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ABSTRACI 

In a recent paper1) it was shown that a consistent reaction theory 

requires a modification of the usual de=inition for a-spectroscopic 

factors. In the present paper a simple fomula: for the new spectroscopic 

factors is derived in the framework of the harmonic oscillator shell model. 

These factors are calculated for a nu:nber of light nuclei. 
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I. Introduction 

In two recent papers 1 ~ 2 ) the a-decay theory was reinvestigated. It was 

shown that the consistency of the reaction theory requires a new formula for 

the reduced width and the spectroscopic factor. On the basis of these results 

we recalculate a number of spectroscopic factors for light nuclei. Let us 

first review th~-main results of ref.l,Z) briefly. 

In a simple physical picture the a-decay constant A is proportional 

to the penetrability P through the Coulo!!lb barrier and to the a-particle 

density p a 

(1.1) 

Here pa (~) is the probability of finding the a-particle (with wave function 

¢a) and the daughter nucleus (A nucleons, ~ave function ¢A) with a 

separation~ in the parent nucleus (A+4 nucleons, wave function ¢A+4). 

The wave functions ¢a~ ¢A and ¢A+4 are antisymmetric, normalized internal 

wave functions •. We may also define a total probability by 

s = (1.2) 

The quantity S is called spectroscopic factor. It may be connected with 

the decay constant by 

A = A • S s.p • 
(1.3) 

Here A is the single particle decay constant .calculated from a single 
s.p. 

particle Schr~dinger equation with an a-nucleus potential..·.· In the same 
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sense the spectroscopic factor is used in the standard analysis of a-transfer 

experiments. The conventional theory gives the following expression for 

(1.4) 

The antisynunetrisation operator A contains the trivial statistical factors: 

1 
A+4 ·~ 

( A ) 
1 

[ (A+4): ~ (-l)p p 1 
p 

(1.5) 

The sum in eq. (1.5) runs over all (A+4)! permutations of the (A+4) particles. 

The vector b.etween the centre of mass of the a-particle and the daughter 

nucleus is denoted by ~a.A· We restrict ourselves to the a-particle ground 

state, and in this section to ~A with total spin zero. More general formulae 

are given in section 2. 

The expression (1.4) is inadequate since a probability density can only 

be calculated by projecting on states which are normalized to 8(~-~'). 

The normalization of the bra in (1.4) is, however, 

(1.6) 

For a discussion of the properties of K we refer to Feshbach3). We introduce 

" ~* basis states !Jolf-((1-K)-) o(R'-R A) <P cpA> \vhich are normalized 
- -a a 

(1.7) 
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Here we use the short..;.hand notation 0 f {~) for J d3R' 0 ('!3-, g.') f (g.'). 
• A -~ * • 

In the bra and ket in (1. 7) ((1-K) ) operates on the parameter ]. and 

R', respectively. In Appendix A we give the modification for the case ,.. 

that there are eigenvalues of K equal to 1. 

with 

The necessary probability density p can now be defined by . . a 

. .. -!.; 
· G = (1-K) ·G 

N 

and the spectroscopic factor is 

. s = 

(1.8) 

(1.9) 

(1.10) 

Due to equation (1.3) the definition of the spectroscopic factor S is not 

a matter of semantics. The use of (1. 8) instead of (1.4) gives in fact a 

different prediction for the decay constant. The expression (1.10) fulfills 

the trivial condition that a probability in· quantum mechanics has to be 

defined as the expectation value of a projection operator4). To clarify 

this aspect let us consider the fictitious case of distinguishable nucleons. 

In such a case no problem arises: one has 

(1.11) 

(1.12) 

with 
:Pn.a = ·J d3Rj a·(R-R H o ><o (R-R H ¢ I 

- - -aA a A - -aA a A 
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The operator Pn.a is the projection operator on the subspace of all wave-

functions of the form u(R A)~ ~A with fLxed ~ ,¢A. For the actual case of -a a a 

indistinguishable nucleons the effects of antisymmetry cannot be taken into 

account by simply inserting the operatorA in the r.h.s. of eq. (1.11). 

This would lead to a spectroscopic factor ~hich is the expectation value of 

J d3~1.;.f,o(~-~a.A)$aq,A><.Ft·o(~-~a.A.Ha~AI· This operator is not a projection 

operator. The correct analogue of (1.12) is 

(i.l3) 

where 

(1.14) 

This projection operator was already introduced by Feshbach3). It 

projects on the subspace of wavefuncticns of the form .A-u(~aA)$a¢A with 

fixed <P • d . , a 1 ·r. 

Also a consistent reaction theory1 ' 2) with one bound state and one open 

channel leads to the expression (1.8) instead of (1.4). The reaction theory 

uses an open channel state 

(1.15) 

The inconsistent assumption usually made is that uE.may be approximated by 

solutions of a single particle Schrodinger equation ~ith a real a-nucleus 
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A } 

potential. This approximation is only reasonable for nE = (1-K) ~E. 

This is connected with the fact that uE may have unusually large amplitudes. 

This was demonstrated nicely by Saito et a1. 5
) in the discussion of the case 

A 

that one eigenvalue of K approaches 1. 

2. Method of calculating spectroscopic factors 

In the following we give the new definition of a-spectroscopic factors 

for any spin of the daughter nucleus. We describe then a method to calculate 

these spectroscopic factors under the following simplifying assumptions. 

1) The ground state of the a-particle is described by a Os-state 

harmonic oscillator internal wavefunction. 

2) The relevant states of the parent and daughter nuclei are described 

by internal wavefunctions corresponding to many particle oscillator shell model 

configurations with fixed total nUmber of oscillator quanta. 

3) The harmonic oscillators for the a-particle and for the other two 

nuclei involved have all the same frequency. 

. 6 7 8 9 10) These assumptions have been used in comparable calculat1ons ~ ' ' ' and 

have been discussed in some detail there. 

According to the usual definition the radial part of the reduced 

amplitude is 

G'l (R) = <.A .L tS (R-R ) [Y cp ¢ J' ';I] J I~ J '~> 
R L aA 'l a A A+4 · (2.1) 

. J' ~· J We use the short-hand notation [Yicpa<I>A ' ] for the coupling in the 

a-particle channel. The spherical harmonic YR. depends on the direction 
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of the vector R A" The angular moment~ .£. of the relative motion and 
-a 

the spin J' are coupled to total spin J. The indices~·. t; denote all 

further quantum numbers of the daughter and parent nucleus. 

Under the assumptions 1), 2), 3) the radial part of the reduced 

amplitude (2.1) is proportional to an oscillator function. 

The ~n!(R.v) are normalized 

+cO 

rdRR2u
0

,. 2(R,v)un'£ 
0 

(R.v) = 5 "T"\ t n .. 

(2.2) 

Here v den. otes. the size parameter mw and v - ~w h 0- h is the unit for v, 

where m is the nucleon mass. The n~er of oscillator quanta 
0 

Q = (2n + ,qJ is equal to the difference of oscillator quanta between the 

J.; J',E;' 
states 4> A+4 and ¢A • · 

with 

We have to calculate 

--t _t ~ 
= (1-K ) ~G 

2. 

iz·o{R-'R') -K_q,(R.R') = 
1 J' c J 1 

== <~ R2 o(R-RaA)[Y2.~a4>A ' ] /J~·Rr2 

(2 .3) 

(2.4) 

J' E;' J Since I ,5i u , n[Y 2.~ 4>A· ' ] > is an (A+4) particle state with fixed number n ;v . a 

of oscillat-or quanta, it is evident that < un ntl (1-KR.) I un 1 R.> "' 

Moreover, the set {u tnl ,_
0 1 } is co~plete: 

nJVn-, •.• 

0 II I • n n 
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1: u 1 (R)u 10 (R 1 ) = ~Rl o (R-R 1 ). Therefore u.., •. are eigenfunctions of 
n' nt n:<. •'101, 

A 

(l-K
1

.), and (2.3) and (2.4) simplify: 

with 

The states in (2.6)are in the space spanned by {4JA~4t;ls = 1,2, ... }. 

Therefore one obtains from (2.6) 

The final result fdr the reduced amplitude is 

GR. 8(-t,J' ,J,E;' ,;) 
N = (I:je(R.,J',J,c.;',~"W>~ uni 

~· 

Instead of the conventional spectroscopic factor 

SG = !e(.2.,J',J,~';;)j2 

we obtain according to (2.8) the spectroscopic factor 

s =· je(£,J',J,~',OI 2 1 I:!a(R.,J',J,~',C')j 2 

~II 

· It should be pointed out that the set of orthonormal states 

(2.5) 

(2.6) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 
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inserted in (2.7) may be arbitrary as long as it is complete. If harmonic 

oscillator states are used the sum is finite. 

We shall use the SU(3) model for the daughter nuclei. .Then the sum 

contains only a few terms, if we take an SU(3) basis for the (A+4)-particle 

states. For example in the cases of sd-shell nuclei considered in this paper 

the sum consisted of less than ten terms. 

3. Results 
A 

The general trend of the effects of the operator 1-K£ can be seen 

from Table 1 where S and SG are given for a number of closed shell daughter 

nuclei. For comparison we also list some spectroscopic factors for two-

particle transfer assuming again a Gaussian wave function for the two nucleons. 

In Table 2 we give a-spectroscopic factors for some open shell nuclei 

of the sd-shell. We describe the parent and daughter nucleus by the leading 

SU(3) representation. This is a very good approximation for the wave functions 

of the nuclei considered. 11) Furthermore, detailed calculations have shown 

that taking into account all sd-shell configurations does not change the 

conventional spectroscopic factors appreciably. 
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4.1 Effects of the operator 1-Ki 

In Table 1 the spectroscopic factors are given for cluster-model states 

of the parent nucleus 

(4.1) 

Ni is a normalization constant. For these states the new spectroscopic 

factors are always 1. Both SG and S are independent of Q. when the daughter 

nucleus has a closed major shell configuration as in the examples given in 

Table 1. Obviously the relative spectroscopic factors are not changed in 

these cases. They are, however, changed for open shell nuclei. 

The general trend of the effects of (l-K
1

) is clear: their importance 

increases for heavier nuclei. Furtheroore the effects of 1-K are also more 
9. 

important for the fou;-particle spectroscopic factors than for the two-particle 

ones. Restricting ourselves for a mocent to .the case of lowest possible number 

of osciilator quanta the conventional spectro~copic a.1nplitude is6
) 

2nH. 

e ( A)~( A+4)_2_ G } 
4 A <~A~4 YA+4> (4. 2) 

2n+i 

The factor ( A+4) __ 2 __ arises from the transformation from shell model to 
A 

intrinsic wave functions, G is the overlap of the a.-particle w·ave function 

with the four-particle configuration ~4 which appears in the n+ n-4 

coefficient of fractional parentage <yA~4 }tiJA+4>. 

In the case of the lowest possible number of oscillator quanta the 
A+4 2 n+t 

'factors G and ( --) 2 are the same for all spectroscopic amplitudes 
A 
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appearing in (2.10). They cancel therefore leading to 

(4.3) 

We introduced here the index 'J to express the summation over {A+4) particle 

states. It turns out that the main difference in the numerical value of the 

conventional spectroscopic factorand the new one arises from the factor 

( A+A4· ) 2n+i G2. 1 d . h 11 fi i f h d h 1 For c ose maJor s e con gurat ons o t e aug ter nuc ~us 

(e.g. 20Ne~l6o + a 44Ti~ 4 0c + a) the new spectroscopic factor differs , . a 

exactly by the factor ( A+4) 2nH. G2 from the old one. 
A 

Finally it is interesting to note that the conventional spectroscopic 

factor for Li+ d is greater than 1. This fact demonstrates once more that 

the conventional spectroscopic factor cannot be interpreted as a probability. 

4.2 Centre-of-mass notion 

In the calculation of the conventional spectroscopic factor the removal 

of the centre-of-mass motion (cmm) is a very important step: It results in 

A+4 2n+1 a factor ( ---) ~ 6 for the s-d shell. The present formalism for the 
A 

new spectroscopic factor can easily be written down also-for shell model 

(SM) states 1j!A+4 , ljJA instead of internal states cpA+4 , <PA ($a is an internal 

wave function in both cases). For the minimal number of quanta the factor 

( A~4 ) 2n+~ obviously cancels in the expression (2.10) for the spectroscopic 

factor. For- these cases we could as well calculate with SM functions. 

For the discussion of the case of more oscillator quanta we take 

the (A,Jl) = (9,0) states of 20Ne as an example discussed alSo in Ref. 6. 

The internal state is 

I 
I (9, Q) 16 · .. I <PA+4 <20 Ne, (9 ,0)~)> = N( ) .-~1 u (R A' - v )Y ¢ ~ ( 16o )> (4.4) g,Q n£ a 5 o t a A g.s. 
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The index ( 9, 0) means 2nH. = 9. A corresponding cluster-like SM state is 

I1J!A+4< (Os)4 (0p) 12Csd)\pf)(9,0)~) > = 

- I A (9 O) ) 4 4 = N(9 ,0) Jtunt ' (Ra,4v
0 

Y1 4>aYA((Os) (Op) )> 

Calculations of Nl
9 

,O) and N (g ,O) are discussed by Ich:i.mura et al. 
6
). 

They calculate the difference between SG for (4.4) and (4.5). Their result 

2 . . A+4 2n+X. 
is a factor 5 in addH~on to ( A ) . 

.. 2 
The correction 5 is due to the 

presence of spurious centre of mass motion in (4.5). 

The new spectroscopic factors are in both cases, (4.4) and (4.5) 

equal to 1, provided that the centre of mass motion is treated consistently. 

A SM 
This means that in the SM case we have to use the operator 1 - KR. defined by 

.. . . 

<s~ ~ o(R-Ra)Yiq,eti!;A((Os)
4

(0p)
12)jJ...-b- o(R!.Rc/ Y2<l>a1J!A((Os)

4
(0p)

12
)> ·(4.6) 

We have to be, however, very careful if we use SM wave functions which will 

be in general not of the form (4.5). A good SM calculation would yield a 

state which is spurious free. In our case this state is of the form6
) 

IJ~rr' Uoo(R20'20 vo) 4>A+4 (20Ne(9,0)L) > = 

f? I 4 12 3 ± I 3 IJ; A+4 ( (Os) (Op) (sd) (pf) ( 9, Q) L) > + 

. /31 4 11 5 + IS tjJ A+4 ( (Os) (Op) (sd) ( 9, O)L) > (4.1) 
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2 With the use of (4.6) \le would now get the wrong result S =· 5 . Therefore, 

for general SM states we should first remove the center of mass motion. 

t 
The appropriate methods for doing this when calculating G (R) are discussed 

elsewhere6). In addition we have to calculate 1-Kx.· In Appendix B we give 

"" 1-K"' SM general formulae which connect results for 1-Ki and i . 

4.3 Oscillator parameters 

One main restriction of the present model is the use of the same 

oscillator frequency for the a-particle as for the daughter and parent 

nucleus. In a si~ple :i-decay theory we had instead to calculate with a 

frequency corresponding to the free a-particle. Preliminary calculations 

for the (A,~)= (8,0) states of 20Ne show a reduction of the spectroscopic factor 

from 1 to values between .4 and .55, depending on the angular momentum. This effect 

. 12) 
is somewhat larger than for the conventional spectroscopic factor • 

For transfer reactions between two approximately equally heavy nuclei 

it seems, however, not unreasonable to use the larger a-particle of the 

present model. 

5. Conclusion 

By deriving a simple formula for the correct a-spectroscopic factor we 

filled part of the.gap between structure calculations and the attempt to 

extract structure informations from reactions. There is still a good deal 

of uncertainty in connecting these factors with experimental results. 
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Appendix A. 

A 

The orthonormal eigenstates of K are called lw > and the eigenvalues 
n 

"" K = 
N 
l: 

n=l 

Then 

>. I w ><w I 
n n n 

(A.l) 

where N may be finite or not. If N is finite we complete the set 

that {w1 , ••• ,wN,wN+1 , .•• } is a complete orthonormal set. 

may be regarded as eigenstates with the eigenvalue Ai = a. 

(Al) follows Klw
1

) = 0. We have now 

K= 
n=71 

A lw ><w I n n n 

The lw > i>N 

Indeed from 

(A.2) 

If there are no eigenvalues equal to 1 relation (1.5) can easily 

be proved. If the first M eigenvalues are equal to 1 the corresponding 

eigenstates I w . > are forbidden states. lole can then restrict ourselves 
j~M. 

always to the space {w}:·H ,w*
2

, ••• } orthogonal to the forbidden states. In 

particular G is orthogonal to these states. We introduce3) the operator R 
by 

A co 

K = E 
n=:Mi-1 

.A lw ><w I n n n 
(A. 3) -

::.. -k* 
Then (1-K) 2 is again well-defined and we have instead of (1. 7) 

00 

E 
n=*l 

* w (R)w (R') = 
n - n - 6(~-~') (A.4) 
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This means that our basis functions are normalized to '8(J:>-B') which is 

in the space in which we work identical to the a-function o(g-g'). 

In the case that there are eigenvalues equal to. 1 we have to replace 

,.. ~· 
everywhere K by K. This has no consequences for our results. 

Appendix B 
~ 

In analogy to the operator K introduced in section 1 an operator 

~sM 
K can be defined when shell model states rather than internal states are 

used. 
. . ~ ~a~ 

Equations co!:.Ilecting K and K '-'· will be derived in the following. 

~ . A S'VT 
These eqtiations provide a method of calculation of K when K •· is known. 

For simplici~y only the case of spin zero daughter nuclei will be considered. 
A 

The operator K introduced in section 1 may be equivalently defined by 

(B .1) 

where { f } denotes any complete set of state vectors for relative motion. 
K 

The operator K2 ·1 is defined by 

< ~ I (1-KSM) I f > = <A f, (R. H '¥AI*f (R )cp '!'A> 
11. K 11. -a a K -a a 

(B. 2) 

tV 
where { f } denotes any complete orthonormal set of state vectors for the 

I( 

motion of the centre of mass of the a-particle. We assume that the shell 

model state vector YA for the daughter nucleus factorizes as follows· 

(B. 3) 
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where XA is some normalized wave function of the centre of mass motion. 

\) J..l 

lole denote in the following by { <ll A+4} and {xA+4} orthonormal complete 

sets of internal wave functions and centre of mass wave functions for the 

(A+4)-nucleon system respectively. From (B.2) oneobtains using eq. (1.5) 

(B.4) 

since the wave functions ¢~+4 are antis)~etric. Similarly one obtains 

for K using eq. (B.l) 

< €. I (l-ib I fK > = L (A+4) < f (R ) . ¢ I¢ v 
-:'A A >.. -o.A 9o. A 1 A+!?. • 

\) 

From eq. (B.3) and the completeness of the orthonormal set {f } follows 
\) 

Inserting (B.6) and its complex conjugate in (B.4) one obtains finally 

(B.7) 

where the coefficients C>..>.. 1 ;KK' are defined by 



0 0 J u 4 J 0 7 9 J 0 
;... 17 -

c 
U .. ' jKK 

(B. 8) 

Equations (B.7) constitute a system of linear equations for the 
A 

unknowns< f~l (1-K)I fK>. 

We consider the case of practical interest where the centre of mass 

wave function xA is a harmonic oscillator wave function: 

Av 
( __ o) 

7T 
(B.9) 

In this case the system of equations (B.7) has a'unique solution and 

we give an explicit.expression for the matrix elements of (l~K). 

We chose orthonormal bases {fA} [fA} and fx~+4J consisting of harmonic 

oscillator wave functions with the size parameters v=4Ai'(A+4)\J0 , v=4v 
0 

and 

v=(A+4)v , respectively 
0 

Here is 

4v l _! (4V Jr2 
·o 4 2 o "' f (r)=(-· ) e 

0 "' 1f 

(A+4)v 1_ _ _!_ (A+4)'J ~2 
X~+4 <,~:> = ( 1T o)4 e 2 o 

(B.lO) 

(B.ll) 
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+ + + -+ -+ -+ + + + 
and ax' ay, a~, ax' ay' a~, Ax' Ay' A4 denote creation operators for oscillator 

quanta in the x, y, for the corresponding oscillators, e.g., 

(B.l2) 

1 a 
- /(A+4)V I ax ) 

. 0 

In equation (B.lO) and in the following the indices A, ~ are shorthand 

notations for the triples of indices (A1 ,A2,A3) and (~ 1 ,~ 2 ,~ 3 ) respectively. 

With this choice of bases the generalized Talmi-Moshinski brackets 

appearing in (B.8) are given by 

"'' <fA (~a)xA (~A) lxA+4fA, (~A)> (B.l3) 

Therefore, inserting (B.l3) in (B.8) one obtains 

A !+k! 
J J 

4 l.l· . 2 
c5 (-) J (_lL} 

U• -k~ ,K. A+4 A+4 
lJ J J 

A!+K! 
3 A . .!_2 K. 4 K. K~ 

= . . ( ')(J) (J)( )J-J A 
.!!115, -'' - ;_8 A.-A. '' ' A+4 (A+4) 
J- 1\j 1\j'Kj ~ J J ''j Kj 

J J 
2 

(B.l4) 

where S(x)=l for ~0 and zero otherwise. 

(B.l5) 
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where Q,, Q, Q~, Q'- denote the number of oscillator quanta of the states 
1\ K 1\ K 

(B.l6) 

As it will be proved at the end of this Appendix 

! B,, 11 ,,C,,,,, ,; , ~ . ~ - · 
A'',~'' 1\1\ ,KK A A sK ~ = uAA'~KK' (B.l7) 

From equation (B.7) one obtains therefore, 

A 

<fA I (1-K) I f;c/ = "' ""SM "' 
L B" ' ,< f, I (1-K } I f. > 

A' ' 1\1\ ,KK. 1\ K 
•K 

(B.l8} 

. . 

Due to the step fwictions li(K .-·K:. '} appearing in (B.l5} _.the sum in (B.i4} 
. J J 

has only a finite number of nonvanishing terms. In the.special case of 

minimum number of oscillator quanta there is in fact only one non-vanishing 

term and the (B.l4} simplifies to 

(B.19} 

In the case of closed major shell daughter nuclei (e.g., 2 0Ne-+16o+a) 

As~ "' 
(1.-K _) is diagonal in the basis {fA} and its matrix elements depend only 

on the total number of oscillator quanta: 

(B.20} 

Then one gets from (B.18) and (B.lS) 

-~ 

(B.21} 

with 
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(B.22) 

Proof of Eq. (B.l7) 

Using the definition of QA, QK, QK'' one obtains from (B.l4) and (B.l5) 

the relation 

E B C = 
A",i<:''' AA

11
,KK

11 
A"A

1
1 K"K 

= 
A +K. 'I 3 A+4 j J 4 ~j -Kj K. l A. 1 

{ II (A) z (- A+4) °K.-K~ 1 A.-A~'8(K~-K~')( J ) 2 (,J,,) 2 } 
A' I 'K' I j =1 J J ' J J J J K:! I II. 

J j 

'+'· 1 1 
3 Kj· II. • t r t t f I I 

- J -K· K. -A -
A ·. 4 Kj J ( r r 1 ) ~ ( J ) 2 ( j 2 

• { .II (A+4) 2 (A+4) K. -K. o 'r . ' ' r' "' ' ' '. ) 
1 J J K. - K. , 1\j -11.. K. 11. 

J= J J . J J J 

3 ::\ -A 1 . K - K ' K - ·K 1 ' 

= E {II (A+4)j j(_L) j j(-1) j j 6(K.-K:')6(K~'-K~) 
K' ' 'A ' I j = 1 A . . A+4 J J J J 

IC 
1 

K 1 ' .! A.· .! A'' l 
• c J >2< j )2( j >z< j )zo 0 

K l. I ·Kt. ' '. I '\ '. t t ' ' t I t I t '\ t I '\ I} J J II.] II.J Kj-Kj '/\j-1\j Kj -Kj 'll.j -ll.j (B.23) 

From (B.23) one obtains further performing the St.Imiilation over A.'' 

t ' E K.-K. 1 
[ ( -1) J J ----.-,~,.....,...,.---......-:- 6 ( K.- K~ 1

) 6 ( K~ 1 - Kj1 )) J~ 
K' 1 

( K ,... K1 1
) ( K' t -'K1 ) J J J 

. j j j j j 
(B.24) 

However the term in square brackets in (B.24) is equal to o. , according 
K., K. 
J J 

to the binomial theorem. Taking this into account (B.l5) follows from 

(B.24) immediately. 
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Table Captions 

Table 1 

The spectroscopic factor S compared to the· conventional factor SG 

for closed shell daughter nuclei (J' = 0). tJe have i = J and the factors 

are independent of i. 

Table 2 

The spectroscopic factor S compared to the conventional factor SG 

for sd-shell nuclei. The last two colunns show the relative spectroscopic 

factors (ground state transition normalized to 1). The daughter nucleus 

is in the ground state, J and K refer to the parent nucleus. 

r • 



System 

a-a 

a-16o 

a-160 

a-16o 

· a:-40ca 

a-7ox35 
35 

a-140x~8 

d-a 

d-IGo 

d-40ca 

0 0 u 0 4 3 0 / 9 J 3 
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Table 1 

SU3-classification 

Parent Nucleus SG 

(4,0) 0.75 

(8,0) 0.23 

(9,0) 0.34 

(10,0) 0.51 

(12,0) 0.07 

(16,0) 0.036 

(20,0) 0.019 

(2,0) 1.125 

.(4,0) 0.60 

(6,0) 0.42 

s S/SG 

1 1.3 

1 4 

1 3 

1 2 

1 14 

1 28 

1 53 

1 0.9 

1 1.7 

•.·. 1 2.4 
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Table 2 

J K s !t S/!t s 1 re 5Grel 

l6Q+a+20Ne 0 0 1.0 0.23 4.3 1.0 1.0 

(0,0)~(8,0) 2 0 1.0 0.23 4.3 1.0 1.0 

4 0 1.0 0.23 4.3 1.0 1.0 

6 0 1.0 0.23 4.3 1.0 1!0 

8 0 1.0 0.23 4.3 1.0· 1.0 

20Ne+a+24Mg 0 0 I 0.41 0.077 5.3 1.00 1.00 

(8,0)+(8,4) 2 0 0.45 0.029 16 1.10 0.37 

4 0 0.00 0.0 - 0.00 0.00 

6 0 0.11 0.012 9.6 0.27 0.15 

8 0 0.00 0.0 - 0.00 0.00 

2 2 0.06 0.0038 16 0.14 0.05 

4 2 0.34 0.035 9. 7 . 0.84 0.46 

6 2 0.52 0.055 9.6 1.28 0.71 
. 

8 2 0.04 0.0038 10 0.10 0.05 

2~g-~-a ..... 2ssi 0 0 0.54 0.087 6.3 1.00 1.00 

(8,4)+(0,12) 2 0 0.38 0.020 19 0.70 0.22 
oblate 

4 0 0.16 0.0088 18 0.30 0.10 

6 0 0.081 0.0039 21 0.15 0.04 
I~ 

8 0 0.038 0.0012 32 0.07 0.01 

(8,4)+(12,0) 0 0 0.15 0.025 6.2 0.98 0.28 
.. 

prolate 
2 0 0.11 0.0056 19 0.20 0.06 

4 0 0.034 0.0018 18 0.06 0.02 

6 0 0.098 0.0047 21 0.18 0.05 

8 ·o 0.096 0.0031 32 0.18 0.03 
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---------LEGAL NOTICE-----------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights . 
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