
Lawrence Berkeley National Laboratory
LBL Publications

Title
A graphics processing unit accelerated sparse direct solver and preconditioner with
block low rank compression

Permalink
https://escholarship.org/uc/item/7tn9n67r

Authors
Claus, Lisa
Ghysels, Pieter
Boukaram, Wajih Halim
et al.

Publication Date
2024

DOI
10.1177/10943420241288567

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tn9n67r
https://escholarship.org/uc/item/7tn9n67r#author
https://escholarship.org
http://www.cdlib.org/

A GPU accelerated sparse direct solver
and preconditioner with block low rank
compression

International Journal on High Perfor-
mance Computing Applications
XX(X):1–11
©The Author(s) 2016
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Lisa Claus1, Pieter Ghysels2, Wajih Halim Boukaram2 and Xiaoye Sherry Li2

Abstract
We present the GPU implementation efforts and challenges of the sparse solver package STRUMPACK. The code is
made publicly available on github with a permissive BSD license. STRUMPACK implements an approximate multifrontal
solver, a sparse LU factorization which makes use of compression methods to accelerate time to solution and reduce
memory usage. Multiple compression schemes based on rank-structured and hierarchical matrix approximations are
supported, including hierarchically semi-separable, hierarchically off-diagonal butterfly, and block low rank.
In this paper, we present the GPU implementation of the block low rank (BLR) compression method within a multifrontal
solver. Our GPU implementation relies on highly optimized vendor libraries such as cuBLAS and cuSOLVER for NVIDIA
GPUs, rocBLAS and rocSOLVER for AMD GPUs and the Intel oneAPI Math Kernel Library (oneMKL) for Intel GPUs.
Additionally, we rely on external open source libraries such as SLATE (Software for Linear Algebra Targeting Exascale),
MAGMA (Matrix Algebra on GPU and Multi-core Architectures), and KBLAS (KAUST BLAS). SLATE is used as a GPU-
capable ScaLAPACK replacement. From MAGMA we use variable sized batched dense linear algebra operations such
as GEMM, TRSM and LU with partial pivoting. KBLAS provides efficient (batched) low rank matrix compression for
NVIDIA GPUs using an adaptive randomized sampling scheme.
The resulting sparse solver and preconditioner runs on NVIDIA, AMD and Intel GPUs. Interfaces are available from
PETSc, Trilinos and MFEM, or the solver can be used directly in user code. We report results for a range of benchmark
applications, using the Perlmutter system from NERSC, Frontier from ORNL, and Aurora from ALCF. For a high
frequency wave equation on a regular mesh, using 32 Perlmutter compute nodes, the factorization phase of the exact
GPU solver is about 6.5× faster compared to the CPU-only solver. The BLR-enabled GPU solver is about 13.8× faster
than the CPU exact solver. For a collection of SuiteSparse matrices, the STRUMPACK exact factorization on a single
GPU is on average 1.9× faster than NVIDIA’s cuDSS solver.

Keywords
Linear Solvers, Preconditioning, Low-Rank Approximation, Sparse Direct Solver, Multifrontal Method

Introduction
We present a sparse approximate LU factorization solver for
multi-GPU systems, as implemented in the STRUMPACK
solver library. The sparse solver is a multifrontal LU
method (Duff et al. 2017), where the triangular factors are
compressed using a block low rank (BLR) scheme applied
to the largest dense blocks (frontal matrices). Sparse direct
solvers are popular for a variety of application areas because
of their robustness and lack of tuning parameters. However,
the main bottleneck is their memory usage and asymptotic
scaling with the problem size. This poor scaling is due to the
problem of fill-in, the triangular factors typically have many
more nonzero entries compared to the original sparse matrix.
Our focus is on the efficient implementation, on modern HPC
systems, of the multifrontal solver with BLR compression.

Based on the STRUMPACK multifrontal sparse solver,
we have previously shown nearly linear complexity for
the factorization of sparse systems from a range of partial
differential equations (PDEs). This earlier work relied on
hierarchically semi-separable (HSS) compression (Ghysels
et al. 2017), hierarchically off-diagonal butterfly (HODBF)
compression (Liu et al. 2021) or a hybrid of HODBF
and block low rank (BLR) compression (Claus et al.

2023) within a sparse multifrontal solver. However, the
reliance of these methods on hierarchical matrix partitioning
makes them challenging to implement efficiently on GPU
architectures since the hierarchical representations rely on
irregular tree data structures. In order to keep the complexity
nearly linear these methods avoid explicitly constructing
the largest frontal matrices (dense sub-blocks in the sparse
factors). This then requires (partially) matrix-free matrix
construction techniques which rely on random projection
and matrix sampling or matrix element extraction. We
have found that especially the matrix element extraction
forms a bottleneck for the parallel implementation (Ghysels
et al. 2016). Moreover, the HSS and hierarchically off-
diagonal low rank (HODLR (Aminfar and Darve 2016))
schemes both use a weak admissibility structure (easier to
implement in parallel than strong admissible H), but leads
to larger off-diagonal ranks. The work presented here uses

1National Energy Research Scientific Computing Center, Lawrence
Berkeley National Laboratory, USA
2Applied Mathematics and Computational Research Division, Lawrence
Berkeley National Laboratory, USA
Email: lclaus@lbl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 International Journal on High Performance Computing Applications XX(X)

BLR compression, a non-hierarchical scheme with strong
admissibility that is relatively straightforward to implement.
Although not asymptotically optimal, our sparse solver with
BLR is applicable to a wider range of problems, and gives
significant speedups for medium to large scale problems
over the sparse exact solver and over the sparse approximate
solvers with HSS or HODBF compression.

The STRUMPACK solver can be used directly in
user code or through a higher level math library such
as PETSc (Portable, Extensible Toolkit for Scientific
Computation) (Balay et al. 2023), Trilinos (Heroux et al.
2005), or MFEM (Anderson et al. 2021). STRUMPACK is
also part of the xSDK (Extreme-scale Scientific Software
Development Kit), which tests the integration between
these various ECP (Exascale Computing Project) sponsored
mathematical libraries, and releases them together using a
Spack (https://spack.io/) based installation script.
We highly recommend use through a library like PETSc,
which provides robust and scalable primitives for sparse
matrix assembly, sparse iterative solvers, logging and
profiling tools, etc. Moreover, PETSc allows the user to
compose multiple solver components into a single more
advanced solver strategy, and it allows to easily swap out
solver components. For instance, through PETSc one can
use STRUMPACK as a direct solver, as a preconditioner
for a Krylov method, as a subdomain solver in a domain
decomposition method, as a coarse grid solver for algebraic
multigrid, as a preconditioner for a LOBPCG, etc. Since
our approximate solver is derived from a direct solver
and uses rank structured approximation, the accuracy and
preconditioner strength can be controlled well through the
low rank compression tolerance. This fact can be exploited
to minimize overall time to solution, spending more or
less time in preconditioner setup versus solve, for instance
when the solver is used repeatedly – in timestepping, in
a non-linear solver, within a preconditioner – or with a
large number of right-hand sides. The compression schemes
introduce a number of performance tuning parameters which
are not present in standard sparse direct solvers, such as
the compression tolerance, the BLR block size, and the
minimum front size for compression. Some of these have
good default values – which might be set differently for
CPU or GPU execution – for most practical problems, while
for others application specific tuning might be required.
The algorithm description presented here provides the user
with background information to identify the important tuning
parameters.

There exists a number of sparse direct solvers, includ-
ing SuperLU DIST (Li and Demmel 2003), SuiteSparse
(UMFPACK (Davis 2004) and Cholmod (Chen et al. 2008)),
PaStiX (Hénon et al. 2002), STRUMPACK (Ghysels et al.
2016; Ghysels and Synk 2022), MUMPS (Amestoy et al.
2001), WSMP (Gupta 2000), and cuSOLVER/cuDSS*. Out
of these, SuperLU DIST, Cholmod (symmetric positive def-
inite), PaStiX, cuSOLVER and STRUMPACK have GPU
support. Most of these solvers are supernodal, meaning
that they group factor columns with the same sparsity pat-
tern in order to exploit more efficient dense linear algebra
kernels. SuperLU DIST, PaStiX and Cholmod are supern-
odal; MUMPS, WSMP, UMFPACK and STRUMPACK are
supernodal and multifrontal. MUMPS (Amestoy et al. 2019)

System Perlmutter Frontier Aurora
GPU NVIDIA A100 AMD MI250X Intel Xe

API CUDA HIP/ROCm SYCL
CPU AMD EPYC AMD EPYC Intel Xeon
TOP500 #12 #1 #2
Nodes 1,792 9,472 10,624

+3,072 (CPU)
RPeak 113.00 1,679.82 1,059.33
Location NERSC / OLCF / ALCF /

LBNL ORNL ANL
Vendor HPE HPE Intel

Table 1. The three systems operated by the DOE leadership
compute facilities, with three different GPU vendors and
programming models. Top500 rankings are from the November
2023 list. RPeak is the theoretical peak performance in PFlop/s.

and PaStiX (Hénon et al. 2002; Nies and Hoelzl 2019) have
support for block low rank (BLR) compression. (Aminfar
and Darve 2016) shows a multifrontal solver with hierarchi-
cally off-diagonal low rank approximation.

Through its leadership compute facilities (LCF), the
Department of Energy (DOE) Advanced Scientific Comput-
ing Research (ASCR) program operates some of the most
powerful computers in the world, see Table 1. DOE has
pledged to work with multiple hardware vendors to prevent
potential vendor lock-in. As a result, the three DOE compute
facilities run on GPUs from three different vendors, each
with their own programming model. With our solver, we
target each of these machines: Perlmutter at NERSC using
NVIDIA GPUs running CUDA, Frontier at OLCF with
AMD GPUs running HIP/ROCm and Aurora at ALCF with
Intel GPUs running SYCL.

Our main contribution is the development of a robust,
efficient and scalable, fully algebraic preconditioner with
support for GPUs from multiple vendors. The solver and
preconditioner are available from the STRUMPACK sparse
solver library, written in modern C++, and released with a
permissive BSD license.

The rest of this article is structured as follows. We first
describe the multifrontal solver and its GPU implementation
in STRUMPACK. The next section describes the BLR
format, followed by a discussion on how to incorporate the
BLR scheme in the sparse multifrontal factorization. Then
we present performance results.

Multifrontal LU Factorization
We consider the solution of a sparse linear system Ax =
b with A ∈ CN×N . To achieve this, we compute a
decomposition of A as P (DrADcQ)PT = LU , where P
and Q are permutation matrices, Dr and Dc are diagonal
scaling matrices, and L and U are sparse lower and upper
triangular factors. The permutation P aims to reduce the
number of nonzeros in the triangular factors, and we provide
a number of options, based on nested dissection (including
METIS (Karypis and Kumar 1998), ParMETIS (Schloegel

∗https://docs.nvidia.com/cuda/cusolver/,
https://developer.nvidia.com/cudss

Prepared using sagej.cls

https://spack.io/
https://docs.nvidia.com/cuda/cusolver/
https://developer.nvidia.com/cudss

Claus, Ghysels, et al. 3

et al. 1997), Scotch (Pellegrini and Roman 1996) and
PT-Scotch (Chevalier and Pellegrini 2008)), or based on
minimum degree or minimum fill/deficiency. The optional
permutation Q, and the scaling factors Dr and Dc are
computed using the MC64 (Duff and Koster 1999) matching
code. The goal of Q is to maximize the product of the
diagonal elements, which are then scaled by Dr and Dc

such that all diagonal entries are 1 and all off-diagonal
entries are less than 1 in absolute value. Since MC64 is a
sequential code we need to gather the sparse input matrix on
a single MPI rank in order to call it, which can be a scaling
bottleneck. However, the MC64 reordering is optional, and
can safely be disabled for some problems, such as diagonally
dominant matrices. Alternatively, we interface to a parallel
code, Combinatorial BLAS (Azad et al. 2021), to find the
permutation Q, which is based on the heavy-weight perfect
matching algorithm from (Azad et al. 2020).

When we are not using MC64, the row and column
scalings are computed using an algorithm based on
LAPACK’s xgeequ, adapted for sparse input as in
SuperLU DIST.

One can typically distinguish three separate phases for the
direct solution of sparse linear systems:

1. Reordering and symbolic analysis
2. Numerical factorization
3. Solve using forward and backward substitution

In phase 1, the permutation and scaling vectors are
computed, the sparsity pattern is analyzed, and data-
structures are initialized to guide the numerical factorization
phase. After computation of the sparse factorization
(computationally the most expensive phase), a linear system
can be solved efficiently by applying the permutations and
scalings, and performing the sparse triangular solves with the
L and U factors.

To illustrate the numerical factorization phase, we
consider a nested dissection permutation P with only two
levels, and a single vertex separator:

PAPT =

 A1 X1S

A2 X2S

XS1 XS2 S

 . (1)

The lower-right sub-block S corresponds to a separator in
the graph of A, effectively splitting the problem in two
unconnected components, represented by A1 and A2. We can
now construct three frontal matrices

F1 =

[
A1 X̂1S

X̃S1

]
, F2 =

[
A2 X̂2S

X̃S2

]
, F0 = S, (2)

where X̂1S /X̃S1 is the matrix consisting of only the
columns/rows of X1S /XS1 which contain nonzero elements.
These fronts are put in a binary tree with F0 as the root
and F1 and F2 as the children. The numerical phase of the
multifrontal LU factorization algorithm then traverses this
binary tree from the leaves to the root. At each front Fτ =
[F11 F12; F21 F22] (except the root), the following steps are
performed:

• PτLτUτ ← LU(F11)
• F12 ← U−1

τ L−1
τ PT

τ F12

• F22 ← F22 − F21F12

At the root front, only the first of these steps needs to be
performed. The first step computes a dense LU factorization
with partial pivoting. Note that this restricts the pivoting
to the diagonal blocks of the (permuted) sparse matrix.
However, for most problems, especially when combined
with the permutation Q from the MC64 matching, this
is sufficient to ensure numerical stability, and it greatly
simplifies the implementation, compared to for instance the
more robust approach with dynamic delayed pivots as used
in MUMPS (Amestoy et al. 2001). We also provide the
option to add a small perturbation to the diagonal elements if
they are below a certain threshold (set to

√
ϵmach∥A∥1). The

permutation Q, combined with the diagonal perturbation,
is referred to as static pivoting, as introduced by (Li and
Demmel 1998). After these operations are applied to front
Fτ , the Schur complement Fτ ;22 is added into the parent
frontal matrix. However, since the parent front is typically
larger than the Schur complement of its child, this requires a
scatter operation defined by the sparsity pattern, referred to
as the extend-add phase.

The described approach can be generalized by recursively
applying the nested dissection heuristic to the subdomains
A1 and A2, leading to a binary tree, referred to as the
assembly tree, with O(logN) levels. Going down the tree
from the root to the leaves, subdomains and separators
become smaller, leading to smaller frontal matrices, while
the tree becomes wider. Note that all fronts in a given level
can be handled concurrently. Likewise, non-overlapping
subtrees can be handled concurrently. For a general
permutation P (for instance from a minimum degree
ordering), the assembly tree can be constructed from the
elimination tree and a supernode detection algorithm.

The CPU multi-core implementation relies on OpenMP
tasking to traverse the assembly tree and to exploit
parallelism within the larger frontal matrices, for instance
in BLAS, LAPACK and ScaLAPACK. For the distributed
memory parallel code, the assembly tree is split in multiple
subtrees, each of which is assigned to a single MPI rank,
while the top logP levels (P the total number of MPI
processes) of the tree are distributed using a 2D block
cyclic layout and then processed using ScaLAPACK. The
root front is distributed over a 2D process grid constructed
from the user specified MPI communicator. The dimensions
of the process grid are Pr × Pc, with Pc = ⌊

√
P ⌋ and

Pr = ⌊P/Pc⌋, which leaves at most
⌊√

P
⌋
− 1 processes

idle. For the next level in the assembly tree (children of
the root), the MPI communicator is split in two distinct
subcommunicators, sized proportionally to the estimated
work (or memory) for each of the subtrees.

GPU Implementation
In contrast to the recursive tree traversal for the multi-core
implementation, the GPU code traverses the tree level-by-
level using batched algorithms for the dense linear algebra
operations from the MAGMA library (e.g., for double
precision):

• magma dgetrf vbatched max nocheck work
for the variable sized batched dense LU factorization

Prepared using sagej.cls

4 International Journal on High Performance Computing Applications XX(X)

with partial pivoting for all F11 blocks on a given
level. (The max nocheck work version of this
routine skips checking of the input, takes as input the
maximum size of all matrices in the batch, and takes
user allocated working memory).

• magmablas dtrsm vbatched max nocheck
for triangular solves with all F12 on a level.

• magmablas dgemm vbatched max nocheck
for the Schur complement update in F22. Here, using
the max nocheck version avoids synchronization
in this routine, which allows this multiplication to
run asynchronously and overlap with the copy of the
factors from device to host memory.

These batched routines drastically reduce kernel launch
overheads compared to, for instance, using vendor libraries
like cuBLAS and cuSOLVER directly for each front
separately, even when launched from multiple streams.
Most of the work is performed in these dense linear
algebra routines, and this allows the solver to achieve
high floating point operation throughput. If STRUMPACK
is configured without MAGMA support, it falls back to
a combination of vendor BLAS/LAPACK libraries, such
as cuBLAS/cuSOLVER or oneMKL, and a naive internal
implementation of batched kernels for operations on fronts
≤ 32× 32, see (Ghysels and Synk 2022).

The solver also relies on a small number of custom device
kernels. These kernels include:

• The initial assembly of the fronts from elements of the
sparse matrix.

• Extend-add operation, i.e., adding the Schur comple-
ment from one front into its parent front.

• Checking the diagonal elements of F11 and replacing
small pivot elements.

These are implemented as batched kernels, separately for
CUDA, HIP and SYCL. Duplicating the kernels for the
different device backends is not ideal and a better long
term strategy would be to use a portability layer such as
Kokkos† or Raja‡, which would introduce heavy external
dependencies, or an industry standard like OpenMP device
offloading. This would still not alleviate the burden of having
to run regular integrated testing on the multiple vendor
platforms.

The required amount of device memory is pre-computed.
If sufficient device memory is available to store the entire
factorization and the working memory on the device, the
device memory is acquired with a single allocation for
the factor memory and another allocation for the working
memory. In this case, the triangular factors are kept on the
device and the triangular solve phase can use the factors on
the device. If the entire assembly tree does not fit in device
memory, then the factorization is performed level-per-level,
and frontal matrices are copied to host memory after a level
is finished. If there is not enough device memory to store
an entire level of the assembly tree, then the factorization is
split in multiple traversals of subtrees that do fit in device
memory. In this case, the computed factors also need to
be transferred back from device to host memory. When the
factors are stored in host memory, the triangular solve phase
is performed on the CPU. Moving the factors to GPU first

would be nearly as time consuming as performing the solve
directly on the CPU. We also support multiple right-hand
sides, but for now the number of right-hand sides does not
affect the decision of where (on the CPU or the GPU) the
solve is performed.

For the multi-GPU setting, we assume a single MPI rank
per GPU. As for the CPU-only code, the parallel fronts are
distributed with a 2D block cyclic layout, but they are now
handled with SLATE (Gates et al. 2019), a GPU-capable
ScaLAPACK alternative§.

Vendor Agnostic GPU Implementation
The implementation of the multifrontal solver in
STRUMPACK is GPU vendor agnostic, relying on a minimal
interface to vendor specific APIs like CUDA for NVIDIA,
HIP/ROCm for AMD and SYCL for Intel accelerators. The
GPU backend is chosen when configuring STRUMPACK
using CMake. The GPU interface layer includes the classes
Stream, Event and Handle (in the strumpack::gpu
namespace). The Stream class is a wrapper for
cudaStream t, hipStream t or sycl::queue,
for CUDA, HIP and SYCL respectively. The vendor
specifics are internal and hidden from users of the library
using the PIMPL (Pointer to Implementation) technique.
The Event class is a wrapper for cudaEvent t,
hipEvent t, or sycl::event, respectively. When
targeting CUDA/NVIDIA, the Handle class is a wrapper to
handles for cuBLAS (cublasHandle t) and cuSOLVER
(cusolverDnHandle t), as well as MAGMA
(magma queue t) and KBLAS (kblasHandle t
and kblasRandState t), see the next section. For HIP, a
hipblasHandle t and a rocblas handle are stored
instead. These handles are associated with a Stream. For
the SYCL implementation, the vendor BLAS/LAPACK
functionality is available in the oneMKL library from
Intel, which does not require any handles apart from the
sycl::queue and the MAGMA queue.

The GPU interface further provides the routines
device malloc, device free, host malloc
and host free for device memory and pinned host
memory allocation and deallocation, respectively. These
routines are only used through RAII¶ wrapper classes
DeviceMemory and HostMemory.

Also provided are four copy routines, copy,
copy 2D, copy async, and copy 2D async. The
direction of the copy (e.g., cudaMemcpyKind) can be
determined by the runtime (cudaMemcpyDefault).
For convenience, these copy routines are overloaded for
strumpack::DenseMatrix<T> objects.

The CUDA and HIP APIs are almost identical, apart
from the cu/hip prefix. For SYCL however, there are
some noteworthy differences. For instance, the copy and
allocation routines are always associated with a queue,

†https://github.com/kokkos/kokkos
‡https://github.com/LLNL/RAJA
§Another alternative, cuSOLVERMp, is NVIDIA specific and is currently
not available on NERSC’s Perlmutter.
¶In RAII (Resource Allocation is Initialization) a resource is tied to an
objects lifetime with the destructor releasing the resource.

Prepared using sagej.cls

https://github.com/kokkos/kokkos
https://github.com/LLNL/RAJA

Claus, Ghysels, et al. 5

while for CUDA and HIP, only the asynchronous copy
routines are tied to a specific Stream. In our interface
the allocation and (synchronous) copy routines do not take
a Stream, but the (default) sycl::queue is stored
as a globally accessible static instance. By default, a
cudaStream t/hipStream t executes in issue order.
A sycl::queue on the other hand defaults to out-of-
order execution. We always construct sycl::queues
using the sycl::property::queue::in order flag
to mimic the CUDA behavior. Moreover, a CUDA/HIP
kernel launch or asynchronous copy cannot run concurrently
with another operation launched on the default stream. In
SYCL, there is no such notion of a default stream and all
operations are asynchronous by default. We avoid running
any asynchronous operations in a separate stream/queue
concurrently with the default stream.

Block Low Rank Arithmetic
In the BLR format, a matrix is partitioned using a flat,
non-hierarchical blocking. The flat partitioning is based on
a clustering and permutation of the associated degrees of
freedom. A BLR representation B̃ of a square dense matrix
B with p× p blocks looks like

B̃ =

B̃11 . . . B̃1p

...
. . .

...
B̃p1 . . . B̃pp

 ≈ B . (3)

The blocks of a BLR matrix can be represented/approxi-
mated as low rank depending on some admissibility con-
dition as follows. Each sub-block B̃στ in the matrix corre-
sponds to the interaction between two clusters σ and τ . Diag-
onal blocks correspond to self-interactions, which we do not
approximate. For the off-diagonal blocks, two admissibility
conditions are considered. We can either compress every off-
diagonal block, or only compress those blocks corresponding
to well separated clusters, see the next section. A block B̃στ

of size mσ ×mτ and numerical rank rστ is approximated
by a low rank matrix B̃στ = XστY

T
στ ≈ Bστ at accuracy ε.

Xστ is a mσ × rστ matrix and Yστ is a mτ × rστ matrix.
However, if rστ (mσ +mτ) > mσmτ , the tile B̃στ is kept
in its original dense non-compressed representation B̃στ =
Bστ .

The low rank approximation/compression can be per-
formed in different ways. For the CPU code, truncated
column pivoted QR is used. The truncation criteria checks
both absolute and relative tolerance. On the GPU, an adaptive
randomized approximation (ARA) algorithm is used for
compression, see below.

The LU factorization can be implemented in different
ways, STRUMPACK has different option implemented that
we can make use of, for instance a left-looking versus a right-
looking algorithm. In addition, different pivoting procedures
can be performed. For BLR, the algorithm can behave very
different depending on when the compression is performed.
Performing the compression at a later stage in the algorithm
typically leads to a more accurate but more expensive
factorization, since more operations are still performed with
the original dense sub-blocks (Higham and Mary 2022).
For the GPU implementation, STRUMPACK uses a right-
looking algorithm which compresses a block as soon as

it has received all of its Schur complement updates, see
Algorithm 1. For the CPU code, STRUMPACK implements
both left-looking and right-looking variants, with the left-
looking variant performing the compression earlier, and the
updates are done into low rank blocks with a low rank update,
accumulate and recompress (LUAR) operation, see (Claus
et al. 2023; Mary 2017). We found the right-looking version
to be better suited for GPU implementation.

Algorithm 1 Right-Looking Block Low Rank Compression
and Factorization

1: B̃στ ← Bστ , ∀σ, τ
2: for σ = 1 to p do
3: Lσσ, Uσσ, Pσσ ← LU(B̃σσ) ▷ partial piv.
4: broadcast Lσσ and Pσσ along row-comm
5: broadcast Uσσ along col-comm
6: for τ = 1 to σ − 1 do
7: ▷ depending on admissibility

8:

{
Xστ ← L−1

σσPσσXστ

B̃στ ← L−1
σσPσσB̃στ

9: end for
10: for τ = σ + 1 to p do
11: if σ × τ is admissible then
12: Xστ , Yστ ← ARA(B̃στ) ▷ B̃στ≈XστY

T
στ

13: Xστ ← L−1
σσPσσXστ

14: broadcast Xστ and Yστ along col-comm
15: else
16: B̃στ ← L−1

σσPσσB̃στ

17: broadcast B̃στ along col-comm
18: end if
19: if τ × σ is admissible then
20: Xτσ, Yτσ ← ARA(B̃τσ)
21: Y T

τσ ← Y T
τσU

−1
σσ

22: broadcast Xτσ and Yτσ along row-comm
23: else
24: B̃τσ ← B̃τσU

−1
σσ

25: broadcast B̃τσ along row-comm
26: end if
27: end for
28: for τ = σ + 1 to p do
29: for δ = σ + 1 to p do
30: ▷ depending on admissibility

31:

B̃δτ ← B̃δτ − B̃δσB̃στ

B̃δτ ← B̃δτ −Xδσ(Y
T
δσB̃στ)

B̃δτ ← B̃δτ − (B̃δσXστ)Y
T
στ

B̃δτ ← B̃δτ −

{
(Xδσ(Y

T
δσXστ))Y

T
στ

Xδσ((Y
T
δσXστ)Y

T
στ)

32: end for
33: end for
34: end for

ARA is implemented as a batched routine, so lines 12
and 20 are executed simultaneously for all τ = σ +
1, . . . , p. Likewise, the Schur complement update in
line 31 is implemented using three calls to MAGMA’s
magmablas dgemm vbatched (for all τ = σ + 1 to p
and δ = σ + 1 to p). There are 4 cases depending on whether
the tiles δσ and στ are admissible. The first multiplication
performs Y T

δσXστ , Y T
δσB̃στ or B̃δσXστ ; then depending on

Prepared using sagej.cls

6 International Journal on High Performance Computing Applications XX(X)

the ranks, the result is multiplied with either Xδσ or Y T
στ ,

or this step is skipped if one of the tiles was dense. Finally,
one last (batched) multiplication performs the update into
B̃δτ . The LU factorization in line 3 performs partial pivoting.
However, this pivoting is limited to the diagonal blocks of
B̃. For most problems, this seems good enough. In case
of numerical issues, one can increase the BLR tile size,
enable MC64 matching, or enable replacement of small pivot
elements.

In the code, different behavior depending on whether a
block is compressed or not is handled using polymorphism.
A tile can be an object of either class LRTile or class
DenseTile, which are both subclasses of BLRTile.

In the distributed memory setting, the BLR matrix is
distributed using a 2D block cyclic layout, similar to
the ScaLAPACK layout but with non-uniform block sizes
(blocks correspond to BLR tiles), see (Claus et al. 2023) for
more details including a communication cost analysis. This
distribution does not rely on the BLACS (the ScaLAPACK
communication library). Sub-communicators are constructed
for each of the Pr processor rows and Pc processor columns;
these are called row-comm and col-comm in Algorithm 1.
The broadcast operations are combined as much as possible
to minimize the number of messages. When supported by the
system, this MPI communication is performed directly from
device memory (GPU-aware MPI communication).

The CPU code does not use batched algorithms, but relies
on OpenMP tasks with dependencies specified between tasks
using the depend clause.

Adapative Randomized Approximation
For low rank compression, we use the adaptive randomized
approximation (ARA) from (Boukaram et al. 2019). A
fixed rank randomized approximation of a rank-k matrix
B ≈ UV T can be computed easily by first computing
a random projection Y = BΩ, with Ω a random matrix
with k + p columns where p is a small oversampling
parameter. Let U be the orthonormal matrix Q from the QR
decomposition of Y and V = BTU . However, since the
ranks are not known a-priori, ARA performs this adaptively
by incrementing the number of random vectors in Ω,
orthogonalizing with a blocked Gram-Schmidt scheme with
reorthogonalization, all while tracking estimates for both
absolute and relative tolerances. For the stopping criterion,
we use a relative tolerance as well as an absolute tolerance
scaled with the matrix norm (Higham and Mary 2022). ARA
is implemented as a variable sized batched routine for CUDA
GPUs in the KBLAS library (Abdelfattah et al. 2016). As
the tiles are explicitly assembled as dense blocks before
compression, the random projection (multiplication with Ω)
can be performed using MAGMA’s variable sized batched
matrix multiplication. Other steps in the ARA algorithm are
also implemented as batched routines in KBLAS. If KBLAS
is not available (on AMD or Intel platforms), there are
several less efficient fall back options. We can use vendor
supplied SVD routines like cusolverDn<t>gesvd
(QR) or cusolverDn<t>gesvdj (Jacobi), or
hipsolver<t>gesvdj. MAGMA also provides singular
value decomposition routines magma <t>gesvd (QR)
or magma <t>gesdd (divide-and-conquer). However,
these MAGMA routines take input from host memory.

Alternatively, we are looking into MAGMA’s column
pivoted QR routine magma <t>geqp3 gpu.

Approximate Sparse Solver

In STRUMPACK, the block low rank scheme is incorporated
into the sparse multifrontal solver for compression of the
larger frontal matrices, leading to an approximate sparse
solver, which can be used as an efficient preconditioner. The
three sub-blocks F11, F12 and F21 are compressed, while
for the GPU implementation the temporary matrix F22 is
stored as dense. Keeping F22 dense avoids having to perform
Schur complement updates into low rank blocks, and it also
simplifies the extend-add operation, which scatters the Schur
complement from one front to its parent in the assembly
tree. The BLR partitioning for F11 is determined by a K-
way graph partitioning of the adjacency graph of the sub-
block of the sparse matrix corresponding to that supernode
(or separator). The number of partitions is determined by the
BLR block size.

The diagonal blocks of F11, which are self-interactions,
are not compressed in the BLR representation, and by
default every block is compressed (but reverted to dense
if the rank is too large). For F12 and F21, every block
is compressed. However, we also implement a strong
admissibility condition, where blocks that contain a nonzero
from the original sparse matrix are not compressed, since
those blocks correspond to neighboring clusters in the
adjacency graph of the sparse matrix. Trying to compress
every block does not have significant overhead compared
to using the stronger admissibility condition, and leads to
sligthly better compression ratios.

As discussed before, for the sparse direct solver without
BLR compression, the GPU implementation traverses the
tree level-per-level, using MAGMA’s batched LU, triangular
solve and matrix-multiplication for each level. However, this
assumes that each front is dense. If there are BLR fronts,
those are handled separately. For instance, if there is a BLR
front but all of its descendants are dense, then the subtrees
of this BLR front can be handled on the GPU level-per-
level using the batched routines. After that, the BLR front is
constructed/factored, and finally its ancestors in the assembly
tree can also be handled one by one on the GPU. For each
fully dense subtree, and for each BLR front, device memory
is allocated. When no longer needed this device memory
is returned to a memory pool to potentially be reused.
However, these memory allocations do add considerable
overhead compared to the dense algorithm without BLR
compression, where all memory can be pre-allocated with
a single allocation.

Experiments

For the experiments reported in this section, the numerical
factorization has a warmup before the actual run and only
the second run is reported. For the first run there is –
especially for the GPU code – often a large overhead
from initializing the device, loading dynamic libraries,
just-in-time compilation of device kernel code, etc. After
factorization, a linear system with a single right-hand side

Prepared using sagej.cls

Claus, Ghysels, et al. 7

is solved. STRUMPACK supports multiple right-hand sides
as well. All experiments are performed in double precision.

The approximate sparse solver with BLR compression is
used as a preconditioner for GMRES with restart length
30, and a relative residual tolerance of 10−6. Without
compression, the solve is done within an iterative refinement
loop, which usually only requires a single iteration.

The BLR leaf size is set to 512 for the GPU tests, and
to 256 for the CPU tests. For the GPU tests, we make
use of SLATE with a block size of 512 for the 2D block
cyclic layout. For the CPU tests, ScaLAPACK is used with
a block size of 32. For all tests we set a relative tolerance
of εrel = 10−2 for the BLR compression. This is clearly an
important tuning parameter: a smaller εrel will give a more
accurate preconditioner – fewer GMRES iterations – but at
the cost of increased memory usage and more time spent in
the factorization.

In the following subsections, we show results for the
solution of the 3D visco-acoustic wave propagation, the
Poisson equation as well as for a number of larger matrices
from the SuiteSparse matrix collection (Davis and Hu
2011). The tests on regular meshes use a simple geometric
nested dissection code that finds planes in the mesh, as
implemented in STRUMPACK. For the tests using matrices
from the SuiteSparse matrix collection the METIS routine
METIS NodeNDP is used (instead of the documented
METIS NodeND) as this gives more balanced trees for some
problems.

Visco-Acoustic Wave Propagation
We first consider the 3D visco-acoustic wave propagation
governed by the Helmholtz equation(∑

i

ρ(x)
∂

∂xi

1

ρ(x)

∂

∂xi

)
p(x) +

ω2

κ2(x)
p(x) = −f(x).

(4)
Here x = (x1, x2, x3), ρ(x) is the mass density, f(x) is
the acoustic excitation, p(x) is the pressure wave field,
ω is the angular frequency, κ(x) = v(x)(1− i/(2q(x)))
is the complex bulk modulus with the velocity v(x) and
quality factor q(x). We solve Eq. (4) by a finite-difference
discretization on staggered grids using a 27-point stencil
and 8 PML absorbing boundary layers (Operto et al. 2007).
This requires direct solution of a sparse linear system
where each matrix row contains 27 nonzeros, whose values
depend on the coefficients and frequency in Eq. (4). We
consider a cubed domain with v(x) = 4000m/s, ρ(x) =
1kg/m3, q(x) = 104. The frequency is set to ω = 8πHz
and the grid spacing is set such that there are 15 grid
points per wavelength. The problem is solved in double
complex precision. Note that this relatively high-frequency
problem is very challenging for many iterative solvers and
preconditioners.

Figure 1 shows the time spent in the numerical
factorization phase for this wave propagation problem, using
32 nodes of Perlmutter, with 4 GPUs per node. The solver
with BLR compression on the GPU clearly outperforms the
CPU BLR solver and the CPU and GPU exact sparse solvers
(“None” means no compression). Note that Perlmutter has
CPU-only nodes, but for this test we run the CPU only
code on the same nodes as the GPU code. We run with

Figure 1. Time for factorization of the wave propagation
problem on 32 nodes of Perlmutter, 128 NVIDIA A100 GPUs.
“None” refers to no compression, i.e., the exact sparse solver.

 1

 10

 100

 1000

 10000

1003 1503 2003 2503 3003

Fa
ct

or
 ti

m
e

(s
ec

)

Matrix dimension N = k3

None, CPU
None, GPU

BLR, CPU
BLR, GPU

SuperLU, GPU, 2x4x16

1 MPI rank per GPU, and 16 OpenMP threads per MPI
rank. The CPU only experiments also use 4 MPI ranks
per node, each with 16 OpenMP threads. The CPU code
makes efficient use of OpenMP through OpenBLAS||, used
in ScaLAPACK, and OpenMP task parallelism for the local
subtree computations. For the BLR compression tests in
Figures 1 and 3, only those fronts for which F11 is larger
than 2000× 2000 are compressed. Note that one can also
specify a minimum threshold for the size of the entire
front [F11F12;F21F22] instead. This minimum BLR size,
together with the compression tolerance εrel, is an important
tuning parameter. A smaller minimum BLR size will lead to
better compression (if the BLR leaf size is small enough),
but this can affect accuracy since the errors of low rank
approximation propagate along the tree. The minimum BLR
size also affects performance.

For the 2753 problem, the factorization phase of the exact
GPU solver is about 6.5× faster than that of the CPU solver.
The BLR-enabled GPU solver is about 13.8× faster than the
CPU exact solver.

Figure 1 also compares with the latest version of the
SuperLU DIST GPU enabled 3D (communication avoiding)
factorization, with the optimal 3D processor grid for
this setting. Note that SuperLU DIST uses the METIS
reordering, which produces slightly less fill-in than the
geometric nested dissection used with STRUMPACK.

Figure 2 shows the scaling of the number of floating point
operations for the numerical factorization. As expected, this
scales as N2 = k6 (determined by the dense linear algebra
(cubic) on the largest front, which for a 3D k3 problem is a
2D k2 plane). From Figure 1, the scaling for the GPU and
BLR solvers looks better than for the CPU solver without
compression. However, for the GPU solver, this is likely
because the GPU solver can more efficiently use the GPUs
for larger problems, leading to better floating point per
second throughput. For BLR, the scaling of the factorization
time looks better due to the irregular increase in the number

∥We ran into the occasional segmentation fault when using Cray LibSci, the
vendor supplied BLAS, LAPACK and ScaLAPACK implementation, with
multiple threads.

Prepared using sagej.cls

8 International Journal on High Performance Computing Applications XX(X)

Figure 2. Number of floating point operations for the numerical
factorization of the wave propagation problem on 32 nodes of
Perlmutter, 128 NVIDIA A100 GPUs.

 1

 10

 100

 1000

 10000

1003 1503 2003 2503 3003

Fa
ct

or
 fl

op
s

(x
 1

013
)

Matrix dimension N = k3

None, CPU
None, GPU

BLR, CPU
BLR, GPU

N2 = k6

of BLR compressed frontal matrices. See also the discussion
of Figure 6.

Figure 3. Time for the triangular solve phase for the wave
propagation problem on 32 nodes of Perlmutter, 128 NVIDIA
A100 GPUs. For the approximate factorization with BLR the
number of iterations are also shown.

 0.1

 1

 10

1003 1503 2003 2503 3003

So
lv

e
tim

e
(s

ec
)

Matrix dimension N = k3

None, CPU
None, GPU

BLR, CPU
BLR, GPU

6

6
6

7 7

8 8 8

4
4 4

4 5

7
6 6

Figure 3 shows the time spent in the triangular solve phase
after factorization of the wave propagation problem, and, for
the BLR runs, the number of GMRES iterations. For the
multi-GPU setting, we currently do not see any improvement
from performing the triangular solver on the GPU compared
to the CPU. Only when running on a single GPU and the
entire factorization fits in device memory, then the factors are
kept on the GPU, and the solve can be performed efficiently
– without moving the factors first – directly on the GPU.

Poisson Equation
We solve the Poisson equation on a 3D mesh with N = k3

degrees of freedom, using the standard 7-point stencil from
a central second order finite difference scheme. Figure 4
shows the factorization time on 32 nodes of Perlmutter, with
the same MPI+OpenMP settings as for the wave propagation
problem. One can clearly see here, and in Figure 5 which
shows the memory usage for the triangular factors, that
thanks to the compression, larger problems can be solved,
and can be solved faster.

Figure 4. Time for factorization of the Poisson problem on 32
nodes of Perlmutter, 128 NVIDIA A100 GPUs.

 1

 10

 100

 1000

1003 1503 2003 2503 3003 3503 4003

Fa
ct

or
 ti

m
e

(s
ec

)

Matrix dimension N = k3

None, CPU
None, GPU

BLR, CPU
BLR, GPU

Figure 5. Memory usage for the matrix sparse triangular
factors of the Poisson matrix on 32 nodes of Perlmutter, 128
NVIDIA A100 GPUs.

 1

 10

 100

 1000

 10000

1003 1503 2003 2503 3003 3503 4003

Fa
ct

or
 m

em
or

y
(G

B)

Matrix dimension N = k3

None, CPU
None, GPU

BLR, CPU
BLR, GPU

Figure 6. Floating point operations per second for the
factorization phase of the Poisson problem on 32 nodes of
Perlmutter, 128 NVIDIA A100 GPUs.

 1

 10

 100

1003 1503 2003 2503 3003 3503 4003

TF
lo

p/
s

fo
r f

ac
to

riz
at

io
n

Matrix dimension N = k3

None, CPU
None, GPU

BLR, CPU
BLR, GPU

Figure 6 shows the floating point throughput for
the numerical factorization of the Poisson problem. As
expected, the exact solver (no compression) achieves higher
performance, both on CPU and GPU. The drops in
performance seen for the BLR experiments as the problem
gets bigger can be explained by looking at the number of
compressed fronts. For instance, going from 1753 to 2002,

Prepared using sagej.cls

Claus, Ghysels, et al. 9

the number of BLR fronts increases from 31 (top 5 levels of
the assembly tree) to 127 (top 7 levels).

Figure 7. Floating point operations per second for the
factorization phase of the Poisson problem on up to 256 nodes
of Frontier, with 2048 AMD MI250X Graphics Compute Dies
(GCDs).

 0

 50

 100

 150

 200

 250

8 256 512 1024 2048

TF
lo

p/
s

MI250X GCD's

4003

3003

2003

Figure 7 shows scaling with increasing number of nodes,
and GPUs, on the Frontier system for the factorization
phase of the Poisson problem, without BLR compression, on
meshes with 2003, 3003 and 4003 degrees of freedom. Each
node of Frontier has 4 AMD MI250X devices, with each
MI250X device having 2 Graphics Compute Dies (GCDs).
In practice, each GCD is treated as a separate device and we
run with 1 MPI rank per GCD. This shows that the code still
scales, even up to thousands of GPUs/MPI ranks, as long as
the problem is sufficiently large.

SuiteSparse Test Problems
Table 2 shows results for a number of larger matrices from
the SuiteSparse matrix collection (Davis and Hu 2011). Since
these problems are of medium size, a single GPU is used
for the tests. An efficient single GPU solver can be used
in a domain decomposition or block Jacobi preconditioner.
The A100 GPU is from Perlmutter and the PVC GPU is
an Intel Data Center GPU Max Series GPU (codename
Ponte Vecchio) from Aurora. These single GPU results are
compared with 8 cores from an AMD EPYC 7763 CPU from
Perlmutter.

As can be seen from Table 2, the GPU implementation
generally outperforms the corresponding CPU code. Without
compression, the factorization is on average 12.0× faster
on A100 compared to 8 CPU cores. Likewise, when BLR
compression is enabled, the A100 is 3.6× faster than 8 CPU
cores. However, note that the GPU code without compression
is still faster than the BLR GPU code. This illustrates the raw
power of the GPU when applied to large dense linear algebra
operations. The GPU code without compression is also
much simpler than the BLR code, with less overhead, fewer
kernel launches, memory allocations, memory transfers, and
synchronizations. Remember, in the previous sections we
were able to show performance improvements of BLR GPU
vs the GPU code without compression for large matrices,
the matrix sizes in Table 2 are not large enough. We will
work towards future optimizations in the BLR code to reduce
the overhead. Note that there is some difference in terms

of number of iterations and compression ratio between the
CPU and the GPU code. This is due to the different low rank
compression algorithms.

The A100 experiments both with and without compression
rely on MAGMA. For Intel PVC however, MAGMA was
not used, and instead the Intel oneAPI Math Kernel Library
(oneMKL) was used. This is because, at the time of
writing this, MAGMA does not have a stable release with
SYCL support. The oneMKL library provides variable sized
batched routines for dense LU, triangular solve and matrix
multiplication. However, since these are not sufficiently
optimized yet, we use our own naive kernel for fronts with
F11 smaller than 32× 32, and call the oneMKL routines
getrf, getrs and gemm for the larger fronts. Despite
these issues, the performance on PVC is quite competitive
compared to A100.

Finally, Table 2 also compares with cuDSS**, also using
LU factorization, on A100. For the exact factorization,
the STRUMPACK solver is on average 1.87× faster than
cuDSS for this test set. However, cuDSS’s solve phase is
more efficient. One possible explanation for this is that
cuDSS expects the input and output arguments for the solver
(right-hand side and solution) in device memory, while
STRUMPACK takes host memory, and thus requires extra
transfers. We plan to develop a fully GPU resident solve
phase in the near future.

Conclusion
Thanks to the Exascale Computing Project (ECP)’s
impactful structure of bringing people of various scientific
focus areas together on the common vision of working
towards exascale, we successfully ported the direct solver as
well as the block low rank compressed approximate solver
in STRUMPACK to three programming models, CUDA,
HIP/ROCm and SYCL, which allows us to target the GPUs
from all three vendors of each DOE compute facility,
NVIDIA GPUs on Perlmutter at NERSC, AMD GPUs on
Frontier at OLCF and Intel GPUs on Aurora at ALCF.

We studied the benefits of the GPU implementation
of a block low rank (BLR) compressed approximate
solver in STRUMPACK. Based on the experiments, we
conclude that the BLR compression on GPUs is particularly
beneficial for large problem sizes. For the visco-acoustic
wave propagation and the Poisson equation, we notice a
reduction of factorization time compared to the CPU-only
version as well as GPU alternatives. We would like to note
that the GPU code without compression is faster than the
BLR GPU code for the medium sized matrices from the
SuiteSparse collection. Further optimizations, e.g., reduce
device memory allocations and device synchronizations,
would likely make BLR beneficial for a wider range of
problem sizes.

We gave a detailed description of our GPU implementa-
tion and approach to performance portability. The resulting
code is modular and the higher level functionality can be
extended without having to write much vendor specific

∗∗Reported results are for cuDSS version 0.1.0 (https://developer.
nvidia.com/cudss-downloads). Timings are nearly identical with
version 0.2.0, but several cases terminate with a segmentation fault.

Prepared using sagej.cls

https://developer.nvidia.com/cudss-downloads
https://developer.nvidia.com/cudss-downloads

10 International Journal on High Performance Computing Applications XX(X)

no compression BLR(εrel = 10−2)
cuDSS

CPU A100 A100 PVC CPU A100
N nnz fact solve fact solve fact solve fact solve fact solve comp fact solve comp

matrix ×103 ×103 (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) its (%) (sec) (sec) its (%)
Serena 1,391 64,531 229.6 1.07 17.9 1.2 48.2 0.4 14.3 0.6 76.4 5.2 10 34.4 17.3 3.4 6 39.7
Geo 1438 1,437 63,156 151.9 1.04 12.7 1.0 33.0 0.3 10.6 0.6 60.4 7.2 13 45.6 16.9 4.5 7 54.2
Hook 1498 1,498 60,917 76.1 0.70 7.4 0.7 15.4 0.2 6.5 0.4 29.7 14.5 35 46.7 12.5 4.1 10 52.0
ML Geer 1,504 110,879 23.6 0.51 2.0 0.3 5.4 0.1 4.5 0.3 11.5 10.1 27 64.6 8.7 4.0 11 66.6
Transport 1,602 23,500 40.9 0.63 3.2 0.3 10.8 0.2 5.0 0.3 21.3 10.8 25 52.0 8.8 4.5 11 58.1
Flan 1565 1,565 117,406 32.8 0.7 3.0 0.4 8.8 0.1 5.7 0.4 20.5 40.6 86 62.3 12.3 25.0 54 65.7
Cube Coup dt0 2,164 129,133 OOM OOM 62.1 2.4 80.7 0.6 23.2 0.9 223.9 18.1 18 31.0 46.0 7.3 7 38.5

Table 2. Results for the numerical factorization and solve for a number of matrices from the SuiteSparse matrix collection.
Compression ratio (comp %) refers to the size of the final LU factors relative to the exact solver without compression. CPU runs use
8 cores of an AMD EPYC 7763 with OpenMP parallelism, GPU runs use a single GPU (A100, PVC).

code. However, some kernels are still duplicated for various
vendors. We plan to port those to a single portable framework
such as OpenMP off-loading, Kokkos or Raja. We will also
explore the use of runtime schedulers like PARSEC and
StarPU, which could be especially beneficial for the rank-
structured solvers, where the numerical ranks are not known
a-priori.

Acknowledgements

We extend our gratitude to Yang Liu who collaborated with us on
the SuperLU comparison results. His expertise and contributions
have significantly enhanced the quality of this work. We are very
grateful to Ahmad Abdelfattah and Stan Tomov for help with
MAGMA, to Mark Gates for help with SLATE, to Abhishek
Bagusetty and Dahai Guo for help with the SYCL implementation,
and to Paul Lin for help with the installation of cuDSS. We also
thank ECP management for their support.

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. This research used resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231.

An award for computer time was provided by the U.S. Depart-
ment of Energy’s (DOE) Innovative and Novel Computational
Impact on Theory and Experiment (INCITE) Program. This
research used supporting resources at the Argonne and the Oak
Ridge Leadership Computing Facilities. The Argonne Leadership
Computing Facility at Argonne National Laboratory is supported
by the Office of Science of the U.S. DOE under Contract No.
DE-AC02-06CH11357. The Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory is supported by the
Office of Science of the U.S. DOE under Contract No. DE-AC05-
00OR22725.

References

Abdelfattah A, Keyes D and Ltaief H (2016) KBLAS: An
Optimized Library for Dense Matrix-Vector Multiplication
on GPU Accelerators. ACM Transactions on Mathematical
Software (TOMS) 42(3): 1–31.

Amestoy PR, Buttari A, L’Excellent JY and Mary T (2019) Per-
formance and Scalability of the Block Low-Rank Multifrontal

Factorization on Multicore Architectures. ACM Trans. Math.
Softw. 45(1). DOI:10.1145/3242094.

Amestoy PR, Duff IS, Koster J and L’Excellent JY (2001) A
Fully Asynchronous Multifrontal Solver Using Distributed
Dynamic Scheduling. SIAM Journal on Matrix Analysis and
Applications 23(1): 15–41.

Aminfar A and Darve E (2016) A fast, memory efficient and robust
sparse preconditioner based on a multifrontal approach with
applications to finite-element matrices. International Journal
for Numerical Methods in Engineering 107(6): 520–540.

Anderson R, Andrej J, Barker A, Bramwell J, Camier JS, Cerveny
J, Dobrev V, Dudouit Y, Fisher A, Kolev T et al. (2021)
MFEM: A modular finite element methods library. Computers
& Mathematics with Applications 81: 42–74.

Azad A, Buluc A, Li X, Wang X and Langguth J (2020)
A Distributed-Memory Algorithm for Computing a Heavy-
Weight Perfect Matching on Bipartite Graphs. SIAM J.
Scientific Computing 42(4): C143–C168.

Azad A, Selvitopi O, Hussain MT, Gilbert JR and Buluç A (2021)
Combinatorial BLAS 2.0: Scaling combinatorial algorithms on
distributed-memory systems. IEEE Transactions on Parallel
and Distributed Systems 33(4): 989–1001.

Balay S, Abhyankar S, Adams MF, Benson S, Brown J, Brune
P, Buschelman K, Constantinescu EM, Dalcin L, Dener A,
Eijkhout V, Faibussowitsch J, Gropp WD, Hapla V, Isaac T,
Jolivet P, Karpeev D, Kaushik D, Knepley MG, Kong F, Kruger
S, May DA, McInnes LC, Mills RT, Mitchell L, Munson T,
Roman JE, Rupp K, Sanan P, Sarich J, Smith BF, Zampini
S, Zhang H, Zhang H and Zhang J (2023) PETSc Web page.
https://petsc.org/. URL https://petsc.org/.

Boukaram W, Turkiyyah G and Keyes D (2019) Randomized
GPU algorithms for the construction of hierarchical matrices
from matrix-vector operations. SIAM Journal on Scientific
Computing 41(4): C339–C366.

Chen Y, Davis TA, Hager WW and Rajamanickam S (2008)
Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky
Factorization and Update/Downdate. ACM Trans. Math. Softw.
35(3). DOI:10.1145/1391989.1391995. URL https://

doi.org/10.1145/1391989.1391995.
Chevalier C and Pellegrini F (2008) PT-Scotch: A tool for efficient

parallel graph ordering. Parallel computing 34(6-8): 318–331.
Claus L, Ghysels P, Liu Y, Nhan TA, Thirumalaisamy R,

Bhalla APS and Li S (2023) Sparse approximate multifrontal
factorization with composite compression methods. ACM

Prepared using sagej.cls

https://petsc.org/
https://petsc.org/
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995

Claus, Ghysels, et al. 11

Transactions on Mathematical Software 49(3): 1–28.
Davis TA (2004) Algorithm 832: UMFPACK V4.3—an

Unsymmetric-Pattern Multifrontal Method. ACM Trans.
Math. Softw. 30(2): 196––199. DOI:10.1145/992200.992206.
URL https://doi.org/10.1145/992200.992206.

Davis TA and Hu Y (2011) The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software
(TOMS) 38(1): 1–25.

Duff IS, Erisman AM and Reid JK (2017) Direct methods for sparse
matrices. Oxford University Press.

Duff IS and Koster J (1999) The Design and Use of Algorithms for
Permuting Large Entries to the Diagonal of Sparse Matrices.
SIAM J. Matrix Anal. Appl. 20(4): 889–901. DOI:10.
1137/S0895479897317661. URL https://doi.org/10.

1137/S0895479897317661.
Gates M, Kurzak J, Charara A, YarKhan A and Dongarra

J (2019) SLATE: Design of a Modern Distributed and
Accelerated Linear Algebra Library. In: Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’19. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450362290. DOI:10.1145/3295500.3356223. URL
https://doi.org/10.1145/3295500.3356223.

Ghysels P, Li XS, Rouet FH, Williams S and Napov A (2016) An
Efficient Multicore Implementation of a Novel HSS-Structured
Multifrontal Solver Using Randomized Sampling. SIAM J. Sci.
Comput. 38(5): S358–S384. DOI:10.1137/15M1010117. URL
https://doi.org/10.1137/15M1010117.

Ghysels P and Synk R (2022) High performance sparse
multifrontal solvers on modern GPUs. Parallel Comput. 110:
102897. DOI:https://doi.org/10.1016/j.parco.2022.102897.
URL https://www.sciencedirect.com/science/

article/pii/S0167819122000059.
Ghysels P, Xiaoye SL, Gorman C and Rouet FH (2017) A

robust parallel preconditioner for indefinite systems using
hierarchical matrices and randomized sampling. In: 2017 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, pp. 897–906.

Gupta A (2000) WSMP: Watson Sparse Matrix Package Part II
– direct solution of general systems. Technical report, IBM
T. J. Watson Research Center. Https://s3.us.cloud-object-
storage.appdomain.cloud/res-files/1331-wsmp2.pdf.

Hénon P, Ramet P and Roman J (2002) PaStiX: a High-Performance
Parallel Direct Solver for Sparse Symmetric Positive Definite
Systems. Parallel Computing 28(2): 301–321.

Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda
TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET et al.
(2005) An overview of the Trilinos project. ACM Transactions
on Mathematical Software (TOMS) 31(3): 397–423.

Higham NJ and Mary T (2022) Solving block low-rank linear
systems by LU factorization is numerically stable. IMA Journal
of Numerical Analysis 42(2): 951–980.

Karypis G and Kumar V (1998) A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput.
20(1): 359–392. DOI:10.1137/S1064827595287997. URL
https://doi.org/10.1137/S1064827595287997.

Li XS and Demmel JW (1998) Making sparse Gaussian elimination
scalable by static pivoting. In: Proceedings of SC98: High
Performance Networking and Computing Conference. Orlando,
Florida.

Li XS and Demmel JW (2003) SuperLU DIST: A Scalable
Distributed-Memory Sparse Direct Solver for Unsymmetric
Linear Systems. ACM Trans. Math. Softw. 29(2): 110––140.
DOI:10.1145/779359.779361. URL https://doi.org/

10.1145/779359.779361.
Liu Y, Ghysels P, Claus L and Li XS (2021) Sparse approximate

multifrontal factorization with butterfly compression for high-
frequency wave equations. SIAM Journal on Scientific
Computing 43(5): S367–S391.

Mary T (2017) Block Low-Rank multifrontal solvers: complexity,
performance, and scalability. PhD Thesis, l’Université de
Toulouse.

Nies R and Hoelzl M (2019) Testing performance with and without
block low rank compression in MUMPS and the new PaStiX
6.0 for JOREK nonlinear MHD simulations. arXiv e-prints :
arXiv:1907.13442.

Operto S, Virieux J, Amestoy P, L’Excellent JY, Giraud L and Ali
HBH (2007) 3D finite-difference frequency-domain modeling
of visco-acoustic wave propagation using a massively parallel
direct solver: A feasibility study. Geophysics 72(5): SM195–
SM211.

Pellegrini F and Roman J (1996) Scotch: A software package
for static mapping by dual recursive bipartitioning of process
and architecture graphs. In: High-Performance Computing
and Networking: International Conference and Exhibition
HPCN EUROPE 1996 Brussels, Belgium, April 15–19, 1996
Proceedings 4. Springer, pp. 493–498.

Schloegel K, Karypis G and Kumar V (1997) Multilevel diffusion
schemes for repartitioning of adaptive meshes. Journal of
Parallel and Distributed Computing 47(2): 109–124.

Prepared using sagej.cls

https://doi.org/10.1145/992200.992206
https://doi.org/10.1137/S0895479897317661
https://doi.org/10.1137/S0895479897317661
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1137/15M1010117
https://www.sciencedirect.com/science/article/pii/S0167819122000059
https://www.sciencedirect.com/science/article/pii/S0167819122000059
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1145/779359.779361
https://doi.org/10.1145/779359.779361

	Introduction
	Multifrontal LU Factorization
	GPU Implementation
	Vendor Agnostic GPU Implementation

	Block Low Rank Arithmetic
	Adapative Randomized Approximation

	Approximate Sparse Solver
	Experiments
	Visco-Acoustic Wave Propagation
	Poisson Equation
	SuiteSparse Test Problems

	Conclusion

