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Abstract

An extensive evaluation of alternative estimati0iI methods for logistic binary choice probabilities
when applied to binary frequency data with limit cases is presented in this paper. The methods
examined are: binomial-logistic (BL) model, Berkson’s (BK’) method, and Haldane’s (HI.,)
method. These models are applied to weekly household mode choice data that contained a
substantial number of limit cases in which one of the alternatives was never chosen. The results
obtained indicate that the BL model is a practical tool that outperforms all the other methods
examined in this study. The BL models accommodate limit cases without requiring any additional
assumptions or approximations. The BK and HL methods have been shown to offer coefficient
estimates similar to, and fits that are somewhat worse than, those obtained by the BL models.
These methods remain to be useful tools for the analysis of binary frequency data, especially in
initial phases of analysis..In this paper it is also shown that coefficient estimates of HL method are
sensitive to the value of the adjustment constant, 6, used to incorporate limit cases and its optimal
value may depend on the data at hand.
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1. INTRODUCTION

Suppose data containing the outcome of repeated binary choices are available, e.g., the

choice of travel mode for commuting (automobile versus public transit) observed over 

one-week period. Then suppose a constant probability exists for each individual that

governs his repeated binary choices, and this probability is a function of person attributes

and other variables which are invariant during the observation period. This probability can

then be estimated using the observed relative frequency of choices (see, e.g., Cox, 1970).

One method used for this estimation that has received considerable attention is the

minimum logit chi-square estimation. Berkson (1944) proposed it as an operationally

simple alternative to the maximum likelihood method. The method assumes that the binary

choice probability can be written in the form of a logistic function and uses as the

dependent variable the "logit," i.e., the logarithm of the ratio of choice frequencies for the

binary alternatives. Estimates obtained using this method have been proven to possess all

the desirable properties. Another important advantage of this method is the convenience; a

weighted least squares procedure can be used for parameter estimation.

The problem arises, however, when choices made by an individual are all identical,

e.g., an individual always chose to travel by automobile and made no public transit trips

(such cases shall be termed "limit cases"). This leads to a frequency ratio of either zero 

infinity, for which logarithm is undefined. Berkson’s method cannot be applied to these

cases without modification.

The limit case is not a common phenomenon in many disciplines and thus has

tended to be neglected in previous studies. Berkson (1944) presented justifications for

excluding limit cases from the sample when the data are generated through an experiment in

bio-assay and re-sampling can be performed. On the other hand, limit cases are frequent in

the analysis of travel behavior. A good example is travel mode choice where, unless a

choice based sample is used, the frequency of public transit trips tends to be small

(especially in the United States). When individuals’ travel behavior is observed,

1
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experimentation and re-sampling are often infeasible while limit cases can not be

legitimately discarded. In fact, they contain as much information on the individual’s

decisions and choices as do non-limiting cases.

This study is concerned with the estimation of binary choice models using choice

frequency data which contain a non-negligible number of limit cases. It focuses on the

treatment of limit cases to which limited effort appears to have been directed in the past.

Two groups of alternative methods are examined in this study1. They all share the same

formulation of the binary choice probability using a logistic function.

One group of methods stems directly from the studies in bio-assay by Berkson

(1944) and Haldane (1955). In this approach limit-case fi’equencies are modified by 

approximation (Berkson’s method, or BK method) or by adding a constant (say, 0.5, as 

Haldane’s method, or HL method) to obtain estimates of frequency ratios. In this study, 

sensitivity analysis is performed to determine the effect of the value of a small constant (b)

added to observed frequencies, on estimated coefficients (13) and their standard errors.

As the second approach of this study, we propose the use of binomial density

functions together with binary choice probabilities formulated as a logistic function of

explanatory variables (we will term the model the "binomial-logistic model," or BL model).

The first approach (BK and HI_,) is compared with the more exact, maximum likelihood

estimation of BL models which does not require any assumption or approximation to

incorporate limit cases (the BL model contains as its special case the ordinary binary logit

model for unrepeated choice). The BL models are estimated using codes developed by the

authors in this study.

The objective of this study is to evaluate the relative usefulness of these alternative

estimation methods when applied to binary frequency data with limit cases. The focus of

the analysis is on: 1) the practicality of the binomial-logistic (BL) method, and 2) 

accuracy of the Berkson (BIC), and Haldane (HL) methods relative to that of the 

method. Underlying the study is the uncertain accuracy of BK and HL models in

2
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accounting for limit cases. These models, however, have an advantage in that they can be

estimated using commonly available statistical or econometric software packages. As they

require no assumption or approximation to accommodate limit cases, BL models are

expected to offer the most accurate results. But the effectiveness of commercially available

estimation software when applied to BL models is not evident. It is thus desired to

determine whether BK or HL methods are adequate and practical substitutes for the

maximum likelihood estimation of BL models.

The secondary objective of the study is to determine an optimal value of the added

constant (8) used in the HL method and to evaluate the effect of b on coefficient and

standard error estimates. For reasons discussed in Section 2, it is conceivable that the

analysis of mode choice cannot be performed for each individual trip; it may not be

uncommon that a modal split model must be formulated for some aggregate of trips, e.g.,

the set of all trips by an individual or by a household on a day, or work trips produced in a

zone (trip-end modal split models fall in this category). BK or HL methods will 

effective estimation tools in such instances. The study intends to offer guidelines as to the

selection of a constant term to be used in BK and HL methods when limit cases are

prevalent in the data.

Following the discussions in the next section on the background of this study, the

framework of binary choice analysis is summarized in Section 3 together with a description

of the BL model. Following this, the methods by Berkson and Haldane are illustrated in

Section 4. Estimation results with the BL models are presented in Section 5. Results with

BK and HL methods are presented in Section 6. Section 7 offers a brief summary of this

study.

2. USE OF FREQUENCY DATA

Analysis of travel survey data quite often encounters the problem of limited supply-side

information. While the interview survey data offer detailed measurements of household

3
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and person characteristics, measurements of urban land development and transportation

system characteristics are available only in terms of aggregate zonal averages, or often not

available at all. This is almost inevitably the case when a sample is taken from many

geographical areas to represent a nation-wide population. Collecting land use information

to cover the entire sample area and network data by travel mode for all trip records in the

data set, would be too costly, if possible at all. Consequently forecasting models need to

be developed using data with limited information, together with whatever supplementary

information is available.

This applies to the development of modal choice models using the Dutch National

Mobility Panel data set (see Golob, et al, 1986; van Wissen & Meurs, 1989). The data

contain information from weekly travel diaries prepared by household members of 12 years

and older. Thus an average of approximately 50 trips are available per household in each

survey wave. Trip attributes that are typically collected in person trip surveys are all

available from the travel diary. Also available are demographic and socioeconomic

attributes of the household and its members. Land use and trzn.~portation network data for

the 20 municipalities, from which the panel sample was drawn, are yet to be compiled; the

only measures available in this category are a rough indicator of transit service level by

municipality, and accessibility measures by mode based on destination choice models

developed in an earlier study (Creinzer & Daly, 1981).

Mode choice models that can be developed using such data do not focus on modal

competition at the trip level. This, although more desirable, is not possible because

information on the attributes of alternative modes is not available. However, because the

data set contains weekly travel information, it presents many travel mode choices repeated

by the same household members. These repeated choices may be collectively explained by

accessibility and other macroscopic measures.

Furthermore, mode choice may be made considering not each individual trip but a

series of linked trips to be made by the individual as a whole. Then the attributes of trips
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by alternative modes between a given origin and destination pair may not be as influential

as might be thought. To the contrary, household car ownership, the number of drivers in

the household, overall level of transit development, and other socio..demographic attributes

may be the major determinant of weekly household modal split. From this viewpoint, the

appropriate measure of mode choice is the relative frequency of trips made by a particular

mode rather than the mode chosen for each trip. These considerations motivate the

modeling effort reported here.

3. BINOMIAL-LOGISTIC MODEL

Consider the binary choice of one alternative out of two (A or B). For observation i, let 

= I if the choice is alternative A and Ri = 0otherwise. Suppose all choices made by i have

the same probability of success (i.e., A is chosen) and let Pr[Ri = 1] = P, where P is the

probability that alternative A is chosen. Then, E[Ri] = P and Var[Ri] = P(1 - P). The

probability density of Ri is

fR,(x) =’Pr[Ri = x] =-ff px(1-P)x’x’ x = 

L 0, otherwise

It is often of interest to explain the variation of P from individual to individual. The

underlying choice probability, P, may then be parametrized and expressed as a function of

the person’s attributes (thus denoted as Pi)- One possible parametrization of Pi is:

Pi = Pr[Ri = 11 = F(Xi’[~), i = 1, 2, ..., [2]

where Xi is a vector of explanatory variables for individual i, 15 is a vector of coefficients,

and N is the sample size. Xi is assumed to be exogenous to the process under study.
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Expression [2] is a general expression for E[Ri] = Pi (Amemiya, 1985) in which

the independent variables can be transformed to reflect a rich number of non-linear

relations. For a given individual i, Ri is assumed to be an independently and identically

distributed random variable with mean, E[Ri[Xi] = Pi = F(Xi’[?,). The function, F, can 

specified to assume any suitable form.

Now consider an individual, i, on whom we observe a vector of attribute variables,

Xi, and choices between two alternatives repeated Ti times. The total frequency of choices,

Ti, is assumed to be constant. The observations at hand can be treated as repeated Ti

Bernoulli trials with probability Pi. Then, the probability that alternative A is chosen k

times and alternative B (t - k) times, conditional on that Ti = t, is given by the following

binomial density2:

( t ) e ’(1-r’o’-kPr[K~ = klT~ =t] = k [3]

where Ki is the frequency with which alternative A is chosen by i. Now suppose a logistic

function can be adopted for F:

Then,

Pi = F(Xi’~) = exp(Xi’13)/[1 + exp(Xi’13)] - 1/[1 + exp(-Xi’13)] [4]

Pr[Ki = klTi- t]
, \t-k

/(,)
1

, k 1 + exp(-Xi 13)’ 1 + exp(-Xi p) } [5]

This model shall be called a binomial-logistic (BL) model of repeated binary choices.
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The parameter vector, 13, can be estimated by maximizing the log-likelihood

function:

t (1)
1 + exp~-Xi {~)

+ exp(-Xi [3) 

= i~ { ln(~.)-(ti-ki)13’Xi +ti/n(1

(f

+ exp(-Xi 13) [6]

where subscript i is added to t and k.

It can be easily shown that the function,/n(1 + exl~-Z)), is convex in Z. It follows

that In(1 + exp(-Xi’ [3)) is convex in 15 (see Avriel, 1976, Theorem 6.9, p. 154).

Therefore the log-likelihood function in eq. [6] is concave everywhere. This allows the use

of the Newton-Raphson algorithm which guarantees quick and unique convergence.

From eq. [5] Jris clear that the model reduces to the ordinary binary logit model

when t = 1. In fact the formulation of a log-likelihood function while treating each of the

repeated choices by an individual as a separate observation, will lead to the same

expression as eq. [6], except that the first term with the binomial coefficient will be absent.

This, however, does not affect the first-order eonditious for a maximum. An important

benefit of using the BL formulation is computational; the log-likelihood associated with

choices repeated by an individual can be evaluated more efficiently by using choice

frequencies. The statements here can be immediately extended to multinomial cases.

The first-order conditions for a maximum can be expressed as

c~L/8~ = E [ti/(1 + exp(’13’Xi)) - ki]Xi = O. [7]

7
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Therefore if the model contains a constant term, i.e., one element of Xi is set to unity, then,

the first-order conditions contain

or

E [ti/(1 + exp(-13’Xi)) - ki] [8]

A

Y. [ti/(1 + exp(-lYXi))] = ~tiPi = [8’]

Namely, an average predicted frequency of choice A (= ~tiPi) equals the observed

frequency (= ~ki).

4. MINIMUM LOGIT CHI-SQUARE ANALYSIS OF BINARY CHOICE

As before, it is assumed that individual i has made ti repeated binary choices with a

constant probability, Pi, of choosing alternative A. Let ki be the frequency with which

alternative A has been chosen, and (ti - ki) be that of alternative B. The empirical

probability for individual i is

[9]

We retain the assumption that

Pi = 1/[1 + exp(-Xi’[3)] [4’]

The discussions on this section are concerned with the linearization of this expression such

that weighted least squares estimators can be used to obtain estimates of parameter vector

13.
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Multiple Observations and Minimum Logit Chi-Square Estimation3

Equation [4’] can be written as the logarithm of the odds-ratio (log-odds):

In[Pi/(1- Pi)] = Xi’15 [lO]

This equation can be rewritten in terms of the empirical probability (Berkson, 1953;

Amemiya, 1985; and Maddala, 1983) as

In[Pil(1 - Pi)] = Xi’[5 + ui [11]

The error term, ui, in [11] can be shown to have E[ui] = 0, and its variance can be

approximated as (Berkson, 1953; and Maddala, 1983)4

Var[ui] = 1/(tiPi(1- Pi)) [12]

Note that the empirical log-odds, ln[Pi/(1 - Pi)], can be expressed as ln[ki/mi], where mi =

ti - ki. This is called the "logit."

Equations [11] and [12] can be used for estimation of the parameter vector, I~-

Berkson’s logit chi-square method (Berkson, 1953) is a generalized least squares

approach. First, an estimate of the variance of the heteroskedastic error term is obtained

by replacing the theoretical probability in Eq. [12] with the empirical probability in Eq. 1"9].

Second, weighted least squares is applied to equation [11]. The weight can be defined as

the reciprocal of the square root of the estimated error variance (Maddala, 1983):

[13]

9
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where, as before, mi = ti - ki.

Amemiya (1985, pp.

normality of these estimators.

275-278) has proven the consistency and asymptotic

Both Berkson (1980) and Amemiya (1985) agree that 

minimum chi-square estimator is furnishing efficient estimates. However, there appears to

exist no general consensus among researchers. For a comparison on the efficiency of the

maximum likelihood estimator versus the minimum logit chi-square, see Berkson (1980)

and the discussions that follow on the paper by other authors.

Berkson’s 2n Rule

One practical problem often occurs in Berkson’s procedure, i.e., empirical probabilities

may assume values for which the log-odds are undefined. This happens with limit cases,

or what Berkson calls "0 or 100 percent observations." This problem was recognized by

Berkson in his first exposition of the estimation procedure he devised (Berkson, 1944).

For situations where limit cases must be included in the analysis, Berkson proposed several

meart~ to circumvent this problem.

One of the met.hods proposed is called the "2n rule" (Berkson, 1953). For limit

cases with a null frequency, i.e. ki = 0, the frequency is replaced with ki = 1/2. Likewise

for limit cases with ki = ti, the frequency is modified as ki = ti - 1/2. The logit, the

dependent variable of the analysis, can then be rewritten as

/n[1/(2ti - 1)], ifki = 0

In[ki/mi], if 0 < ki < ti

In[2ti - 1], if ki = ti

[14]

The logit, Yi, is now defined for all cases and can be used as the dependent variable in the

weighted least squares estimation of Eq. [11], with the weight of Eq. [13] redefined using

10
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the 2n rule. Apparently this rule is strictly empirical and is not supported by statistical

theory.

Haldane’s Method

Gart & Zweifel (1967) present the relative advantages and disadvantages of Berkson’s and

other similar estimators that account for the presence of limit cases by adding a "small"

constant to each frequency to allow the log-odds to assume values that are neither zero nor

infinite. The comparison by Gart & Zweifel (1967) includes a method devised by Haldane

(1955) in which the value 1/2 is added to all the frequencies. The dependent variable 

these methods can be written as

Yi =/n[(ki + 6)/(mi + 6)] [15]

where 6 is a positive constant (b = 1/2 in Haldane, 1955).

The difference between this method and Berkson’s method lies in the treatment of

non-limit observations. Haldane suggests modifying all the observations by adding 1/2,

whereas Berkson suggests the modification of limit eases only. Haldane’s estimator is an

unbiased estimator of In[Pi/(1 - Pi)] up to terms of order superior to (n-2) (Gart & Zweifel,

1967). The same procedure is suggested in BMDP (1985 & 1988) when an empty cell 

present in multi-way frequency tables.

The most rigorous comparison of a variety of estimators was performed by Gart, et

al (1985). In their study the bias introduced when using Taylor series expansions in the

empirical logit formulation is derived, and a variety of estimation methods are compared in

terms of this bias. In addition, the variance, skewness and kurtosis of the empirical logit

are analyzed both through asymptotic expansions and exact computations. Their results

indicate that the correlation between the estimated weights and the empirical trart~formation

(adding a constant) may result in biased estimates. However, as in Gart & Zweifel (1967),

11
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the results do not indicate any estimator to be superior in all cases. As the snmple size and

the distribution of empirical probabilities change, the performance of one estimator may

prove better or worse than the performance of another.

It is of interest to identify the magnitude of change in the parameter estimates (13) 

the value of the added "small" constant (b) changes. In addition it is useful to identify

which estimator replicates the observed proportions better. For the HL method, a

sensitivity analysis over a range of added constant values is performed to identify any

systematic differences in the value of the parameter estimates and predicted choice

probabilities. This is the subject of Section 6.

5. ESTIMATION RESULTS: BINOMIAL-LOGISTIC CBL) MODELS

The dependent variable in the empirical analysis of this study is the relative frequency of

transit trips among the total motorized trips, or equivalently, the log-odds ratio of the

number of transit trips over the number of ear trips (including passenger trips), made 

each household over a one-week periodS. The data set used is the Dutch National Mobility

Panel Data set. This data set is derived from a large scale panel survey and contains a set

of observations on the same households over a period of time (for reviews of the Dutch

panel, see Golob et. ai. 1986; and van Wissen and Meurs, 1989).

Observations from four panel survey waves (contacts), conducted in the spring 

1984, 1985, 1986, and 1987, are used to estimate the models discussed in this paper.

Each data set contains over 1,600 households. A fifth data set was created by pooling

these four data sets. These multiple data sets, although not mutually independent, enable

more rigorous comparison of the estimation methods. The model presented in this study

has been validated using 1988 and 1989 data sets that were not used in model estimation.

The results are reported in Kitamura and Goulias (1991). The number of limit cases in the

estimation sample is summarized in Appendix Table.

12
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The set of variables included in the models reflects those in previous empirical

studies of mode choice. An initial screening of variables was made using various

multivariate analysis methods to identify significant factors affecting household modal split

in the data set. As discussed in Section 2, the modeling effort here evolves within the limit

that no information on the attributes of competing modes is available in the data set.

The binary choice probability is formulated using a logistic function of Eq. [4] with

the explanatory variables shown in Table 1. The same formulation is used throughout the

study in BL models, and BK and HL methods. The explanatory variables comprise those

depicting household demographics, household socioeconomic status, car ownership level

and number of drivers, household lifecycle category, and the type of area where the

household is located.

Binomial-Logistic (BL) Models

As noted earlier, the BL model handles limit observations most adequately because their

probabilities are well defined in the binomial density functions without requiring any

approximation. Estimation results are summarized in Table 2. Altogether five models are

estimated; four models estimated respectively on 1984, 1985, 1986, and 1987 data sets,

and another model on the pooled data set. The convergence was rapid with Netwon-

Raphson algorithm in all estimation eases. All models are highly significant with

likelihood-ratio chi-squares exceeding 6,800 with 17 degrees of fa’eedom.

The number of diary-keepers in the household, number of cars available, number

of drivers and level of public transit availability are the major variables that most

significantly influence mode choice (a positive coefficient implies a positive effect of the

variable on transit use). In particular, the results indicate that households without a car

available (ZEROCAR) and households in a large urban area with a regional transit district

(BOV-Large) tend to have higher fractions of public trarLgit trips.

13
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Table 1
The variables used in model formulations

Variable Definition

Household Demographics
NRECORDS Number of respondents in the household
NWOMEN Number of female members in the household

Household Socio-economics
NWORKERS Number of employed persons in the household
INCOME1* I if annual household income is less than dfl 1%000
INCOME2 1 if annual household income is between dfl 17,000 and dfl 24,000
INCOME3 1 if annual household income is between dfl 24,000 and dfl 36,000
INCOMEA I if annual household income is more than dfl 36,000

Household Carownership and drivers license holdings
7.1::ROCAR 1 if the household owns no cars
ONECAR 1 if the household owns one car
MULTI-CAR* 1 if the household owns more than one car
NDRIVERS Number of persons with drivers license in the household

Household Type
SINGLE
COUPLE
FAMILY

SGLPARENT
OTHER*

1 if the household is a single person
I if the household is composed of two adults of different gender
I if the household is composed of two adults of different gender and
there is at least one child
i if the household is composed of an adult and at least one child
I if the household is not part of any of the above categories

Residence Area Type (City Class)
BOY-Large 1 if the household resides in a large metropolitan area with highly

developed multi-mode transit systems
BOV-Small 1 if the household resides in a small metropolitan area with highly

developed multi-mode transit systems
RAII. 1 if the household resides in a small community that is sewed by rail
NORAIL 1 if the household resides in a small community that is not served by

rail
# The variables used in the model specification are all indicator (dummy) variables. The results
reported here are the same when part or all of the independent variables used are continuous.
* Omitted dummy variable, unless otherwise indicated

14
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Table 2
Binomial.Logistic Models

Pooled 1984 1985 1986 1987
Variable 15 t 15 t 15 t
Constant -3.91 -57.4 -4.19-30.7 -3.59 -26.3 -3.44
NRECORDS 0.46 39.1 0.54 24.1 0.51 20.6 0.38
NWOME 0.15 9.6 0.13 3.9 0.06 1.9 0.19
N-WORKERS 0.09 7.4 -0.08 -3.2 0.14 5.4 0.21
INCOME2 -0.09 -2.5 0.19 2.9 -0.17 -2.4 -0.15
INCOME3 0.16 5.0 0.22 3.6 0.03 0.5 0.26
IlNCOMEA 0.41 11.4 0.57 8.7 0.31 4.2 0.29
7FROCAR 3.02 77.2 3.25 39.6 3.11 38.6 2.76
ONECJd~ 0.70 23.1 0.96 15.1 0.77 12.4 0.44
NDRIVERS -0.40 -28.6 -0.40-14.7 -0.37 -13.1 -0.46
SINGLE -0.08 -1.6 0.03 0.3 -0.48 -4.5 -0.26
COUPLE -0.60 -12.9 -0.62 -6.8 -1.00 -10.8 -0.72
FAMILY -0.74 -16.5 -0.68 -7.9 .-1.18 -13.4 -0.76
SGLPARENT -0.32 -6.0 -0.18 -1.8 -0.77 -7.1 -0.58
BOY-Large 1.20 51.5 1.26 26.3 1.18 25.8 1.07
BOV-Small 0.30 11.6 0.12 2.4 0.26 4.5 0.38
RAIL 0.41 16.6 0.28 5.6 0.46 8.7 0.48
NORAIL -0.45 -10.3 -0.41 -4.7 -0.29 -3.5 -0.50
’L(C) -37209 -9227 -8867 -9317
L(I3) -22878 -5647 -5454 -5870

X2 28661 7159 6827 6895

15 t 13 t
-26.3
15.8
5.9
8.1

-2.3
4.1
3.8

36.4
7.5

-16.2
-2.5
-7.4
-8.0
-5.2
21.8
7.6

10.2
-5.7

-4.60
0.42
0.24
0.17

-0.19
0.15
0.41
3.10
0.68

-0.34
0.36

-0.06
-0.40
0.24
1.29
0.44
0.43

-0.58
-9794
-5702

8185
N 6787 1652 1611 1726 1798

-31.0
16.7
7.7
6.4

-2.6
2.1
5.2

39.7
10.9

-12.4
3.3

-0.6
-4.2
2.1

28.5
8.9
8.8

-6.4

P
Observed 0.165 0.168 0.162 0.167 0.163
Predicted 0.164 0.168 0.158 0.167 0.162
%Error -0.7% 0.1% -2.7% 0.3% -0.9%
R2 0.666 0.671 0.674 0.653 0.675
MAE 0.139 0.139 0.134 0.144 0.135
MSE 0.046 0.046 0.044 0.049 0.045
NT
Observed 3.05 3.16 3.03 3.02 3.00
Predicted 3.05 3.16 3.03 3.02 3.00
% Error 0.0% 0.0% 0.0% 0.0% 0.0%
R2 0.661 0.666 0.671 0.654 0.687
MAE 2.70 2.76 2.71 2.69 2.55
MSE 19.13 20.32 19.88 18.55 16.41

Stationarity Z2 = 809(df = 54)

L(C)
LCS)
P
NT

MSE

= Value of Log-likelihood function with constant only
=Value of log-likelihood fiacdoa at convergence
--Proportion of transit trips
=Number of transit trips
=Mean absolute error, average of the absolute diffe:ence between observed and estimated value
=Mean square error, average of the squared difference between observed and estimated value
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The models’ replication capability is excellent, with correlation coefficients between

observed and predicted relative frequencies (or, probabilities) of transit trips over 0.65 for

all cases. Relative errors in mean choice probability are within 1% for most cases (the

1985 model is the only exception with a relative error of-2.7%).

One advantage of the BL model with a constant term is its ability to replicate

observed frequency of choices exactly, in this case the number of transit trips. Correlation

coefficients between observed and predicted numbers of transit trips are again high over

0.65 in all cases. The model coefficients are reasonably stable across the four periods,

although a log-likelihood ratio chi-square of 809 implies that the hypothesis of stability

must be rejected:

7. ESTIMATION RESULTS:

BERKSON’S (BK) AND HALDANE’S (HL) METHODS

One important advantage of the BK and HL methods is the computational convenience

offered by the fact that both methods are based on weighted least squares procedures6.

Whether these methods lead to adequate models is the main focus of this section. Also of

concern is the selection of the value of the added constant, 6, in the HL method. The

constantmay affect the estimates [3 in two ways. The first is directly, through the value of

the dependent variable (see Eq. [15]), while the second is indirectly through the value 

the weights computed to perform weighted least squares. The sensitivity of coefficient

estimates and the model’s goodness.of-fit to the value of i5 is examined in this section.

When the value of 5 is small, so are the weights applied to limit cases because, with

5 added to both ki and mi, Eq. [13] becomes

Wi = [(ki + b)(mi + 6)/(ki + mi + 1/2

= [6(ti + 5)/(ti + 26)]1/2

~ 61/2, if ki = 0 or mi = 0.

[19]
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Therefore the contribution of limit cases diminishes as the value of b approaches 0. When

b is large, on the other hand, large errors arise in the value of Yi for limit cases, especially

when ti is small. It is then anticipated that there exists a/5 that maximizes the model’s fit

by balancing these two sources of error.

The estimation results obtained using the BK method and the HL method with five

values of/5 (0.01, 0.05, 0.1, 0.5 and 1.0) are summarized in Table 3 for the pooled data.

The estimation results confirm previous comparisons (Gart & Zweifel, 1967; and Gart, et

al., 1985) where the BK and HL methods produced very similar results. The coefficient

estimates are similar to those obtained by the BL model, especially by HL method with/5 =

0.05 or 0.1, according to the square error measures presented in Table 3.

The coefficient estimates vary greatly depending on the value of/5. In general, their

absolute values are smallest when/5 = 1.0, while they tend to take on the largest values

with 6 = 0.05 or 0.1. The extent of variation is different from variable to variable. For

example, the coefficients of NORAIL range from -0.23 to -0.47, those of RAIL from 0.26

to 0.45, NWORKERS from 0.05 to 0.08, and INCOME4 from 0.19 to 0.39. For the five

most significant variables, i.e., NRECORDS, ZEROCAR, ONECAR, NDRIVERS, and

BOV-Large, the ratios of the largest to smallest coefficients are 1.49, 1.24, 1.36, 1.13, and

1.28, respectively. The influence of/5 on coefficient estimates is evident.

The goodness of fit of the HL model, measured in terms of percent error or mean

absolute error, are best with 6 = 0.1, for both the probability of a transit trip and the

number of transit trips. The mean square error is minimal when/5 = 0.5, while the

correlation coefficient between predicted choice probability and observed relative choice

frequency is maximum at/5 = 1.0 for the probability and 6 = 0.5 for the number of transit

trips. From the viewpoint that predicting the average number of transit trips or their

relative frequency is the most frequent application of such models, an optimum choice for/5

appears to lie between 0.1 and 0.5. The results of this analysis thus lend support to the
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Table 3
Models obtained with Haldane’s and Berkson’s Methods

Haldane’s Method

Berkson 5-0.01 5-0.05 5-0.1 5=0.5 5=1.0

Variable [3 t {3 t {3 t [3 t [3 t 13
Constant -3.54 -26.6 -3.54 -’-18.9 -3.99 -21:8 -4.04 -23.3 -3.52 -26.4 -3.03
NRECORDS 0.43 15.8 0.44 12.0 0.52 14.4 0.52 15.2 0.43 15.7 0.35
NWOMEN 0.14 3.7 0.16 3.3 0.17 3.6 0.17 3.7 0.14 3.7 0.11
NWORKERS 0.06 2.3 0.07 1.8 0.08 2.3 0,08 2.5 0.07 2.4 0.05
INCOMF2 -0.11 -1.7 -0.15 -1.6 -0.18 -2,0 -0,17 -2,0 -0,11 -1,7 -0,08
INCOME3 0,06 0.9 0.11 1.3 0.10 1.1 0.09 1.1 0.06 0.9 0.04
INCOME4 0.26 3.6 0.38 3.8 0.39 4.0 0.37 4.0 0.26 3.6 0.19
ZEROCAR 2.78 35.0 2.73 24.9 2.99 27.6 3.02 29.3 2.73 34.2 2.44
ONECAR 0.65 10.9 0.73 8.7 0.76 9.3 0.75 9.7 0.64 10.7 0.56
NDRIVERS -0.34 -11.3 -0.32 -8.2 -0.35 -8.9 -0.35 -9.4 -0.33 -I1.1 -0.31
SINGLE -0.09 -0.8 -0.09 -0.6 -0.10 .-0.7 -0.10 -0.7 -0.09 -0.9 -0.09
COUPLE -0.57 -6.0 -0.51 -4.0 -0.58 " -4.6 -0.60 -4.9 -0.56 -5.8 -0.50
FAMILY -0.70 -7.4 -0.66 -5.3 -0.75 -6.0 -0.76 -6.4 -0.69 -7.2 -0.61
SGLPARENT -0.25 -2,3 -0.20 -1.4 -0.24 -1.7 -0.26 -1.9 -0.26 -2.3 -0.23
BOY-Large 1.09 20.6 1.00 14.5 1.18 17.2 1.22 18.5 1.10 20.7 0.95
BOV-Small 0.33 6.1 0.32 4.4 0.41 5.7 0.42 6.1 0.35 6.6 0.29
RAIL 0.33 6.2 0.40 5.4 0.45 6.2 0.44 6.4 0.33 6.3 0.26
NORAIL -0.32 -4.5 -0.47 -4.3 -0.46 -4.4 -0.43 -4.4 -0.30 -4.2 -0.23

t
-27.2
14.9
3.5
2.1
-1.4
0.8
3.2

36.5
11.2

-12.1
-1.0
-6.2
-7.5
-2.5
21.1
6.5
5.9
-4.0

S.E. 1.51 1.70 1.77 1.74 1.54 1.40
F" 936.4 342.3 462.8 554.0 897.7 1104.3
’p
Observed 0.165 0.165 0.165 0.165 0.165 0.165
Predicled 0.175 .0.190 0.174 0.170 0.177 0.189
% Error 6.3% 14.9% 5.2% 3.1% 7.0% 14.4%
R2 0.665 0.662 0.661 0.662 0.665 0.666
MAE 0.144 0.151 0.143 0.142 0.145 0.153
MSE 0.046 0.047 0.047 0.047 0.046 0.047
NT
Observed 3.051 3.051 3.051 3.051 3.051 3.051
Predicted 3.353 3.845 3.419 3.314 3.416 3.720
% Error 9.9% 26.0% 12.1% 8.6% 12.0% 21.9%
R2 0.658 0.647 0.650 0.651 0.656 0.653
MAE 2.837 3.058 2.836 2.791 2.868 3.059
MSE 19.372 20.748 20.183 19.976 19.499 19.898

3":. (13j BL. i~j) 2 0.281 0.302 0.050 0.059 0.328 1.384

Y. (l~j BL. Itj)2/~iBL0.294 0.253 0.215 0.216 0.322 0.892
*df = (18, 6769), N = 6787

S.E.

P
NT
MAE
MSE
Pred(1)

= Standard error of the white noise
= Proportion of transit trips
= Ntunber of transit trips
= Mean absolute error, average of the absolute difference between observed and estimated value
= Mean square error, average of the squared difference between observed and estimated value
= Obtained by "naive aggregation"
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conventional value of 0.5; however, the results also indicate that a value smaller than 0.5

may offer better replication of sample averages. The BK model shows similar performance

in replication as the HL models with ~ = 0.1 or 0.5. Note that all models over-predict the

probability of transit trips and the number of transit trips.

In summary, this exercise has also shown that small values of ,5 are not advisable.

Contrary to the expectation that a smaller ~ would lead to more accurate estimates of logits

and therefore better coefficient estimates, models estimated with small ,5 have exhibited

poorer predictive performances, presumably due to extremely small weights computed for

limit cases. An optimal value of 6 appears to lie between 0.1 and 0.5. The BK method

performed nearly as well as the HL methodwith b in this range. It has also been shown

that HL estimates are close to BL estimates with these b values. None of these models

replicate observation better than the BL model. The most important finding of this analysis

is that the best value of b appears to be smaller than the conventionally used value of 0.5,

but not by very much. The results have also shown that coefficient and standard error

estimates are sensitive to the value of 6. It is desirable, however, that the generality of

these results be determined in future analysis.

7. CONCLUSION

The objective of this study has been to evaluate and compare alternative estimation methods

for logistic binary choice probabilities when applied to binary frequency data with limit

cases. The methods examined are: binomial-logistic (BL) model, Berkson’s (BK’) method,

and Haldane’s (HI.,) method. These models were applied to weekly household mode

choice data that contained a substantial number of limit cases in which one of the

alternatives was never chosen.

It has been shown that the BL model is a practical tool whose performance

surpasses those of the other methods examined in the study. BL models accommodate limit

cases without requiring any additional assumptions or approximations. The use of
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binomial probability mass functions is ideally suited for binary frequency data. With the

everywhere concave log-likelihood functions of BL models, the Newton-Raphson

algorithm converged very quickly at the maximum likelihood. The resulting models best

replicated observed choice probabilities and number of trips by mode.

The BK and HL methods have been shown to offer coefficient estimates similar to,

and fits that are somewhat worse than, those obtained by the BL models. An advantage of

these methods is that they can be applied with weighted least squares procedures for which

software packages are ubiquitously available. They remain to be useful tools for the

analysis of binary frequency data, especially in initial phases of analysis. A summary on

the comparison of the two groups of models.is reported in Table 4.

The study has also shown that coefficient estimates of the HL method are sensitive

to the value of the adjustment constant, 6, used to incorporate limit cases. An important

result is that the HL method performs best between 0.1 and 0.5. It also produces

coefficient estimates that are closest to those produced by the BL model when b is in this

range. The BK method performs slightly worse than the best HL models. The results

support the BK methocl and the convention of using 6 = 0.5 in HL method as a reasonable

substitute for the BL model. Estimating a BL model, however, is not at all a

computationally onerous task7. This study has extended the scope of binary frequency data

analysis by showing the accuracy and practicality of the BL method.
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Table 4
Comparison of the BL with the BK-HL group of models

Method Advantages Disadvantages

BK-HL
(Estimated via
Minimum Chi-Square)

¯Easy to Estimate
¯Requires No Programming
¯Relatively Accurate

¯ Approximation
Required for
the Limit Cases

BL
(Estimated via
Maximum Likelihood) ¯ No Approximation for

Limit Cases Required
¯ Very Accurate
¯ Low Computational Cost
¯ Extendable to Multinomial

Choices

¯Requires
Programming
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Appendix Table
Presence of Limit Cases in the Sample used

No Transit No Car Non-Limit
Trips Trips Cases Total

"Wave 1 (198~4)" 952 89 611 1652
Wave 3 (1985) 939 75 597 1611
Wave 5 (1986) 996 98 632 1726
Wave 7(1987) 1048 86 664 1798
Pooled 3935 348 2504 6787
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FOOTNOTES

1 A third group which is based on a heuristic formulation and the Tobit model can be found
in Goulias and Kitamura (1991).

2 In this formulation the effect of possible unobserved factors is neglected, assuming that
the vector Xi is sufficient for determining the choice. The task of including possible
individual specific effects is left as future extension of the study here. However, an
alternative interpretation, offered by one of the referees, would be that on average for a set
of individuals t with the same values of vector attributes (Xi), alternative A is chosen 
times and alternative B (t-k) times, while the inclusion of unobserved factors may yield
choices of A or B exclusively. This may also be the source of limit cases which remains to
be proven in future extensions.

3Maddala (1983) classifies this method as minimum chi-square method applied to multiple
observations. In the analysis of contingency tables literature the same method is referred to
as minimum chi-square method applied to gouped data.

4Maddala (1983) offers a simplified proof of the formula of the variance. Amemiya (1985)
reports the same results, however, his proofs are more rigorous and more general.

5The weekly modal split model is a component of a long-range forecasting model system
for ear ownership and utilization (Kitamura & Goulias, 1991). The model structure
presented here follows an earlier specification proposed by Kitamura (1988). That
specification has been enriched by the inclusion of a set of variables representing the
household type. Kitamura (1988) found that the use of Haldane’s estimator led to over 
prediction of transit use.

6Note that if the totai frequency is not observed, then we cannot develop weights.

7The binomial-logistic estimation code used in the analysis is available from the authors.
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