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Technical Note

Seepage Face in Steady-State Groundwater
Flow between Two Water Bodies

Hugo A. Loáiciga, Dist.M.ASCE1

Abstract:An implicit solution determining the seepage-face dimension formed in steady-state flow through an aquifer connecting two water
bodies is achieved based on the Dupuit assumption and conservation-of-flow-rate considerations. The aquifer features sloping upstream and
downstream boundaries. The solution approach presented here yields the seepage-face dimension, the flow rate through the aquifer, the
geometry of the phreatic surface, and travel times along streamlines. The Dupuit-based groundwater flow estimates compare well with
numerical solutions calculated for the exact groundwater flow problem. DOI: 10.1061/(ASCE)HE.1943-5584.0001997. © 2020 American
Society of Civil Engineers.

Author keywords: Seepage face; Dupuit assumption; Phreatic surface; Steady state; Groundwater flow.

Introduction

Fig. 1 depicts groundwater flow established between two water
bodies of constant levels h1 (upstream water body) and h2 (down-
stream water body). The situation displayed in Fig. 1 may involve
two natural water bodies, such as lakes or groundwater flow estab-
lished through an embankment, levee, or earth dam. On the down-
stream slope surface (EI) of the flow system shown in Fig. 1 there
exists a slope segment (FG) where groundwater discharges from the
aquifer and flows overland and downslope toward the downstream
water body. The slope segment FG is called the seepage face, which
has an unknown vertical dimension, herein denoted by a. Empirical
evidence confirms the existence of the seepage face, and there are
theoretical reasons requiring the existence of a seepage face in the
type of groundwater flow depicted in Fig. 1 (e.g., Bear 1972,
p. 260). The case in which the slope angles α and β equal 90° and
the seepage face is neglected (i.e., a ¼ 0) in Fig. 1 represents a
classic case of steady-state groundwater flow (i.e., the so-called
two-lake problem) for which there are closed-form solutions for
the flow rate between the two water bodies and for the shape of the
phreatic surface (Line BF in Fig. 1) under the Dupuit assumption,
i.e., assuming groundwater flow is essentially horizontal and equi-
potential surfaces (i.e., surfaces on which the hydraulic head is con-
stant) are nearly vertical (e.g., Bear 1979, p. 76). The Dupuit
assumption is widely used in the solution of steady and transient
groundwater-hydraulics problems (e.g., Ritzi and Bobeck 2008).
The Dupuit assumption is perhaps the most powerful, and possibly
the only simple, tool to solve unconfined groundwater flow analyti-
cally. The largest deviation of the flow regime from the Dupuit
assumption occurs along Boundaries AB and FG in Fig. 1.

Let q denote the rate of groundwater flow moving from the up-
stream water body to the downstream water body. The flow rate q is
per unit width of aquifer normal to the plane of Fig. 1. In addition,
let hðxÞ and K denote respectively the hydraulic head a distance x
from the origin A and the (saturated) hydraulic conductivity of the

aquifer’s soil. The solutions for the classic two-lake groundwater
problem are as follows (e.g., Fetter 2001):

q ¼ K
h21 − h22
2L

α ¼ β ¼ 90°; a ¼ 0 ð1Þ

hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 − ½h21 − ðh2Þ2� · x

L

r
α ¼ β ¼ 90°; a ¼ 0; 0 ≤ x ≤ L

ð2Þ

where L ¼ w if β ¼ 90°; w = width separating the two slopes’
crowns; and α and β = angles of upstream and downstream slopes,
respectively. Eq. (1) was first reported by Dupuit (1863). Eq. (2)
expresses the elevation of the phreatic surface under the Dupuit
assumption. It is noteworthy that the flow rate q given in Eq. (1)
is constant between the upstream and the downstream water bodies.
Yet the seepage velocity (or average linear velocity) of groundwater
varies with position x between the two water bodies. The travel
time (tL) of groundwater between the two water bodies when
α ¼ β ¼ 90° is obtained by (1) deriving the seepage velocity (v)
from the hydraulic gradient defined by the spatial derivative of
the equation for the phreatic surface [Eq. (2)], the hydraulic con-
ductivity, and the aquifer porosity (n), i.e., v ¼ −Kðdh=dxÞ=n, and
(2) integrating by separation of variables the formula v−1 dx ¼ dt.
The result for the travel time is as follows:

tL ¼ 4

3
·
nL2

K
·

h31 − h32
ðh21 − h22Þ2

α ¼ β ¼ 90°; a ¼ 0 ð3Þ

Eqs. (1)–(3) provide useful information about the rate of
groundwater flow, the position of the phreatic surface, and the
travel time between water bodies, respectively, when the upstream
and downstream aquifer boundaries are vertical and neglecting the
seepage face. Vertical aquifer boundaries are rare in practice, even
in constructed porous media, perhaps occurring naturally only
when the aquifer is made of highly cohesive soil or fractured rock.
Polubarinova-Kochina and de Wiest (1962) reported a method to
calculate the seepage face of the two-lake problem with vertical
lateral boundaries and showed that Eq. (1) also gives the ground-
water flow between the lakes when (1) there is a seepage face
and α ¼ β ¼ 90° and (2) there are vertical and horizontal hy-
draulic gradients [i.e., without resorting to the Dupuit assumption;
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see Eq. (9.10), Chapter VII, of Polubarinova-Kochina and de Wiest
(1962)]. The latter method does not solve the case of sloping up-
stream and downstream aquifer boundaries; nor does the hodograph
method employed to find analytical solutions to some specialized
groundwater flow problems (Polubarinova-Kochina and de Wiest
1962). Chapuis and Chenaf (2007) presented a numerical analysis
of and predictive equations for the seepage face at the borehole
of a fully penetrating well withdrawing groundwater from an ideal
unconfined aquifer in steady state. Rushton and Youngs (2010) re-
ported solutions to the vertical-boundary, two-lake problem with
recharge onto the phreatic surface. The latter authors relied on
numerical solutions to the 2D Laplace equation without recourse
to theDupuit assumption. This work presents solutions to the ground-
water flow problem between two water bodies in the general case
where the upstream and downstream aquifer boundaries are sloping,
that is, when 0° < α, β < 90°, considering the presence of a seepage
face, and relying on the Dupuit assumption. The solutions yield the
magnitude of the seepage face, the flow rate through the aquifer, the
position of the phreatic surface, and the travel times through the aqui-
fer under the stated conditions of groundwater flow. This work also
presents a comparison of its analytical results with numerical simu-
lations of the exact groundwater flow problem corresponding to the
aquifer geometry displayed in Fig. 1. Besides this work’s theoretical
contribution, there are practical applications of the formulas herein
introduced. The rate of groundwater flow is of interest from the per-
spective ofwater balance in the type of flow system depicted in Fig. 1.
The position of the phreatic surface is pertinent to the planning and
execution of recharge operations (Bouwer 2002) and in the analysis
of slope stability (Duncan et al. 2014; Loáiciga 2015). The travel time
between the two water bodies is relevant to the temporal analysis of
advective transport of dissolved matter.

Methodology

Groundwater Flow and the Seepage Face (General
Case0° < α, β < 90°; a > 0)

The central region CEFJD in Fig. 1 is equivalent to a flow
system in which the upstream and downstream aquifer boundaries
are vertical, in which case the solutions of the flow through the
aquifer and the phreatic surface’s position are known. Therefore,
Eqs. (1) and (2) are extended to represent respectively the flow
rate (q) through this central region and the elevation of the phreatic
surface [hðxÞ] as follows:

q ¼ K
h2D − ðh2 þ aÞ2

2L
ð4Þ

in which L ¼ wþ cotβ · ½H − ðh2 þ aÞ�, and hD represents the
(unknown) elevation of the phreatic surface at L1 ¼ cotα · H

hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2D − ½h2D − ðh2 þ aÞ2� · ðx − L1Þ

L

r
L1 ≤ x ≤ Lþ L1

ð5Þ

The flow rate Eq. (4) contains three unknowns, namely, a, hD,
and q. Therefore, two additional equations are needed to solve for
the three unknowns. The groundwater flow moving through the tri-
angular Regions ACD and FIJ shown in Fig. 1 must also equal the
flow rate q given by Eq. (5) under steady state. The equations
describing groundwater flow through the latter two regions provide
the required additional equations. Regions ACD and FIJ encompass
the upstream and downstream lake boundaries. They must be
chosen as done in Fig. 1 to provide the necessary flow equations
to solve the groundwater flow problem between two lakes with
sloping, submerged boundaries. Careful consideration of the choice
of flow regions must be made in each groundwater flow situation, as
required by the method of fragments (e.g., Harr 1962). Using the
Dupuit assumption of nearly horizontal streamlines, in the triangu-
lar Region ACD a streamline segment is seen starting at Point 1 with
elevation z1 and ending on the vertical equipotential surface whose
hydraulic head equals hD defines a hydraulic gradient equal to

i1 ¼
h1 − hD

cotα · ðH − z1Þ
ð6Þ

The groundwater flow rate moving through the triangular
Region ACD in Fig. 1 is obtained by applying Darcy’s law to obtain
a differential flow rate dq ¼ K · i1 · dz1 and integrating from 0
through hD to obtain the flow rate q as follows:

q ¼ K ·
h1 − hD
cotα

· ln

�
H

H − hD

�
ð7Þ

The third needed equation is obtained by analyzing the ground-
water flow rate moving through the triangular Region FIJ shown in
Fig. 1. A streamline intersecting the equipotential Surface FJ at an
elevation z3 (where the hydraulic head equals h2 þ a) and ending
on the seepage Face FG (where the hydraulic head equals z3) de-
fines a hydraulic gradient equal to (using the Dupuit assumption)

iFG ¼ h2 þ a − z3
cot β · ðh2 þ a − z3Þ

¼ tan β ð8Þ

Likewise, a streamline intersecting the equipotential Surface FJ
at an elevation z3 (with hydraulic head equal to h2 þ a) and ending
on the Slope Segment GI of the downstream slope (with a hydraulic
head h2) defines a hydraulic gradient equal to

iGI ¼
a

cot β · ðh2 þ a − z3Þ
ð9Þ

The hydraulic gradients iFG and iGI define differential flow rates
K · iFG · dz3 and K · iGI · dz3, respectively. Integrating the former
and the latter differential flow rates between h2 and h2 þ a and
between 0 and h2, respectively, and adding the resulting expres-
sions yields the groundwater flow rate moving through the triangu-
lar Region FIJ:

q ¼ K ·
a

cotβ
·

�
1þ ln

�
h2 þ a

a

��
ð10Þ

H

h1

h2

h2+a

D

E

F

hD

A

h(x) G

I

C

J

L=w + cot [ -(h2+a)]

B

x

w

z 3

L1=cot

z1

1

cot (h2+a)

Fig. 1. Geometry of flow system showing parameters; elevation view
not drawn to scale.
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Eqs. (4), (7), and (10) provide the three equations involving
the flow system’s three unknowns. They must be solved jointly,
as explained in what follows. The case of a vertical upstream boun-
dary (α ¼ 90°) is solved using Eq. (4) with hD ¼ h1 and Eq. (10).
The case of a vertical downstream boundary (β ¼ 90°) is not solv-
able with this paper’s methodology, although one can let β → 90°
to approximate the seepage-face dimension a in this instance.

Travel Times in the General Case 0° < α, β < 90°; a > 0

Travel times in the general case 0° < α, β < 90°; a > 0
The travel time along the streamline starting at Point 1 and

elevation z ≤ h2 on the slope Segment AB of the upstream Slope
AC is the sum of the travel times through Regions ACD (t1),
CEFJD (tL), and FIJ exiting between G and I (tGI; see Fig. 1).
The travel times through Regions ACD and FIJ are calculated
by dividing the travel distance (which is approximately horizontal
under the Dupuit assumption) by the seepage velocity in each
region. The travel time through Region CEFJD must be obtained
by integrating the inverse of the seepage velocity over the flow
distance. Recalling the expression for tL in Eq. (3) and the hy-
draulic gradients i1 and iGI expressed by Eqs. (6) and (9), respec-
tively, the travel time between the two water bodies (t12) is given by
the following expression:

t12ðzÞ ¼
n
K
½cotα · ðH − z1Þ�2

h1 − hD
þ 4

3
·
nL2

K
·

h3D − ðh2 þ aÞ3
ðh2D − ðh2 þ aÞ2Þ2

þ n
K
½cot β · ðh2 þ a − z3Þ�2

a
ð11Þ

in which 0 ≤ z1 ¼ z3 ≤ h2. The longest travel distance
occurs along the basal Boundary AI and equals L1 þ Lþ
ðh2 þ aÞ · cot β; the travel time along the basal boundary is given
by Eq. (11) with z1, z3 ¼ 0.

The travel time along a streamline starting at Point 1 and eleva-
tion h2 ≤ z1 ≤ h1 on the slope Segment AB of the upstream Slope
AC and emerging on the slope Segment FG of the downstream
boundary at elevation h2 ≤ z3 ≤ h2 þ a is the sum of the travel
times through Regions ACD (t1), CEFJD (tL), and FIJ exiting be-
tween F and G (tFG; see Fig. 1). The procedure to calculate the
travel time between the two water bodies is similar to that leading
to Eq. (11). The result is as follows:

t12ðzÞ ¼
n
K
½cotα · ðH − z1Þ�2

h1 − hD
þ 4

3
·
nL2

K
·

h3D − ðh2 þ aÞ3
ðh2D − ðh2 þ aÞ2Þ2

þ n
K
ðcot βÞ2 · ðh2 þ a − z3Þ ð12Þ

in which z1 and z3 represent the extremities of a streamline. The
travel time along the phreatic Surface BF is given by Eq. (12) with
z1 ¼ h1 and z3 ¼ h2 þ a.

Solution Approach

Eqs. (4), (7), and (10) provide the three equations needed to solve
for the vertical extent of the seepage face (a), the groundwater flow
rate between the two water bodies (q), and the hydraulic head hD at
location L1. The three equations are nonlinear on the unknowns,
which prevents a closed-form solution; yet a solution can be
achieved by solving a sequence of implicit equations. Equating
Eqs. (4) and (10) and solving for hD as a function of a produces
the following result, denoted by hD½a�:

hD½a� ¼
�
ðh2 þ aÞ2 þ 2aL

cotβ
·

�
1þ ln

�
h2 þ a

a

���1
2 ð13Þ

The expression hD½a� given by Eq. (13) replaces hD in Eq. (7),
and the resulting expression is equated with Eq. (10) to render the
following implicit equation for the seepage-face dimension a:

h1 − hD½a�
cotα

· ln

�
H

H − hD½a�
�

¼ a
cot β

·

�
1þ ln

�
h2 þ a

a

��
ð14Þ

Eq. (14) must be solved numerically to yield a. Double-
precision calculation must be implemented to achieve equality
of the left- and right-hand sides of Eq. (14) with sufficient preci-
sion. The hydraulic head hD is calculated using Eq. (13) once a is
determined from Eq. (14). It is noteworthy that the solutions of
Eqs. (13) and (14) do not involve the hydraulic conductivity K.
The groundwater flow rate is determined with Eqs. (4), (7), or
(10). These three equations must produce the same result for q
if the solution is correctly calculated. The travel time t12 is calcu-
lated with either Eqs. (11) or (12). The case of vertical upstream
slope (α ¼ 90°) and downstream head h2 ¼ 0 produces a closed-
form solution for the groundwater flow and the seepage face by
equating Eq. (4) with hD ¼ h1 and h2 ¼ 0 to Eq. (10) with h2 ¼
0. The results are as follows:

q ¼ Ka tan β ð15Þ

a ¼ −L tan β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2tan2β þ h21

q
ð16Þ

which are applicable for 0° < β < 90°. Casagrande (1937) reported
alternative and approximate solutions to Eqs. (15) and (16). Other
approximate solutions to the seepage-face problem considered in
this work were proposed in the early 1900s, with pertinent refer-
ences found in Casagrande (1937). Those approximate solutions do
not consider the exact flow transition between Regions ACD and
CEFJD, as done in this work.

Formulation of Two-Lake Problem for Numerical
Solution

The groundwater regime that takes place in an aquifer depicted by
Fig. 1 does not have flow components along the dimension
perpendicular to the figure’s plane (i.e., there is plane flow in this
instance). Therefore, the governing two-dimensional (2D) ground-
water flow equation in an aquifer setting as shown in Fig. 1 is given
by Laplace’s equation:

∂2hðx; zÞ
∂x2 þ ∂2hðx; zÞ

∂z2 ¼ 0 ð17Þ

The boundary conditions associated with Eqs. (17) are as
follows:

Upstream constant head:

hðx; zÞ ¼ h1 ð18Þ

on boundary AC, z ¼ tanα · x; 0 ≤ x ≤ h1 cotα; 0 ≤ z ≤ h1.
No flow across the lower boundary of the flow region:

∂h
∂z ¼ 0 ð19Þ

on boundary AI, 0 ≤ x ≤ H · ðcotαþ cot βÞ þ w.

© ASCE 06020005-3 J. Hydrol. Eng.
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The phreatic surface constitutes the upper boundary of the flow
region:

hðx; zfÞ ¼ zfðxÞ ð20Þ

on the phreatic surface BF, cotα · h1 ≤ x ≤ cotα · h1 þ L, where
zfðxÞ represents the variable and unknown elevation of the phreatic
surface.

Variable head along the seepage face FG:

hðx; zÞ ¼ z ð21Þ

the formula for the FG boundary is z¼ h2þaþ tanβ · ðL1þLÞ−
tanβ · x, where

L1 þ L ≤ x ≤ L1 þ Lþ a cotβ; h2 ≤ z ≤ h2 þ a

Downstream constant head:

hðx; zÞ ¼ h2 ð22Þ

the formula for the GI boundary is z¼ h2þaþ tanβ · ðL1þLÞ−
tanβ · x, where

L1 þ Lþ a cotβ ≤ x ≤ L1 þ Lþ ðh2 þ aÞ cotβ; 0 ≤ z ≤ h2

The problem defined by Eqs. (17)–(22) does not have an ana-
lytical solution. It must be solved numerically. The specification of
the seepage-face boundary condition given by Eq. (21) introduces a
dilemma of circular logic: it depends on the seepage-face variable
a, which is unknown; to determine a, one must solve for the posi-
tion of the phreatic surface, which requires knowledge of a.
Numerical models, such as the well-known MODFLOW software,
can solve Eqs. (17)–(22) ignoring the seepage face. In that case, the
position of the phreatic surface is determined by an iterative
scheme. The results section presents a comparison of groundwater
flow calculations obtained with the Waterloo Hydrogeologic Visual
Modflow Flex model and with this work’s analytical solutions. The
procedure followed to construct the comparison relies on (1) calcu-
lating the seepage-face dimension a with this paper’s method,
(2) solving the groundwater flow problem given by Eqs. (17)–
(22) numerically after specifying the seepage-face dimension a
based on the results from (1), and (3) comparing the numerically
obtained flow rate with the flow rate calculated using this paper’s
method. This comparison reveals the extent to which the flow rates
calculated with the numerical model differ from those obtained
under the Dupuit assumption and using this paper’s method.
The comparison also provides insight into the difference between
the Dupuit-based seepage-face dimension and its value considering
horizontal and vertical hydraulic gradients. It is noteworthy that the
seepage-face dimension a cannot be obtained with numerical
models.

Results

Dupuit-Based Seepage Face and Groundwater Flow
Calculations

The seepage dimension, flow rate, shape of the phreatic surface,
and travel time were calculated for selected combination of the
water levels h1 and h2. The downstream water level (h2) was varied
between 10 and 29 m while setting the upstream water level con-
stant (h1 ¼ 30 m). Other hydraulic parameters equaled α ¼ β ¼
26.5° (one unit of vertical rise to two units of horizontal distance),
H ¼ 32 m, K ¼ 1 m=day, n ¼ 0.30, and w ¼ 500 m.

Fig. 2 depicts the phreatic surface calculated for downstream
water elevations h2 ¼ 29, 20, and 10 m, for which the calculated
seepage-face dimension a equaled 13, 154, and 312 mm, respec-
tively. A prominent feature arising from the calculation of the
seepage-face dimension a is its relatively small magnitude, which
varies from 13 to 312 mm as the downstream water level ranges
between 29 and 10 m.

A second set of calculations involved the flow rate and travel
time corresponding to several combinations of upstream and down-
stream water levels. The downstream water level (h2) was once
more varied between 10 and 29 m while setting the upstream water
level constant (h1 ¼ 30 m). Other hydraulic parameters were iden-
tical to those used in preparing Fig. 2. The hydraulic gradient de-
fined by the boundaries of the phreatic surface was calculated once
the seepage dimension was determined corresponding to several
combinations of water levels h1 and h2. The hydraulic gradient
in this instance is defined as the total drop in elevation along
the phreatic surface divided by the horizontal distance separating
the upstream and downstream boundaries of the phreatic surface:

i ¼ h1 − ðh2 þ aÞ
ðH − h1Þ · cotαþ L

ð23Þ

Fig. 3 depicts the calculated variation of the travel time along
the phreatic surface and the flow rate with respect to the hydraulic
gradient. The flow rate was calculated considering the seepage
face (1) with Eqs. (4), (7), or (10) and (2) neglecting the seepage

Fig. 2. Variation of phreatic surface for water levels h1 and h2 (not
drawn to scale).
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face with Eq. (4) (setting a ¼ 0) or Eq. (7). In the latter case, the
unknown hD is solved for by equating Eq. (4) (with a ¼ 0) to
Eq. (7) and finding the hD that achieves equality. The flow rates
considering and without considering the seepage are nearly iden-
tical over the entire range of the hydraulic gradient, as depicted
in Fig. 3. It is seen in Fig. 3 that the flow rate and the travel time
vary nonlinearly with a changing hydraulic gradient. The travel
time in particular increases rapidly as the hydraulic gradient falls
below 10=1,000.

Numerical Solutions

The Visual Modflow Flex model was implemented by constructing
a finite-difference grid for Region AHEI depicted in Fig. 1.
The grid had cells of size 25 cm ðhorizontal coordinateÞ × 10 cm
(vertical coordinate). The direction perpendicular to the plane of
the flow region was assigned a thickness equal to 100 cm. The
seepage-face dimension a was calculated using the Dupuit-based
method herein developed and input as a known variable to the
numerical model. The hydraulic head conditions given by Eqs. (18),
(21), and (22) were specified in the model by assigning pertinent
numerical values with the graphical user interface of the boundary
module of Visual Modflow Flex. The numerical model was run
specifying unconfined conditions, which solves for the phreatic
surface in terms of the values of the hydraulic head on the upper-
most cells of the region where flow occurs. The no-flow boundary
[Eq. (19)] is automatically generated by the numerical model by the
geometry of the finite-difference grid.

Table 1 lists the comparison of flow rates obtained with this pa-
per method’s and with Visual Modflow Flex. The aquifer geometry
and hydraulic characteristics are the same as those used to construct
Figs. 2 and 3.

The results in Table 1 indicate the numerically calculated flow is
slightly smaller than the flow calculated with this paper’s method
based on the Dupuit assumption. This suggests that achieving
equality of flows by the two methods herein applied would require
a slightly larger hydraulic gradient (i.e., h2 is smaller for a given h1)
in the numerical simulation than that driving groundwater flow
under the Dupuit assumption. This implies the seepage-face dimen-
sion must be slightly larger under 2D flow conditions than that cal-
culated under the Dupuit assumption. The larger Dupuit-based flow
may be explained by the fact that it relies on the assumption of
nearly horizontal flow conditions, which creates more efficient
water transport under given geometric conditions compared with
the actual flow driven by horizontal and vertical gradients.

Conclusion

This paper has presented a methodology to calculate the seepage-
face dimension, flow rate, and travel times through an aquifer with
sloping boundaries connecting two water bodies with constant
water levels and featuring a seepage face on the downstream boun-
dary. The results for the seepage-face dimension indicate it is rel-
atively small over a wide range of the hydraulic gradient driving
flow in the aquifer under the Dupuit assumption. The flow rate
and travel times vary considerably with the changing hydraulic gra-
dient. A comparison of flow rates calculated under the Dupuit
assumption and with a numerical model, which better represents
the actual groundwater flow regime, indicates the numerically cal-
culated groundwater flow is slightly smaller than that calculated
under the Dupuit assumption. The closeness of the calculated
Dupuit-based and numerically based flows demonstrates the ro-
bustness of the Dupuit assumption as a tool for solving the type
of problems considered in this work.

Data Availability Statement

This paper’s results were calculated with an Excel spreadsheet,
which is available upon request.
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Table 1. Results obtained with Dupuit-based and numerical methods

h1
(m)

h2
(m)

a
(mm)

q (this paper’s method)
(m3=m · d)

q (visual modflow flex)
(m3=m · day)

30 10 312 0.70 0.68
30 20 154 0.45 0.43
30 29 13 0.06 0.05
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