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Abstract: In civil, mechanical, and aerospace structures, full-field measurement has become necessary
to estimate the precise location of precise damage and controlling purposes. Conventional full-field
sensing requires dense installation of contact-based sensors, which is uneconomical and mostly
impractical in a real-life scenario. Recent developments in computer vision-based measurement
instruments have the ability to measure full-field responses, but implementation for long-term
sensing could be impractical and sometimes uneconomical. To circumvent this issue, in this paper,
we propose a technique to accurately estimate the full-field responses of the structural system from a
few contact/non-contact sensors randomly placed on the system. We adopt the Compressive Sensing
technique in the spatial domain to estimate the full-field spatial vibration profile from the few actual
sensors placed on the structure for a particular time instant, and executing this procedure repeatedly
for all the temporal instances will result in real-time estimation of full-field response. The basis
function in the Compressive Sensing framework is obtained from the closed-form solution of the
generalized partial differential equation of the system; hence, partial knowledge of the system/model
dynamics is needed, which makes this framework physics-guided. The accuracy of reconstruction in
the proposed full-field sensing method demonstrates significant potential in the domain of health
monitoring and control of civil, mechanical, and aerospace engineering systems.

Keywords: full-field sensing; Compressive Sensing; sparse modelling; physics-guided; full-state
estimation; structural health monitoring

1. Introduction
1.1. Motivation of the Study

Due to intense dynamic loads, large amplitude in displacement, velocity, and/or
acceleration in the structural systems may induce unanticipated damage to the structures,
affecting structural performance. Estimating potentially vulnerable location estimation in
the structure requires full-field sensing. Theoretically, nonlinear state estimators [1–3] can
determine full-field responses from limited sensors. However, these techniques require
knowledge of system properties as well as forcing function and the number of limited
sensors required for estimating full-state is large. One of the most basic solutions is to
install contact-based vibration sensors in a dense manner throughout the structure, but it
would be economically expensive and impractical to distribute sensors at all locations.
Continuous and distributed sensing is possible with the ‘strain sensing smart skin’ that can
be coated onto the surface of the structure to acquire strain data of high spatial resolution
for estimating the dynamic strain directly [4–10]. Recently developed non-contact vision-
based techniques like Digital Image Correlation (DIC) [11–15] are very suitable for full-field
sensing. In DIC, the target surface, which needs to be monitored, is painted with a random
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speckle pattern. In recent times, completely non-contact techniques are available for full-
field motion estimation, which does not need random speckles on the target surface. Optical
flow-based techniques [16,17] track the brightness pattern change in consecutive image
frames to estimate the motion, phase-based motion estimation algorithms [18] estimate the
oscillatory motion from the local amplitude and phases of the image frames, and the edge
tracking [19,20] tracks one particular edge of the structure throughout all the time sample
with a sub-pixel level of accuracy. Very recently developed neuro-inspired vision sensors,
i.e., event-based cameras [21] can be used to measure full-field responses. Such cameras
are more robust to motion blur, have a higher dynamic range, and have lower latency than
a conventional frame-based camera. However, the precision of camera-based techniques
depends on the camera’s location and the structure’s size—which sometimes make the
camera-based techniques inconvenient when the system is in operating condition. Deep
learning [22] can also be deployed for dense response estimation, but it requires extensive
training data—which might not always be available.

1.2. Contributions

This paper presents a physics-guided approach to determine the full-field vibration
response of a structural system from a limited number of randomly placed vibration sensors
in a structure. This methodology can be used for contact-based sensors like Linear Variable
Differential Transformers (LVDTs) or accelerometers as well as non-contact-based sensors
like Laser Doppler Vibrometer (LDV) or computer vision-based point trackers. The time
histories of these limited numbers of sensors act as the input of the proposed full-field
motion estimation technique. Compressive Sensing (CS) possesses an excellent capability of
reconstructing a whole signal from random sampling points. We adopt such potential of the
CS method in the spatial domain to generate full-field motion from a sparsely placed limited
number of sensors. The spatial basis functions needed for the CS technique are obtained
from the closed-form solution of the generalized partial differential equation of the system.
It can also be obtained as in a recent work [23] by the authors, wherein Dictionary Learning
is utilized to obtain the basis functions—but this requires training data, i.e., dense sensor
time history, which may not be unavailable and sometimes infeasible. Therefore, in this
paper, we propose a framework to estimate the dense time history from a few randomly
placed sensors when the generalized partial differential equation of the system is available.
To the best of the authors’ knowledge, no studies are available where full-field vibration
response is estimated from limited measurement given the generalized partial differential
equation. This framework is physics-guided—as some information of the system’s inherent
physics, i.e., the generalized partial differential equation, is required. It is noteworthy that
the coefficients of the underlying differential equation are not required; only the overall
form/structure of the equation is enough to run the framework. This technique can be
applied to the member level as well as the system level of any size of the structure. This
method allows the user to execute all the tasks using a limited number of sensors which
generally require full-field response, such as (a) full-state estimation, (b) precise localization
of potential damage and (c) control force design from full-state feedback.

It is noteworthy that the difference between the recent work by the authors [23] and this
paper is that theframework presented in [23] is entirely data-driven, where no information
on the system is available; hence, the basis functions are trained using Dictionary Learning
from full-field training data. On the other hand, the framework presented in this paper is
physics-guided; the information about the generalized partial differential equation of the
system is available, and it is also available regarding those scenarios where acquiring the
full-field data for training is impossible. As the final objectives of both of these papers
([23] and this article) are similar, we show the results on the same structural systems.

1.3. Brief Literature Review on Compressive Sensing

The proposed approach in this paper is motivated by the concept of Compressive
Sensing (CS) [24–26]. Compressive Sensing techniques can reconstruct a signal from
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the samples measured below the Nyquist rate, which is essential in data storage and
transmission. It uses the sparsity property in the signal to reconstruct the original signal
using a few samples. The only challenge of CS is to determine the perfect basis functions
for the signals. For example, Fourier and wavelet basis functions are used in standard
signal and image compression and transmission as they have sparsity properties in those
domains. Similarly, in seismic imaging [27], CS is used in Seismic Image compression as
the curvelet domain can be used as the set of basis functions. Most of the application of
Compressive Sensing in the domain of structural engineering is related to working with
time series data only. In the wireless network, CS has been beneficial for the data packet
loss recovery in civil structural health monitoring [28,29]. Using a few measurements in
the wireless sensors in the time domain, one technique is proposed to localize structural
damage where the matched filter is amalgamated with the CS [30]. In fast-moving wireless
sensing, the data-packet loss is common; hence, CS is used to recover the data used for
structural health monitoring [31]. As data compression with CS consumes less power,
the long-term bridge monitoring is shown to be energy efficient by 10–60% by using a
20% sample of the original signal [32]. Along with the time series signals, CS is used for
efficient and robust data transmission of structural images and videos taken by Unmanned
Aerial Vehicles (UAVs) which can be used for machine vision-based SHM applications [33].
Ganesan et al. [34] demonstrate that the CS methodology can also be applied to the spatial
domain by reconstructing the operational deflection shape (ODS) of beam vibration from
randomly placed sensors. For structural health monitoring purposes, one variant of CS,
i.e., Bayesian CS, is used for data loss recovery for approximately sparse signals [35].
Various applications and a detailed review of CS are presented in Rani et al. [36]. In this
paper, we implemented the concept of Compressive Sensing in the spatial domain to obtain
full-field motion from a few randomly spaced sensors.

The paper is structured as follows. First, the novel framework and the brief concept of
Compressive Sensing are shown in Sections 2 and 3, respectively. Subsequently, numerical
simulations on the beam and plate are presented in Section 4. Next, this method is experi-
mentally validated with a video camera on a laboratory-scaled cantilever beam in Section 5.
Afterwards, we present the application of this method in determining a potential damage
location in Section 6. Finally, some of the important results and conclusions are discussed
in Section 7.

2. Proposed Formulation Utilizing the Physics-Guided Knowledge

According to the Compressive Sensing theory, a set of basis functions is required to
reconstruct a signal from a few measurements. The framework calculates the basis function
from the physics-based information of the system. The proposed methodology, in brief, is
shown in Figure 1. First, it has to be ensured that a generalized partial differential equation
of the mechanical/civil/aerospace system of interest is available. If one is available, then
the spatial basis functions are obtained from the closed-form solution of the governing
generalized partial differential equation of the system. If the model knowledge is entirely
unknown, the basis function can be created from the training data obtained from laboratory
testing using Dictionary Learning Algorithm [37,38], which is one of the recent works
by the authors [23]. This basis matrix (set of all basis functions) represents the model
of the system. This is derived from the generalized partial differential equation of the
system—hence, physics-guided. It is noteworthy that only the equations as specified in
Figure 1 are enough for this framework to understand the type of systems such as string,
beam, plate, or some other structural system. The coefficients of the equations, i.e., ci’s, are
not required at all—limited knowledge of physics is adequate for this framework. These
spatial basis functions contain the system’s intrinsic model knowledge or physics. Second,
now for the system of interest, if dense sensing is very difficult to achieve when the structure
is in operating condition, then only a few sensors are installed in the structure. In this
Figure 1, a sample bridge deck was considered as a system of interest, where four vibration
measurement sensors are randomly placed, which records the motion from four locations
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as shown in the figure. In this figure, only four numbers of actual sensors are shown for
demonstration purposes; this number is determined from the basis matrix, which we will
discuss in detail later. Finally, the Compressive Sensing technique can estimate the full-field
responses using the spatial basis functions and the response history of a small numbers of
sensors (in this example, four sensors).

Mechanical/Civil/ 
Aerospace system 
of interest - that 

needs to be 
monitored

Generalized partial differential equation of the model

Basis matrix creation from the closed form solution 
of the generalized partial differential equation 
(physics-guided representation of the system)

𝒄𝟏
𝝏𝟐𝒘 𝒙, 𝒕
𝝏𝒙𝟐 =

𝝏𝟐𝒘 𝒙, 𝒕
𝝏𝒕𝟐 ; 𝒄𝟐

𝝏𝟒𝒘 𝒙, 𝒕
𝝏𝒙𝟒 + 𝒄𝟑

𝝏𝟐𝒘 𝒙, 𝒕
𝝏𝒕𝟐 = 𝒇 𝒙, 𝒕

𝒄𝟒
𝝏𝟒𝒘 𝒙, 𝒚, 𝒕

𝝏𝒙𝟒 + 𝟐
𝝏𝟒𝒘 𝒙, 𝒚, 𝒕
𝝏𝒙𝟐𝝏𝒚𝟐 +

𝝏𝟒𝒘 𝒙, 𝒚, 𝒕
𝝏𝒚𝟒 + 𝒄𝟓

𝝏𝟐𝒘 𝒙, 𝒚, 𝒕
𝝏𝒕𝟐 = 𝒇 𝒙, 𝒚, 𝒕

Few number of Actual Sensors are randomly placed

Full-field structural 
system response 

estimation from the 
response measured by 
sparsely placed limited 

number of sensors 
using Compressive 
Sensing Algorithm 

In Operating Condition

Sensor signalVibration
Measuring

sensor

Structure with
Sensors

Figure 1. Proposed Methodology. The spatial signal basis functions are obtained from the closed form
solution of the generalized partial differential equation of the model (the equations are of transverse
vibration of string, beam, and plate, respectively). In operating conditions, the dense responses can
be obtained from the responses of the randomly located sensors using Compressive Sensing.

3. Full Signal Reconstruction from Few Measurements Using the Concept of
Compressive Sensing

The concept of Compressive Sensing [24–26] is concisely represented in this section.
A signal y ∈ Rm is considered to be sparse, if

y = Dx =
n

∑
j=1

xjdj = ∑
j∈S

xjdj (1)

where D ∈ Rm×n is the orthonormal basis matrix, dj is the jth column of D. Generally,
the basis matrix is considered overcomplete, i.e., m < n. Most of the coefficients of xj are
zero in Equation (1), signal sparsity S = {j|xj 6= 0}, the level of sparsity s = |S| = ||x||0;
hence, x ∈ Rn is a sparse vector. For completely unknown signals, Dictionary Learning
uses the training signals to construct the basis matrices [37,38], but it needs training signals,
which sometimes could be unavailable as it needs the full length of y ∈ Rm and optimizing
the basis function using Dictionary Learning is indeed computationally expensive. On the
other hand, if the intrinsic physics of the system is known, which generates the signals,
over-complete basis functions (like Fourier or Wavelet) can be generated.

3.1. Solving the Optimization Problem

The Compressive Sensing (CS) algorithm can estimate y ∈ Rm from the noisy mea-
sured vector z ∈ Rp with p << m.

z = Θy + e = ΘDx + e = Φx + e, where, Φ = ΘD (2)
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where Θ ∈ Rp×m is the measurement matrix. e is the error/noise which is bounded by
||e||2 ≤ ε. Hence, the basis coefficients can be estimated by solving the following convex
optimization problem:

x̂ = arg min
||Φx−z||2≤ε

||x||1 (3)

where || · ||2 denotes the `2 norm. Equation (3) can be presented as LASSO [39] framework
for optimization as:

minimize ||Φx− z||2 + λ||x||1 (4)

where λ is the regularization parameter. The sparse solution x from Equation (4) is obtained
using the interior point method [40,41], and then the the full signal y can be obtained from
Equation (1).

3.2. Minimum Number of Samples Required for Accurate Signal Reconstruction

Amini et al. [42] suggest the minimum number of the sampling points for accurate
signal reconstruction is dependent on the basis matrix and can be estimated as follows:

• Perform Singular Value Decomposition (SVD) of D as D = UΣV, where D ∈ Rm×n,
U ∈ Rm×m, V ∈ Rn×n, and Σ ∈ Rm×n with m < n. Diagonal values of Σ represent the
singular values, and σi represents the ith singular value.

• Normalized Power Index (NPI) or the expressivity index is established as NPIp =

∑
p
i=1 σ2

i

∑m
i=1 σ2

i
. The minimum sensor number for accurate signal reconstruction is the mini-

mum integer value of p for which NPI→1.

4. Numerical Studies

In this paper, we numerically demonstrated the results of a 1D system (beam) and a
2D system (plate). For each of the cases, the basis matrix D ∈ Rm×n is obtained from the
inherent physics, specifically from the closed-form solution of the governing generalized
partial differential equation of the continuous system. This methodology can easily be
extended to other continuous systems like strings, membranes, etc.

4.1. Numerical Studies on a Simply Supported Beam
4.1.1. System Properties

A simply supported continuous steel beam [23] of length, height, and width of 50 m,
1 m, and 0.5 m, respectively, is considered as shown in Figure 2. The system is assumed to
have 1% Rayleigh Damping.

Figure 2. Simulation on the simply supported beam.

4.1.2. Working Procedure

In this numerical example, the virtual sensing points are considered to be spaced at
0.05 m, making the total number of such points 999. The number of virtual sensing points
or the distance between them can be modified based on user specifications. The number of
randomly placed actual vibration sensors is 10 (indicated as red circles in Figure 2), which
is very few compared to 999 (denoted as blue dots in Figure 2).

A random forcing function of low-frequency content (0–20 Hz) is applied 10 m from
the left end of the beam to induce the vibration in the simply supported continuous beam.
This ambient random forcing function’s mean and standard deviations are zero and 100 N,
respectively. In this paper, the Finite Element Method (FEM) was used to numerically
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estimate the vibration responses of the beam due to this random ambient force for 12 s with
a sampling frequency of 1000 Hz. Note that the number of virtual sensing points, the type
and amplitude of forcing functions, and the sampling frequency are similar to the examples
presented in a previous work by the authors [23].

4.1.3. Basis Function Creation from Physics-Based Knowledge

The proposed framework requires the estimation of basis matrix D from the closed-
form solution of the inherent differential equation of the continuous system.

Transverse vibrations of beams for broadband random excitation:

The equation of motion of a Euler–Bernoulli beam excited by a distributed transverse
force can be expressed as [43]

∂2

∂x2

[
EI(x)

∂2w(x, t)
∂x2

]
+ ρA(x)

∂2w(x, t)
∂t2 = f (x, t) (5)

where w(x, t) is the transverse response of the beam, f (x, t) represents the forcing function,
E is Young’s Modulus, ρ is the density, I(x) and A(x) are the moment of inertia and cross-
sectional area at distance x from one end, respectively. The transverse response can be
assumed to be a linear combination of the normal modes of the beam as

w(x, t) =
∞

∑
i=1

Wi(x)ηi(t) (6)

where the ith mode is represented by the mode shape Wi(x) in generalized coordinates.
The solution of Equation (5) is expressed as

w(x, t) =
∞

∑
i=1

[
Ai cos ωit + Bi sin ωit +

1
ωi

∫ t

0
Qi(τ) sin ωi(t− τ)dτ

]
Wi(x) (7)

where Qi(t) is the generalized force corresponding to the ith mode as:

Qi(t) =
∫ l

0
Wi(x) f (x, t)dx (8)

The first two terms of Equation (7) are due to the free vibration, and the constants Ai
and Bi are evaluated from the initial conditions; the third term denotes the forced vibration.

For beams with a uniform cross-section, the mode shapes Wi(x) are functions of
natural frequencies ωi. A general expression of the mode shape is expressed as:

Wi(x) = Ci cos βix + Di sin βix + Ei cosh βix + Fi sinh βix (9)

where the spatial parameter β is related to ω as ω = β2
√

EI
ρA . The constants Ci, Di, Ei,

and Fi for the ith mode depend on the boundary conditions. For beams with varying
cross-sectional area, such general and closed-form expression of mode shape can be found
in the literature [44–47].

Spatial Sparsity:

Operational Deflection Shape (ODS) can be used for damage localization of a beam.
A dense deflection shape can be reconstructed using the discrete sensor placed in a ran-
domized location on the beam, eliminating the optimal sensor location determination. ODS
of beams are also sparse but in the spatial frequency domain. The mode shape functions
depend on the spatial parameter β, which uniquely relates to the natural frequencies ω.
Hence, Equation (7) can be expressed as follows
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w(x, t) =
∞

∑
i=1

Wi(x)ηi(t) =
∞

∑
i=1

(Ci cos βix + Di sin βix + Ei cosh βix + Fi sinh βix)ηi(t)

=
∞

∑
i=1

(C̃i cos βix + D̃i sin βix + Ẽi cosh βix + F̃i sinh βix) (10)

where C̃i = Ciηi(t), D̃i = Diηi(t), Ẽi = Eiηi(t), F̃i = Fiηi(t). The range of spatial frequency
parameter β can be determined from the range of natural frequency ω as they are directly
related. Now, the basis matrix D ∈ Rm×n is created from the range/length of the beam

and the range of spatial frequency. Here, the location on the beam xk =
L · (k− 1)

m− 1
, k =

1, 2, · · ·m and the spatial frequency βk = βlow +
(βhigh − βlow)

(n− 1)
· (k − 1), k = 1, 2, · · · , n

with the spatial frequency range βrange = [βlow, βhigh]. Now, from the ranges mentioned
in the previous sentence and Equation (10), the basis matrix D ∈ Rm×n is obtained using
the cosine, sine, hyperbolic cosine and hyperbolic sine basis. D is expressed as the
concatenation of ∆1 and ∆2 as

D = [∆1, ∆2] (11)

where

∆1 =


cos(β1x1) . . . cos(βnx1) sin(β1x1) . . . sin(βnx1)
cos(β1x2) . . . cos(βnx2) sin(β1x2) . . . sin(βnx2)

...
...

...
...

...
...

cos(β1xm) . . . cos(βnxm) sin(β1xm) . . . sin(βnxm)



∆2 =


cosh(β1x1) . . . cosh(βnx1) sinh(β1x1) . . . sinh(βnx1)
cosh(β1x2) . . . cosh(βnx2) sinh(β1x2) . . . sinh(βnx2)

...
...

...
...

...
...

cosh(β1xm) . . . cosh(βnxm) sinh(β1xm) . . . sinh(βnxm)


Now, from the location of p number of randomly placed sensors, the measurement

matrix Θ ∈ Rp×m is obtained, and in a similar fashion, Φ in Equation (2) will be randomly
chosen rows of basis matrix D. For p number of measurement, z = Φx and the sparse
solution x = [C∗1 , · · · , C∗n, D∗1 , · · · , D∗n, E∗1 , · · · , E∗n, F∗1 , · · · , F∗n ]T can be obtained from `1
minimization.

For a simply supported beam with length L, the deflection equation in Equation (10)
is expressed as

w(x, t) =
∞

∑
i=1

Wi(x)ηi(t) =
∞

∑
i=1

Di sin(βix)ηi(t) =
∞

∑
i=1

Di sin
iπx

L
ηi(t) =

∞

∑
i=1

D̃i sin
iπx

L
(12)

Hence, the basis matrix in Equation (11) will be reduced to

D =


sin(β1x1) . . . sin(βnx1)
sin(β1x2) . . . sin(βnx2)

...
...

...
sin(β1xm) . . . sin(βnxm)

 (13)

With p random measurement along the length of the beam for a definite time instant

can be written as [34]: zj =
n

∑
q=1

D∗q sin(βqxj); j = 1, 2, · · · , p and concisely can be written

in a matrix form z = ΘDx = Φx. Here, x = [D∗1 , D∗2 , · · · , D∗n]T and the expected sparse
solution should have non-zero D∗q if D∗q ≈ D̃i. One important thing to note is that the
sparse coefficients D∗q are different than the basis matrix D ∈ Rm×n, and the sparse solution
x is different than the spatial locations xi.
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In this numerical example, the number of spatially dense virtual sensors is considered
to be 999, and they are equidistantly placed over the length of the beam. Considering the
two endpoints as boundaries, the number of rows m in the basis matrix is 1001. The range
of spatial frequency can be obtained from the natural frequency, and the range of ω can
easily be obtained from the Fourier transform of response. Here, the range of spatial
frequency is chosen as [βlow, βhigh] = [0.001, 0.3]. The spatial frequency range is discretized
into n = 300 divisions, which makes the size of the basis matrix D ∈ R1001×300.

4.1.4. Minimum Number of Actual Sensors Needed for Accurate Reconstruction

According to the specifications presented in Section 3.2, the optimal number of sensors
required for accurate reconstruction is dependent on the SVD of physics-guided basis
matrix D. The SVs and corresponding NPIs are shown in Figure 3, and it is observed that
the minimum sensor number for accurate reconstruction should be 7. We will discuss both
the result from 7 and 10 sensors for this case.

Figure 3. (a) SVD of the physics-guided basis matrix; (b) NPIs for different sensor numbers. NPI→ 1
when the sensor number is 7 (shown in the zoomed-in version).

4.1.5. Response Estimation of Densely Located Virtual Sensing Points Using
Compressive Sensing

From the physics-guided basis matrix, we performed Compressive Sensing for the
whole time series to obtain the time history of all the virtual sensing points. The resulting
full-field time history using the proposed framework is compared with the exact time
history obtained from the finite element formulation. A relative error metric εi [23] is
considered to address the effectiveness of the proposed method:

εi =
||RExact,i − REstimated,i||22

1
m ∑m

i=1 ||RExact,i||22
× 100; i = sensor index (14)

where || · ||2 denotes the 2-norm and m is the number of virtual sensing points. REstimated,i
and RExact,i denote the estimated response and the exact response of the ith virtual sensing
point. Both RExact,i and REstimated,i are of dimension nt× 1, nt is the number of time samples.
The overall average error E [23] is represented as:

E =
1
ns

ns

∑
i=1

εi (15)

where E is the mean error of all the relative errors εi of independent virtual responses,
and hence invariant to the number of virtual sensors.

In this study, FEM is used to calculate the virtual dense sensing point responses for 12 s.
Here, the first 2 s of the data are used as validation data to find the optimal hyperparameter
λ in Equation (4), which governs the sparsity of the problem. In an experimental scenario,
such λ can be found from the numerical simulation of the system model. The last 10 s
of data are used for the testing. The sampling frequency is 1000 Hz; hence, the time
samples for hyperparameter optimization (validation) and testing are 2000 and 10,000,
respectively. The accuracy of the framework is reported only on the test data. λ is a very
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robust hyperparameter, and it does not require fine-tuning as the average error is not
very sensitive to a slight change of λ. The average validation error E values for different
hyperparameter λ is shown in Figure 4. The optimal λ is chosen as 0.001 where the average
error is minimum in Figure 4.

Figure 4. Determining the tuned λ in the CS optimization for simply supported beam.

εi is estimated for each dense virtual point for the test data (2–12 s), and the error
profile for the full beam length is shown in Figure 5a. The average test error E for all the
virtual sensors 7.2× 10−4% indicates the accuracy of the proposed technique. The largest
εi is 0.0025% located at 4.3 m from the left end and denoted as Location 1 in Figure 5a,b.
The maximum error over the beam is so small, which indicates the proposed framework can
successfully obtain the full-field time history from a handful of actual sensors. The recon-
structed time history of Location 1 is plotted in Figure 5c, along with the actual time history,
showing the effectiveness of the proposed method. Notably, this approach’s accuracy is
invariant to the location of the forcing function.

Figure 5. (a) Relative Errors (εi) in % for the virtual dense sensing points. The ‘green square’ marker
represents the location of maximum relative error. (b) Location of actual sensors (shown as ‘red
circles’). (c) Comparison of actual and reconstructed time history response at Location 1.

4.1.6. Practical Recommendations on the Actual Sensor Placement

In Section 4.1.5, the actual sensors were considered to be placed in a completely
random fashion. However, it might be possible that in the random placement of sensors,
two or more sensors are located within a minimal distance, and the user does not want such
clustering of sensors, e.g., in Figure 5, the leftmost two sensors are very close to each other.
Hence, to avoid such scenarios, sensors can be placed using Latin Hypercube Sampling
(LHS) or stratified random sampling instead of pure random sampling. LHS is also a
variant of random sampling, which satisfies the RIP property. In this case, we assume that
p number of actual sensors has to be installed in a stratified random fashion on a beam of
length L [23].
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4.1.7. Full-Field Response Estimation from the Minimum Number of Actual Sensors

Responses of all 999 virtual sensing points are calculated from optimally obtained
seven sensors (presented in Section 4.1.4) placed in a stratified random manner using the
proposed framework. With the optimally estimated seven sensors (Section 4.1.4) placed in
a stratified random manner, responses are estimated for all 999 virtual sensing points using
the proposed framework. The error profile is shown in Figure 6a, and the average test error
is 0.0011%. The maximum error is 0.0045% over the full beam length and is at 35.1 m from
the left end. However, the amplitude of the maximum error is negligible, and the estimated
time history of this point perfectly overlaps with the true/exact time history as shown in
Figure 6c, demonstrating the capability of the framework.

Figure 6. (a) Relative Errors (εi) in % for the virtual dense sensing points with the optimal number of
sensors placed in a stratified random fashion. The ‘green square’ marker represents the location of
maximum relative error. (b) Location of actual sensors (shown as ‘red circles’). (c) Comparison of
actual and reconstructed time history response at Location 1.

4.1.8. Effect of Measurement Noise on the Full-Field Response Estimation

If the actual sensors that are installed in the structure contain the measurement noise,
then the average full-field response estimation will be affected. Hence, the proper noise
filtering technique such as bandpass filters can be utilized to at least get rid of the high
frequency noises, prior to using those responses for full-field response estimation. However,
in this section, the effect of measurement noise on the framework is shown if no noise
filtering technique were used. In these numerical simulations, the added measurement
noise sequences are obtained as r% root mean square (RMS) zero mean Gaussian white
noise, with the percentage computed with respect to the RMS of the corresponding true
response of the attached sensors as shown in Figure 6. The estimation accuracy is calculated
for four different noise levels, for r as 1, 2, 5, and 8. Beyond these noise levels, the sensors
could be considered as faulty and might need replacement. The average estimation errors
for these noise levels are shown in Figure 7 for the test data of 10 s. It is obvious that with
the increasing measurement noise level, the full-field response estimation error would
increase. However, the small error value justifies the robustness of the proposed framework
for the measurement noise. As the measurement noise sequences are random and cannot
be represented by the spatial basis functions, the effects of such noises in Compressive
Sensing-based frameworks are nominal.
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Figure 7. Average full-field response estimation error for the measurement noises.

4.2. Numerical Studies on Simply Supported Rectangular Plate
4.2.1. System Properties

A steel plate [23] of length (L) 3 m, width (B) 2 m, and thickness (T) 0.005 m is
considered. The system is assumed to have 1% Rayleigh Damping. To induce vibration
in the plate, a random dynamic force of frequency content 0–20 Hz is utilized to actuate
a point that is 0.8 m from the bottom end and 1 m from the left end. The random force’s
mean and standard deviation is zero and 100 N, respectively. It is worth noting that the
system properties and the characteristics of the random force are the same as the example
presented in a previous work by the authors [23]. In this numerical study, the response due
to this dynamic force is calculated for 12 s, and the sampling frequency is 1000 Hz. Similar
to the numerical simulation of the simply supported beam, the first 2 s (2000 time samples)
of data are used for the hyper-parameter tuning (validation), and the remaining 10 s of
data (10,000 time samples) are used for testing.

4.2.2. Basis Function Creation from Physics-Guided knowledge

The equation of motion of the thin plates or classical/Kirchhoff plates, which is based
on similar assumptions as a thin beam or Euler–Bernoulli beam excited by a distributed
transverse force, can be expressed as [43]

D
(

∂4w(x, y, t)
∂x4 + 2

∂4w(x, y, t)
∂x2∂y2 +

∂4w(x, y, t)
∂y4

)
+ ρh

∂2w(x, y, t)
∂t2 = f (x, y, t) (16)

where w(x, y, t) is the transverse response of the plate, f (x, y, t) represents the distributed
transverse forcing function acting on the plate per unit area, h is the plate thickness, ρ is the

density, D represents the flexural rigidity of the plate and is expressed as D =
Eh3

12(1− ν2)
,

where E is Young’s Modulus and ν is the Poisson ratio of the plate.
The transverse displacement response of the plate can be expressed as the linear

combination of the normal modes of the plate as

w(x, y, t) =
∞

∑
i=1

∞

∑
j=1

Wij(x, y)ηij(t) (17)

For a general plate, the normal modes are expressed as

W(x, y) =C1 sin γ1x sin γ2y + C2 sin γ1x cos γ2y + C3 cos γ1x sin γ2y (18)

+ C4 cos γ1x cos γ2y + C5 sinh γ3x sinh γ4y + C6 sinh γ3x cosh γ4y

+ C7 cosh γ3x sinh γ4y + C8 cosh γ3x cosh γ4y
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For a simply supported rectangular plate, Equation (18) is simplified to

w(x, y, t) =
∞

∑
i=1

∞

∑
j=1

(
C1ij sin

iπx
L

sin
jπy
B

)
ηij(t) =

∞

∑
i=1

∞

∑
j=1

C̃1ij sin
iπx

L
sin

jπy
B

(19)

Hence, for this case, the vibration response for a bounded number of points along the
2D domain of the plate for a definite time instant can be expressed as

yij =
R

∑
r=1

Q

∑
q=1

C∗rq sin(ζrxi) sin(ξqyj); y = Dx; (20)

where x = ∆3 ⊗ ∆4; here, ⊗ denotes the Kronecker tensor product between matrices.
The two-dimensional matrix D is of size ((I × J)× (R×Q)) with (I × J) elements in the
rows and (R×Q) elements in the columns.

∆3 =


sin(ζ1x1) . . . sin(ζRx1)
sin(ζ1x2) . . . sin(ζRx2)

...
...

...
sin(ζ1xI) . . . sin(ζRxI)

; ∆4 =


sin(ξ1y1) . . . sin(ξQy1)
sin(ξ1y2) . . . sin(ξQy2)

...
...

...
sin(ξ1yJ) . . . sin(ξQyJ)

 (21)

where ζi and ξ j are the spatial frequency along the x and y direction of the plate, respectively.
Now, the basis matrix D is created from the range/length of the plate and the range

of spatial frequency in both directions. Here, x positions on the plate are denoted as

xi =
L · (i− 1)

I − 1
, i = 1, 2, · · · I, the y positions are denoted as yj =

B · (j− 1)
J − 1

, j =

1, 2, · · · J. The spatial frequency in the x direction is represented as ζr = ζlow +
(ζhigh − ζlow)

(R− 1)
·

(r − 1), r = 1, 2, · · · , R, with the spatial frequency range in x expressed as ζrange =

[ζlow, ζhigh]; similarly, spatial frequency in y is represented as ξq = ξlow +
(ξhigh − ξlow)

(Q− 1)
·

(q − 1), q = 1, 2, · · · , Q, with the spatial frequency range in y expressed as ξrange =
[ξlow, ξhigh].

p random measurements on the plate for a definite time instant can be written concisely
in a matrix form z = ΘDx = Φx. Here, x = [C∗1 , C∗2 , · · · , C∗(R×Q)]

T and the expected sparse

solution should have non-zero C∗rq if C∗rq ≈ C̃1ij. One important thing to note is that the
plate motion amplitude y is different than the y-coordinates in plate yj, and the sparse
solution x is different than the spatial locations xi.

In this numerical example, the number of gridpoints along x and y are considered
as I = 31 and J = 21, respectively. Moreover, the ranges in spatial frequencies are
[ζlow, ζhigh] = [0.1, 7] and [ξlow, ξhigh] = [0.1, 10] with R = 70 and Q = 100. These values
are obtained from the natural frequency, assuming that the response will be limited to the
first six modes of vibration. This makes the size of the basis matrix D ∈ R651×7000.

4.2.3. Response Estimation of Dense-Grid of Virtual Sensing Points Using
Compressive Sensing

SVD is performed on the physics-guided basis matrix D and SVs and corresponding
NPIs are shown in Figure 8a,b, respectively. Most of the dominant singular values are the
first 36 singular values, even though the NPIs for the 36 sensors are 0.8537, which is not
very close to 1; in this numerical study, 36 sensors are chosen for full-field reconstruction,
as incorporating more sensor will incur more cost.
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Figure 8. (a) SVs of the physics-guided basis matrix; the most dominant values are until 36; (b) NPIs
for different sensor numbers. NPI = 0.8537 when the sensor number is 36 (shown in the zoomed-
in version).

We performed Compressive Sensing for the whole time series using the physics-
guided basis matrix. For each of the time instances, CS estimates virtual dense sensing
point response time history from 36 actual sensors placed in a stratified random manner,
which is shown in Figure 9a. Using the first 2 s of response, the tuned hyperparameter λ is
found to be 0.1. Now, the relative errors εi are estimated for all virtual sensing points for the
test dataset, shown in Figure 9b—the average test error E is 0.35%. Relatively significant
errors are estimated as 5.13% and 4.48% (denoted as Locations 1 and 2 in Figure 9c),
and their time history comparison is presented in Figure 10. With 36 actual sensors, full-
field sensing of 2D continuous systems are possible, and increasing the number of actual
sensors will lead to more accurate estimation.

Figure 9. (a) Location of 36 stratified randomly placed sensors (shown as ‘red circles’) on the
simply supported rectangular plate; the objective is to estimate the responses of all the grid points
(‘blue intersections’); (b) Relative Errors (εi) in % for the virtual dense sensing points; (c) Locations of
interest with comparatively large relative errors (%). Such locations are denoted as ‘cyan diamond’
and ‘magenta star’.
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Figure 10. Comparison of actual and reconstructed time history response at Locations 1 (‘cyan
diamond’) and 2 (‘magenta star’) in Figure 9c.

5. Experimental Verification

Experimental validation of the proposed framework using contact-based sensors is
a bit difficult as it is practically impossible to mount dense sensors over any structure.
Dense sensor data will be needed to validate the reconstructed response from the randomly
spaced actual sensors. Apart from being economically inefficient, mounting a dense array
of sensors on a structure will modify the whole system’s mass properties, altering the
inherent system’s true dynamic response. Hence, we adopted a camera-based sensing
technique called edge tracking, which outputs the responses of each pixel present in the
edge, making it a full-field response estimation technique. For perfect estimation of the
responses, the edge tracking algorithm is expected to have accuracy at the subpixel level.

5.1. Edge Detection at Subpixel Level

In this paper, the Subpixel Edge Location Algorithm [48] was utilized to acquire the
edge information accurately. This algorithm localizes the edges by extracting the edges’
position, orientation, curvature, and contrast using one digital image acquisition technique,
the partial area effect. A brief concept [23] is presented in Figure 11.

Figure 11. Underlying concept for estimating the edge at the subpixel level from the partial area
effect [48]. Edge pixels are considered to have a weighted average intensity. Here, the pixel with
value D has more weightage of pixel intensity B compared to pixel intensity A. Similarly, the pixels
with intensity value C have a larger weightage of A compared to B. From these intensity values,
subpixel edge locations are estimated.

5.2. Vibration Data Acquisition Using Video Camera

We performed one dynamic experiment on a laboratory-scaled aluminum cantilever
beam [23] to demonstrate the capability of the proposed technique. The experimental
set-up is shown in Figure 12. This specimen’s length, breadth, and depth are 20.25, 2,
and 1/32 inches, respectively. To induce dynamic vibration in the beam, we simulated the
ambient wind load with an air blower (Figure 12). Please note that the experimental set-up
is the same as in a previous study by the authors [23].
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Figure 12. Experimental Set-up. An Aluminum beam is clamped at the table end, simulating the
fixed end. This cantilever beam vibrates when an air blower blows the air on the beam. The iPhone
SE records the beam vibration in slow-motion mode.

During the whole time of the vibration experiment, we tracked the beam’s whole edge
using the subpixel level of accuracy with the partial area effect algorithm [48], and each
pixel on the edge of the beam acted as virtual sensors. The final objective is to validate the
measured pixel displacement time histories with the reconstructed time history obtained
from a handful of measurements. This limited number of measurements represents actual
sensors in this experiment which are some random pixels on the edge itself.

We use the camera of the Apple iPhone SE (Figure 12) to capture the video of the can-
tilever beam vibration. iPhone’s in-built slow-motion mode allows us to capture the video
at a frame rate of 240 with a resolution of 720p (frame height × width = 1280× 720 pixels).
The vibration of the cantilever beam video was recorded for 35 s. The camera was placed at
254 mm (10 inches) from the specimen. The fixed support constrains the observable length
of beam vibration by the iPhone as 501.65 mm (19.75 inches).

5.3. Processing the Recorded Video

In this section, we discuss the procedure to calculate the response time history of
each edge pixel from the recorded video. First, the video is cropped so that the region
only focuses on the cantilever edge. Each of the frames in the RGB video is converted
to grayscale as the colour information is redundant in edge processing. Cropping and
grayscale conversion reduce the physical dimensions of the images/video frames, making
the overall edge processing computationally efficient. Processed edges from cropped and
grayscaled video frames of one instance are shown in Figure 13.
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The image pixel units are converted to physical displacement units, and the scaling
unit was found to be 36 pixels/inch (≈1.417 pixels/mm) to convert the displacement time
histories from pixel to displacement unit. A low-pass filter cutoff of 30 Hz is applied to each
of the time histories to eliminate high-frequency noises. The cantilever consists of 711 pixels
(711/36 = 19.75 inches or 501.65 mm), which represents 711 dense virtual sensing points on
the cantilever. The response time history near the support is erroneous from the camera-
based measurement as the vibration amplitude adjacent to the support is tiny, which makes
the Signal to Noise Ratio (SNR) very low. Due to this erroneous measurement, comparing
the estimated response from the framework with the true response (low SNR) would not
make any sense. Therefore, only the top part of the beam, i.e., 15.45 inches or 392.43 mm
from the cantilever tip or top 556 pixels (556/36 = 15.45 inches) are compared with the
reconstructed time histories; we do not consider the bottom 4.3 inches (19.75 − 15.45 = 4.3)
or 109.22 mm. The video lasts 35 s, and there are a total of 8400 frames, as the fps rate is 240.
The first 10 s (2400 time samples) of data are used for the hyper-parameter optimization,
and the remaining 25 s (6000 time samples) are used for testing.

Figure 13. (a) Image frame and (b) corresponding edge profile for a sample frame (1 inch = 25.4 mm).

5.4. Basis Function Creation from Physics-Guided Knowledge

The Euler–Bernoulli cantilever beam follows the differential equation expressed in
Equation (5), and the general ith mode shape of the cantilever beam is expressed as follows
with Gi as a constant [43]

Wi(x) = Gi

[
(cos βix− cosh βix)−

cos βil + cosh βil
sin βil + sinh βil

(sin βix− sinh βix)
]

(22)
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Hence, the overall spatiotemporal deflection profile of the cantilever can be expressed
as follows.

w(x, t) =
∞

∑
i=1

Wi(x)ηi(t) =
∞

∑
i=1

(C̃i cos βix + D̃i sin βix + Ẽi cosh βix + F̃i sinh βix) (23)

Hence, for the Compressive Sensing framework, the basis function D ∈ Rm×n will be
the concatenation of ∆1 and ∆2 as D = [∆1, ∆2], where the expressions of ∆1 and ∆2 are
given in Equation (11). We worked with the top 556 pixels of the beam; the number of spatial
points m = 556. Here, the range of spatial frequency is chosen as [βlow, βhigh] = [0.001, 0.35]
and the spatial frequency range is discretized into n = 350 divisions, which makes them
the size of the basis matrix as Dtop ∈ R556×1400.

5.5. Response Estimation of Densely Located Virtual Sensing Points (Image Pixels on the Beam)
Using Compressive Sensing

Similar to all the previous examples, the minimum number of actual sensors needed
for full-field sensing for accurate reconstruction is estimated by performing the SVD of the
physics-guided basis matrix Dtop ∈ R556×1400. The SVs of D and corresponding NPIs are
shown in Figure 14. The minimum sensor number is found to be 6.

Figure 14. (a) SVs of physics-guided basis matrix, (b) NPIs for different sensor numbers. NPI→ 1
when there are 6 sensors (shown in the zoomed-in version).

Compressive Sensing is performed for all the test data using the physics-guided
basis matrix and the optimal number of stratified randomly placed sensors as shown in
Figure 15a. Using the optimized hyperparameter λ as 0.01 obtained from the validation
dataset, the vibration responses of all the virtual sensing points is estimated for the test
dataset. The relative error profile is shown in Figure 15b. The average test error E is
0.017%—indicating the accuracy of the proposed method. The three largest errors are
0.096%, 0.059%, and 0.057% denoted as Locations 1, 2, and 3 in Figure 15c. The time
histories for these three locations are shown in Figure 16 to depict the comparison with the
actual response. It is to be noted that, in this experiment, the external force was imparted
by an air blower; hence, there was no control over the amplitude of the force amplitude
and the point of actuation. The proposed methodology is invariant to the properties of the
external forcing function; therefore, the reconstructed full-field time histories are accurate
and comparable with the measured time history. In this article, the performance of the
proposed framework is presented and validated on the video of cantilever beam vibration;
this can be adapted for cable type structures also [49,50].
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Figure 15. (a) Location of 6 Stratified randomly placed sensors (shown as ‘red circles’) in the top
15.45 inches of the cantilever beam. (b) Relative Errors (εi) in % for the virtual dense sensing points
(image pixels) in full-field response history estimation for the cantilever beam. (c) Locations of
interest with comparatively large relative errors (%). Such locations are denoted as ‘cyan diamond’,
‘green square’, and ‘magenta star’.

Figure 16. Comparison of actual and reconstructed time history response at Locations 1 (‘cyan
diamond’), 2 (‘green square’), and 3 (‘magenta star’) in Figure 15.

6. Potential Applications of the Proposed Framework

The proposed framework estimates the full-field response time histories from a hand-
ful of sensors in real time for a partially unknown dynamical system. Here, we define the
system as ‘partially unknown’ because, even though the form of the generalized partial
differential equation of the system is known, the parameters are unknown. Hence, appli-
cations of the proposed technique could be (i) estimating the system parameters of the
generalized partial differential equation [51–53], (ii) potential damage location determina-
tion (full-field responses can be decomposed into full-field mode shapes which can be used
for damage localization [54]), (iii) full-state estimation of moving targets [55] with para-
metric variation [56,57], (iv) control force estimation from full-state feedback [58]. These
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state feedback-based active control techniques are applied in acoustic impedance [59],
vehicle suspension [60], and vibration control [61]. Not only in active control, but the
state feedback-based control is also utilized in semi-active control [62], and hybrid con-
trol [63] also. Conventionally, for system identification and damage localization tasks,
the position of sensors (outputs) and the forces (inputs) can be optimally estimated by
optimizing the Bayesian loss function [64], modal kinetic energy [65], Fisher Information
Matrix (FIM) norms [66–69] or information entropy [70,71]. This article mainly discusses
the implementation of a full-field response estimation strategy for structural elements—
the proposed framework can also be extended in fluid-structure interaction problems,
e.g., wind pressures measurement [72,73] on building from a few sensors. The full-field
response estimation capability will allow for achieving the dense operational deflection
shape of the system with fewer sensors—which could be used for structural damage de-
tection and localization [74–76]. As this technique works in real time, this technique can
easily be utilized for online health monitoring of civil engineering structures and rotating
machinery [77–80].

It is to be noted that this paper formulates the full-field time history estimation from
a few sensors as a data sparsity in the spatial domain problem. If the few actual sensors
mounted on the system also suffer from data sparsity in the time domain, which is very com-
mon in wireless sensors due to packet loss [28,81,82], then also this proposed framework
cannot applicable after a pre-processing stage. In this pre-processing step, Compressive
Sensing can be adopted to reconstruct the time series of the packet data lost signal, and for
the vibration measurements, sinusoidal (sine and cosine) functions can be considered as the
basis functions. In an online estimation scenario, window-based Compressive Sensing [29]
can be utilized to obtain the reconstructed time series in real time. This proposed technique
is physics-guided; the generalized partial differential equation is needed for this approach
to work, which is mostly available for simple systems/structures. Hence, for complex and
unconventional 3D structural systems, the proposed framework cannot be directly applica-
ble. In those scenarios, one of the approaches could be dividing the complex system into
simple substructural systems, where the physics-based equations are available, and then
deploying the proposed technique. Another alternative option would be estimating the
basis functions for the complex structure as a whole and learning the spatial basis functions
from the training data using the Dictionary Learning technique [23].

In this paragraph, we demonstrate that full-field sensing will provide information
about possible damage locations, which is impossible to find with a limited number of
sensors. The beam discussed in Section 4.1 has a maximum displacement at 33.25 m from
the left end, denoted as a red dot in Figure 17 over the full-time period for the given random
force. If no actual sensor is present at that location, it would be impossible to figure out
such locations.

Figure 17. Location of the maximum displacement response is denoted as a ‘red circle’—which
is impossible to obtain without the dense sensing. Even the knowledge of the maximum modal
responses of different modes is not enough to find the location of the maximum displacement
response. The location of maximum amplitude is very close to the node point of mode 3.

7. Conclusions

Accurate full-field measurement necessitates dense sensing, which often could be
uneconomical as well as unfeasible. In this paper, we proposed a framework that requires
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a handful of contact/non-contact-based sensors to determine the full-field response for a
partially unknown dynamical system. The proposed methodology uses the Compressive
Sensing technique to estimate the instantaneous spatial motion profile from the randomly
placed actual sensors (contact/non-contact based), and iterating this procedure for all
time steps, we can obtain a full-field spatiotemporal profile of any vibrating structure.
The basis functions of Compressive Sensing are created from the closed-form solution
of the system’s inherent generalized partial differential equation, which makes this tech-
nique physics-guided. This method applies to any type of vibration-based measurement,
i.e., displacement, velocity, acceleration, and strain responses.

In this technique, the minimum sensor number, obtained from the SVD of the physics-
guided basis matrix, need not be optimally placed; instead, random placement would
result in sufficiently accurate full-field motion. However, in some scenarios, two or more
actual sensors may be located adjacently. To avoid such a situation, the sensor location
can be obtained using stratified sampling techniques such as Latin Hypercube Sampling
(LHS). The full-field response obtained from a few sensors from the proposed framework
can pinpoint the location of maximum vibration response; hence, this framework can
be utilized to find potential damage location. This method is invariant with respect to a
number of forcing functions as well as their locations.

We demonstrated the application of the proposed algorithm on the numerically sim-
ulated and experimentally validated Linear Time-Invariant (LTI) 1D and 2D structures
—the Linear Time-Varying (LTV) system is for future work. For all these cases, the rel-
ative errors obtained from the proposed framework are extremely minute—such errors
in full-field spatiotemporal response estimation are practically negligible; hence, this
technique can be adopted in real-time structural control and health monitoring of any
civil/mechanical/aerospace structure in their operating condition, leading the system to
have better maintenance and resilience.
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