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Bayesian causal inference: A unifying neuroscience theory 
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A B S T R A C T   

Understanding of the brain and the principles governing neural processing requires theories that are parsimo-
nious, can account for a diverse set of phenomena, and can make testable predictions. Here, we review the theory 
of Bayesian causal inference, which has been tested, refined, and extended in a variety of tasks in humans and 
other primates by several research groups. Bayesian causal inference is normative and has explained human 
behavior in a vast number of tasks including unisensory and multisensory perceptual tasks, sensorimotor, and 
motor tasks, and has accounted for counter-intuitive findings. The theory has made novel predictions that have 
been tested and confirmed empirically, and recent studies have started to map its algorithms and neural 
implementation in the human brain. The parsimony, the diversity of the phenomena that the theory has 
explained, and its illuminating brain function at all three of Marr’s levels of analysis make Bayesian causal 
inference a strong neuroscience theory. This also highlights the importance of collaborative and multi- 
disciplinary research for the development of new theories in neuroscience.   

1. Introduction 

Neuroscience has been one of the fastest growing areas of science in 
the last two decades. While the proliferation of empirical findings in this 
area of research has been dizzying, parsimonious and unifying theories 
that probe the principles of cognitive function have been far and few in 
between. Here we propose Bayesian causal inference as a parsimonious 
and unifying theory in cognitive neuroscience and examine its evolu-
tion, successes, and limitations in that context. 

In mid 2000s, in an attempt to account for auditory-visual perceptual 
phenomena ranging from integration to segregation a Bayesian model, 
known as Bayesian Causal Inference (Bayesian CI) model (Körding et al., 
2007), was proposed that involved a competition between two hy-
potheses, a common cause and independent causes (see Box 1). In the 
last 15 years, the model has been extended, refined, and adapted to 
account for a large number of perceptual and sensorimotor phenomena, 
and vast amounts of behavioral data. More recently the neural un-
derpinnings of Bayesian CI have been the subject of extensive research. 
The model is mathematically similar to a few other models that had been 
proposed in other domains, and the core computation involved in 
Bayesian CI appears to be at work in a number of diverse perceptual and 
sensorimotor domains in humans and other species (Shams and Beier-
holm, 2010). Bayesian causal inference is a computation that appears to 

be frequently employed in a variety of cognitive tasks and domains, and 
appears to have a long-standing evolutionary root (Shams and Beier-
holm, 2010). We therefore, henceforth refer to the core computation, 
which involves competitive priors, as Bayesian Causal Inference theory. 
We will refer to the Bayesian causal inference model of multisensory 
perception as a model within that theory which has been most exten-
sively studied, provides an apt example of Bayesian Causal Inference 
theory, and will be the main focus of this review (Fig. 1). 

Here we will describe Bayesian CI using two examples in the 
perceptual domain, however, the same core computations apply to other 
tasks and domains of processing as described later. 

When faced with sensory stimuli, the nervous system has to estimate 
the events/sources of sensory inputs and has to overcome two chal-
lenges: (a) determining the causal structure of the signals, and (b) the 
identity of the source(s) that gave rise to the stimuli. However, these two 
challenges are intertwined, and cannot be addressed separately and 
independently. 

For example, if we see a talking face and hear speech, the speech 
perception system has to determine whether the two signals originated 
from the same source (the auditory and visual signals were produced by 
the same person), or whether they came from different sources (e.g., the 
muted video from TV, and the sound of someone speaking in the room). 
The degree of similarity/discrepancy (in time, space, content) between 
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Box 1 
Hierarchical Bayesian Causal Inference. 

The Bayesian Causal Inference model of multisensory perception is a statistical model that essentially infers the more likely of two causal 
structures, given sensory inputs and assumptions about the structures. As an example, here we will use the bisensory perception of Fig. 2a which 
is simple and has been studied most extensively. Assume that a set of sensory inputs Xa and Xv can have been generated by either of two causal 
structures, here denoted C=1 or C=2. The inference about which structure generated the sensory data can be an be statistically described (using 
Bayes rule (Bayes, 1763)) through the posterior probability 
P(C = 1|Xa,Xv) = P(Xa,Xv|C = 1)P(C = 1)/P(Xa,Xv)

where the prior P(C=1) specifies the expectation of a common cause by the nervous system a priori, before receiving the sensory input, while the 
likelihood P(Xa, Xv|C=1) encodes how likely it is that the sensory inputs have been generated from a common cause structure. 

The estimation of the latent variables depends on the probabilities of the causal structures, and again can be computed using Bayes Rule. 
Assuming a mean-squared error cost function (i.e. that the subjects want on average to avoid large errors), the optimal estimate of the source Sa 
(e.g., the location of a sound) will be: 

Ŝa = P(C = 1|Xa,Xv)Ŝa,C=1 + P(C = 2|Xa,Xv)Ŝa,C=2 

The estimate is a mixture of the estimate from each causal structure, weighted by how probable the structure is. As the posterior probability 
of the causal structure is a non-linear function of the sensory inputs, Xa and Xv, the optimal estimate is also non-linear function of the sensory 
cues. This is in contrast to the linear combination of sensory cues in the reliability-weighted (or maximum likelihood) models of cue combination 
(Alais and Burr, 2004; Clark and Yuille, 1990; Ernst and Banks, 2002). While the mean-squared error of latent variable Sa results in a model 
averaging strategy as the optimal estimate of Sa, other cost functions can lead to other estimates arising from, for example selecting the estimate 
arising from the more likely causal structure (model selection) or stochastically sampling from the distribution (probability matching, (Wozny 
et al., 2010)). 

The competing causal structures can be thought of as priors, because they are models that have been learned by experience or over the course of 
evolution. For example, by experience individuals can learn that both circles and ovals can produce retinal projections that are oval shaped, 
giving rise to the two competing causal structures involved in slant perception (see Fig. 2c). Similarly, experience can teach the perceptual 
system that a given voice and given face can have either the same cause (produced by the same person) or two different causes (a speaker who is 
not visible and a visible person who is not speaking). Because these competing causal structures are models of the world and exist prior to any 
sensory experience, they are “priors” and hence the term “competitive priors” framework.  

Fig. 1. Bayesian Causal Inference theory. Various models employing Bayesian inference and competitive priors on the causal structure have been proposed to 
account for a variety of tasks. The models are essentially computationally equivalent and fall under Bayesian Causal Inference Theory. 
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the auditory and visual inputs as well as our prior expectations about the 
structure of the world affect the interpretation of the causal structure 
(whether they originate from the same source or not), but likewise the 
causal structure is important as to whether the sensory inputs should be 
integrated or not (sensations with different causes should not be inte-
grated), and thus, to the estimation of perceptual variables (the content 
of speech). 

In this simple example, there are only two causal structures (or hy-
potheses) that need to be examined, the common cause and independent 
causes (see Fig. 2a). These two hypotheses can be thought of as two 
priors (or models of the world) that compete to explain the sensory data. 
For this reason, Bayesian CI model of multisensory perception is a form 
of competitive priors model (Colas et al., 2010; Yuille and Bulthoff, 
1996; Yuille and Clark, 1994), and mathematically almost equivalent to 
competitive priors models that had previously been explored in vision 
science (Knill, 2007; Stocker and Simoncelli, 2006; Yuille and Bulthoff, 
1996; Yuille and Clark, 1994). 

As another example, consider the task of acting on objects in the 
environment which sometimes requires determining the slant of objects 

and surfaces. Determining the slant of an oval shape in the visual field 
requires the visual system to first infer the shape of the object, whether it 
was an oval object or a circular object that has given rise to the oval 
projection (see Fig. 2c). The degree of similarity/discrepancy between 
the binocular disparity cue and shape cue, as well as our prior expec-
tations about the world (how common oval vs. circular objects are) 
affect the interpretation of the causal structure (oval vs. circle), but 
likewise the causal structure is important as to whether the binocular 
disparity and shape signals should be integrated or not (aspect ratio of 
the oval shape is only informative about slant if the source is a circle). 
Therefore, here again causal structure (object form) priors/hypotheses 
compete to explain the sensory data, and inference based on sensory 
stimuli leads to the estimation of causal structure, and conversely, the 
inferred causal structure influences the estimation of perceptual vari-
ables (slant). 

Bayesian CI is a normative framework that addresses both the 
problem of causal inference (which causal structure/hypothesis gener-
ated the stimuli) and the problem of integration/estimation of hidden 
variables, in a unified and coherent fashion using Bayesian inference. 

Fig. 2. Generative model of seven different Bayesian CI models. a) The generative model of Bayesian CI model of bisensory perception (Körding et al., 2007). b) The 
generative model of weight perception in size-weight illusion paradigm (Peters et al., 2016). c) The generative model of visual slant perception (Knill, 2007). d) The 
generative model of object form perception in the structure-from-motion paradigm (Yuille and Clark, 1994). e) The generative model of shape perception in the 
shape-from-shading paradigm (Yuille and Bulthoff, 1996). f) The generative model of postural control (self vs. environment motion) (Dokka et al., 2010). g) The 
generative model of visual stability in face of saccades (Atsma et al., 2016). 
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The probability of each causal structure (e.g., C=1, see Fig. 2a or 
C=”circle”, see Fig. 2c) is computed based on the prior probability of 
that causal structure (e.g., the expectation of a common cause, or the 
expectation of a circle) and the similarity/congruency between the 
sensory inputs, according to Bayes Rule. The estimate of each sensory 
source (e.g., what was said in the video/audio, or the slant of the object) 
is computed based on the probability of the causal structures (which 
determine the extent to which the sensations should be integrated) and 
the reliability of the sensory measurements (the more precise/reliable 
cue would play a more important role), again according to Bayes rule 
(see Box 1 for a detailed description). 

Therefore, the core computations that constitute the Bayesian Causal 
Inference theory can be summarized as follows: (a) competition between 
priors (causal structures) to account for sensory data, (b) estimation of 
hidden perceptual/cognitive variables based on the inferred causal 
structure, (c) computation of both (a) and (b) using Bayes rule. 

In the following sections, we will review studies of Bayesian CI 
within the framework suggested by David Marr (Marr, 1982), assessing 
the theory at a computational level, followed by algo-
rithmic/representational level, followed by implementational level. 
While the initial studies and the vast majority of studies to date have 
focused on the computational level of analysis, in the last few years there 
has been an increasing number of studies that have probed the repre-
sentations and brain mechanisms of Bayesian CI. 

2. Computational level of analysis 

A natural starting point for understanding human perception is to 
hypothesize that the human nervous system has evolved a strategy 
similar to Bayesian CI in solving perceptual/cognitive/sensorimotor 
problems. This hypothesis can be tested by comparing the behavior of 
Bayesian CI with that of human observers in specific tasks (Fig. 2, Fig. 3). 

Below, we review the studies that have done exactly that, quantita-
tively or qualitatively comparing human observer data with predictions 
of Bayesian CI in a variety of tasks, and in a variety of sensory/senso-
rimotor conditions in each task. We classify the studies by the nature of 
the task they have tackled, and briefly summarize the findings in each 
section. 

2.1. Spatial perception 

Spatial localization of objects, as well as auditory-visual interactions 
in this process as exemplified by the ventriloquist illusion (Thurlow and 
Jack, 1973; Warren et al., 1981), have been studied extensively (e.g., 
Alais and Burr, 2004; Bertelson et al., 2000; Choe et al., 1975; Jack and 
Thurlow, 1973; Recanzone, 2003; Slutsky and Recanzone, 2001; 

Wallace et al., 2004). Early computational models of multisensory 
localization had focused on the limited range of cases in which the 
senses deviated little from each other, and therefore perceptual cues 
were always fused into a single unified percept. However, when the 
auditory and visual stimuli differ in location substantially there is an 
absence of integration and human data exhibits a spectrum of phe-
nomena ranging from segregation to integration. The Bayesian CI model 
explains this by the integration of perceptual cues when they are 
inferred to be causally linked (e.g. when proximal), and segregation of 
the cues when likely to originate from different sources (e.g. when far 
apart). Multiple studies of auditory-visual spatial localization have now 
been performed in which data from observers was compared with 
Bayesian CI (Beierholm et al., 2009; Körding et al., 2007; Odegaard 
et al., 2016, 2015; Odegaard and Shams, 2016; Wozny et al., 2010), and 
a Bayesian CI model with only 4 free parameters could account for the 
observers’ data remarkably well (e.g., accounting for 97% of variance in 
250 data points) (Körding et al., 2007). 

In addition to accounting well for the observers’ perceived location, 
Bayesian CI also makes predictions about the judgment of unity (com-
mon cause). This allows Bayesian CI to also account (Körding et al., 
2007) for a phenomenon that had been previously considered 
counter-intuitive and puzzling, namely, “negative bias” (Wallace et al., 
2004), by showing how splitting data based on reports of unity can lead 
to bias in location responses. Since trials with perceived independent 
causes tend to be trials in which a larger disparity exists between the 
encoding of the auditory and visual inputs, limiting the analysis to these 
trials would lead to an apparent negative bias. 

In a more recent study (Rohe and Noppeney, 2015a), observers were 
asked to report not only the auditory location, but also their judgment of 
common/independent cause. In accordance with Bayesian CI, the more 
reliable visual stimuli sharpened the window of common cause 
perception, and increased the visual bias of auditory localization when 
the discrepancy between the two was not large. Furthermore, in a later 
study it was found that the reliability of the visual stimuli was itself 
estimated over time, as modeled through the Bayesian CI model 
(Beierholm et al., 2020). 

While these studies investigated spatial processing along the azi-
muth, a recent study examined the perception of verticality which relies 
on visual and vestibular information. The study performed model 
comparison and reported that perception of verticality by human ob-
servers was best accounted for by the Bayesian Causal Inference model 
(de Winkel et al., 2018). Furthermore, Bayesian CI has been used to 
explain the combination of visual and tactile stimuli, where stimuli were 
presented spatially along the arm of the participants (Verhaar et al., 
2021). 

Slightly different variants of Bayesian CI used by different research 

Fig. 3. The general approach used to gain insight into the computations used by the nervous system to solve a problem (to perform a given task). This approach has 
been successful in shedding light on the computations and goals of different brain systems. 
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groups or in perceptual tasks that differed from the original localization 
task used by (Beierholm et al., 2009; Körding et al., 2007; Odegaard 
et al., 2015; Wozny et al., 2010) showed that Bayesian CI could account 
for observer data in spatial tasks remarkably well (Hospedales and 
Vijayakumar, 2008; Mohl et al., 2020; Rohe and Noppeney, 2015a; Sato 
et al., 2007), for both humans and monkeys. 

Subsequently, several studies have used Bayesian CI as a quantitative 
tool to explore the influence of selective attention (Odegaard et al., 
2016), frame of reference (Odegaard et al., 2019), aging (Jones et al., 
2019), adaptation (Wozny and Shams, 2011), and stability and gener-
alization of auditory-visual binding (Odegaard and Shams, 2016) in 
human spatial processing, again confirming that Bayesian CI captures 
human spatial processing remarkably well. 

2.2. Temporal perception 

Bayesian CI applies to temporal as well as spatial processing. A 
simple non-hierarchical (see Box 2) variant of Bayesian CI was originally 
developed to account for behavioral data in a temporal numerosity 
judgment task (Shams et al., 2005). This is the task of reporting the 
number of flashes and beeps presented simultaneously to observers, in 
which the sound-induced flash illusion often occurs when the number of 
flashes and beeps are not the same (Shams et al., 2002, 2000), for 
example, when a single flash is accompanied with two brief beeps, 
leading to the percept of two flashes. 

The hierarchical model (Körding et al., 2007) (Fig. 2a) was later 
tested also on the temporal numerosity task and shown to account for 
the data very well in bisensory conditions (Beierholm, 2007; Odegaard 
et al., 2016; Odegaard and Shams, 2016). 

A related task to temporal numerosity judgment is temporal rate 
discrimination or categorization. A non-hierarchical variant of Bayesian 
CI was shown to account for observers’ auditory-visual rate discrimi-
nation (Roach et al., 2006; Shams and Beierholm, 2010). In a recent 
study (Cao et al., 2019) using auditory-visual temporal rate categori-
zation, the participants’ responses were compared with predictions of 
three models, including the traditional forced fusion model, and the 
Bayesian CI. Bayesian CI could qualitatively and quantitatively account 
for observers’ data and outperformed the other models. 

Although not yet quantitatively studied, given that the sound- 
induced flash illusion has been reported to occur in other species such 
as rodents (Ito et al., 2019), it appears that Bayesian CI also operates in 
the sensory processing systems of lower mammals. Future research 
needs to examine this quantitatively. 

Auditory-visual temporal processing has also been studied using 
speech stimuli and temporal asynchrony detection task, showing that in 
addition to the actual physical time discrepancy between the two sig-
nals, the perceptual experience of synchrony depends on the temporal 
acuity of the observers and the prior expectation of a common cause, and 
can be accounted for by a Bayesian CI model (Magnotti et al., 2013). 

Temporal processing in a unisensory setting also requires an infer-
ence about the grouping of the stimuli. For example, the perception of 
the time intervals in an auditory sequence would depend on the inferred 
causal structure (whether three brief sounds belong to the same event or 
not). Sawai et al. (Sawai et al., 2012) demonstrated that a Bayesian CI 
model can account for observers’ perceptions of sound sequences. 

2.3. Spatio-temporal perception 

The need for causal inference is not limited to the situations where 
information about a given sensory variable is available from multiple 
cues. There are numerous situations both in unisensory and multisen-
sory settings wherein the nervous system has to consider multiple causal 
structures (or competitive priors) for determining and estimating the 
attributes of objects (including one’s own body) and events. 

For example, interpretation of retinal displacement requires model 
inference. Yuille, Bulthoff and colleagues were the first to note that the 

perceptual system has to solve a model inference problem (Clark and 
Yuille, 1990; Yuille and Bulthoff, 1996). They proposed a competitive 
priors model (Yuille and Clark, 1994) that accounted for the different 
interpretation of visual motion cue for structure depending on whether 
the object is rigid or non-rigid (see Fig. 2d). 

More recently, studies of motion perception have shown that human 
perception can be accounted for by Bayesian models incorporating 
heavy-tailed priors (Lu et al., 2010; Stocker and Simoncelli, 2006), 
which have been shown to be computationally very similar to Bayesian 
CI (Shams and Beierholm, 2010). The perceptual system has to deter-
mine whether two local patches of motion were caused by the same 
object or different objects in order to determine whether or not to 
integrate the information across space and apply the same constraints to 
both patches. 

2.4. Weight perception 

Bayesian CI has been successful in explaining weight perception. A 
classic example is the size-weight illusion in which when lifting two 
objects that are identical in shape, mass, and apparent material, but 
different in size, the smaller object is perceived to be heavier than the 
larger object (Charpentier, 1891; Koseleff, 1957). This illusion had 
evaded theoretical explanation for decades and had been considered to 
be an “anti-Bayesian” illusion (Brayanov and Smith, 2010; Ernst, 2009). 
Indeed a simple non-competitive prior Bayesian model would predict 
the opposite of this phenomenon: the smaller object should be perceived 
as lighter. 

Peters et al. (Peters et al., 2016) showed that a competitive prior 
model, equivalent to Bayesian CI, in which priors on density relationship 
between the two objects compete to explain the sensory data, can 
qualitatively and quantitatively account for the illusion. Furthermore, 
the model accounts for findings of other studies such as the effect of 
training with small heavy objects on the illusion. Importantly, the model 
made a novel prediction that the prior expectations of the density 
relationship across individuals should correlate with the degree of illu-
sion experienced, subsequently confirmed in experiments (Peters et al., 
2016). 

Similarly in the material-weight illusion, when lifting two objects 
that have the same size, shape, and mass, the object that appears to be 
made of low-density material (such as styrofoam) is perceived to be 
heavier (Harshfield and DeHardt, 1970). Peters et al. (Peters et al., 
2018) showed that the same Bayesian model with competing priors on 
density relationship can also explain this illusion. 

2.5. Body ownership perception 

Research in the field of body perception over the last two decades has 
revealed that even the perception of body ownership and attributes are 
remarkably malleable and involves continuous processing of multisen-
sory information such as visual, proprioceptive, tactile, and vestibular 
inputs (Blanke, 2012; Blanke et al., 2002; Botvinick and Cohen, 1998; 
Ehrsson, 2007; Ehrsson et al., 2004; Hoort et al., 2011; Lenggenhager 
et al., 2007; Petkova and Ehrsson, 2008; Tsakiris and Haggard, 2005). 

In the Rubber-hand illusion (Botvinick and Cohen, 1998), the 
observer experiences ownership over a fake rubber hand positioned 
where one’s own hand typically would be when the real hand is out of 
the view and stroked simultaneously (tactile input) with the visible 
stroking of the rubber hand. This illusion also produces a recalibration of 
the proprioceptive perception of the real hand. 

Samad et al. (Samad et al., 2015) offered the first computational 
account of the rubber-hand illusion through a Bayesian CI model with 
two competing causal structures, one in which all the sensory signals are 
caused by the same object, the observer’s hand, and one in which the 
proprioceptive and tactile signals are caused by the real hand, and the 
visual signal is caused by the rubber hand. The outcome of causal 
inference computation depends on the spatial and temporal discrepancy 
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among the sensory measurements and the prior probability of a common 
cause for the sensory signals. The model provided a parsimonious 
explanation for the known phenomena, but also predicted that the 
illusion could also be experienced in the absence of tactile input 
(stroking) confirmed through both subjective reports and skin conduc-
tance data. The model also predicted that the Rubber-hand illusion and 
accompanying proprioceptive drift would not occur if the rubber hand is 
placed at 30 cm or more from the real hand, consistent with behavioral 
data (Lloyd, 2007). An analogous body ownership phenomenon, the 
Rubber-foot illusion, can similarly be accounted for by Bayesian CI 
(Schürmann et al., 2019). A conceptualization based on Bayesian CI has 
been proposed to account for several experimental findings regarding 
body ownership illusions (Kilteni et al., 2015). 

Another phenomenon that is related to the perception of self is the 
sense of agency, in which one perceives one’s own actions to have 
caused an observed event. A Bayesian CI model was shown to qualita-
tively account for empirical findings related to the sense of agency 
(Legaspi and Toyoizumi, 2019). 

The illusions of body ownership have also been observed in monkeys, 
and Bayesian CI has been shown to account for behavioral responses 
from monkeys as well as those of human participants (Fang et al., 
2019a). These findings again suggest that the Bayesian causal inference 
is not unique to the human brain and has a longer evolutionary history. 
The study of the monkeys obviously could not probe subjective experi-
ence of body ownership and had to rely on measures of proprioceptive 
drift. Some studies have reported imperfect correlation between this 
measure and subjective reports of ownership (Rohde et al., 2011) 
Therefore, additional research is needed to examine body ownership 
further with more explicit measures of ownership, as well as manipu-
lations of sensory uncertainty. 

2.6. Sensori-motor processing 

At any given moment, the visual system has to perform causal 
inference to determine how many causes exist for any changes in the 
retinal image, and accordingly, estimate the movement of objects in the 
scene and one’s own eye/body movements (e.g., so that we can navigate 
accurately and not bump into things). Human postural behavior has 
been accounted for well by a causal inference model with competing 
priors of self vs. environment as causes of retinal displacement (Dokka 
et al., 2010). 

Despite the continual changes in the retinal image caused by 
frequent saccades, we perceive the world to be stable and generally not 
moving. Atsma et al. (Atsma et al., 2016) showed that as quantitatively 
predicted by Bayesian CI, spatial constancy depends on the degree of 
consistency between pre-saccadic object location memory and 
post-saccadic visual input, and the two sensory inputs are integrated 
and/or segregated based on the posterior probability that they refer to 
the same position in the world (common cause). 

When the eyes move, the motor system sends a copy of the command 
sent to the muscles to the sensory system, a signal known as the 
“efference copy.” (Jeannerod, 2003) When we are passively moved–for 
example, riding in a moving car–the retinal image changes and there is 
no efference copy of motor commands available for spatial updating. In 
a study of passive self motion, Perdreau et al. (Perdreau et al., 2018) 
found that as predicted by Bayesian CI, the perceptual system weighs the 
integration of the internally updated target position and of the visual 
feedback by the posterior probability that they correspond to a common 
position in the world. The data were accounted for by Bayesian CI and 
the account was superior to those of alternative models. 

Another important perceptual task for mobile organisms is to 
determine the direction of heading during movement. Because visual 
and vestibular information may not always be originating from the same 
source (body movement), similarly to examples above, the nervous 
system has to first determine if the two sensory inputs have a common 
source, and if so, to integrate them optimally to best estimate the 

heading direction and velocity. It has recently been shown that Bayesian 
CI can account for human heading perception (de Winkel et al., 2017), as 
well as heading perception in monkeys (Acerbi et al., 2018; Dokka et al., 
2019). 

Recent studies also support the idea that the process of determining 
the source of an error in any action is governed by Bayesian causal 
inference. The motor system typically receives feedback from the visual 
system. When faced with an error (e.g. the deviation from the target in 
reaching), the motor system has to determine whether the error is due to 
the motor system or due to other sources (e.g., change in the environ-
ment/target, etc.). If the error is due to the motor system, it needs to be 
corrected, but not otherwise. A study by Wei and Körding (Wei and 
Körding, 2009) in which the visual feedback of the observed error was 
manipulated reported a pattern of motor learning/correction consistent 
with that predicted by a model similar to the Bayesian CI. Participants 
showed no correction if the error was large (and thus the error was not 
attributed to the motor system; but instead attributed to the experi-
menter, for example). The largest correction occurred for the largest size 
error that could still be attributed to the motor system (not too large 
relative to the variability of the motor system). Motor adaptation has 
also been examined in a setting that allowed change in both the envi-
ronment and the motor system (e.g., due to fatigue, etc.) and shown to 
follow Bayesian CI (Berniker and Kording, 2008). Participants’ behavior 
in several studies in which participants’ movements were perturbed 
experimentally have been accounted for by Bayesian CI as well (see (Wei 
and Kording, 2012)). 

2.7. Other perceptual and sensorimotor tasks 

Visual slant perception has been accounted for by Bayesian models 
utilizing mixed priors (Knill, 2007, 2003) or heavy-tailed likelihoods 
(Girshick and Banks, 2009) that have been shown to be equivalent or 
very similar to Bayesian CI (Shams and Beierholm, 2010) (see Box 2). 

The oddity detection task is a task that can involve stimuli in one 
sensory modality or in multiple sensory modalities. Hospedales et al. 
(Hospedales and Vijayakumar, 2009) showed that a Bayesian CI-style 
model can nicely account for both unisensory and multisensory oddity 
detection findings that had been previously posed as a challenge to 
forced fusion maximum likelihood models of sensory integration. The 
human observer data showed that the detection of oddity depended on 
the degree of discrepancy between the components in each stimulus, and 
thus whether or not they are bound together. 

Bayesian CI has also been employed to account for behavioral data in 
tasks related to speech perception, such as judgment of asynchrony 
between auditory and visual speech tokens (Magnotti et al., 2013), the 
McGurk effect (Magnotti et al., 2020, 2018; Magnotti and Beauchamp, 
2017), and the identification of phonetic categories across speakers 
(Kleinschmidt and Jaeger, 2015). 

Research on animal navigation has indicated that many animals, 
including rats, hamsters, honeybees, and spiders, can exploit multiple 
sources of information by utilizing path integration (the ability to keep 
track of distance and direction of path traversed) and landmarks. The 
pattern of processing of the two cues qualitatively follows Bayesian 
causal inference, in that when the discrepancy between the two cues is 
small, a bigger weight is given to the landmark cue than path integra-
tion, and when the conflict between the two cues is large, the landmark 
cue seems to be ignored (Etienne et al., 1990; Shettleworth and Sutton, 
2005). This is consistent with a process of causal inference, deciding 
whether the landmark cue corresponds to the target or to another 
location (Shams and Beierholm, 2010). 

2.8. Learning, adaptation, recalibration, and attention 

While psychologists and neuroscientists have studied adaptation, 
recalibration, perceptual learning, and selective attention for decades, 
an understanding of how computation and neural processing is affected 
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by these processes has remained elusive. Because Bayesian models, such 
as Bayesian CI, allow quantitative and rigorous characterization of the 
various components of perceptual and sensorimotor processing in each 
individual subject, the change in each of these components can be 
examined quantitatively in various settings and scenarios. 

Odegaard et al. (Odegaard et al., 2016) investigated the influence of 
selective attention to visual or auditory stimuli in a spatial localization 
task and a temporal numerosity judgment task. Surprisingly, they found 
that selective attention only benefits the sensory modality that is already 
“good” (or reliable) at the task, and not the sensory modality that is 
weaker (or less reliable). Specifically, using Bayesian CI model fitting 
they found that in the spatial task, visual precision improves and in the 
temporal task auditory precision improves as a result of selective 
attention. The tendency to bind the stimuli (or perceive a common 
cause) did not seem to be affected by selective attention to a specific 
sensory modality. A more recent study (Badde et al., 2020) also used 
Bayesian CI in an attempt to characterize the effect of selective attention 
to visual and tactile modalities on processing components. 

The spatial recalibration of auditory map by vision is known as the 
ventriloquist aftereffect, and happens after repeated exposure to simple 
visual and auditory stimuli that are presented to the observer at a fixed 
spatial discrepancy. The same outcome can be due to either a shift in 
auditory representations of space (likelihood functions), or the prior 
distribution of the stimuli (priors), or a combination of the two. Wozny 
et al. (Wozny and Shams, 2011) investigated ventriloquist aftereffect in 
human observers using Bayesian CI and showed that the observer re-
sponses were most consistent with a shift in the likelihood functions, 
therefore, supporting a very low-level neural representation 
phenomenon. 

Using the same experimental paradigm, however, manipulating both 
the spatial and temporal discrepancy between the visual and auditory 
stimuli during the adaptation phase, Odegaard et al. (Odegaard et al., 
2017) investigated if there are sensory exposures that can modify the 
priors rather than likelihoods in the spatial localization task. Surpris-
ingly, they discovered that repeated exposure to large auditory-visual 
spatial discrepancy resulted in an increase–instead of a decrease–in the 
prior expectation of a common cause. Using the Bayesian CI framework, 
they explain why such an adaptation exposure can enhance the tendency 
to bind, an effect that could potentially be exploited in clinical and 

educational applications. Similarly, Tong and colleagues (Tong et al., 
2020) used different levels of congruency between visual and auditory 
stimuli to manipulate the prior expectation of a common cause. 

The recalibration paradigm described above involves passive expo-
sure to auditory-visual stimuli, no task, and no feedback during the 
exposure phase. In contrast, in perceptual learning paradigms, the 
observer actively performs a task during a training phase, and usually 
receives feedback on the accuracy of their responses. In a study using 
perceptual learning paradigm, McGovern et al. (McGovern et al., 2016) 
trained observers in an audio-visual simultaneity task, and examined 
their AV integration in a spatial localization task before and after the 
training session. They found two effects of training: the window of 
integration narrowed and there was an overall reduction in integration 
across the whole range of spatial discrepancies. They showed that a 
Bayesian CI model that included both spatial and temporal variables (an 
extension of Kording et al. (Körding et al., 2007) model) could quanti-
tatively and qualitatively account for the findings well, by indicating an 
increase in temporal precision and a reduction in the tendency to bind 
subsequent to training. 

Different sensory modalities encode space in different frames of 
reference (e.g. vision in eye-centered, audition in head-centered) and yet 
our perception of space is unified and coherent and independent of the 
modality of origin. However, several studies of spatial perception 
including those discussed above have suggested that the human 
perceptual system utilizes priors in the estimation of auditory-visual 
location. Therefore, this begs the question of which frame of reference 
the prior expectation of space is encoded in. Odegaard et al. (Odegaard 
et al., 2019) recently investigated this question using Bayesian CI and 
manipulating the direction of gaze of human observers in an 
auditory-visual localization task. The results of their quantitative 
Bayesian CI modeling suggested that the frame of reference is a com-
bination of eye-centered and head-centered frames. 

In a recent study Rohlf et al. (Rohlf et al., 2020) showed that children 
as young as 5 years old were able to perform multisensory integration in 
a spatial localization task, and their performance was best explained by 
the Bayesian CI. However, the children were not able to recalibrate 
when visual and auditory stimuli were presented with a consistent 
discrepancy, implying that the updating of the parameters of the 
Bayesian CI occurs at a different time scale from the development of the 

Box 2 
Non-hierarchical Bayesian Causal Inference and alternative models. 

Hierarchical models are not the only way to explain causal inference. Even within the Bayesian CI, if the causal structure is not explicitly of 
interest (e.g. if the latent variable Sa is the only variable to report) then it is possible to marginalize over the structure (integrate out C). Non- 
hierarchical versions do not involve a hierarchy of inference: inference about the structure followed by inference about the sensory variables. 
Instead of explicit representation and inference of causal structure, they assume a prior on the sensory variables that would capture the two 
causal scenarios by the mixture of the two priors on the sensory variables: 

In the simplest case (Fig. 2a) this marginalization can be shown to be equivalent to using a prior that is a mixture of components from the two 
structures, which when using Normal (Gaussian) distributions reduces to 

P(Sa,Sv) = P(C = 1)P(S = Sa = Sv)+ P(C = 2)P(Sa)P(Sv) = w*N(Sa − Sv, σ2)+ (1 − w)*N(Sa, σ2
a)N(Sv, σ2

v)

where σ2, σ2
a , σ2

v are respectively the variances of the joint, auditory and visual priors. 

Framing the prior in this way makes it easier to compare to other models, such as the similar competitive 2D priors model (Roach et al., 2006), or 
the heuristic coupling prior (Ernst, 2007). See Shams and Beierholm (Shams and Beierholm, 2010) for a graphical comparison. 

When computing the full hierarchical Bayesian CI becomes computationally intractable (see Box 4) and even a non-hierarchical Bayesian CI 
model has too many parameters, using a heuristic model (e.g. using a two dimensional Gaussian prior) can be a reasonable alternative. A non- 
hierarchical heuristic approximation to Bayesian CI model was shown to account for trisensory conditions (Wozny et al., 2008) capturing in-
teractions among all combinations of flashes, beeps, and taps on the finger. In a study of visual-tactile interactions in temporal numerosity 
judgment where the deviation between number of flashes and taps was limited to one a non-hierarchical heuristic approximation to Bayesian CI 
was shown to account well for the observers responses (Bresciani et al., 2006). However when it is possible to compute the hierarchical Bayesian 
CI, it tends to perform better than the heuristic approximations (Körding et al., 2007).  
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CI itself. Older adults, who frequently exhibit lower sensory reliabilities, 
also appear to integrate sensory information consistent with Bayesian CI 
(Jones et al., 2019). 

In summary, Bayesian CI has not only accounted for a vast number of 
perceptual and sensorimotor phenomena, but has also been successfully 
used as a framework to quantitatively characterize and elucidate effects 
of modulations due to processes such as attention, adaptation, aging, 
and learning. Still, important questions regarding the nature of the 
priors involved in Bayesian CI models, and the computational 
complexity of Bayesian CI in natural environments and the approxi-
mations, heuristics or other mechanisms that may be required to make 
this computation feasible in the human nervous system remain unan-
swered (see Box D). 

3. Algorithmic level of analysis 

The studies discussed so far have collectively provided compelling 
evidence that Bayesian CI accounts for the computations carried out by 
the perceptual and sensorimotor systems in the human brain. These 
studies have shown that human (and other primates) behavior in a vast 
range of settings and tasks is consistent with the behaviors exhibited by 
Bayesian causal inference, both qualitatively and quantitatively. 
Importantly, Bayesian CI has been shown to be not overly flexible or 
powerful and has passed the various tests of parsimony, specificity, 
model comparison, and model prediction testing (see Box 3). Therefore, 
all-in-all, the evidence for the Bayesian causal inference as a governing 
computation carried out by the human nervous system in the wide range 
of tasks and domains discussed above has proved to be compelling. 

The approach used in these studies is to compare the human ob-
servers’ behavior in a given task and for a given set of stimuli with that 
of a Bayesian CI model, and examine whether the responses qualitatively 
and/or quantitatively are consistent with each other. Therefore, this 
approach can be characterized as comparing two black “boxes” with 
each other (see Fig. 3). When providing the same input to the boxes, they 

produce the same output, suggesting that the two boxes carry out the 
same computation. While this approach is informative about the 
computation involved, it does not shed light on how the computation is 
carried out. For example, if the brain took the average of the visual and 
auditory location as the best guess of the location, there would never-
theless be many ways that this computation could be performed, e.g. by 
combining the auditory and visual estimates together, and then dividing 
it by two ((Xa+Xv)/2) or by adding half the difference between the vi-
sual and auditory signals to the auditory signal (Xa+(Xv-Xa)/2), etc. In 
other words, the same computation can be carried out in a lot of 
different ways, both at an algorithmic level, and at an implementation 
level (For example, one box may use a calculator, whereas the other box 
may use an abacus). 

In order to shed light on the representations or algorithm used by the 
human nervous system in computing Bayesian CI, Beierholm et al. 
(Beierholm et al., 2009) asked whether priors and likelihoods are rep-
resented independently in human auditory-visual spatial processing. To 
approach this question, the visual stimulus contrast was manipulated to 
lead to two different levels of reliability/precision, and hence two 
different likelihood functions. The study examined whether the estimate 
of the priors changed as a result of change in the stimulus precision (and 
in turn, change in likelihoods). The results suggested that priors 
remained the same despite a substantial change in likelihoods. There-
fore, this study provided evidence against representations and algo-
rithms that would rely on lookup tables of posterior estimates (or 
subject’s responses), and provided support for the idea that the nervous 
system achieves the optimal Bayesian causal inference by encoding 
likelihoods and prior distributions independently of each other and then 
combining them according to Bayes Rule (Fig. 4a). These findings are 
supported by a recent study (Tong et al., 2020) that used a converse 
manipulation. In this study, the authors aimed to manipulate the prior 
expectation of a common cause by extended exposure to either 
congruent or incongruent audio-visual stimuli, and reported no change 
in auditory and visual precisions (suggesting unchanged likelihoods), 

Box 3 
How meaningful is a good fit to the data?. 

Some have criticized Bayesian models of cognition by questioning their flexibility due to the potential use of ad hoc priors or a large number of 
free parameters. It is indeed possible for a model to be excessively flexible/powerful and account for any set of data and thus, not shed light on 
the true underlying computations at work. This warrants examination of the nature, structure, and flexibility of the model.  

1. Bayesian CI is not an ad hoc theory that was concocted to fit the data. Bayesian CI models are based on generative models that reflect the 
causal structure of events in the environment (or the body) leading to the stimuli that are observed by the nervous system. Bayesian CI is 
normative and represents the optimal way of solving the problems of causal inference and source estimation, problems that the nervous 
system has to solve in a large number of processing domains from early sensory stages all the way to cognitive and motor stages.  

2. Bayesian CI accounts for data with few free parameters. Bayesian CI models typically have a small number of free parameters (usually 
3–4) accounting for large sets of data (usually more than 500 data points). Moreover, fitting the parameters using a subset of the data (not 
used in the subsequent parameter-free model prediction testing) (Shams et al., 2005; Wozny et al., 2008) or showing that the model fails to 
account for scrambled data (Shams et al., 2005) provide additional evidence that the model is not overly flexible, and its account is selective 
to the observer data.  

3. Bayesian CI models can account for patterns of behavior even with no free parameters. Bayesian CI makes qualitative predictions about 
the pattern of behavior in a range of stimulus conditions that have been repeatedly confirmed by empirical data in a variety of tasks, 
populations, and processing domains. This includes complete fusion and a large bias by the more reliable/precise cue when the disparity is 
small, complete segregation of the cues when the discrepancy is large, or ‘partial integration’ (assuming model averaging) when the 
discrepancy is moderate. No other model had been able to account for this pattern of behavior.  

4. Bayesian CI models outperform alternative models. In some studies (e.g., (de Winkel et al., 2018; Girshick and Banks, 2009; Körding 
et al., 2007)) Bayesian CI was compared with other models of comparable complexity (same or larger number of free parameters) and was 
shown to provide a better account for the data.  

5. Bayesian CI’s predictions–including some counter-intuitive predictions– have been empirically confirmed (Peters et al., 2018; Samad 
et al., 2015). This is generally considered the ultimate test of a theory, and so far Bayesian CI has successfully passed this test. 

These facts and findings collectively provide compelling support for Bayesian CI as computation governing the perceptual and sensorimotor 
processing as discussed in Section 2.  
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providing additional support for the independence of priors and likeli-
hoods (Fig. 4a). 

More recently, multiple studies using a variety of neuroimaging 
techniques have probed the representations and processing of Bayesian 
CI in human observers. Despite the significant variety in tasks used, and 
the methods of study, all of these studies have suggested that the human 
brain carries out Bayesian CI in a sequential fashion (Fig. 4b), by first 
representing the unisensory estimates (e.g., XA and XV), followed by 
computing and representing the reliability-weighted fusion of the uni-
sensory estimates, followed by estimates of causal structure, followed by 
the combination of the fusion and segregation estimates according to the 
probability of their respective causal structure to produce the Bayesian 
CI estimates of the variable of interest (time, space, etc.) (Aller and 
Noppeney, 2019; Cao et al., 2019; Rohe et al., 2019; Rohe and Noppe-
ney, 2015b). Therefore, these studies confirmed what Beierholm et al.’s 
(Beierholm et al., 2009, p. 200) study had suggested, which is Bayesian 
CI is not only a good computational model of multisensory perception, 
but also a good process model in that it captures the representations and 
operations used by the nervous system to achieve the final outcome 

(Maloney and Mamassian, 2009). 
While recent studies have shed light on the representations and al-

gorithms involved in Bayesian CI, additional research is needed to shed 
light on questions about the nature of the information that is retained 
and manipulated by the nervous system in the process of inference (e.g., 
distributions vs. point estimates) as discussed in more detail in Box 5. 

4. Implementational level of analysis 

The studies discussed above shed light on the representations and 
processes involved in Bayesian CI. The next important question is how 
this algorithm is carried out by the machinery of the brain, networks of 
neurons. 

Some of the studies discussed above, in addition to shedding light on 
the representations and algorithm used by the human nervous system, 
have also examined the specific brain areas involved in each of these 
processes. These studies have used physiological measurements of brain 
activity together with the predictions of Bayesian CI to gain insight into 
brain areas involved in encoding the different components of Bayesian 

Fig. 4. a) One algorithm for carrying out Bayesian inference in the brain. b) An algorithm for carrying out Bayesian CI computations. c) Possible neural architecture 
of Bayesian CI in sensory tasks in human brain (Cao et al., 2019; Rohe et al., 2019; Rohe and Noppeney, 2015b). d) A proposed neural circuitry for Bayesian CI in 
auditory-visual spatial tasks, reproduced from (Cuppini et al., 2017). e) A proposed neural circuitry for Bayesian CI in a vestibular visual heading task, reproduced 
from (Zhang et al., 2019a). 
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CI computation. 
For example, using fMRI and a spatial localization task, Rohe & 

Noppeney (Rohe and Noppeney, 2015b) investigated the role of 
different brain areas along the human visual pathway in representing 
various relevant variables and computations of Bayesian causal infer-
ence. They found a hierarchical and sequential evolution of computation 
(as described above in Section 3) with representation of unisensory 
auditory and visual estimates of location in primary visual and auditory 
cortical areas, reliability weighted integration of the two signals in the 
anterior parietal region, and the final combination of location estimate 
from the two causal scenarios in the posterior parietal region. 

A similar approach (Rohe et al., 2019), however using the temporal 
numerosity judgment task (counting number of flashes and beeps) and 
EEG measurements and analyzing the temporal dynamics, showed the 
same style of processing. Sensory cortical areas appeared to produce 
unisensory estimates of the number of flashes and beeps, followed by 
higher-up representation of multisensory estimates of numerosity under 
the common cause vs. independent causes assumption, followed by the 
final Bayesian CI estimate. Another study using EEG to investigate 
temporal dynamics of Bayesian CI, but utilizing a spatial localization 
task, reported the same hierarchical processing of information as found 
in the temporal numerosity task (Aller and Noppeney, 2019). 

Furthermore, a study probing the neural mechanisms of Bayesian CI 
by investigating the temporal dynamics using MEG employed a some-
what different temporal task (temporal rate categorization) and yet re-
ported the same pattern of hierarchical evolution of the computation 
from sensory cortical areas advancing to higher areas of processing 
including parietal regions and prefrontal regions of the brain (Cao et al., 
2019). While this study also showed parietal regions to be involved in 
processing multisensory estimates, the arbitration between the common 
cause vs. independent cause hypotheses, and the combination of the two 
estimates appeared to take place in the prefrontal cortex. 

A recent study sought to illuminate the implementation of Bayesian 
CI at the level of individual neurons and populations of neurons within a 
brain area in the context of body ownership (Fang et al., 2019a). The 
activity of neurons in monkey premotor cortex was recorded in uni-
sensory and proprioceptive-visual conditions in a behavioral paradigm 
analogous to the Rubber-hand illusion. The study found neuronal ac-
tivities (both at individual neuron level and population level) correlated 
with various components of Bayesian CI, namely segregation, integra-
tion of the two modalities, and posterior probability of a common cause. 

These studies provide compelling evidence that the human and pri-
mate nervous systems implement Bayesian CI for a variety of tasks 
across a variety of sensori-motor pathways. However, how exactly these 
brain areas and neurons accomplish these computations remains 
unclear. 

Previous work had shown how theoretically neurons could perform 
cue integration through Probabilistic Population Coding (Beck et al., 
2008; Ma et al., 2006) (PPC), while segregation relies only on potential 
parameter transformation. It has also been proposed that the dynamic 
properties of single neurons, single synapses, and sensory receptive 
fields in effect carry out the non-linear computations involved in causal 
inference (Lochmann and Deneve, 2011). The challenging question that 
had not been probed until recently was how the posterior over the 
common cause would be computed by networks of neurons, and how to 
use this to non-linearly combine the integrated and segregated esti-
mates. In the last several years, suggestions have been made to address 
these questions. 

Ma & Rahmati (Ma and Rahmati, 2013) used the vocabulary pro-
vided by PPC to build a ’neural circuit’ that would be able to perform the 
exact computation required for estimating the posterior probability of 
the common cause. While they were able to devise such a circuit, they 
acknowledged that the biological plausibility of this method was ques-
tionable due to the complexity of the circuit. 

Yamashita and colleagues (Yamashita et al., 2013) developed a 
network, consisting of a single layer with lateral connections, that 

performed an implicit calculation of the probability of a single cause and 
was able to replicate the observed behavior. However, as a consequence 
of just using a single layer, access to unisensory information would be 
lost. 

In contrast, Cuppini, Ursino and collaborators created a neural 
network based on two parallel layers representing two unisensory mo-
dalities as well as a crossmodal layer receiving inputs from the uni- 
sensory layers (Cuppini et al., 2017; Shi and Griffiths, 2009; Yu et al., 
2016). After unsupervised learning of the stimulus statistics presented to 
the network, the connectivity within, and across layers, produced 
behavior very similar to the non-linear cue combination of causal 
inference, with cues being pulled together when close together, but 
unaffected when further apart. A three layer network designed to 
perform predictive coding proposed by Spratling (Spratling, 2016) also 
produces the same behavioral phenomena, while Tong et al. (Tong et al., 
2018) expanded this approach to also allow recalibration across trials. 

Neurophysiological studies of heading direction in monkeys have 
reported neurons that appear to encode full integration of the sensations 
and neurons that appear to be tuned to opposite directions (known as 
“opposite neurons”). Inspired by these findings Zhang et al. (Zhang 
et al., 2019b, 2019a) proposed a model consisting of integration neurons 
and opposite neurons that can estimate the probability of a common 
cause, and account for behavioral data on heading direction. A limita-
tion to this model is however that it only applies to circular variables (e. 
g. direction) as it relies on the properties of neurons with opposite di-
rection tuning. 

Using an alternative approach Yu and colleagues (Yu et al., 2016) 
used importance sampling as a proposed method of neural computa-
tions, an approximation that has previously been shown to be biologi-
cally feasible (Shi and Griffiths, 2009). By combining importance 
sampling with principles from PPC they were able to recreate the pos-
terior probability of common cause in the multisensory Bayesian CI 
model. An intriguing possibility explored in the paper is to what degree 
this method can be used to generalize to multiple stimuli (>2), a 
computationally difficult problem (see Box 1). In a later paper (Fang 
et al., 2019b) these ideas were extended to allow the same neural circuit 
to perform both the causal inference estimation, as well as the integra-
tion of cues. 

These models have used simple biological mechanisms and connec-
tivity patterns (e.g., long lateral inhibition) that are known to exist in 
sensory cortices of primate brains, to either explicitly or implicitly 
encode the probabilities required for the algorithms in Bayesian CI. 
Overall, while there are still uncertainties about how the brain imple-
ments a causal inference strategy, there are several proposals of ways it 
could happen. Future experimental work, in collaboration with more 
modeling, is needed to narrow down these hypotheses. 

In summary, it appears that Bayesian CI is implemented in a 
distributed fashion across processing domains. At least in some domains 
that have been examined empirically, the implementation appears to be 
hierarchical and spanning brain areas across cortical lobes (e.g., occip-
ital, parietal, frontal). Future research can shed light on what kind of 
circuitry is involved in implementation of Bayesian CI, and whether the 
same type of circuitry (e.g., network connectivity) and mechanisms (e. 
g., long-range inhibition, short-range excitation, or opposite neurons, 
etc.) are involved in the implementation of Bayesian CI across tasks and 
processing domains. The advent of new experimental techniques, such 
as cellular imaging and optogenetic manipulations, also raise enticing 
possibilities for answering these types of questions in rodents. These 
methods may allow probing the neural implementation of Bayesian CI at 
the level of single neurons and neuronal circuits, and the causal re-
lationships between brain activity and computational mechanisms as 
opposed to a correlational relationship between the two. 

Future research can also investigate whether these mechanisms are 
hardwired or learned by experience. 
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5. Discussion 

5.1. The emergence of Bayesian CI as a neuroscience theory 

Up until early 2000s, the predominant model of multisensory pro-
cessing and cue combination was maximum likelihood estimation that 
implicitly assumed the sensory signals stem from the same source, and 
therefore, should completely get fused in the estimation of the source. 
Research on the Bayesian CI model started by making the observation 
that sensory signals don’t always get fused (Shams et al., 2002; Wallace 
et al., 2004); sometimes they get fused (full integration leading to illu-
sions if there is a discrepancy), sometimes they are segregated, and 
sometimes they interact partially (Shams et al., 2005). It was shown that 
a normative Bayesian model that allowed both integration and segre-
gation could account for these observations (Körding et al., 2007; Shams 
et al., 2005) and also explain counter-intuitive phenomena (Körding 
et al., 2007) such as negative bias (Wallace et al., 2004). Later, the same 
theory was shown to account for other multisensory phenomena, while 
making novel and unexpected predictions in different tasks which in 
turn were also empirically tested and confirmed (Peters et al., 2018; 
Samad et al., 2015). 

The Bayesian CI theory involves competition amongst hypotheses, 
aka, priors. For this reason, this theory can also be referred to as a 
“competitive priors” theory. The Bayesian CI model that was proposed in 
the context of multisensory perception is mathematically equivalent to 
the competitive prior model that had been proposed earlier in the 
context of visual perceptual tasks (Knill, 2007; Yuille and Clark, 1994). 
As discussed in Section 2, Bayesian CI models have successfully 
accounted for human (and other mammalians) behavior in a number of 
different tasks ranging in processing domain (spatial, temporal, 
spatio-temporal, speech, etc.), ranging in combination of sensory mo-
dalities (unisensory visual, unisensory auditory, multisensory with 
various combinations of sensory modalities), perception of the world as 
well as perception of self (body perception and ownership), sensori-
motor, and motor processing. It appears that evolution discovered this 
powerful computational mechanism and employed it in a variety of 
processes in the nervous system. 

5.2. The validity of Bayesian CI as a neuroscience theory 

A strong neuroscience theory should be able to account for existing 
data, and make predictions that can be tested and verified. It should be 
simple, yet able to explain a diversity of phenomena (Gorini, 2003). And 
lastly, it should be verifiable at all three levels of analysis as proposed by 
Marr3. 

Bayesian CI is simple and normative (see Box 3) and has accounted 
for a wide variety of phenomena (see Section 2). It is a parsimonious, 
unifying theory of perceptual and sensorimotor processing, governing 
the realms of multisensory perception, unisensory perception, body 
ownership perception, as well as sensorimotor processing (Fig. 5). 

The research summarized in Section 2 is the computational level of 
analysis that was carried out in a distributed fashion by several research 
groups around the globe (but see Box 4). Once the multisensory Bayesian 
CI model was established as a successful computational model, research 
groups started exploring the algorithmic/representational and imple-
mentation aspects of it by investigating neuronal architectures and cir-
cuitries that can carry out the computation in the nervous system 
(Gorini, 2003) (see Box 5). 

As summarized in Sections 3 and 4, a variety of recent studies 
employing sophisticated neuroscientific methods, for example, EEG, 
fMRI, MEG, and single-electrode recordings, and using machine learning 
methods of analysis, have reported a hierarchical architecture in the 
human (and primate) cortex that appears to implement Bayesian CI in 
multiple processing domains. Moreover, several studies by different 
research groups have proposed specific and biologically plausible neural 
circuits that could carry out Bayesian CI in the context of spatial or 
temporal processing tasks. Thus, Bayesian CI has been tested on all three 
of Marr’s levels, emerging as a strong neuroscience theory. 

We argue that this hierarchical and systematic approach to under-
standing brain function that is based on a sequence of observation of 
behavior, developing theoretical ideas, testing predictions, exploring 
generality, and investigating algorithms and potential neural imple-
mentation provides a template for a successful approach to under-
standing the brain function. It also demonstrates the effectiveness of the 
scientific method (Gorini, 2003; Toomer, 1964) and scientific 

Fig. 5. Bayesian Causal Inference is a unifying theory. 
Each box represents a domain of brain processing and the 
numbers in each box are references to some of the studies 
that have shown Bayesian CI accounts for a task in that 
domain as listed below. Bayesian CI accounts for empirical 
findings in a large number of studies probing diverse tasks 
ranging from sensation to action, and a vast number of 
phenomena that appear completely unrelated, or appear 
counter-intuitive. References: 1) Körding et al., 2007. 2) 
Beierholm et al., 2009. 3) Wozny et al., 2010. 4) Mohl 
et al., 2020. 5) Odegaard et al., 2019. 6) Odegaard & 
Shams, 2016. 7) Odegaard et al., 2016. 8) Odegaard et al., 
2015. 9) Rohe & Noppeney, 2015a. 10) Beierholm et al. 
2020. 11) de Winkel et al., 2018. 12) Sato et al., 2007. 13) 
Hospedales & Vijayakumar, 2008. 14) Jones et al., 2019. 
15) Odegaard & Shams, 2016. 16) Odegaard et al., 2016. 
17) Shams et al., 2005. 18) Beierholm 2007. 19) Roach 
et al., 2006. 20) Cao et al., 2019. 21) Magnotti et al., 2013. 
22) Sawai et al., 2012. 23) Yuille & Clark, 1994. 24) 
Stocker & Simoncelli, 2006. 25) Lu et al., 2010. 26) de 
Winkel et al., 2017. 27) Acerbi et al., 2018. 28) Dokka 
et al., 2010. 29) Knill, 2007. 30) Knill, 2003. 31) Girshick 
& Banks, 2009. 32) Hospedales & Vijayakumar, 2009. 33) 
Peters et al., 2016. 34) Peters et al., 2018. 35) Atsma et al. 
2016. 36) Perdreau et al., 2018. 37) Magnotti & Beau-
champ, 2017. 38) Magnotti et al. 2020. 39) Magnotti et al., 
2013. 40) Magnotti et al., 2018. 41) Kleinschmidt & 
Jaeger, 2015. 42) Samad et al., 2015. 43) Schumann et al., 
2019. 44) Kilteni et al. 2015. 45) Legaspi & Toyoizumi, 

2019. 46) Fang et al., 2019. 47) Wei & Körding, 2012. 48) Wei & Körding, 2009. 49) Berniker & Körding, 2008. 50) Shams & Beierholm, 2010.   
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Box 4 
Limitations and outstanding questions: Computational level of analysis.  

1. How are Bayesian CI computations carried out in natural environments? The nervous system typically is faced with a large number of 
sensory (or sensorimotor) measurements at any given moment. These situations would require the nervous system to choose from a large 
number of causal structures (Gershman and Niv, 2010), and hence the problem of combinatorial explosion. As the number of parameters 
increases faster than exponential, approximations are needed when multiple cues are present (Wozny et al., 2008) or more clever generative 
models are also possible (Yates et al., 2017) that allow for the number of parameters to grow with the stimulus size using non-parametric 
Bayesian inference. It is also possible that instead of computing exact probabilities, the nervous system can overcome the computational 
intractability by instead computing approximations of the probabilities (Sanborn and Chater, 2016). Are there strategies, constraints, 
heuristics, or approximations utilized by the nervous system to make the probabilistic inference involved in Bayesian CI more computa-
tionally efficient and tractable?  

2. Is there a difference in the way high-level priors vs. low-level priors influence the computation? Our current knowledge of the priors 
involved in Bayesian CI is limited. It is clear that biases can influence the inference in the various tasks explored at multiple levels of pro-
cessing. For example, in a spatial localization task, the prior expectation that the visual and auditory signals have a common cause plays an 
important role in the perception of location, however, this prior bias can be induced by high-level cognitive factors such as experimenter’s 
instructions, as well as low-level biases that are due to the statistics of the environment and likely encoded at early sensory stages of 
processing.  

3. What is the nature of the priors? While some studies have started investigating the properties of Bayesian priors (Beierholm et al., 2009; 
Odegaard et al., 2019; Odegaard and Shams, 2016), there are still some basic questions about the nature, plasticity, and other characteristics 
of priors that are not explored and understood. For example, in a multisensory setting, are there different priors for unisensory vs. multi-
sensory conditions? In a similar vein, in situations where sensory information is available from multiple senses, does Bayesian CI in each 
sensory modality (e.g., the various visual cues for depth, or object identification) take place prior to inference across the senses (e.g., auditory 
and visual depth cues, or cues to object identity), or do they occur in parallel?  

4. What determines the loss function? Normative models of the brain function assume that evolution or experience has resulted in brain 
mechanisms that minimize a certain type of loss or cost (e.g., a certain kind of error). This is known as the loss function. There is some 
evidence that at least in some basic spatial and temporal tasks the loss function is not uniform across individuals, and may not be uniform 
even within an individual across time (Odegaard and Shams, 2016; Wozny et al., 2010). What are the factors that determine the loss function 
for any given task, individual, situation?  

Box 5 
Limitations and outstanding questions: Representational and implementation levels of analysis.  

1. To what extent is the inferred causal structure accessible to consciousness? While the probability of each causal structure is computed 
in Bayesian CI and contributes to the estimation of the variables of interest (e.g., spatial location, time, speech, etc.), it is not clear whether 
this inference is accessible to consciousness, and whether the nervous system commits to a given causal structure at any stage of processing. If 
we do not explicitly ask participants to report their perceived causal structure (e.g., common cause or independent causes), would the 
nervous system bother with an explicit/conscious encoding of these probabilities?  

2. Does the nervous system encode probability distributions or some summary statistics of the distributions? For example, it is possible 
that the system only encodes the mean (or max) and/or variance of the probability distributions. For a complicated probability distribution it 
becomes impossible for the brain to explicitly encode it. In such cases does the brain rely on other approximations, such as sampling (Sanborn 
and Chater, 2016)?  

3. Is Bayesian CI hardwired or learned by the human brain? It is possible that it is hardwired for some basic tasks and learned for others. If it 
is learned, what are the mechanisms for learning, at what age do they emerge, and how fast are they learned?  

4. What are the neural mechanisms of Bayesian CI in the human brain? Very little is known about the implementation of Bayesian 
inference in the brain in general. It is not clear whether and how probability distributions are represented in the nervous system, how prior 
knowledge is combined with likelihood functions (or sensory input). The studies using fMRI, EEG, MEG and single electrode recordings 
discussed in Sections 3 and 4 have shed light on the architecture and brain areas where some of the Bayesian CI computations may take place, 
however how the computations are carried out at the level of circuitry and network of neurons is still unclear. The neural network models 
discussed in Section 4 provide a proof of concept that such implementation is possible, however which mechanism is employed by the 
biological neural networks remains a topic of future research. 

Interestingly, gaining insight into the neural mechanisms of Bayesian CI may shed light on the computational strategies of Bayesian CI for 
realistic complex situations with several sensory inputs, and the problem of combinatorial explosion discussed above. It is likely that evolution 
has found a trick to make this computationally intractable task feasible, and investigating the neural implementations of Bayesian CI may reveal 
simple approximations or heuristics that make this problem computationally tractable.  
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collaboration, and the power of multi-disciplinary approaches to brain 
research. 
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