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ABSTRACT o

In;a recént papgrl) it was shown that a consistent reaction,theory
requires:a_modificatipn of the usual definition for aéspect:oscopic
factors. Inithebprgsent paper a simple;formulé for the new spectroscopic
-factorsvié derivédliq the framework of the harmonic oscillator shell model.

These factors are calculated for a number of light nuclei.
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I. Introduction

2 L ,
1,2) the a-decay theqry was reinvestigated. It was

In twovrecgnt papers
shown fhat the cqﬁsistency of the reaction theory requires'a new fofmula for
the reduced width and the spectroscopic factor. On tﬁ¢ §asis4of these results
we recalculate ; number of spectroscopic factors for light nuclei. Let us

2) briefly.

first reviewvﬁhé‘main results of ref.:’
In a simple physical picture the c-decay constant A is proportional
to the penetrabilitj P through the Coulomb barrier and to the o-particle

density Py

X e, | | @

Here Py (R) is the:probability of finding the a-particle'(with wave function
¢a) aqd the daughter nucleus (A nucleons, wave function ?A) with a
separation R in the parent nucleus (A+4 nucleons, wave function 4s)

The wave functions ¢;;”§A and ¢A+4 are antisymmetrié, normalized internal

wave functions. . We may also define a total probaﬁility by
_ 3 | .
s=  JdRp (R @)

The quantity S is called spectroscopic factor. It may'bé connected with

the decay constant'by' _ -

Here A is the single particle decay constant calculated from a single

particle Schrodinger equation with an a-nucleus potential. In the same
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sense the spectrbscOpic factor is used in the standard analysis of a~transfer

experiments. The conventional theory gives the following expression for

Pa

) — o | ,
o, = [6®[? = [Hs®R D¢ 10,1 o (1.4)

The antisymmetrisation operator 4 contains the trivial statistical factors:

gL AT 1 P - -7
= 5 @ IZ)(-l) P ] | 1.5)

The sum in éq. (1.5) tuﬁs over all (A+4). permutations.qf the (A+4) particles.
The vector between»thé centre of mass of the a-particle and the daughter

nucleus is denoted by R - We restrict ourselves to the‘a—particle ground

oA
state, and in thisISection to ¢A with total spin zero. More general formulae
are given in section 2.

The expression (1.4) is inadequate since a probability density can only

be calculated by projecting on states which are normalized to §(R-R").

The normalization of the bra in (1.4) is, however,

BB I $1F SRR 6,007 7 SERD- KRED  (.6)

3)

For a discussion of the properties of K we refer to Feshbach™ . We introduce

~NoLXk ‘ .
basis states lJ#((l—K) %) S(R'_RQA) ¢a¢A > which are normalized

> "’1/2 *' : : - -1’5 * ' - . ' E
A (107 S(RRy,) 0 SR BHA-KTHS@R D600 = $BRD - A.D)
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Here we use the short-hand notatioh 6 f(R) for -{d3R'0(g,g')f(g').

, A L % : ,
In the bra and ket in (1.7) ({(1-K) 6) operates on the parameter R and

- R', respectively. In Appendix A we give the modification for the case

that there are eigen?alues of K equal to 1.

The necessary probability density p, can now be defined by

- 2 o st 1ty mn 2
Py le (®)] l<# (1-B)"Fs® Roa) by ®aloa 1?0 (1.8)
with :
6y = -7 ., (1.9)
and the spectroscopic factor is
‘S = ;rd313|GN(I_i)|2 | o S | (1.10)

Due.to'equation (1.3) the definition of the spectroscopic factor S is not

~ a matter of semantics. The use of (1.8) instead of (l.4)'givés in fact a

different predictiog for the decay constant. The expressioﬁ (1.10) fulfills
the trivial'condition that a probability in quantum mechapics has to be
defined as the expeéﬁation value of a projection operat§r4).' To clarify
this aspect let us_codéider the fictitious case of distinguishable nucleons.

In such a case no problem arises: one has

papfa =< §(R-R ,) ¢, QAI °A+4>|2 ' | (1.11)

n.a ;;, 3‘ o | “na, v B gy

s+ ? = fd Rop, =<0, [P NEE o (1.12)
with Ah a 3 . ] : .

P .=bjpd 13l6(ls_l}ctA)(15<:.<'5A><6aE“I}onA)("JOL@AI



The operator p-? is the projection operator on the subspace of all wave-
functions of the form u(R ,)¢ ¢, with fixed ¢ ,¢,. For tﬁe actual case of
. SMSoATaTA o TA " R
indistinguishable nucleons the effects of antisymmetry cannot be taken into
account by simply inserting the operator 4 in the r.h.s. of eq. (1.11).
This would lead to a,spectroscopic factor which is the expeétation value of
‘j d BlJtG(BrBaA)¢a¢A><$}o(g—gaA)¢u¢A!. This operator }s not a prOJectlonA

operator. The correct analogue of (1.12) is

7]
it

. where

>
i

This projection operator was already introduced by FeshbachB). it

projects on the subspéce of wavefuncticns of the form,Jﬁu(gaA)¢a¢A‘with~
fixed ¢ , ¢. .
a’ A

1,2)

Also a consistent reaction theory with one bound state and one open
channel leads to the expression (1.8) instead of (1.4). - The reaction theory

uses an open channel state

o = 12 4@000 = [ B pmldemn ¢ -

[}

‘ 3 o o Lk ‘ g o o
[Pro®id a-b oy po0> - aas

The inconsistent assumption usually made is that u_ may be approximated by

E

solutions of a single particle Schrodinger equation with a redl a—nucleus

3' . : -~ . . s .
[Rleg@2] = <o, 1814, > - (1.13)

fd%M(l-ﬁ)“/Z*s-(R‘—R )6 ¢ >~;9¢(1-ﬁ)’y‘*a(q-r{ ). | (1.14) -
= _ TT00a7 ¥a®a” ~ ~aA A7 '

-
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potential. This - approximation is only reasonable for'QE = (l-K)éUE.
This is connected with the fact that uE may have unusually large amplitudes.

5)

This was demonstrated nicely by Saito et al. in the discuSSion of the case

that one eigenvalue of K approaches 1.

2. Method of calculating spectroscqpicvfactors

In the following7we give the new definition of a-spectroscopic factors
for any spin pf thé daqghter nucleus. We describe theﬁ’é method to calculate
these speétroscopic_factors under the following simplifying assumptiops.

1) The groﬁnd‘étate of the c-particle is’describéd by.a Oé;state
harmonic oscillator igternél wavefunction. o

‘.2) The relévaﬁt states of the parent and daughter nuclei are described
by inﬁernal wavefunctions,corresbbnding to many particle oscillator shell model
qonfigurationSjwith~fi;ed total number of osciilator quanta.

“3) The harmonic oscil1ators for the a-péfticle and’for the othef-two
nuclei involved h;ve all the same frequency. _
These assumptions haﬁe been usgd in comparable calculations6’7’8’9’lo) and
have been diécuéséd'in éﬁme.detail there. |

Accordiug to the usuai definition the ;;dial part of ﬁhe reduced
amplitude is |
Taes (2.1)

. iy e
G (R) .- <‘;4 22 SRR D[Y, 0 8, I |<;>A+4
J',‘E']J
A

a—particle channel. The spherical harmonic Yz depends on the direction

We use the short-hand notation [Yl¢a¢ .for the coupling in the
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of the vector RaA' The angular momentuz £ of the relative motion and

the spin J' are coupled to total spin J. The indiceé g, gidenote all
" further quantum numbers of the daughter and parent nucleus.
Under the assumptions 1), 2), 3) the radial part of the reduced

amplitude (2.1) is proportionai to an oscillator function.
) 2’ . ) ‘ . . 4A E . _‘ .
G" (R) ’. e(l,Jv',J,g',g) unl(R’ m"‘vo) (2.2)

The unz(R’V) are normalized
- +d: |
N . 2 " R
{dRR un’”l(R’\))un'i (R’V) = Qn"n'
e} . : :
Here V denotes the size parameter B and v = Zo% s the unit for v;
_ < h o h -

where mdvis the nucleon mass. The number of oscillatdr.quanta

Q= (2n + z) is equal to the difference of oscillator quanta between the

J,E Jt,e'
states ¢A+& ’? and @A e

We have to calculate

L _ A =l 2 R
GN_' o= (1~K2) G - (2.3)

with
. l . . , »
—-iz*a(R-R ) —KR(R‘,R ) = _
- l } J"E' J l . ' o J',E' J .
I N A TN LR
. d L J,Ee'.J . .
Since | .8 un'z[Y2¢a¢A 17> is an (A+4) particle state with fixed number

of oscillator qqaqta, it is evident that <lzvml(l'Kl)|‘h'2> N Gnun' .

Moreover, the se; {Un'lln'=0,l...}.is complete:



"y = __|.‘ £ . :
ﬁ' un'z(R)un'z(R ) i?-G(R R') Therefore Ung are eigenfunctions of

'(1—122_), and (2.3) and (2.4) simplify:

%Ry = 5 &
Gy (R) = (1= )72 G (R

(2.5)
with : . -
L=, = < um_[Yz:bdéAJ | Mu (Y, 4,0, ""’_5_']J> (2.6)
“The statés in (2.6) éfe in the space spanned by £®A+4 |£ =1,2,,..} .
Therefore one obtainsbfrom.(z.é)
'v‘(l—xn.z) = ;;Z <J4- Y X I,E ]J§¢A+i’5> .
. |‘4 2L22¢ 0 JENI, é le(z,j',J_,g',g)]:z_v - @n
The finalvreSult fdr:the‘reduced ampligude is
C‘;NJL (g?(:(i'J' J, g 25")[2)‘ “ng B | (‘2'8_)
Iqstead of the conveﬁfionglvspectroscopic factor
= loc,a",0,6'0)|? (2.9)
we obtain according to.(2.8) the spectroscopic facfor
|6(2J JI,E4,6) |2 7 £]8(r,d',3,E € ')|2" (2.10)

. E” .
“ It should be pointed'out that the set of orthonormal states {¢A+Z g}
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inserted in (2.7) méy be arbitrary as long as it is éomplete. If harmonic
oscillator states are used the sum is fiﬁite.

We shail use.fhe SU(3) model for the daughter nucléi; }Then the sum
contains only a few’terms, if we téke an SU(3) basis fof tﬁe (A+4)?particle.
states. For example in the cases of sd—sheil’huclei considered in this paper

the sum consisted of less than ten terms.

3. Results
The general't;end of the effects of the odperator ifﬁl.can bé seen
frbm Table 1 whefévs'and SG are given for a numbef of élosed shéll daughter
nuciei. For Qompafisbn we also list éoﬁe spectfoscopic ﬁactofs for two-
particlé transfer assuming again a Gaussian wave function for the fwo nucleons.
In Table 2 we give a-épectroscopic factors for soﬁe'open shell ﬁuclei
of the sd—sﬁell. Wé describe the parent and daughter nucieﬁs by the leading
SU(3) representgtion.‘ This is a very good approximatidﬁ fof the wave functions
of the nuciéi cqnsidéred. Furthermore, detailed calculafions have shownll)

that taking into account all sd-shell configurations does not change the

conventional speétrbscopic'factors appreciably.



4. Discussion

-~

4.1 Effects of the operator l-Kl'

In Table 1 the spectroscopic factors are given for cluster-model states

of the parent nucleus

B 3 . R
9A+4> _'NQL#H unl[¥£¢aQA >_ C S (4.1)

i

Ni is a normalization‘constant; For thése states the new Spectrqscdpic
factors are always 1. Both SG.and S are independent ofsz.whén the daughter
nucleus has a closed major shell configufation as in thévexamples given in
Table 1. Obviously‘the relative spectroscopic factors'ére not changed in
these cases. They are, ho&évef, chénged for open shell_nﬁclei.

The general trend of the effects of (1—?2) ié éleér:' their importance
increases for heavigfvnuclei. Furthermore the eféects of l—ﬁl are alsé more

important for the four-particle spectroscopic factors than for the two-particle

ones. Restricting ourselves for a moment to the case of lowest possible number

of oscillator quanté;the conventional spectroscopic amplitude 155)'
. 2n#R ' » v
_ AL, AL 2 , ‘ . ,
6= (NAED T e oyt . D
'v2n+2

The factor ( éié) 2 arises from the transformation from shell model to
intrinsic wave functioné, G is the overlép of the a—partiéle-wave function
with the four-particle configuration ¢4 which appears_invfhe n> n-4

- , s <o 0 e >
coefficient of f#actlonal Parentage _VA¢4}9A+4

In the case of the lowest possible number of oscillator quanta the

A+4'2n+2

). 2 are the same for all spectroscopic amplitudes

‘factors G and ( =
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appearing in (2.10). They cancel therefore leading to.

= o) vl /§I<wA'*"4} L
We introduced hefe>the index v‘to express the summation over (A+4) particle
states. It turns out that the main difference in the numefical value of the
conventional spectféScépic,factor,and ;he new one arisés f:om the factor
( é§£“)2n+l G2. 'Fof ¢losed major shell configurations qf ﬁhe daughter nucleus
(e.g. 2°Ne+150‘+ a4 Tir “OC + a) the new specfroscopic féctor differs

4=
exactly by the factor ( A+4)2n . G? from the old one.

Finally_it is interesting to mote that the conventional spectréscopic
factor for Li+ d is greater than l. This fact demonstrates once more that.

_»the cqnventional spectroscopic factor cannot be interpreted as a probability.

4,2 Centre—-of-mass motion

In the calculation of the conventional spectroscopic factor the removal

of the centre-of-mass motion (cmm) is a very important'step: It results in

a factor ( — Atd )2n+2 = 6 for the s-d shell. The present formalism for the

A
new spectroscopic . factor can easily be written down also- for shell model

(SM) states yA+4, w ‘instead of internal states ¢A+4’ ¢A (¢ is an intermnal

wave function in both cases). For the minimal number of duanta the factor

( AZ4 )2n+g obviously‘cancels in the expression’(Z.lO) fé?'the spectroscopic

factor. For»these-cases we could as well calculate with SM functions.
For the discussion of the case of more oscillator_quanta;we take

the (A,n) = (9,0) states of 20Ne as an example discussed alSo in Rgf. 6;

The internal statéﬁis

(9,0\(R 16

20y 0y2)> = s
( Le,(9, YL N(9,0)14 U wA’ 5

414 VY, o, N g.s)> (40
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The index (950).meaﬁs 2n+% = 9, A corresponding clusterflike_SM scate is

g € (0s) (0p)12<sd> ®9)(5,00) > =

o o)l un LY 4 )Y, 4,9, ((08) ‘o) oo ()

Calculations of N(9 0) and 5(9 0) are discussed by Ichimurs et ali6).

They calculate the difference between S for (4 4) and (4 5) Their result
is a factor %-in additlon to ( AZ4 )2n+z.‘ The correctloc %{1S'due to the
presence of spurious centre of mass motion in (4.5). |

The new spectroscopic factors are in both cases, (4’4) ‘and (4. 5)

equal to l, provided that the centre of mass motion is treated consistently.

This means that in the SM case we have to use the operator l - KR deflned by
1
2. B(R—R ) - K (R R') =

< & srR )Y 0, f(Os) (Op) )!a‘f%z S(RIR,) Y04, ((0)* (0p) P> - (4.6)

We have to be; however, very careful if we use SM wave functions which will

be in general not of the form (4.5). A good SM calculation would yield a

state which is spurious free. In our case this state is of the form

lﬂ%—; uoo(de,Zo fvo) ¢A+4 (*®Ne (9, 0)L) >
: /2 IARCONCORCOMCHNERUR SR

+'/%—|ILIJAM((,Os)A(OP)ll(sd)‘S(9,O)L)> | S (4.?)
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With the uée of (4.6) Qé would pow get the wrong resu}txs ='§:. Iherefbre,
for general SM'étéﬁes we should first remove the centef_pfvméss motion.

The appropriate péthods for doing this when calculaﬁing GQ(R) are discussed
elséwhere6).> in_éddition we have to calculate 1—?2.. In.Appendix‘B we give

v general formulae which connect results for 1—?2 and 14§15M.

4.3 Oscillator papaﬁeters
One main feétfiction of the present model is the uéépof'theASame.
oscillator frequend& fothhé.a—particle as forpthé daughpér and parent
nucleus. In a sizple 3-decay theory we had instead to éélculate with a
fréﬁuency corresppgéing to the free a-particle. Prelimiﬁary calculations
for the (A?l1)=-(8?0) states of 20Ne show a reduction qf‘the spectrosc0pic'factor
from 1 to valueé'between.d-and.SS, depending on the angul&rmomentum. This éffect
is somewhaé lapger tpan for the conventional sPéétfoscdpic factorlz).
Fpr transfer ;aactions'bétween'two approximatélY"eéuélly‘heavy nuclei
it seems, ﬁoweVer;'noﬁ unreasonable to use the large:'d4partic1e of the

present model.

5. Conciusiqn.

By deriving apéimple formula for the correct o-spectroscopic factor we
filled part of the,gap bé;ween structure calculations‘and‘thé attempt to
extract structure informations from reac;ions. There is still a good deal

of uncertainty in connecting these factors with experimental results.



00 i Uasu07928

- 13 -

We thank A. Arima and F. Beck for useful discussions. T. Fliessbach
acknowledges a feilowship of the Deutsche Forschungsgemeinschaft and wants
to thank Normanxéighdenning and his group at the'Lawrénce'Berkeiey Laboratory
for the hospitaiity-extended to him. P. Manakos acknéwledges a travel grant
of the Deutséhe,quschungsgemeinschaft.. He expresses hi§ thanks for the
hospitélity extegded to him by G.E. Brown and the nucléér theory group at

Stony Brook.



- 14 -

Appendix A

The orthonormal eigenstates of K are called Imn>-and the eigenvalues

An (o<ln£_l)- We asggme Al 3_A2 2'A3Z_... . Then

N - o
K= 3 Iw ><w l : (A.1)-
2, »''n n

where N may be finite or not. If N is finite we complete the set

{wl,wz,...,wN} by gnilnflnlte number of functions {mN+1,wN+2,...} go

that {ml,..,,w is a complete orthonormal set. The IUi>N>

N,wN-*_l,-aoa ‘
may be regarded és'eigenstates with the eigenvalue Ai = 0. 1Indeed from

(A1) follows ﬁlwi>;? 0. We have now

3R]

K = knlwn><mn| ' o (AM2)

n=1

If there are no eigenvalues equal to 1 relation (1.5) can easilty
be proved. If the first M eigenvalues are equal to 1 the corresponding

eigenstates !wj<ﬁ> are forbidden states. We can then restrict ourselves
N . .

always to the space {QM+l’wM+2""} orthogonal to the forbidden states. In

. . \ A
- particular G is orthogonal to these states. We introduqe3) the operator K
by : -
_._A_' =< .‘ N
K=z A lm ><y I o (A.3)
n''n n S

=M+l

S Lx o .
Then (1-K) * is again well-defined and we have instead of (1.7)

s (3R 4 (1-K s R
R-R )60, 4 (1-B) "6 (R'-R

<A -8 R V8,0, =

b w *(13)4» (R') = &(R-R'") v (A.4)
n=m+l 0T BT T -
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This means that our basis functions are normalized to-g(g—g') which is
in the space in which we work identical to the é-function §(R-R').
In the case that there are eigenvalues equal to 1 we have to replace

’ ~ 2 : v
everywhere K by K. This has no consequences for our results.

Appendix B
In analogy to the operator K introduced in section 1 an operator

5™ can be defipe& when shell model states rather than internal states are

used. Equationszéonﬁecting K and {SM'w1ll be derlved in the f0110w1ng.

These equatlons provide a method of calculation of K when g SM is known.

For simplicity only the case of spin zero daughter nLclel will be con51dered.

The operator K lnfroduced in section 1 may be equlvalently defined by
—: ) = . f . :
R U NP LICN S CHR LG (.1

where { £ } denotes any complete set of state vectors for relative motion.

joth

The'operator'ﬁ !is defined by
~ Q) “~ ~ ) . ~ .
< IR > = <Ag R o v, 4 R o ¥,> (8.2)

where { fK} denotes any complete orthonormal set of state vectors for the
motion of the centre of mass of the a-particle. We assume that the shell

model state vector ¥, for the daughter nucleus factorizes as follows -

A
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where Xy is some normalized wave function of the centre of mass motion.

: . REUTP no
- We denote in the follow1gg by {¢A+4} and {XA+4} orthonormal complete

~ sets of internal wave functions and centre of mass wave functions for the

(A+4)-nucleon system réspectively. Frdm'(B.Z) one obtains using eq. (1.5).

ila- -&° )] = ok <af 2 (B)o ‘!‘A}QA+4XA+4

v /L ~ _ A+4
<@ praXpry 14 fg@a)%“’A’ IR LYCNIR |°A+4XA+4>

¥ F @y (B.4)
A+é A+4  ~a’ TaA :

since the wave functions ¢Z+4 are antisymmetric. Similarly one obtains
for K using eq. (B.1l)

< gla- | f? - (AM)( £ (RaA) ERDW

v
SRDWALS (BGAMGQA) @5
" From eq. (B.3) and fhe completeness of the‘orthonormal set {fv } follows
< BRI 4,Y, 1%y )'A+4 NESCRENCRLICND) WD NS
= I <Eu(Ry >¢ 2 1o < (R x, Ry fX'(R ))‘AM (8.6

Al
Inserting (3.6) and its complex conjugate in (B.&) one obtains finally

“SM 1 Y _ _A. |
£,1-&H % > = L O fyla-ol s, .7

where the éoefficients CAX' (' are defined by ;
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Cant skt 5 <E® RENCRIEEN 4) fl'(RaA)>
<X2+4<RA+4) fK'(BaA)I fK (Ba) XA(BA)> R (8.8)

‘Equations (B.7) constitute a system of linear equations for the
A, i
unknowns < fx[(l-K)l £>.
We consider the case of practical interest where the centre of mass

wave function XA is a harmonic oscillator wave function:

3/4
. T Awv 2 S : =
Xy B = (=) 7 A VoR . (Y

.In this case the éystem'of equations (B.7) has:aﬁunique sbiution and
we»give an ekplici#;expressioh for the matrix elemeﬁtsbﬁf (leﬁ);

we chose orthonormal bases {fA} {Ek} and {xﬁ}&} ;onsiSting of harmonic
oscillator wave fuﬁgtions with the size paraﬁeters y=4g/(A+4)vo,v=4vo and
.Q%(A+4)vo, respecfivély

\ = (Al X Ag 2( a) 1( +) 2(:) "3 £

A A,_x3,§

| , __
012! 3.) 2(a) (“é’;> &h e e

Hh
i

@

A=

' + ™1 +“z +. 3 o
XA+4 (ul ! u3') 2(A) () ")~ Xy

Rereds g e
fo(q,) » (A+4 " o\ 4 e 2 AHLA
‘f 5 i%)% = Gy, % S i)
Y=(=2)% o o .
oWt m o |

3 1, .2
(A+4)\)0 % —E(A+[+) )0 r

o ® = D" e
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+ + o+ o A+ + 4+ i . .
and ax, ay, az, 2 ay, a;, Ax’ A, A,Z denote creation operators for oscillator

quanta in the x, 'y, for the corresponding oscillators, e.g.,

o+ 1 Mo ‘VA-MI K3

3 1A+4 ’4Av 3x

Lfimx-L1 2
* N °X1/T E e

NI

1 3
R 1'——-'
ATz (TR X = Ty, )
In equation (B.iO)tand in the following the indicés_l,su are shorthand
‘notatlons for the triDTes of indices (}l, Z’A ) andv(”lfu25“3) respectively.

With this choige of bases the generalized Talmi-Moshinski brackets

appearing in (B;8)‘ére given by

t
' o .
3 z R -
= |
<f (ga)xAc )|><A+,4 At Rya)? (A. ) 6u = A<A+4> (A+4 (8.13)
Therefore, insertiqg (B.13) in (B.8) one obtains ,
| Ak
> A % 3 % My 2
Cyyr =0{ 2 ()7(1)76 ', ()()
+
AAY ke j=1 Kjgo AJ KJ [3 Al E}+ J A4 A+4
: ' A4
' N
3 ' %J Ky K, T2 |
= L8 e W80 ) (G =) (B.14)
S1TA A .k, ~K A+4 - A4S
where 8(x)=1 for xiOaand zero otherwise.
. We define coefficients BAA',KK' by
Q)‘+QK . ' : 1 1
5 4 QK—Q 3 ' _ L 3 Aj 5
B)\A',KK-'—(T) ( A+4 I {6 K l _)\le(K-j-Kj)_(Kl) (Al) } (B'ls)

3=l %370 50
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where QA’ qQ, Qi;'Q; * denote the number of oscillatér quanta of the states
k® AT o :

N "
£, F, £

b fK' €.8.»

Q =AM, (B.16)

As it will be proved at the end of this Appendix
6

Z ||C

Allx' f-i =‘8

Al' e Al" At Skt (3.17)
.From equation (B.7) one obtains therefore,
ng|(1-n)lfK> o z BAA, RN e )|fk> (B.18)

"~
Due to the step functions B(K —k ) appearing in (B 15) the sum in (B 14)
has only a finite number of nonvanishlng terms. In the special case of

. minimum number of qs;illator quanta there is in faét'only one,ﬁon-vanishing

term and the (3;14) simplifies to

<f I(l-K)lf > = (A+4 <f [(1-»SM

)|f > - (B.19)
. In the case of closed major shell daughter nuclei (e.g,, 20Ne+1 60+0r)

~g .o N - T ' - ,
(1-K @5 is diagonal in the basis { f,} and its matrix elements depend only

on the total number of oscillator quanta:.

S :
<f ,a- KSM)If >=note (B.20)

Then one gets‘ffom (B.18) and (B.15)
<f, jafr|g > = hQASAK | o o

with
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- A+4Q _4,0-Q' Q L

Proof of Eq. (B;l7)

Using the definition of QA’ QK, QK,,_one obtains f:om (B.14) and (B.15)

the relation

z l' Tt ]
AT B A
. 3 A +K. 4 Kj‘K:;' v - 1 A _l
= Z { Il ( ) 2 (‘—) é e X v J (2
Ath K,=kITOAL =l B(K‘-.-K..)( ) ()7}
A' ll =1 R e A'
i= o 337373 k| %5
3 »K'.‘l"_)\!v , AN v ' A _]_-_ ATt 1
A 4 5§ TRy 3 (2 2
TGP G T DS A.( D <ﬁ )
j=1 " T R j 3
3 ' 11;;X' ' K, -x""! -
- rofn &I £ n 3 E JOENOLIGINY
K",);" j=l ‘ J
; % ' 1 A 1 A" 1 -
* (1') (J ) ( 11) ( ) 6 . vv’}\ )\1!6 K',‘A!'-A!} (B.23)
3 3 .J TR0 TN :

From (B.23) one obtains further performing the summatidn over A''

z ,.C

l”l' et =

B
A",K" }‘)‘"’ . 1
3 AL A K' IA ! —' B
A+4.7F T3 J 3
D) (A+4) G ..A..) %, ~kl A AL
J‘l_ ' J J 33 1]
. }3-1%'. 7i ' . |
. _ . Lt te_ -
| [~K33"( 1) 'v(K-j'-’KJf')("J!"""J'-) Q(KJ. < )e<.<j Kj)]f k (B.ga)

However the term in square brackets in (B.24) is equal'to 6k " according
. . N 3 -

: J ‘
to the binomial theorem. Taking this into account (B.15) follows from.

(B.24) immediately.
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Table Captions

Table 1
The spectroscopic factor S compared to the conventional factor SG
for closed shell daughter nuclei (J' = 0). We have £ = J and the factors

are independent of %.

Table 2

The spectfoécgpic factor S compared to the conven;ibnal factor SG
for sd-shell nuclei. The last two columns show the £ela£ive-spectroscopic
factors (ground state transition normalized to l).- The daughter ﬁudleué

is in the ground state, J and K refer to the parent nucleus.
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Table 1
SU3-classification

System Pe’u:ent Nucleus ' ‘ SG .S/S
a-g (4,0) 0.75 1.3
a=160 (8,00 0.23 4
a-160 (9,0 | 0.3 3
a-160 ~(10,0) . 0.51 2
40 _
a-"%Ca (12,0) 0.07 14
a 7°xz§ (16,0) 0.036 28
a-140x70 (20,00 | 0.019 53
d-a 2,00 1.125 0.9
a-160 T (4,0) | 0.60 - 1.7
d-%0ca (6,0) 0.42 2.4
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Table 2
) % y% %ﬂ. ’%ml
160+a+20Ne 1.0 0.23 4.3 | 1.0 1.0
(0,0)>(8,0) 1.0 0.23 4.3 1.0 1.0
1.0 0.23 4.3 . 1.0 1.0
1.0 0.23 4.3 1.0 1.0
1.0 0.23 4.3 1.0 1.0
20Neta»2'Mg 0.41 0.077 5.3 1.00 1.00
(8,0)>(8,4) 0.45 0.029 16 1.10 0.37
0.00 0.0 - 0.00 0.00
0.11 0.012 9.6 0.27 0.15
0.00 0.0 - 0.00 0.00
0.06 10.0038 16 0.14 0.05
0.34 0.035 9.7 . 0.84 0.46
0.52 0.055 9.6 1.28 0.71
0.04 0.0038 10 0.10 0.05
24Mg+o+2851 0.54 0.087 6.3 1.00 1.00
(8,4)+(0,12) 0.38 0.020 19 0.70 0.22
oblate : . _ :
0.16 0.0088 18 0.30 0.10
0.081 0.0039 21 . 0.15 0.04
0.038 0.0012 32 0.07 0.01
(8,4)(12,0) 0.15 0.025 6.2 0.98 1 0.28
prolate 0.11 0.0056 19 0.20 0.06
0.034 . 0.0018 18 0.06 1 0.02
0.098 | 0.0047 2 0.18 0.05
~0.096 0.0031 32 0.18 0.03

..,‘:' :
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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