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Abstract. Using an asymptotic technique, valid when the medium prop-4

erties are smoothly-varying, I derive a semi-analytic expression for the prop-5

agation velocity of a quasi-static disturbance traveling within a nonlinear-6

elastic porous medium. The phase, a function related to the propagation time,7

depends upon the properties of the medium, including the pressure-sensitivities8

of the medium parameters, and on pressure and displacement amplitude changes.9

Thus, the propagation velocity of a disturbance depends upon its amplitude,10

as might be expected for a nonlinear process. As a check, the expression for11

the phase function is evaluated for a poroelastic medium, when the mate-12

rial properties do not depend upon the fluid pressure. In that case, the travel13

time estimates agree with conventional analytic estimates, and with values14

calculated using a numerical simulator. For a medium with pressure-dependent15

permeability I find general agreement between the semi-analytic estimates16

and estimates from a numerical simulation. In this case the pressure ampli-17

tude changes are obtained from the numerical simulator.18
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1. Introduction

Coupled deformation and flow in a porous medium is a topic of great importance.19

Consequently, it has been the subject of many studies, too numerous to cite here, including20

the fundamental work of Biot [1941, 1956ab, 1957, 1962]. Coupled deformation and21

flow are also implicit in the early important work in hydrology on the transient pressure22

variations associated with fluid injection, such as Theis [1935] and Jacob and Lohman23

[1952], in the form of a storage coefficient [de Marsily, 1986, p. 108]. Unfortunately,24

modeling deformation and flow in a porous medium is difficult, due to the coupling of25

the fluid and solid and the very different nature of each material. Furthermore, though26

the fluid can often be modeled as a viscous liquid, the range of behavior of the solid27

matrix can be significant. A number of investigators have considered poroelastic media,28

for which the solid component behaves in a linear elastic manner [Biot, 1941; Levy, 1979;29

Burridge and Keller, 1981; Segall, 1985; Wang, 2000; Vasco, 2009]. However, it is widely30

recognized that in many situations the material and flow properties may depend upon31

both the solid deformation and the fluid pressure [ Nelson and Baron, 1971; Raghavan32

et al., 1972; Biot, 1973; Samaniego et al., 1977; Walsh and Brace, 1984; Gobran et al.,33

1987; Bethke and Corbet, 1988; Goddard, 1990; Zimmerman, 1991; Wu and Pruess, 2000;34

Bemer et al., 2001; Shapiro, 2003; Makse et al., 2004; Murphy et al., 2004; Cappa et al.,35

2006; Daley et al., 2006; Cheng and Abousleiman, 2008 Vasco and Minkoff, 2009; Liu et36

al., 2009;] resulting in nonlinear governing equations.37

To date, there have been very few analytic or semi-analytic studies of such coupled de-38

formation and flow in a medium with pressure-dependent properties. Rather, due to the39
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complexity of the problem, most investigations have utilized numerical methods [Ragha-40

van et al., 1972; Noorishad et al., 1984; Rutqvist et al., 1998]. A handful of analytical41

studies have focused on the governing equation for fluid pressure with pressure-dependent42

coefficients [Wu and Pruess, 2000; Murphy et al., 2004]. However, these studies do not43

explicitly include the equation governing displacements in the porous solid, thus neglect-44

ing the full coupling of deformation to fluid pressure. In this paper I use an asymptotic45

technique to derive semi-analytic expressions for the displacement of a porous matrix and46

fluid pressure variations. These expressions may be used, in conjunction with numerical47

simulation, to gain insight into the propagation of a coupled solid matrix displacement48

and fluid pressure change. My objective is an expression for the propagation velocity49

in terms of the parameters of the medium. Such an expression can be used in reservoir50

characterization, that is, for setting up and solving inverse problems.51

This study links linear poroelasticity to flow in a medium with pressure-dependent52

properties. I do this by generalizing Biot’s equations for a porous medium, allowing for53

pressure-dependent elastic and flow properties. The work is related to studies in which the54

diffusion equation governing fluid flow contains pressure-dependent coefficients [Raghavan55

et al., 1972; Samaniego et al., 1977; Witherspoon et al., 1980; Wu and Pruess, 2000; Vasco56

and Minkoff, 2009]. Here I consider the fully coupled set of equations for deformation and57

fluid pressure in a medium with pressure-dependent properties. The asymptotic approach58

developed here is general and applicable to other formulations of the governing equations.59

The importance of the modeling technique is that it is applicable to coupled nonlinear60

processes in heterogeneous media [Vasco, 2010, 2011].61
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2. Methodology

In this section I present the governing equations for quasi-static flow and displacement62

in a medium with pressure-dependent properties. Next, an asymptotic methodology is63

developed in order to estimate the propagation velocity of a coupled fluid and deformation64

front.65

2.1. The Equations Governing Quasi-Static Displacement and Flow in a

Porous and Deformable Medium

This paper is concerned with the deformation and flow induced by the injection or

withdrawal of fluid at depth. I envision a situation in which the fluid pressure undergoes

significant change due to injection or withdrawal. The displacement of the solid is driven

primarily by the changes in the fluid pressure. Conservation laws provide governing equa-

tions for the displacement of the solid matrix u(x, t), the displacement of the fluid w(x, t)

relative to that of the solid, the stress tensor σ, and the fluid pressure Pf [Noorishad et

al., 1984; Wang, 2000]:

∇ · σ = 0 (1)

∂∇ · w
∂t

+ ∇ · µ

k
[∇Pf − ρg] = 0, (2)

where µ is the fluid viscosity, k is the permeability of the porous medium, ρ is the density66

of the fluid, and g is the gravitational force vector.67

Constitutive laws, relating σ and Pf to u and w, are required if one is to formulate the68

governing equations in a solvable form. The fluid is typically modeled as a Newtonian69

liquid, as discussed in Bear [1972]. The flow is usually slow enough that it may considered70

to be laminar and turbulence may be neglected. As a consequence, one may invoke Darcies71

law, relating the fluid pressure gradient to the fluid velocity [de Marsily, 1986].72
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For the porous matrix there are many more choices due to the variability of solid materi-73

als. For example, the matrix may consist of a poorly consolidated soil, a porous limestone,74

or a fractured granitic material. Because, I am interested deformation associated with75

fluid injection over time intervals of seconds to a few months, I will consider the process76

to be reversible. That is, when the injection is halted, and the fluid pressure returns to77

its initial value, the deformed body returns to its original configuration. Furthermore,78

deformation-related changes in material properties, such as the permeability and geome-79

chanical moduli, are also assumed to return to their original values. The most common80

material model displaying such characteristics is that of a nonlinear- or hyper- elastic81

body [Ogden, 1984, p. 206; Bertram, 2008, p. 209]. If the solid behaves inelastically,82

one can consider an incremental approach, subdividing the time interval of interest into83

shorter segments over which the deformation is indeed reversible.84

In Appendix A I develop constitutive laws for such a nonlinear poroelastic medium.

The main results of that Appendix are that I can write the stress tensor σ as

σ = GΣ − ϕu∇ · uI − αmPfI (3)

where

Σ = ∇u + ∇uT − 2

3
∇ · uI (4)

[see equation (A26)]. I can relate the divergence of the fluid to the fluid pressure Pf and

the divergence of the solid

∇ · w = −ϕmPf − αm∇ · u (5)
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[see equation (A27)], and the coefficients G, ϕu, and α may depend upon the fluid pressure.

Thus, the governing equations (1) and (2) may be written as

∇ · Σ + ∇ζ · Σ − η∇ (ϕu∇ · u + αP ) = 0 (6)

and

∂ (ϕmP )

∂t
+

∂ (α∇ · u)

∂t
−∇ ·

[

k

µ
(∇P + ρg)

]

= 0,

(7)

where I have defined the following quantities which depend upon the shear modulus, G,

ζ = − ln G (8)

η =
1

G
(9)

and I have dropped the subscript m on α. I emphasize that the coefficients in equations

(6) and (7), G, ϕu, α, ϕm, and k may all depend upon the fluid pressure P in addition

to any dependence upon the spatial coordinates x. The fluid properties µ and ρ may also

depend upon the fluid pressure, while the tensor Σ depends upon spatial coordinates and

time. Thus, care must be exercised when taking the derivatives with respect to time and

space, because there are implicit dependencies. For example, the spatial derivative of ζ is

given by

∇ζ = ∇xζ +
∂ζ

∂P
∇P, (10)

where ∇x signifies that the gradient is applied to the explicit spatial dependence and that

P is held fixed. In the expressions that follow I suppress the x subscript on the spatial

gradients. Applying the derivative operators to the quantities in parentheses and brackets

in equations (6) and (7) results in

∇ · Σ + ∇ζ · Σ + γp∇P · Σ − η∇ϕu∇ · u− κu∇P∇ · u
D R A F T October 29, 2011, 2:55pm D R A F T
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−χu∇∇ · u − η∇αP − χp∇P = 0

(11)

αp
∂P

∂t
+ αu∇ · u∂P

∂t
+ α

∂∇ · u
∂t

− 1

µ
∇k · ∇P − βp∇P · ∇P

−γ∇P · g − 1

µ
∇k · g − k

µ
∇ · ∇P = 0

(12)

where

γp = −∂ ln G

∂P
, (13)

κu =
1

G

∂ϕu

∂P
, (14)

χu =
1

G
ϕu, (15)

χp =
1

G

(

P
∂α

∂P
+ α

)

, (16)

αp = P
∂ϕm

∂P
+ ϕm, (17)

αu =
∂α

∂P
, (18)

βp =
1

µ

∂k

∂P
+ k

∂µ−1

∂P
, (19)

and

γ =
k

µ

∂ρ

∂P
+ kρ

∂µ−1

∂P
+

ρ

µ

∂k

∂P
. (20)

In the preceding equations I have used the definitions (8) and (9) to make the dependence85

upon the shear modulus, G, explicit.86

2.2. An Asymptotic Expression for the Propagation Velocity

In Appendix B I apply the method of multiple scales, an asymptotic technique87

[Whitham, 1974; Anile et al., 1993], to the governing equations (11) and (12). The goal88
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is a semi-analytic expression for the propagation velocity of a disturbance in terms of89

the medium parameters. The principle underlying the method of multiple scales is that90

the properties of the medium vary smoothly in space. That is, away from interfaces and91

boundaries, such as faults, the elastic and flow properties of the medium are smoothly92

varying. This assumption is compatible with one of my intended applications, the solu-93

tion of inverse problems and efficient imaging of properties within the Earth. For such94

applications, due to the sparsity of data, one must often assume that only the smoothly95

varying component of a heterogeneous distribution of properties may be determined.96

The measure of smoothness is with respect to the scale length of the disturbance. That

is, the propagating disturbance has an associated length scale, the distance over which

the displacement and pressure fields change from their background values to new values

behind the propagating front. I denote the length scale of the propagating disturbance

by l and the length scale of the heterogeneity by L. The smoothness of the heterogeneity

with respect to the length scale of the propagating disturbance means that l ≪ L. One

can define a parameter characterizing the smoothness of the medium in terms of the ratio

of the scale lengths:

ε =
l

L
. (21)

I can define an alternative coordinate system, the ’slow’ coordinates, in terms of ε [Anile

et al., 1993]

X = εx (22)

T = εt. (23)

D R A F T October 29, 2011, 2:55pm D R A F T
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Quantities associated with a propagating disturbance, such as the amplitude of the distur-97

bance, and the travel time of the disturbance are best described as functions of the slow98

coordinates. These two quantities, the travel time and the amplitude of the disturbance,99

are two of the most important aspects of a propagating disturbance. They can provide100

important information related to the properties of a porous medium. For example, the101

travel time of a deformation front induced by fluid production can be used to image the102

flow properties of a reservoir, in the manner of geophysical tomography [Rucci et al.,103

2010].104

An asymptotic solution may be constructed in terms of the ratio of the scale lengths,

specifically as a power series in ε. For example, I can represent the fluid pressure as

P (X, T, θp) = Pb(X, T ) +
∫ T

0
eθp(X,τ)

∞
∑

i=0

εiPi(X, τ)dτ.

(24)

This representation, in terms of an integral over time, is appropriate for a step function

source in time, and produces a monotonic increase or decrease in pressure. The function

θp(X, T ) is the phase associated with the transient pressure disturbance, a quantity related

to the propagation time. The functions Pi(X, T ) are the amplitude functions, representing

the base amplitude of the disturbance P0(X, T ) and subsequent, higher-order corrections.

The displacement of the solid matrix (u) has a similar series representation for a step

function source. For an impulsive source, such as a delta-function, one can use the more

conventional representation

P (X, T, θp) = Pb(X, T ) + eθp(X,τ)
∞
∑

i=0

εiPi(X, τ)

(25)

D R A F T October 29, 2011, 2:55pm D R A F T
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found in texts on high-frequency asymptotic solutions [Kline and Kay, 1965, p. 284; Anile105

et al., 1993, p. 54].106

I can write the governing equations (11) and (12) in terms of the slow coordinates. In

the new coordinate system the differential operators are also transformed. In addition,

the derivative operators need to account for the implicit dependence of P (X, T, θp) on

θp(X, T ). Thus, for example the time derivative becomes

∂P

∂t
= ε

∂P

∂T
+

∂θp

∂t

∂P

∂θp
, (26)

while the spatial derivatives, such as those of u, are modified as

∂u

∂xi
= ε

∂u

∂Xi
+

∂θ

∂xi

∂u

∂θ
. (27)

In Appendix B I transform the governing equations (11) and (12) into the slow coordinate

system. Because it is assumed that the heterogeneity is smoothly-varying, ε is small and

only terms of lowest order, order ε0 ∼ 1, are retained, resulting in the two equations:

[

s2Ū +
1

3

(

s · Ū
)

s

]

+ γpP̄
[

p · sŪ +
(

p · Ū
)

s− 2

3

(

s · Ū
)

p

]

−κuP̄
(

s · Ū
)

p− χu

(

s · Ū
)

s− χpP̄p = 0 (28)

αp
∂θp

∂t
P̄ + αu

∂θp

∂t
s · ŪP̄ + α

∂θu

∂t
s · Ū − βpp

2P̄ 2

−γp · gP̄ − k

µ
p2P̄ = 0, (29)

where p and s are the phase gradient vectors

p = ∇θp (30)

s = ∇θu, (31)

and p = |∇θp| and s = |∇θs|.107
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Furthermore, due to the specific form chosen for the asymptotic expansion, equation

(25), and its equivalent for u(X, T, θu), the partial derivatives with respect to θ are given

by

∂P

∂θp

= P − Pb = P̄ (32)

and similarly for u,

∂u

∂θu

= u− ub = Ū. (33)

Equations (28) and (29) are two equations constraining the properties of the propagating

pressure and deformation disturbances. For example, the equations constrain the pressure

and displacement amplitude changes with respect to the background values, given by P̄

and Ū. The phase variables θp and θu, or rather the derivatives of the phase variables, are

also contained in equations (28) and (29). Thus, there are more unknowns than constraints

in the two equations. In order to make progress I must provide additional assumptions or

a means for computing some of these unknowns. One assumption that will be invoked is

that the deformation and pressure fronts are coupled. That is, I will assume that a rapid

change in fluid pressure is accompanied by the initiation of matrix deformation, so that

θp = θu. Note that the time variation following the initiation can differ for the pressure

and displacement, depending upon the time variation of the amplitude functions Pi(X, T )

and ui(X, T ). If θp = θu then p = s and equations (28) and (29) reduce to

p2
(

1 + γpP̄
)

Ū +
(

Υp · Ū − χpP̄
)

p = 0, (34)

[

αpP̄ + Ψp · Ū
] ∂θ

∂t
− γP̄p · g −

(

βpP̄ +
k

µ

)

P̄ p2 = 0

(35)

D R A F T October 29, 2011, 2:55pm D R A F T
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where

Υ =
1

3
+

1

3
γpP̄ − κuP̄ − χu, (36)

Ψ = αuP̄ + α, (37)

and θ denotes the common value of θp and θu. Because p = ∇θ, the two equations may108

be thought of as differential equations for θ, given the amplitude functions P̄ and Ū.109

Equations (34) and (35) constrain the amplitude variations P̄ and Ū which are also110

unknown. In particular, these two equations are polynomials in the amplitude terms.111

The polynomial dependence on the amplitudes is a generalization of the linear dependence112

that appears in physical problems in which the governing equations are linear. For linear113

systems, one uses the condition that the governing equations has a non-trivial solution to114

derive a single, nonlinear partial-differential equation for θ, the eikonal equation [Karal115

and Keller, 1959; Kravtsov and Orlov, 1990]. The condition is a well known theorem in116

linear algebra: for a non-trivial solution of a homogeneous system of equation to exist the117

determinant of the matrix of coefficients must vanish [Noble and Daniel, 1977]. It may be118

possible to generalize this approach to the polynomial equations (34) and (35), because119

there are equivalent conditions for a polynomial system to have a non-trivial solution [Cox120

et al., 1998; Sturmfels, 2002]. This condition is given by the vanishing of the resultant121

which is the determinant of a matrix whose entries are the coefficients of the equations122

and powers of one of the variables, either P̄ or Ū . An alternative approach to the method123

of resultants would be to find the amplitude terms P̄ and Ū in some fashion. For example,124

the amplitude functions could be specified by the output of a numerical simulator, then125

equations (34) and (35) would constrain the phase of the propagating front, θ.126
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In considering equations (34) and (35) one must be mindful that the coefficients are

generally pressure-dependent, representing nonlinear functions of pressure that also vary

spatially. In this work I am interested in the propagation of a coupled deformation and

pressure front, in particular the propagation velocity and its relationship to the properties

of the medium. The propagation velocity, and the related quantity the phase θ, are

determined by the movement of the leading edge of the front. Because the leading edge

of the front encroaches upon material in the background state, with pressure Pb and

displacement ub (typically taken to be zero), one would expect that the coefficients reflect

such conditions. That is, the velocity of the leading edge of the propagating front is

primarily influenced by the background conditions. As in Anile et al [1993], a more

formal mathematical approach may be taken, based upon an expansion of the coefficients

in powers of ε. This expansion follows from the representation of the pressure as an

asymptotic series in ε [see equation (25)]. Consider, for example, χp(X, P ), which may

be expanded as

χp(X, P ) = χp(X, Pb + P̄0) + ε
∂χp

∂P
(X, Pb + P̄0) + O(ε2), (38)

where

P̄0(X, T ) =
∫ T

0
eθ(X,τ)P0(X, τ)dτ (39)

in the case of a step-function source, or by the time derivative of (39) for an impulsive127

source-time function. To order ε one finds that χp(X, P ) = χp(X, Pb + P̄0). The moment128

at which the coupled front arrives at an observation point X, which I denote by Tarrival,129

the quantity P̄0(x, Tarrival) is zero and hence χp(X, P ) = χp(X, Pb).130
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A cursory examination of equations (34) and (35) indicates that there are two orien-131

tations of the solid displacement vector Ū that are important. The significance of the132

orientations is due to the presence of terms containing p · Ū in these two equations. In133

particular, the displacement Ū can be either perpendicular to the direction of propagation,134

p, or parallel to it. These two cases are similar to those identified in the study of linear135

poroelastic media [Pride, 2005] I shall examine each of these possibilities in succession.136

2.2.1. Transverse Displacement137

First consider transverse displacement, such as the displacement associated with a shear

wave. When p is perpendicular to Ū the two equations (34) and (35) decouple. If p is

perpendicular to Ū then equation (34) implies two conditions:

p2
(

1 + γpP̄
)

Ū = 0, (40)

and

χpP̄p = 0

because the vectors Ū and p are orthogonal for transverse motion. From the second138

condition one finds that if χp is not zero [the equations are coupled, see the definition139

of χp, equation (16)] then either p = 0 or P̄ = 0. From equation (40), with P̄ equal to140

zero, one finds that either Ū vanishes or the slowness p vanishes. If Ū vanishes then one141

has the trival solution in which there is no disturbance. If Ū is non-zero but p vanishes142

then |∇p| = p = 0 and the phase is constant in space. If the phase is constant then the143

travel time, a function of the phase, is also constant over the medium and the transverse144

displacement propagates infinitely fast. Note that p = 0 is compatible with equation (35)145

if it corresponds to θ = 0. As indicated in Vasco [2008; 2009], the infinite velocity of a146

transverse displacement is a consequence of the quasi-static approximation.147
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2.2.2. Longitudinal Displacement148

Now consider the more interesting case of longitudinal displacement, in which the dis-

placement of the solid, Ū, is oriented along the direction of propagation, p. In this case

I can write the solid displacement in the form

Ū(X, T ) = Ū(X, T )p (41)

where Ū(X, T ) is the amplitude. Substituting this expression into equations (34) and (35)

and evaluating the scalar products gives

[

p2
(

1 + γpP̄
)

Ū + Υp2Ū − χpP̄
]

p = 0, (42)

[

αpP̄ + Ψp2Ū
] ∂θ

∂t
− γP̄p · g −

(

βpP̄ +
k

µ

)

p2P̄ = 0.

(43)

For a phase gradient vector, p, that does not vanish, the quantity in brackets in equa-

tion (42) must equal zero in order for the equation to be satisfied. Two coupled scalar

equations, relating Ū , P̄ , and p result

p2γpP̄ Ū + (1 + Υ) p2Ū − χpP̄ = 0, (44)

[

αpP̄ + Ψp2Ū
] ∂θ

∂t
− γP̄p · g −

(

βpP̄ +
k

µ

)

p2P̄ = 0.

(45)

The coefficients are defined in terms of the geomechanical and flow properties of the

medium at the background pressure Pb. Substituting for Υ and Ψ, from definitions (36)

and (37), respectively, I can write equations (44) and (45) as

(

4

3
γp − κu

)

p2P̄ Ū +
(

4

3
− χu

)

p2Ū − χpP̄ = 0 (46)
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[

αup
2P̄ Ū + αpP̄ + αp2Ū

] ∂θ

∂t
− γP̄p · g −

(

βpP̄ +
k

µ

)

p2P̄

= 0. (47)

When considered as equations in P̄ and Ū , equations (46) and (47) constitute two149

quadratic equations.150

2.2.2.1. Full Pressure Sensitivity151

The coefficients γp and κu are determined by the pressure sensitivity of the shear mod-

ulus G [see equations (13) and (14)] and the elastic modulus ϕu, respectively. If the

coefficients γp and κu, are not both zero, I can eliminate the product term P̄ Ū in equa-

tions (46) and (47). Specifically, I can solve equation (46) for the nonlinear term, p2P̄ Ū ,

a term that also appears in equation (47). Substituting the resulting expression into

equation (47) results in a quadratic equation for p:

p2 + Γp · g − Ω
∂θ

∂t
= 0, (48)

where I have defined the coefficients

Γ =
γ

βpP̄ + kµ−1
(49)

and

Ω =
ΩpP̄ + Ωup

2Ū
(

βpP̄ + kµ−1
)

P̄
. (50)

The parameters Ωp and Ωu in equation (50) are defined in terms of the poroelastic prop-

erties of the medium and their pressure-sensitivity:

Ωp = αp +
αuχp

4
3
γp − κu

(51)

and

Ωu = α +
αu

(

χu − 4
3

)

4
3
γp − κu

. (52)
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2.2.2.2. Partial Pressure Sensitivity152

Now consider the case in which there is only a partial sensitivity to fluid pressure,

that is, the geomechanical properties G and ϕu do not depend upon the fluid pressure.

This situation is similar to that studied by Wu and Pruess [2000] and Murphy et al.

[2004], where the governing equation for fluid pressure is generalized to allow for pressure-

dependent coefficients. Then the product term P̄ Ū in equation (46) vanishes. In addition,

because αu measures the sensitivity of α to changes in fluid pressure [see equation (18)],

the product term P̄ Ū in equation (47) also vanishes. Using the reduced equation (46) I

can solve for p2Ū in terms of P̄ . Substituting this expression for p2Ū into equation (47)

gives
(

βpP̄ +
k

µ

)

p2 + γp · g −
(

αp +
αχp

4
3
− χu

)

∂θ

∂t
= 0,

(53)

after canceling the common factor P̄ . This equation may also be written as a quadratic

equation in p:

p2 + Γp · g − Ωv
∂θ

∂t
= 0, (54)

where Γ is given above [equation (49)], and

Ωv =

(

βpP̄ +
k

µ

)

−1 [

αp +
αχp

4
3
− χu

]

. (55)

Equation (54) is an equation in the components of p and θ. Because p = ∇θ, the equa-153

tion is a nonlinear partial differential equation for θ, reminiscent of the eikonal equation154

[Kline and Kay, 1965; Sethian, 1999]. The equation is a scalar differential equation, hence155

it is much easier to solve then is the full coupled system, composed of equations (11) and156

(12). However, due to the presence of the amplitude term P̄ , one must still solve the157
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governing equations using a numerical simulator. The main point is that one can obtain158

θ for a little additional effort. Furthermore, the terms in equation (54) provide insight159

into the properties that determine the propagation velocity of the coupled deformation160

and pressure front.161

2.3. The Computation of the Phase Function

Equation (48) is explicit equation for the phase function θ(x, t) which may be written

as

∇θ · ∇θ + Γ∇θ · g − Ω
∂θ

∂t
= 0, (56)

where I have substituted the gradient of the phase (θ) for the vector p. Equation (56)162

is a first-order, nonlinear, scalar partial differential equation for θ(x, t). Such equations163

are rather common in physical applications and mathematical physics [Lanczos, 1986,164

p. 229] and there are well developed techniques for their solution [Courant and Hilbert,165

1962; Sneddon, 2006]. For example, there are now efficient numerical schemes, primarily166

finite differences, developed for hyperbolic conservation laws [LeVeque, 1992; Crandall and167

Lions, 1983; Crandall et al., 1984; Sethian, 1999]. The techniques have been generalized168

to problems in which the propagation speed depends upon the direction of propagation [169

Sethian and Strain, 1992; Lecomte, 1993; Eaton, 1993; Soukina et al., 2003].170

There are also well-established techniques that are efficient and provide additional in-171

sight, the method of characteristics [Courant and Hilbert, 1962]. In the method of charac-172

teristics, the solutions are defined along trajectories through the model. Each trajectory173

represents a propagation path through the medium and indicates those parts of the model174

influencing a given observation. As indicted in Vasco et al. [2000] and Vasco and Fin-175
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sterle [2004], the trajectories may be used, in the manner of ray theory, to compute176

model parameter sensitivities required by many inversion algorithms [Menke, 1984]. Ray-177

based sensitivities form the basis for very efficient tomographic imaging methods [Iyer178

and Hirahara, 1993]. The trajectories are also useful in interpreting observed waveforms,179

particularly in decomposing multiple arrivals in terms of component pulses that travel180

along different paths [Vasco et al., 2003].181

3. Applications

In this section I will illustrate the concepts and equations presented in the Methodology182

section. First, as a reference case, I discuss transient propagation in a poroelastic solid183

where both the medium and fluid properties are independent of the fluid pressure. This184

will allow for a comparison between travel time estimates provided by the asymptotic185

approach and analytic and numeric predictions. Furthermore, it will provide a connection186

to previous work on quasi-static and broadband propagation in a poroelastic medium187

[Vasco, 2008; 2009]. Next, I consider transient propagation in a medium in which the188

flow properties depend upon the fluid pressure while the geomechanical properties do not.189

In particular, I examine the case in which only the permeability depends upon the fluid190

pressure. Thus, I shall begin with equation (54), corresponding to the case of partial191

sensitivity to fluid pressure.192

3.1. Poroelastic Propagation

As a starting point, consider the propagation of a coupled disturbance in a linear poroe-

lastic medium. In a linear poroelastic medium the coefficients are insensitive to changes

in fluid pressure. Thus, the coupling coefficients related to the pressure sensitivity of the
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medium, specifically γp, κu, αu, βp and γ in equations (11) and (12) vanish [see equations

(13) through (20)] and the equations reduce to:

∇ · Σ + ∇ζ · Σ − η∇ϕu∇ · u − χu∇∇ · u

−η∇αP − χp∇P = 0 (57)

αp
∂P

∂t
+ α

∂∇ · u
∂t

− 1

µ
∇k · ∇P − γ∇P · g

−1

µ
∇k · g − k

µ
∇ · ∇P = 0 (58)

As is evident in these equations, the fluid pressure and the matrix displacements are linked193

in a poroelastic medium through linear coupling terms [Wang, 2000].194

Now consider equation (53), which governs the evolution of the phase. Because the

properties of the medium do not vary with pressure, I consider the expression (55) with

βp = 0,

Ωv =

(

k

µ

)

−1 [

αp +
αχp

4
3
− χu

]

. (59)

Using the fact that αp = ϕm, χp = α/G, χu = ϕu/G [see equations (17), (16), and (15)],

I can write Ωv as

Ωv =

(

k

µ

)

−1 [

ϕm +
α2

4
3
G − ϕu

]

. (60)

Using the relationships between ϕm and ϕu and the undrained bulk modulus, Ku, Biot’s

C modulus, C, and the fluid storage coefficient M discussed in Appendix A [see equations

(A32) and (A36)], I can write equation (60) as

Ωv =

(

k

µ

)

−1 [
1

M
+

α2

4
3
G + Ku − C2

M

]

, (61)

or

Ωv =

(

k

µ

)

−1 [
1

M
+

α2

H − C2

M

]

, (62)
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if I define the undrained P-wave modulus

H = Ku +
4

3
G (63)

as in Pride [2005]. Expression (62) is similar to that found in Vasco [2008] if one accounts

for the differences in the variable names due to a slightly different formulation. As in that

paper, the expression Ωv may be interpreted as the sum of a slowness contribution due to

diffusion in the fluid and a correction due to the poroelastic medium. Factoring out 1/M

and re-arranging terms, I can write equation (62) as

Ωv =

(

k

µ

)

−1
1

M





H − C2

M
+ Mα2

H − C2

M



 . (64)

Using the fact that α = αm = C/M [see equation (A33)], I can write equation (64) as

Ωv =

(

k

µ

)

−1
1

M

[

H

H − C2

M

]

(65)

which is identical to the expression for the Biot slow wave, given in the study of Pride195

[2005]. Therefore, in the case of a poroelastic medium, the expression for Ωv reduces to196

existing expressions for the slowness of a propagating disturbance.197

Next, I will derive a low-order solution for a disturbance propagating in a poroelastic

medium. To keep things simple I shall neglect gravitational effects. If gravitational effects

can be omitted, I can substitute either expression (62), or the equivalent expression (65),

into equation (54) which reduces to a first-order, nonlinear partial differential equation

for θ,

∇θ · ∇θ − Ωv
∂θ

∂t
= 0. (66)

In equation (66) I have used the fact that p = ∇θ, as in equation (30). In this sub-section

I shall assume that the permeability does not depend upon time. Then, I can use the
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separation of variables to determine the space and time dependence. Specifically, I assume

a separable form for the phase function

θ(x, t) = β(t)σ2(x) (67)

[Vasco, 2011]. As shown in Vasco [2011], the time dependence is given by

β(t) = − 1

4t
.

Following Vasco [2008, 2011], I can use the well known [Kline and Kay, 1965; Cerveny

1972; Kravtsov and Orlov, 1990] method of characteristics [Courant and Hilbert, 1962] to

determine the spatial dependence of the solution, σ(x). In particular, I can rewrite the

equation for the function σ(x), which is the eikonal equation, in ray coordinates as

dσ

dr
=
√

Ωv

where r is a parameter signifying the distance along the trajectory or raypath. Integrating

along the trajectory, x(r), results in the expression

σ(x(r)) =
∫

x(r)

√

Ωvdr (68)

for the function σ. Thus, from equation (67)

θ(x, t) = −σ2(x)

4t
(69)

where σ(x) is given by equation (68).198

Using equation (69) and the asymptotic series associated with an impulsive source,

equation (25), I can write the zeroth-order solution for the pressure as

P (X, t, θ) = Pb(X, t) + eθ(X,t)P0(X, t). (70)
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Using the solution obtained by the separation of variables [Vasco, 2010, 2011], I can write

the solution as

P (X, t, σ) = Pb(X, t) +
σ

2
√

πt3
e−σ2/4t ∗ P0(X, t).

(71)

where ∗ signifies a convolution in time, and

σ(x(r)) =
∫

x(r)

√

Ωvdr (72)

The amplitude function P0(X, t), obtained by considering terms of order ε in the asymp-

totic expansion, is given in Vasco [2008]. In many cases the function P0(X, t) can be

partitioned into a source-time function [Bracewell, 1978] determined by the injection rate,

S(t), and an spatially-dependent term, giving the form

P (X, t, θ) = Pb(X, t) +
σ

2
√

πt3
e−σ2/4t ∗ S(t)P0(X).

(73)

For an impulsive source, represented by a delta function δ(t), one can relate the function

σ(x(r)) to the arrival time of the peak pressure, as noted in Virieux et al [1994] and Vasco

et al. [2000]. The peak of the pressure curve coincides with the vanishing of the time

derivative of P (X, t, θ) given by equation (73). This condition gives

∂P (X, t, σ)

∂t
=

1

t

3

2
− 1

t2
σ2

4
= 0, (74)

which implies that

√

Tpeak =
σ√
6

=
1√
6

∫

x(r)

√

Ωvdr (75)

where Tpeak is the arrival time of the peak pressure. Thus, one can relate σ to the time of199

arrival of the peak pressure at a particular location. Furthermore, this arrival time can200
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be related to the poroelastic properties of the medium, through Ωv which is given by the201

expression (65).202

In order to validate the travel time estimate I compare it to the results from a numerical203

simulation. The numerical simulation can also help one to visualize the time and space204

variation of the fluid pressure. In Figure 1 I plot three pressure snapshots from a numerical205

simulation in which fluid is injected into a central well. The simulation is conducted using206

the finite element code TOCHNOG [Roddeman, 2001] which can model coupled fluid flow207

and solid deformation. As shown below, TOCHNOG can also model coupled deformation208

and flow in a medium with pressure-dependent properties. The pressure evolution in the209

numerical simulation results plotted in Figure 1 is dominated by the changes near the210

injection well. The pressure changes gradually diffuse away from the injection well and it211

is difficult to define either a propagating front or a travel time.212

The difficulties in trying to capture diffusive propagation become clearer if one plots213

the time-variation of the pressure calculated for a sequence of observation points located214

progressively farther from the injection well. Four such observation points are indicated by215

the open circles in Figure 1. The simulated transient pressure at each of the four wells are216

shown in Figure 2. Note how the pressure at each well initially increases, reaching a peak,217

and then slowly decays with time. Thus, for the impulsive source used in the simulation218

there is indeed a peak pressure, and a peak pressure arrival time at each observation219

point. The difficulty in trying to capture the spatial evolution of this transient feature,220

as in Figure 1, is due to the fact that the pressure decreases dramatically with distance221

from the well. Thus, at all times, the pressure variations are dominated by changes near222

the injection well, as is apparent in Figure 1.223
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One way to reduce the dominance of the changes near the injection well is to normalize224

all the pressure changes in each grid block by the peak pressure observed in that grid225

block. Thus, when the changes plotted in Figure 2 are normalized by their peak values,226

one obtains the time variations shown in Figure 3. Now the pressure variations near the227

injection well no longer dominate. In Figure 4 I plot the normalized pressure changes228

for the three snapshots that were shown previously in Figure 1. The normalized pressure229

displays the transient propagation noted above and one can clearly define an arrival time230

for each point on the simulation grid. For each element of the simulation grid there will be231

a pressure time series, similar to those shown in Figure 3. By estimating the peak pressure232

and the time at which the peak pressure is attained, one can determine an arrival time.233

Figure 5 is a plot of the estimated arrival times for the simulation shown in Figure 1. Note234

how, unlike propagation of a non-dispersive wave, the speed of the disturbance changes235

with distance from the injection source.236

Using the asymptotic travel time estimate, provided by equation (75), I can predict the

arrival time of the peak pressure. The expression for Ωv, equation (65) may be used to

relate the arrival time to the properties of the porous medium. Note that, for a homoge-

neous porous medium in which the pressure effects dominate the matrix displacements,

one can use the analytic Laplace solution of the radial pressure equation [De Marsily,

1986, p. 162]

P (r, t) =
1

tn/2
exp

(

− r2

4Ωht

)

(76)

where r is the radial distance from the source, Ωh is

Ωh =

(

k

µ

)

−1
1

M
, (77)
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and n is the dimension of the medium, varying from 1 to 3. From expression (76) one can237

follow the procedure taken above and compute an analytic arrival time estimate. In Figure238

6 both the asymptotic and the analytic arrival time estimates are shown, defined over the239

simulation grid. The asymptotic and analytic estimates are quite similar and generally240

agree with the numeric estimates plotted in Figure 5. In Figure 7 I have plotted the241

estimates along a line extending from the furthest well (Well 4) to the injection well [central242

star in Figures 5 and 6] for a more detailed comparison. Note that there are differences243

between the numerical simulation and both the analytic and the asymptotic estimates.244

This is likely due to factors such as numerical dispersion, discretization effects, boundary245

effects, and induced anisotropy due to the grid orientation. For example, anisotropic246

propagation close to the source is evident when comparing the numerical travel times in247

Figure 5 to the analytic and asymptotic travel times in Figure 6.248

3.2. Pressure Sensitive Permeability

Having examined propagation in a poroelastic medium as a reference case, I now con-249

sider the situation in which the permeability is a function of the fluid pressure. The250

general conditions of the simulation are identical to those used to model the poroelastic251

propagation (Figure 1). That is, fluid is injected into a central source in a two dimensional252

layer. Four observation points are situated along a line extending from the source to the253

upper right-hand corner of the simulation grid. Fluid is injected as an impulse, similar to254

a delta function. The coupled deformation and pressure changes are governed by the full255

set of equations (11) and (12).256

Unlike the poroelastic case, in which the medium properties did not change, here I will257

allow for properties that are functions of the fluid pressure. In particular, the permeability258
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is assumed to be a linear function of the fluid pressure. In Figure 8 I plot the hydraulic259

conductivity, K = kρg/µ, as a function of the fluid pressure. The pressure, indicated as260

meters of hydraulic head, varying from 0 to 150 m while the hydraulic conductivity varies261

by over an order of magnitude from 1.0 × 10−6m/s to 3.8 × 10−5m/s.262

The propagation of a coupled disturbance is governed by the partial differential equation

for θ, equation (54). In what follows, the layer is assumed to be horizontal and gravita-

tional effects are assumed to be negligible. Thus, equation (54) reduces to a nonlinear,

first-order, scalar partial differential equation for θ,

∇θ · ∇θ − Ωv
∂θ

∂t
= 0, (78)

where

Ωv =

(

βpP̄ +
k

µ

)

−1 [

αp +
αχp

4
3
− χu

]

. (79)

Note that the propagation kinematics depend upon the quantity Ωv and that, as indicated263

in (79), Ωv depends upon the amplitude of the pressure change, through P̄ [see equation264

(32)]. Because of this dependence, one must rely upon a method, such as numerical265

simulation, in order to determine θ from equation (78).266

The importance of the expression (79) is that it indicates how Ωv, the quantity that267

defines the differential equation (78) and hence determines θ, changes when the permeabil-268

ity becomes pressure-dependent. The change due to the pressure dependence is simply269

that addition of the term βpP̄ , where βp is given by the expression (19), to the factor270

k/µ. Thus, the change in θ will only be significant in regions where P̄ is sufficiently large271

relative to k/µβp.272
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As for the poroelastic medium, I have used TOCHNOG [Roddeman, 2001] to simulate273

pressure and displacements for a medium in which the permeability, or the hydraulic274

conductivity, is a function of the fluid pressure, as indicated in Figure 8. The slope275

of the pressure-hydraulic conductivity curve in this case is 2.5 × 10−7s−1. The routine276

TOCHNOG is capable of treating a medium in which the properties are arbitrary functions277

of pressure. The time-varying pressure at the four observation points, indicated by open278

circles in Figure 1, are shown in Figure 9. The general shape of the four curves are similar279

to those for the poroelastic medium [see Figure 2]. The amplitude is significantly different280

however and the arrival times appear to have shifted. The arrival time shifts for the281

medium with pressure-dependent properties is clearer in the normalized plot (Figure 10),282

particularly for the three nearest observation points. This shift is clearly seen in Figure283

11, a contour plot of the peak arrival times over the simulation grid. The innermost 5284

S contour has shifted outward, indicating more rapid propagation closer to the injection285

well. Further from the injection well the spacing of the arrival time contours is similar to286

that of the poroelastic case (Figure 5).287

One could solve the scalar differential equation (78) in a straight-forward fashion using288

a generalization of a finite-difference approach [Crandall and Lions, 1983; Crandall et al.,289

1984; Vidale, 1988; Sethian, 1990; LeVeque, 1992; Lecomte, 1993; Sethian, 1999; Soukina290

et al., 2003]. The generalization involves including time as a variable in the velocity291

function Ωv. This is easily accomplished by enlarging the dimension of the problem from292

three spatial dimensions to one involving four space-time dimensions. One can introduce293

a new variable representing the position along the trajectory in space-time.294
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The governing equation for θ(x, t), equation (78), can also be solve using the method

of characteristics noted above. Following the treatment of Courant and Hilbert [1962, p.

106], I write equation (78) in the form

∂θ

∂t
+ F (x, t,p) = 0 (80)

where

F (x, t,p) = −Ωv
−1p2 (81)

and Ωv(x, t), given by the expression (79), is a function of x and t that is assumed to

be known. Here, I construct Ωv using the properties of the medium and the pressure

variation from the numerical simulation. As shown by the method of characteristics, the

nonlinear, scalar, partial differential equation (80) is equivalent to the following system of

ordinary equations

dxi

dt
=

∂F

∂pi
, (82)

dpi

dt
= −∂F

∂xi

, (83)

dθ

dt
= p2 − F, (84)

and

dpt

dt
= −∂F

∂t
, (85)

where pt = ∂θ/∂t and i = 1, 2, 3 [Courant and Hilbert, 1962, p. 106]. Equations (82)295

through (85) represent a system of 8 equations in eight unknowns [x,p, θ, pt]. The system296

of equations define trajectories x(t) along which the solution θ(x(t), t) are defined. The297

trajectories represent the path along which a disturbance propagates in the pressure-298
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dependent medium. The geometry of the trajectories and the variation of the function299

θ(x, t) depend upon the quantity Ωv(x, t), defined in the equation (79).300

The system of ordinary differential equations (82)-(85) may be solved numerically [Press301

et al., 1992]. These equations are akin to the ray equations in electromagnetics [Kline and302

Kay, 1965; Luneburg, 1966; Virieux et al., 1994] and elastic wave propagation [Karal and303

Keller, 1959; Cerveny, 1972; Aki and Richards, 1980; Chapman, 2004]. Ray methods have304

also been used in the study of various aspects of fluid flow. In particular, trajectory-based305

methods have been used in investigations of compressible fluid flow [Shen, 1983], transient306

pressure propagation [Cohen and Lewis, 1967; Vasco et al., 2000], nonisothermal fluid flow307

[Vasco, 2010], and multiphase flow [Vasco, 2011]. Furthermore, a hybrid scheme has been308

developed in which numerical simulation is used to find the function θ and to used a set309

of reduced ray equations to find the solution trajectories [Vasco and Finsterle, 2004].310

Here I use a numerical technique to solve the ray equations. Note that the function Ωv311

is a critical factor in defining the ray equations. Thus, the solution will depend strongly312

upon the function Ωv. Furthermore, the pressure dependent function Ωv in equation (79)313

differs from the corresponding function for a porous medium, given by equation (59) due314

to the factor βpP̄ . Thus, the function θ in a pressure-dependent medium should differ315

most strongly from that of an elastic porous medium in those regions where P̄ is large in316

comparison to k/(µβp). In Figure 12 I plot the maximum amplitude obtained at each point317

of the simulation grid. The region of significant pressure change in near the injection well318

and encompasses the three inner-most observation points. In Figure 13 I plot the travel319

time computed from solving the ray equations. Comparing this figure to the estimates320

for the poroelastic medium (Figure 6) it seems that the largest changes do occur near321
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the injection well. The travel time computed using the asymptotic expression is generally322

consistent with numeric estimate shown in Figure 11.323

In Figure 14 I provide a more detailed comparison for travel time estimates along324

a line extending from the injection well to the farthest observation well. There two325

sets of estimates generally agree. However, as in the poroelastic case (Figure 7) there326

are differences between the asymptotic and the numeric travel time estimates. These327

differences may be due to such factors as grid orientation, discretization, and dispersion328

effects. For example, there seems to be a slight asymmetry in the numeric travel time329

estimates shown in Figure 11. In addition, there may be some boundary effects, but these330

should be small for observation points close to the injection point.331

In order to examine the influence of the pressure dependence upon the travel times332

I varied the slope of the pressure curve. As noted above, the slope of the pressure-333

permeability curve in Figure 8 is 2.5 × 10−7 s−1. For comparison, I tried slopes of 1.0 ×334

10−12s−1, 5.0× 10−7s−1, and 1.0× 10−6s−1. The resulting travel time curves are shown in335

Figure 15. The travel times vary by almost an order of magnitude for the most distant336

points on the line, at about 4.5 km from the injection well. In general, the agreement337

between the numeric and the asymptotic estimates is reasonable, less then the differences338

between the changes due to the variation in the slope of the pressure-permeability curve.339

4. Conclusions

In this paper I consider the propagation of a coupled displacement and pressure distur-340

bance in a medium with pressure-dependent properties. For a disturbance propagating341

in a medium with smoothly-varying properties an asymptotic technique may be used to342

derive a semi-analytic solution. In particular, one may produce a scalar, first-order, par-343
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tial differential equation for θ, a variable that is similar to the phase of a propagating344

wave. The coefficients of this differential equation are determined by the properties of the345

medium, including the pressure-sensitivities of the medium parameters. The phase-like346

variable θ is also a function of the displacement and pressure amplitude variations across347

the propagating front. By the method of characteristics, this scalar, nonlinear partial348

differential equation is equivalent to a system of ordinary differential equations, the char-349

acteristic equations that define trajectories along which a solution may be defined. These350

equations are akin to the ray-equations of electromagnetic and elastic ray theory.351

When the pressure-sensitivities are set to zero the scalar equation and the travel time352

estimate reduce to the expressions for a poroelastic medium, as presented in Vasco [2008,353

2009]. For a poroelastic medium the partial differential equation may be solved by the354

separation of variables. Thus, analytic travel time estimates are available for a poroelastic355

medium. The asymptotic estimates agree quite closely with the analytic values. There is356

general agreement between the asymptotic and analytic travel times and the travel times357

calculated using the numerical simulator TOCHNOG [Roddeman, 2001]. The discrepan-358

cies between the numerical simulation results and the analytic and asymptotic estimates359

are most likely due to discretization error, grid orientation effects, and boundary effects.360

For a medium with pressure-dependent permeability the semi-analytic coefficients of361

the scalar equation for θ indicate that the largest differences will occur where the pressure362

changes are greatest. Both the numerical simulation and the asymptotic estimates indicate363

that this is indeed the case, with the largest phase changes near the injection well where the364

pressure increase is the largest. As was the case for the poroelastic medium, there is general365

agreement between the numeric travel time estimates and the asymptotic estimates. A366
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comparison for several pressure-permeability curves indicates overall agreement between367

the numerical simulation and the asymptotic travel times.368

This study could be extended in several respects. First, one could allow other param-369

eters, such as the geomechanical properties, to be functions of pressure. Second, the370

parameters are typically sensitive to the effective pressure which involves the confining371

pressure as well as the fluid pressure [Terzaghi, 1943; Jaeger et al., 2007]. Third, it is372

possible to consider the full set of governing equations, including the inertial terms that373

give rise to the fast modes of propagation. Such terms were considered for a poroelas-374

tic medium in the study of Vasco [2009]. Also, one could allow for both pressure- and375

deformation-dependent properties. Finally, there are more general models of solid defor-376

mation, including plastic deformation that may be used [Ehlers, 1992; Bertram, 2008] in377

place of the nonlinear elastic model adopted here. The asymptotic approach used in this378

paper is general and can be applied to these and other problems.379
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5. Appendix A: Constitutive Relationships

In this Appendix I derive constitutive relationships associated with a deformable porous380

medium saturated with a single viscous fluid. The hypothetical medium will represent381

a consolidated material, such as a cemented sandstone, a limestone, or an intact meta-382

morphic or igneous material. Thus, while there may be fractures or micro-fractures, the383

component particles are cemented. The change in fluid pressure and effective stress may384

be large over the time interval of interest, but not so large as to induce plastic deformation385

or the crushing of individual grains. Thus, the constituent particles remain intact and do386

not rotate nor do they migrate with respect to one another. However, due to processes387

such as changing grain contact area and fracture opening or closing with pressure or stress388

changes, the rock as a whole may deform in a nonlinear fashion. That is, the stress may389

not vary linearly with the strain. For example, it is well known that the variation in390

contact area for compressed grains as a function of pressure leads to pressure-dependent391

elastic moduli and wave speeds [Mindlin, 1949; Johnson, 1985; Goddard, 1990; Zimmer-392

man, 1991; Makse et al., 2004]. Because the processes of grain contact area changes and393

fracture opening and closing are reversible, the rock returns to its original configuration394

upon the release of the fluid pressure or stress changes. Thus, the body does behave as an395

elastic solid, albeit as a nonlinear elastic solid. The similarities and differences between396

such a model and a simple elastic-plastic model were given by Nelson and Baron [1971].397

The many formulations of nonlinear elastic solids precludes a complete listing. One398

can consult the numerous texts treating nonlinear elastic behavior [Murnaghan, 1951;399

Eringen, 1962; Goldenblat, 1962; Brillouin, 1964; Truesdell and Noll, 1965; Jaunzemis,400

1967; Ogden, 1984; Bertram, 2008]. Treatments of a nonlinear poroelastic solid containing401
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a fluid are much more limited, perhaps due to the complexity of the topic. None-the-less,402

there are a number of studies [Biot and Willis, 1957; 1959; Morland, 1972; Biot, 1973;403

Lewis and Schrefler, 1978; Ehlers, 1992; de Boer, 2000, p. 377; Bemer et al., 2001; Cheng404

and Abousleiman, 2008] from which to draw upon when treating a nonlinear poroelastic405

medium.406

5.1. Physical Properties of the Porous Medium

In what follows I shall generalize an approach based upon strain invariants, as presented

in Goldenblat [1962]. As in Biot [1973] and Bemer et al. [2001], I include variables for

fluid pressure and volumetric fluid content. As a starting point, consider a fluid-filled

porous medium with fairly general relationships between the solid stress tensor σ, solid

strain ǫ, the fluid pressure Pf , and the change in volumetric fluid content ς

σij = Sij(ǫ, Pf) (A1)

ς = F ( ǫ , Pf). (A2)

Equations of the form (A1) and (A2) are appropriate for a very general medium. I shall407

invoke several approximations in order to treat a specific behavior. In particular, I shall408

assume that the medium has isotropic properties, that the deformation is small, and the409

medium behaves as a nonlinear elastic body.410

For an isotropic medium the physical laws describing the deformation must be indepen-

dent of the coordinate system used to represent the problem. Thus, one may express the

relationship in terms of quantities that are independent of the particular system of coor-

dinates. Thus, I can write the equations (A1) and (A2) in terms of the invariants of the

tensor ǫ . Note that a scalar, such as Pf , is already invariant with respect to coordinate
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transformations. While, for any given tensor, there are an infinite number of invariants

[Goldenblat, 1962], a theorem first proved by Hilbert [Cox et al., 1998] demonstrates that

all invariants may be generated by a finite collection of fundamental, or basis, invariants.

For example, in the case of the strain tensor ǫ , a 3 by 3 array, there are three fundamental

invariants I1, I2, and I3, given by

I1 = δikǫik = ǫii = ǫ11 + ǫ22 + ǫ33 (A3)

I2 = ǫikǫik (A4)

I3 = ǫikǫkpǫpi (A5)

[Goldenblat, 1962, p. 7] where, as indicated in equation (A3), I have invoked the Einstein411

convention by which one sums over repeated indices. Note that these three invariants are412

related to the coefficient of the cubic equation that determines the eigenvalues of the ǫ413

[Murnaghan, 1951, p. 36; Ogden, 1984, p. 25]. Also, note that while the invariant (A3) is414

the trace of the matrix ǫ, the invariant I2 is a measure of the norm of ǫ, the sum of the415

squares of the components of the strain matrix.416

One may expand the functions Sij and F as power series in the components of the strain

tensor ǫ and the fluid pressure Pf

Sij(ǫ, Pf) = S0δij + Sǫǫij + SpPfδij + Sǫǫǫikǫkj (A6)

+SpǫPf ǫkjδik + SpǫPf
2δij + ...

F (ǫ, Pf) = F0 + Fǫǫijδij + FpPf + Fǫǫǫikǫkjδij (A7)

+FpǫPfǫijδij + FpǫPf
2 + ...

As indicated in Goldenblat [1962, p. 7], one may write the power series in terms of the

tensor invariants and, as noted above, the invariants may be generated by the three basis
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functions I1, I2, and I3. Thus, the above series representations may be written, without

approximation, as

σij = T0(I1, I2, I3, Pf)δij + T1(I1, I2, I3, Pf)ǫij (A8)

+T2(I1, I2, I3, Pf)ǫikǫkj

ς = V0(I1, I2, I3, Pf) + V1(I1, I2, I3, Pf)ǫijδij (A9)

+V2(I1, I2, I3, Pf)ǫikǫkjδij.

Using the invariants minimizes the number of parameters required to relate the stresses

and fluid volume to the strains and the fluid pressure. For deformation involving small

strains, equations (A8) and (A9) may be reduced further by neglecting the highest order

terms, giving

σij = T0(I1, I2, Pf)δij + T1(I1, I2, Pf)ǫij (A10)

ς = V0(I1, I2, Pf) + V1(I1, I2, Pf)ǫijδij . (A11)

Note that the stress-strain relationship given above may be nonlinear, due to the functional417

coefficients T0, T1, V0, and V1. However, the stress and the change in fluid volume do return418

to their background values if the strain and any changes in fluid pressure vanish.419

Equations (A8) and (A9) can be related to expressions derived in previous studies of

nonlinear elastic porous media. For example, Biot’s [1973] study of a semi-linear porous

solid, and a follow-up study by Bemer et al. [2001], produced the expressions

σij = (λI1 − αPf)δij + 2Gǫij +
∂H

∂ǫij

(A12)

ς = αI1 +
1

M
Pf − ∂H

∂ǫij
δij (A13)
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where λ is a Lame constant, α is a coupling constant, G is the shear modulus, and H is

a function of the three invariants I1, I2, and I3

H(I1, I2, I3) =
D

3
I1

3 + (F − D)(I1I2 − 3I3) (A14)

and the coefficients D and F characterize the nonlinear behavior of the porous solid. This420

approach of Biot [1973] and Bemer et al. [2001] was formulated for a semi-linear solid in421

which the solid constituents of the porous medium deform linearly while the material as a422

whole may deform nonlinearly. The idea is that the solid grains behave in a linear elastic423

manner, but the rock as a whole, containing micro-cracks and interacting grains, behaves424

elastically but not linearly. A similar representation of the constitutive laws for a fluid425

saturated porous rock in terms of invariants was presented in Morland [1972], although426

the approach was based upon mixture theory.427

The stress-strain and fluid volume-strain relationships (A10) and (A11) can also be used

to represent strain- and pressure-dependent moduli. Such moduli are useful for modeling

the behavior of soils, granular material, and fractured material [Nelson and Baron, 1971].

For example, one may have define a bulk modulus that depends upon the trace of the

strain tensor, related to the mean strain, via

K = K0 + K1I1 + K2I1
2 (A15)

or a bulk modulus that depends upon the effective pressure P

K = K0 + K1P + K2P
2 (A16)

[Nelson and Baron, 1971].428

In this paper I will primarily be interested in the injection of fluid, possibly at high

pressures, into a porous medium. I shall assume that the pressure changes are sufficient
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to change the characteristics of the porous material, particularly the flow properties.

Furthermore, I assume that the overburden stress on the material is primarily due to the

weight of the overlying material and thus does not change significantly. Also, the strain

within the porous material is taken to be so small that it does not significantly alter the

mechanical or flow properties of the rock. Thus, I begin with the expressions (A10) and

(A11) of the form

σij = T0(I1, Pf)δij + T1(Pf)ǫij (A17)

ς = V0(Pf) + V1(Pf)I1 (A18)

where I have used the fact that I1 = ǫii = ǫijδij. The strains are assumed to be small

enough so that product terms may be neglected and the strain tensor may be represented

by the infinitesimal strain tensor [Eringen, 1962, p. 16]

ǫ =
1

2

(

∇u + ∇uT
)

. (A19)

The invariant I1, the trace of the strain tensor ǫ, is given by

I1 = ǫ11 + ǫ22 + ǫ33 = tr(ǫ) = ∇ · u (A20)

so that I can write equations (A17) and (A18) as

σij = T0(∇ · u, Pf )δij + T1(Pf)ǫij (A21)

ς = V0(Pf) + V1(Pf)∇ · u. (A22)

In order to express equations (A21) and (A22) in a manner compatible with the work of

Biot [1973] and Bemer et al. [2001] and so that they will agree with the expressions for

linear poroelastic media, I write them as

σij = G
(

2ǫij −
2

3
∇ · uδij

)

− ϕu∇ · uδij − αmPfδij (A23)
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and

ς = ϕmPf + αm∇ · u. (A24)

Defining the tensor

Σ = ∇u + ∇uT − 2

3
∇ · uI, (A25)

and making use of equation (A19), I can write equations (A23) and (A24) in the form

σ = GΣ − ϕu∇ · uI − αmPfI (A26)

and

∇ ·w = −ϕmPf − αm∇ · u, (A27)

where I have made use of the fact that the increment of fluid content may be written as

ς = −∇ · w (A28)

[Biot, 1941; Wang, 2000], where w is the fluid displacement relative to the displacement

of the solid matrix:

w = φ (uf − u) , (A29)

uf is the fluid displacement vector and φ is the porosity [Pride, 2005]. Note that the429

coefficients in equations (A26) and (A27), G, ϕu, αu, ϕm and αm may be functions of the430

fluid pressure Pf and functions of spatial position.431

Using the expression

Pf = −C∇ · u− M∇ ·w (A30)

from Pride [2005], I can relate the coefficients ϕm and αm to Biot’s [1962] C modulus and

the fluid-storage coefficient M which represents how much fluid can accumulate when the

fluid pressure changes at a constant sample size. Solving equation (A30) for ∇ · w gives

∇ · w = − 1

M
Pf −

C

M
∇ · u (A31)
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and so

ϕm =
1

M
(A32)

and

αm =
C

M
. (A33)

Another expression from Pride [2005] gives the stress tensor as

σ = GΣ + Ku∇ · uI + C∇ · wI. (A34)

Using equation (A30) this expression may be written in terms of ∇ · u and Pf :

σ = GΣ +

(

Ku − C2

M

)

∇ · uI − C

M
PfI, (A35)

given αm = C/M , as before, and

ϕu =
C2

M
− Ku, (A36)

where Ku is the undrained bulk modulus. Thus, the quantities given above may be432

interpreted in terms of existing poroelastic coefficients.433

In addition to the parameters associated with stress-strain, fluid mass, and pressure434

constitutive equations, there are also flow properties, such as the porosity (φ) and per-435

meability (k), associated with a porous medium. These properties are typically measured436

in the laboratory, when they are available, and fit in some empirical fashion. However,437

expressions may be obtained from conceptual models such as analytic fracture models438

[Witherspoon et al., 1980].439

5.2. Fluid Properties

Typically, the fluid properties are determined in the laboratory and are much better

characterized then are the properties of the porous rock. For example, in the applications
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I shall consider a situation in which water injected into a pressure sensitive rock. Due

to its importance in many processes, the physical properties of water are extremely well

known and there is a generally accepted equation of state for the density as a function of

pressure

ρ = ρ0 exp β (Pf − P0)

[Bear 1972, p. 38; de Marsily, 1986, p. 40]. Other fluids and fluid mixtures can behave440

differently, for example supercritical carbon dioxide can act much like a gas. There are also441

accurate tabulations of the viscosity of water and other fluids as functions of temperature442

and pressure [de Marsily, 1986, p. 414].443
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6. Appendix B: An Asymptotic Analysis of the Governing Equations

The governing equations (11) and (12) are rather formidable, with pressure-dependent

and spatially varying coefficients, nonlinear terms, and coupled dependent variables. If

one is to make progress and gain some insight, one must simplify the system of equations

in some manner. As noted above, because I am interested in the inverse problem in which

I estimated the large-scale variation of properties, one possible simplifying assumption is

that the medium is smoothly-varying. That is, away from boundaries, such as faults and

layering, the material properties vary in a smooth fashion. Specifically, the length scale

of the heterogeneity of the medium, denoted by L is much larger than the length scale,

l, of the propagating disturbances that I am modeling. So I can define a scale parameter

ε = l/L ≪ 1 and define ’slow’ spatial and temporal coordinates

X = εx (B1)

and

T = εt (B2)

respectively. The first step in such an analysis entails writing the governing equations (11)

and (12) in the slow coordinate system. To do this I formulate the differential operators

in terms of the new coordinates. Thus, the time derivative becomes

∂P

∂t
= ε

∂P

∂T
+

∂θp

∂t

∂P

∂θp
. (B3)

The differential operators in the governing equations may be written in terms of the slow

variable X by noting that

∂u

∂xi
= ε

∂u

∂Xi
+

∂θ

∂xi

∂u

∂θ
. (B4)
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Hence, making use of equation (B1) I can write the gradient operators as

∇u = ε∇Xu + ∇θ
∂u

∂θ
(B5)

∇ · u = ε∇X · u + ∇θ · ∂u

∂θ
(B6)

where ∇X denotes the gradient with respect to the components of the slow variable X.444

In the derivation that follows I shall suppress the X subscript on the differential operator445

∇.446

6.1. Analysis of the First Governing equation

I begin with the first of the two governing equations, equation (11)

∇ ·Σ

+∇ζ ·Σ

+γp∇P · Σ

−η∇ϕu∇ · u

−κu∇P∇ · u

−χu∇∇ · u

−η∇αP

−χp∇P = 0. (B7)

Writing equation (B7) in slow coordinates, transforming the derivatives,

(

ε∇ · Σ + ∇θu ·
∂Σ

∂θu

)

+ε∇ζ · Σ
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+γp

(

ε∇P + ∇θp
∂P

∂θp

)

· Σ

−ε∇ϕu

(

ε∇ · u + ∇θu · ∂u

∂θu

)

−κu

(

ε∇P + ∇θp
∂P

∂θp

)(

ε∇ · u + ∇θu ·
∂u

∂θu

)

−χu

[

ε∇
(

ε∇ · u + ∇θu · ∂u

∂θu

)

−∇θu
∂

∂θu

(

ε∇ · u + ∇θu · ∂u

∂θu

)]

−ǫη∇αP

−χp

(

ε∇P + ∇θp
∂P

∂θp

)

= 0. (B8)

Because I am assuming that ε is small, all terms of order ε and higher are neglected,

leaving terms of order ε0 ∼ 1:

∇θu · ∂Σ

∂θu

+γp∇θp · Σ
∂P

∂θp

−κu∇θp
∂P

∂θp

∇θu · ∂u

∂θu

−χu∇θu∇θu ·
∂2u

∂θu
2

−χp∇θp
∂P

∂θp
= 0. (B9)

Using the fact that Σ = ∇u + ∇uT − 2
3
∇ · uI, writing the differential operators in slow

coordinates, and neglecting terms of order greater than zero gives

∇θu ·
[

∇θu
∂2u

∂θu
2 +

∂2u

∂θu
2∇θu −

2

3
I∇θu ·

∂2u

∂θu
2

]

+γp
∂P

∂θp
∇θp ·

[

∇θu
∂u

∂θu
+

∂u

∂θu
∇θu − 2

3
I∇θu · ∂u

∂θu

]

−κu∇θp
∂P

∂θp
∇θu · ∂u

∂θu

−χu∇θu∇θu ·
∂2u

∂θu
2
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−χp∇θp
∂P

∂θp
= 0. (B10)

This expression can be written more compactly if one defines the phase gradient vectors

p = ∇θp (B11)

s = ∇θu. (B12)

Further more, due to the specific form chosen for the asymptotic expansion, equation (24)

or (25), in particular the functional dependence of the solution on the phase terms θp and

θu, the partial derivatives are given by

∂P

∂θp
= P − Pb = P̄ (B13)

and

∂u

∂θu
= u− ub = Ū, (B14)

and similarly for higher order derivatives.447

Substituting these definitions into equation (B10) gives

s ·
[

sŪ + Ūs − 2

3
Is · Ū

]

+γpP̄p ·
[

sŪ + Ūs− 2

3
Is · Ū

]

−κupP̄ s · Ū

−χuss · Ū

−χppP̄ = 0, (B15)

or, carrying out the dot products,

[

s2Ū +
1

3

(

s · Ū
)

s

]

+ γpP̄
[

p · sŪ +
(

p · Ū
)

s− 2

3

(

s · Ū
)

p

]
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−κuP̄
(

s · Ū
)

p− χu

(

s · Ū
)

s − χpP̄p = 0. (B16)

6.2. Analysis of the Second Governing equation

Now consider equation (12), the governing equation associated with the fluid diffusion,

αp
∂P

∂t

+αu (∇ · u)
∂P

∂t

+α
∂∇ · u

∂t

−1

µ
∇k · ∇P

−βp∇P · ∇P

−γ∇P · g

−1

µ
∇k · g

−k

µ
∇ · ∇P = 0. (B17)

Writing this equation in slow coordinates, expanding the derivatives, gives

αp

(

ε
∂P

∂T
+

∂θp

∂t

∂P

∂θp

)

+αu

(

ε∇ · u +
∂u

∂θu

· ∇θu

)(

ε
∂P

∂T
+

∂θp

∂t

∂P

∂θp

)

α

[

ε
∂

∂T

(

ε∇ · u +
∂u

∂θu

· ∇θu

)

+
∂θu

∂t

∂

∂θu

(

ε∇ · u +
∂u

∂θu

· ∇θu

)]

−1

µ
ε∇k ·

(

ε∇P +
∂P

∂θp
∇θp

)

−βp

(

ε∇P + ∇θp
∂P

∂θp

)

·
(

ε∇P + ∇θp
∂P

∂θp

)

−γ

(

ε∇P + ∇θp
∂P

∂θp

)

· g
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−1

µ
ε∇k · g

−k

µ

[

ε∇ ·
(

ε∇P + ∇θp
∂P

∂θp

)

+ ∇θp ·
∂

∂θp

(

ε∇P + ∇θp
∂P

∂θp

)]

= 0. (B18)

Retaining only terms of order ε0 ∼ 1 results in

αp
∂θp

∂t

∂P

∂θp

+αu
∂u

∂θu
· ∇θu

∂θp

∂t

∂P

∂θp

+α
∂θu

∂t

∂2u

∂θu
2 · ∇θu

−βp∇θp · ∇θp

(

∂P

∂θp

)2

−γ∇θp · g
∂P

∂θp

−k

µ
∇θp · ∇θp

∂2P

∂θp
2 = 0. (B19)

Using the notation for the gradient vectors p and s, as defined in (B11) and (B12),

respectively, I can rewrite equation (B19) more compactly. Similarly, I can substitute P̄

and Ū for the partial derivatives of P and u with respect to the phase variables θp and

θu, as in equations (B13) and (B14). Thus, equation (B19) can be written as

αp
∂θp

∂t
P̄ + αu

∂θp

∂t
s · ŪP̄ + α

∂θu

∂t
s · Ū − βpp

2P̄ 2

−γp · gP̄ − k

µ
p2P̄ = 0. (B20)
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7. Figure Captions

Figure 1. Simulated pressures at three times (5.0, 25.0, and 50.0 S) for fluid injection into

a poroelastic medium. The scale indicates pressure deviations from the background value. The

injection well is indicated by the open star at the center of the simulation grid. Only the central

portion of the grid is shown. The four labeled open circles indicate points at which pressure time

series were extracted.

Figure 2. Transient pressure variations associated with the four observation points on the

simulation grid plotted in Figure 1. The pressure is indicated in meters of head. Well 1 is the

well in Figure 1 that is closest to the injection point while well 4 is the furthest.

Figure 3. Normalized transient pressure variations for the four points on the simulation grid

shown in Figure 1. That is, these are the curves shown in Figure 2, normalized by their peak

values.

Figure 4. The normalized pressure variations over the central portion of the simulation grid.

As in Figure 3, the time series at each grid point had been normalized by its peak value.

Figure 5. The arrival times associated with the numerical simulation. The time is estimated

by finding the peak pressure value at each grid point and noting the time at which the peak was

attained. The color scale indicates the travel time, as do the contours. The contour interval is 5

S.

Figure 6. (Top) The asymptotic arrival time estimates associated with the simulation.

(Bottom) The arrival time estimates calculated using the analytic transient pressure solution for

a porous medium [equation (76)].

Figure 7. Travel time estimates for points on a northeast trending line extending from the

central injection well to the furthest observation point. The numeric, the analytic, and the

asymptotic estimates are shown in this figure.
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Figure 8. Pressure-permeability function used in the numerical simulation of transient pressure

propagation. The fluid pressure is measured in meters of hydraulic head. The permeability (k)

has been converted to hydraulic conductivity (K) where K = kρg/µ for a fluid with density ρ

and viscosity µ. The hydraulic conductivity is plotted in units of m/s.

Figure 9. Transient pressure curves for the pressure-sensitive permeability simulation. The

general simulation set-up is identical to that shown in Figure 1, a central injector with four wells

extending on a line to the northeast.

Figure 10. Normalized transient pressure curves for the four stations indicated in Figure 1.

Figure 11. The arrival times associated with the numerical simulation. The color scale

indicates the travel time, as do the contours. The contour interval is 5 S.

Figure 12. Peak pressure amplitude obtained at each point on the central portion of the

simulation grid.

Figure 13. The arrival times associated with the asymptotic estimate. The color scale indicates

the travel time, as do the contours. The contour interval is 5 S.

Figure 14. Travel time estimates for points on a northeast trending line extending from

the central injection well to the furthest observation point. The numeric and the asymptotic

estimates are shown in this figure.

Figure 15. Travel time estimates for points on a northeast trending line extending from the

central injection well to the furthest observation point. Each curve corresponds to a particular

slope of a pressure-permeability curve, similar to that shown in Figure 8. The slope of each

pressure-permeability curve is indicated by the label with units of m/s per meter of head, resulting

in units of 1/s. The continuous lines indicate the numerical estimates while the discontinuous

points indicate the asymptotic estimates.
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