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Abstract

Numerical algorithm is a fundamental part of a chip and it plays a crucial role

in a chip. The efficient manipulation of numerical data is essential for achieving optimal

performance and desired functionality of a chip. The algorithms are designed on the chip

to solve complex mathematical problems in different fields. Therefore, an efficient and

accurate numerical algorithm can improve the practicality of a chip.

This paper presents some basic numerical algorithms that can apply to the target

chip, and the target platform is Asynchronous Array of Simple Processors 3(AsAP3)[1].

The paper uses shift division as the basic dividing function throughout the algorithms

to replace the traditional divisions. This paper implements Trigonometric functions,

Exponential function, Natural Logarithm function, and LRN function on the AsAP3

platform. This paper applies Taylor series, CORDIC, and binary search algorithms to

the implemented functions. Furthermore, this paper records the numerical results of these

functions generated by AsAP3 and compares them with the reference values calculated

by the MATLAB program. It analyzes the difference, SNR value, and throughput of

simulated results to examine the accuracy of the calculation. The paper also displays

difference and ratio graphs to visually present the magnitude of the difference. The results

and comparisons show that the numerical algorithms offer a satisfactory performance in

the target platform.

The applications are programmed with C in Visual Studio and transferred to the

AsAP3 platform. The comparison between the generated value and reference value is

completed on MATLAB.
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Chapter 1

Introduction

1.1 Motivation

The numerical algorithm is a fundamental operation in arithmetic calculation

supported by every computer system. The numerical algorithm serves as the backbone

for solving complex mathematical problems such as scientific simulations and engineering

optimizations. In the chip design, the pursuit of efficiency and accuracy is a paramount

part of the numerical algorithm. Therefore, this paper seeks to explore and analyze the

numerical calculations applied on the AsAP3[2] platform, meanwhile aims to enhance the

applicability of the calculations.

The fixed-point calculation is an important part of the AsAP3 platform. The

platform currently has applications including Fast Fourier Transform, low-density par-

ity check, and sorting algorithm. Adding the calculating application of the arithmetic

function to the AsAP3 increases the functionality of the platform.

Therefore, this thesis proposes and implements two basic arithmetic operations,

division, and square root calculation, and applies them to several numerical calculating

functions. These functions include Trigonometric functions, exponential function, natu-

ral logarithm function and LRN function. For Trigonometric functions, Sine, Cosine and

Arctangent functions use the Taylor series and CORDIC algorithm to finish the compu-

tation. To examine the performance of each function, this paper analyzes the difference
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and SNR value between simulation and reference values. This thesis uses AsAP3 as the

platform to test the proposed algorithms.

1.2 Thesis Organization

The following chapter descriptions are the organization of this thesis. Chapter

2 presents the background for the shift first. Then it introduces the basic information

about the Taylor series, CORDIC, and binary search algorithm. It also studies the LRN

function. Lastly, it introduces the AsAP3 platform.

Chapter 3 introduces the implemented functions in this paper. It introduces shift

division first as it is a basic computational method in the paper. Then, it presents

Trigonometric functions in the Taylor series and CORDIC, Exponential function, and

Natural Logarithm function. Lastly, it discusses the square root and LRN functions.

Chapter 4 explains the algorithms shown in the paper. It first describes the

procedure of the Taylor series. Then, it presents a derivation of the CORDIC with an

explanation of the algorithm. It also illustrates the binary search algorithm.

Chapter 5 demonstrates the implementation of functions on the AsAP3 platform.

It describes the implementing procedure for Trigonometric functions, Exponential func-

tion, Natural Logarithm function, Square Root function, and LRN function. It also

provides pseudo-codes for each function.

Chapter 6 explains the testing environment for the thesis. Then, it displays the

testing results with tables and graphs for each function. It lists difference, SNR value,

and throughput as parameters to determine the performance of each function. This paper

also conducts more tests with the Taylor series functions that have abnormal results and

analyzes these test results.

Chapter 7 summarizes the thesis and proposes some thoughts on future work.

2



Chapter 2

Background

This chapter introduces the background for all the functions used in the thesis.

First, it introduces the shifting method with the basic idea of shift operation. Then,

it researches the background of the Taylor series in this paper. It also presents the

CORDIC algorithm with the invention background and useful scenarios. In addition,

this paper reviews the background of binary search and square root. Lastly, it introduces

and explains the LRN function as well as the Alexnet, the platform that uses LRN in its

calculations.

2.1 Shift

The bit-wise shift is an operation that moves every digit in a number’s binary

representation left or right. Shift operation includes three categories, logical shift, rotate,

and arithmetic shift. Figure 2.1 below displays the three shifts[3].

3



Figure 2.1: Figure for displaying logical shift, rotation, and arithmetic shift

A logical shift moves bits to the left or right. The left or right shift removes the

leftmost or rightmost bits and adds a 0 to fill the space from the opposite side. Therefore,

a logical left shift is a multiplication by 2, and a logical right shift is a division by 2. The

rotation operation shifts the bits circularly. The rotation moves the leftmost or rightmost

bit to the opposite end of the binary string. The arithmetic right shift is similar to a

logical right shift, but it fills the leftmost bits with the sign bit of the original number.

This paper uses shift in the calculations of Taylor series, CORDIC, and LRN.

2.2 Taylor series

The Taylor series is a mathematical tool that represents a function as an infi-

nite sum of terms. It is named after the English mathematician Brook Taylor in 1715.

The fundamental concept of Taylor series is Isaac Newton’s work on interpolation, where

Newton approximates the functions using finite polynomial series at given points. James

Gregory explores the infinite series representation of trigonometric functions. Later, Tay-

lor formalizes and generalizes the ideas from both Newton and Gregory, and creates the

Taylor series. It is useful for approximating functions in terms of polynomials. The series

expansion is based on derivatives of the function at a specific point. The series enables

the approximation of complex functions using polynomials and makes mathematical cal-

4



culation easier. The following equation shows the general form of the Taylor series,

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3... (2.1)

The Taylor series can obtain accurate approximate f(x) by adding more terms

to the series. In the above equation, f(a) approximates the value of f(x) near point a,

and adding more terms can refine the approximation and increase a larger approximating

range for x values.

This paper utilizes the Taylor series in calculating the approximate value of the

functions including Sine, Cosine, Arctangent, Exponential, and Natural Logarithms.

2.3 CORDIC

Jack Volder introduced the coordinate rotation digital computer (CORDIC) in

1956 to replace the analog resolver with a more accurate and faster real-time calculator.

Flight control and radar computer systems use the CORDIC algorithm. CORDIC uses

trigonometric identities as the basic principle to achieve the calculation of an arbitrary

angle for trigonometric functions. Since CORDIC only uses addition, subtraction, and

shifting, it is a hardware-efficient algorithm and is commonly used when there is no

multiplier or divider available, such as FPGA and micro-controllers[4].

The CORDIC algorithm has two modes: rotation and vector modes. The repre-

sentative functions of rotation mode are Sine and Cosine, and the representative function

for vector mode is Arctangent. The calculation includes bit conversion in each itera-

tion. Each iteration will decide the rotation direction of the next iteration. Therefore,

additional iterations can increase accuracy and reliability.

This paper uses the CORDIC algorithm in calculating the value of trigonometric

functions including Sine, Cosine, and Arctangent.

5



2.4 Binary Search

In 1946, John Mauchly first mentioned the binary search algorithm in a report. In

the mid-20th century, binary search became a popular and formal algorithm as mathe-

maticians and computer scientists started to focus on the efficiency of sorting algorithms.

The binary search algorithm has played an important part in data structures and algo-

rithm designs ever since.

The binary search method was developed in computer science and mathematical

calculation due to the efficiency of finding a specific element in a sorted collection of

data. Binary search reduces the number of comparisons by dividing the search interval in

half repeatedly. The algorithm has a time complexity of O(logn) for finding the specific

element in an array size of size n. The efficiency makes it a fundamental concept and

algorithm in computer science.

The paper uses binary search in the calculation of the square root function.

2.5 LRN

Normalization is a crucial procedure in a convolutional neural network. It uses

certain algorithms to restrict the growth of the unbounded activation function. Local

Response Normalization (LRN) is one of the normalizations that is commonly used[5].

Figure 2.2 below shows the normalizations currently used[6].

6



Figure 2.2: Various Normalizations

Figure 2.3: Diagrams for AlexNet

AlexNet is the name of a convolutional neural network architecture designed by

Alex Krizhevsky, and it introduces the LRN. Figure 2.3 shows the diagram for AlexNet[7].

The AlexNet is eight layers deep and uses more than one million images on the ImageNet

database as training objects. The input size for AlexNet is 227∗227∗3. In AlexNet, LRN

implements lateral inhibition. Lateral inhibition is the capacity of the excited neuron,

and it can restrain the neighboring neurons. Lateral inhibition can create a clear contrast

between the excited neuron and neighboring neurons. AlexNet uses Rectified Linear

Unit(ReLU) as the activation function. However, ReLU does not have a normalization

method to limit the growth of output value. ReLU uses LRN to help normalize the

function. Therefore, it’s getting easier to detect high-frequency features, and excited

7



neurons can be separated from their neighboring neurons[8].

The equation to calculate LRN includes inter-Channel LRN and Intra-Channel

LRN. The equation for inter-Channel LRN shows as below,

bix,y = aix,y/(k + α

min(N−1,i+n
2
)∑

j=max(0,i−n
2
)

(ajx,y)
2)β (2.2)

In the equation, the constants (k, α, β, n) are the parameters that shape the nor-

malization. In the AlexNet paper, the parameters are set to (2, 10−4, 0.75, 5) respectively.

aix,y is the pixel value before the normalization, while bix,y is the result after the nor-

malization. ajx,y are the surrounding neurons of aix,y. The range of surrounding neurons

bases on the constants n and the total number of channels N . The parameter constant α

normalizes the sum of surrounding neurons, and the parameter constant β sets a bound-

ary for the result. Then, the calculated value divides aix,y to complete the normalization

procedure. The equation uses parameter constant k to avoid possible singularities, such

as dividing by zero. In the equation, i is the target channel and j is the neighbor channel.

The equation for intra-Channel LRN shows as below,

bkx,y = akx,y/(k + α

min(W,x+n
2
)∑

i=max(0,x−n
2
)

min(H,y+n
2
)∑

j=max(0,y−n
2
)

(aki,j)
2)β (2.3)

In the equation above, the parameter (k, α, β, n) for intra-Channel LRN equation

are identical to the parameters of inter-Channel LRN equation. The (W,H) are the width

and height of the original map, in the example figure 2.2, the (W,H) = (6, 5). In the

equation, k is the target unit, and i and j are the neighbor units surround. The difference

between inter-Channel LRN and intra-Channel LRN is how it defines its neighbor. In

the Inter-Channel LRN, the neighbors are the same pixels across different channels, and

in the intra-Channel LRN, the neighbors are the pixels around the under-selected pixel.

The AlexNet paper uses inter-Channel LRN equation to calculate the desired LRN value.
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2.6 AsAP3

This thesis uses AsAP3 as the platform to test and implement the functions. AsAP

stands for Asynchronous Array of Simple Processors, and AsAP3 is its third generation[2].

The processor array contains 1000 independent processors and 12 memory modules with

768 KB shared memory[9]. Since it has 1000 processors, KiloCore is another name for the

processor array. There is a packet router in each processor to route the input and output

signals. Each router has a 45.5Gb/s maximum reading speed and a 9.1Gb/s maximum

reading speed per port[10]. The processor supports two 16 bits signed or unsigned inputs

with each input having an independent clock[11], and seven 16 bits unsigned outputs.

Thus, the range for input is either −32767 to 32767 or 0 to 65535 and the range for

output is 0 to 65535.

Each processor supports 128 instructions and 72 instruction types including addi-

tion, subtraction, multiplication, and shifting. The processor supports carry operations

and partial accumulations for data types larger than 16 bits[12]. Although the input

and output range for the processor is 16 bits, the AsAP3 supports 32-bit fixed point and

floating point calculation through the software.

Running a thousand cores together is power-consuming for a chip. To save power,

the KiloCore processor has globally asynchronous locally synchronous(GALS) clocking

styles. Each module has its local programmable clock oscillator, and the oscillator can

change its frequency based on the requirement of the running applications[13]. To main-

tain reliability in transferring data, the GALS system has synchronization circuits be-

tween each clock domain. Therefore, the cores can operate or idle separately to reduce

power usage[14]. Since there are 1000 cores, 12 memory modules, and 1000 packet routers

connecting with each module, the total number of the GALS clocks for a single KiloCore

chip is 2012[15]. By using the GALS, the processor can optimize the energy efficiency by

5% to 42% compared with traditional core usage optimization[16].

9



Chapter 3

The Implemented Functions

This chapter introduces the functions implemented in this paper. It first intro-

duces the basic division function this paper uses. Then, it introduces the implemented

functions. The functions include Trigonometric, Exponential, Natural Logarithm, and

LRN functions. This chapter also presents the derivation process of the CORDIC algo-

rithm.

3.1 Shift Division

The shift calculation realizes the function of division by left shift and addition. It

serves as a basic division function in this paper. Since shifting left by 1 bit represents a

multiplication of 2, the final quotient is the sum of powers of 2. The following flowchart

presents the process of shift division. The functions in the following sections all utilize

shift division as the division method to replace the arithmetic division.

The primary use of shift division in the Taylor series is to calculate the quotient for

Taylor series terms. Each term uses the shift division once. Another use of shift division

in the Taylor series is calculating each series’ input values. The following subsections

of different Taylor series further explain the use of the shift algorithm. The CORDIC

function uses shift division in calculating the final output for the Arctangent function.

LRN calculation applies the shift division in calculating the normalization of the neurons.

The input and output range for shift division are 16 bits unsigned fixed-point numbers.

10



Figure 3.1: The flowchart of shift division
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3.2 Trigonometric functions

3.2.1 Taylor Series Algorithm

This paper implements trigonometric functions including Sine, Cosine, and Arc-

tangent. The implementation utilizes both the Taylor series and CORDIC algorithms.

For the Taylor series, each simulation has different input ranges. In the Sine and Cosine

functions using the Taylor series, inputs are from 0 to 4096, representing inputs from 0

to 2π. To convert from 2π to 4096, the conversion equation is

x =
input ∗ 2π

4096
(3.1)

The output for Sine and Cosine are signed values with the format of s1.15. Thus,

the output range is from −32767 to 32767.

The equations for Sine and Cosine present as below,

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ ... (3.2)

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ ... (3.3)

For Arctangent, inputs are from 0 to 4095 representing inputs from 0 to 4. The

conversion equation is

x =
input

1024
(3.4)

The outputs for Arctangent are unsigned values with the format of s1.15. Thus,

the output range is from 0 to 65535. However, since the Arctangent function converges

at π
2
, the actual output range is from 0 to 51472(π

2
∗ 32768).

The equations for Arctangent show as below. The Arctangent functions contain

four equations. The following chapters presents the explanation for choosing the four

equations.

arctan(x) = x− x3

3
+

x5

5
− x7

7
+ ...(x < 0.78125) (3.5)

12



arctan(x) = 0.663 + 0.621 ∗ (x− 0.78125)− 0.301 ∗ (x− 0.78125)2

+0.0663 ∗ (x− 0.78125)3 + 0.0453(x− 0.78125)4

−0.0599(x− 0.78125)5... (0.78125 ≤ x < 1)

(3.6)

arctan(x) =
π

4
+

x− 1

2
− (x− 1)2

4
+

(x− 1)3

12
− (x− 1)5

40
+

(x− 1)6

48
...(1 ≤ x < 1.5625)

(3.7)

arctan(x) =
π

2
− 1

x
+

1

3x3
− 1

5x5
+ ...(x ≥ 1.5625) (3.8)

3.2.2 CORDIC Algorithm

For the CORDIC algorithm, the Sine and Cosine functions use degrees as inputs

instead of radians in the CORDIC function. Thus, inputs range from 0
◦
to 360◦ instead

of 0 to 2π. For Arctangent, the CORDIC algorithm takes the value of opposite and

adjacent sides as input. In the Arctangent function, this paper sets the adjacent side to

1024 and calculates the Arctangent value by varying the opposite side. The function sets

1024 as 1. Thus, the inputs ranging from 0 to 4095 represents inputs from 0 to 4.

The output for Sine and Cosine are signed values with the format of s1.15 and the

output range is from −32767 to 32767. The outputs for Arctangent are unsigned values

with the format of s1.15 and the output range is from 0 to 51472.

3.3 Exponential

This paper uses the Taylor series to calculate the Exponential function. The

inputs of the exponential function range from 0 to 4095 and each input divides by 2048

to represent input ranges from 0 to 2. The outputs for exponential are unsigned values

with the format of s3.13. Thus, the output range is from 0 to 65535.

The equation for the Exponential function shows as below,

13



ex = 1 + x+
x2

2!
+

x3

3!
+ ... (3.9)

3.4 Natural Logarithm

This paper uses the Taylor series to calculate the Natural Logarithm function.

The inputs for the Natural Logarithm function range from 0 to 4095, and each input

divides by 2048 to represent −1 < x ≤ 1. The outputs for the Natural Logarithm are

signed values with the format of s2.14. Thus, the output range is from −32767 to 32767.

The equations for the Natural Logarithm function show as below. The functions

contain two equations, one equation takes input value greater than −1 and less than 0,

and one equation takes input values greater than 0 and less than 1.

ln(1 + x) = −x− x2

2
− x3

3
− x4

4
− ...(−1 < x ≤ 0) (3.10)

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
...(0 < x ≤ 1) (3.11)

3.5 Square Root

This paper uses binary search algorithm to accomplish the square root function.

The square root calculation can take input value up to 16 bits unsigned value with an

8-bit integer part and an 8-bit decimal part. Thus, the input range is from 0 to 65535.

Since the AsAP3 platform supports 32-bit multiplication calculation, the output of the

square root function is still 16 bits unsigned value with an 8-bit integer part and 8-bit

decimal part, and the range is from 0 to 65535.

3.6 LRN

This paper uses the square root function and shift division function to calculate the

LRN function. This paper follows the AlexNet and uses the inter-Channel LRN equation

14



as the equation to compute the LRN function. The inter-Channel LRN equation shows

as below,

bix,y = aix,y/(512 +

min(N−1,i+ 5
2
)∑

j=max(0,i− 5
2
)

(ajx,y)
2)0.75 (3.12)

In AlexNet paper, the constants (k, α, β, n) are set to (2, 10−4, 0.75, 5). In this paper,

the constants are set to (512, 1, 0.75, 5) to be compatible with fixed number calculation.

The maximum possible number of channels involved in the calculation is 5. Thus, 5 ∗

127 ∗ 127 + 512 = 81157, and it creates an overflow for 16-bit calculations, whereas

5 ∗ 63 ∗ 63 + 512 = 20357 does not. Therefore, the input range for the LRN function is

set from 0 to 63, and the output range is from 0 to 65535.
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Chapter 4

Algorithms

This chapter explains the algorithms used in the following calculations. First,

it describes the Taylor series algorithm. It also presents the CORDIC algorithm with

equations, flowchart, and tables displaying the ith iteration value for arctan(2−i) and

2−i in the calculating equations for the CORDIC algorithm. Lastly, it shows the binary

search algorithm.

4.1 Taylor series

The Taylor series is a mathematical tool that represents a function as an infinite

sum of terms. The following equation shows the general form of the Taylor series,

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3... (4.1)

The accuracy of the Taylor series depends on the number of terms in the equation.

Generating a Taylor series equation requires four steps. The first step is to find a center of

expansion. In this paper, the centers of expansion for most of the Taylor series equations

are 0. For the Arctangent function, it has two more centers of expansion at 0.78125 and

1.5625. The second step is to decide the number of terms for the series and calculate

the derivatives of the function for each term. In this paper, the different function has a

different number of equation terms to ensure accuracy. For Sine and Cosine, they have
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5 terms. For Arctangent, different equations have different terms. Equation 3.5 has 10

terms, equation 3.6 and equation 3.7 have 5 terms, and equation 3.8 has 7 terms. For

Exponential, it has 8 terms. For Natural Logarithm, equations have 7 terms. The third

step is to substitute the calculated derivatives into the Taylor series and simplify the series

into a recognizing pattern. The fourth step is to determine the convergence to ensure

the series has an accurate approximation within a specific range. For Sine, Cosine, and

Exponential functions, the interval of convergence is all real numbers. For Arctangent,

equation 3.5 converges for interval −1 ≤ x ≤ 1, and equation 3.8 converges for x > 1.

Natural Logarithm converges between 0 < x ≤ 2.

4.2 CORDIC

4.2.1 Derivation of CORDIC

Suppose a system rotates the original angle β in θ degree. Therefore, the point

(Xin, Yin) rotates to (XR, YR). The rotating point (XR, YR) can calculate as follows,

XR = Xincos(θ)− Yinsin(θ) (4.2)

YR = Xinsin(θ) + Yincos(θ) (4.3)
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x axis

y axis
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Xin, Yin

XR, YR

θ

β

Figure 4.1: Rotating the input vector by θ

The equation 2.1 and 2.2 can be transformed to the following matrix multiplica-

tion. XR

YR

 = cos(θ)

 1 −tan(θ)

tan(θ) −1


Xin

Yin

 (4.4)

Rotation of an angle can divide into the addition of smaller angles, either positive or

negative, and θ = arctan(2−i) for i = 0, 1, 2, ...n can reduce the calculation complexity

and use bit-wise shift for calculation. Therefore, equation 2.3 can simplify as follows,

X0

Y0

 = cos(45◦)

1 −1
1 1


Xin

Yin

 (4.5)

X0

Y0

 = cos(−45◦)

 1 1

−1 1


Xin

Yin

 (4.6)
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For the second rotation, equation 2.4 becomes

X1

Y1

 = cos(45◦)cos(26.57◦)

 1 1

−1 1


 1 −2−1

2−1 1


X0

Y0

 (4.7)

As rotation continues, cos(45◦) ∗ cos(26.57◦) ∗ ...cos(arctan(2−i)) becomes a fixed value,

and the value is approximately 0.6072. The equations after nth rotation are

Xi+1 = Xi − αi(2
−iYi) (4.8)

Yi+1 = Yi + αi(2
−iXi) (4.9)

Zi+1 = Zi − αiθ
i (4.10)

where α is the direction of nth rotation and Zi is the accumulated angle of nth rotations.

CORDIC uses equations 4.8, 4.9, and 4.10 as three basic equations for calculation.

4.2.2 CORDIC Algorithm

The equation 4.8, equation 4.9, and equation 4.10 present the three equations that

calculate Sine, Cosine, and Arctangent values using the CORDIC algorithm.

The flowchart below shows the algorithm flow for the CORDIC algorithm for Sine

and Cosine.
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Figure 4.2: The flowchart of CORDIC algorithm

Figure 4.2 displays the flowchart for the CORDIC algorithm. The calculation uses

θi = arctan(2−i) to calculate the rotation angle in each iteration. This paper uses 16

iterations for each calculation to increase the accuracy. αi serves as a flag to decide the

rotation direction. In the calculating procedure of Sine and Cosine, zi decides the rotation

direction. A positive value means a counterclockwise rotation, whereas a negative zi value

indicates a clockwise rotation. For the Arctangent function, yi determines the direction

of the next movement. A positive yi means a clockwise rotation and a negative value

means a counterclockwise rotation.

Table 4.1 and 4.2 present the calculated arctan(2−i) and 2−i.
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Iteration i θi(arctan(2
−i))

0 45

1 26.565

2 14.036

3 7.125

4 3.576

5 1.790

6 0.895

7 0.448

8 0.224

9 0.112

10 0.0560

11 0.0280

12 0.0140

13 0.00699

14 0.00350

15 0.00175

Table 4.1: arctan(2−i) value for ith iteration
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Iteration i 2−i

0 1

1 0.5

2 0.25

3 0.125

4 0.0625

5 0.03125

6 0.015625

7 0.0078125

8 0.00390625

9 0.001953125

10 0.0009765625

11 0.00048828125

12 0.000244140625

13 0.000122070312

14 0.000061035156

15 0.000030517578

Table 4.2: 2−i value for ith iteration
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4.3 Binary Search

Binary search is an algorithm used to find a specific element in a sorted array. It

compares the number by repeatedly dividing the search interval in half. The algorithm

has a time complexity of O(logn) and a space complexity of O(1) for locating an element

in the array of size n.

This paper uses binary search in calculating the square root function. The algo-

rithm first sets a start value and an end value, normally the start value equals 0 and

the end value equals the largest possible number. Then, the algorithm sets a mid value

by calculating the average value of the start and end values. Next, it compares the mid

value with the input value. If mid is larger than the input, the end value updates to

mid− 1, if mid is smaller than the input, the start updates to mid + 1. The algorithm

continues until the mid value is the closest possible value to the input.
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Chapter 5

Implement Functions on AsAP3

This chapter displays the implementing of the functions on AsAP3 in the previous

chapter. It explains the procedures of the implementation. It also presents the pseudo-

code for each implemented function.

5.1 Shift Division

The pseudo-code below illustrates this calculation begins with a comparison of a

dividend x and a divisor y. If y is less than x, y starts the left shift, and it shifts n times

to ensure y is less than or equal to x, while one more time left shift makes y larger than

x. Then x subtracts y to get the first remainder. Since y left shifts n times from the

original divisor, x subtracts y ∗ 2n. Thus, the result for the first loop is 2n, which adds to

the final quotient. Then, the next loop checks whether x is greater than y. If x is larger

than y, the above algorithm continues calculating at n−1 loop. The algorithm skips this

loop if x is less than y in the n− 1 loop. The algorithm stops when the remainder is less

than y.

For decimal divisions, the basic logic is the same. In this case, the dividend x left

shifts n times, and 2−n adds to the previous quotient. In the last loop, the algorithm

uses rounding if the remainder of x is larger or equal to half of y.

The following pseudo-code shows the shift division algorithm precisely.
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Algorithm 1 Pseudo-code for shift division

1: function Division(x,y) ▷ Dividendxanddivisory

2: count← −1
3: temp result← 0

4: while y < x do

5: y ← y ≪ 1

6: count← count+ 1

7: end while

8: y ← y ≫ 1

9: while count > −1 do

10: if x ≥ y then

11: temp result← 1≪ count

12: q ← q + temp result

13: x← x− y

14: end if

15: y ← y ≫ 1

16: count← count− 1

17: end while

18: remainder ← y

19: check ← 9 ▷ This is tomake a 2−10precision

20: if remainder < y ∨ x < y then

21: while check ≥ −1 do

22: y ← y ∗ 2
23: while x ≥ y do

24: q ← q + 2check−10

25: x← x− y

26: end while

27: check ← check − 1

28: end while

29: if x ≤ (y ≫ 1) then

30: q ← q + 2−10

31: end if

32: end if

33: return q

34: end function
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5.2 Trigonometric Functions

5.2.1 Taylor Series

For sin(x) and cos(x), the calculation function can take input from 0 to 2π. As

inputs get larger towards 2π, the calculation deviates from the desired values. The func-

tion only calculates the value from 0 to π
2
to decrease the inaccuracy, and the algorithm

transforms the calculation from π
2
to 2π to 0 to π

2
because Sine and Cosine functions have

symmetrical characteristic. For example, the algorithm transforms 3π
4
to π

4
since cos(3π

4
)

is the negative of cos(π
4
) and sin(3π

4
) is equal to sin(π

4
). Thus, to get the Sine and Cosine

value of 3π
4
, the algorithm only calculates the Sine and Cosine value of π

4
and converts

the Cosine value into negative. For the input value from π
2
to π in the second quadrant,

the conversion equation is

new input = π − input (5.1)

For input value from π to 3π
2
in the third quadrant, the conversion equation is

new input = input− π (5.2)

For input value from 3π
2
to 2π in the fourth quadrant, conversion equation is

new input = 2π − input (5.3)

Similarly, the output of the algorithm changes as well. For the input in the second

quadrant, the sin(x) value remains the same, while the cos(x) value negates itself. The

output in the third quadrant negates the sin(x) value and cos(x) value. The output

in the fourth quadrant keeps the cos(x) value the same, meanwhile negating the sin(x)

value. The following pseudo-code shows the implemented algorithm of the Taylor series

for Sine and Cosine.
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Algorithm 2 Pseudo-code for Sine and Cosine Taylor series - part 1

Input: radian r

Output: sin val, cos val

1: for r = 0; r < π
2
; r ++ do

2: a← r

3: cos val = 1−division(a2, 2!)+division(a4, 4!)−division(a6, 6!)+division(a8, 8!)−

division(a10, 10!)

4: sin val = a−division(a3, 3!)+division(a5, 5!)−division(a7, 7!)+division(a9, 9!)−

division(a11, 11!)

5: end for

6: for r = π
2
; r < π; r ++ do

7: a← π − r

8: cos val = 1−division(a2, 2!)+division(a4, 4!)−division(a6, 6!)+division(a8, 8!)−

division(a10, 10!)

9: sin val = a−division(a3, 3!)+division(a5, 5!)−division(a7, 7!)+division(a9, 9!)−

division(a11, 11!)

10: end for

11: for r = π; r < 3π
2
; r ++ do

12: a← r − π

13: cos val = 1−division(a2, 2!)+division(a4, 4!)−division(a6, 6!)+division(a8, 8!)−

division(a10, 10!)

14: sin val = a−division(a3, 3!)+division(a5, 5!)−division(a7, 7!)+division(a9, 9!)−

division(a11, 11!)

15: end for

16: for r = 3π
2
; r < 2π; r ++ do

17: a← 2π − r

18: cos val = 1−division(a2, 2!)+division(a4, 4!)−division(a6, 6!)+division(a8, 8!)−

division(a10, 10!)

19: sin val = a−division(a3, 3!)+division(a5, 5!)−division(a7, 7!)+division(a9, 9!)−

division(a11, 11!)

20: end for
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Algorithm 3 Pseudo-code for Sine and Cosine Taylor series - part 2

1: if r < π
2
then

2: sin val = sin val

3: cos val = cos val

4: end if

5: if π
2
< r < π then

6: sin val = sin val

7: cos val = −cos val

8: end if

9: if π < r < 3π
2
then

10: sin val = −sin val

11: cos val = −cos val

12: end if

13: if 3π
2
< r < 2π then

14: sin val = −sin val

15: cos val = cos val

16: end if

For Arctangent, the ratio test shows a radius of convergence is 1. Thus, at x = 1

and x = −1, the series converges. As x grows, the Taylor series slowly diverges and

becomes a harmonic series. When equation 3.5 is used in the calculation, at x < 1 and

x > −1, xn limits the growth of arctan(x) because xn cannot be greater than 1. When

|x| > 1, xn grows rapidly as x increases. Therefore, equation 3.5 fails to work for |x| > 1

and can only apply to the situation when |x| ≤ 1. Equation 3.5 calculates the output from

0 to π
4
. The algorithm introduces equation 3.8 to extend the calculation range beyond

1. Since the limit of arctan(x) is at ±π
2
, the second equation can calculate the output

from π
4
to π

2
. This equation can reduce the growth of each series term since xn is the

denominator. Equation 3.6 and equation 3.7 are the two extra equations used to increase

the accuracy from 0.78125 to 1.5625. The next chapter explains the reason for adding

the two equations. The following pseudo-code shows the algorithm of the Taylor series

for Arctangent.
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Algorithm 4 Pseudo-code for Arctangent Taylor series

Input: radian r, limit

Output: atan val

1: for r = 0; r < 0.78125; r ++ do

2: a← r

3: atan val = division(a, 1) − division(a3, 3) + division(a5, 5) − division(a7, 7) +

division(a9, 9)

4: end for

5: for r = 0.78125; r < 1; r ++ do

6: a← r

7: atan val = 0.663+0.621(a−0.78125)−0.301(a−0.78125)2+0.0663(a−0.78125)3+

0.0453(a− 0.78125)4 − 0.0599(a− 0.78125)5

8: end for

9: for r = 1; r < 1.5625; r ++ do

10: a← r

11: atan val = π
4
+ division(2, a− 1)− division(4, (a− 1)2)+ division(12, (a− 1)3)−

division(40, (a− 1)5) + division(48, (a− 1)6)

12: end for

13: for r > 1.5625; r < limit; r ++ do

14: a← r

15: atan val = division(π, 2) − division(1, a) + division(3, 3a3) − division(5, 5a5) +

division(7, 7a7)− division(9, 9a9)

16: end for

5.2.2 CORDIC

The two pseudo-codes, Sine and Cosine, and Arctangent below show the procedure

for calculating the CORDIC of Sine, Cosine, and Arctangent. The codes calculate 16

iterations. Therefore, the value of cos(45◦)∗cos(26.57◦)∗...cos(arctan(2−15)) is 0.6072529,

and in s1.15, it is 19898. In both pseudo-codes, the arctan(2−i) on the 11th line refers to
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the values in table 4.1.

Algorithm 5 Pseudo-code for Sine and Cosine in CORDIC - part 1

Input: degree

Output: sin val, cos val

1: flag ← 1

2: x val← 0

3: y val← 0

4: x temp← 19898

5: y temp← 0

6: z val← degree

7: result← 0

8: for i = 0; i < 16; i++ do

9: x val← x temp− flag ∗ (y temp≫ i)

10: y val← y temp+ flag ∗ (x temp≫ i)

11: result← z val− flag ∗ arctan(2−i) ▷ arctan(2−i) refers to the values in table 4.1

12: if result > 0 then

13: y temp← y val

14: x temp← x val

15: z val← result

16: flag ← 1

17: else

18: y temp← y val

19: x temp← x val

20: z val← result

21: flag ← −1

22: end if

23: end for
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Algorithm 6 Pseudo-code for Sine and Cosine in CORDIC - part 2

1: if degree < π]
2
then

2: sin val = y val

3: cos val = x val

4: end if

5: if π
2
< degree < π then

6: sin val = y val

7: cos val = −x val

8: end if

9: if π < degree < 3π
2
then

10: sin val = −y val

11: cos val = −x val

12: end if

13: if 3π
2
< degree < 2π then

14: sin val = −y val

15: cos val = x val

16: end if
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Algorithm 7 Pseudo code for Arctangent in CORDIC - part 1

Input: a ▷ x and y are two edges of the triangle

Output: atan val

1: flag ← −1

2: x val← 0

3: y val← 0

4: x temp← 1024

5: y temp← a

6: z val← 0

7: result← 0

8: for i = 0; i < 16; i++ do

9: x val← x temp− flag ∗ y temp ∗ 2−i

10: y val← y temp+ flag ∗ x temp ∗ 2−i

11: result← z val− flag ∗ arctan(2−i) ▷ arctan(2−i) refers to the values in table 4.1

12: if y val < 0 then

13: y temp← y val

14: x temp← x val

15: z val← result

16: flag ← 1

17: else

18: y temp← y val

19: x temp← x val

20: z val← result

21: flag ← −1

22: end if

23: end for

24: atanval← z val
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5.3 Exponential Function

Equation 3.9 is the Taylor series for ex. Since the Taylor series calculates the

summation of each term, the accuracy of the series bases on the number of terms. When

the number of terms is small, the result of the equation becomes inaccurate even if the

input value is small. Thus, more amount of terms increase the accuracy of output. This

paper uses ten series terms in the function to increase the accuracy. However, ten series

terms can only have a guaranteed accuracy when input is around 2. The deviation is still

significant when input is over 2. Increasing the number of terms can solve the problem,

but it also creates an overflow in calculating higher powers. Thus, this paper chooses to

use ten series terms in the calculation. The following pseudo-code shows the algorithm

of the Taylor series for the exponential function.

Algorithm 8 Pseudo-code for Exponential function Taylor series

Input: r, limit

Output: exp val

1: count← −1

2: for r = 0; r < limit; r ++ do

3: a← r

4: exp val = 1+division(a, 1)+division(a2, 2!)+division(a3, 3!)+division(a4, 4!)+

division(a5, 5!)+division(a6, 6!)+division(a7, 7!)+division(a8, 8!)+division(a9, 9!)+

division(a10, 10!)

5: end for

5.4 Natural Logarithm Function

Equation 3.10 and equation 3.11 are the Taylor series for natural logarithm ln(1+

x). The Taylor series for natural logarithm diverges at |x| > 1, therefore, it only approx-

imates the natural log at −1 < x ≤ 1. −1 < x < 0 and 0 ≤ x < 1 have different Taylor

33



series. Since ln(1 + x) approaches negative infinity when x approaches −1, the results

for 3.11 become increasingly inaccurate, while equation 3.7 approaches positive infinity

as x grows. Thus, the result for equation 3.10 becomes inaccurate as x approaches 1.

The following pseudo-code shows the two algorithms of the Taylor series for the natural

logarithm function.

Algorithm 9 Pseudo-code for Natural log function Taylor series

Input: r, limit

Output: log val

1: for r = −1; r < 0; r ++ do

2: a← r

3: log val = −division(a, 1) − division(a2, 2) − division(a3, 3) − division(a4, 4) −

division(a5, 5)− division(a6, 6)− division(a7, 7)− division(a8, 8)

4: end for

5: for r = 0; r ≤ 1; r ++ do

6: a← r

7: log val = division(a, 1) − division(a2, 2) + division(a3, 3) − division(a4, 4) +

division(a5, 5)− division(a6, 6) + division(a7, 7)− division(a8, 8)

8: end for

5.5 Square Root

In this paper, the square root function uses binary search as the basic algorithm.

Since the input range is from 0 to 65535, the start position is set to 0 and the end position

is set to 65535 initially. The AsAP3 platform supports 32-bit arithmetic operation and

the maximum possible bits for mid ∗mid is 32 bits. Thus, to maintain the same number

of bits, the input value also multiplies by 65535 before the comparison between the input

and mid ∗mid. The implementation only compares the first 16 bits. Therefore, 16-bit
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shifts apply to both mid ∗ mid and input value. The following pseudo-code shows the

algorithm for the square root function,

Algorithm 10 Pseudo-code for Square root
Input: output

Output: input

1: start← 0

2: end← 65535

3: mid← 0

4: ans← 0

5: while start <= end do

6: mid← (start+ end) >> 1

7: if (mid >> 1) ∗ (mid >> 1) >> 14 == (input ∗ 65535) >> 16 then

8: ans← mid

9: break

10: end if

11: if (mid >> 1) ∗ (mid >> 1) >> 14 < (input ∗ 65535) >> 16 then

12: ans← start

13: start = mid+ 1

14: end if

15: if (mid >> 1) ∗ (mid >> 1) >> 14 > (input ∗ 65535) >> 16 then

16: end← mid− 1

17: ans← end

18: end if

19: end while

Note: for mid ∗ mid part, the actual code is (mid >> 1) ∗ (mid >> 1) >> 14

instead of mid ∗mid >> 16. It happens because the former code can improve the final

output accuracy compared with the later code.

5.6 LRN

In this paper, β is set to 0.75, which is a 3
4

th
power of the value. This paper uses

square root to calculate the 3
4

th
power. Based on a

3
4 = a

1
2 ∗ a 1

4 , this paper first calculates

a
1
2 , takes the square root of a

1
2 to compute a

1
4 , and multiplies them together to get a

3
4 .

The following pseudo-code shows the algorithm for the LRN function,
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Algorithm 11 Pseudo-code for Local Response Normalization

Input: 3Darray A, channel, height, width

Output: 3Darray B

1: size← height ∗ width ∗ channel
2: localsize← 5

3: alpha← 1

4: beta← 0.75

5: bias← 512

6: for i = 0; i < channel; i++ do

7: for j = 0; j < height; j ++ do

8: for l = 0; l < width; k ++ do

9: for l = max(0, localsize >> 1); l ≤ min(channel − 1, (i + localsize) >>

1); l ++ do

10: position← height ∗ width ∗ l + width ∗ j + k

11: value← value+ A[position]2

12: end for

13: B[position]← division((A[position], bias+ alpha ∗ value)beta)
14: end for

15: end for

16: end for
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Chapter 6

Analysis of Implemented Functions

This chapter records and analyzes the simulation output for each implemented

function. It lists the simulation statistics of the implemented functions including Trigono-

metric functions, Exponential function, Natural Logarithm function, square root function

and LRN function in several tables. The tables contain the difference between simulation

value and reference value, SNR value, and throughput for each implemented function.

It also makes comparison graphs for the simulated results and reference values for each

function. Furthermore, this chapter presents some more tests and researches for some of

the simulated functions.

This thesis has a test set for each implemented function. Each test set includes

two functions: the simulated and the standard functions. This paper first writes the

programs on a C file and then transfers them into the KiloCore C file. The KiloCore chip

generates the simulated outputs. The standard functions are sin(x), cos(x), atan(x),

exp(x), log(x) and square root in C. For the LRN function, the standard function is

written in C. This paper uses the generated outputs from standard functions as a golden

reference. This paper uses MATLAB to compare the simulated results with the golden

reference. Each test records the maximum difference and Signal-to-Noise Ratio(SNR).

The maximum difference is the largest difference between the simulation and reference
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values existing in each test set. SNR calculates as follows,

SNR = 10 ∗ log10(
energy

energydiff)
(6.1)

In this case,

energy =
i∑

n=1

output2i (6.2)

energydiff =
i∑

n=1

(expectedi − outputi)
2 (6.3)

The SNR value represents the bit accuracy for a function and is an important value to

determine the accuracy of the simulation output in this paper. Each extra bit increases

the range of SNR by 6.02. Therefore, for the 16 bit output model, the theoretical range

for SNR is from 0 to 96.32.

This thesis also records the number of throughput for each function. It mea-

sures the volume of data that passes through the function per second, and the unit of

measurement for throughput is MWords/s.

6.1 Trigonometric Functions

The tables below show the comparison results for Trigonometric functions. Table

6.1 presents the differences and SNR value for Sine, Cosine, and Arctangent in the Taylor

series, and table 6.2 shows the differences and SNR value for Trigonometric functions in

CORDIC.

Sine Cosine Arctan

Max diff 1.534 1.533 1356.07

SNR 92.725 92.725 46.96

Throughput (MWords/s) 7.545 7.545 3.083

Table 6.1: Results of Trigonometric functions in Taylor series

38



Sine Cosine Arctan

Max diff 5.56 5.58 2.656

SNR 80.873 80.87 85.47

Throughput (MWords/s) 3.553 3.553 3.717

Table 6.2: Results of Trigonometric functions in CORDIC

6.1.1 Analysis for Trigonometric functions in Taylor series

The graphs below in Figure 6.1 present an intuitive view of the comparison among

the simulated outputs and reference outputs of the Sine function. Figure 6.1 includes 4

graphs, and they display the simulated Sine value, reference Sine value, the difference

between simulation and reference, and the ratio between simulation and reference. For

the ratio graph, a value closer to 1 shows a satisfactory ratio between the simulated and

reference values.

Figure 6.1: Graph for Taylor series, Sine and Cosine

Since a 90◦ phase shift of a Sine wave is a Cosine wave, this paper only presents

the simulation output for the Sine function as a representation for both Sine and Cosine
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functions. Sine and Cosine functions have small differences and ratios between the sim-

ulated value and reference value. As inputs transform and limit to 0 to π
2
, the deviation

from the desired value decreases when input increases. The SNR value indicates a 14 to

15 bits accuracy, and this proves the reliability of the two Taylor series functions.

The graphs below are the 4 Arctangent graphs generated by MATLAB. The gen-

erated graphs use only equation 3.5 and equation 3.8.

Figure 6.2: Graph for Taylor series, Arctangent

For Arctangent, the average difference, and maximum difference are much higher

than the other trigonometric functions, while the SNR value is much lower. The SNR

value shows the bit accuracy is only 7 to 8 bits. From the graphs, it is obvious that there

is a clear gap around X = 1024. The gap starts at approximately x = 800 and ends after

x = 1400. The possible reason for the large difference is the deviation of the Arctangent

functions at the edge of the X intervals. To do a deep study, another simulation for

Arctangent completes with different input ranges. The new simulation removes the input

from X = 800 to X = 1600, and the graphs below show the new graphs generated by

MATLAB.
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Figure 6.3: Graph for Taylor series, Arctangent

For the new simulation, the maximum difference is 13.782 and the SNR value is

85.361. Therefore, without the inputs range from X = 800 to X = 1600, the bit accuracy

can increase to 12 to 14 bits. Thus, to obtain a better bit accuracy for Arctangent, this

paper performs another two Taylor series expansions at X = 800 and X = 1024. The

two new Taylor series equations are equation 3.6 and equation 3.7. With these two new

equations, new simulation graphs for the Arctangent function present as below,

Figure 6.4: Graph for Taylor series, Arctangent
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For the new simulation, the maximum difference decreases to 9.104 and the SNR

value increases to 87.234. Thus, with the two newly added equations, the bit accuracy

increases to 14 to 15 bits. The high SNR value shows the 4 piece-wise equations can

provide an acceptable accuracy in numerical calculation for the Arctangent function.

Therefore, this paper uses the 4 piece-wise equations in computing the Arctangent value

for the Taylor series.

6.1.2 Analysis for Trigonometric functions in CORDIC

The graphs below present the difference and ratio comparison between the simu-

lated and reference values for the CORDIC function of Sine.

Figure 6.5: Graph for CORDIC, Sine

The Sine function for CORDIC has a small difference and ratio between the simu-

lated value and reference value. The maximum difference of 5.56 and SNR value of 80.87

present a relatively accurate model for the Sine and Cosine functions. The bit accuracy

for both CORDIC functions is 13 bits. The relatively small maximum difference and high

SNR value prove that the CORDIC functions for Sine and Cosine are accurate.
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The graphs below present the difference and ratio comparison for the CORDIC

function of Arctangent.

Figure 6.6: Graph for CORDIC, Arctangent

The maximum difference of 2.656 and SNR value of 85.47 presents an accurate

model for the CORDIC function of Arctangent. The bit accuracy for the Arctangent

function can reach 14 bits. The high SNR value shows an accurate model for calculating

the Arctangent function.

6.1.3 Data Analysis for Trigonometric Functions

This section compares the performance of the Taylor series and CORDIC function

among Sine, Cosine, and Arctangent functions. The tables below present the collected

data for Sine and Arctangent functions in the previous chapter. Since the Cosine function

is similar to the Sine function, this section uses only the Sine function for comparison.
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Sine

Taylor series CORDIC

Max difference 1.534 5.56

SNR 92.725 80.873

Number of input 4096 360

Throughput (MWords/s) 7.545 3.553

Table 6.3: Comparison for Sine

Arctangent

Taylor series CORDIC

Max difference 9.104 2.656

SNR 87.234 85.47

Number of input 4096 4096

Throughput (MWords/s) 3.083 3.717

Table 6.4: Comparison for Arctangent

Table 6.3 demonstrates Taylor series has a better performance than the CORDIC

function in both maximum difference and SNR value. For the efficiency comparison, the

Taylor series function also has a higher number of throughput in Mwords per second.

Thus, the Taylor series has a better performance than CORDIC in calculating Sine and

Cosine functions.

From table 6.4, it is clear that the CORDIC function has a smaller maximum

difference, and the SNR value for both the Taylor series and the CORDIC function is

close to each other. The throughput per second for the Taylor series is smaller than

CORDIC. The complicated equation in computing the Arctangent value for the Taylor

series is the possible cause for the smaller throughput per second. Equation 3.8 has x

values in the denominator, and it slows down the speed of division calculation.
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Both functions have the same number of inputs and the input range is also the

same from 0 to 4. For the amount of throughput per second, the Taylor series has a

better throughput per second in Sine and Cosine, and CORDIC has a better throughput

per second in Arctangent.

6.2 Exponential Function

The table below displays the results for the Exponential function in the Taylor

series algorithm.

Max difference 69.544

SNR 64.671

Throughput (MWords/s) 4.891

Table 6.5: Results of Exponential function in Taylor series

The graph below shows the graphs generated by MATLAB.

Figure 6.7: Graph for Taylor series, Exponential

For the exponential function, the average difference and maximum difference are
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smaller than the Arctangent function, whereas the SNR value is larger than Arctangent.

The SNR value for the exponential function shows a bit accuracy of 11 bits. The difference

graph shows that the difference between simulation and reference results increases when

the input gets larger. The maximum difference, 69.544, appears at X = 4095. The

divergence of the Taylor series equation possibly causes the increasing difference. The

throughput per second is 4.891. In the Taylor series, this throughput is slower than Sine

and Cosine but faster than the Arctangent function.

To study the effect of input value, this paper completes another simulation for a

smaller range of inputs. The new input range is from 0 to 1, and the number of inputs is

still 4096. The new simulation graphs for the exponential function show as below,

Figure 6.8: Graph for Taylor series, Exponential

From the above graph, it is clear that the difference between the simulated and

reference results still increases as the input grows larger. However, as the input range

decreases to 0-1, the maximum difference decreases and the SNR value increases. The new

maximum difference, 2.323, and the new SNR value, 81.239, show a 13 to 14 bit accuracy.

The increase in the difference between the simulated and reference values demonstrates

that the Taylor series equation for the exponential function is accurate and reliable when

the input value is small enough.
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6.3 Natural Logarithm Function

The tables below show the results for the Natural Logarithm function in the Taylor

series algorithm.

Natural log

starts at x = 1 starts at x = 500

Max difference 80658.432 876.544

SNR 9.971 34.646

Table 6.6: Results of Natural Logarithm function in Taylor series

ln(1+x) ln(1-x)

number of inputs 2048 2048

Throughput (MWords/s) 2.155 2.163

Table 6.7: Throughput Results of Natural Logarithm function in Taylor series

The Taylor series of natural logarithm function collects two data sets for analysis.

The first data set collects at X = −1 and the second data set collects at X = −0.75. For

the X = −1 data set, the maximum difference of 80658 and SNR value of 9.971 show an

unreliable simulation model. For the input value starting at X = −0.75, the maximum

difference of 876.544 and SNR value of 34.646 indicate an improved but still unreliable

model compared with the first data set. The graphs below show the difference and ratio

for the simulated and reference values.
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Figure 6.9: Graph for Taylor series, Natural Logarithm

From the above figure, it is obvious that there is a huge difference between the

simulated value and reference value from input X = 0 to X = 500. As stated, ln(1 + x)

approaches negative infinity as x approaches −1. Therefore, the Taylor series is hard to

simulate the expected value when the input is minimal. From some specific data points

in the ratio graph shown above, the ratio between simulated output and reference value

decreases as the input value becomes larger. Therefore, the difference grows larger again

as the input value increases. The table 6.7 shows the throughputs per second for the

natural log equation ln(1 + n) and ln(1 − n). The throughputs per second for both

equations are close to each other and slower than other Taylor series functions. This is

probably caused by the unoptimized code of shift division.

To investigate the effect of the input range, this paper chooses a new input range

for the natural logarithm function. The graphs below show the difference and ratio of

simulated and reference values for the new input range.
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Figure 6.10: Graph for Taylor series, Natural Logarithm with input from X = −0.5 to
X = 0.5

Figure 6.11: Graph for Taylor series, Natural Logarithm with 4096 inputs from X = −0.5
to X = 0.5

The new data points collect fromX = −0.5 and end atX = 0.5. The above graphs

demonstrate the difference and ratio of simulated value and reference value decrease

significantly compared with the graph 6.9. The new input range for 2048 inputs has an
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SNR value of 64.17, the accuracy reaches 10 to 11 bits. In addition, the new input range

for 4096 inputs has an SNR value of 81.465, and the bit accuracy is close to 14 bits.

To investigate the effect of the number of terms on the natural logarithm function,

this paper completes two more simulations based on the number of terms. The table

below shows the SNR values for different number of terms. The input range for the new

simulations is from 0 to 4095.

number of term SNR value

7 terms 9.971

13 terms 12.67

20 terms 14.97

Table 6.8: SNR results for Natural logarithm function with different number of terms

The above table shows that the SNR value can gain a small increase with an

increasing number of Taylor polynomial terms. The increase in SNR values from the

above tests shows that the accuracy of the natural logarithm function depends on the

input range as well as the number of Taylor polynomial terms. However, adding more

terms does not have as much effect on SNR value as narrowing down the input range.

Therefore, for the natural logarithm function, the simulation result is accurate if the

input value is closer to 0.

6.4 Square Root

Table 6.9 shows the difference and SNR value for the square root function.

Max difference 0.998

SNR 89.951

Throughput (MWords/s) 1.485

Table 6.9: Results of Square Root function
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The graphs below present the difference and ratio comparison for the Square Root

function.

Figure 6.12: Graph for Square Root function

The graphs above in Figure 6.12 provide the four graphs for a visualized compar-

ison between the simulated results and golden reference. Table 6.9 and figure 6.12 show

the square root function provides an accurate calculation. The maximum difference is

0.998 and the SNR is 89.951. It means that the square root function has a 15-bit accu-

racy. The number of throughput per second is slower than other implemented functions

presented previously. The use of binary search in the function is a possible reason for the

decrease in speed. The lengthy process of binary search impedes the computing speed of

the Square Root function.

For using (mid >> 1)∗(mid >> 1) >> 14 instead ofmid∗mid >> 16 in the actual

calculation for mid∗mid, this paper records the SNR value for both calculating methods.

The former method has an SNR value of 89.951, while the latter method has an SNR value

of 85.813. Therefore, SNR value increases when using the (mid >> 1)∗(mid >> 1) >> 14

calculation method. Thus, this paper uses this method to calculate the square root.
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6.5 LRN

Table 6.10 presents the differences and SNR value for the simulated results. This

thesis conducts two simulations with different numbers of inputs.

1000 inputs 4000 inputs

Average difference 0.976 0.897

Max difference 16.759 28.537

SNR 77.702 78.252

Throughput (MWords/s) 1.015 1.015

Table 6.10: Results for LRN function

The testing parameters for 1000 inputs are channel = 10, width = 10 and

height = 10. For 4000 inputs, the testing parameters are channel = 10, width = 20, and

height = 20. The testing program randomly generates input values from 0 to 63, and

it uses the srand() function from C to generate retrievable data randomly. The random

seed for the function is 5.

The graphs below present the difference and ratio comparison for 4000 inputs of

the LRN function.

Figure 6.13: Graph for LRN
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For 1000 inputs, the maximum difference is 16.759 and the SNR value is 77.702.

For 4000 inputs, the maximum difference is 28.537 and the SNR value is 78.252. The

high SNR value presents an accurate model for the LRN function, the bit accuracy for

the LRN function is 13 bits. The calculating procedure contains a square root calculation

and a fourth root calculation. Therefore, a 13 accurate bit is acceptable for a fixed-point

arithmetic function. The number of throughput per second for the LRN function is the

slowest among the implemented functions. The primary cause of the slow speed lies in

the utilization of the square root within the LRN function.
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Chapter 7

Thesis Summary and Future Work

7.1 Thesis Summary

This thesis summarizes and implements several arithmetic functions in basic nu-

merical calculations. These functions include Trigonometric functions, Exponential func-

tion, Natural Logarithm function, Square Root function, and LRN function. It reviews

backgrounds for these functions and it also introduces the AsAP3 as the implementing

platform for these functions.

Furthermore, the thesis displays the algorithms for the functions and implements

shift division in these functions. It designs tests for each algorithm to check the accuracy

of the implemented function and analyzes the simulated results for each test. The analysis

uses maximum difference, SNR value, and throughput as parameters to compare the

performance of each function.

The simulated results demonstrate that the Sine, Cosine, and Exponential func-

tions in the Taylor series have satisfactory simulation results. The Arctangent equations

have a less accurate model when using only two original equations. After adding two

new Taylor series equations, the simulated results of Arctangent become acceptable. In

comparison, the Natural Logarithm function in the Taylor series does not have a good

performance if the input range begins at X = −1, the simulated value is accurate when

the input range narrows down and approaches 0. This thesis also studies the precision

54



of the CORDIC algorithm and compares the accuracy of Taylor series and CORDIC.

The performance of the Taylor series exceeds the CORDIC function in both accuracy

and efficiency. Lastly, this paper analyzes the performance of the Square Root and LRN

functions. The performance is adequate in producing accurate simulated results.

7.2 Future works

The implementation of the functions has acceptable accuracy. However, the cur-

rent versions of functions use the primal design of the division and square root calculating

functions. The current division is the shift division, and the square root uses binary search

to complete the calculation. There needs to have an upgrade to both functions to increase

the efficiency of the functions.

Finding a more advanced model for the division is a solution to increase the

number of throughput per second. The current implementation takes many operations

on branch searches due to the use of the shift division method. A division method

with less branch search can increase the efficiency of the calculation. The Sweeney-

Robertson-Tocher (SRT) division is a feasible method to be considered.[17]. Sweeney,

Robertson[18] and Tocher[19] designed the algorithm. The algorithm uses redundant

binary representation for the quotient. Thus, the choice of the quotient digits is fault-

tolerant, and this allows a small space for choosing the quotient digits. Since it does not

require a full subtraction in calculating the quotient, the calculation speed increases. It

means the precision of calculating results can be accomplished with more decimal values.

These division methods do not require much branch operations, thus, the number of

operations in each calculation reduces. This reduction in the operation number does not

affect the accuracy of the calculation.

Another possible improvement for the LRN function is a more advanced square

root calculation method. Goldschmidt’s algorithm is an algorithm to calculate square

root [20]. This algorithm usually calculates square roots in floating-point numbers, but

it also has the functionality of calculating fixed-point numbers. [21]. This algorithm
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develops on Newton-Raphson’s algorithm and it can calculate both the square root and

inverse of square root at the same time. This method can take a 32 − bit fixed-point

input value with a 16 − bit decimal value. The method requires fewer branch checks

and operations than the binary search method. Therefore, it can reduce the number of

operations during the calculation.
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