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ABSTRACT OF THE DISSERTATION

Frame Definition, Pose Initialization, and Real-Time Localization in a Non-Stationary Reference
Frame With LiDAR and IMU: Application in Cooperative Transloading Tasks

by

Zeyi Jiang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2022

Dr. Jay A. Farrell, Chairperson

Cargo transloading is an important part of transportation, and the increasing need for

transportation is a challenge to the transloading capacity. Therefore, automating the process to

reduce manpower consumption and improve the efficiency of transloading is of interest. Cooperative

transloading is a common method for bulk cargo transloading, which refers to a robot inside the

container that transfers the bulk cargo to a convenient position that the crane can reach. Cooperation

improves the crane grabbing efficiency and avoids the bulk cargo being in the container areas that the

crane cannot reach. In this dissertation, a method is proposed to recognize and locate the container

hatch from point cloud, to unify the reference frame of the crane and robot, to determine the initial

robot pose in that shared frame, and to localize the robot as it maneuvers in the container in real-time

during the transloading. The main contributions of this research fit into two categories.

• Frame Definition and Initial Pose Determination: To establish a reference frame recognizable

by both the crane and the robot, a portion of this dissertation focus on extracting the hatch

from the robot point cloud. One hatch corner and the hatch edges define the origin and axis

of the shared working frame for the robot and crane. To find the hatch, the 3D point cloud
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scanned by the robot is rasterized into 2D data, preserving the relative position information

of the hatch. A method based on the Hough-Transform (HT) is used to determine the initial

point cloud translation and rotation with respect to the hatch using the 2D data. With the

determined translation and rotation, the common reference frame is defined, the point cloud

is re-coordinatized into this frame and the initial robot pose can be determined and expressed

in this frame.

• Real-Time Localization: The transloading starts after determining the robot initial pose. The

robot moves in the container. To avoid collisions, the robot real-time position needs to be

reported to the crane. In this dissertation, a basemap is created initially using the point cloud

scanned for determining the initial pose. Later, when the robot moves, its Light Detection and

Ranging (LiDAR) scans are matched with the basemap using an Iterative Closest Point (ICP)

algorithm to determine the robot pose in real-time. To achieve more reliable matching results

with the ICP algorithm, several approaches are compared for roughly aligning the real-time

scans to the basemap before using the ICP algorithm, including the use of LiDAR-estimated

poses and velocities, and the use of Inertial Measurement Unit (IMU) measurements to cal-

culate the pose change. The experimental comparisons of those methods are assessed to

determine the most suitable one for cooperative transloading.

In addition to the analysis and development of new methods for hatch recognition, co-

operative frame definition, and real-time localization in a non-stationary frame, this research has

developed a fully functional real-time prototype implementation.
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Chapter 1

Introduction

Transloading is an important part of international shipping, where products are transferred

from one mode of shipping to another for the next shipping step. Cooperative transloading is a typ-

ical process in bulk cargo shipping in which several pieces of equipment work together to complete

the transloading process. A common scenario is the cooperative transloading of a robot and a crane,

where a robot in the original container moves the cargo to a convenient location for the crane to

pick up, and the crane cyclically picks the cargo stacked by the robot and places it at the target

discharge location. This cooperative transloading process can greatly improve the transload speed,

and the robot can also help to complete the transloading of cargo that are unreachable by the crane.

This cooperative transloading process is still mainly done manually. Engineers and researchers are

interested in automating the transloading process to reduce shipping costs. Furthermore, the au-

tomation of transloading process can also reduce the potential for injury to personnel. One of the

key points of automated transloading is to communicate the robot’s position to the crane in real

time to avoid collisions, which is also the main problem of this dissertation. In this dissertation, this
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Figure 1.1: Schematic showing the frames and the problem. The sizes of the objects do not match their actual sizes. The
gray (color) flatbed indicates the robot initial (current) pose. The purple semicircle represent the crane LiDAR position,
where it may not be able to observe the robot directly. The rectangular hatch is a common object detected separately by
the robot and the crane such that they can define a common-reference-frame for representing the robot pose.

problem is divided into two parts. First, establishing a common reference frame for the robot and

the crane to represent the robot’s position. Second, obtaining the robot’s position in real time during

transloading work.

1.1 Common-Reference-Frame

A common-reference-frame refers to a frame that is used to represent both robot and

crane positions during the whole cooperative transloading period. Because the robot works in a
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close-space container, it may not have direct visibility to the crane due to occlusion. Therefore, the

common-reference-frame is essential for sharing the robot position to the crane during the occlusion

such that the vector from the crane to the robot can be calculated in real-time by differencing the

latest crane and robot positions.

Figure 1.1 shows a scenario of the cooperative transloading. A crane is hovering above a

container with a rectangular hatch. A LiDAR is mounted at the crane base to scan the point cloud

below, marked in purple in the figure. The robot is placed inside the hatch and a LiDAR marked

in blue is mounted to scan the hatch environment. The location where the robot was first placed

inside the container is marked in the figure with a gray flatbed, from where more of the structure of

the hatch can be observed. To represent the robot’s position in the same frame as the crane during

the whole transloading, it is necessary to define a common reference frame with the crane at the

initial position. To define a common reference system during the initialization phase, it is necessary

to recognize and locate the hatch from the point cloud scanned by the LiDAR of the crane and the

robot. The common reference frame is established based on the extracted hatch, which is the most

common object that the crane and the robot can both observe and the hatch is prevalent on different

types of containers. Meanwhile, the robot’s initial pose can also be determined in this common

reference frame.

1.2 Real-Time Robot Positioning

After establishing the common-reference-frame and determining the initial robot pose,

the robot can move and start the cooperative transloading work. The LiDAR on the robot generates

points during its motion, and the coordinates of these points are represented in the robot’s body
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frame. Therefore, as long as the rotation and translation parameters can be confirmed in real time

to transform these points to match the point cloud scanned at the initial robot position (where the

common reference frame is defined), the robot position can be determined in real-time and repre-

sented in the common reference frame to avoid collisions between the crane and the robot during

cooperative transloading.

1.3 Sensor Choice

The sensors of the application are selected to succeed for solving the problem. Com-

monly used sensors for positioning includes: Global Positioning System (GPS), camera, odometer,

IMU, and LiDAR. GPS [43, 55] can reach centimeter-level accuracy with good signals and provide

a common reference frame when sharing the receiver position. However, the GPS localization is

unreliable when the signal is weak. In this dissertation, a vehicle is in the container (see Fig. 1.1)

with limited vision of the outer space. Therefore, the GPS signal cannot be guaranteed for localiza-

tion. Camera [50,52,59] provides color information for a dense array of pixels, which is convenient

for determining the boundaries of objects. However, camera performance may degrade under poor

lighting, shading, or at night. The transloading tasks commonly last for a few days so camera

is inappropriate for work at night. Odometer [69] can provide the distance that a vehicle travels.

However, the application of this dissertation aims at modifying existing vehicles while the odometer

reading is unavailable. IMU [12,25,34] generates acceleration and angular-rate measurements of its

body-frame relative to the inertial-frame at a high frequency. Moreover, it can be easily installed on

existing devices. LiDAR [21, 46, 53, 63] is active, emitting energy and detecting reflections, allow-

ing it to determine time-of-flight at specific directions around the clock. The LiDAR time-of-flight
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can be used to calculate the distance between the sensor and the reflected point at an known angle,

allowing computation of the vector from the sensor to that point along with the reflection intensity.

LiDAR’s are inexpensive, easy to work with, and have accuracy and resolution specifications high

enough at a long distances to succeed in this application. Therefore, LiDAR and IMU are selected

for the problem.

1.4 Proposed Approach

In the approach of this dissertation, the whole process is divided into two stages: the hatch

extraction stage and the real-time localization stage.

A rectangular hatch is selected as the target in the hatch extraction stage because it is

commonly observable from both the robot and the crane. For the hatch extraction for the crane,

it is discussed in [24]. A sensor suite of LiDAR and Pan-Tilt Unit (PT) is used to accumulate

point cloud cyclically. The point cloud is voxelized and converted into point pillars [26], which can

be rasterized into 2D data preserving information of the hatch position. A HT method is used to

extract lines from the rasterized data and determine the hatch position. The crane position in the

common-reference-frame is updated per cycle from the accumulated points of each cycle. For the

hatch extraction for the robot, because the hatch edges are not aligned as in [24], the point cloud

is first rasterized such that the points on vertical walls in the point cloud can be converted into 2D

points on lines. With the knowledge that the inner walls of the container are mostly parallel to the

hatch edges, those extracted lines are used to calculate a rotation matrix which can align the initial

point cloud and determine the hatch position. The common reference frame is defined, and the robot
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initial position in the common reference frame is determined with the extracted hatch. The detailed

process will be discussed in Chapter 3.

After determining the common reference frame and initial robot pose, the initial point

cloud used for extracting the hatch can be converted into the common reference frame. The trans-

formed point cloud will be used as the basemap, which is used for the following localization of the

robot. When the robot starts moving, each scan from the LiDAR can be registered to the basemap

and the transformation parameters for registration can be used to obtain the robot pose at collec-

tion of the scan. To make the registration more reliable, the scan might be roughly aligned to the

basemap before registration algorithms are applied. The prior pose can be calculated in multiple

approaches: the pose estimated in previous epochs can be used to calculate estimated velocity and

angular rate solely based on LiDAR data, and the angular rate measured by IMU might be used

instead of the estimated angular rate, and the IMU acceleration measurements might be used in ad-

dition to the LiDAR estimated velocity. The discussion on calculating prior pose and the real-time

localization will be discussed and compared in Chapter 5.
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Chapter 2

Preliminary Knowledge and Information

2.1 Hardware Setup

The hardware setup includes the setup of the robot and the setup of the crane. The hard-

ware setup of the crane should be referred to [24]. The hardware setup of the robot is shown in

Figure 1.1. The hardware of the robot includes a flatbed, a PT, a LiDAR, and an IMU. The installa-

tion of these sensors are shown as the schematic in Figure 1.1.

The PT consists of three parts as shown in Figure 1.1: base (brown piece), body (or-

ange cube), and platform (green piece). The base is rigidly attached on the flatbed. The body can

rotate (i.e., pan) around the P-frame z-axis relative to the base. The platform can rotate (i.e., tilt)

relative to the body with the two green arms as shown in Figure 1.1. The vector formed by the two

connection points between the arms and the body is the rotation axis (i.e., P-frame y-axis) of the

tilt-rotation. There are two Dimension-of-Freedom (DOF) for the PT, which are the pan and tilt

rotation. The P-frame will be defined in Section 2.2 for more details. The PT is installed on the
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flatbed such that the robot heading is defined along the same direction of P-frame x-axis as shown

in Figure 1.1.

The LiDAR (drawn as a blue hemisphere) is rigidly attached to the PT platform. There-

fore, the LiDAR can be rotated by the PT and scan difference direction. The LiDAR is a mechanical

LiDAR which has a laser-array distributed and fixed on a rotation-axis (i.e., the L-frame z-axis)

within a 0-to-90 degree angular range. The laser-array can spin around the L-frame z-axis at a con-

sistent speed of 10 revolutions per second. Therefore, the Field of View (FOV) of the LiDAR is 360

degrees horizontally and 90 degrees vertically. For an example, when the PT is at zero position as

shown in Figure 1.1, the LiDAR should scan half of the space above it. The points generated by all

lasers during one such revolution is called on scan.1 The scan-rate of the LiDAR is denoted as fl

and a scan is generated every 1/ fl second in L-frame.

The IMU is rigidly mounted on the flatbed near the PT base as shown in Figure 1.1.

The IMU is capable of measuring acceleration and angular velocity relative to the inertial frame

at a frequency of fm = 200 Hz. The axes for the IMU measurements are marked on the red cube

in Figure 1.1. In this dissertation, the IMU is used to maintain the robot position and orientation

between LiDAR scans.
1A ‘scan’ is also known as a ‘frame’ in the literature. In this dissertation, scan-rate (scan) is used in place of frame-

rate (frame) to avoid confusion with the definitions of coordinate systems in Section 2.2.
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2.2 Frame Definitions

The frames used in this dissertation are defined as:

1. L-frame: This frame is the fixed frame on the LiDAR determined by the LiDAR manufacturer.

The LiDAR generates points in this frame. The points are transformed into other interested

frame for further processing.

2. P-frame: This frame is fixed relative to the PT base (i.e., brown piece in Figure 1.1) with its

origin at the pan and tilt rotation center. The x-axis is to the front of the robot and y-axis

points left. z-axis points up to form an right-hand coordinate system (RHS). The PT base is

rigidly attached to the robot so that the P-frame moves together with the robot.

3. H-frame: this frame is defined when the robot is initially placed in the room. The origin

coincides with the P-frame origin before the robot moves. The x and y axes of H-frame are

nominally aligned to the consecutive edges of a corner point of a rectangular hatch, which is

determined during the point cloud alignment and will be discussed in Section 3.6. H-frame is

fixed at a point in the room as defined with the robot initial position. Therefore, H-frame will

stay when the robot moves. H-frame is only used in the initialization process. After that it is

ignored.

4. N-frame: Navigation frame is defined with the origin at a fixed reference point in the con-

tainer, which has the same x and y coordinates in H-frame with the corner point used for

defining H-frame. The origin z coordinate is zero in H-frame. The x-axis of N-frame is

parallel to the H-frame y-axis. The y-axis of N-frame is parallel to the H-frame x-axis. The

z-axis is defined to form a RHS. In this dissertation, the navigation map and robot pose are
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both represented in N-frame. This frame is shared with the crane outside of the container to

provide the estimated robot pose in an unique frame. The establishment of N-frame is based

on the point cloud alignement and hatch edge extraction results in H-frame, which will be

discussed in Section 3.8.

5. A-frame: This frame is nominally coincident with N-frame after the transformation with the

current pose of the robot. The A-frame of one scan lives only for expressing this scan at a

position roughly aligned to the N-frame basemap. Each scan will define its own A-frame

which is determined by the prior knowledge of the robot pose. In Chapter 5, each scan needs

to be transformed into A-frame for better performance when using ICP algorithm to register

it to the basemap.

6. g-frame: This frame is defined as the inertial frame, which will be used for discussing prob-

lems related to IMU raw measurements.

2.3 Notation

This section describes the the general format of the notation. Note that only P-frame is

specifically used and the other subscripts and superscripts in this section are non-specific.

1. X Tk
Y Z ∈ R3: This symbol represents the translation vector from Y to Z at time epoch tk

represented in X-frame. When the symbol k is absent, it means the symbols in the equation

are at the same time epoch.
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2. W
X Rk

j ∈ R3×3: This symbol represents a general form of a rotation matrix. One of the sub-

scripts will be absent (e.g., W
X Rk or W Rk

j) when this symbol is used. The form used in the

dissertation are as below:

• W
X Rk: The rotation matrix from X-frame to W -frame at time tk.

• W Rk
j: The rotation of W -frame from time t j to tk.

3. X Pk
k−1 ∈ R3: This symbol is used in this dissertation with or without the subscript. The

definition of each is as below:

• X Pk: The vector from the X-frame origin to the P-frame origin at time tk represented

in X-frame. Therefore, the symbol can be represented as a vector: X Pk = X Tk
XP. It is

defined as a simpler expression of the position of an object when P-frame is attached to

this object.

• X Pk
k−1: The change of P-frame origin position from tk−1 to tk represented in X-frame.

4. X pi ∈ R3: This symbol represents the i-th point X pi = [X x, X y, X z]⊤ in an X-frame point

cloud. X x, X y, X z are the x, y, z coordinates of the point in X-frame. The subscript i will be

absent if the point is not in a specific point cloud. The symbol is equivalent to the vector from

X-frame origin to the point: X pi =
X TX p.

5. X Sk ∈ R3×m: The symbol X Sk represents the scan collected at time tk with m points in X-

frame.

6. X C ∈ R3×n: The symbol X C represents a point cloud with n points in X-frame.
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7. The symbol ⌈X⌉ is used as the ceiling function of a vector X, which outputs a vector with

same dimension. Each element of the output vector is the smallest integer larger than or equal

to the corresponding element in X.

8. The symbol ⌊X⌋ is used as the floor function of a vector X, which outputs a vector with same

dimension. Each element of the output vector is the largest integer smaller than or equal to

the corresponding element in X.

9. The symbol B is used to represent a set of binary numbers.

2.4 Georectification

The points are initially generated in L-frame. This section introduces the frame conversion

applied to each LiDAR points. The different reference frames and conversions between them are

well discussed in Section 2 of [15].

2.4.1 L-frame to P-frame

Every L-frame point Lp ∈R3 is recorded together with the PT pan-angle αi and tilt-angle

βi at the time of collecting the point. Therefore, each point Lpi can be transformed into P-frame at

its generation:

Ppi =
P
LRi

(Lpi +
LTPL

)
, (2.1)

W pi =
W
X Rk (X pi +

X TWX
)
, (2.2)
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where LTPL is the vector from P-frame origin to L-frame origin in L-frame. This vector LTPL is a

constant and measured in advance. The rotation matrix P
LRi is calculated with the pan-angle αi and

tilt-angle βi at the same time with the point generation time of Lpi using eqns. (2.40-42) in [15]:

P
LRi =



cos(αi) −sin(αi) cos(βi) sin(αi) sin(βi)

sin(αi) cos(αi) cos(βi) −cos(αi) sin(βi)

0 sin(βi) cos(βi)


. (2.3)

2.4.2 P-frame to H-frame

This frame conversions only happen during initialization, when the H-frame origin is

identical with P-frame origin (i.e., THP = 0). The conversion from a P-frame point to a H-frame

point during initialization is:

Hpi =
H
P R0 Ppi (2.4)

where the rotation matrix H
P R0 can be determined with various approaches, which will be discussed

in Section 3.6.

2.4.3 P-frame to N-frame

When the initialization is complete, N-frame should be built and the conversion from

P-frame to N-frame is used.

The conversion from a P-frame point to a N-frame point is:

Npi =
N
P Rk Ppi +

NTk
NP, (2.5)
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where N
P Rk and NTk

NP are the direction cosine matrix and the translation vector of the robot in N-

frame at epoch k. These two variables represent the orientation and position of the robot at epoch

k.

2.4.4 P-frame to A-frame

The conversion from a P-frame point to a A-frame point is:

Api =
N
P R̄k Ppi +

NT̄k
NP, (2.6)

where N
P R̄k and NT̄k

NP are the estimated variables of N
P Rk and NTk

NP, which will be discussed in

Chapter 5.

2.4.5 H-frame to N-frame

The conversion from a H-frame point to a N-frame point is:

Npi =
N
HR(Hpi +

HTHN), (2.7)

where

N
HR =



0 1 0

1 0 0

0 0 −1


, (2.8)

and HTHN is determined with the hatch extraction results, which will be discussed in Section 3.7.

This conversion is used for localization initialization, which will be discussed in Section 3.8.
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2.5 Iterative Closest Point: Point Cloud Registration

ICP is an algorithm [47] adopted to align one source point cloud (P2) to another target

point cloud (P1). Denote each point in the source point cloud as ps ∈ P2, its closest point pt in P1 is

searched such that the Euclidean distance is minimized: argmin
t

∥ps − pt∥. If ∥ps − pt∥< ζ , which

is a user-defined threshold, the pair of these points (ps, pt) is regarded as one valid correspondence.

The collection of points in Ps that have valid correspondence are denoted as a point cloud P∗
2. The

corresponding points of each point in P∗
2 are denoted as P∗

1, which is a subset of P1. Both P∗
2 and P∗

1

have N j points and they can be expressed as matrices with three rows and N j columns, where each

column includes the coordinates of one point. Therefore, singular value decomposition (SVD) [5]

can be used to calculate a rotation matrix R and a translation vector T such that:

Ri,Ti = argmin
R,T

N j

∑
j=1

∥R ps, j +T− pt, j∥, (2.9)

where ps, j ∈ P∗
2, pt, j ∈ P∗

1 and Ri,Ti are calculated as the transformation parameters of the i-th iter-

ation of ICP. Then, each point ps ∈ P2 is transformed using Ri,Ti as: pi
s = Ri ps+Ti and forms the

transformed source point cloud Pi
2. Several criterion (e.g., difference between consecutive transfor-

mation, averaged distance between corresponding points in the source and target point cloud, and

so on) can be checked to determine whether the transformed point cloud Pi
2 is successfully aligned

to the target point cloud P1 in this iteration. If the criterion is not accomplished, Pi
2 will be used to

find its correspondence with P1, calculate the transformation parameters and transformed itself into

Pi+1
2 in a new iteration until the criterion is met. The transformation of each point of P2 to a point in

the point cloud PNi
2 , which is the output of the last iteration before convergence, can be represented
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as:

pNi
s = RNi(RNi−1(. . . R1 ps +T1) . . . +TNi−1)+TNi , (2.10)

therefore, the rotation matrix can be denoted as:

R∗ = RNi RNi−1 . . . R1, (2.11)

and the translation vector can be denoted as:

T∗ = RNi(RNi−1 . . . (R2(T1)+T2) . . . +TNi−1)+TNi . (2.12)

The above iterative process to align a source point cloud P2 to another target point cloud

P1 is the steps of the ICP algorithm. In this dissertation, when such processes is used to align a

point cloud, the process will be expressed in the following form:

[R∗, T ∗] = ICP(P1, P2), (2.13)

and used in this dissertation.

The success of ICP relies on finding correct correspondences. Therefore, a common pre-

processing is applying a prior transformation to P2 before using the ICP algorithm. In Chapter 5,

several approaches will be discussed to obtain a prior transformation such that P2 can be roughly

aligned to P1 and better correspondence can be found. The usage of ICP with prior transformation

will be expressed as:

[R∗, T ∗] = ICP
X1,X2,...,XN

(P1, P2), (2.14)

where the symbols X1 to XN are the prior used to transform P2 for pre-processing.
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2.6 Hough-Transform: 2D Line Detection

Figure 2.1: Schematic for a line represented in a polar coordinate system which is attached to a 2D matrix.

The HT algorithm [3,13] is a voting procedure widely used for extracting geometries that

can be parameterized (e.g., lines, planes, circles). In this dissertation, the HT algorithm is used to

extract lines from 2D binary matrices (i.e., black-and-white images). The model for a line is:

ρ = xsin(θ)+ ycos(θ), (2.15)

where ρ is the distance from the line to the origin and θ is the angle of the line. A line is located in

one row (column) of the 2D matrix when the angle parameter θ = π

2 (0) as indicated in Figure 2.1.

When the HT algorithm is used for extracting lines from a 2D binary matrix M, a voting

table B is formed with ρ̄

∆ρ
rows and π

∆θ
columns, where ∆ρ and ∆θ are the resolution of ρ and θ .
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Each entry Bi, j represents the votes of a line parameterized as (ρi, θ j), where ρi = i∆ρ , i = 1, . . . , ρ̄

∆ρ

and θ j =−π

2 + j∆θ , j = 0, . . . , π

∆θ
−1.

The range of ρ is determined to be large enough for the voting of each data point (i.e., a

pair of x and y) in M. For each entry Mx,y = 1, ρ̃i is calculated using eqn. (2.15): ρ̃i = xcos(θi)+

ysin(θi). The calculated value ρ̃i is then rounded to the closest ρi, which is determined by the range

of ρ and the resolution ∆ρ , and votes for a candidate line (ρi,θi). As a result of the voting process,

the entries in the voting table with votes more than a user-define threshold are extracted as the line

parameters in the image.
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Chapter 3

Frame Definition and Pose Initialization

Theory

This chapter discusses the approach to extract the hatch from the point cloud generated by

robot LiDAR. This chapter first introduces some relevant literature in Section 3.1, then Section 3.2

describes the data acquisition process used for hatch detection. Section 3.3 states the objective

and assumptions, then defines several subproblems that will be solved to define an approach. Sec-

tions 3.4 to 3.9 describe the approach for detecting the hatch, and Chapter 4 shows the experimental

results corresponding to this approach.

3.1 Literature Review

Hatch extraction for transloading using LiDAR is considered in [35,36,38] for ship load-

ing. In that application, the hatch is empty when the process starts, which facilitates separation

of the hatch from the cargo as they have very distinct ranges from the LiDAR. The hatch in that
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application is aligned to the axes of the frame, which the point cloud is accumulated in, because

the LiDAR installation can be tuned to accomplish this before the transloading work. Mi et al. [35]

discuss a method that directly processes scanlines from a 2D SICK LiDAR. It compares the slope

between every two consecutive points relative to a predefined change-of-slope threshold. When the

slope change is sufficiently large, the two corresponding points are regarded as candidate hatch edge

points. The hatch edge is determined by accumulating the extracted hatch edge points over multiple

scanlines. Mi et al. [36] perform a whole ship scan with four 2D SICK LiDARs. The point cloud

of the ship is preprocessed to remove cargo points. Then, their method calculates the histogram

statistics of the remaining x and y values. Because the cargo points in the hatch have been removed,

the histogram of x values is smaller in the hatch area than in other areas. Therefore, the rising edge

and falling edge of the histogram determine the x-direction hatch edge positions. The same process

is applied separately to determine the y-direction edge positions. The hatch edge positions are cal-

culated once after scanning the whole ship once. Miao et al. [38] use a Livox Horizon solid state

LiDAR, which generates a point cloud of the hatch area every 0.1 seconds. They rasterize each of

these point clouds into an image, where the value of each image pixel is the range between a point

and the LiDAR origin and the columns and rows of the image are defined by the laser emission

angles (i.e., azimuth and elevation). An edge detection algorithm is then used to process this image.

The detected edges are regarded as the hatch edges and used to determine the hatch location. The

algorithm of [38] finds hatch edges for each point cloud. Due to their focus on ship loading, all

three articles assumes the hatch is aligned in the frame of accumulating point cloud. This article

presents an approach designed to work for both loading and unloading operations and for both the

point cloud collected from the crane and robot LiDAR’s. This paper proposes an approach that finds
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the four vertical walls surrounding the hatch (i.e., vertical planes) such that the initial orientation

of the robot relative to the hatch can be determined. Then the approach in our previous work [24]

to extract the hatch from the crane point cloud can work with the adjusted robot point cloud to ex-

tract the hatch. Extracting the same hatch and defining a common reference frame is essential for

cooperative transloading between a crane and a robot.

The literature contains three dominant categories of methods for extracting 3D planes

from an unorganized point cloud: Random Sample Consensus (RANSAC) [16,64], Region-growing

[1], and HT [3, 13, 22]. Choi et al. evaluated different variants of the RANSAC algorithm [11].

RANSAC works well when the desired model is known and most data are inliers of the model. In

this application, the desired model for each hatch wall is a plane. However, the points on any single

hatch wall are only a small portion of the whole point cloud so the probability is small of selecting

three points all on one hatch wall plane. Therefore, using RANSAC to extract hatch edge planes

is not reliable. Region-growing approaches are usually used for point cloud segmentation [58, 67].

Starting from a seed point, each region extends adding neighbor points that have similar character-

istics (e.g., surface normal direction). The points in each region can then be processed to extract a

plane models. This approach requires processing all scanned points to generate the normal of each

point. The computation of estimating normals for a large 3D point cloud is expensive and may not

finish soon on an PC of a robot. The HT is a voting algorithm for detecting parameterized shapes [3].

Each point of the input data is mapped to the parameter space and votes are accumulated for pa-

rameter values. The accumulator determines the best model as the one with the most votes after

all points are processed. Kurdi et al. [54] compare the 3D HT and RANSAC approaches, claiming
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that RANSAC works better for their problem because 3D HT is inefficient in both computation and

space. Our approach will use the 2D HT on a novel rasterization of the point cloud.

Rasterization [26, 29] is a process commonly used to encode a point cloud into an im-

age [2, 19]. Appropriate rasterization reduces the size of the data while retaining the interesting

information. There are different strategies of rasterization. Lang et al. [26] introduce point pillars

for their urban vehicle experiments. Each pillar is a collection of LiDAR reflections in a small

horizontal area. In [26], the corresponding image pixel is determined by processing these points

with a learned model. Li et al. [29] rasterize the point cloud by encoding each image pixel with the

maximum z difference of points in each pillar region. Hackel et al. [20] also have similar idea of

calculating the maximum z different of points in a pillar region.

3.2 Point Cloud Accumulation

The purpose of this section is to introduce the data acquisition process, the data types

used in this method and the geofence used for limiting the amount of points during the point cloud

accumulation.

After being placed in the workspace, the robot will stay at a position where it can scan

the four vertical sides of the hatch, which represent the hatch position. The robot stays static and

rotates the LiDAR (by rotating PT body or platform) to scan and accumulate a point cloud. There

is no strict requirement on how the PT rotates, as long as the lasers can cover as many directions as

possible. As the PT changes its pan (α) and tilt (β ) angles, the LiDAR generates reflections from

a sequence of points Lpi from reflecting surfaces in the environment: cargo, hatch edges, and other
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inner walls in the closed-space. The L-frame points Lpi are transformed into P-frame points Ppi in

real-time using eqn. (2.1).

The methods described herein only use the coordinates of reflected points, not their in-

tensity. The reflection intensity depends on several factors [17] e.g.: range, surface reflectivity,

and angle-of-incidence. Because metal hatches and the ores on the floor do not show significant

intensity differences relative to each other, the intensity measurement is not a reliable variable for

clustering the points in this application.

To limit the extent of the point cloud and remove unneeded points, a geofence is defined to

exclude points reflected from surfaces outside the container (through the hatch) or the time-varying

ground:

PC =
{

Ppi

∣∣∣xS <
Pxi < xS, y

S
< Pyi < yS, he <

Pzi < he

}Ns

i=1
(3.1)

where the geofence bounds xS,xS,yS
,yS,he,he are user-defined, specifying the range similar to the

container size. More about these constants will be discussed in Section 3.9. The point cloud PC

is defined as a conceptual input of the proposed approach, to represent the collection of all points

processed within the geofence for hatch extraction. During experiments, each point Ppi that satisfies

the geofence constraints will be processed at the time that it is generated, which will be illustrated

in Figure 3.2. The point cloud PC is unnecessary for the functioning of the algorithm, but is useful

for the purposes of visualization.

3.3 Problem Statement

The objective in this chapter (i.e., the hatch extraction stage) is to extract the hatch position

from the P-frame point cloud PC. The hatch position is then used for definition of N-frame in the
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Figure 3.1: Schematic of the structure of a point cloud. (Top) View of the hatch along an vector pointing into the hatch
(i.e., the P-frame z-axis). (Bottom) Side view depicting the y-z plane.

real-time positioning stage. This section states the hatch-extraction problem and assumptions, then

defines the subproblems that will be solved to define an approach.

Figure 3.1 depicts the structure of the accumulated point cloud and the axes and origin

of P-frame and H-frame. The origin and axes of H-frame (i.e., the location of the PT and LiDAR)

are shown in red. The x and y axes of P-frame are shown in blue and the P-frame origin and z-

axis are the same with the H-frame origin and z-axis. The point cloud portions corresponding to
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Figure 3.2: Flowchart of the hatch extraction process.

floor surfaces in the hatch are indicated in green. The point cloud portions corresponding to hatch

edge walls are indicated in orange. The point cloud portions corresponding to the ceiling surfaces

surrounding the hatch are indicated in blue. The point cloud portions corresponding to the room

walls are indicated in yellow.

In transloading applications, the crane enters or exits the hatch approximately along the

H-frame z-axis. Therefore, determining the robot position relative to the hatch in the x-y plane is

sufficient to avoid collisions between the crane and the robot. Herein, determining the 3D hatch

edge planes will be simplified to the problem of determining a 2D line in the x-y plane for each of

the four edges. The corners of the hatch in the top-view will be denoted by c j ∈R2, j = 0,1,2,3. As

shown in the top portion of Figure 3.1, the corner with the smallest distance to the P-frame origin is

c0. Starting from c0, the other points are defined consecutively in counter-clockwise order. The edge

line connecting c j and the next counter-clockwise corner defines the line parameters e j = (ρ j,θ j),

where the (x,y) coordinates of point on each line satisfy:

ρ j = xcos(θ j)+ ysin(θ j). (3.2)
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Figure 3.2 illustrates the process of scanning the environment and extracting the hatch

edges from the scanned points. In the following discussion, the geo-fenced point cloud PC will

be described as the input to the process. Note that in real application, each point Ppi ∈ PC can be

processed incrementally, at the time it is acquired, as illustrated in the flowchart.

3.3.1 Assumptions

The assumptions on the hatch are as follows.

1. The P-frame origin, which is defined by the scanning system location, is within the x-y-edges

of the hatch so that it can scan all four hatch edge planes.

2. Each hatch edge is a segment of a plane.

(a) Each plane defining an x-edge has a normal pointing approximately parallel to the H-

frame y-axis.

(b) Each plane defining a y-edge has a normal pointing approximately parallel to the H-

frame x-axis.

This implies that the edges of the hatch rectangle are approximately aligned to H-frame x and

y axes. Therefore, the outline of the hatch in the H-frame x-y view is rectangular.

3. The internal vertical walls in the container are mostly aligned to any one of the hatch edge

planes.

4. The z-extent of the hatch edge plane is deep enough so that the scanning system generates

enough reflecting points on the hatch edge planes.

5. Upper bounds ℓ̄ and w̄ are known for the hatch length and width, respectively.
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6. The robot is initially placed on a nearly level floor such that the N-frame z-axis is nominally

aligned to the P-frame z-axis.

The hatch shape assumption limits the application to rectangular hatches. The assumption of the

relative orientation of the hatch to the H-frame is satisfied by properly parking the vehicle or using

IMU and GPS to measure the misalignment.

3.3.2 Sub-problems

The problem of finding the hatch is divided into the following sub-problems.

Voxelization: Organize PC into an occupancy matrix PG ∈ BNx×Ny×Nz , which is defined as a 3D

binary matrix with Nx rows, Ny columns, and Nz layers. The physical extent of the voxel

structure can be determined by either the extent of PC or by a smaller geofence. Each entry

PGm,n,q of PG indicates whether (PGm,n,q = 1) or not (PGm,n,q = 0) any point of PC is lo-

cated in the volume determined by the corresponding voxel. Herein, PG will be referred to

as the occupancy matrix. The blurred occupancy matrices have utility for improving perfor-

mance in image-based edge detection [4, 14]. Point cloud voxelization is discussed further in

Section 3.4.

Rasterization: Convert PG from a 3D occupancy matrix to a 2D occupancy matrix (i.e., image)

PM ∈ BNx×Ny , such that lines can be extracted from PM. Rasterization is discussed further in

Section 3.5.

Point Cloud Alignement: Find the rotation matrix H
P R0 such that the point cloud PC can be trans-

formed into a H-frame point cloud HC. The normal of each hatch edge plane in HC is nom-
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inally parallel to the N-frame x-axis or y-axis. Point cloud alignment is discussed further in

Section 3.6.

Hatch Edge Extraction: Organize HC into the x-blurred occupancy matrix PBx and y-blurred oc-

cupancy matrix PBy. The blurred occupancy matrices have utility for improving performance

in image-based edge detection [4, 14]. Then, Rasterizing the matrices PBx and PBy into HMx

and HMy, and processing them to extract lines approximately parallel to the H-frame x-axis

and y-axis. Last, calculating the edge position and the hatch size from the extracted lines.

Hatch edge extraction is discussed further in Section 3.7.

Voxelization is straightforward and widely used in the literature [32, 62]. The discussion

of this chapter will be mainly on the point cloud alignment, rasterization, and hatch edge extraction.

3.4 Voxelization of Raw Point Cloud

The point density of the point cloud PS is uneven, decreasing as the distance from the

LiDAR increases. To achieve a desirable density near the edges of the processing region, the density

may be too high in areas close to the scanning system. The process of voxelization [62] both

organizes the point cloud and reduces the density where appropriate [20], without losing density in

other areas. Furthermore, the occupancy matrix PG provides an effective approach to retrieve points

(i.e., voxels) within a small distance from a given voxel, or to extract all z-voxels with the same row

and column indices, as will be necessary for rasterization to be discussed in Section 3.5.

The voxelization process is based on the geo-fence defined in eqn. (3.1) and the user-

defined voxel cell size c. The minimum corner of PG is PLS = [xS, y
S
, he]

⊤. The maximum corner

of PG is PLS = [xS, yS, he]
⊤. The number of voxels NG = [Nx, Ny, Nz]

⊤ in each dimension of PG is
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calculated as:

NG =

⌈PLS − PLS

c

⌉
. (3.3)

The value of each cell PGm,n,q is initialized as 0.

Each point Ppi ∈ PS is located within exactly one corresponding cell in PG. The row,

column, and layer indices of the cell corresponding to Ppi are calculated as:

[mi, ni, qi]
⊤ =

⌊Ppi − PLS

c

⌋
, (3.4)

When Ppi ∈ PS arrives, the value of PGmi,ni,qi is changed from 0 (unoccupied) to 1 (occupied)

because this cell is occupied by point Ppi. The occupancy matrix only tracks if a cell is occupied

without saving the coordinates of the point(s) that occupies that cell. Multiple points located in the

same cell leave the value of the voxel set to 1. Because the points in LiDAR scans are discretely

spaced samples along reflective surfaces, some voxels in PG can be non-occupied even when there

are (undetected) objects in the region of those voxels. However, any occupied voxel means there

was an object reflecting at least one point in its region.

When coordinates are required corresponding to any voxel, a point cloud can be generated

from the 3D occupancy matrix PG. Any cell PGmk,nk,qk that has value 1 (occupied) can be converted

into a 3D point by:

Ppk =
PLS +

[
mk +

1
2
, nk +

1
2
, qk +

1
2

]⊤
c, (3.5)

where Ppk is the point located at the center of cell PGmk,nk,qk . The point cloud corresponding to PG

is the output of a voxel filter, which is only used for visualization.
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Figure 3.3: Schematic cross-section of the H-frame y-z plane depicting the scanned surfaces of the container from the
robot.

3.5 Rasterization of Raw Point Cloud

Example surfaces corresponding to the point clouds scanned by the robot is depicted

in Figure 3.3. The red cross indicates the LiDAR position. The solid green, orange, and blue

curves represent LiDAR points reflected from the floor, hatch edge plane, and ceiling, respectively.

The gray box only indicates the position of the robot, which is not scanned. The gray dash lines

indicate various LiDAR ray-tracings. The black dash lines indicate surfaces that are unscanned

due to occlusion. The red dash lines are separators between different types of pillar regions for

rasterization. Those pillar regions are defined and discussed in next.

All entries PGm,n,q of PG that have the same m and n are considered as one occupancy

vector PVx
m,n = {PGm,n,1, ...,

PGm,n,Nz} ∈ BNz . For each index pair (m, n), where m = 1, ...Nx, n =

1, ...Ny, the occupancy vector PVx
m,n physically represents the occupancy status of a pillar region
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Figure 3.4: Schematic of a voxel grid and a pillar region. E.g., the orange voxels make one pillar region Vm,n with
m = 5,n = 1.

in PG. An example is shown in Figure 3.4. There are five types of pillar regions, with examples

shown in Figure 3.3. Type-A includes only one cluster of points from the ceiling. Type-B is an

empty region, due to occlusion. Type-C only includes one cluster of points from the floor. Type-D

includes two clusters of points from both the ceiling and the floor. Type-E includes points from the

hatch edge plane segment and floor.

This section presents an approach to define the boolean value of each image pixel PMm,n

by processing the occupancy vector PVm,n. The goal is to set PMm,n to 1 for type E and 0 for types

A-D. For the rest of this section, the subscripts m and n, and the super-script P of PVm,n are dropped

to simplify notation. Therefore, the representation of the occupancy vector PVm,n is simplified in

this section as V = {v1, ...,vNz}.
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The occupancy status in V is naturally ordered from the smallest to the largest z. The

value of each element in V indicates if any surface was scanned in the voxel corresponding to that

z-value in the pillar. The property that LiDAR points are discretely spaced in PC also applies to V.

Let lV
m,n be the length of the longest block of consecutively filled cells in Vm,n, allowing for gaps

with tolerance of bv pixels, where bv is a user-defined non-negative integer. For example, given a

vector V = [0, 1, 1, 0, 1, 0, 0, 1]⊤ and a tolerance on one ‘0’ for a gap, there are two blocks in the

vector, i.e., the 2-nd to 5-th terms and the 8-th term. Therefore, the length of the longest block lV
m,n

equals the length of the first block: lV
m,n = 4. An occupancy vector V of the pillar region of Type-E

is expected to have a higher lV
m,n than a pillar in regions of types A-D. With a lower bound be on the

z-direction extent of the hatch edge, the value of lV
m,n is expected to have a value of at least be

c for a

pillar in a Type-E region. Therefore, the value of each PMm,n in PM is:

PMm,n =


1, if lV

m,n ≥ be
c

0, otherwise.

(3.6)

The ‘1’s in PM indicate those entries detected as candidate points for vertical walls. Those candidate

points will be used to detect lines in Section 3.6.2.
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3.6 Raw Point Cloud Alignment

Figure 3.5: Schematic for the top-view of the point cloud PC when referring to the robot orientation.

When the robot is initially placed in the room, the robot orientation is not precisely con-

trolled. Therefore, the hatch rectangle usually does not align to the P-frame axes. The schematic

top-view of the accumulated point cloud is shown in Figure 3.1 (Top). When referring to the robot

orientation (i.e., P-frame axis directions), the schematic in Figure 3.1 can be rotated such that P-

frame x-axis points right and P-frame y-axis points up in the page. The value of the rotation angle

is the same with the value of the angle-of-misalignment ϕ as shown in Figure 3.5. With the As-

sumption 6, the rotation matrix H
P R0 represents a rotation around the P-frame z-axis. This section

discusses the approaches to determine the rotation matrix H
P R0. Section 3.6.1 discusses a method

to manually pick a few key points in PC and calculate the matrix H
P R̂0. Section 3.6.2 discusses a
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method to estimate the angle-of-misalignment ϕ̂ = ϕ +δϕ , where δϕ is the difference between the

estimated value and truth. Then the rotation matrix is calculated with ϕ̂ as:

H
P R̂0 =



cos(ϕ̂) sin(ϕ̂) 0

−sin(ϕ̂) cos(ϕ̂) 0

0 0 1


. (3.7)

Each point of PC can be transformed into H-frame by eqn. (2.4). When the alignment

rotation matrix is calculated with either method in Sections 3.6.1 and 3.6.2 , the transformed point

cloud HC is computed as:

HC = H
P R̂0 PC. (3.8)

3.6.1 Alignment Rotation Matrix: Manual Pick

After the robot scans the point cloud PC, the shape and density of the point cloud is suffi-

cient for a human to distinguish objects and structure of the container. A straightforward approach

is for the operator to manually pick four points in P-frame, which can be used to calculate three

vectors corresponding to the axes of P-frame. The rotation matrix H
P R0 satisfies:Hex

Hey
Hez

= H
P R0

Pex
Pey

Pez

 , (3.9)

where Hex = [1, 0, 0]⊤, Hey = [0, 1, 0]⊤, and Hez = [0, 0, 1]⊤ are the three axis direction vectors

of H-frame represented in H-frame. The unit vectors Pex, Pey, and Pez are the same H-frame axis

direction vectors represented in P-frame at time tk = 0.
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Given the point cloud PC, the hatch corner points p1
a, p0

b, p1
b, p1

c ∈R3 (see Figure 1.1) can

be manually selected from PC. The three edges passing p1
b can be represented as: vba = p1

a − p1
b,

vbc = p1
c − p1

b, and v10
b = p0

b − p1
b. Note that v10

b is nominally [0, 0, 1]⊤ because of Assumption 6.

The vectors vba, vbc and v10
b are perpendicular to each other because they are each parallel to an

axis. Therefore, the axis direction vectors in P-frame are calculated as:Pêx
Pêy

Pêz

=

 vba
∥vba∥

vbc
∥vbc∥

v10
b

∥v10
b ∥

 . (3.10)

Substitute the calculated axis direction vectors into eqn. (3.9) yields:Hex
Hey

Hez

= H
P R0

 vba
∥vba∥

vbc
∥vbc∥

v10
b

∥v10
b ∥

 , (3.11)

therefore, the rotation matrix H
P R̂0 is calculated as:

H
P R̂0 =

Hex
Hey

Hez

 vba
∥vba∥

vbc
∥vbc∥

v10
b

∥v10
b ∥

−1

(3.12)

The advantage of the manual-pick method is that this method can reliably return the rota-

tion matrix H
P R̂0 as long as the operator can find the correct hatch corners. Also, this approach does

not require the initial orientation of the robot. However, this method requires human intervention

which is time-inefficient and preferred to be avoided.

3.6.2 Alignment Rotation Matrix: Manual Manipulation

This section introduces a method to automate the process of determining the angle-of-

misalignment ϕ based on Assumption 6. When the robot is initially placed in the room, its heading

can be roughly aligned to a predetermined direction (i.e., the direction of H-frame x-axis) with ϕ

less than π

4 radian as shown in Figure 3.5. In this application, most of the walls inside the container,
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and the hatch edge planes are perpendicular to the bottom of the container (see Figure 3.1 (Bottom)),

and these walls inside the container (yellow) and the hatch edge planes (orange) are also aligned.

These two types of plane segments make type-E pillar regions, which produces 1-pixel’s during

rasterization and leads to an image PM as shown in Figure 3.6.

Figure 3.6: Schematic for the P-frame image PM. The grey rectangle and the axes are indicating the robot orientation,
not in the image. The color of the orange and yellow rectangles only indicates they are 1-pixel’s. There is not a real-value
for each pixel.

The HT algorithm is set up for extracting the edge lines of the orange and yellow rectan-

gles. The HT algorithm, as introduced in Section 2.6, is used to extract the lines of the orange and

yellow rectangle edges in Figure 3.6. Because the angle-of-misalignment ϕ is in the range of (−π

4 ,

π

4 ) by manual manipulation, the angle-range of the HT voting table is set to θ 0
x ∈ (−π

4 , π

4 ) to extract
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lines almost parallel to H-frame x-axis and θ 0
y ∈ (π

4 ,
3π

4 ) to extract lines almost parallel to H-frame

y-axis. The super-scripts of θ 0
x and θ 0

y indicate the ranges are set for the HT in the initialization

stage. The resolution-of-distance ∆ρ is set to the cell size c and the resolution-of-angle ∆θ is set to

c
ℓ̄
.

When searching in the image PM with HT range as θ 0
x , the HT algorithm returns an array

of N0
x line candidates. Each of these line candidates is represented as (ρi, θi, ui), where ρi is the

line distance, ui is the number of votes and θi is a line angle between - π

4 and π

4 . Similarly, a second

array of N0
y line candidates are extracted from PM with the HT angle range as θ 0

y , which are lines

nominally extracted from the rectangle edges parallel to H-frame y-axis. Each line of the second

array is denoted as (ρ j, θ j, u j). Because the x and y axes are perpendicular, rotating each line of

(ρ j, θ j, u j) by 90 degrees (i.e., θ̃ j = θ j − π

2 ) should result in a line that is nearly parallel to H-frame

x-axis, which can be represented as (ρ j, θ̃ j, u j).

The candidate line angle θi and θ̃ j are expected to be close to the angle-of-misalignment ϕ .

A vector of candidate angle-of-misalignment Θ = [θ , θ +∆θ , . . . , θ̄ ] is defined. The range of Θ is

determined as the minimum and maximum angle among all line candidates, respectively:

θ = min{min{θi : i = 1, . . . ,N0
x }, min{θ̃ j : j = 1, . . . ,N0

y }}, (3.13)

θ̄ = max{max{θi : i = 1, . . . ,N0
x }, max{θ̃ j : j = 1, . . . ,N0

y }}. (3.14)

A vector of votes U = {Uk : k = 1, . . . ,Nu} is defined with the same length Nu =
θ̄−θ

∆θ
of Θ to count

votes. Each element Uk represents the number of votes for k-th candidate angle Θk = θ +(k−1)∆θ

in Θ. The value of Uk is the sum of the votes of all line candidates with the same angle with Θk:

Uk = ∑
i

ui[θi = Θk] + ∑
j

u j[θ̃ j = Θk], (3.15)
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where

[θi = Θk] =


1 if θi = Θk

0 else

, [θ̃ j = Θk] =


1 if θ̃ j = Θk

0 else

. (3.16)

The candidate angle Θ∗, which has the most votes U∗ = max(U), is determined as the misalignment

angle ϕ̂ = Θ∗. The alignment rotation matrix H
P R̂0 is calculated by substituting ϕ̂ into eqn. (3.6):

H
P R̂0 =



cos(ϕ̂) sin(ϕ̂) 0

−sin(ϕ̂) cos(ϕ̂) 0

0 0 1


(3.17)

3.7 Hatch Edge Extraction

Figure 3.7: Schematic for the H-frame image HM. This image is produced by rotating the image PM.
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The schematic of the image HM is shown in Figure 3.7, which is the result of rotating PM

with eqn. (3.8). This section discusses using HT to extract the hatch edges, which are represented

as the orange lines in HM (see Figure 3.7). The hatch x-edges will be represented in the image HM

as vertical lines and y-edges in HM as horizontal lines. The method in this section is presented only

for extracting the x-edges. The approach applies to the y-edges extraction by analogy.

The hatch edge lines are represented by the eqn. (3.2), where each line is parameterized

with a pair of (ρ, θ). The angular range of the HT is θx ∈ (−δθ ,δθ ) for x-edges, where δθ is a small

angle determined considering the residual of the angle-of-misalignment δϕ after the alignment (i.e.,

δϕ ∈ (−δθ ,δθ )). The resolution-of-distance ∆ρ is set to the cell size c and the resolution-of-angle

∆θ is set to c
ℓ̄
.

All HM image pixels with value 1 (i.e., the orange and yellow pixels in Figure 3.7) partici-

pate in HT voting for candidate lines. The parameters of the extracted candidate lines with sufficient

votes are denoted as (ρx
i , θ x

i ) for i = 1, . . . ,Nx
E , where Nx

E is the number of extracted vertical lines

from HM and the lines are sorted in ascending order based on the value of line parameters ρx
i :

ρx
1 ≤ . . .≤ ρx

Nx
E
. Based on Assumption 1, the two lines nearest to and on opposite sides of the origin

should correspond to the hatch edges e1 and e3. Define

i1 = argmax
ρi>0

(ρi) and i3 = argmin
ρi<0

(ρi).

The line defining e1 is parameterized as (ρi1 , θi1). The line defining e3 is parameterized as (ρi3 , θi3).

The edges parallel to the P-frame y-axis are similarly extracted to define e0 and e2 by

processing HM in a manor analogous to that described above. The angle range of the HT for

extracting y-edges is θy ∈ (π

2 −δθ ,
π

2 +δθ ).
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Because the edge lines in the aligned image HM is either vertical or horizontal, taking

a histogram of point number over the H-frame x-direction (y-direction) can also determine the

distance from the edges to the origin in the x-direction (y-direction). When taking a histogram of

the point number in the x-direction in Figure 3.7, there should be four spikes in the x-direction.

Each of the spikes corresponds to one vertical line. Therefore, the distance from the edges to the

origin can be determined by detecting the spikes and taking the closest two spikes on opposite sides

of the origin in the histogram. The corresponding x values of the these two spikes can determine the

distance of the two edges e1 and e3. Similar method can be applied in the y-direction to determine

the distance of the other two edges e0 and e2. The method of this paragraph is not used in the

dissertation but can be an alternative of the method in this section to extract the hatch edges.

3.8 Localization Initialization

This section focuses on the establishment of the navigation frame (i.e., N-frame) and

the determination of the initial robot pose (i.e., orientation and position) based on the point cloud

alignment results in Section 3.6 and hatch extraction results of Section 3.7. The navigation map is

built after the determination of the initial position and orientation.

The initial position of the robot in N-frame can be represented by a vector from the N-

frame origin to the P-frame origin: NT0
NP. The initial orientation of the robot in N-frame can be

represented by a rotation matrix for transforming a point from P-frame to N-frame: N
P R0. The right

superscripts of NT0
NP and N

P R0 are 0 indicating that they are the initial position and orientation to be

determined in this section.
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The initial position NT0
NP can be manipulated as:

NT0
NP = NTNH +NT0

HP, (3.18)

where NT0
HP is the vector from H-frame origin to P-frame origin during initialization. Therefore,

the vector NT0
HP = 0. The another vector NTNH is the vector from N-frame origin to H-frame origin

represented in N-frame.

In Section 3.7, the line corresponding to edge e0 is extracted and denoted as (ρi0 ,θi0),

and the line corresponding to edge e3 is extracted and denoted as (ρi3 ,θi3). Therefore, as shown in

Figure 3.7, the vector NTNH is determined as:

NTNH =


|ρi0 |, |ρi3 |, 0

⊤

, (3.19)

where the third element is zero by definition in Section 2.2. Substituting eqn. (3.19) into eqn. (3.18)

yields:

NT̂0
NP = NTNH +0

=


|ρi0 |, |ρi3 |, 0

⊤

,

(3.20)

which is the result of the initial position of the robot in N-frame.

The rotation matrix for initial orientation N
P R0 can be manipulated as:

N
P R0 = N

HR H
P R, (3.21)
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where N
HR is known from eqn. (2.8) and H

P R is determined in Section 3.6 as H
P R̂0. Therefore, the

initial orientation can be calculated as:

N
P R̂0 =



0 1 0

1 0 0

0 0 −1


H
P R̂0 . (3.22)

The navigation map herein is the same point cloud of PC represented in N-frame: NC.

Each point Ppi ∈ PC is transformed into a N-frame point Npi using eqn. (2.5) with k = 0:

Npi =
N
P R0 Ppi +

NT0
NP, (3.23)

where the initial rotation matrix N
P R0 and translation vector NT0

NP are determined in eqns. (3.20) and

(3.22). Therefore, the map NC is the result of transforming every points in PC:

NC = N
P R̂0 PC+NT̂0

NP, (3.24)

3.9 Summary of Constant Parameters

This section discusses the various constants involved in the method and provides advice

about selecting their values.

Geofence parameters xS, xS, y
S
, yS, he, he (meters): These constants are used in eqn. (3.1) to de-

fine the geofence. The purpose is to limit the extent of the accumulated point cloud while

retaining all point reflected from surfaces depicted in Figure 3.1. The values are user-defined

based on local knowledge of the container size.
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Cell size c (meters): The cell size is used in the definition of the three occupancy matrices PG, HBx,

and HBy. It determines the resolution of these voxelized point clouds. For a given point cloud

region, the memory requirements of each occupancy matrix scales cubically with 1
c . Larger

structures also require longer processing time. The cell size needs to be small enough to meet

the localization accuracy requirement and large enough to be comparable with the accuracy

of the raw data. Herein, the cell size is 10cm through all experiments which is comparable

with the accuracy of the raw LiDAR range data.

Parameters for gaps: bb, bv (pixels): The purpose of these parameters is to improve edge extrac-

tion performance [4, 14]. These constants are used in Sections 3.5 and 3.7.

Hatch edge plane depth lower bound be (meters): This constant is used in eqn. (3.6) to check

whether each occupancy vector (i.e., pillar) is deep enough in the z-direction to be regarded

as a piece of a hatch edge plane. It needs to be large enough to reject small plane segments

and small enough so that hatch edge points are recognized.

Hough-Transform angular search range δθ (radians): This constant defines the searching range

of HT. It is used in Sections 3.6.2 and 3.7 to limit the HT angular search to a proper range.

In Section 3.6.2, this constant must be large enough to account for misalignment of the hatch

edges with the P-frame x and y axes. It should be smaller than 45 degrees in Section 3.6.2 to

avoid finding unexpected lines. In Section 3.7, this constant can be a small value because of

the point cloud alignment. As it is increased, the HT computation time will increase.
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Chapter 4

Frame Definition and Pose Initialization

Experiments

This chapter discusses the experimental setup and results. For the hatch extraction ob-

jective, the sensors used is the LiDAR and PT. The LiDAR used to perform the experiments is a

RS-BPearl (RSBP). The PT used is a normal industrial PT which can rotate up to 15 degrees per

second.

The robot is first placed into the working area as in Figure 3.1 (top), then the robot remains

stationary and the PT is at zero position (i.e., both pan and tilt angle are zero). The point cloud

returned by the LiDAR at this time is mainly the upper part in Figure 3.1 (bot) (i.e., hatch wall,

celing surface, and partial room wall). Once the point cloud accumulation starts, the PT will drive

the LiDAR to rotate. First, the head will adjust the tilt angle to 75 degrees, and at this angle the

LiDAR will scan mainly the right half of Figure 3.1 (bot) (i.e., the right side of the hatch wall,

ceiling, walls, and floor). Next, the PT tilt angle is kept constant, the PT pans for two cycles (i.e.,
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720 degrees) and then returns to zero position to end the point cloud accumulation. Then, the

approach introduced in this chapter is applied to process the accumulated point cloud.

The choice of PT rotation pattern or sensor for this approach is not strict, as long as it

generates a dense enough point cloud to meet the requirements.

4.1 Point Cloud Model

This section focuses on showing the data processed by the hatch extraction approach.

Figure 4.1 shows a side view of the voxelized P-frame accumulated point cloud PG, where the co-

ordinate system in the lower left corner only indicates the directions of the P-frame axes. Figure 4.2

shows the top view of PG, where the coordinate system indicates the P-frame origin position and

the coordinate axis direction.

Figure 4.1: The voxelized P-frame accumulated point cloud PG. (The axes in the figure indicate only the direction, not
the origin of P-frame.)
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Figure 4.2: The top-view of the voxelized P-frame accumulated point cloud PG. (The axes in the figure indicate both the
direction and origin of P-frame. )

The color of the point cloud is rendered using the z-value of each point for display pur-

poses. The color of the points changes from blue to red, indicating the increase in z-value. Since

the points on the floor are not needed for the hatch extraction and are not used to build the map for

later positioning, the points with small z-values are excluded by the geofence in eqn. 3.1 and are

not shown in Figures 4.1 and 4.2. If there is a need to manage the floor point cloud, the part of the

points with small z-values can be saved separately in a separate point cloud.

4.2 Rasterization Results

With the voxelized point cloud PG, which is shown in Figures 4.1 and 4.2, this sec-

tion discusses the results of rasterizing PG into a black-and-white image. Note that the number of
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Figure 4.3: The image PM rasterized from the point cloud PG.

hatch edge points is a small percentage of the overall point cloud PG. Therefore, methods such as

RANSAC are unlikely to succeed.

The rasterization result PM is obtained by applying the approach discussed in Section 3.5.

The image PM is shown in Figure 4.3. The blue cross in the Figure 4.3 represents the position of the

P-frame origin in the image. Each pixel indicates if the pixel correspond to a 10 × 10 cm2 type-E

pillar region. The parameter be is 1 meter, which means each black pixel represents a pillar region

containing a continuous length of at least 1 meter in this pillar region.

4.3 Alignment Results

The HT algorithm is applied twice to extract lines from the angular ranges θ 0
x and θ 0

y as

discussed in Section 3.6.2. The angular resolution ∆θ = c
ℓ̄
= 0.1

30 ≊ 0.003 rad, where ℓ̄ is the approx-

imate hatch length in this application. In both line extraction, the extracted line candidates that are
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Figure 4.4: The image PM with lines separately extracted in the range of θ 0
x and θ 0

y .

the shorter than 10 meters are discarded to only keep lines rasterized from large plane segments.

Each extracted line includes the line parameters and the votes of the line candidate: (ρ, θ , u).

In this section, the approach focus on determining the rotation matrix H
P R̂0 to align the

point cloud. Therefore, only the angles θ of the extracted lines are analyzed. The extracted lines

are depicted as several overlapping lines in Figure 4.4 each drawn with a line width corresponding

to the cell size. The lines extracted from PM with θ ∈ θ 0
x are shown as yellow lines. The angles of

these extracted lines θi are shown in Figure 4.5 as yellow points. The lines extracted from PM with

θ ∈ θ 0
y are shown as cyan lines. The angles of these extracted lines θ j are adjusted: θ̃ j = θ j − π

2 ,

and then shown in Figure 4.5 as cyan points. Note that the points in the red rectangle in Figure 4.5

correspond to the lines in the red rectangle in Figure 4.4, which was unexpected but needs to be

avoid for determining the rotation matrix H
P R̂0.
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Figure 4.5: The votes of each candidate line angle θi and adjusted candidate line angle θ̃ j of the extracted lines in
Figure 4.4.

According to Assumptions 2 and 3, the hatch is a rectangle and most of the vertical planes

in the container are aligned with the hatch edge planes. Therefore, after being adjusted by 90

degrees, the angles of the lines extracted by the second HT should be roughly distributed in a smaller

range from the angles of the lines extracted by the first HT, as most of the points in Figure 4.5 are

distributed between -15 degrees and -10 degrees. A few vertical planes that are not aligned with any

of the hatch edge planes will produce outliers that are not in this interval, e.g., the outliers shown

in Figures 4.5 and 4.4). In Figure 4.5, the relationship between the angle of each extracted line

corresponding to the number of votes during the HT is shown. Each point shown in Figure 4.5

has at least 10
c = 10

0.1 = 100 votes. The more the line represented by each point in Figure 4.5 fits

the data shown in Figure 4.3 (i.e., black pixels), the higher the number of votes it receives. If an
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outlier line corresponds to a very long straight line in Figure 4.3, there is possibility that this line

can have the highest votes during HT among all extracted lines. To avoid the effect of these outliers

on determining the rotation matrix, the votes of lines are summed according to their corresponding

angles: if the adjusted angles of several lines are the same, votes of the corresponding lines are

summed up. The relationship of the summed votes corresponding to the adjusted angles is shown

in Figure 4.6.

Figure 4.6: Votes of point cloud misalignment angle ϕ calculated from the cyan and yellow line extraction results.

The relationship between the cyan and yellow line angles θ and the misalignment angle

ϕ was discussed in Section 3.6.2. The angle with most votes Θ∗ are selected as the misalignment

angle ϕ̂: ϕ̂ = Θ∗ =−12.46 degrees = -0.217 rad. Therefore, the rasterized image PM can be rotated

by the angle ϕ̂ . The rotated image is shown in Figure 4.8.
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Figure 4.7: The image obtained by rotating the rasterization image PM by the estimated misalignment angle ϕ̂ .

4.4 Hatch Edge Extraction Results

Figure 4.8: The HT line extraction results with δθ = 0.1 degree.

Figure 4.8 also shows the line extraction results after the rotation discussed in Section 3.7.

The hatch edges are extracted as the two cyan lines closest to the blue cross on opposite sides in the

y-direction and the two yellow lines closest to the blue cross on opposite sides in the x-direction.
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The distance parameter of the four extracted edge lines are: ρi0 =−2.6m, ρi1 = 9.1m, ρi2 = 14.1m,

and ρi3 =−10.4m.

4.5 Localization Initialization Results

The initial position is calculated with the hatch edge distances |ρi0 |= 2.6m, |ρi3 |= 10.4m

using eqn. (3.20): NT̂0
NP = [2.6, 10.4, 0]⊤. The alignment rotation matrix H

P R̂0 is calculated using

eqn. (3.17):

H
P R̂0 =



cos(−12.46× π

180) sin(−12.46× π

180) 0

−sin(−12.46× π

180) cos(−12.46× π

180) 0

0 0 1


=



0.9764 −0.2158 0

0.2158 0.9764 0

0 0 1


. (4.1)

Therefore, the initial orientation is calculated using eqn. (3.22):

N
P R̂0 =



0 1 0

1 0 0

0 0 −1


H
P R̂0 =



0.2158 0.9764 0

0.9764 −0.2158 0

0 0 −1.0000


. (4.2)

With the initial position and orientation, the N-frame map point cloud can be established

with eqn. (3.24). The map point cloud is shown in Figure 4.9. The N-frame in Figure 4.9 is moved to

avoid overlapping with the point cloud. The exact origin is below the corner and at the same height

with the robot. The axis directions are the same as the axes shown in the Figure 4.9. Note that the

color is still rendered using the z-value of each point and the color of the points changes from blue
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to red, indicating the increase in z-value. Therefore, the points lower in the physical world is shown

in warmer color in Figure 4.9.

Figure 4.9: The navigation map point cloud NC. (The axes in the figure indicate only the direction, not the origin of
N-frame.)
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Chapter 5

Real-Time Localization Theory

In this chapter, several approaches of using estimated pose, velocity, angular rate and IMU

measurements to calculate priors for reliable ICP registration are discussed and compared. The

approach with the best performance on real-time localization is selected based on the experiment

results.

The sections of this chapter are organized as follows: Section 5.1 introduces some related

papers; Section 5.2 defines the problem discussed in this chapter; Section 5.3 discusses several

approaches to determine the robot pose in real-time; Section 6.2 shows the evaluation of different

IMU measurements because some types of the IMU measurements are not considered as reliable

as the others in the experiments of this chapter; Section 6.3 shows and discusses the localization

results of the various approaches introduced in Section 5.3.
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5.1 Literature Review

LiDAR is widely used for localization because of its high ranging accuracy and capacity

of working in some challenging scenario (e.g., night and underground environments) where GPS

and camera are inappropriate. Trybala [56] evaluates an ICP-based approach only using LiDAR

to localize the robot in a mine tunnel and build a point cloud map. Li et al. [27] design a method

based on LiDAR and odometry to extract floors and walls and efficiently estimate the robot position

for real-time localization. Zhang et al. [68] use IMU measurements to calculate the orientation

and registering LiDAR scans to localize the LiDAR and build a point cloud map. Ye et al. [65]

introduce a tightly-coupled approach using LiDAR and IMU sensors. The fusion of LiDAR and

IMU sensors achieves better prior for point cloud matching and also results in a higher update rate

of the localization. Zheng et al. [70] introduce a LiDAR-based localization approach efficiently

storing point such that it can be used in large-scale scenario. The approaches above need to create

the point cloud map simultaneously with localization, while the vehicle in our problem can scan

the container to build the basemap before it moves. The pre-built map provides the target that the

scans can align to for localizing the vehicle. Xu et al. [61] propose an approach with stereo camera

for localization on a point cloud map. Pfrunder et al. [39] use LiDAR and IMU with a basemap

for localization. For the problem of localizing within a basemap, the problem can be regarded as a

point cloud alignment problem. As a widely used algorithm for point cloud registration, ICP [6] has

many variants [18, 28, 30, 31, 47, 49, 60] and most of the paper introduces above use a kind of ICP

algorithm for the point cloud matching. Men et al. [33] use an addition dimension calculated from

the RGB values beside of the coordinates of each point. Chen [10], Low [31] use point-to-plane

metric and Censi [8] uses point-to-line metric for distance calculation instead of the point-to-point
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metric. Pomerleau et al [40, 41] present a review of ICP algorithms and compare different variants.

In our problem, the LiDAR data includes the 3D coordinates and the normal of the basemap points

are estimated after accumulation. Therefore, we will use an ICP algorithm implemented with the

point-to-plane metric.

5.2 Problem Statement

To coordinate its work with the crane, the robot needs to provide its real-time position

and orientation to the crane within a common reference frame. This common reference frame

(i.e., N-frame) is defined in Section 3.8. The approach used by the crane to define this common

reference frame is discussed in [24]. The focus of this chapter is determination of the robot position

and orientation in N-frame during the transloading work. In this chapter, the robot position is

represented as NPk, where NPk = NTk
NP as introduced in Section 2.3, and the robot orientation is

represented with N
P Rk. The pose determination at t0 for the initial position NP0 (i.e.,NT0

NP ) and

orientation N
P R0 of the robot are discussed in Section 3.8. Therefore, this chapter only discusses

updating the position NPk and orientation N
P Rk for k > 0.

During initialization, the LiDAR points are accumulated, voxelized, and transformed to

create a point cloud of the environment (i.e., a basemap) NC as defined in Section 3.8. A new LiDAR

scan PSk is generated every 1
fl

second at tk (i.e., the start time of the k-th epoch) as introduced in

Section 2.1. The problem is to estimate the position NPk and orientation N
P Rk at the tk such that

the points of PSk can be transformed using eqn. (2.5) and the transformed point cloud matches the

basemap NC.
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The IMU measurement frequency is fm
fl
= 20 times the scan-rate of the LiDAR as intro-

duced in Section 2.1. Therefore, the IMU measurements can be used to maintain the position NTk,i
NP

and orientation N
P Rk,i between two LiDAR scans (i.e., scans PSk and PSk+1), where the superscript

i is the index of the IMU measurements in the k-th epoch. The approaches to register the scan PSk

to the basemap NC using different measurements and prior knowledge will be discussed next in

Section 5.3.

5.3 Pose Update

This section discusses the process to update the robot pose in real-time using LiDAR scans

when the robot is moving. The new scan collected at time tk in P-frame is denoted as PSk. The scan

NSk is the same scan as PSk, after it is correctly transformed and expressed in N-frame. The goal

of this section is to estimate NTk
NP and N

P Rk for each k > 0 when the robot may have translated or

rotated relative to its original pose such that PSk can be transformed into NSk using eqn. (2.5) and

aligned to the basemap NC.

Section 5.3.1 discusses the feasibility of estimating the pose without using any prior in-

formation. Sections 5.3.2 to 5.3.4 use different priors to transform the scan PSk into an A-frame

scan ASk, which is roughly aligned to the basemap, using eqn. (2.6). As a prior of the pose update

at tk, Section 5.3.2 uses the estimated pose at tk−1; Section 5.3.3 uses the estimated pose at tk−1 and

the estimated velocity, which is calculated using the estimated pose at tk−1 and tk−2; Section 5.3.4

uses the estimated pose at tk−1 and the angular velocity from IMU.
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5.3.1 ICP: No prior

Without prior knowledge of the vehicle pose, the goal is to find the correct transformation

to match the scan PSk to the basemap NC directly:

[NP R̂k,NT̂k
NP] = ICP(NC,PSk), (5.1)

and get the rotation matrix N
P R̂k and translation NT̂k

NP to transform a point cloud from P-frame to

N-frame at time tk.

The process discussed above tries to register a scan collected with changed vehicle pose to

the basemap that built at the initial robot pose. For our application, the map NC can be dense enough

by rotating the PT slowly to scan the environment. But the scan PSk is point cloud generated in one

LiDAR scan, so that the point cloud is sparse and less informative than the map. In the case that the

robot rotates 180 degrees after building the map, it is unreasonable to expect that the ICP algorithm

can converge and get a transformation to rotate the scan by 180 degrees and match the map. More

likely, the algorithm will converge to a local-minimum. Then the calculated transformation rotates

the scan to a random place, which also minimizes the spatial distance between the scan and the map.

But it is not the correct place for the scan in the N-frame.

5.3.2 P-ICP: Estimated Pose

This section introduces the steps of updating the pose at tk with the estimated pose at time

tk−1. The problem of estimating NPk and P
NRk can be reorganized to a problem of estimating the

difference between NPk and NPk−1, and the difference between P
NRk and P

NRk−1. The robot position

at tk−1 and tk are NPk−1 = NTk−1
NP and NPk = NTk

NP, respectively. The difference of these two position
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is defined as NPk
k−1 =

NPk −NPk−1. Therefore, the position at tk can be represented as:

NTk
NP = NPk (5.2)

= NPk
k−1 +

NPk−1. (5.3)

The rotation matrix P
NRk represents the rotation from the N-frame at tk to the P-frame at tk. The

rotation matrix P
NRk−1 represents the rotation from the N-frame at tk−1 to the P-frame at tk−1. The

rotation matrix PRk
k−1 represents the rotation from the P-frame at tk−1 to the P-frame at tk. Therefore,

the rotation from N-frame at tk to P-frame at tk−1 can be expressed as:

P
NRk = PRk

k−1
P
NRk−1. (5.4)

Because the transpose of a rotation matrix coincides its inverse: (P
NRk−1)−1 = N

P Rk−1, transposing

both sides of eqn. (5.4) yields:

N
P Rk = (P

NRk−1)⊤ (PRk
k−1)

⊤

= N
P Rk−1 PRk−1

k .

(5.5)

Substituting eqns. (5.3) and (5.5) into eqn. (2.5) yields:

Npi =
N
P Rk Ppi +

NTk
NP

= N
P Rk−1 PRk−1

k
Ppi +

NPk
k−1 +

NTk−1
NP .

(5.6)

where N
P Rk−1 and NTk−1

NP are determined at the epoch of time tk−1, and the point Ppi refer to each

point of the scan PSk.

To reduce the misalignment between the scan PSk and the basemap NC and find better

correspondence between them for running ICP algorithm, A-frame is defined as a temporary frame

at tk for the roughly alignment as introduced in Section 2.2. The transformation from P-frame to

A-frame is defined in eqn. (2.6). In this section, the estimated position NP̂k−1 and orientation P
NR̂k−1
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at tk−1 are used as the prior knowledge: NP̄k = NP̂k−1 and P
NR̄k = P

NR̂k−1. Therefore, the scan PSk is

roughly aligned to NC as:

Api =
N
P R̂k−1 Ppi +

NP̂k−1, (5.7)

where A-frame is defined as a temporary frame at tk for the rough alignment as introduced in Sec-

tion 2.2. After the rough alignment, the scan PSk is transformed into ASk. The ICP algorithm using

the prior estimated position NP̂k−1 and orientation P
NR̂k to register PSk into NC is expressed as:

[Rr, Tr] = ICP
N
P R̂k−1,N P̂k−1

(NC,ASk), (5.8)

which is used to calculate a rotation matrix Rr and a translation vector Tr such that the scan ASk can

be transformed with Rr and Tr to match the basemap NC:

Npi = Rr
Api +Tr, (5.9)

= Rr (
N
P R̄k Ppi +

NT̄k
NP)+Tr, (5.10)

= Rr
N
P R̄k Ppi +Rr

NT̄k
NP +Tr. (5.11)

Comparing eqn. (5.11) with eqn. (2.5) yields:

NPk = Rr
NT̄k

NP +Tr, (5.12)

= Rr
NP̄k +Tr, (5.13)

and

N
P Rk = Rr

N
P R̄k, (5.14)

therefore, in this section, the position at tk is calculated as:

NPk = Rr
NPk−1 +Tr. (5.15)
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and the orientation at tk is calculated as:

N
P Rk = Rr

N
P Rk−1. (5.16)

5.3.3 PV-ICP: Estimated Pose, Velocity, and Angular Rate

Building on the discussion in Section 5.3.2 of using the robot pose at tk−1 as a prior of the

robot pose at tk, this section further discusses the use of the robot pose at tk−1, and the robot velocity

estimated using the robot pose at tk−1 and tk−2 to calculate a prior of the robot pose at tk.

5.3.3.1 Orientation Prior

The orientations estimated at time tk−2 and tk−1 are P
NR̂k−2 and P

NR̂k−1, which are used

for calculating the orientation difference next. The orientation difference between tk−1 and tk−2 is

defined as PRk−1
k . Taking the orientation at tk−1 to the left side of eqn. (5.5) and then swap the two

sides yields:

PRk−1
k = (N

P Rk−1)−1 N
P Rk. (5.17)

For the orientation difference between tk−1 and tk−2, k−1 is used instead of k in eqn. (5.17) to make:

PRk−2
k−1 = (N

P Rk−2)−1 N
P Rk−1, (5.18)

therefore, the orientation difference between tk−2 and tk−1 can be calculated with P
NR̂k−1 and P

NR̂k−2

as:

PRk−2
k−1 = (N

P R̂k−2)−1 N
P R̂k−1, (5.19)

which should be a rotation matrix of a small angle. This rotation matrix is used to calculate the

rotation velocity matrix next. The eqn. (2.52) in [15] defines the relation between a small angle
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rotation matrix and its corresponding rotation velocity matrix:

Rb(t+δ t)
b(t) = I−Ωb

abδ t. (5.20)

To first order, the inverse of eqn. (5.20) is:

Rb(t)
b(t+δ t) = I+Ωb

abδ t, (5.21)

where the ‘b(t)’, ‘b(t +δ t)’, ‘a’ and ‘δ t’ correspond to the P-frame at tk−2, the P-frame at tk−1, N-

frame and the time difference δ tk−1 = tk−1− tk−2. Therefore, the small angle rotation in this section

can be expressed as:

PRk−2
k−1 = I+ PΩk−1

NP δ tk−1, (5.22)

where the superscripts of Ω are adjusted following the notation of this dissertation to represent the

matrix-form rotation velocity of P-frame with respect to N-frame represented in P-frame at tk−1.

Substituting eqn. (5.22) into eqn. (5.19), the equation can be manipulated as:

I+ PΩk−1
NP δ tk−1 = (N

P Rk−2)−1 N
P Rk−1, (5.23)

PΩk−1
NP δ tk−1 = (N

P Rk−2)−1 N
P Rk−1 − I, (5.24)

PΩk−1
NP =

(N
P Rk−2)−1 N

P Rk−1 − I
δ tk−1

. (5.25)

The rotation velocity at tk−1 can be approximately calculated with P
NR̂k−2 and P

NR̂k−1 using eqn. (5.25)

as:

PΩ̂k−1
NP =

(N
P R̂k−2)−1 N

P R̂k−1 − I
δ tk−1

. (5.26)

The orientation difference between tk and tk−1 is approximately calculated with eqn. (5.22) as:

PR̂k−1
k = I+ PΩ̂k−1

NP δ tk, (5.27)
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therefore, the prior of the robot orientation in eqn. (2.6) is then calculated using eqn. (5.5) as:

N
P R̄k = N

P Rk−1 PR̂k−1
k (5.28)

= N
P Rk−1 (I+ PΩ̂k−1

NP δ tk). (5.29)

5.3.3.2 Position Prior

The positions estimated at time tk−2 and tk−1 are P
NR̂k−2 and P

NR̂k−1, which are used for

calculating the approximate translation velocity of the robot:

NV̂k−1 =
NP̂k−1 −NP̂k−2

tk−1 − tk−2
. (5.30)

The translation vector from tk−1 to tk is approximately calculated as NT̂k
k−1 =

NV̂k−1δ tk, therefore,

The prior position in eqn. (2.6) is calculated as:

NT̄k
NP = NP̄k (5.31)

= NT̂k
k−1 +

NPk−1 (5.32)

= NV̂k−1δ tk +NPk−1. (5.33)

5.3.3.3 Registration and Pose Update

With the prior position NT̄k
NP calculated by eqn. (5.33) and orientation N

P R̄k calculated by

eqn. (5.29), the scan PSk is transformed into A-frame using eqn. (2.6). The transformed scan ASk is

registered to NC using ICP algorithm, which is expressed as:

[Rr, Tr] = ICP
N
P R̂k−1,N P̂k−1,PΩ̂k−1

NP ,NV̂k−1

(NC,ASk), (5.34)
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where the registration results of Rr and Tr can be used transform ASk to match NC. Then, the

position at tk is calculated with eqn. (5.12) as:

NPk = Rr
NT̄k

NP +Tr, (5.35)

= Rr (
NV̂k−1δ tk +NPk−1)+Tr. (5.36)

The orientation matrix at tk is calculated with eqn. (5.14) as:

N
P Rk = Rr

N
P R̄k, (5.37)

= Rr
N
P Rk−1 (I+ PΩ̂k−1

NP δ tk). (5.38)

5.3.4 PI-ICP: Estimated Pose, Velocity and IMU Measurements

Sections 5.3.1 to 5.3.3 have discussed only using the LiDAR measurements to update

the robot pose. This section further discusses using the IMU acceleration and angular rate mea-

surements to aid the process of updating the robot pose. In this section, the orientation difference

PRk−1
k between LiDAR scan times tk−1 and tk is calculated with the IMU measurements of angular

rate, instead of predicting PRk−1
k using the angular rate matrix PΩk−1

NP estimated purely from LiDAR

data as discussed in Section 5.3.3. The estimated velocity NV̂k−1 is updated with each acceleration

measurement and used to calculate the translation between tk−1 and tk.

5.3.4.1 Orientation Prior

As a reference of using IMU measurements for calculating the IMU rotation, the orien-

tation update using IMU angular rate measurements wa
ba from tk−1 to tk is defined by eqn. (2.70)

in [15] as:

Ra
b(tk) = (I− sin(∥ν∥)

∥ν∥
Υ+

1− cos(∥ν∥)
∥ν∥2 Υ2) Ra

b(tk−1), (5.39)
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where Ra
b(tk) and Ra

b(tk−1) are the orientation matrix at tk and tk−1, respectively. The vector ν =

[νx, νy, νz]
⊤ is calculated as the integral of the angular rate from tk−1 to tk: ν =

∫ tk
tk−1

wa
ba(τ)dτ ∈R3,

and wa
ba ∈ R3 is the angular rate of ‘a’-frame relative to ‘b’-frame represented in ‘a’-frame. The

symbol Υ is calculated as:

Υ=



0 −νz νy

νz 0 −νx

−νy νx 0


. (5.40)

In this dissertation, P-frame rotates relative to N-frame and the rotation during the time interval

(t j−1, t j) is expressed as:

RP
N(t j) = (I−

sin(∥ν j∥)
∥ν j∥

Υ+
1− cos(∥ν j∥)

∥ν j∥2 Υ2) RP
N(t j−1), (5.41)

where ‘j’ is used to indicate the IMU measurement index between the LiDAR scans at tk−1 and tk.

The time between two IMU measurements is ∆t = 1
fm

. The variable ν j is calculated with the IMU

angular rate of the j-th measurement Pw j
NP as: ν j =

Pw j
NP∆t. The range of j is j = 0,1,2, . . . , tk−tk−1

∆t .

The orientation difference PR j
j−1 during the time interval (t j−1, t j) is represented as:

PR j
j−1 = (I−

sin(∥ν j∥)
∥ν j∥

Υ j +
1− cos(∥ν j∥)

∥ν j∥2 Υ2
j). (5.42)

Then, Υ j is calculated with ν j using eqn. (5.40) and the rotation of P-frame between t j and t j−1

is calculated using eqn. (5.42). The robot orientation difference from tk−1 to tk is calculated as the

product of the rotation calculated with each IMU measurement in the period:

PRk
k−1 =

PRk
jn−1

· · · PR j2
j1

PR j1
k−1 (5.43)

= PR jn
jn−1

· · · PR j2
j1

PR j1
j0 , (5.44)
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where t j0 = tk−1 and t jn = tk. With the N measurements at tk, the prior of robot orientation is

calculated as:

N
P R̄k = (P

NR̄k)⊤, (5.45)

where (P
NR̄k)⊤ is calculated as:

P
NR̄k = PRk

k−1
P
NRk−1 (5.46)

= PR jn
jn−1

· · · PR j2
j1

PR j1
j0

P
NRk−1 (5.47)

5.3.4.2 Position Prior

After estimating the velocity NV̂k−1 with the last LiDAR scan at tk−1, the velocity vector

can be expressed in P-frame as:

PV̂k−1 =
P
NRk−1 NV̂k−1, (5.48)

where P
NRk−1 is the transpose of the robot orientation matrix N

P Rk−1 estimated with the LiDAR scan

at tk−1. When a new IMU measurement arrives at t j, the robot velocity can be updated with the IMU

measurement as:

PV̂ j =
PV̂ j−1 +

Pa j ∆t, (5.49)

where Pa j ∈ R3 is the acceleration measurement vector at t j after deducting the portions of gravity

from it. For any period between two IMU measurement, the velocity is assumed constant. There-

fore, the translation is calculated as:

PT j
j−1 =

PV̂ j−1 ∆t, (5.50)
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The transpose of the robot orientation matrix N
P R j is calculated referring to eqn. (5.44). Therefore,

the translation vector PP j
j−1 can be transformed and expressed in N-frame as:

NT j
j−1 =

N
P R j PT j

j−1 (5.51)

= (P
NR j)⊤ PT j

j−1 (5.52)

= (PR j
j−1 · · · PR j1

j0
P
NRk−1)⊤ PT j

j−1 (5.53)

The robot position at tk is calculated as the summation of the robot position at tk−1 and the transla-

tion vector calculated with each IMU measurement from tk−1 to tk. Therefore, the displacement is

calculated as:

NTk
k−1 =

NT j1
j0 +

NT j2
j1 + · · ·+NT jn

jn−1
, (5.54)

and the prior for robot position at tk is calculated as:

NP̄k = NPk−1 +NTk
k−1. (5.55)

5.3.4.3 Registration and Pose Update

The priors NP̄k and N
P R̄k are used to transform points in PSk using eqn. (2.6) and the

transformed scan ASk is registered into NC using ICP algorithm to obtain the registration parameters

Rr and Tr. In this section, the ICP algorithm is expressed as:

[Rr, Tr] = ICP
N
P R̂k−1,N

P R̂k−2,N P̂k−1,N P̂k−2,a,w
(NC,ASk). (5.56)

At last, the position at tk is calculated with eqn. (5.12) as:

NPk = Rr
NT̄k

NP +Tr (5.57)

= Rr (
NPk−1 + PT j1

j0 +
NT j2

j1 + · · ·+ PT jn
jn−1

)+Tr. (5.58)
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The orientation matrix at tk is calculated with eqn. (5.14) as:

N
P Rk = Rr

N
P R̄k (5.59)

= Rr (
PRk

jN
PR jN

jN−1 · · · PR j2
j1

PR j1
k−1 (

N
P Rk−1)⊤)⊤. (5.60)
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Chapter 6

Real-Time Localization Experiments

6.1 Experiment Design

This section discusses some experiments on real-time localization, which consists of two

parts. Section 6.1.1 introduces IMU experiments, where we will collect and analyze IMU data from

the same model of IMU in the stationary and actual working environments. These experiments focus

on the effects of the environments to the IMU measurements. Section 6.1.2 introduces experiments

to compare the performance of each approach on calculating the prior pose. The experiments focus

on the real-time performance and the accuracy of the prior pose calculated with each approach.

6.1.1 IMU experiments

In Section 5.3.4, the IMU acceleration measurements Pa and angular rate measurements

PwNP are used for calculating the pose prior. The notation of Pa was simplified for easier expres-

sion. With subscripts indicating the frames, the acceleration should be denoted as PaNP, which

represents the relative acceleration of P-frame relative to N-frame represented in P-frame. How-
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ever, the raw IMU measurements represent the acceleration and angular rate of the IMU body (i.e.,

P-frame) relative to the inertial frame (i.e., g-frame). The raw IMU measurements obtained is PagP

and PwgP, which represent the relative acceleration and angular rate of the P-frame referring to the

inertial frame represented in P-frame, respectively. To obtain PaNP and PwNP, which are used in

Section 5.3.4, the measurements of N-frame referring to g-frame is needed to calculate:

PaNP = PagP − PagN , (6.1)

and

PwNP = PwgP − PwgN . (6.2)

These measurements of N-frame requires an IMU rigidly installed with N-frame, which is phys-

ically the hatch corner as discussed in Chapter 3. However, modifications on any parts of the

container are prohibited in this application. Therefore, the measurements PagN and PwgN are un-

available, and they will be assumed as zero (i.e., PagN = 0 and PwgN = 0) in the application. Several

assessments are applied to evaluate the effects and will be discussed next.

Two sets of IMU data are collected for assessments. The measurements collected in the

stationary environment is marked with a left-subscript ‘r’: P
r wgP, P

r agP, and called the reference

data. The mean value of the reference data are calculated and denoted as P
r w̄gP and P

r āgP. The

standard-deviation (STD) of the reference data are calculated and denoted as rσw and rσa. Simi-

larly, the measurements collected in the non-stationary environment is marked with a left-subscript

‘e’: P
ewgP, P

eagP, and called the experiment data. The mean and STD of the experiment data are

calculated and denoted as: P
e w̄gP, P

e āgP, eσw and eσa.

First, when the robot is initially placed in the container, it does not move. The IMU data

collected during this initial stationary interval is used to compute eσw and eσa. These are compared
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with the rσw and rσa to analyze the effects of the engine vibration relative to the values in the non-

stationary container. Theoretically, the STD of the experiment data with engine vibration should be

larger than the reference data STD. The experimental results will be discussed in Section 6.2.1.

Second, when the robot is known to be not moving in the container while the engine is

on, the IMU measurements can be integrated to evaluate the rotation and displacement of integrat-

ing IMU measurements. The orientation difference can be calculated referring to eqn. (5.44) and

the displacement can be calculated referring to eqn. (5.54) as discussed in Section 5.3.4. Because

the robot is not moving, PRk
k−1 and NTk

k−1 are expected to be I and 0, respectively. The differ-

ence between PRk
k−1 and I, and NPk

k−1 and 0 are assessed for the error accumulated by integrating

IMU measurements when the robot is not moving. The experimental results will be discussed in

Section 6.2.2.

6.1.2 Prior Pose Experiments

When the robot moves, prior pose can be calculated in one of the P-ICP, PV-ICP, and

PI-ICP approaches as discussed in Section 5.3. The scan is roughly aligned to the basemap with the

selected prior pose. After the rough-alignment, the ICP algorithm is applied for more accurate align-

ment and outputs the transformation parameters Rr and Tr, which are regarded as the corrections

to the roughly-aligned scan of each approach. Denote the ICP output transformation parameters of

(5.8) for P-ICP as (pRr, pTr), of (5.34) for PV-ICP as (vRr, vTr), and of (5.56) for PI-ICP as (iRr,

iTr). The rotation matrices Rr can be represented in the angle-axis form [23], where the angle is

calculated and used as a numerical metric to evaluate and compare each prior:

|θ |= acos
(

tr(R)−1
2

)
, (6.3)
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where in this equation, θ is the rotation angle, R is the rotation matrix, and ‘tr(R)’ represents the

trace of the matrix R. Small rotation angle indicates the prior pose required only a small rotational

correction. Furthermore, the norm of the translation parameter Tr is used to compare the translation

error for each prior pose. To evaluate the accuracy of the calculated prior, the ICP output transfor-

mation parameters of each approach are compared to evaluate which prior better roughly aligns scan

to the map. Moreover, the time consumed for aligning each scan using each approach are compared

to evaluate which approaches can be used in real-time applications. The experimental results will

be discussed in Section 6.3.

6.2 Experiment Results: IMU Performance Evaluation

This section shows the experimental results of the assessments discussed in Section 6.1.

The sampling rate of the IMU evaluated in this section is 200 Hz, while the bandwidth is not pro-

vided by the manufacturer for reference. The robot in this application is a ground vehicle, where

the IMU and other sensors are mounted on top of it such that the LiDAR can scan the environment

above it without occlusion.

6.2.1 Laboratory Measurements V.S. in-container Measurements

In this experiment, an IMU of the same model is placed in the laboratory that ensures the

IMU is in a stationary environment and does not move during the data collection. As discussed in

Section 6.1, the data in the laboratory (i.e., reference data) is used to calculate the STD rσw and rσa

for this model of IMU. In each subplot of Figure 6.1, there are two black horizontal lines represent
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Figure 6.1: IMU measurements in the container when the vehicle is not moving.

± 3 times the STD of each term of rσw and rσa. These black lines are drawn as the reference for

comparison to the IMU data collected in the container. The vehicle IMU data (i.e., experiment data)

are collected with the vehicle engine on and shown as red points in Figure 6.1. All terms except

for wz of the experiment data have an obvious greater variance than the reference data by visually

comparing the red points to the black lines. As results of the data shown in Figure 6.1, for the

reference data, the angular rate STD are 0.2021, 0.1856, and 0.1817 degree/s and the acceleration

STD are 0.0157, 0.0164, and 0.0132 m/s2 . For the experiment data, the angular rate STD are

11.9662, 6.1080, and 0.4329 degrees/s and the acceleration STD are 0.6291, 0.8479, and 1.6787

m/s2. These calculated STD of the two datasets results in a ratio of rwx = 59.2218, rwy = 32.9124,

rwz = 2.3819, rax = 40.1494, ray = 51.8374, raz = 127.0386 for each term of IMU measurements.
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Figure 6.2: A short period of the angular rate wx component in Figure 6.1.

The angular rate component wz has the most comparable values with the same term measured in

the laboratory. Therefore, in the following experiments of PI-ICP, there will be an additional run to

compare the results of PI-ICP using [wx, wy, wz]
⊤ or [0, 0, wz]

⊤ for the measured angular rate.

Furthermore, taking the angular rate as an example, the angular rate PwgN represents the

angular rate of the container, which in this case is a hull of a docked ship, and therefore refers

to the angular rate of the ship. The angular rate PwgP represents the angular rate of the vehicle

which is in the hull. Therefore, the larger angular rate variances are the combined results of the

ship and vehicle motion. Taking the wx component of PwgP as an example for evaluating the ship

and vehicle motion, Figure 6.2 shows the a part of red points in the green box in Figure 6.1, where

a high frequency (i.e., 100 Hz) component in wx with an amplitude up to around 20 degrees/s

can be observed. A docked ship should not produce such a component, so this part can only be a

component belonging to the vehicle motion. The subplots of Figure 6.1 also show a synchronous

amplitude increase and decrease. Therefore, the main sources of variances are possibly the same.

The most likely source is the vibration of the vehicle engine. The data in Figure 6.2 shows that wx is
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changing too fast with respect to the sampling rate (i.e., 200 Hz) of this IMU. In fact, the ∼ 100 Hz

signal oscillation is near the IMU Nyquist frequency of 100 Hz, which indicates that this sensor is

not appropriate for this application. Future work will include using an IMU with a higher bandwidth

and sampling rate or evaluating IMU data when the engine is off, to confirm with more evidence for

the effect of vehicle vibration and ship motion on the IMU measurements. In this dissertation, the

data of this IMU is still used for calculating the prior poses for each approach and demonstrating

the process of evaluating the performance of different priors.

6.2.2 Integration of IMU Angular Rate for Stationary Vehicle

This section shows the results of calculating the vehicle rotation angle every 0.1 second

(i.e., the time between two LiDAR scans) using the IMU angular rate measured in the container

during initialization when the engine is on. Since the vehicle is not moving in the container at this

point, its rotation angle should be 0, so the angle calculated using the IMU measurements shows the

error of each approach. Every δ t = 0.1 seconds, about 20 IMU angular rate measurements are used

to calculate the vehicle rotation matrix PR̂k
k−1. The rotation matrix PR̂k

k−1 can be converted into the

axis-angle form, where the magnitude of the rotation angle can be calculated using eqn. (6.3). There

are four approach to be evaluated by comparing the rotation angle calculated from PR̂k
k−1:

1. Assuming the vehicle rotates at a uniform speed during this 0.1 second period, the aver-

aged angular rate is calculated as w = [wx, wy, wz], where wx, wy, and wz are the aver-

aged angular rate of each term. The rotation matrix can be calculated with ν = wδ t using

eqns. (5.40) and (5.42). The rotation angles are shown as black ‘+’ in Figures 6.3 and 6.4.
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2. Assuming the vehicle rotates at a uniform speed during this 0.1 second period, the averaged

angular rate around z-axis is calculated as wz = [0, 0, wz]. The rotation matrix can be calcu-

lated with ν = wzδ t using eqns. (5.40) and (5.42). The rotation angles are shown as red ‘+’

in Figures 6.3 and 6.4.

3. Assuming the vehicle rotates at a uniform speed during each ∆t = 0.005 second period (i.e.,

time between two IMU measurements), eqn (5.42) is used to calculate the rotation matrix

with each angular rate measurement w = [wx, wy, wz]
⊤ and eqn. (5.44) is used to integrate

the rotation matrix calculated with each w in this 0.1 second period. The rotation angles are

shown as black ‘o’ in Figures 6.3 and 6.4.

4. Assuming the vehicle rotates at a uniform speed during each ∆t = 0.005 second period,

eqn (5.42) is used to calculate the rotation matrix with each angular rate measurement wz =

[0, 0, wz]
⊤ and eqn. (5.44) is used to integrate the rotation matrix calculated with each wz in

this 0.1 second period. The rotation angles are shown as black ‘o’ in Figures 6.3 and 6.4.

As shown in Figures 6.3 and 6.4, for each time window of 0.1 second, Approach-1 and

Approach-3 (Approach-2 and Approach-4) result in nearly the same rotation angles such that the

black circles and black crosses (red circles and red crosses) overlap. Numerically, Approach-1

shows an average (maximum) of 0.0585 (0.3922) degrees, Approach-2 shows an average (max-

imum) of 0.0037 (0.0133) degrees, Approach-3 shows an average (maximum) of 0.0584 (0.3922)

degrees, Approach-4 shows an average (maximum) of 0.0037 (0.0133) degrees, Based on the results

of this analysis, Approach-2 and 4 accumulates smaller angular error while stationary.
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Figure 6.3: All the rotation angles calculated with IMU measurements when the vehicle is stationary.

Figure 6.4: Part of the rotation angles calculated with IMU measurements when the vehicle is stationary shown in a
smaller angle range.
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6.2.3 Integration of IMU Angular Rate for Moving Vehicle

This section shows the results of accumulating IMU angular measurements when the ve-

hicle is moving on a pile. It is mainly rotating around the z-axis of the IMU, but also has pitch and

roll rotations as it translates across the uneven pile. The same approaches and symbols introduced

in Section 6.2.2 are used with IMU data collected when the vehicle moves. The rotation angles

calculated with vehicle moving measurements are shown in Figure 6.5.

Figure 6.5: The rotation angle calculated with IMU measurements when the vehicle is moving.

The rotation angle calculated with w and the rotation angle calculated with wz do not show

significant difference because the rotation is mainly around the z-axis. For each calculated angle by

integrating w or wz, the difference of them are calculated and shown in Figure 6.6. The average

(maximum) difference is 0.0440 (0.6343) degrees, which are effects of the wx and wy components

on the rotation angle. Because the difference is not large, choosing either one of the approaches to

integrate the IMU angular measurements makes little difference on the job of roughly aligning the
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scan to the basemap. The performance of using the IMU calculated rotation matrix to align the scan

will be compared with using the last estimated pose and velocity in Section 6.3 to determine the

better approach for the rough-alignment.

Figure 6.6: The rotation angle difference between integrating w and integrating wz. The vehicle is moving in the approx-
imate range of 100 to 200 seconds.

6.3 Experiment Results: Real-Time Localization

This section shows the results of real-time localization experiments to compare the per-

formance of different approaches in Section 5.3 for calculating the prior and roughly aligning the

scan to the basemap. The three approaches of P-ICP, PV-ICP, and PI-ICP are compared while the

PI-ICP approach runs twice with w and wz, which will be denoted as PI-ICP-w and PI-ICP-wz in

this section.

79



6.3.1 Localization Results of P-ICP

The localization results using P-ICP is shown in Figure 6.7. As a visual comparison, the

trajectory matches the vehicle motion in the experiment video record, which cannot be shown in the

dissertation. In addition, it does not show significant discontinuity. If the P-ICP approach allowed

significant errors to develop, then large corrections would be required, resulting in discontinuities.

The lack of discontinuities is a first indicator that the method is working well.

To numerically evaluate the localization performance, after the alignment of ICP algo-

rithm, the distance between each point ps in the transformed scan and its closest point pb in the

basemap is calculated as: dbs = ∥ps − pb∥. The averaged distance dbs of those point pairs (ps, pb)

are calculated for this scan:

dbs =
∑dbs

Ns
, (6.4)

where Ns is the number of points in the transformed scan. This average distance per scan allows

accuracy to be assessed versus time. The results of dbs are shown in Figure 6.8 for the localization

results of the P-ICP approach. The results show nearly constant values at the beginning and end

because the vehicle stayed unmoved at the beginning and end, and received points reflected from

the same surfaces. The maximum averaged distance is less than 10 cm, which is enough for the

vehicle localization in cooperative transloading.
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Figure 6.7: The localization results using last estimated pose to calculate the prior pose.

Figure 6.8: The average value of the distance from each point of the aligned scan to its closest point in the basemap.
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Figure 6.9: The time for processing each scan to update the vehicle pose.

Figure 6.10: The ICP correction rotation angle and translation for each scan.
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Another important metric is the time consumed for ICP to align each scan. This is im-

portant because each scan has to be processed immediately (i.e., in less than 0.1 seconds before the

next scan arrives) such that the vehicle pose can be updated in real-time. The ICP computation time

for each scan using this approach is shown in Figure 6.9. The average (maximum) alignment time

in this experiment is 0.0087 (0.1277) seconds. A new scan arrives every 0.1 second. Therefore, in

most time, the pose can be updated before the new scan arrives. If the vehicle was translating at

its maximum in-container speed of 10 m/s, then the average (maximum) position error due to these

computational delays would be 0.087 (1.277) m. The maximum position error of 1.277 meter is

risky and should be avoided.

Figure 6.10 shows the correction rotation angle calculated from the ICP output rotation

parameter pRr using eqn. (6.3), and the correction norm of the ICP output translation parameter

pTr. As the average ICP point matching distance shown in Figure 6.8 is always less than 10 cm, the

angles and distances in Figure 6.10 indicate the magnitude of the vehicle rotation and translation

in the 0.1 second between each two scans: the maximum angle is 1.895 degrees and the maximum

distance is 0.527 meters in Figure 6.10, which gives a reference that the maximum angular rate and

velocity of the vehicle in this experiment are around 18.95 degrees/s and 5.27 m/s, respectively.

6.3.2 Localization Results Comparison

The results of different approaches are compared to the results shown in Figure 6.7. The

differences between the results are shown in Figure 6.11. Each magenta point represents the local-

ization result difference between PV-ICP and P-ICP. Each green point represents the localization

result difference between PI-ICP-wz and P-ICP. Each blue point represents the localization result

difference between PI-ICP-w and P-ICP. As shown in the figure, the magnitude of the difference are
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all less than 10 cm. Therefore, the localization results are similar and any of the four approaches

successfully calculated the vehicle pose in the experiment. Note that the magenta points show larger

difference from the other points. However, this only shows the magenta points are more different

from the red point results of Figure 6.7 and the quality of aligning the scan should refer to the next

analysis of the average distance after aligning the scan.

Figure 6.11: The difference of localization results between each other approach and the results shown in Figure 6.7.

The results of the average distance dbs of each approach are shown in Figure 6.12. The

average (median, maximum) dbs for the P-ICP is 5.7568 (5.9273, 8.3277) cm. The average (median,

maximum) dbs for the PV-ICP is 5.5997 (5.7581, 7.9058) cm. The average (median, maximum)

dbs for the PI-ICP-wz is 5.7425 (5.9459, 7.8760) cm. The average (median, maximum) dbs for

the PI-ICP-w is 5.8011 (5.9562, 7.8073) cm. The difference of each statistic between each two
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Figure 6.12: The average distance results dbs of the four approaches.

approaches are too small to state any one of them is the best approach for calculating the prior pose

for localization.

The comparison of the alignment time is shown in Figure 6.13. The average (maximum)

alignment time of the P-ICP is 0.0087 (0.1277) seconds. The average (maximum) alignment time

of the PV-ICP is 0.0054 (0.0631) seconds. The average (maximum) alignment time of the PI-ICP-

wz is 0.0157 (0.2159) seconds. The average (maximum) alignment time of the PI-ICP-w is 0.0180

(0.0889) seconds. The PV-ICP approach uses the shortest average and maximum time to finish the

ICP alignment. The maximum time consumed is less than 0.1 second. Therefore, each scan was

aligned with PV-ICP before the next scan arrives.
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Figure 6.13: The ICP alignment time for four approaches.

The rotation matrix used by each approach to calculate the prior can be converted to the

axis-angle form. The angles are called the prior angle. After the ICP alignment, the output Rr can

be also converted and its angle is called the correction angle. The prior angle and the correction

angle results of each approach are shown in Figure 6.14. As discussed in Section 5.3, the scan

is first adjusted with the calculated prior (i.e., rotated by the prior angle) and then aligned to the

basemap by ICP algorithm (i.e., rotated by the correction angle). Figure 6.14 shows that PV-ICP

adjusted the scans appropriately such that the ICP algorithm requires fewer iterations to align the

scans to the basemap and the correction angles are small (i.e., average 0.0925 degrees and maximum

0.4942 degrees). After the rough alignment of PI-ICP-wz and PI-ICP-w, the ICP algorithm needs

to do a larger correction rotation than PV-ICP to match the scan to the basemap. An example
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Figure 6.14: The calculated prior and the correction calculated from ICP outputs.

of this is shown with a partial point cloud of one scan, which is being aligned to the basemap,

in Figure 6.15. The red points belong to the basemap. The green points belong to the roughly-

aligned scan using PV-ICP and the blue points belong to the roughly-aligned scan using PI-ICP-wz.

The blue points have a larger gap from the basemap than the green point. The larger gap results

in more ICP iterations for PI-ICP-w to correct the gap than PV-ICP and more alignment time as

shown in Figure 6.13. The result that the IMU does not give a better estimate of the rotation angle

needs experiments with better IMU (i.e., higher bandwidth and sampling rate) to confirm. Future

research will evaluate the performance when using a properly selected IMU for calculating the prior

pose. With the current setup, the PV-ICP approach behaves the best in the real-time localization

experiments and succeeds for the cooperative transloading task.
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Figure 6.15: The calculated prior and the correction calculated from ICP outputs.
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Chapter 7

Conclusions

This section summarizes the contributions of this work and the future research to improve

the methods discussed in this dissertation.

7.1 Contribution

The main contributions are:

1. Development of a novel approach combining point pillar based processing with the HT algo-

rithm and knowledge about the hatch to recognize and locate the hatch.

2. Development of a LiDAR-based approach to initialize a shared reference frame and the robot

pose in a non-stationary closed-space environment.

3. Evaluation on several approaches based on LiDAR and IMU to calculate the priors for the

real-time localization in the non-stationary frame.
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4. Development and implementation of a real-time software for localization in cooperative transload-

ing.

7.2 Future Work

In the course of this research, which resulted in a working prototype system, various

additional ideas occurred that may be worthy of additional research.

1. The current basemap is built in the initialization stage and unchanged during operations. For

large containers or containers with complicated structures, scanning the container at the ini-

tial position can be inadequate due to laser dispersion at long distance and occlusion of the

structures. A future work is determining eligible points to add to and update the basemap

point cloud when the vehicle maneuvers in the container.

2. The current IMU for the experiments is not properly selected. On the one hand, this resulted

herein with a demonstration that the system could be implemented without an IMU. On the

other hand, it leaves open the opportunity to study further with a properly selected IMU.

Therefore, an IMU with higher bandwidth is planned for future work to further test its benefits

on calculating an accurate prior pose for localization.

3. The current localization strategy for cooperative transloading depends on the initial hatch

extraction results to build the common reference frame. Inaccurate determination of the com-

mon reference frame will cause incorrect reporting of the vehicle pose to the crane. One future

work is updating the hatch position with the scans collected when the vehicle maneuvers in

the container.
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4. The bulk cargo surface information is necessary for planning the transloading work. One

future research is building the cargo surface with scan inputs from both the LiDAR’s on the

vehicle and on the crane. Observing the cargo from difference directions can reduce the

effects of occlusion.

5. For cooperative transloading between a crane and a robot, only the robot horizontal position is

required for the purpose of avoiding collisions. Therefore, a 2D localization approach might

be enough while requiring lower computation.

6. The initial pose determination still requires a human to check the vehicle heading direction

when placing it in the container such that the reference frame is defined identically for the

crane and the vehicle. Using GPS to determine the vehicle heading before it’s placed into the

container can cancel the human check and further automating the process of initialization.
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