin at PRC2 proteins. HA-Ubiquitin (HA-Ub) was expressed at low levels to enable 
immunoprecipitation (IP). The high molecular weight smears represent ubiquitinated species of 
Suz12 and Ezh2 (designated by (Ub)n). Input samples show destabilization of Suz12 and Ezh2. 
c) Comparison of overexpressing a wild-type (wt) versus catalytic-mutant (C1566S) form of the 
Usp9x catalytic domain in wild-type ES cells. Cells were treated with 8h auxin to deplete 
endogenous Usp9x. Whole cell-extracts are shown. At long exposures, high molecular-weight 
species of Suz12 (left) and Ezh2 (right) represent polyubiquitinated forms. Short exposure times 
show destabilization of the proteins. Westerns are representative of 2-3 biological replicates.  
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Discussion 
 
Via transcriptional analysis of acute Usp9x depletion, we identified PRC2 members as key targets 

of Usp9x in ES cells. Mechanistically, we demonstrate that Usp9x deubiquitinates core PRC2 

complex members and promotes high levels of H3K27me3 in ES cells. H3K27me3 is abundant 

in pre-implantation embryos (Erhardt et al., 2003; Saha et al., 2013; Zhang et al., 2009), where it 

marks transposable elements during hypomethylation (Walter et al., 2016; Wang et al., 2018) and 

regulates maternal imprints (Inoue et al., 2017; Matoba et al., 2018). That Usp9x-high ES cells 

enter a state of global hypotranscription implies that ubiquitous H3K27me3 suppresses large-

scale transcription prior to implantation (Fig. S1a-b), possibly by preventing H3K27 acetylation 

(Lavarone et al., 2019; Lee et al., 2015; Pasini et al., 2010b).  

 

Our results in ES cells suggest that physiologic decline of Usp9x at implantation helps constrict 

PRC2 activity during lineage induction (Fig. 5). RNA-seq in Usp9x-mutant epiblasts highlights the 

requirement for PRC2 to maintain fidelity of lineage commitments. Studies in mammalian systems 

have emphasized roles of PRC2 in regulating bivalent promoters, but evidence abounds that 

broad H3K27me3 domains arise in diverse cell types (Carelli et al., 2017; Hawkins et al., 2010; 

Pauler et al., 2009; Young et al., 2011). In fact, bivalency may represent a nadir of PRC2 activity—

a mechanism to minimize expression of developmental regulators amidst low PRC2 expression 

(Miro et al., 2009; Mitiku and Baker, 2007); hypertranscription and lineage priming (Bulut-

Karslioglu et al., 2018; Gaspar-Maia et al., 2009; Guzman-Ayala et al., 2014), rapid cell cycles 

that oppose H3K27me3 inheritance (Reverón-Gómez et al., 2018; Snow, 1977); and 

accumulation of H3K27me3 antagonists, including demethylases, DNA methylation, and 

activating chromatin marks (Schmitges et al., 2011; Wang et al., 2017). Consistent with this 

notion, bivalent promoters are CpG-dense and high-affinity PRC2 targets, sites where accessory 

proteins cooperatively recruit PRC2 in mammalian cells (Højfeldt et al., 2019; Li et al., 2017; 
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Oksuz et al., 2018; Perino et al., 2018). PRC2 deposits H3K27me2 throughout the genome, but 

binds transiently and is seldom detected outside of H3K27me3 peaks in ES cells (Ferrari et al., 

2014; Laugesen et al., 2019). Oncogenic EZH2 mutations stabilize the complex and cause 

widespread gain of H3K27me3 (McCabe et al., 2012; Sneeringer et al.; Yap et al., 2011). Our 

results highlight post-translational regulation as another mechanism to stabilize PRC2 at 

chromatin and promote H3K27me3 at low-affinity sites. Future studies are necessary to 

understand how Usp9x integrates activities of other substrates with PRC2 and to identify the E3 

ubiquitin ligase(s) that acts on PRC2 in early development.  

 

Supporting the designation of Usp9x as “stemness” factor, loss-of-function studies document that 

Usp9x limits stem/progenitor cell expansion during neural development (Premarathne et al., 

2017), T cell development (Naik et al., 2014), and intestinal regeneration (Khan et al., 2018). In 

humans, USP9X mutations are implicated in X-linked neurodevelopmental syndromes (Homan et 

al., 2014; Reijnders et al., 2016; Tarpey et al., 2009), Parkinson disease (Rott et al., 2011), Turner 

Syndrome (Jones et al., 1996), seizures (Paemka et al., 2015), and numerous cancers (Bailey et 

al., 2018; Pérez-Mancera et al., 2012; Schwickart et al., 2010). PRC2 has well-appreciated roles 

in human physiology, ranging from development to cancer (Comet et al., 2016; Deevy and 

Bracken, 2019). Thus, although we have focused on peri-implantation development, a Usp9x-

PRC2 axis that specifies H3K27me3 domains has broad biomedical implications. 
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• Usp9x helps maintain fidelity 
of PRC2 targets during 
development• Usp9x promotes ubiquitous 

PRC2 activity
• Memory & maintenance of 

hypotranscription

Usp9x
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Ezh2

• Loss of Usp9x
• PRC2 more restricted
• Lineage priming

Usp9x Suz12 Ezh2

Usp9x
PRC2
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IMPLANTATION

Figure 2.5. Model for the role of Usp9x in regulating PRC2 activity in peri-implantation 
development and early lineage commitment.  
Our results suggest that the Usp9x-PRC2 axis acts at two points during early development. 
First, during pre-implantation, Usp9x deubiquitinates and stabilizes core PRC2 members Suz12  
and Ezh2. This results in high activity of the complex, repression of lineage genes, and self-
renewal. Second, re-expression of Usp9x after E8.5 may stabilize PRC2 during a wave of de 
novo H3K27me3 deposition after lineage formation. Usp9x-mutant epiblasts show molecular 
abnormalities by E8.5 defined by ongoing expression of early lineage pathways.  
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Supplemental Figures 
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Figure S1 Characterization of the AID-Usp9x ES cell line.
a) Auxin treatment drives acute Usp9x depletion at the protein level. Cell-number normalized 
(CNN) western blot of endogenous Usp9x protein over a time course of auxin, 0-10h. 
b) CNN western blot confirming endogenous Usp9x depletion in Usp9x-low and retention in 
Usp9x-high ES cells, sorted as depicted in (a). 
c) The Usp9x-low does not represent a distinct phase of the cell cycle. ES cells were sorted 
by stage according to a FUCCI cell cycle reporter (Nora et al., 2017).
d) Diagram of experiments assessing the ability of sorted Usp9x-high or Usp9x-low ES cells 
to recover after acute auxin treatment, relevant to (c) and Fig. S2. 
e) After recovery, 48h Usp9x-low ES cells do not recover Usp9x expression, measured by 
GFP fluorescence, and adopt heterogeneous, differentiated morphologies.
f) Usp9x protein expression declines over pre-implantation development. Normalized data 
are plotted from quantitative proteomic analysis of wild-type embryos in (Gao et al., 2017; 
Israel et al., 2019).
All western blots represent 2-3 biological replicates. 

Figure S2.1. Characterization of the AID-Usp9x ES cell line. 
a) Auxin treatment drives acute Usp9x depletion at the protein level. Cell-number normalized 
(CNN) western blot of endogenous Usp9x protein over a time course of auxin, 0-10h. b) CNN 
western blot confirming endogenous Usp9x depletion in Usp9x-low and retention in Usp9x-high 
ES cells, sorted as depicted in (a). c) The Usp9x-low does not represent a distinct phase of the 
cell cycle. ES cells were sorted by stage according to a FUCCI cell cycle reporter (Nora et al., 
2017). d) Diagram of experiments assessing the ability of sorted Usp9x-high or Usp9x-low ES 
cells to recover after acute auxin treatment, relevant to (c) and Fig. S2. e) After recovery, 48h 
Usp9x-low ES cells do not recover Usp9x expression, measured by GFP fluorescence, and 
adopt heterogeneous, differentiated morphologies. f) Usp9x protein expression declines over 
pre-implantation development. Normalized data are plotted from quantitative proteomic analysis 
of wild-type embryos in (Gao et al., 2017; Israel et al., 2019). All western blots represent 2-3 
biological replicates.  
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Figure S2 Isolating ES cells by Usp9x expression induces divergent cell fates.
a) Steady-state transcriptomes of 48h Usp9x-high or Usp9x-low ES cells based on spike-in 
normalized RNA-seq. Boxplot and density plots show log2 fold-change expression of all 
genes relative to expression in control cells. P-value calculated by the Wilcoxon rank-sum 
test. 
b) Relative expression of ribosomal protein genes in Usp9x-high, Usp9x-low, or control cells 

Figure S2.2. Isolating ES cells by Usp9x expression induces divergent cell fates.  
a) Steady-state transcriptomes of 48h Usp9x-high or Usp9x-low ES cells based on spike-in 
normalized RNA-seq. Boxplot and density plots show log2 fold-change expression of all genes 
relative to expression in control cells. P-value calculated by the Wilcoxon rank-sum test. b) 
Relative expression of ribosomal protein genes in Usp9x-high, Usp9x-low, or control cells at 
48h. c) Gene Ontology (GO) analysis of genes significantly upregulated or downregulated in 
Usp9x-low ES cells after 48h, relative to controls. Inset: germline genes induced by vitamin C 
addition to naïve ES cell culture. The output of DEseq2 is plotted as log2 fold-change (FC) in 
expression. *adjusted P-value < 0.05 from Wald test. d) Relative expression of a selection of 
primed and naïve pluripotency genes (Kalkan et al., 2017). Data are plotted as log2 fold-change 
in expression relative to controls.  
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Figure S2.3. Further analysis of RNA-seq from E8.5 Usp9x-mutant embryos. 
a) Number of resorptions counted at the indicated stages (no embryonic material detected in 
deciduum). They represent presumed mutants. b) Additional ctrl and mut XY embryos dissected 
at E9.5 and E11.5. Scale bar = 250 µm for E9.5, 2.8 mm for E11.5. c) Representative ctrl and 
mut embryos at E8.5, used for RNA-seq. Mutants were morphologically indistinguishable from 
controls at this stage. In total, n = 12 embryos collected from 2 litters were sequenced. Scale 
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Extended Data Figure 4
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Figure S4 Additional analysis of H3K27me3 ChIP-seq in ES cells.
a) CNN western blot of H3K27me3 from histone extracts, representative of 2 biological 
replicates.
b) ChIP recovery before sequencing with spike-ins recapitulates the global gain of 
H3K27me3 in Usp9x-high ES cells. 
c) Usp9x-high ES cells carry more H3K27me3 over repetitive elements compared to 
untreated (no-auxin) cells. Each point represents an individual element, and hyper- or hypo-
methylated elements were selected by setting a cutoff of log2(Usp9x-high/untreated) > |0.7|. 
d) Representative genome browser view of H3K27me3 coverage in Usp9x-high and Usp9x-
low cells and the ratio of the two. Elevated H3K27me3 signal in Usp9x-high cells is often 
observed outside of promoters. 

bar = 500 µm. d) Normalized counts confirming low Usp9x mRNA expression in the 6 mutant 
embryos used for RNA-seq.  
e) Unsupervised hierarchical clustering of the top 2000 most variable genes across samples 
from RNA-seq. Mutants largely cluster away from controls, except for mut5 (litter 2), which 
clusters with the controls from litter 1. f) Top-enriched GO terms for up- and down-regulated 
genes in Usp9x mutants. g) Enrichr TF analysis as in Fig. 2e but for genes downregulated in 
mutants. These genes are targets of repressive chromatin factors such as Kdm5b, Kdm2b, 
Trim28, and Suz12. Below, profile plots of H3K27me3 around the downregulated gene set. h) 
Sample genome browser tracks of H3K27me3 in wild-type embryos (E6.5-E8.5) at the Nodal 
locus. Known enhancer elements are highlighted and show gains of H3K27me3. 
Embryo H3K27me3 data are from Wang et al. (Wang et al., 2018). Lines show the mean ± 
S.E.M. of 2-3 replicates per time point, and sample tracks show representative replicates.  

Figure S2.4. Additional analysis of H3K27me3 ChIP-seq in ES cells. 
a) CNN western blot of H3K27me3 from histone extracts, representative of 2 biological 
replicates. b) ChIP recovery before sequencing with spike-ins recapitulates the global gain of 
H3K27me3 in Usp9x-high ES cells. c) Usp9x-high ES cells carry more H3K27me3 over 
repetitive elements compared to untreated (no-auxin) cells. Each point represents an individual 
element, and hyper- or hypo-methylated elements were selected by setting a cutoff of 
log2(Usp9x-high/untreated) > |0.7|. d) Representative genome browser view of H3K27me3 
coverage in Usp9x-high and Usp9x-low cells and the ratio of the two. Elevated H3K27me3 
signal in Usp9x-high cells is often observed outside of promoters.  
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Extended Data Figure 5: Usp9x is a PRC2 deubiquitinase.
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Figure S5. Additional validation of the Usp9x-PRC2 regulatory axis.
a) Co-IPs in AID-Usp9x cells. GFP = IP using GFP beads to isolate Usp9x. neg. = mock IP 
with negative control beads. 
b) Acute catalytic inhibition of Usp9x with the semi-selective inhibitor WP1130 leads to gain 
of ubiquitin at PRC2 proteins, similar to Fig. 4b. WP1130 treatment ranges from 0-4h. 
c) Similar to Fig. 4c, a comparison of the wt versus catalytic-dead Usp9x catalytic domain but 
in AID-Usp9x cells. Cells were treated with 8h auxin to deplete endogenous Usp9x. Whole 
cell-extracts are shown. At long exposures, high molecular-weight species of Suz12 (left) and 
Ezh2 (right) represent polyubiquitinated forms. Short exposure times show destabilization of 
the proteins. 

Figure S2.5. Additional validation of the Usp9x-PRC2 regulatory axis. 
a) Co-IPs in AID-Usp9x cells. GFP = IP using GFP beads to isolate Usp9x. neg. = mock IP with 
negative control beads. b) Acute catalytic inhibition of Usp9x with the semi-selective inhibitor 
WP1130 leads to gain of ubiquitin at PRC2 proteins, similar to Fig. 4b. WP1130 treatment 
ranges from 0-4h.  
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Materials and Methods 
 

Mice 

Usp9xfl/fl females were maintained as homozygotes on a C57BL/6 background by crossing 

Usp9xfl/fl and Usp9xfl/Y mice (Naik et al., 2014). Heterozygous male Sox2-Cre mice were 

obtained from Jackson Laboratories (JAX stock #008454) and bred with Cre-negative females 

to maintain a stock of heterozygous males (Hayashi et al., 2002). All mice were maintained on 

12h light/dark cycle and provided with food and water ad libitum in individually ventilated units 

(Techniplast) in specific pathogen-free facilities at The Center for Phenogenomics, Toronto. All 

procedures involving animals were performed according to the Animals for Research Act of 

Ontario and the Guidelines of the Canadian Council on Animal Care. Animal Care Committee 

reviewed and approved all procedures conducted on animals at TCP (Protocol 22-0331). 

Sample size choice was not pre-determined. Genotyping primers: 

TGCTGTCTTAAATGCATTTATTAATGGAG (Usp9x-fwd), 

GTAAACAGTATTTGAAGTAGGCAAGAG (Usp9x-rev). 

 

Yolk sacs were dissected from embryos and used for DNA extraction with the Sigma Red 

Extract-N-Amp kit (Sigma). Usp9x status was assessed by PCR amplification using Phire Green 

Hot Start II PCR Master Mix (Thermo Fisher Scientific). Cycling conditions: 98C for 30 sec; 35 

cycles of 98C for 5 sec, 58C for 5 sec, 72C for 8 sec; 72C for 1 min.  

 

Plasmid construction 

The sgRNA was designed to target the Usp9x ATG with 20 nt overhang in both directions. 

Cloning was performed by annealing pairs of oligos into pSpCas9(BB)-2A-GFP (PX458) 

(modified from GFP to BFP by site directed mutagenesis), a gift from Feng Zhang (Addgene 
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plasmid # 48138 ; http://n2t.net/addgene:48138 ; RRID:Addgene_48138) (Ran et al., 2013). 

Plasmid identity was verified by Sanger sequencing and purified by midiprep (Qiagen).  

 

The eGFP-AID-Usp9x plasmid was assembled from pEN244-CTCF-AID[71-114]-eGFP-FRT-

Blast-FRT targeting construct, a gift from Benoit Bruneau (Addgene plasmid # 92140; 

http://n2t.net/addgene:92140 ; RRID:Addgene_92140) (Nora et al., 2017). The vector was 

digested with NruI, NsiI, and XhoI and gel purified to remove regions of CTCF homology 

(Qiagen Gel Extraction kit). ~900 bp homology arms to the Usp9x N-terminus were amplified 

from mouse genomic DNA using PrimeStar GXL polymerase (Takara) and Gibson assembly 

primers with 21 nucleotide overlap to adjacent fragments. The vector fragments and amplified 

homology arms were assembled by Gibson Assembly (NEB HiFi Assembly Kit).  

 

Oligos containing a 3xFLAG sequence were annealed by incubation in annealing buffer (1x: 10 

mM Tris-HCl pH 7.5, 1 mM EDTA, 50 mM NaCl) for 5 min at 95C followed by slow cooling to 

25C. The annealed fragment was then digested with BamHI and XhoI and cleaned up by PCR 

purification (Qiagen MinElute). The eGFP-AID-Usp9x vector was also digested with BamHI/XhoI 

and cleaned up by gel extraction (Qiagen). The 3xFlag sequence was then ligated into the 

digested eGFP-Usp9x plasmid (Takara DNA ligation kit #6023). 

 

ES cell targeting 

Vectors were amplified by transformation into Stbl3 competent cells (Invitrogen). Resultant 

colonies were picked for miniprep DNA extraction (Qiagen) and screening by restriction enzyme 

digest. Positive clones were verified by Sanger sequencing, purified by Maxiprep column 

extraction (Qiagen Maxiprep) and then concentrated by standard ethanol precipitation overnight, 

and used for nucleofection.  
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5 million OsTir1 cells (Nora et al., 2017) (passage 4) were nucleofected with 2.5ug of the 

sgRNA plasmid and 20 ug of either eGFP-AID-Usp9x plasmid or eGFP-3xFLAG-Usp9x plasmid, 

using an Amaxa Nucleofector 2b device and ES nucleofection kit (Lonza) per the 

manufacturer’s instructions. Cells were diluted in 500 ul of medium and immediately plated onto 

10 cm dishes with 10 ml pre-warmed medium. After 2 days, GFP-single and BFP-/GFP-double-

positive cells were sorted by FACS and plated at clonal density (10,000 cells per 10cm dish). 

Clones were left to expand for 5 days before manual picking onto 96well plates. Single clones 

were then dissociated and expanded for 2 days. Clones were screened for auxin 

responsiveness by replica plating onto 2 96w plates, addition of auxin to 1 plate, and 

measurement of eGFP fluorescence intensity by flow cytometry. After 8 hours, 10/48 picked AID 

clones displayed high eGFP expression as well as visible response to auxin, although the 

maximum response was ~50%. These 10 clones were subsequently expanded and used for all 

analyses shown. Cells were periodically passaged in the presence of puromycin (1 ug/ml) to 

select against spontaneous transgene silencing. 

 

Usp9x-CD-mCherry cloning 

The Usp9x catalytic domain was amplified from a plasmid containing the full-length Usp9x ORF, 

obtained from DNASU (Seiler et al., 2014), mCherry was amplified by PCR from a pcDNA3-

mCherry plasmid. We then cloned the purified Usp9x-DUB and mCherry fragments into pEF1a-

IRES-Neo was a gift from Thomas Zwaka (Addgene plasmid # 28019 ; 

http://n2t.net/addgene:28019 ; RRID:Addgene_28019) by Gibson Assembly and confirmed 

successful integration by Sanger sequencing (Dejosez et al., 2010). To make the C1566S 

catalytic mutant form of the Usp9x DUB domain, we performed site directed mutagenesis (Liu 

and Naismith, 2008). PCR with Phusion polymerase (NEB), with the PCR cycling conditions: 

98C for 7 min; 12 cycles of 98C for 30s, 61C for 30s, 72C for 3 min 45s; 3 cycles of 98C for 30s, 



 114 

56C for 30s, 72C for 3m 45s; 72C for 10 min; hold. The PCR product was digested with DpnI for 

3h at 37C (NEB) and then 5 ul was transformed into Stbl3 competent cells (Thermo Fisher).  

 

Mouse embryonic stem cell culture 

ES cells were passaged every 1-2 days and grown in regular serum ES cell medium: ES-FBS 

cells were cultured in DMEM GlutaMAX with Na Pyruvate, 15% fetal bovine serum (Atlanta 

Biologicals), 0.1 mM Non-essential amino acids, 50 U/ml Penicillin/Streptomycin, 0.1 mM 

EmbryoMax 2-Mercaptoethanol and 2000 U/ml ESGRO supplement. Cells tested negative for 

Mycoplasma contamination.  

 

Indole-3-acetic acid sodium salt (Sigma I5148-2G) was dissolved in water to 500 mM, filter 

sterilized, and frozen in aliquots. These stock solutions were thawed diluted to 500 uM for all 

depletion experiments. Prior to experiments, cells were pulsed with puromycin (1 ug/ml) to 

select for optimal OsTir1 expression.  

 

Colony formation assays 

1000 cells from the indicated conditions were sorted and plated onto a 12-well plate. Cells were 

grown in self-renewing conditions (serum/LIF) for 5-6 days. Colonies were then washed 1x in 

PBS, fixed for 15 minutes at RT in 4% PFA, and stained according to the instructions of the 

VectorRed Alkaline Phosphatase (AP) Substrate Kit (Vector Laboratories). Colonies were 

manually scored on the basis of colony morphology and AP positivity (>50% of colony area).  

 

qRT-PCR 

cDNA synthesis was performed with the High-Capacity cDNA Reverse Transcription Kit 

(Thermo), using random hexamer priming for 2 hours at 37C. KAPA 2x SYBR Green Master 
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Mix, low ROX (KAPA) was used for qPCR and data were acquired on a QuantStudio 5 

(Thermo) and analyzed in GraphPad Prism v8.  

 

RNA-seq library preparation 

3 clonal replicates of each cell line (AID-Usp9x or Flag-Usp9x) were used for RNA-sequencing. 

Cells were plated the day before sorting, and auxin was added to a final concentration of 500 

uM in fresh media for 8h. Cells were trypsinized and resuspended in FACS buffer (10% FBS, 

PBS, ± 500 uM auxin) with SYTOX Blue for sorting. 250,000 cells from each condition were 

sorted on the basis of negative SYTOX Blue (Thermo) incorporation. 8h sorted cells were 

immediately pelleted, resuspended in Buffer RLT (Qiagen), snap frozen on dry ice, and stored 

at -80˚C before library preparation. Cells for the 2 day recovery were plated in regular ES-FBS 

medium and cultured for 48h in serum/LIF without auxin. They were sorted and stored in the 

same way. Sorts were performed on a Sony SH800 Single Cell Sorter (Sony).  

 

RNA extractions from frozen lysates were performed on the same day using RNeasy Mini 

columns (Qiagen). Recovered total RNA was quantified by Qubit and quality assessed using an 

Agilent Bioanalyzer, RNA pico kit (Agilent). Synthetic RNAs from the External RNAs Control 

Consortium (ERCC) were spiked in at known concentrations to the same volume of RNA from 

the previous step, and 1 ug of total RNA was used for mRNA isolation and library preparation 

using the NEBNext Ultra II Directional Library Prep Kit for Illumina with the mRNA isolation 

module, per manufacturer’s instructions (NEB #E7420S and #XXX). Library quality was 

assessed by Bioanalyzer High Sensitivity DNA chip (Agilent). Libraries were quantified by Qubit 

and pooled at equimolar concentration. Sequencing was performed on a HiSeq 4000 with 50 bp 

single-end reads (Illumina) at the UCSF Center for Advanced Technology. 
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For embryo RNA-seq, whole E8.5 embryos were dissected, cleaned of extraembryonic tissue, 

and then resuspended in buffer RLT + beta-mercaptoethanol, and snap frozen on dry ice. RNA 

was extracted as above, and 600 ng of total RNA was used for library preparation using the 

NEBNext Ultra II Directional Library Prep Kit for Illumina with the mRNA isolation module and 

NEBNext Multiplex Oligos for Illumina. DNA quality was assessed by Fragment Analyzer NGS. 

Libraries were quantified by Qubit and pooled at equimolar concentration for sequencing on a 

NextSeq 500, 75 bp single-end reads (Illumina) at the LTRI Sequencing Core.  

 

RNA-seq analysis 

Libraries were trimmed of Illumina adaptor sequences and quality-checked using trim_galore 

(Babraham Bioinformatics), and then aligned to mm10 with ERCC sequences using TopHat2 

(options -g 20 --no-coverage-search --library-type fr-firststrand –no-novel-indels) (Kim et al., 

2013). Gene counts were obtained from featureCounts on the command line with options: -t exon 

-T 8 -s 2 -g gene_id. The table of raw counts was imported into R, filtered to remove low-count 

genes (genes with 0 counts in any sample and those with ≤ 3 counts per million, CPM by 

edgeR, across all samples were filtered out), and separated into ERCC and gene counts. 

Values for spike-in normalization were determined from ERCC counts corrected for overall 

library size using edgeR calcNormFactors (nf <- calcNormFactors(raw_ercc_counts, lib.size=N), 

where N <- colSums(raw_gene_counts). The CNN factors were then used to adjust gene counts 

using the limma-voom transformation (option lib.size = N*nf) (Law et al., 2014). Data were 

further analyzed and plotted using ggplot2. The threshold for significant differential expression 

was adjusted p-value < 0.05 and log2FC > 0.7.  

 

For Usp9x-mutant embryo RNA-seq, gene counts were obtained in the same manner, imported 

into R, and converted to a DESeq2 object (DESeqDataSetFromMatrix using sample 

information) for processing, DESeq2 1.24.0. Genes with fewer than 10 counts across all 
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samples were filtered out before differential expression analysis. rlog-normalized counts 

(DESeq2) were used for PCA and heatmaps of gene expression. Raw counts were used for 

differential expression analysis using the default parameters of the DEseq function.  

 

To obtain counts from developing post-implantation embryos, published RNA-seq data from 

post-occipital embryos E6.5-E8.5 (Beccari et al., 2018) were downloaded from GEO and 

processed. The output of featureCounts was imported into R, filtered to remove low-expressed 

genes (≤ 10 counts across samples), and then normalized using DESeq2 estimateSizeFactors. 

Normalized counts were obtained from the output of counts (option normalized = TRUE).   

 

Gene Ontology analyses 

Pathway analysis was performed by Gene Ontology (GO) analysis using DAVID 6.8 and 

geneontology.org (Ashburner et al., 2000; Huang et al., 2009b; 2009a; Mi et al., 2019; 

The Gene Ontology Consortium, 2019). Transcription factor binding enrichment was determined 

using the Enrichr suite (https://amp.pharm.mssm.edu/Enrichr/) (Chen et al., 2013; Kuleshov et 

al., 2016). Lists of differentially-expressed genes were analyzed by ChEA. Tables of enriched 

factors and P-values were downloaded and plotted in R. 

 

Gene Set Enrichment Analysis (GSEA v6.0.12) was performed with default conditions using the 

online GSEAPreranked tool online to compare differential expression (all genes sorted by 

log2FC) with gene sets from various published datasets as outlined below (Subramanian et al., 

2005). Normalized enrichment scores were plotted in GraphPad Prism v8.  

 

Datasets used for GSEA 

The 2-cell embryo signature is from Macfarlan et al. (Macfarlan et al., 2012). Transcriptional 

signatures from cleavage stages through E5.5 were retrieved from the same source (Boroviak 
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et al., 2015), taking either the full gene list or the top 500 genes enriched for a particular time 

point from the published stage-specific expression analysis. The E6.5 epiblast signature was 

defined as genes differentially expressed in E6.5 epiblast relative to visceral endoderm and 

endoderm at the same stage (Zhang et al., 2018). A signature of early mesoderm was 

determined from published RNA-seq of ES cell differentiation, and we selected genes by fold-

change of expression at the mesoderm stage compared to ES cells  (Wamstad et al., 2012). 

The endoderm signature comes from published microarray data of early endoderm in E7.5 

embryos (Gu et al., 2004). Neuroectoderm genes were defined by RNA-seq data of epiblast 

stem cell differentiation to neural fate, comparing the fold-change in expression at day 2 of 

differentiation relative to baseline (Barry et al., 2017). In all cases, either the full published gene 

list or the top 500 genes ranked by fold-change were used for GSEA.   

 

Histone extraction 

Histone extraction was performed based on a standard acid extraction protocol (Shechter et al., 

2009). Briefly, sorted cells were lysed for 10 min at 4C in triton extraction buffer (PBS with 0.5% 

Triton X-100, 2 mM PMSF, 1x Halt Protease Inhibitor at a density of 107 cells/ml). Lysates were 

spun for 10 min at 4C, 2000 rpm. The pellet was washed once in 0.5x volume of lysis buffer and 

centrifuged again. Pellets were resuspended in 0.2 N HCl (106 cells/ml) and acid extracted 

overnight, rotating at 4C. The solution was clarified by centrifugation and the supernatant 

transferred to a new tube. Histones were precipitated in 0.25x volume TCA, incubated 20 

minutes on ice, and pelleted at max speed for 10 min. Excess acid was removed from solution 

through two washes in ice-cold acetone, pellets were air-dried, and then histones were 

resuspended in water before BCA Protein quantification (Pierce). LDS sample buffer (Thermo 

Fisher) was added to 1x and samples were denatured for 5 min at 95C followed by cold shock. 
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Co-immunoprecipitations 

Co-immunoprecipitation (Co-IP) assays were performed on nuclear extracts. ES cells grown to 

confluency were washed twice and then scraped in cold PBS. Cell pellets were weighed and 

resuspended in 4x volume of swelling buffer A (10 mM HEPES pH 7.9, 5 mM MgCl2, 0.25 M 

Sucrose, 0.1% NP-40) with protease inhibitors were added fresh (1x Halt Protease inhibitors, 1 

mM PMSF, 1 mM NaF, 10 mM N-ethylmaleimide (Sigma)). Lysates were incubated on ice for 20 

min and passed through a 18 ½ G needle five times. Nuclei were pelleted by centrifuged for 10 

min at 1500 g and lysed in 8x volume buffer B (10 mM HEPES pH 7.9, 1 mM MgCl2, 0.1 mM 

EDTA, 25% glycerol, 0.5% Triton X-100, 0.5 M NaCl with PIs as in buffer A). After incubation on 

ice for 10 min, samples were passed through an 18 ½ G needle 5 times and pulse sonicated, 2 

times 5 seconds at 4C. 100 ul of lysate was diluted in 400 ul IP wash/dilution buffer (150 mM 

NaCl, 10 mM Tris pH 8, 0.5% sodium deoxycholate, 1% Triton X-100, 1 mM EDTA, 1 mM 

EGTA) and rotated 4h-overnight with 1 ug Rb anti-Usp9x (Bethyl), 1.7 ug Rb anti-Ezh2 (CST #), 

or 1.7 ug Rb anti-IgG (Millipore CS200581). Input samples were collected at this time. Immune 

complexes were bound by 25 ul of pre-washed Protein A Dynabeads (Thermo), rotating end-

over-end for 2h at 4C. Beads were washed in IP wash/dilution buffer, 3x5 min at 4C. Input and 

IP samples were eluted and denatured by boiling in 2x Laemmli buffer/bME for 10 min at 95C.  

 

Co-IPs were also performed using Flag M2-bound magnetic agarose beads (Sigma) and GFP-

Trap beads (ChromoTek). For Flag pull-downs, AID-Usp9x ES cell were used as controls for 

nonspecific binding to the Flag beads. For GFP pull-downs, the same amount of lysate was 

added to negative beads (ChromoTek) to control for nonspecific binding to beads. Cells were 

collected as above but diluted into GFP-Trap dilution buffer (10 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 0.5 mM EDTA), immunoprecipitated by rotating for 1.5h at 4C, and washed by 3x fast 

washes in GFP-Trap dilution buffer. Input and IP samples were denatured as above. 
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HA-Ubiquitin Immunoprecipitations 

HA-tagged ubiquitin was overexpressed in ES cells by transfection with Lipofectamine 2000 

(Thermo Fisher Scientific), 500 ng per ~8x106 cells in a 10 cm dish. Water diluted in 

Lipofectamine was used for mock transfections. Medium was changed the next morning and 

cells were harvested after 24 hours. Adherent cells were washed twice and then scraped into 

cold PBS. The resulting cell pellets were weighed and resuspended in 4x volume of RIPA buffer 

(150 mM NaCl, 1% NP-40, 0.5% Na deoxycholate, 0.1% SDS, 50 mM Tris pH 8) to lyse for 15 

min on ice. Pellets were centrifuged at max speed for 10 min, 4C, to remove insoluble material. 

100 ul of supernatant was taken for IP and diluted to 500 ul in non-denaturing lysis buffer (20 

mM Tris pH 8, 137 mM NaCl, 1% Triton X-100, 2 mM EDTA) plus 2.5 ug of anti-HA antibody 

(Abcam ab1190). IPs were incubated overnight at 4C with end-over-end rotation, and the next 

day immune complexes were then to 25 ul Protein A Dynabeads (Thermo Fisher Scientific) by 

rotating 2h at 4C. Complex were washed on beads for 3x10 min in IP wash buffer (150 mM 

NaCl, 10 mM Tris pH 8, 0.5% Na deoxycholate, 1% Triton X-100, 1 mM EDTA, 1 mM EGTA) 

and then eluted in 2x Laemmli buffer/10% β-mercaptoethanol followed by 10 min at 95C and 

cold shock on ice. Input samples were collected and denatured in Laemmli buffer to 1x. 

Samples were removed from beads for western blotting. 

 

For Usp9x catalytic domain expressions, transfections were performed as above but with the 

addition of 2.5 µg of plasmid (wild-type or C1566S pEF1a-Usp9x_CD-mCherry) and in medium 

without Pen/Strep. Transfection was checked by mCherry fluorescence the next morning. IPs 

were performed as above but with the following antibodies instead of HA: Ezh2 at 1:300 (CST 

#5246), Suz12 at 1:50 (CST #3737), or rabbit IgG at 1:50 (Millipore CS200581).  
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Subcellular fractionation 

Subcellular fractionation was performed as previously reported (Mendez and Stillman, 2000). 

Cell pellets were resuspended in buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 

0.34M sucrose, 10% glycerol, 0.1% Triton X-100, 1 mM DTT, and PIs: NaF, PMSF, 1x Halt 

Protease inhibitor cocktail); incubated 5 min on ice; and then centrifuged for 5 min at 1300 g, 

4C. The supernatant was taken as the cytoplasmic extract and clarified by centrifugation at max 

speed. Nuclear pellets were washed in buffer A and then resuspended in buffer B (3 mM EDTA, 

0.2 mM EGTA, 1 mM DTT, and PIs). After 5 min on ice, chromatin pellets were centrifuged for 5 

min at 1700 g, 4C. The supernatant was collected as the soluble nucleoplasmic fraction. 

Insoluble pellets were resuspended in 1x Laemmli buffer containing 5% beta-mercaptoethanol 

and sonicated on a Bioruptor: high power, 30s on, 30s off, 5 min total (Diagenode). 

 

Western blot analysis 

Whole-cell protein lysates were prepared as indicated elsewhere. In general, WBs were 

performed cell-number normalized. Denatured samples were separated on 4-15% Mini-Protean 

TGX SDS-PAGE gels (Bio-rad). Most WBs were performed CNN, meaning that protein from the 

same number of cells was loaded on a gel. Wherever possible, extractions in each experiment 

were performed from the same number of cells. Protein was transferred to methanol-activated 

PVDF membranes (Bio-rad) by wet transfer (1x Pierce Transfer Buffer, 10% methanol) or using 

high molecular weight transfer conditions for the Bio-rad TransBlot Turbo (Bio-rad). Membranes 

were blocked in 5% milk/TBS-T and then incubated with indicated antibodies. Primary antibody 

incubation was performed for 1.5h at room temperature or overnight at 4C. Membranes were 

then washed and incubated with HRP-conjugated anti-mouse/rabbit secondary antibodies 

(Jackson Labs) for 1h at room temperature. Proteins were detected by ECL (Pierce) or Clarity 

(Bio-rad) detection reagents and exposure to X-ray film (Pierce). 

 



 122 

H3K27me3 ChIP-seq  

Two biological replicates, consisting of clonal replicates of AID-Usp9x collected on consecutive 

days, were collected. 106 cells were sorted and cross-linked in 1% formaldehyde/PBS, rotating 

for 10 min at room temperature. Cross-links were quenched with glycine (125 mM) for 5 min at 

room temperature. Samples were spun down at max speed, 4˚C, to pellet out insoluble material, 

and snap frozen. All subsequent steps were performed on ice or at 4˚C. Fixed cell pellets were 

thawed, 1% SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8 with protease inhibitors (1x Halt PI, 1 

mM PMSF, 1 mM NaF), and lysed for 30 min at 4C. Chromatin was sheared to 200-500 bp 

fragments on a Covaris S220 with settings PIP 105, duty 2, cpb 200 for 9 min.  

 

Genomic DNA was cleaned up using QIAGEN Minelute Columns and quantified by Qubit.  

The same amount of chromatin from HEK293 cells was spiked in to equivalent volumes of ChIP 

eluates (62 pg of spike-in chromatin per 25 ul of ChIP), yielding final concentrations between 

~1-5%. Libraries were constructed from 2.5 ng of DNA and prepared using the NEBNext Ultra II 

DNA Library Prep Kit for Illumina with 9 PCR cycles (NEB #E7645S). Library quality was 

assessed by High Sensitivity DNA Assay on an Agilent 2100 Bioanalyzer (Agilent 

Technologies). Samples were sequenced on a HiSeq 4000 using single-end 50 bp reads. 

 

H3K27me3 ChIP-seq data analysis  

Sequencing reads that passed quality control were trimmed of adaptors using trim_galore v0.4.0 

and aligned to mm10 and hg19 using Bowtie2 v2.2.5 with no multimapping (Langmead and 

Salzberg, 2012). SAM files were converted to BAM files, sorted, and indexed using SAMtools (Li 

et al., 2009). Normalization factors (NFs) for each sample were calculated as a fraction of input 

reads as in van Mierlo et al. (van Mierlo et al., 2019). Bam files were deduplicated using picard 

v2.18.14 MarkDuplicates. H3K27me3 ChIP-seq data were downloaded as fastq files from NCBI 

GEO. For paired-end samples, only one read was kept and all samples were trimmed, aligned 
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to mm10, sorted, and deduplicated as above. Deduplicated bam files were analyzed using 

deepTools v3.3.0 on the command line (Ramírez et al., 2014).  

 

Broad peak calling 

Deduplicated bam files were converted to scaled bedgraphs using deepTools bamCoverage 

(options --scaleFactor <NF> --binSize 10 --blackListFileName ENCODE_mm10_blacklist.bed) 

and then to bed files using awk: awk '{print $1"\t"$2"\t"$3"\tid-"NR"\t"$4"\t."}'. These scaled bed 

files were used to call broad peaks relative to input files using epic2 on the command line 

(options -gn mm10, -d chrM) (Stovner and Sætrom, 2019). Bedtools merge was used to merge 

peaks within 3kb, and bedtools intersect was used to determine a set of common peaks 

between replicates (Quinlan and Hall, 2010). 

 

Bam files were converted to scaled bigWigs using deepTools bamCoverage ( --binSize 100 --

scaleFactor <NF>). Correlation between replicates was checked by deeptools 

multiBigWigSummary bins and plotCorrelation, and then scaled bw files were merged 

(bigwigCompare add) for heatmaps. computeMatrix was used to generate coverage of 

scaled bigwig files over no-auxin peaks (options: scale-regions -m 500 --upstream 

10000 --downstream 10000 --binSize 100 --missingDataAsZero --skipZeros --

sortRegions descend --sortUsing mean --sortUsingSamples 1 -p max). Heatmaps were 

produced using deepTools plotHeatmap. TSS profile plots were generated from the output of 

deeptools plotProfile (--outFileNameData), which was imported into R, processed to average 

replicates, and then plotted with ggplot2. Sample tracks were visualized in Integrated Genome 

Viewer (IGV v2.3.92). multiBamSummary was used to count reads falling into non-overlapping 

10kb genes across the genome, and read counts were then imported into R. Embryo counts 

were normalized by library sizes (number of mapped reads in deduplicated bam files), and ES 
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cell data were normalized by spike-in factors. For cumulative distribution plots, reads were 

counted in non-overlapping 10kb genomic bins using deeptools multiBamSummary. The 

resulting counts table was imported into R, filtered to remove regions without coverage, scaled 

with the NFs calculated above, and then plotted using ggplot2 (stat_ecdf). P-values represent 

Kolmogorov-Smirnov test results using the averages of replicates. Counts per bin were adjusted 

for biological batch (embryo vs. ES cell origin) using ComBat/sva in R and analyzed by PCA. 

 

For repeats analysis, H3K27me3 was counted over individual repetitive elements (obtained from 

UCSC RepeatMasker) using featureCounts. In R, we filtered out elements with low coverage, 

scaled using the NFs calculated above, and calculated the average of replicates. Thresholds for 

enrichment were set as log2(Usp9x-high/no-auxin) > |0.7|. To select regions for plotting, we 

applied cutoffs for normalized counts: > 5 for hyper-H3K27me3 and >3 for hypo-H3K27me3 

elements. 

 

Data availability 

Raw and processed sequencing files as well as R codes used for analyses will be made 

available upon publication. 
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General Discussion 
 
Together, the results in Chapters 1 and 2 provide insight into post-translational control of 

the peri-implantation chromatin landscape. Our studies of permissive chromatin revealed 

that several key euchromatic regulators are intrinsically unstable proteins that are rapidly 

depleted upon short-term inhibition of translation. We previously reported that ES cells 

show a global increase in nascent translational output from 2i to serum (Bulut-Karslioglu 

et al., 2016). Cumulatively, our results provide a direct link between translational output 

and establishment of an open chromatin landscape at implantation. It will be important to 

assess whether such a transition occurs in the embryo, for example through ex vivo 

incorporation of HPG in pre- and post-implantation embryos. It is interesting that 

enhancers are more susceptible to acute changes in translational output than promoters, 

as detected by our ATAC-seq analysis. This may suggest more fine-tuned regulation of 

enhancer chromatin state in response to nutrient conditions, or perhaps factors that bind 

enhancers are more unstable. 

 

We observe in Chapter 1 that acute inhibition of translation has little effect on 

heterochromatin state. It is important to note, however, that we did not include 

H3K27me3-marked facultative heterochromatin in this analysis. Given the reduction in 

nascent transcriptional output in these cells, I expect that acute CHX treatment promotes 

global gain of H3K27me3. This likely also occurs over regions of the genome that lose 

chromatin openness upon CHX treatment in the ATAC-seq experiment, including many 

developmental enhancers. Since activating chromatin marks and transcription directly 

impair PRC2 methyltransferase activity, the gain of H3K4me3 and other marks of 
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permissive chromatin in the early post-implantation epiblast may help erase the pre-

implantation H3K27me3 landscape.  

 

My results in Chapter 2 return to the question of protein stability but center on Suz12 and 

Ezh2, essential regulators of facultative heterochromatin. I showed that Usp9x opposes 

Suz12 and Ezh2 ubiquitination. Thus, high expression of Usp9x, as occurs in the pre-

implantation embryo, positively regulates PRC2 activity. Exactly how it does so remains 

an open question. Ubiquitination regulates essentially all aspects of protein biology. My 

findings support the notion that Usp9x stabilizes PRC2 proteins, although it seems to be 

important to modestly overexpress ubiquitin to draw out this connection. This could be 

due to redundant post-translational regulation of the complex in ES cells. It would be 

interesting to explore which E3 ligase(s) are responsible for Suz12 and/or Ezh2 turnover 

at implantation. In preliminary experiments, I have found that Usp9x may co-localize with 

PRC2 to the chromatin, suggesting that it could directly stabilize the complex in situ. 

However, western blots on subcellular fractions (cytoplasm, nucleoplasm, and insoluble 

chromatin) did not reveal a pattern of higher chromatin-bound Suz12 or Ezh2 in Usp9x-

high ES cells (data not shown). Other experiments to identify ubiquitinated Suz12 and 

Ezh2 at chromatin, for example sequential ChIP, are technically challenging. Another way 

to approach this question is to tease apart which forms of ubiquitin linkages Usp9x 

removes from its PRC2 substrates. Lysine48-linked poly-ubiquitination is the most 

associated with protein degradation (Komander and Rape, 2012), and Usp9x hydrolyzes 

multiple types of linkages (Paudel et al., 2019). Alternatively, ubiquitin could directly 

oppose catalytic activity of the complex, for example preventing allosteric activation or 
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blocking interaction with key partners. As all of the biochemical experiments conducted 

in Chapter 2 require large cell numbers, I have not tested the Usp9x-PRC2 relationship 

directly in embryos. It is of great interest to assess whether Usp9x deubiquitinates PRC2 

components in vivo. In the meantime, it would be interesting to test for Usp9x-Suz12/Ezh2 

interactions by proximity ligation assays in early embryos.  

 

In repeated assays, from transcriptional to biochemical analyses, I observed that Usp9x 

levels parallel Suz12 levels and activity. Intriguingly, both genes occur in a transcriptional 

module that decreases sharply in mRNA expression early ~E8.0 and then rebounds by 

~E8.5 (Mitiku and Baker, 2007). Additional studies are needed to determine what factors 

co-regulate Usp9x and Suz12. One candidate is the zinc-finger transcription factor 

Zfp281, a known regulator of the naïve-to-primed transition that binds to the Usp9x 

promoter (Fidalgo et al., 2016; Huang et al., 2017; Kim et al., 2008). 

 

There are several lines of in vivo work that would be interesting to pursue. First, deletion 

of Usp9x earlier in development would allow me to ask the question raised by my ES cell 

work: does Usp9x promote PRC2 activity in the pre-implantation embryo? I expect that 

knockout of Usp9x by, for example, a constitutive Cre (Rosa26-Cre) would result in lower 

levels of H3K27me3 during cleavage stages. A caveat to this experiment is that Usp9x 

may play a role in specifying extra-embryonic tissues, but one way to sidestep this issue 

is through tetraploid complementation. To this point, aggregation of Usp9x-mutant (by 

gene trap) ES cells at the morula stage results in post-implantation defects around 

embryonic turning (Cox et al., 2010), suggesting that the major role for Usp9x is not during 
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pre-implantation development, or at least not during late pre-implantation stages. A 

maternal deletion model using either Zp3-Cre or Gdf9-Cre could address roles for Usp9x 

prior to trophectoderm specification.   

 

Another key mouse experiment is to perform deletions of PRC2 components solely in 

epiblast cells. Similar to many other constitutive knockout mice (Perez-Garcia et al., 

2018), reports that PRC2 mutants are peri-gastrulation lethal are difficult to interpret given 

the known role for H3K27me3 in specification of extraembryonic tissues (Rugg-Gunn et 

al., 2010; Saha et al., 2013). I predict that loss of Suz12 would phenocopy the loss of 

Usp9x that I describe in this thesis, given their paralleled expression dynamics. Ezh2 is 

also a Usp9x substrate and may therefore have a similar phenotype. Deletion of Ezh2 

and Eed in mice leads to abnormal gain of extraembryonic mesoderm (Faust et al., 1995; 

O'Carroll et al., 2001), suggesting important roles for PRC2 in protecting epiblast cell fate. 

Suz12 mutants were not reported to show this phenotype (Pasini et al., 2004), raising the 

intriguing possibility that Suz12 promotes rather than restrains extraembryonic programs 

in epiblast cells. Another view on these data is that maternal PRC2 is especially important 

for the balance between embryonic and extraembryonic specification, and thus the 

maternal load of PRC2 mRNA/proteins will affect the phenotype. If Suz12 is transcribed 

from the zygotic genome earlier than Ezh2 and Eed, then the effect of maternal deletion 

would be less severe.  

 

There is growing evidence that maternal PRC2 functions in early development. Recent 

sequencing studies indicate that broad H3K27me3  domains in early mouse embryos are 
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maternally inherited and mediate non-canonical (i.e. not by DNA methylation) genomic 

imprinting (Zheng et al., 2016; Inoue et al., 2017). In light of my own results, it would be 

interesting to assess whether premature hypertranscription in the embryo contributes to 

growth restriction in Ezh2-hypomorphic embryos. Another possibility is that loss of the 

Usp9x-PRC2 axis derepresses transposable elements, which may have implications for 

long-term organismal health and homeostasis and/or development of the germline. 

Interestingly, maternal Ezh2 mutant mice are born but remain small postnatally (Erhardt 

et al., 2003). The molecular consequences of Ezh2 loss in this case were not well studied, 

but the phenotype could be due to poor placentation. This is a particularly enticing 

prospect given that Usp9x regulates Peg10, a paternally-expressed imprinted gene that 

stimulates placental growth (Ono et al., 2006). Thus, a picture emerges in which Usp9x 

and Suz12—and subsequently PRC2—are coordinately regulated to partition embryonic 

versus extraembryonic fate in the early embryo.  

 

There is a lot to learn from non-mammalian model organisms that do not produce invasive 

placentas. Although Drosophila embryos do not specify extraembryonic tissues, maternal 

PRC2 domains contribute to specification of germ cell versus embryonic cell fate early in 

embryogenesis (Zenk et al., 2017). It is striking that PRC2 loss via Ezh2 deletion causes 

relatively mild consequences for zebrafish development; embryos gastrulate but later 

show ectopic domains of gene expression (Rougeot et al., 2019). Different groups report 

variable effects of PRC2 knockdowns on survival of Xenopus embryos (Kerns et al., 2012; 

Lim et al., 2011; Peng et al., 2009), but the function of spatial gene restriction after 

gastrulation appears to be conserved (Akkers et al., 2009). I posit that, in mice, a major 
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role for PRC2 in early development is in proper specification of the extraembryonic tissue, 

and its role in the post-implantation epiblast is primarily to reinforce spatial and/or lineage-

specific patterns of gene expression. Epiblast-specific deletions will allow careful 

dissections of this hypothesis.  

 

My work raises many other questions related to mechanism and conservation of 

mechanism. First, broad domains of H3K27me3 appear to be an ancestral function of 

PRC2 (Dumesic et al., 2015), and thus it would be interesting to explore whether Usp9x 

stimulates this function in other organisms. Second, Usp9x has previously been found to 

interact with an array of substrates relevant to peri-implantation development. For one, 

Usp9x interacts with mTor in muscle cells (Agrawal et al., 2012). This is interesting as we 

have previously found that inhibition of mTor induces prolonged developmental pausing 

in both ES cells and blastocysts (Bulut-Karslioglu et al., 2016). Could Usp9x help integrate 

mTor activity with PRC2 output? Finally, Usp9x is an X-linked gene with a well-conserved 

homolog on the Y chromosome, Usp9y. A small number of such X-Y gene pairs have 

been retained over evolution (Bellott et al., 2014; Lahn and Page, 1997). Is there any role 

for Usp9y in early development?  

 

I leave these questions and many others to the next enthusiast of Usp9x. 
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