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Abstract

Linear plasma fluid theory is used to study the stability of a cold

electron beam in Brillouin equilibrium which passes through a stationary

cold ion background, with particular interest in stability for

parameters relevant to EBlS devices. Dispersion is studied both

analytically and numerically. For £=0, the usual infinite medium two

stream instability condition is shown to correspond to a requirement

that beam perveance exceed a minimum value, P>33 ~pervs; hence, this

mode is stable for EBlS (Pzl~perv). The Brillouin equilibrium rotation

is shown to cause an electron-ion rotating stream instability, which is

convectively unstable. The £=1 mode is also found to be unstable.

Higher modes numbers, £>1, are unstable, but have reduced qrowth.

Instability is only weakly affected by finite beam radius and boundary

conditions.
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1. General Formalism

The electrostatic stability of the Electron Beam Ion Source

(EBIS) 1,2,3 is studied with linear cold plasma fluid theory. Analytic

and numerical methods are used to study the linear dispersion of a

finite radius electron beam passing through a partially neutralizing ion

space charge. A rigid rotor equilibrium, Brillouin flow4, is assumed

for the un-neutralized beam. A two component cold fluid plasma is also

assumed. The effect of secondary electrons on stability is neglected.

The plasma is assumed to be very long in the Z-direction, with

a n =0 and a v =0, where: n, denotes particle density; v, fluidz so z so
velocity; subscript, s, species; and superscript, 0, an equilbrium

quantity. The axial component of the electric field, is neglected,

Eoz=O' and axial sYmmetry of the equilibrium is assumed,

nso(x)=nso(r) and vso(x) =vso(r). It follows that neither vso

nor Bo have radial components, i.e., BO= [ Bo + Bz(r) ] ~ +

Be(r)~, where Bo is generated externally, and Bz and Be are

generated by equilibrium currents. For a low current, non-relativistic

electron beam, Be may be neglected, i.e., self-pinching does not

affect the equilibrium. In cases of interest, the diamagnetic field,

Bz{r), is also neglegible. The radial electric field is obtained by

solving the Poisson Equation, assuming the equilibrium density,

E (r) =or
4n

r
I
S

r

1 dr~ r~ n (r~).
os
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From the radial component of the cold fluid momentum equation, the

general equilibrium condition is,4

2
w (r) + I

S q

r

f dr~ r~ nos(r~) + sgn[esrls s(r)] = 0,
a

(2)

where, rl s = esBo/msc. For a square density profile, we have

o < r < R }- - p

r > R- P

(3)

where Rp denotes the nominal plasma radius. The equilibrium condition

now becomes algebraic and corresponds to rigid rotation, with,4

+ rle {w (r) =w- = - 1 +e e 2 -

and,

}, (4)

wi(r)
+

=w-
i

] 1/2 } ,(1- f)

f
(5)

For future use, the vortex frequency is now defined, as,

+= + (w - w-
s

)
- S

(6)

- 3 -



Electrostatic stability can be studied by the usual first order

perturbation theory, with a potential of the form, ~(x,t)=

~o(x)+8~(x,t), where,

( ) 00 00 !'llJ.£(r,k
z

) ei (£8 + kzz-wt)
8~ r, 8, z = L L Ur

£=-00 k=-eo

with kz=2~n/L, where L represents the system length, and n=O,

(7)

:1:1,:1:2, ••••

Following Davidson4, a plasma column of radius, Rp' is

considered, surrounded by a conducting wall of radius, Rc ' with

boundary conditions: (i) electrostatic potential, ~, is finite at r=O;

(ii) ~ is continous across the plasma boundary; and (iii) ~ vanishes on

the conducting wall. From the fluid plasma theory, the full dispersion

relation is found to be,4

(1 - L
s

+

2
wps wus ]

(w- k V - £w )
Z sz s

(8)

For convenience, the following notation has been adopted:

2
Us - (w - kVsz

2£w) -
S
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and,

[1 - L w2 / (w - k V - .Q,ws )2]s ps z sz

The boundary term is given by,

(10)

K.Q,(kZRC)I~(kZRp) - K~(kZRp)I.Q,(kZRC)

K.Q,(kzRc)I.Q,(kzRp) - K.Q,(kzRp)I.Q,(kz\)
(11 )

where I and K represent modified bessel functions of order.Q,. Stability

is determined by solving the dispersion assuming real k, where Im(w»o

corresponds to instability.

The nature of unstable growth, whether absolute or convective,5 is

important in an experimental device. For a general dispersion relation,

expressed as, D(w,k)=O, the necessary condition for absolute growth is,

akD=O, or, equivalently, akw=O. The velocity of propagation of an

instability can be determined if one observes that an instability which

is convective in the laboratory frame, is absolute in the co-moving

frame. Denoting the velocity of this frame by V, the frequency would be

w = w - kV. From the definition of the frame it follows that

- 5 -



which may be rewritten,

v = and
= o.

Thus, the velocity of propagation is given by dkRe(w) at the point of

the maximal growth. If the velocity of the instability is so large,

that it leaves a system of size L before appreciable growth occurs,

i.e., if, Im(w) LtV ~ 3, then the mode is said here to be convectively

stab1e.

In the discussion of beam stability which follows, 1=0 and l~O are

considered separately. All regions of unstable growth have been studied

numerically and been found to be convective; hence, the convective

criterion is used throughout.

- 6 -



2. .1'.=0

The following notation is adopted for convenience,

and

2(w- kV)
(12 )

2 2

T2 1 -
wpe wpi

(13 )-

(w - kV)2- w2 2 2w - wue u·1

where no equilibrium ion drift is assumed, i.e., Vzi = 0, and Vze : V.

For .1'.=0, dispersion relation may now be written,

where,

J 1(TRp)

Jo(TRp)

- 7 -
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An alternative form which will also be used is,

B =

00

2:

n=l

1

(16 )

where, Z is the n-th zero of Jo. Eq. (16) has been derived fromo,n

the product representation of J ,o

00

= II
n=l

using, Jo = -Jl , to obtain,

- J l (z) d 00 d 2/z2 )= £n(Jo(z)) = 2: £n( 1 - z o,n
Jo(z) dz n=l dz

1
00

= - 2z 2: (Z2 _ z2) (17)n=l o,n

Since we only are concerned with the linear stability of the system,

attention is focused on those regions of parameter space in which growth

rates can be appreciable. A dimensionless parameter which will be used

in the following discussion is, X =wpeRp/V, which
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can be rewritten,

2
x =

I
V3/ 2

b

= 0.96 I(A)/V~/2(kV)

= p(llpervs)/33. (18 )

EBIS beams are typically a few ~pervs, which corresponds to x2«1.

One consequence of the above property is that, for EBIS, instability

can occur only in the long wavelength regime. This can be seen by noting

that, from the definition of T1 and T2, the ions contribute to

dispersion only if Iwl ~O'(wpi). For a beam of good quality, i.e.,

sufficiently near Brillouin flow that Iwvel < wpe ' this implies that

electrons contribute to dispersion only if, Iw-kVI ~&(wpe).

Since instability requires that both species contribute, this implies a

necessary condition for growth, IkV! ~ wpe . From the definition of

x and equation (18),

< Ixl « 1. (19 )

Asymptotic approximations may be used for the boundary term,

IkR I «c

IkR I « 1.c
(20)

From (16), for S -
00

l:
n=l

1/(1/Z2 - T2R2 ) , dispersion implies,
0, n p

- 9 -



» 1, which allows three possibilities:

(i. ) IT11<1, 151 ~ 1;

( i i. ) IT1 1 » 1, I5I » 1;

(iii.) IT11 » 1, 151 < 1.

By definition of 5, Case (i) implies T~Z ,and, from (14),o,n

IT21~ O. From the previous discussion, the dispersion relation,

given by T2 = 0, can be solved for the fastest growing modes by using

(w-kV)2, = k2V2which gives,

w = (21)

which is purely imaginary for,

2w .
vl

2 2w .+w .
vl pl

Maximum growth occurs at, k2V2 _ 2 + 2 Althougho - w"e wpe•

the approximation used to obtain (21) breaks down, substituting for ko

into T2 = 0 gives a maximum growth rate,

(22)

(23)

The velocity of propagation at maximum growth may be estimated from

kWr I k=ko =V/3. Since Ymax 3L/Vez » 3, this mode is

- 10 -



convective1y unstable for EBIS. Insight into the nature of the

instability can be gained by noting that if the vortex terms) wand
\Ie

W oj were not present, the dispersion relation would be the same as for
\11

the infinite medium two stream instability (i.e., T1=o), which will be

discussed below. Thus, this long wavelength instability corresponds to

the two stream instability modified by the equilibrium rotation (Ref.

Equations 21-23), and will be referred to as an electron-ion rotating two

stream instability.

Case (ii) requires T1 - w~el w-kV 2 » 1, or wr kV (Note: T1 » 1 and

w~i/w2»1 =9 r«wpi). Since 151»1, TRp--7 Zo,n' using

(14), this implies T2 ---70. From (22), this corresponds to w2
=<..

w~e + w~e' with r at most of ~( /w-kV/-wPi 1wpe ).

Case (iii) corresponds to IT21 ~ 1. With slight modification, the

previous argument applies, i.e., any growth rate is small compared with

wpi •

In the notation used above, the usual infinite medium two stream

instability would fall under the category, ITI < 1, lSI ~ 1, a case

which was eliminated ~ prior by the requirement Ik R 1« 1. If the
p

EBIS perveance condition is relaxed to allow x2~1, from (16), the

case IkRp 1»1 corresponds to T1 ::::: O. Thi sis just the usual two

stream dispersion relation, with a well known instability condition,6

kV2 (2/3 2/3}3 2< wpe + wpi • Multiplying by (Rp/V) , the usual

two stream instability condition corresponds to x2 > (kR )2»1.
- p

From the earlier discussion, EBIS beam perveance is well below the

requirement for the two stream instability in this system.

- 11 -



2. First Rotational mode: £=1

In the long wave-length approximation the £=1 mode is described by

the dispersion relation (Ref. 4, Eq. 2.9.13)

2
= + . (25)

Away from the Brillouin limit, i.e., for 2oo~e(1-f)/Q~e «1, an

electron-ion rotational instability has been already been found,4 but

this is not relevant to ESIS. Near Brillouin flow, 2oo~e(1-f)/Q~e = 1,

h + - - + ( ) 1/2we ave ooe=ooe= Qce z and ooi=-ooi= me/mi Qce/2.

The dispersion relation becomes,

2
= 2 2

W - Wi

(26)

This is similar to the previously considered case of T2=0 in the

Brillouin limit (oove=O). For simplicity, we take Rp/Rc « 1.

Then, instabi1tiy can only appear for, 100 I-ooi«ooe, in which case,

2 _ 2
W - w.

1
2+ W •pl (27)

The condition for instability, 00
2<0 is now,

2
w·

1

2 (we+kV)2
< W • -2:;;----'-----2

pl W - 2 (kV+w )
pe e

- 12 -

(28)



Using the Brillouin condition, this is equivalent to kV>O. Maximum

growth is found in the long wavelenght approximation, Ymaxz

Y:f (2 w~iwpe)1/3/4, moving with a group velocity of V/3.

- 13 -



3. Higher Order Rotational Modes, 2 >1

For2>1, the dispersion relation becomes (Ref. 4, Eq. 2.9.3),

2

1 - (R /R )22
P c

=
(W-~W -kV)(w-2w - k V-w )e e Z ve

+
(w - 2wo )(w-2w 0

1 1
+ w 0)

vl

(29)

For parameters relevant to EBIS, wez~wpe)and Rp/Rc « 1, this

leads to,

2(w - 2w.) +w . (w - 2w.)
1 vl 1

2- w .(2w + kV)(2w +pl e e

2(2w + kV)(2w + kVe

= 0

2- w )-wve p~

(30)

The condition for instability becomes,

2 + 2 2
2

w •
kV)2 < 2 + 2 2wve wpe vl

(2we +2 2 < wve wpe
w 0 + 2w .

vl Pl

or,

[22 < (2w + kV)2 < 2w2 f + [22
ce - e pe ce ( 31 )

This implies that growth rates are reduced for large 2, and that only a

finite number of modes can be unstable.
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5. Conclusions

Linear cold plasm fluid theory has been used to study the

electrostatic stability of EBIS devices by considering a finite radius

electron beam in a Brillouin-type equilibrium which passes through a

stationary ion background and is bounded by a finite radius conductor.

For £=0, the usual infinite medium two stream instability has been found

to have a critical perveance for onset, P>33 (~pervs), and is, therefore,

stable for EBIS (P l~perv). However, a convectively unstable electron­

ion rotating stream instability has been found, this is driven by a

combination of streaming plus the natural rotation of the Brillouin

equilibrium. It has been shown that the conditions for the onset of

convective growth can be satisfied in EBIS. These results are only

weakly affected by the boundary conditions. A non-axisymmetric

instability, £=1 was also found to be convectively unstable.

The existence of the predicted modes in EBIS devices has yet to be

confirmed by detailed experimental measurement, although unidentified

electrostatic oscillations have been obseved. 7 Because growth is

convective, the £=0 mode may grow without necessarily disrupting beam

propagation. The £=1 modes could conceivably introduce ExB effects, but

would also not be disruptive for a convective instability, since any

motion across Bmust include the ions and can only occur at the

relatively slow Alfven speed. The primary concern about the effect of

convective electrostatic modes is the possibility of ion heating, which

could conceivable hinder the collapse of the beam to high current

density3 and is generally undesirable in an accelerator ion source.
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