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From their inception in the early ��th century� causal systems models �more
commonly known as structural�equations models� were accompanied by graphi�
cal representations or path diagrams that provided compact summaries of qual�
itative assumptions made by the models� Fig� � provides a graph that would
correspond to any system of � equations encoding these assumptions	

�� independence of A and B�

�� direct dependence of C on A and B�
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The interpretation of �direct dependence was kept rather informal and usually
conveyed by causal intuition� for example� that the entire in�uence of A on F
is �mediated by C�

By the ����s it was recognized that these diagrams could be reinterpreted
formally as probability models� which opened the visual power of graph theory
for use in probabilistic inference and allowed easy deduction of other indepen�
dence conditions implied by the assumptions� By the �����s it was further
recognized that these diagrams could also be used as a formal tool for causal
inference� such as predicting the e�ects of external interventions� Given that the
graph is correct� one can see whether the causal e�ects of interest �target e�ects�
or causal estimands� can be estimated from available data� or what additional
observations are needed to validly estimate those e�ects� One can also see how
to represent the e�ects as familiar standardized e�ect measures�

The present article gives an overview of	 ��� components of causal graph
theory� ��� probability interpretations of graphical models� and �
� the method�
ologic implications of the causal and probability structures encoded in the graph�
See CAUSATION AND CAUSAL INFERENCE for discussion of de�nitions of
causation and statistical models for causal inference�

Basics of Graph Theory

As be�tting a well developed mathematical topic� graph theory has an extensive
terminology that� once mastered� provides access to a number of elegant results
which may be used to model any system of relations� The term dependence in a
graph� usually represented by connectivity� may refer to mathematical� causal�
or statistical dependencies� The connectives joining variables in the graph are
called arcs� edge� or links� and the variables are also called nodes or vertices�
Two variables connected by an arc are adjacent or neighbors and arcs that meet
at a variable are also adjacent� If the arc is an arrow� the tail �starting� variable
is the parent and the head �ending� variable is the child� In causal diagrams� an
arrow represents a �direct e�ect of the parent on the child� although this e�ect
is direct only relative to a certain level of abstraction� in that the graph omits
any variables that might mediate the e�ect�

A variable that has no parent �such as A and B in Fig� �� is exogenous or
external� or a root or source node� and is determined only by forces outside of
the graph� otherwise it is endogenous or internal� A variable with no children
�such as D in Fig� �� is a sink or terminal node� The set of all parents of a
variable X �all variables at the tail of an arrow pointing into X� is denoted
pa�X �� in Fig� �� pa�D� � fB�C�Eg�

A path or chain is a sequence of adjacent arcs� A directed path is a path
traced out entirely along arrows tail�to�head� If there is a directed path from X
to Y � X is an ancestor of Y and Y is a descendant of X � In causal diagrams�
directed paths represent causal pathways from the starting variable to the ending
variable� a variable is thus often called a cause of its descendants and an e�ect
of its ancestors� In a directed graph the only arcs are arrows� and an acyclic is
a graph in which there are no feedback loops �directed paths from a variable
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back to itself�� Therefore� a directed acyclic graph or DAG is a graph with only
arrows for edges and no feedback loops �i�e�� no variable is its own ancestor or
its own descendant�� A DAG represents a complete causal structure� in that all
sources of dependence are explained by causal links�

A variable intercepts or mediates a path if it is in the path �but not at the
ends�� similarly� a set of variables S intercepts a path if it contains any variable
intercepting the path� Variables that intercept directed paths are intermediates

on the pathway� A variable is a collider on the path if the path enters and leaves
the variable via arrowheads �a term suggested by the collision of causal forces
at the variable�� Note that being a collider is relative to a path� for example in
Fig� �� C is a collider on the path A � C � B � D and a noncollider on the
path A� C � D� Nonetheless� it is common to refer to a variable as a collider
if it is a collider along any path �i�e�� if it has more than one parent�� A path
is open or unblocked at noncolliders and closed or blocked at colliders� hence a
path with no collider �like E � C � B � D� is open or active� while a path
with a collider �like E � A� C � B � D� is closed or inactive�

Two variables �or sets of variables� in the graph are d�separated �or just sep�
arated� if there is no open path between them� Some of the most important
constraints imposed by a graphical model correspond to independencies arising
from separation� e�g�� absence of an open path from A to B in Fig� � constrains
A and B to be marginally independent �i�e�� independent if no strati�cation
is done�� Nonetheless� the converse does not hold� i�e�� presence of an open
path allows but does not imply dependency� Independence may arise through
cancellation of dependencies� as a consequence even adjacent variables may be
marginally independent� e�g�� in Fig� �� A and E could be marginally indepen�
dent if the dependencies through paths A� E and A� C � E cancelled each
other� The assumption of faithfulness� discussed below� is designed to exclude
such possibilities�

Some authors use a bidirectional arc �two�headed arrow��� to represent the
assumption that two variables share ancestors that are not shown in the graph�
A� B then means that there is an unspeci�ed variable U with directed paths
to both A and B �e�g�� A� U � B��

Control� Manipulation versus Conditioning

The word �control is used throughout science� but with a variety of meanings
that are important to distinguish� In experimental research� to control a vari�
able C usually means to manipulate or set its value� In observational studies�
however� to control C more often means to condition on C� usually by strati�
fying on C or to entering it in a regression model� The two processes are very
di�erent physically and have very di�erent representations and implications�

If a variableX is in�uenced by a researcher� the DAG would need an ancestor
R of X to represent this in�uence� In the classical experimental case in which
the researcher alone determinesX � R andX would be identical� In human trials�
however� R more often represents just an intention to treat �with the assigned
level of X�� leaving X to be in�uenced by other factors that a�ect compliance






with the assigned treatment R� In either case� R might be a�ected by other
variables in the graph� For example� if the researcher uses age to determine
assignments �an age�biased allocation�� age would be a parent of R� Ordinarily
however R would be exogenous� as when R represents a randomized allocation�

In contrast� by de�nition in an observational study there is no such variable
R representing the researcher in�uence on X � and conditioning is substituted for
experimental control� Conditioning on a variable C in a DAG can be represented
by creating a new graph from the original graph to represent constraints on
relations within levels �strata� of C implied by the constraints imposed by the
original graph� This conditional graph can be found by following sequence of
operations	

�� If C is a collider� join ��marry� all pairs of parents of C by undirected
arcs� here dashed lines without arrowheads will be used �some authors use
solid lines without arrowheads��

�� Similarly� if A is an ancestor of C and a collider� join all pairs of parents
of A by undirected arcs�


� Erase C and all arcs connecting C to other variables�

Fig� � shows the graph derived from conditioning on C in Fig� �	 The parents
A and B of C are joined by an undirected arc� while C and all its arcs are gone�
Fig� 
 shows the result of conditioning on F 	 C is an ancestral collider of F
and so again its parents A and B are joined� but only F and its single arc are
erased� Note that� because of the undirected arcs� neither �gure is a DAG�

A B

DE
F

Figure �	

Operations � and � re�ect that if C depends on A and B through distinct
pathways� the marginal dependence of A on B will not equal the dependence
of A on B strati�ed on C �apart from special cases�� To illustrate� suppose A
and B are binary indicators �i�e�� equal to � or ��� marginally independent� and
C � A � B� Then among persons with C � �� some will have A � �� B � �
and some will have A � �� B � � �because other combinations produce C �� ���
Thus when C � �� A and B will exhibit perfect negative dependence	 A � ��B
for all persons with C � ��

Conditioning on a variable C reverses the status of C on paths that pass
through it	 Paths that were open at C are closed by conditioning on C� while

�



paths that were closed at C become open at C �although they may remain
closed elsewhere�� Similarly� conditioning on a descendant of C partially re�
verses the status of C	 Typically� paths that were open at C remain open� but
with attenuated association across the path� while paths that were closed at C
become open at C� although not as open as when conditioning on C itself� In
other words� conditioning on a variable tends to partially reverse the status of
ancestors on paths passing through the ancestors� In particular� conditioning
on a variable may open a path even if it is not on the path� as with F in Fig� �
and 
�

C

A B

DE

Figure 
	

A path is closed after conditioning on a set of variables S if S contains a
noncollider along the path� or if the conditioning leaves the path closed at a
collider� in either case S is said to block the path� Thus conditioning on S
closes an open path if and only if S intercepts path� and opens a closed path if
S contains no noncolliders on the path and every collider on the path is either
in S or has a descendant in S� In Fig� � the closed path E � A� C � B � D
will remain closed after conditioning on S if S contains A or B or if S does not
contain C� but will be opened if S contains only C� F � or both�

Two variables �or sets of variables� in the graph are d�separated �or just
separated� by a set S if� after conditioning on S� there is no open path between
them� Thus in Fig� �� fA�Cg separates E from B� but fCg does not �because
conditioning on C alone results in Fig� �� in which E and B are connected
via the open path A�� In a DAG� pa�X � separates X from every variable that
is not a�ected by X �i�e�� not a descendant of X�� This feature of DAGs is
sometimes called the �Markov condition� expressed by saying the parents of a
variable �screen o� the variable from everything but its e�ects� Thus in Fig� �
pa�E� � fA�Cg� which separates E from B but not from D�

Dependencies induced by conditioning on a set S can be read directly from
the original graph using the criterion of d�separation� by tracing the original
paths in the graph while testing whether colliders are� or have� descendants in
S� The conditional dependencies are then illustrated in the original graph by
drawing a circle around each C in S to denote the conditioning� then de�ning a
path blocked by S if C is a noncollider on the path� or by a circle�free collider
that does not have a circled desendant� Thus if we circle C in Fig� �� it will
completely block the E �D paths E � C � B � D and E � A � C � D
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but unblock the path E � A � C � B � D via the circled collider C� which
is equivalent to having a dashed arc as in Fig� �� Were we to circle F but not
C� no open path would be completely blocked� but the collider C would again
be opened by virtue of its circled descendant F � which is equivalent to having
a dashed arc as in Fig� 
�

Selection Bias and Confounding

There is considerable variation in the literature in the usage of terms like �bias�
�confounding� and related concepts which refer to dependencies that re�ect
more than just the e�ect under study� To capture these notions in a causal
graph� we say that a nondirected open path between X and Y is a biasing path

for the dependence of Y on X � The latter dependence is then unbiased for the
e�ect of X on Y if the only open paths from X to Y are the directed paths�
Next� consider a set of variables S that contains no e�ect �descendant� of X
�including those descended through Y �� The dependence of Y on X is unbiased
given S if� after conditioning on S� the open paths between X and Y are exactly
�only and all� the directed paths in the starting graph� In such a case we say S
is su�cient to block bias in the X � Y dependence� and is minimally su�cient

if no proper subset of S is su�cient�
The exclusion from S of descendants of X in these de�nitions arises �rst�

because conditioning on X�descendants Z can partially block directed �causal�
paths that are part of the e�ect of interest �if those descendants are intermedi�
ates or descendants of intermediates�� and second� because conditioning on X
descendants can unblock or create paths that are not part of the X � Y e�ect�
and thus create new bias� For example� biasing paths can be created when one
conditions on a descendant Z of both X and Y � The resulting bias is called
Berksonian bias� after its discoverer� Joseph Berkson�

Informally� confounding is a source of bias arising from causes of Y that are
associated with but not a�ected by X � Thus we say an open nondirected path
fromX to Y is a confounding path if it ends with an arrow into Y � Variables that
intercept confounding paths betweenX and Y are confounders� If a confounding
path is present� we say confounding is present and that the dependence of Y on
X is confounded� If no confounding path is present we say the dependence is
unconfounded� in which case the only open paths from X to Y through a parent
of Y are directed paths� Note that an unconfounded dependency may still be
biased due to nondirected open paths that do not end in an arrow into Y �e�g��
if Berksonian bias is present��

The dependence of Y on X is unconfounded given S if� after conditioning on
S� the only open paths between X and Y through a parent of Y are the directed
paths� Consider again a set of variables S that contains no descendant of X � S
is su�cient to block confounding if the dependence of Y on X is unconfounded
given S� �No confounding thus corresponds to su�ciency of the empty set�
A su�cient S is called minimally su�cient to block confounding if no proper
subset of S is su�cient�

A back�door path from X to Y is a path that begins with a parent of X
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�i�e�� leaves X from a �back door� and ends at Y � A set S then satis�es the
back�door criterion with respect to X and Y if S contains no descendant of X
and there are no open back�door paths from X to Y after conditioning on S�
In a DAG� the following simpli�cations occur	

�� All biasing paths are back�door paths� hence the dependence of Y on X
is unbiased whenever there is no open back�door path from X to Y �

�� If X is exogenous� the dependence of any Y on X is unbiased�


� All confounders are ancestors of either X or of Y �

�� A back�door path is open if and only if it contains a common ancestor of
X and Y �

�� If S satis�es the back�door criterion� then S is su�cient to block X � Y
confounding�

These conditions do not extend to non�DAGS like Fig� �� Also� although pa�X �
always satis�es the back�door criterion and hence is su�cient in a DAG� it may
be far from minimal su�cient� For example� in a DAG there is no confounding
and hence no need for conditioning whenever X separates pa�X � from Y �i�e��
whenever the only open paths from p�X � to Y are through X��

The terms �confounding and �selection bias have somewhat varying and
overlapping usage� Epidemiologists typically refer to Berksonian bias as �se�
lection bias� and some call any bias created by conditioning �selection bias�
Nonetheless� some writers �especially in econometrics� use �selection bias to
refer to what epidemiologists call confounding� Indeed� Figs� � and 
 show how
selection on a nonconfounder �F � can generate confounding� As a �nal caution�
we note that the biases dealt with by the above concepts are only confounding
and selection biases� Biases due to measurement error and model�form misspec�
i�cation require further structure to describe�

Statistical Interpretations

A joint probability distribution for the variables in a graph is compatible with
the graph if two sets of variables are independent given S whenever S sepa�
rates them� For such distributions� two sets of variables will be statistically
unassociated if there is no open path between them� Many special results fol�
low for distributions compatible with a DAG� For example� if in a DAG� X is
not an ancestor of any variable in a set T � then T and X will be independent
given pa�X �� A distribution compatible with a DAG thus can be reduced to
a product of factors P �xjpa�X ��� with one factor for each variable X in the
DAG� this is sometimes called the �Markov factorization for the DAG� When
X is a treatment� this condition implies the probability of treatment �propen�
sity score� is fully determined by the parents of X� pa�X �� Roughly speaking�
the factorization implies that a distribution compatible with a complete causal
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structure factorizes into the product of the propensity scores for each variable
in the structure�

Suppose now we are interested in the e�ect of X on Y in a DAG� and we
assume a probability model compatible with the DAG� Then� given a su�cient
conditioning set S� the only source of association between X and Y within
strata of S will be the directed paths from X to Y � Hence the net e�ect of
X � x� vs� X � x� on Y when S � s is de�ned as P �yjx�� s� � P �yjx�� s��
the di�erence in risks of Y � y at X � x� and X � x�� Alternatively one
may use another e�ect measure such as the risk ratio P �yjx�� s��P �yjx�� s�� A
standardized e�ect is a di�erence or ratio of weighted averages of these stratum�
speci�c P �yjx� s� over S� using a common weighting distribution� The latter
de�nition can be generalized to include intermediate variables in S by allowing
the weighting distribution to causally depend on X � Furthermore� given a set
Z of intermediates along all directed paths from X to Y with X �Z and Z�Y
unbiased� one can produce formulas for the X � Y e�ect as a function of the
X � Z and Z � Y e�ects ��front�door adjustment��

The above form of standardized e�ect is identical to the forms derived under
other causal models�When S is su�cient� some authors go so far as to identify
the P �yjx� s� with the distribution of potential outcomes given S� There have
been objections to this identi�cation on the grounds that not all variables in the
graph can be manipulated� and that potential�outcome models do not apply to
nonmanipulable variables� The objection loses force when X is an intervention
variable� however� In that case� su�ciency of a set S implies that the potential�
outcome distribution equals

P
s
P �yjx� s�P �s�� the risk of Y � y given X � x

standardized to the S distribution�

Some Epidemiologic Applications

To check su�ciency and identify minimally su�cient sets of variables given
a graph of the causal structure� one need only see whether the open paths
from X to Y after conditioning are exactly the directed paths from X to Y
in the starting graph� Mental e�ort may then be shifted to evaluating the
reasonableness of the causal independencies encoded by the graph� some of which
are re�ected in conditional independence relations�This property of graphical
analysis facilitates the articulation of necessary background knowledge and eases
teaching nonstatisticians algebraically di�cult concepts�

As an example� spurious sample associations may arise if each variable af�
fects selection into the study� even if those selection e�ects are independent�
This phenomenon is a special case of the collider�strati�cation e�ect illustrated
earlier� Its presence is easily seen by starting with a DAG that includes a se�
lection indicator F � � for those selected� � otherwise� as well as the study
variables� then noting that we are always forced to examine associations within
the F � � stratum �i�e�� by de�nition� our observations stratify on selection��
Thus� if selection �F � is a�ected by multiple causal pathways� we should expect
selection to create or alter associations among the variables�

Fig� � displays a situation common in randomized trials� in which the net
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e�ect of E on D is unconfounded� despite the presence of an unmeasured cause
U of D� Unfortunately� a common practice in health and social sciences is to
stratify on �or otherwise adjust for� an intermediate variable F between a cause
E and e�ect D� and then claim that the estimated �F �residual� association rep�
resents that portion of the e�ect of E on D not mediated through F � In Fig� �
this would be a claim that� upon stratifying on F � the E �D association rep�
resents the direct e�ect of E on D� Fig� � however shows the graph conditional
on F � in which we see that there is now an open path from E to D through U �
and hence the residual E �D association is confounded for the direct e�ect of
E on D�

F

E (U)

D

Figure �	

The E � D confounding by U in Fig� � can be seen as arising from the
confounding of the F � D association by U in Fig� �� In a similar fashion�
conditioning on C in Fig� � opens the confounding path through A and B in
Fig� �� this path can be seen as arising from the confounding of the C � E
association by A and the C �D association by B in Fig� �� In both examples�
further strati�cation on either A or B blocks the created path and thus removes
the new confounding�

E (U)

D

Figure �	

The generation of biasing paths by conditioning on a collider or its descen�
dant has been called �collider bias� Starting from a DAG� there are two distinct
forms of this bias	 Confounding induced in the conditional graph �Figs� �� 
�
and ��� and Berksonian bias from conditioning on an e�ect of X and Y � Both
biases can in principle be removed by further conditioning on variables along
the biasing paths from X to Y in the conditional graph� Nonetheless� the start�
ing DAG will always display ancestors of X or Y that� if known� could be used
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remove confounding� in contrast� no variable need appear that could be used to
remove Berksonian bias�

Fig� � also provides a schematic for estimating the F �D e�ect� as in ran�
domized trials in which E represents assignment to or encouragement toward
treatment F � Subject to additional assumptions� one can put bounds on con�
founding of the F � D association �and with more assumptions remove it en�
tirely� through use of E as an instrumental variable �a variable associated with
X and separated from Y by X��

Questions of Discovery

While deriving statistical implications of graphical models is uncontroversial�
algorithms that claim to discover causal �graphical� structures from observa�
tional data have been subject to strong criticism� A key assumption in certain
�discovery algorithms is a converse of compatibility called faithfulness�

A compatible distribution is faithful to or perfectly compatible with a given
graph if for all X � Y � and S� X and Y are independent given S only when
S separates X and Y �i�e�� the distribution contains no independencies other
than those implied by graphical separation�� A distribution is stable if there
is a DAG to which it is faithful� Methods exist for constructing a distribution
that is faithful to a given DAG� Methods also exist for constructing a minimal
DAG compatible with a given distribution �minimal in that no arrow can be
removed from the DAG without violating compatibility�� Faithfulness implies
that minimal su�cient sets in the graph will also be minimal for consistent esti�
mation of e�ects� Nonetheless� there are real examples of near cancellation �e�g��
when confounding obscures a real e�ect�� which make faithfulness questionable
as a routine assumption� Fortunately� faithfulness is not needed for the uses of
graphical models discussed here�

Whether or not one assumes faithfulness� the generality of graphical models
is purchased with limitations on their informativeness� The nonparametric
nature of the graphs implies that parametric concepts like e�ect modi�cation
cannot be displayed by the graphs �although the graphs still show whether the
e�ects and hence their modi�cation can be estimated from the given informa�
tion�� Similarly� the graphs may imply that several distinct conditionings are
minimal su�cient �e�g�� both fA�Cg and fB�Cg are su�cient for the ED e�ect
in Fig� ��� but o�er no further guidance on which to use� Open paths may
suggest the presence of an association� but that association may be negligible
even if nonzero� For example� bounds on the size of direct e�ects imply more
severe bounds on the size of e�ects mediated in multiple steps �indirect e�ects��
with the bounds becoming more severe with each step� As a consequence� there
is often good reason to expect certain phenomena �such as the conditional
E � D confounding shown in Figs� �� 
 and �� to be small in epidemiologic
examples� Thus� when quantitative information is used� graphical modeling
becomes more a schematic adjunct than an alternative to causal modeling�
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See also	 Bias� Types of� Causation and Causal Inference� Confounding
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