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Abstract 

When the gain in a free electron laser is high enough to produce optical guiding, the 

resonator mode distorts and loses its forward-backward symmetry. We show that the 

resonator mode in a high gain FEL can be easily constructed using the mode expansion 

technique taken separately in the interaction and the free-space regions. We propose design 

strategies to achieve maximal gain and optimal mode quality, and discuss the stability of the 

optimized mode. 
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Introduction 

In a high gain free electron laser, optical guid.ing[l-8] modifies the spatial structures of 

the optical wave and breaks the forward-backward propagation symmetry within a two

mirror resonator. In this paper, we show that the optimized mode of such resonator can be 

easily constructed using mode expansion techniques, and we propose design strategies to 

achieve maximal gain and optimal mode quality. In addition, the stability of the optimized 

resonator mode is discussed. 

In our approach the optical field is expanded in two different set of basis inside and 

outside of the interaction region. In the forward pass through the gain medium the optical 

beam profile remains nearly constant due to optical guiding, there the optical field is well 

, characterized by a few low order guided modes. At the exit of the wiggler, the amplified 

wave is re-expressed in terms of the vacuum modes. These vacuum modes are chosen such 

that the minimum number is required in the expansion. To make a round trip within the 

cavity each vacuum mode component is transported through free-space sections and by 

mirror reflections back to the entrance of the wiggler where the combination of the vacuum 

modes is taken as input field to the amplifier. 

It is found that maximal gain and optimal transverse mode quality can be achieved 

simultaneously, and the resonator can be made optimal at high gain when optical guiding 

occurs and yet stable at low gain when the resonator mode approaches the vacuum mode. 

In addition, we show that an asymmetric cavity can be used to reduce the power loading on 

the cavity mirrors without sacrificing either gain or mode quality of the laser. 

The Amplifier Region 

It has been shown in our previous work[6-8] that 3D evolution of an optical wave 

through the interaction region in a FEL can be described by an expansion in the guided 

modes. There are three types of guided modes: exponentially growing and decaying modes 

and oscillatory modes with constant amplitude. The growing and the decaying modes are 

bound and discrete. They describe energy transfer between the electrons and the optical 

wave. The oscillatory modes are continuous and responsible for diffraction. In the high 

gain regime the decaying and the oscillatory modes are negligible after amplification, and if 
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the discrete modes are nondegenerate[7 ,8] only a few low order growing modes need to be 

considered. Therefore a truncated expansion, given by 

E(x,y,z) = f CnEn(x,y) exp(-iA.n z) 
(1) 

n=l 

should approximate result from a full expansion, even though discrepancies are expected 

near the wiggler entrance. In Eq.(l) En and An are the transverse profile and complex 

propagation constant of a guided mode respectively, and Cn is the input coupling 

coefficient given in references[? ,8]. 

To verify the validity of the truncated expansion optical field in a high gain amplifier is 

evaluated with Eq.(l) and the results are compared with a 3D simulation performed with 
,, 

the code FRED[9]. The amplifier parameters for this comparison are given in Table 1, and 

the input field is taken as a Gaussian mode focused at the entrance of the wiggler with a 

minimum spot size of 600 micron and a Rayleigh range of 4.52 meter. For given input field 

the power ratio between the fundamental and the next order growing mode is about one 

order of magnitude at the wiggler entran~e. and due to the difference in mode growth rate 

that ratio increases to three order of magnitude at the wiggler exit. For given parameters 

five growing and five decaying modes are included in the expansion, even though two 

growing modes are sufficient at the wiggler exit. 

Table 1. Parameters used in calculations. 

Electron Lorentz factor y 2000 

Electron beam current Ie (Amps) 270 

Electron beam rms radius <Je (Jlm) 233 

Peak wiggler parameter K 5.74 

Wiggler length L (m) 27 

Wiggler period A.w (em) 11.4 

Optical wavelength A. (A) 2500 

Oscillator cavity length Lc (m) 54 
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Figure 1. Half-max radius of intensity (a) and power (b) of the optical field vs. 

propagation distance along the wiggler. 
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Figure 2. Transverse profile of intensity (a) and phase (b) of the optical field at the 

exit of the wiggler. 
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The half-max radius of intensity and the power of the optical wave are plotted in Figure 

1 for the 27 meter long wiggler. In the beginning region the two curves are quite different. 

The simulation shows the expected behavior of near free-space diffraction close to the 

entrance, whereas the mode expansion fails in this region because the continuous modes 

are neglected in the expansion (1). However, after a couple of Rayleigh ranges the power 

in the bound modes grows to a level where diffraction becomes negligible and the two 

curves converge. Only 43% of input power couples into the bound modes, the remainder 

goes into the continuous modes. It is noted that the power grows nearly exponentially after 

about 15 meter from the entrance, indicating the dominance of the fundamental mode from 

there on. The transverse profiles of the intensity and phase at the wiggler exit is shown in 

Figure 2. The two curves are almost indistinguishable. The single pass gain is 495 from the 

mode expansion and 499 from the simula.tion. These comparisons justify the truncated 

expansion (1) for high gain, nondegenerate FEL amplifiers. 

Resonator Optimization 

The major concerns in the resonator design are round-trip gain and transverse mode 

quality. When optical guiding occurs, the fundamental guided mode grows to dominate the 

optical field after each pass through the interaction region. In this situation, maximal gain 

and optimal transverse coherence can be achieved simultaneously by maximizing the input 

power coupling to the dominant growing mode. It is found[2,7 ,8] the maximal power 

coupling is reached if the input mode is a complex conjugate of the fundamental growing 

mode. This means in particular that the input mode should have a converging phase front, 

opposite to that of the dominant growing mode. 

To construct resonator mode it is convenient to treat the different regions inside the 

cavity separately. In the forward pass through the interaction region optical field can be 

expressed by the truncated expansion in the guided modes. Outside of the interaction region 

and in the whole return pass, propagation occurs in free space where the appropriate mcxles 

for the expansion are the well-known Laguerre-Gaussian modes. The transport of these 

mcxles through a series of free space drift sections and mirrors outside the gain medium can 

be followed easily with an ABCD matrix. To make a closed loop in the cavity the mode 

expansion used to express the field has to be changed at two locations, the entrance and the 

exit of the wiggler. 
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There are two free parameters associated with Laguerre-Gaussian modes, the mode 

waist and the Rayleigh range, or equivalently the spot size and the phase front curvature at 

any location. These parameters, though may in principal be chosen quite arbitrarily, 

significantly affect the number of modes required in the expansion. The most convenient 

and physically meaningful choice is the one which maximize the power coupled from the 

amplified field at the wiggler exit into the fundamental Gaussian mode. This choice reduces 

the number of free space modes required in the expansion to a minimum. Following this 

approach for parameters given in Table 1 we found about 95% of the total power in the 

fundamental mode and over 99% in 5 low order modes. 

Ideally, an optimal resonator should transport the field at the wiggler exit to it's 

complex conjugate at the wiggler entrance, assuming the fundamental guided mode is 

dominant after amplification. To rigorously accomplish this task the resonator mirrors 

would have to be aberrated due to ~he aspherical phase front curvature of the fundamental 

guided mode. This is impractical because, in addition to high manufacturing cost, the 

profile of the fundamental guided mode itself may not be well-determined due to various 

operational uncertainties in a real system. 

Even though the fundamental guided mode is not exactly Gaussian, it is usually close to 

Gaussian, and the discrepancies occur mostly in the wings where in·most cases the field is 

distorted or vignetted due to the finite apertures of real optics systems. Therefore the 

conjugate input coupling condition can be approximated by requiring the input field to be a 

complex conjugate of the dominant Gaussian mode in the free space expansio11 at the 

wiggler exit. The new optimal resonator condition can be easily satisfied with spherical 

cavity mirrors. 

Denote by q1 and q2 the complex beam parameters[lO] of the dominant free-space 

Gaussian mode at the exit and the entrance of the wiggler respectively. The conjugate input 

coupling condition requires: 

(2) 

note 

(3) 
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where R, a positive quantity, and w are the phase front curvature and spot size of the 

Gaussian mode at the wiggler exit respectively. 

The beam parameters q1 and q2 are also related by a transport matrix M as follows 

(4) 

where A, B, C and Dare matrix elements defined by 

M = [~ :]. 
(5) 

The matrix M transports the mode from the wiggler exit through a series of free-space 

sections and mirror reflections back to the wiggler entrance and can be expressed as a 

product of the matrices ~f these elements: 

(6) 

where L is the wiggler length, L1 is the separation between the wiggler exit and the 

downstream mirror, L2 is the separation -between the upstream mirror and the wiggler 

entrance, Lc is the cavity length, f1 and f2 are the focal lengths of the downstream and 

upstream mirror respectively. Given wiggler length L, four out of five quantities L1, Lc. 
L2, f1 and f2 are independent because of a constraint Lc = Lt + L + L2. In a typical 

resonator the length parameters L1, L2 and Lc are usually fixed, leaving only the two mirror 

focal lengths as free variables. Substituting the expressions for the matrix elements into 

Eq.(4), equating the real and imaginary parts with the aid of Eqs.(2), (3), one derives after 

some rearrangement the following conditions for attainment of optimal condition in the 

resonator: 

(7) 

(8) 
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where the coefficients are functions of resonator length parameters, and the mode 

parameters, w and R. Equation (7) and (8) determine the optimal choice for the focal 

lengths of two mirrors. 

In summary, the design procedure includes the following steps: 

(a): Start with an input field to the amplifier, preferably the complex conjugate of the 

fundamental growing guided mode, calculate the expansion coefficients according to the 

formula given in references[? ,8] for each guided modes in the expansion. The amplified 

field is then determined by Eq.(l). 

(b): Calculate the power coupling from the amplified field at the wiggler exit given in 

step (a) to a fundamental Gaussian mode with mode parameters w and R, and vary w and 

R to maximize the power coupling. The mode parameters for the free-space mode 

expansion are then determined 

(c): With the mode parameters given in step (b), the mirror focal lengths c~n be solved 

from Eqs.(7),(8) for given length parameters L1, L2 and Lc. This step gives the ABCD 

matrix through Eq.(6). 

(d): Expand the amplified field in free space modes with mode parameters determined in 

step (b), and propagate the field with the ABCD matrix given in step (c) back to the 

entrance. This step closes the loop and also prepares the input field to start the next round

trip. 

To reach a stab~e configuration these steps have to be iterated. If the fundamental mode 

is strongly dominant the profile of the amplified field and hence the transport matrix are 

quite insensitive to the input field even though the exit power is strongly dependent on the 

input field. In this case only a few iterations are necessary for even poor initial input field. 

Resonator Stability 

There are in general two solutions to the quadratic equation (7). Both of them 

correspond to resonator configurations satisfying the conjugate input coupling requirement 

(2), thus give the same round-trip gain and optical mode. At steady state operation before 

saturation the two configurations should be equivalent. However, under certain 

circumstances where the gain is not as high optical guiding will be affected and one may 

expect the mode to approach that of a cold resonator. In fact it is shown in simulations[ 11] 

that only the fundamental cold cavity mode remains at saturation. In this situation the two 

configurations may not be equivalent from the standpoint of stability. 
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The stability of a cold two-mirror resonator is well described by a so-called stability 

diagram in which each possible resonator configuration corresponds to a point in a two

dimensional space. A resonator is considered stable if it's parameters fall into certain 

regions. The stability diagram is most commonly plotted in a coordinate system of 

"resonator g parameters" defined by g1 = 1 - Lc /2fJ, and g2 = 1 - Lc /2f2. 

Figure 3. 

4 r-----~------~------r-----~ 

• • 
4~----_. ____ _.d-------~----~ 

-4 -2 2 4 

Resonator stability diagram. 

Keeping Lc at 54 meter and L at 27 meter while varying L1 and ~ under the constraint 

Lc = L1 + L + L2, f1 and f2 are solved from Eqs.(7),(8) and plotted in a stability diagram in 

Figure 3. The open circles located in the stable region represent solutions from one branch 

and filled circles located in the unstable region represent solutions from another branch. 

Note the two branches are symmetric about the +45° diagonal through the origin in the g 

plane. 
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Figure 4. Mode size in round-trip for three stable resonator configurations. 
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Figure 4 plots the half-max radius of intensity within the 54 meter space between the 

two end mirrors in both forward and backward passes for three configurations from the 

stable branch of the solutions. Of the three configurations chosen, two correspond to the 

outmost asymmetrical points (g1:;t:g2) and one corresponds to the symmetrical point (g1=g2) 

in the stability diagram. The half-max radius in the three free-space sections are taken as 

that of the dominant Gaussian mode. Note the features of diffraction in free space as well 

as the focussing by the two cavity mirrors. In the forward pass through the 27 meter 

wiggler the half-max radius evolves into a constant value, similar to that shown in Figure 

l(a), the discontinuity at the wiggler entrance is due to the neglect of the continuous modes 

in the truncated expansion (1). 

It should be emphasized that all solutions of Eqs.(7),(8), inside or outside the stable 

region, symmetrical (Lt = L2, f1 = f2) or asymmetrical (Lt :;t L2, ft :;t f2), are optimal 

designs since they offer the same round-trip gain and optical mode. However, it is 

preferable to choose the one which is also stable at low gain. In addition, the asymmetrical 

designs allow the downstream mirror to be placed further away from the wiggler exit and 

are therefore favorable choices for reduction of power loading on the cavity mirrors. 

Conclusions 

We have presented design strategies for high gain resonator taking optical guiding into 

account. Our approach is based on the mode analysis and the optimization procedure which 

maximize the gain in the fundamental guided mode. This approach emphasizes the . , 

dominant physical process inside and outside of the interaction regions, and assures 

optimal mode quality. Our results are valid in the small signal regime. In the saturated 

regime efficiency, in addition to gain and mode quality, has to be considered in the 

resonator optimization. Due to strong nonlinearity, studies in this regime so far depend 

largely on simulations. A simple and effective design guideline remains yet to be 

addressed. 
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