
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Trustworthy Neural Architecture Search

Permalink
https://escholarship.org/uc/item/7tr2f8zx

Author
Hosseini, Ramtin

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tr2f8zx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Trustworthy Neural Architecture Search

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

by

Ramtin Hosseini

Committee in charge:

Professor Pengtao Xie, Chair
Professor Manmohan Chandraker
Professor Pamela Cosman
Professor Bhaskar Rao

2024

Copyright

Ramtin Hosseini, 2024

All rights reserved.

The Dissertation of Ramtin Hosseini is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my parents for their endless love and support

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . ix

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xvi

Introduction . 1

Backgrounds . 4

Chapter 1 Robust NAS Against Adversarial Attacks . 7
1.1 Introduction . 7
1.2 Related Works . 8

1.2.1 Adversarial Attacks and Defenses . 8
1.2.2 Robustness Verification of Neural Networks . 10

1.3 Methods . 10
1.3.1 Defining Differentiable Robustness Metrics . 11
1.3.2 Differentiable Search of Robust Neural Architectures 16

1.4 Experiments . 18
1.4.1 Dataset . 18
1.4.2 Experimental Settings . 19
1.4.3 Results . 21

1.5 Conclusion . 24
1.6 Appendix . 25
1.7 Acknowledgements . 33

Chapter 2 Bias Mitigation in NAS for Fairness . 34
2.1 Introduction . 34
2.2 Related Works . 35

2.2.1 Mixture of Experts . 35
2.2.2 Domain Adaptation . 36
2.2.3 Multi-Level Optimization . 37

2.3 Methods . 37
2.3.1 Three-Level Optimization Framework . 38

v

2.3.2 Optimization Algorithm . 43
2.4 Experiments . 44

2.4.1 Datasets . 44
2.4.2 Experimental Settings . 45
2.4.3 Results . 49
2.4.4 Ablation Studies . 51

2.5 Conclusions and Discussion . 53
2.6 Appendix . 54

2.6.1 Optimization Algorithm . 54
2.6.2 Additional Experiments . 56
2.6.3 Comparison with Bagging-based Model Ensemble 56

2.7 Acknowledgements . 59

Chapter 3 Advancing Generalizability in NAS with Self-Training 60
3.1 Introduction . 60
3.2 Related Works . 62

3.2.1 Image Captioning . 62
3.3 Methods . 63

3.3.1 Image Understanding by Captioning . 64
3.3.2 Optimization Algorithm . 67

3.4 Experiments . 68
3.4.1 Datasets . 69
3.4.2 Experimental Settings . 69
3.4.3 Results . 72
3.4.4 Ablation Studies . 73

3.5 Conclusion . 76
3.6 Acknowledgements . 76

Chapter 4 Interpretable NAS via Saliency Learning . 78
4.1 Introduction . 78
4.2 Related works . 79
4.3 Methods . 80

4.3.1 A four-level optimization framework . 80
4.4 Experiments . 84

4.4.1 Experiments on image classification . 84
4.4.2 Experiments on text classification . 93

4.5 Conclusions and discussions . 95
4.6 Healthcare Applications – Brain Tumors Classification . 98

4.6.1 Introduction . 98
4.6.2 Related Works . 99
4.6.3 Datasets . 100
4.6.4 Experimental Settings . 101
4.6.5 Results and Discussion . 102

4.7 Appendix . 105

vi

4.7.1 Limitations . 105
4.7.2 Visualization of saliency maps . 107
4.7.3 Salient word detection . 107
4.7.4 Improving computational efficiency . 107
4.7.5 Hyperparameter tuning strategies . 108

4.8 Acknowledgements . 109

Conclusion and Future Works . 110

Bibliography . 115

vii

LIST OF FIGURES

Figure 1.1. Accuracy comparison of our methods versus others against PGD attack
with ε = 8/255 = (0.03) on CIFAR-10. 32

Figure 2.1. Illustration of Learning by Grouping (LBG) with three subgroups. 35

Figure 2.2. Overview of our proposed three-level optimization framework (Learning
by Grouping). 38

Figure 3.1. Overview of an Image Captioning task. 61

Figure 3.2. Overview of Image Understanding by Captioning (IUC) optimization
framework. 63

Figure 3.3. Exemplar captions generated by IUC and AutoCaption as well as their
corresponding ground truth sentences generated by humans. 74

Figure 4.1. Overview of our framework. 80

Figure 4.2. Sanity check of saliency maps. Logits−n is the n-th layer below the logits
layer. 89

Figure 4.3. Visualization of saliency maps. 90

Figure 4.4. How errors change with γ . 95

Figure 4.5. Left: Convergence curves of validation accuracy for different NAS meth-
ods with and without SANAS; Middle: Convergence curves of validation
accuracy for SANAS+PCDARTS under different γ values; Right: Conver-
gence curves of validation accuracy for non-NAS methods. 105

Figure 4.6. (a-b): the architecture searched by SANAS+DARTS; (c-d): the architec-
ture searched by SANAS+PCDARTS; (e-f): The architecture searched by
SANAS+PDARTS. 105

Figure 4.7. More examples of visual saliency maps. 107

viii

LIST OF TABLES

Table 1.1. Accuracy (%) (mean and standard deviation) of different methods under var-
ious norm-bound attacks on CIFAR-10. ∗Average of five runs. † Using early
stopping. The best method is boldfaced and the second best is underlined. 16

Table 1.2. Accuracy (%) (mean and standard deviation) of different NAS methods
when there are no attacks. ‡Average of five runs. †Training without cutout
augmentation. ⋆Using early stopping. 17

Table 1.3. Accuracy (%) (mean and standard deviation) of different methods on Ima-
geNet under various attacks and without attack. ∗Average of five runs. These
architectures were searched on CIFAR-10. The best method is boldfaced. . 18

Table 1.4. Accuracy (%) (mean and standard deviation) of different methods on MNIST
under various attacks and without attack. ∗Average of five runs. The best
method is boldfaced and the second best is underlined. 18

Table 1.5. Comparison of averaged l∞-norm certified lower bounds of architectures
searched by various methods. Larger is better. 20

Table 1.6. Comparison of averaged l2-norm certified lower bounds of architectures
searched by various methods. Larger is better. 20

Table 1.7. Comparison our methods to other DARTS-based methods in four various
search spaces, from section 1.6, to compare the stability of the methods on
clean models using CIFAR-10. 31

Table 2.1. Results on CelebA with the target label of ”attractive” and sensitive attribute
of ”gender”. 45

Table 2.2. Results of ISIC when the sensitive attribute is ”gender”. 46

Table 2.3. Test errors comparison of vanilla (base) models, baselines and LBG on
CIFAR-10, CIFAR-100, and ImageNet. 47

Table 2.4. Test errors, number of model parameters (in millions), and search costs
(GPU days on a Tesla v100) on CIFAR-100 and CIFAR-10. (DA)LBG-
DARTS represents (DA)LBG applied to DARTS. Similar meanings hold for
other notations in such a format. 48

Table 2.5. Results of ImageNet with gradient-based NAS methods. 51

Table 2.6. Ablation results on tradeoff parameter λ . 52

Table 2.7. Ablation results on number of subgroups. 52

ix

Table 2.8. Ablation results on different domain adaptation techniques. 53

Table 2.9. Notations used in LBG . 54

Table 2.10. Comparison of our work with existing bagging-based model ensemble on
CIFAR-100. 57

Table 2.11. Comparison of BERT-based and RoBERTa-based experiments on GLUE
sets. 58

Table 3.1. Notations in Image Understanding by Captioning (IUC). 66

Table 3.2. Comparison of our methods and the state-of-the-art image captioning models
on the COCO “Karpathy” test split (single-model). Methods with † are using
NAS methods. 68

Table 3.3. Comparison of our methods and the state-of-the-art image captioning models
on the COCO “Karpathy” test split with multiple models (Ensemble/Fusion).
Methods with † are using NAS methods. 70

Table 3.4. Comparison of searched (S) and randomly sampled (R) encoder and decoder
architectures on COCO “Karpathy” test split (single-model with Cross-
Entropy Loss). 73

Table 3.5. Image captioning evaluation with different tradeoff parameters (λ and γ) on
COCO “Karpathy” test split (single-model with Cross-Entropy Loss). 75

Table 3.6. Comparison of utilizing various differentiable architecture search based
methods with IUC on the COCO “Karpathy” test split (single-model with
Cross-Entropy Loss). 76

Table 4.1. Test errors on CIFAR-100 (C100) and CIFAR-10 (C10), number of model
parameters (in millions), and search cost (GPU days on a Nvidia 1080Ti). 86

Table 4.2. Top-1 and top-5 test errors on ImageNet in the mobile setting. 87

Table 4.3. Human evaluation of saliency. 89

Table 4.4. Test errors of different reweighting mechanisms. 91

Table 4.5. Ablation results on saliency detection methods. 92

Table 4.6. Results on the GLUE benchmark. 93

Table 4.7. Ablation results on Separate and MTL. 94

x

Table 4.8. Top-2 salient words (marked with red color) detected by different methods. 96

Table 4.9. Number of training and test images per class . 101

Table 4.10. Test accuracy and number of model parameters of different methods. 102

Table 4.11. Results of the ablation study where the explainer updates its architecture by
minimizing the validation loss of the audience only. 103

Table 4.12. Results on how different choices of audience models affect test accuracy. . 104

Table 4.13. Top-2 salient words (marked with red color) detected by different methods. 108

xi

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my deepest appreciation to my advisor and

mentor, Prof. Pengtao Xie, for granting me the opportunity to pursue research and for his

unwavering support and guidance throughout this journey. Prof. Xie has not only exemplified

professionalism and integrity but has also been a beacon of kindness and compassion towards

others. His role as a mentor has profoundly influenced me, and I am deeply thankful for his

generosity, empathy, and friendship.

My heartfelt thanks go to my family for their unwavering support and sacrifices over

these years. Their presence and encouragement have been indispensable to me on this journey.

I am grateful to my committee members, Professor Pamela Cosman, Professor Bhaskar

Rao, and Professor Manmohan Chandraker, for their insightful feedback and guidance during

my research. My gratitude also extends to my co-authors and lab mates—Li Zhang, Han Guo,

Youwei Liang, Sai Ashish Somayajula, Bhanu Garg, Shubham Chitnis, and Xingyi Yang—for

their invaluable assistance and camaraderie throughout this research process.

Chapter 1, in part, has been published in the Proceedings of the 2021 Computer Vision

and Pattern Recognition (CVPR) Conference under the title “DSRNA: Differentiable Search

of Robust Neural Architectures” by Ramtin Hosseini, Xingyi Yang, and Pengtao Xie. The

dissertation author was the primary author of this material.

Chapter 2, in part, has been published in the Proceedings of the 2023 International

Conference on Machine Learning (ICML) under the title “Fair and Accurate Decision Making

through Group-Aware Learning” by Ramtin Hosseini, Bhanu Garg, Li Zhang, and Pengtao Xie.

The dissertation author was the primary author of this material.

Chapter 3, in part, has been published in the 2022 ACM Multimedia (ACM MM)

Conference under the title ”Image Understanding by Captioning with Differentiable Architecture

Search” by Ramtin Hosseini, and Pengtao Xie. The dissertation author was the primary author

of this material.

Chapter 4, in part, has been published in the Proceedings of the 2022 Neural Information

xii

Processing Systems (NeurIPS) Conference under the title ”Saliency-Aware Neural Architecture

Search” by Ramtin Hosseini and Pengtao Xie. Additionally, a portion of this chapter has been

published in the 2022 Nature Scientific Reports as ”Brain Tumor Classification Based on Neural

Architecture Search” by Ramtin Hosseini, Shubham Chitnis, and Pengtao Xie. The dissertation

author served as the primary author for these publications.

xiii

VITA

2018 Bachelor of Science in Mechanical Engineering, University of California, Berkeley

2022 Master of Science in Electrical Engineering (Intelligent Systems, Robotics, and
Control), University of California San Diego

2024 Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and
Control), University of California San Diego

PUBLICATIONS

• Ramtin Hosseini, Xingyi Yang, Pengtao Xie. ”DSRNA: Differentiable Search of Robust
Neural Architectures”. Accepted at CVPR 2021.

• Bhanu Garg, Li Zhang, Pradyumna Sridhara, Ramtin Hosseini, Eric Xing, Pengtao Xie.
”Learning from Mistakes - with Application to Neural Architecture Search”. Accepted at
AAAI 2022.

• Ramtin Hosseini, Pengtao Xie. ”Image Understanding by Captioning with Differentiable
Architecture Search”. Accepted at ACM MM 2022.

• Ramtin Hosseini, Pengtao Xie. ”Sailency-Aware Neural Architecture Search”. Accepted
at NeurlPS 2022.

• Ramtin Hosseini, Li Zhang, Bhanu Garg, Pengtao Xie. ”Fair and Accurate Decision
Making using Group-Aware Learning”. Accepted at ICML 2023.

• Ramtin Hosseini*, Han Guo *, Ruiyi Zhang, Sai Ashish Somayajula, Ranak Roy Chowd-
hury, Rajesh K. Gupta, Pengtao Xie. ”Downstream Task Guided Masking Learning in
Masked Autoencoders Using Multi-Level Optimization”. Under review at ICML 2024.

• Ramtin Hosseini, Shubham Chitnis, Pengtao Xie. ”Brain tumor classification based on
neural architecture search”. Published at Scientific Reports Nature 2022.

• Sai Ashish Somayajula, Onkar Litake, Youwei Liang, Ramtin Hosseini, Shamim Nemati,
David O. Wilson, Robert N. Weinreb, Atul Malhotra, Pengtao Xie. ”Improving Long
COVID-Related Text Classification: A Novel End-to-End Domain-Adaptive Paraphrasing
Framework”. Published at Scientific Reports Nature 2024.

• Han Guo, Ramtin Hosseini, Sai Ashish Somayajula, Pengtao Xie. ”Improving Image
Classification of Gastrointestinal Endoscopy Using Curriculum Self-Supervised Learning”.
Published at Scientific Reports Nature 2024.

xiv

FIELDS OF STUDY

Major Field: Electrical Engineering (Intelligent Systems, Robotics, and Control)
Focus: Machine Learning; Multi-Level Optimization; Trustworthy AI; Healthcare Applications

xv

ABSTRACT OF THE DISSERTATION

Trustworthy Neural Architecture Search

by

Ramtin Hosseini

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California San Diego, 2024

Professor Pengtao Xie, Chair

In the dynamically progressing domain of Artificial Intelligence (AI), Machine Learning

(ML) stands out as a pivotal innovation, acclaimed for its proficiency in enabling autonomous

learning from data without direct human supervision. This advancement has positioned AI

systems at the vanguard of technological progress, endeavoring to amplify human capabilities

across diverse tasks through heightened efficiency, precision, and the reduction of manual

intervention. The drive towards automation within these systems has given rise to Automated

Machine Learning (AutoML), an advanced, AI-facilitated methodology that automates the

process of model selection, dataset optimization, weight parameterization, and hyperparameter

tuning, significantly reducing the need for extensive human expertise and intervention.

xvi

Central to AutoML research is the area of Neural Architecture Search (NAS), which has

shown exceptional performance, rivaling human capabilities across various applications. How-

ever, the deployment of ML solutions, especially in critical areas such as healthcare diagnostics

and autonomous vehicle guidance, is hampered by concerns about their trustworthiness. To alle-

viate these apprehensions, it is imperative to rigorously investigate and incorporate principles of

trustworthy AI, such as interpretability, fairness, robustness, and reliability, thereby encouraging

their wider acceptance and utilization.

This dissertation investigates the creation and evaluation of multi-level optimization

(MLO) frameworks aimed at augmenting the trustworthiness and effectiveness of NAS method-

ologies. By weaving together elements of interpretability, fairness, robustness, and generalization,

this research endeavors to devise NAS frameworks that are distinguished not only by their perfor-

mance but also by their ethical and dependable operation. We systematically apply our innovative

frameworks to diverse tasks, including image classification, natural language processing, and

image captioning, to empirically verify their impact and efficacy.

Expanding on this foundation, the study examines the implementation of these trustworthy

NAS frameworks in crucial healthcare contexts, undertaking thorough experiments to assess their

accuracy and reliability. Additionally, this dissertation thoughtfully explores potential future

research directions and the limitations of the proposed approaches. Through this examination

we highlight the ongoing necessity for research to address the complexities and ethical issues

surrounding the broad implementation of AI specially NAS.

xvii

Introduction

Thesis Introduction and Scope

Artificial Intelligence (AI) profoundly influences our daily lives, from the Face ID on our

smartphones and voice assistants to transforming our work and lifestyle. The World Economic

Forum’s Future of Jobs Report 2020 forecasts that AI is set to create 58 million new jobs in

the next five years, underscoring its significant economic potential. It’s projected that AI could

boost global economic output by an additional 13 trillion US dollars by 2030, equating to an

annual GDP growth rate of 1.2% worldwide. AI holds the promise of reshaping our lives for the

better by enhancing efficiency, reducing costs, and fostering new avenues for economic growth.

Nonetheless, it’s crucial to acknowledge AI’s potential risks, such as the possibility of job

displacement and the exacerbation of economic disparities if left unmanaged. Thus, establishing

a responsible, ethical, and beneficial AI ecosystem that mitigates these risks is imperative.

In recent times, Machine Learning (ML)—a pivotal AI subset—has achieved remarkable

progress in areas like natural language processing and computer vision, giving rise to Automated

Machine Learning (AutoML). AutoML leverages ML algorithms to refine model performances

and hyperparameters autonomously, minimizing the need for extensive labor and time. Among

the forefronts of AutoML is Neural Architecture Search (NAS), renowned for achieving or even

surpassing human-level benchmarks. NAS automates the design of optimal neural networks for

specific tasks, moving away from manual architecture design. However, despite its impressive

advancements, NAS methods are prone to inaccuracies that could have dire consequences in

healthcare, economics, and security sectors. Consequently, ensuring the reliability of NAS

systems has become a critical challenge in their broader acceptance and application. Building

1

trustworthy and dependable systems is crucial for their integration into mission-critical and

safety-sensitive sectors, as user confidence significantly influences their industry adoption.

In this thesis, our goal is to develop reliable Neural Architecture Search (NAS) methods

suitable for mission-critical and safety-critical applications, such as healthcare and autonomous

driving. To achieve this, we aim to delineate various dimensions of trustworthiness and devise im-

proved optimization frameworks and search algorithms for NAS that adhere to these dimensions.

Central to creating trustworthy and explainable AI are criteria like (i) robustness and reliability,

(ii) fairness, (iii) out-of-domain generalization, and (iv) interpretability. Accordingly, we propose

optimization frameworks and algorithms tailored to find optimal architectures that are not only

task-specific and data-driven but also meet these trustworthiness criteria. In the process, we

encounter several challenges: (1) Identifying robust architectures without compromising accu-

racy on standard models, (2) Mitigating overfitting and bolstering fairness in NAS, (3) Utilizing

knowledge transfer to boost generalization, and (4) Enhancing the interpretability of NAS and

assessing the impact of our method and understanding the trade-offs involved. These challenges

are addressed in subsequent chapters. In Chapter 1, we delve into adversarial robustness within

NAS techniques, focusing on how to design architectures that are resilient to adversarial attacks.

This involves directly assessing and enhancing the robustness of architectures during the search

process, paving the way for more secure neural networks across various applications. Chapter 2

examines the fairness aspect of NAS, exploring strategies to mitigate biases that lead to unequal

resource distribution and, consequently, subpar performance for certain model classes. Through

reviewing existing methods and developing novel approaches, this chapter aims to rectify current

inequalities, enhance fairness, and prevent overfitting in NAS processes. In Chapter 3, we

tackle the challenge of out-of-domain generalization in NAS algorithms, proposing solutions

to enhance NAS models’ performance on unseen data. The effectiveness of these solutions

is validated through comprehensive experiments across multiple datasets. Finally, Chapter 4

addresses the issue of interpretability in NAS. Here, we review the state of NAS interpretability,

discuss the application of existing interpretability techniques to NAS, and explore the benefits

2

and challenges of incorporating interpretability into NAS. This chapter also outlines future

research directions in NAS and interpretability, highlighting the application of these methods in

healthcare to demonstrate their real-world efficacy.

3

Backgrounds

In this section, we discuss about the concept of Trustworthy AI and we summarize the

related works in this area. Then we review some of the existing works of neural architecture

search (NAS) and we study their advantages and disadvantages.

Trustworthy AI

The notion of trustworthiness, as delineated in lexical references such as Diction, is

fundamentally described as the capacity to be deemed reliable or ”able to be trusted”. This idea

comes from ”trust,” which is all about believing in someone or something’s reliability. Trust

helps us navigate risks in our environment, even though we can’t control everything. By trusting,

we’re okay with taking some risks because we believe in the reliability of others or technology.

Building trust is essential for strong relationships, and this is particularly true when it comes

to technology. Despite technological advances, people often worry about how much they can

trust technology. This concern is crucial because without trust, people might hesitate to use

technology, missing out on its benefits. For instance, since the term ”Artificial Intelligence” (AI)

was first used in 1956, AI has made incredible progress. AI systems, which can make decisions

like humans, have become a big part of various fields like economics, education, healthcare,

and transportation, significantly changing these areas. Because AI plays such an important role

in our lives, it’s vital to make AI systems trustworthy. This will help reduce worries about the

possible dangers of AI. To make AI trustworthy, we need to focus on four main things: (1)

Robustness: AI systems should be reliable and perform well even when conditions change

or when they’re faced with unexpected challenges, like cyberattacks. (2) Fairness: AI should

4

make decisions fairly, without bias. This means treating all users equally, regardless of their

background. (3) Generalization: AI should work well not just on the data it was trained on but

also on new, unseen data. This is important because the real world is full of diverse situations

and data. (4) Interpretability: This is about making AI’s decisions understandable. AI should

not be a ”black box”; users should be able to understand how AI makes its decisions. This helps

users trust and feel comfortable using AI systems. In simple terms, making AI trustworthy is not

just about technology; it’s about ethics and responsibility. It’s about ensuring AI can truly benefit

us without causing harm or unfairness. By focusing on interpretability, fairness, robustness, and

generalization, we can build AI systems that are not only smart but also deserving of our trust.

Neural Architecture Search (NAS)

The landscape of Neural Architecture Search (NAS) has evolved rapidly, with a diverse

array of methods being proposed that have demonstrated remarkable success in automating

the identification of high-performance neural network architectures, thereby diminishing the

dependence on human expertise. This surge in NAS methodologies has garnered significant

interest across a spectrum of deep learning applications, encompassing domains such as computer

vision and natural language processing. Specifically, NAS has been instrumental in advancing

tasks like image classification, object detection, and language modeling through the automated

design of optimal neural network architectures. Early NAS endeavors primarily leveraged

reinforcement learning (RL) strategies, exemplified by seminal works [218, 144, 219]. These

approaches employ a policy network to generate and subsequently evaluate architectures against

a validation set, utilizing the validation loss as a feedback signal to refine and optimize the policy

network. This iterative process aims to train the policy network to generate increasingly effective

architectures. Despite achieving initial successes, RL-based NAS methods are notably resource-

intensive, necessitating substantial computational investment for architecture evaluation. This

requirement often renders RL-based approaches impractical for users with limited computational

capabilities. In response to these limitations, the advent of differentiable search techniques

5

marked a significant milestone in NAS research [122]. Differentiable NAS methods conceptualize

architectures as differentiable entities, facilitating the use of efficient gradient-based optimization

techniques. This paradigm introduces a search space constituted by an extensive collection of

modular blocks, each associated with a continuous variable denoting its relative importance. The

search process then evolves into an optimization problem, aiming to identify a configuration of

these variables that minimizes the validation loss. Pioneered by DARTS [122], this approach

has been further refined and expanded by subsequent methodologies, including P-DARTS [195],

PC-DARTS [194], and DATA [20], among others. These advancements have contributed to the

progressive enhancement of architecture depth, reduction in search redundancy, and optimization

of operation weights, thereby narrowing the performance discrepancy between search and

validation phases. Moreover, recent developments have introduced topology optimization into

the realm of differentiable NAS, underscoring the critical role of network topology in optimizing

neural network performance [70]. Complementing the RL-based and differentiable paradigms,

evolutionary algorithms represent another innovative approach within NAS research [121, 147].

By treating architectures as individuals within a generational population model, this strategy

fosters the evolution of architectures through a natural selection-like process, predicated on

fitness scores. Although evolutionary algorithms share the computational intensity characteristic

of RL-based methods, they offer a distinct and valuable perspective on the architecture search

challenge.

6

Chapter 1

Robust NAS Against Adversarial Attacks

1.1 Introduction

In deep learning applications, the architectures of neural models play a crucial role in

improving performance. For example, on the ImageNet [46] benchmark, the image classification

error is reduced from 16.4% to 3.57%, when the architecture is evolved from AlexNet [109] to

ResNet [78]. Previously, neural architectures are mostly designed by humans, which is time-

consuming to obtain a highly-performant architecture. Recently, automated neural architecture

search [218, 219, 148, 149, 187, 188] which develops algorithms to find out the optimal archi-

tecture that yields the best performance on the validation datasets, has raised much attention and

achieved promising results. For example, on the CIFAR-10 dataset, an automatically searched

architecture [122] achieves an image classification error rate of 2.76% while the error achieved

by state-of-the-art human-designed architecture is 3.46%.

As we will show in the experiments, the architectures searched by existing methods

are prone to adversarial attacks. A small perturbation (which is not perceivable by humans) of

the input data can render the architecture to change prediction outcomes significantly. Many

approaches [65, 17, 132, 38, 112] have been proposed to improve the robustness of DNNs. In

these approaches, the architecture of a DNN is provided by humans, and the defense method

focuses on training the weights in this architecture in a robust way. However, the robustness of a

DNN is not only relevant to its weight parameters, but also determined by the architecture. It is

7

important to search for architectures that are robust to adversarial attacks as well.

In this chapter, we develop a novel approach for robust NAS. We define two differentiable

metrics to measure the robustness of architectures and formulate robust NAS as an optimization

problem that aims to find out an optimal architecture by maximizing the robustness metrics. The

first metric is defined based on certified lower bound [15]. Linear bounding methods are applied

to individual building blocks in the differentiable architecture search space and these individual

bounds are composed to obtain global bounds for the entire neural architecture. The second

metric is based on the Jacobian norm bound [80], where the robustness is measured by how

much the output shifts as the input is perturbed. The shift is upper bounded by the norms of row

vectors in the Jacobian matrix of the neural architecture. Our approach is applicable to various

forms of differentiable architecture search methods (e.g., DARTS [122], PC-DARTS [194],

P-DARTS [29], etc. and is robust against adversarial attacks in various norm choices. Previously,

robust NAS has been investigated in [71, 26], based on adversarial training of randomly sampled

sub-architectures [71] and differentiable architecture variables [26]. Unlike these methods that

achieve robustness implicitly via adversarial training, our method explicitly defines robustness

metrics and directly optimizes these metrics to obtain robust architectures.

On CIFAR-10, ImageNet, and MNIST, we perform game-based and verification-based

evaluations on the robustness of our methods. The experimental results show that our methods 1)

are more robust to various norm-bound attacks than several robust NAS baselines; 2) are more

accurate than baselines when there are no attacks; 3) have significantly higher certified lower

bounds than baselines.

1.2 Related Works

1.2.1 Adversarial Attacks and Defenses

Adversarial attacks aim to perturb input data examples by adding imperceptible noises so

that the prediction results are altered significantly. In white-box attack [173, 22, 31, 220], the

8

adversary has full access to the target model, while in the black-box attack [24, 91, 177, 30], the

target model is unknown to the adversary. In targeted attacks, the adversary aims to change the

prediction outcome in certain classes, while untargeted attacks are not class-specific. Arguably,

the most popular and effective white-box untargeted attacks with various norm-bounds are: fast

gradient sign method (FGSM) [65], projected gradient descent (PGD) [132], and Carlini &

Wagner (C&W) [17]. FGSM is a single step attack algorithm that aims to increase the adversarial

loss by updating its gradient sign. PGD is a more general version of FGSM that runs over

several iterations to increase the adversarial loss. The attacks of FGSM and PGD are based on

l∞-norm bound, while those in C&W are based on l0, l2, and l∞ norms. C&W is particularly

effective for l2-norm attacks. Additionally, a recent work AutoAttack [42] proposes a reliable and

robust attack method using an ensemble of stepsize-free versions of PGD attacks, a white-box

attack – Fast Adaptive Boundary (FAB) [41], and a black-box attack – Square Attack [7] to

create parameter-free attacks. To improve the robustness of neural networks against adversarial

attacks, many adversarial defense methods have been proposed, such as random smoothing

[112, 38], adversarial training [65, 132, 17], and Jacobian regularization [94, 80, 19]. Jacobian

regularization aims to minimize the change of network outputs when inputs are perturbed.

Mathematically, this amounts to minimizing the Frobenius norm of a Jacobian matrix.

Most of these defense methods assume the neural architectures are manually designed by

humans and focus on improving the robustness of network weights. Automatically searching

for robust architectures is largely under-explored. In [48], experiments show that architectures

searched by existing NAS methods such as DARTS, PC-DARTS, and P-DARTS are vulnerable

to various forms of adversarial attacks. To address this issue, studies have been conducted to

robustify NAS methods. RobNet [71] used one-shot NAS to obtain a large number of networks

and then studied the patterns of architectures that are robust against adversarial attacks. They

discovered that using dense connectivity and adding convolution operations to direct connection

edges help to improve robustness. Chen et al. [26] proposed performing adversarial training

and random smoothing on architecture variables, which can improve the robustness of DARTS-

9

based methods. Our work takes a different approach for robustifying architectures, where we

explicitly define differentiable metrics to measure architectures’ robustness and search for robust

architectures by maximizing these metrics.

1.2.2 Robustness Verification of Neural Networks

Robustness verification aims to provide certified defense against any possible attacks

under a threat model. A robustness certificate ε means the prediction outcome cannot be changed

if the strength of the attack is smaller than ε . Many verification approaches [190, 186, 208, 55]

have been proposed, which focus on achieving tighter lower bounds of the robustness certificate,

computing bounds for various complex building blocks in neural networks, and improving

the efficiency in computing the bounds. Dvijotham et al. [55] formulate verification as an

optimization problem and seek bounds of the certificate by solving a Lagrangian relaxation

of the optimization problem. Weng et al. [186] propose methods to verify the robustness of

Rectified Linear Unit (ReLU) networks by bounding the ReLU units with linear functions or local

Lipschitz constant. CNN-Cert [15] applies linear bounding techniques to provide certified lower

bounds for various operations including convolution, pooling, batch normalization, residual

blocks, activation functions, etc.

1.3 Methods

We begin with defining differentiable metrics to measure the robustness of neural architec-

tures. Then we propose a robust NAS framework that performs optimization in the architecture

search space to maximize the robustness metrics. The objective function explores a tradeoff

between predictive accuracy and robustness and can be efficiently optimized using gradient-based

methods.

10

1.3.1 Defining Differentiable Robustness Metrics

In this section, we define two differentiable metrics to measure the robustness of neural

architectures. The first one is based on robustness certification methods [15]. Specifically,

given an architecture, we seek to obtain a certified lower bound of this architecture and use

the bound to measure robustness. The architecture with a larger lower bound is more robust

against different attacks. The second metric is based on upper-bounding the shift of the model’s

prediction when the inputs are perturbed, and the bound is based on the norm of the Jacobian

matrix [80] of the architecture. The smaller the upper bound is, the more robust the network is.

Previous works [15, 80] have utilized certified bounds and Jacobian regularization to measure or

improve the robustness of neural networks that have human-designed and fixed architectures.

Different from these works, our work defines certified bounds and Jacobian regularizers on

neural architecture variables and leverage them to search for robust architectures.

Measuring Robustness Based on Certified Bound

One way to measure the robustness of a neural network is to use the verified robustness

certificate. A certificate with value ε(x) means that model prediction on the input data x cannot

be changed if the attack strength is smaller than ε(x). A larger ε(x) indicates more robustness.

In practice, it is infeasible to obtain the exact robustness certificate of a model. Instead, one can

derive lower bounds of ε(x) and use these lower bounds as surrogates for measuring robustness.

Given an architecture search space comprised of various building blocks such as ReLU-Conv-BN,

(dilated) separable convolutions, pooling operations, etc., we perform linear bounding [15] on

these building blocks and compose the individual bounds to obtain a certified lower bound for

each architecture in the search space. These bounds are differentiable functions of architecture

variables and are amenable for gradient-based optimization. In the sequel, we discuss how to

derive the certified upper and lower bounds for each type of building blocks.

11

ReLU-Conv-BN Block

The ReLU-Conv-BN building block consists of three consecutive operations including

rectified linear unit (ReLU) as a nonlinear activation operation, convolution, and batch normal-

ization (BN). Let Φr and Φr−2 be the output and input of an ReLU-Conv-BN block r, then we

have

Φ
r−1 =W r−1 ∗σ(Φr−2)+br−1 (1.1)

Φ
r = γbn

Φr−1−µbn√
σ2

bn + εbn

+βbn (1.2)

where σ(·) is the ReLU function. W r−1 and br−1 are the weight parameters and bias parameters

in the convolution operation. µbn and σ2
bn are the mean and variance of a batch of Φr−1 in batch

normalization. γbn, εbn, and βbn are hyperparameters in BN.

By applying linear bounds to these equations, we get these upper and lower bounds:

Ar
L,bn ∗Φ

r−1 +Br
L,bn ≤Φ

r ≤ Ar
U,bn ∗Φ

r−1 +Br
U,bn (1.3)

Ar
L,bnΦ

r−1 +Br
L,bn ≥ Ar

L,bn(A
r−1
L,convΦ

r−2 +Br−1
L,conv)+Br

L,bn (1.4)

Ar
U,bnΦ

r−1 +Br
U,bn ≤ Ar

U,bn(A
r−1
U,convΦ

r−2 +Br−1
U,conv)+Br

U,bn (1.5)

where AL,bn, AU,bn, BL,bn, and BU,bn are constants that can be computed as in [15]:

Ar
L,bn = Ar

U,bn =
γbn√

σ2
bn + εbn

(1.6)

Br
L,bn = Br

U,bn =
−γbnµbn√
σ2

bn + εbn

+βbn (1.7)

and AL,conv, AU,conv, BL,conv, BU,conv are constant tensors.

12

(Dilated) Separable Convolutions

Another two types of building blocks in our search space are separable convolutions and

dilated separable convolutions. Dilated separable convolutions consist of four consecutive opera-

tions: ReLU, convolution, convolution, and batch normalization (BN). Separable convolutions

consist of two consecutive dilated separable convolutions. Let Φr−3 and Φr denote the input and

output of a dilated separable convolution, then:

Φ
r−1 =W r−1 ∗ (W r−2 ∗σ(Φr−3)+br−2)+br−1 (1.8)

where W r−1 and W r−2 are weights of convolutions; br−2 and br−1 are bias parameters in

convolutions. The calculation of Φr is the same as that in Eq.(1.2). We can again use Eq.(1.3) to

find the upper and lower bound of Φr, which are:

Ar
L,bn ∗Φr−1 +Br

L,bn ≥ Ar
L,bn ∗ (A

r−1
L,conv ∗ (W r−2

Φr−3 +br−2)+Br−1
L,conv)+Br

L,bn

(1.9)

Ar
U,bn ∗Φr−1 +Br

U,bn ≤ Ar
U,bn ∗ (A

r−1
U,conv ∗ (W r−2

Φr−3 +br−2)+Br−1
U,conv)+Br

U,bn

(1.10)

The upper and lower bound for separable convolution operations can be derived in a similar way.

Pooling Operations

Let Φr−1 and Φr denote the input and output of a pooling operation r. We have the

following lower and upper bound of Φr:

Ar
L,pool ∗Φ

r−1 +Br
L,pool ≤Φ

r ≤ Ar
U,pool ∗Φ

r−1 +Br
U,pool (1.11)

13

Robustness Metric

Given the lower and upper bounds of individual building blocks, we are ready to derive a

certified lower bound for the entire network as a measure of the robustness of its architecture.

In differentiable architecture search [122], the neural network is overparameterized with many

building blocks that are organized into a directed acyclic graph (DAG). The output of each

block is multiplied with a positive scalar. The larger the scalar is, the more critical the block

is. After learning, a subset of blocks with the largest scalars are selected to form the final

architecture of this network. Therefore, these scalars (called architecture variables) represent the

architecture. Given a block with lower bound L and upper bound U , after multiplying with an

architecture variable α , this block has a lower bound of αL and αU . Following the topological

order of blocks in the DAG, we recursively compose the lower and upper bounds (multiplied

with architecture variables) of blocks and get a global lower and upper bound for the entire

network. These two bounds are functions of architecture variables and the input data example.

The lower bound is used as the robustness metric.

Measuring Robustness with Jacobian Regularization

When the architecture search space is large, computing gradients of the certified lower

bound with respect to architecture variables is time-consuming. To address this problem, we

investigate another measure of robustness, which is computationally efficient. Let f (x) denote

the neural network which takes a data example x ∈ RD as input and outputs a K-dimensional

vector. Similar to the robustness metric defined in Section 1.3.1, the architecture search space is

differentiable, where continuous architecture variables are multiplied to the outputs of building

blocks. Therefore, f (x) is a continuous function of the architecture variables. Let x+ ε be an

adversarial example where ε is a small perturbation vector. We assume the p-norm of ε is less

equal to a small scalar δ : ∥ε∥p≤ δ . The robustness of the network can be measured using the

14

following quantity [80]:

S =−ExEε

[
1
K

K

∑
k=1
| fk(x+ ε)− fk(x)|

]
(1.12)

where a = 1/K ∑
K
k=1| fk(x+ε)− fk(x)| is the average change of the output across all dimensions

when x is perturbed with ε and S is the expectation of a defined with respect to the distributions

of x and ε . The smaller this quantity is, the more robust the network is: intuitively, a network

is robust if for every input data example, no matter how it is perturbed, the change of network

output is small. According to Taylor expansion, we have:

fk(x+ ε)− fk(x)≈
[

∂ fk(x)
∂x

]⊤
ε (1.13)

Let J(x) denote the Jacobian matrix at x where Jk j = ∂ fk(x)/∂x j. Then ∂ fk(x)/∂x = Jk(x)

where Jk(x) is the k-th row vector of J(x). According to Hölder’s inequality, we have:

∣∣∣Jk(x)⊤ε

∣∣∣≤ ∥Jk(x)∥q ∥ε∥p≤ ∥Jk(x)∥q δ (1.14)

where 1
p +

1
q = 1.

Putting these pieces together, we have:

−ExEε

[1
K ∑

K
k=1| fk(x+ ε)− fk(x)|

]
≈−ExEε

[1
K ∑

K
k=1|Jk(x)⊤ε|

]
≥−ExEε

[
1
K ∑

K
k=1 ∥Jk(x)∥q δ

]
=−δEx

[
1
K ∑

K
k=1 ∥Jk(x)∥q

]
≈− δ

N ∑
N
i=1

[
1
K ∑

K
k=1 ∥Jk(xi)∥q

]
(1.15)

where in the last step, the expectation is approximated by the mean on a set of data examples

{xi}N
i=1. To maximize S for achieving robustness, we can maximize its approximated lower

15

Table 1.1. Accuracy (%) (mean and standard deviation) of different methods under various
norm-bound attacks on CIFAR-10. ∗Average of five runs. † Using early stopping. The best
method is boldfaced and the second best is underlined.

Method PGD (10) PGD (20) PGD (100) FGSM C&W AutoAttack (l∞) AutoAttack (l2)
RobNet-large [71] 49.49 49.44 49.24 54.98 47.19 48.93 46.38
RobNet-free [71] 52.80 52.74 52.57 58.38 46.95 50.13 46.33
SDARTS-ADV [26]∗ 56.94 ± 0.02 56.90 ± 0.04 56.77 ± 0.17 63.84 ± 0.02 42.67 ± 0.09 55.04 ± 0.07 40.98± 0.19
PC-DARTS-ADV [26]∗ 57.15 ± 0.02 57.11 ± 0.05 56.83 ± 0.21 65.29 ± 0.03 42.58 ± 0.04 55.29± 0.05 40.57± 0.21
DSRNA-CB (ours)∗ 60.31 ± 0.07 60.22 ± 0.11 59.93 ± 0.24 69.88 ± 0.09 63.01 ± 0.07 59.24± 0.04 61.87 ± 0.15
DSRNA-Jacobian (Ours)∗ 59.81 ± 0.02 59.77 ± 0.04 59.47 ± 0.14 68.92 ± 0.02 62.87 ± 0.04 59.11 ± 0.04 62.09 ± 0.10
DSRNA-Combined (Ours)∗ † 61.12 ± 0.03 61.06 ± 0.04 60.71 ± 0.15 70.32 ± 0.04 64.76± 0.06 59.83 ± 0.05 64.51 ± 0.12

bound −δ/N ∑
N
i=1

[
1/K ∑

K
k=1 ∥Jk(xi)∥q

]
. This bound is referred to as the Jacobian norm bound.

It is a function of the architecture variables. For l2 and l∞ norm bound attacks, ∑
K
k=1 ∥Jk(x)∥q is

the Frobenius norm and l1 norm of the Jacobian matrix, respectively. We use the method in [80]

to compute the Jacobian matrix efficiently based on random projection.

1.3.2 Differentiable Search of Robust Neural Architectures

Given the robustness metrics defined based on certified lower bound and Jacobian norm

bound, which are increasing functions of the architecture variables (i.e., larger values of the

metrics indicate that the architecture is more robust), we search for robust architectures by

maximizing these robustness metrics. The formulation is as follows:

min
α

M
∑

i=1
L(w∗(α),α,x(val)

i)− γR(w∗(α),α,x(val)
i)

s.t. w∗(α) = argmin
w

N
∑

i=1
L(w,α,x(tr)i)

(1.16)

where α denotes the set of architecture variables, and w denotes the weight parameters of

blocks. R denotes the robustness metric (either based on certified lower bound or Jacobian norm

bound). M is the number of validation examples, and N is the number of training examples.

On each validation example x(val)
i , we measure the robustness R and predictive loss L of the

architecture α and aim to search for an optimal architecture that yields the largest robustness

and smallest predictive loss on the validation set. γ is a tradeoff parameter balancing these two

16

Table 1.2. Accuracy (%) (mean and standard deviation) of different NAS methods when there
are no attacks. ‡Average of five runs. †Training without cutout augmentation. ⋆Using early
stopping.

Method Test Acc. (%) Params
(M)

Search Cost
(GPU days)

Search
Method

NASNet-A [218] 97.35 3.3 1800 RL
AmoebaNet-B [148] 97.45 2.8 3150 evolution
PNAS [119]† 96.59 3.2 255 SMBO
ENAS [144] 97.11 4.6 0.5 RL
DARTS (1st) [122] 97.00 ± 0.14 3.3 1.5 gradient
DARTS (2nd) [122] 97.26 ± 0.09 3.3 4.0 gradient
SNAS (moderate) [193] 97.15 2.8 1.5 gradient
ProxylessNAS [16]∗ 97.92 – 4.0 gradient
R-DARTS (L2) [206] 97.05 ± 0.21 – 1.6 gradient
DARTS+ [116] 97.68 3.7 0.4 gradient
P-DARTS [29] 97.50 3.4 0.3 gradient
PC-DARTS [194] 97.43 ± 0.07 3.6 0.1 gradient
RobNet-large [71] 78.57 6.9 – one shot
RobNet-free [71] 82.79 5.5 – one shot
SDARTS-RS [26] 97.33 ± 0.03 3.4 0.4 gradient
SDARTS-ADV [26] 97.39 ± 0.02 3.3 1.3 gradient
PC-DARTS-ADV [26] 97.51 ± 0.04 3.5 0.4 gradient
DSRNA-CB (ours)‡ 97.42 ± 0.07 3.5 4.0 gradient
DSRNA-Jacobian (ours)‡ 97.50 ± 0.03 3.5 0.4 gradient
DSRNA-Combined (Ours)‡ ⋆ 97.51 ± 0.04 3.5 0.6 gradient

objectives. Similar to [122], this is a bi-level optimization problem. In the inner optimization

problem, given an architecture configuration α , an optimal set of weights w∗(α) is learned

by minimizing the training loss ∑
N
i=1 L(w,α,x(tr)i). Note that w∗(α) is a function of α: each

architecture configuration α corresponds to a set of optimal weights w∗(α). w∗(α) and α are

both used to measure the robustness and predictive loss on the validation set. In the outer

optimization problem, we learn the architecture variables by minimizing the validation loss and

maximizing the robustness metric, i.e., searching for an architecture that is accurate and robust.

When R is the metric based on certified bound (CB), our method is denoted as DSRNA-CB; when

17

Table 1.3. Accuracy (%) (mean and standard deviation) of different methods on ImageNet under
various attacks and without attack. ∗Average of five runs. These architectures were searched on
CIFAR-10. The best method is boldfaced.

Method Without attack PGD (100) FGSM C&W AutoAttack (l∞) AutoAttack (l2) Params
(M)

RobNet-large [71] 61.26 37.14 39.74 25.73 32.96 23.90 11.6
SDARTS-ADV [26] ∗ 74.85 ± 0.06 46.54 ± 0.13 48.09 ± 0.07 36.86 ± 0.10 41.58± 0.07 35.71± 0.15 4.7
PC-DARTS-ADV [26] ∗ 75.73 ± 0.07 46.59 ± 0.15 48.25 ± 0.08 36.69 ± 0.09 41.79±0.06 35.86±0.11 5.3
DSRNA-CB (ours)∗ 75.84 ± 0.11 45.39 ± 0.18 50.89 ± 0.07 43.64 ± 0.19 44.05±0.09 42.98±0.16 5.4
DSRNA-Jacobian (ours)∗ 75.88 ± 0.07 43.79 ± 0.11 48.69 ± 0.04 43.17 ± 0.08 43.81±0.03 42.56± 0.11 5.3

Table 1.4. Accuracy (%) (mean and standard deviation) of different methods on MNIST under
various attacks and without attack. ∗Average of five runs. The best method is boldfaced and the
second best is underlined.

Method Without attack PGD (100) FGSM C&W AutoAttack (l∞) AutoAttack (l2)
RobNet-large [71] 90.73 87.28 89.43 69.38 86.85 65.07
SDARTS-ADV [26] ∗ 99.19 ± 0.01 97.31 ± 0.02 98.67 ± 0.02 78.94 ± 0.05 95.29±0.02 77.73±0.06
PC-DARTS-ADV [26] ∗ 99.21 ± 0.01 97.33 ± 0.04 98.75 ± 0.01 78.93 ± 0.03 95.86±0.03 77.83±0.07
DSRNA-CB (ours)∗ 99.21 ± 0.03 97.34 ± 0.06 98.85 ± 0.03 94.02 ± 0.08 97.01±0.06 94.31±0.14
DSRNA-Jacobian (ours)∗ 99.36 ± 0.01 96.82 ± 0.02 98.79 ± 0.01 95.37 ± 0.02 96.28±0.04 94.91±0.08
DSRNA-Combined (ours)∗ 99.40 ± 0.02 97.36 ± 0.04 98.83 ± 0.04 96.72 ± 0.02 96.31 ± 0.03 95.47± 0.09

R is the metric based on Jacobian norm bound, our method is denoted as DSRNA-Jacobian. The

two metrics can be summed together as a single metric, leading to a DSRNA-Combined method.

The algorithm for solving the optimization problem in Eq.(16) can be derived in a similar way

to that in DARTS [122]. We approximate w∗(α) using one step gradient descent update of w

with respect to the training loss. Then we plug in this approximation into the validation loss and

robustness metric, and perform gradient descent update of α with respect to the approximated

objective in the first line in Eq.(1.16). The detailed algorithm is deferred to the supplements.

1.4 Experiments

1.4.1 Dataset

We used three datasets in the experiments: CIFAR-10 [106], ImageNet [46], and

MNIST [111]. CIFAR-10 contains 60K images with a size of 32× 32. The train, valida-

18

tion, and test sets in CIFAR-10 contain 25K, 25K, 10K images, respectively. ImageNet has 1.3M

training images and 50K validation images. MNIST has a training set of 60,000 examples and a

test set of 10,000 examples, which are 28×28 gray-scale images of handwritten single digits

between 0 and 9.

1.4.2 Experimental Settings

Baselines

We compare our proposed methods with the following baselines: 1) RobNet [71] which

searches robust architectures based on adversarial training in one-shot NAS; 2) SDARTS-ADV

and PC-DARTS-ADV [26], which performs adversarial training on architecture variables in

DARTS-based NAS. During architecture evaluation, DSRNA-CB, DSRNA-Jacobian, DSRNA-

Combined, SDARTS-ADV, and PC-DARTS-ADV are trained with Jacobian regularization, while

RobNet-Free and RobNet-large are trained with adversarial training. We select four popular

adversarial attack methods to evaluate the robustness of our methods: fast gradient sign method

(FGSM) [65] , projected gradient descent (PGD) [132], Carlini & Wagner (C&W) [17], and

AutoAttack [42].

Hyperparameter Settings

The search space of our methods is the same as that of PC-DARTS, which is composed of

3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated separable convolutions, 3×3 max

pooling, 3×3 average pooling, identity, and zero. The convolutional cell consists of 6 nodes,

which has 2 input nodes, 3 intermediate nodes, and 1 output node. For CIFAR-10 and MNIST,

our methods search the architectures from scratch. In the searching phase, a small network of 8

cells was trained for 50 epochs with an initial number of channels of 16.

In DSRNA-CB, we used SGD for optimizing the network weights w with a learning rate

of 0.1, a batch size of 256, a momentum of 0.9, and a weight decay of 3e−4. We used the Adam

optimizer [104] for optimizing architecture variables α , with a fixed learning rate of 6e− 4,

19

β1 = 0.5, β2 = 0.999, and a weight decay of 3e−4. In DSRNA-Jacobian, the network weights

w were optimized via SGD with a learning rate of 0.025, a batch size of 128, a momentum of 0.9,

and a weight decay of 3e−4. The architecture variables α were optimized using Adam [104]

with a learning rate of 3e−4, β1 = 0.5, β2 = 0.999, and a weight decay of 1e−3.

Given the searched cell, we stack 20 copies of them into a larger network and train this

network from scratch on CIFAR-10 or MNIST. The network was trained for 600 epochs from

scratch with a batch size of 128, an initial learning rate of 0.025, norm gradient clipping of

5, drop-path with a rate of 0.3, and an initial number of channels of 36. For ImageNet, the

architecture is transferred from CIFAR-10: given the optimal cell searched on CIFAR-10, we

stack 14 copies of them into a larger network with 48 initial channels and train this network

on ImageNet. The training was performed for 250 epochs using an SGD optimizer with an

annealing learning rate of 0.5, a momentum of 0.9, and a weight decay of 3e−5. The tradeoff

parameter γ in both DSRNA-CB and DSRNA-Jacobian was set to 0.01. In DSRNA-CB, we

initialized ε as 0.03, and then linearly increased or decreased it based on the global difference

between the certified upper bound and lower bound. The hyperparameters of baseline methods

are deferred to the supplements. A single NVIDIA GTX 1080Ti GPU was used to perform the

search.

Table 1.5. Comparison of averaged l∞-norm certified lower bounds of architectures searched by
various methods. Larger is better.

Dataset RobNet-large [71] SDARTS-ADV [26] PC-DARTS-ADV [26] DSRNA-CB (ours) DSRNA-Jacobian (ours)
MNIST 0.0325 0.0471 0.0474 0.0526 0.0514
CIFAR-10 0.0024 0.0039 0.0040 0.0049 0.0048

Table 1.6. Comparison of averaged l2-norm certified lower bounds of architectures searched by
various methods. Larger is better.

Dataset RobNet-large [71] SDARTS-ADV [26] PC-DARTS-ADV [26] DSRNA-CB (ours) DSRNA-Jacobian (ours)
MNIST 0.1340 0.1767 0.1765 0.4288 0.4285
CIFAR-10 0.0167 0.0337 0.0336 0.0412 0.0409

20

1.4.3 Results

In this section, we perform game-based and verification-based evaluations of the adver-

sarial robustness of our proposed methods and compare with state-of-the-art baselines.

Game-based Evaluation

Game-based evaluation estimates the success rate of defending against adversarial attacks

with various forms of norm-bounds, such as l2, l∞, etc. FGSM [65, 191] and PGD [132] are

two effective l∞ attack methods. C&W [17] is an effective l2 attack method. On CIFAR-10,

ImageNet, and MNIST, we evaluate our proposed methods against 1) PGD attack with ε = 8/255

on CIFAR-10, ε = 2/255 on ImageNet, and ε = 0.3 on MNIST, attack iterations of 10, 20, and

100, and a step size of 2/255, 2) FGSM attack with ε = 2/255, 3) C&W with 60 attack iterations,

4) AutoAttack (l∞) with ε = 8/255 on CIFAR-10, ε = 2/255 on ImageNet, and ε = 0.3 on

MNIST, and 5) AutoAttack (l2) with ε = 1.

Table 1.1 shows the accuracy of different methods under various norm-bound attacks on

CIFAR-10. PGD (n) denotes the PGD attack with n iterations. From this table, we make the

following observations. First, the accuracy of our proposed methods, including DSRNA-CB

and DSRNA-Jacobian is much higher than that of other robust NAS baselines including RobNet-

large, RobNet-free, SDARTS-ADV, and PC-DARTS-ADV, under PGD, FGSM, C&W attacks,

AutoAttack (l∞), and AutoAttack (l2). This demonstrates that our methods are more robust against

various attacks than these baselines. One major reason is that our methods search for robust

architectures by explicitly and directly maximizing differentiable robustness metrics and therefore

are guaranteed to obtain robust architectures. In contrast, the baseline methods try to improve the

robustness of searched architectures implicitly and indirectly: performing adversarial training

and injecting random noise. The implicitness and indirectness of these methods do not guarantee

robustness. Second, among the baselines, there is no consistent winner: SDARTS-ADV and

PC-DARTS-ADV perform better than the other baselines under PGD attack, FGSM attack, and

AutoAttack (l∞); RobNet-large and RobNet-free perform better than the other baselines on C&W

21

attack and AutoAttack (l2). None of these baselines consistently outperforms others across all

these types of attacks. In contrast, our proposed methods are consistently more robust than these

baselines under all types of attacks. Third, between our two proposed methods DSRNA-CB and

DSRNA-Jacobian, DSRNA-CB is slightly more robust than DSRNA-Jacobian. This is probably

because the first-order Taylor approximation in DSRNA-Jacobian incurs larger inexactness.

However, DSRNA-Jacobian is much faster to train and more memory efficient than DSRNA-CB,

as we will show later. Fourth, DSRNA-Combined, which utilizes CB and Jacobian norm bound

simultaneously for regularization, performs better than DSRNA-CB and DSRNA-Jacobian. This

shows that when used together, these two regularizers bring in a synergistic effect.

While our methods are robust against different attacks, we also would like them to be

accurate when there are no attacks. To verify this, we compare the accuracy of our methods with

state-of-the-art baselines under the attack-free setting. Table 1.2 shows the accuracy achieved

by different methods on CIFAR-10 when there are no attacks. From this table, we make the

following observations. First, the accuracy achieved by our methods is very close to the best

accuracy achieved by ASAP. This demonstrates that not only being robust, our methods are also

highly accurate when there are no attacks. Second, the accuracy of RobNet is much lower than

that of ours. This shows that while our methods are not only more robust than RobNet when

there are attacks, but also are much more accurate than RobNet when there are no attacks. Third,

in general, the search cost of our methods is similar to that of other gradient-based baselines.

This demonstrates that our methods gain robustness without significantly increasing search

cost. Note that the search cost of DSRNA-CB is higher than SDARTS-RS, SDARTS-ADV, and

PC-DARTS-ADV. One may wonder whether DSRNA-CB achieves higher robustness than the

three baselines because it performs search for a longer time. To check this, in DSRNA-CB,

we decrease the batch-size to 64 and use early stopping to reduce the search cost to 0.5 GPU

days. The corresponding accuracy on CIFAR-10 is: 57.82% under PGD(100), 65.94% under

FGSM, 62.35% under C&W, and 97.37% under no attack. Comparing these results with those

in Table 1.1, we can see that our DSRNA-CB method is still more robust than SDARTS-RS,

22

SDARTS-ADV, and PC-DARTS-ADV when their search costs are about the same. Fourth,

while SDARTS-ADV and PC-DARTS-ADV can achieve high performance when there are no

attacks, they are not as robust as our methods in the presence of attacks, as shown in Table 1.1.

To investigate our methods’ transferability, we use the best cell structure searched on

CIFAR-10 to compose a larger network and train it on ImageNet. Table 1.3 shows the accuracy

of different methods achieved on ImageNet under various norm-bound attacks and without

attack. From this table, we make the following observations. First, under all the attacks, our

methods achieve much higher accuracy than RobNet. Under C&W attack and AutoAttack

(l2), our methods achieve substantially higher accuracy than SDARTS-ADV and PC-DARTS-

ADV. Under PGD attack, FGSM attack, and AutoAttack (l∞), our methods are on par with

SDARTS-ADV and PC-DARTS-ADV: our methods are slightly better than SDARTS-ADV and

PC-DARTS-ADV under FGSM attacks and AutoAttack (l∞); SDARTS-ADV and PC-DARTS-

ADV are slightly better than our methods under PGD attacks. These results further demonstrate

that our methods are more robust against various types of attacks than the baselines. Second,

when there are no attacks, the accuracy of our methods is much higher than that of RobNet.

In addition to being more robust, our methods are also more accurate than RobNet under the

attack-free setting. Third, DSRNA-CB is slightly more robust than DSRNA-Jacobian. Note that

the search costs of methods in Table 1.3 are the same as those in Table 1.2 since the architectures

were searched on CIFAR-10 and evaluated on ImageNet.

Table 1.4 shows the results on MNIST. Similarly, our methods are substantially more

robust than RobNet-large under all types of attacks, and are substantially more robust than

SDARTS-ADV and PC-DARTS-ADV under C&W attacks, AutoAttack (l2), and AutoAttack

(l∞). Our methods are on par with SDARTS-ADV and PC-DARTS-ADV under PGD and FGSM

attacks. When there is no attack, our methods achieve much higher accuracy than RobNet-large

and are on par with SDARTS-ADV and PC-DARTS-ADV.

23

Runtime

With a single GTX 1080Ti GPU, the runtime on CIFAR-10 for the search phase of

DSRNA-CB is 4 GPU days, while that of DSRNA-Jacobian is 0.4 GPU days. On MNIST,

DSRNA-CB takes 1 GPU day for architecture search while DSRNA-Jacobian takes 0.2 GPU

days. DSRNA-Jacobian is more efficient than DSRNA-CB, but is less robust than DSRNA-CB

as shown previously.

Verification-based Evaluation

In this section, we use the certification method developed in Section 1.3.1 to find the

certified lower bounds of the architectures searched by different methods. Larger lower bound

indicates more robustness. Table 1.5 and Table 1.6 compare the averaged certified lower bounds

of architectures searched by different methods on MNIST and CIFAR-10 under l2 and l∞ norms.

As can be seen, the lower bounds achieved by our methods under various norms are larger than

those achieved by baselines. This further demonstrates that our methods are more robust than

these baseline methods.

1.5 Conclusion

To address the problem that existing neural architecture search (NAS) methods are vulner-

able to adversarial attacks, we propose methods for differentiable search of robust architectures.

We define two differentiable measures of architectures’ robustness, based on certified robustness

lower bound and Jacobian norm bound. Then we search for robust architectures by performing

optimization in the architecture space with an objective of maximizing the robustness metrics.

On various datasets, we demonstrate that our methods 1) are more robust to various norm-bound

attacks than several robust NAS baselines; 2) are more accurate than baselines when there are no

attacks; 3) have significantly higher certified lower bounds than baselines.

24

1.6 Appendix

Baselines

DARTS [122]:

DARTS is differentiable NAS method that uses one-shot shared parameter technique

based on the continuous relaxation of the discrete architecture spaces, where gradient descent is

applied to optimize the architecture.

PC-DARTS [194]:

Partially-Connected DARTS [122] uses edge normalization method and only a random

subset of the channels in each step on DARTS to improve the accuracy and stability of the

searching. PC-DARTS also, is much faster than DARTS with less memory cost.

SmoothDARTS [26]:

SmoothDARTS(SDARTS) uses either random smoothing or adversarial attack on DARTS-

based methods to improve the stability in different search spaces, such as the search spaces

that were introduced in R-DARTS [206]. This method not only can improve the accuracy and

stability of the DARTS-based methods, but also it makes them more robust against adversarial

attacks. Based on the results applying adversarial attack to the DARTS-based methods performs

better with clean models and the models under the adversarial attacks. Thus, in our paper we

compare our results mostly with SDARTS-ADV and PC-DARTS-ADV, which represent DARTS

with adversarial training and PC-DARTS with adversarial training, respectively.

RobNet [71]:

RobNet uses one-shot NAS to obtain a large number of networks and then studies the

patterns of architectures that are robust against adversarial attacks. This method suffers from

large memory cost. RobNet proposes using dense connectivity and adding convolution operations

to direct connection edges to improve robustness , and utilize a feature flow guided search (FSP)

strategy to compute FSP matrix’s distance between the clean data and the adversarial example to

25

see how robust is the network.

Derivation of Conv Block and Computing Constant Tensors

In this section, we use the same procedure as CNN-Cert [15] to derive the lower/upper

bound constant tensors Ar
L,conv, Ar

U,conv, Br
L,conv, and Br

U,conv, which are functions of weights

W r, bias br, and linear bound parameters αL, αU , βL, and βU of bounded output Φr. (i, j,k)

indicates the location in the weight filter. Thus, for (x,y,z)-th output Φr
(x,y,z) we get the following

lower/upper bound constant tensors Ar
L,conv, Ar

U,conv, Br
L,conv, and Br

U,conv in the convolutional

block:

Ar
L,conv ∗Φ

r−1 +Br
L,conv ≤Φ

r ≤ Ar
U,conv ∗Φ

r−1 +Br
U,conv (1.17)

Upper bound:

By applying the linear upper bounds on the activation functions σ(.) we will get the

following:

Φ
r
(x,y,z) =W r

(x,y,z) ∗σ(Φr−1)+br
(x,y,z) (1.18)

= ∑
i, j,k

W r
(x,y,z),(i, j,k).[σ(Φr−1)](x+i,y+ j,k)+br

(x,y,z) (1.19)

(1.20)
≤ ∑

i, j,k
W r+

(x,y,z),(i, j,k)αU,(x+i,y+ j,k)(Φ
r−1
(x+i,y+ j,k) + βU,(x+i,y+ j,k))

+W r−
(x,y,z),(i, j,k)αL,(x+i,y+ j,k)(Φ

r−1
(x+i,y+ j,k) + βL,(x+i,y+ j,k)) + br

(x,y,z)

= Ar
U,(x,y,z) ∗Φ

r−1 +Br
U,(x,y,z) (1.21)

26

Therefore, upper bounds constant tensors can be computed as:

Ar
U,conv(x,y,z) =W r+

(x,y,z),(i, j,k)αU,(x+i,y+ j,k)+W r−
(x,y,z),(i, j,k)αL,(x+i,y+ j,k) (1.22)

Br
U,conv(x,y,z) =W r+

(x,y,z) ∗ (αU
⊙

βU)+W r−
(x,y,z) ∗ (αL

⊙
βL) (1.23)

Lower bound:

By applying the linear lower bounds on the activation functions σ(.) we will get the

following:

Φ
r
(x,y,z) =W r

(x,y,z) ∗σ(Φr−1)+br
(x,y,z) (1.24)

= ∑
i, j,k

W r
(x,y,z),(i, j,k).[σ(Φr−1)](x+i,y+ j,k)+br

(x,y,z) (1.25)

(1.26)
≥ ∑

i, j,k
W r+

(x,y,z),(i, j,k)αL,(x+i,y+ j,k)(Φ
r−1
(x+i,y+ j,k) + βL,(x+i,y+ j,k))

+W r−
(x,y,z),(i, j,k)αU,(x+i,y+ j,k)(Φ

r−1
(x+i,y+ j,k) + βU,(x+i,y+ j,k)) + br

(x,y,z)

= Ar
L,(x,y,z) ∗Φ

r−1 +Br
L,(x,y,z) (1.27)

Therefore, lower bounds constant tensors can be computed as:

Ar
L,conv(x,y,z) =W r+

(x,y,z),(i, j,k)αL,(x+i,y+ j,k)+W r−
(x,y,z),(i, j,k)αU,(x+i,y+ j,k) (1.28)

27

Br
L,conv(x,y,z) =W r+

(x,y,z) ∗ (αL
⊙

βL)+W r−
(x,y,z) ∗ (αU

⊙
βU) (1.29)

Pooling Operations.

Similarly, by doing the same procedure, we compute the bounds of the pooling operations,

as well:

Φ
r
n = max

Sn
Φ

r−1
Sn

(1.30)

where Sn, Φr−1, and Φr indicate the pooled input index, input of the pooling layer, and output of

the pooling layer, respectively. And employing linear bounds to obtain the lower/upper bound of

the pooling operation will leads us to the following formulation:

Ar
L,pool ∗Φ

r−1 +Br
L,pool ≤Φ

r

≤ Ar
U,pool ∗Φ

r−1 +Br
U,pool

(1.31)

where Ar
L,pool , Ar

U,pool , Br
L,pool , and Br

U,pool can be computed as [15] proposes:

Let define:

γ0 =
∑i

ui
ui−li
−1

ui− li
(1.32)

γ = min{max{γ0,max{l1..l∞}} ,min{u1..u∞}} (1.33)

Therefore, upper bounds tensors are:

Ar
U,pool,(x,y,z),(i, j,k) =

u(x+i,y+ j,z)− γ

u(x+i,y+ j,z)− l(x+i,y+ j,z)
(1.34)

Br
U,pool,(x,y,z),(i, j,k) = ∑

i, j

(γ−u(x+i,y+ j,z))l(x+i,y+ j,z)

u(x+i,y+ j,z)− l(x+i,y+ j,z)
+ γ (1.35)

28

where ui are the upper bounds and li are the lower bounds. Now let define G = ∑i
ui−γ

ui−li

and then using G we can compute η as following:

η =

min{l1, ..., l∞} , i f G < 1

max{u1, ...,u∞} , i f G > 1

γ , i f G = 1

(1.36)

And using that based on [15] we can compute the lower bounds tensors as:

Ar
L,pool,(x,y,z),(i, j,k) =

u(x+i,y+ j,z)− γ

u(x+i,y+ j,z)− l(x+i,y+ j,z)
(1.37)

Br
L,pool,(x,y,z),(i, j,k) = ∑

i, j

(γ−u(x+i,y+ j,z))η

u(x+i,y+ j,z)− l(x+i,y+ j,z)
+η (1.38)

Certified Lower Bound.

Then, we compute the global bounds η j,U and η j,L of network output Φm(x) by consid-

ering the whole neural network as one building block. By employing the same procedure as we

did to the ReLU-Conv-BN building block [15], we can compute global upper bound and lower

bound using the following formulations:

η j,U = ε
∥∥vec(A0

U)
∥∥

q +A0
U ∗ x0 +B0

U (1.39)

η j,L =−ε
∥∥vec(A0

L)
∥∥

q +A0
L ∗ x0 +B0

L (1.40)

where p+q
pq and p,q≥ 1.

Finally, we obtain the largest certified lower bound by increasing ε , if the global lower

bound of the predicted class, with the given ε , is larger than the global upper bound of the

targeted class; otherwise, we decrease it. Once we get the certified lower bound of the network,

29

we can compare our results to see which approach was more successful in searching for robust

architecture against adversarial attacks.

Search Spaces

RobustDARTS (R-DARTS) [206] paper proposes four other search spaces beside the

original DARTS space, which DARTS fails in them. To show the stability of our methods in

other search spaces we will study our methods performances on these other four search spaces,

which are as following:

• S1: uses a different set of two operators for each edge.

• S2: uses only 3×3 separable convolutions and skip connections as the candidate operations

for each edge.

• S3: uses only 3×3 separable convolutions, skip connections, and Zero operation as the

candidate operations for each edge.

• S4: uses only 3× 3 separable convolutions and Noise operation ε ∼ N (0,1) as the

candidate operations for each edge.

Adversarial Attacks

We test our methods against three different attacks with different effective norms. These

attacks are PGD, FGSM, and C&W. The RobNet and DARTS-based results are obtained from

[71] and [48], respectively, where [71] tests RobNet against the PGD attack with total perturbation

ε = 0.03 and [48] evaluates the DARTS-based methods (i.e., DARTS, P-DARTS, and PC-

DARTS) against the PGD attack with total perturbation ε = 0.3 on CIFAR-10.

Algorithms

Based on Algorithm 1, we aim to search for an optimal architecture that yields the largest

robustness and smallest predictive loss on the validation set by using one of the two robustness

30

metrics R in norm-bound lp (i.e., Jacobian Regularization or Certified Bound) to compute the

R and use it in validation loss with the trade-off parameter γ to maximize the robustness in the

PC-DARTS search process. (Note: we use PC-DARTS since it is faster than other DARTS-based

methods. Certified Bound technique for measuring the robustness metric operates slowly in the

search process.)

Algorithm 1: Training DSRNA
Create a mixed operation for selected channels f PC

i, j (xi;Si, j) for every edge (i, j)
while not converged do

1. Compute
M
∑

i=1
R(w∗(α),α,x(val)

i) by using either Jacobian Regularization or

Certified Bound techniques

2. Update architecture α by descending
M
∑

i=1
L(w∗(α),α,x(val)

i)− γR(w∗(α),α,x(val)
i)

end

Additional Experiments

Table 1.7 shows the clean models test errors of our proposed methods compared to the

previous approaches in 4 search spaces studied in section 1.6 on CIFAR-10 dataset. These

results indicate that our methods have more stability and outperform the others in different search

spaces.

Table 1.7. Comparison our methods to other DARTS-based methods in four various search
spaces, from section 1.6, to compare the stability of the methods on clean models using CIFAR-
10.

Search Spaces DARTS PC-DARTS DARTS-ES R-DARTS(L2) SDARTS-RS SDARTS-ADV DSRNA-CB(ours) DSRNA-Jacob(ours)
S1 3.84 3.11 3.01 2.78 2.78 2.73 2.69 2.70
S2 4.85 3.02 3.26 3.31 2.75 2.65 2.62 2.55
S3 3.34 2.51 2.74 2.51 2.53 2.49 2.57 2.50
S4 7.20 3.02 3.71 3.56 2.93 2.87 2.95 2.79

We perform analysis of variance test, which is a parametric statistical significance test,

between the results of our methods and the results of the baselines under adversarial attacks to

31

confirm that our tests are statistically significant. Based on the Table 2 of the paper, the probabil-

ity value (p-value) between our test results and baselines’ on CIFAR-10 is p− value = 0.008

and Statistics = 4.120, which is less than 0.05 and rejects the null hypothesis. On ImageNet

and MNIST from the results, we get the p− value = p = 0.001 and Statistics = 11.262, and

p− value = 0.002 and Statistics = 25.325, respectively. To reproduce these values run the

ANOVA.ipynb code in the Supplementary Materials zip file.

Figure 1.1 demonstrates the accuracy of our methods and the baselines vs PGD attack

iterations with the total perturbation ε = 0.03. As it is shown, DSRNA-CB (blue line) is the most

robust method among these approaches that have been tested in the figure 1.1. However, DSRNA-

Jacob (orange line) reaches approximately the same accuracy and results as DSRNA-CB, while

it is more memory efficient and faster.

Figure 1.1. Accuracy comparison of our methods versus others against PGD attack with
ε = 8/255 = (0.03) on CIFAR-10.

32

1.7 Acknowledgements

Chapter 1, in part, has been published in the Proceedings of the 2021 Computer Vision

and Pattern Recognition (CVPR) Conference under the title “DSRNA: Differentiable Search

of Robust Neural Architectures” by Ramtin Hosseini, Xingyi Yang, and Pengtao Xie. The

dissertation author was the primary author of this material.

33

Chapter 2

Bias Mitigation in NAS for Fairness

2.1 Introduction

Learning by grouping is an outstanding human learning skill aiming to organize a set

of given problems into different subgroups and domains where each subgroup contains similar

problems that can be solved independently and efficiently. In this chapter, we formulate Learning

by Grouping (LBG) as an optimization problem and investigate its effectiveness in ML. Our

proposed framework contains two types of model: 1) Group Assignment Model (GAM); and

2) Group-Specific Classification Models (GSCM). The GAM model takes a data example as

input and predicts the subgroup it belongs to – a K-way classification problem, where K is the

number of GSCM models (i.e., experts). For each subgroup k, a GSCM model performs the

supervised learning on the target task. We then apply the GAM and the K GSCM models to

improve the existing machine learning models’ fairness and accuracy. Additionally, we extend

our LBG formulation to the neural architecture search to obtain the most suitable task-specific

GSCM models. We depict the high-level learning process in Fig 2.1.

We formulate LBG as a three-stage optimization problem. First, we learn the Group-

Assignment Model (GAM); then, we train Group-Specific Classification Models (GSCMs);

finally, we apply the GAM and the GSCMs to the validation set to learn the subgroups for

subgroup assignment and the learnable architecture. We develop a gradient-based method

to solve this three-level optimization problem. In previous related works, mixture-of-expert

34

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

Training
examples

Subgroups

Model 1

Model 2

Model 3

GAM

Validation
examples

Validation
performance

Figure 2.1. Illustration of Learning by Grouping (LBG) with three subgroups.

methods learn the experts – analogous to GSCMs; and the gating network – similar to GAM.

The mixture-of-experts (MoE) methods learn the gating network and the experts jointly on the

training data, which has a high risk of overfitting the gating network to the training data. We

address this problem of overfitting by MoE methods by formulating a three-stage optimization

framework that learns the subgroups for the subgroup assignment tasks on the validation set

instead of the training examples.

Currently, the majority of state-of-the-art neural network performance is achieved through

architectures that are manually designed by humans. However, this process of designing and

evaluating neural network architectures by human experts is both time-consuming and may not

end with the most suitable task-specific architecture. In recent years, there has been a growing

interest in automating this manual process, referred to as neural architecture search (NAS).

On the other hand, humans possess powerful learning skills that have been developed through

evolution. This study also examines the potential of using a human-based learning technique,

known as learning by grouping, in differentiable NAS approaches.

2.2 Related Works

2.2.1 Mixture of Experts

Lately, a wide variety of works [161, 210, 183] have proposed applying the mixture-of-

experts (MoE) approach, which was initially proposed by [93], to varied deep learning tasks.

Generally, deep learning MoE frameworks consist of expert networks and a gating function,

where the gating function assigns each expert a subset of training data. The methods assume

35

a set of latent experts where each expert performs a classification or regression task. A gating

function assigns the given data example to an expert. Then this example is classified using the

classification model specific to this expert. The MoE has been an active research area aiming

to improve the vanilla ML approaches, such as [161, 210, 183]. [161] introduces a trainable

gating function to assign the experts’ sparse combinations for the given data. DeepMOE [183]

proposes a deep convolutional network including a shallow embedding network and a multi-

headed sparse gating network, where the multi-headed sparse gating network uses the mixture

weights computed by the shallow embedding network to select and re-weight gates in each

layer. In MGE-CNN[210], experts are learned with the extra knowledge of their previous experts

along with a Kullback-Leibler (KL) divergence constraint to improve the diversity of the experts.

Recently, [155] proposed the Vision Transformer MoE (V-MoE) that can successfully reach

state-of-the-art on ImageNet with approximately half of the required resources.

In the existing MoE methods, which are based on single-level optimization, the gating

function and expert-specific Classification Models are learned jointly by minimizing the training

loss. Hence, there is a high risk of the gating function overfitting the training data, which can lead

to unfair and inaccurate decision-making. In our method, we address this issue via learning the

group assignments of training examples by minimizing the validation loss instead and developing

a multi-stage optimization problem rather than joint training. The results show the efficacy of

our method.

2.2.2 Domain Adaptation

Domain adaptation (DA) is a technique in machine learning that aims to enhance the

performance of models trained on one domain, known as the source domain, on a different yet

related domain, referred to as the target domain. The objective is to transfer the knowledge

acquired from the source domain to the target domain, where the input features and/or output

labels may vary. This approach is particularly valuable in scenarios where the amount of

labeled data in the target domain is scarce, but a large amount of labeled data is available in

36

the source domain. Different methods for domain adaptation [69, 66, 138, 96] can be classified

into three main categories: instance-based, feature-based, and adversarial-based approaches.

These methods mostly focus on measuring and minimizing the distance between the source and

target domains. Some well-established distance measuring approaches include Maximum Mean

Discrepancy (MMD) [127, 68], Correlation Alignment (CORAL) [169], Kullback-Leibler (KL)

divergence [110], and Contrastive Domain Discrepancy (CDD) [101].

2.2.3 Multi-Level Optimization

In the past few years, Bi-Level Optimization (BLO) and Multi-Level Optimization

(MLO) [179] techniques have been applied to Meta-Learning [58, 59], and Automated Machine

Learning (AutoML) tasks such as neural architecture search [16, 122, 193, 196, 116, 85] and

hyperparameter optimization [58, 12] to learn the meta parameters automatically and reduce

the required resources and reliance on humans for designing such methods. Lately, inspired by

humans’ learning skills [192], several existing works [83, 32, 82, 61, 54, 84, 162, 53, 215] have

borrowed these skills from humans and extended them to ML problems in MLO frameworks to

study whether these techniques can assist the ML models in learning better.

2.3 Methods

Our method consists of a Group-Assignment Model (GAM) and K Group-Specific Clas-

sification Models (GSCMs). The GAM model predicts and assigns the training samples to their

corresponding GSCM expert model. Then the GSCM models predict the classes of the inputs.

Lastly, we apply the GAM and the GSCMs to the validation set and minimize the validation loss

to learn the assignments of training samples. The illustration of our proposed method is shown

in Fig 2.2. In Section 2.3.1, we first begin with defining the three-level optimization framework

to formulate LBG (Section 2.3.1), and then we integrate domain adaptation techniques to our

proposed LBG to mitigate the risk of overfitting (Section 2.3.1). Afterward, we extend the LBG

to the Neural Architecture Search problem in Section 2.3.1. Finally, in Section 2.3.2, we develop

37

Training Group-Assignment Model

1

Training Group-Specific Classification Models

2

Updating Group-Assignments

3

Figure 2.2. Overview of our proposed three-level optimization framework (Learning by Group-
ing).

an efficient optimization algorithm to address the three-level optimization problem.

2.3.1 Three-Level Optimization Framework

Our framework is composed of two types of models: the Group-Assignment Model

(GAM) and the Group-Specific Classification Models (GSCM). The GAM model takes a data

example as input and assigns it to one of the subgroups, which is a K-way classification problem,

where K is the number of GSCM models (i.e., experts). We propose an end-to-end three-stage

optimization problem where: First, the Group-Assignment Model (GAM) is learned; then, the

Group-Specific Classification Models (GSCMs) are trained; finally, the GAM and the GSCMs

are applied to the validation set to determine the group assignments and the learnable architecture.

As shown in Fig 2.1, the Group-Assignment Model (GAM) is updated for training examples by

validating the performance on the validation set, which distinguishes LBG from existing MoE

approaches. As discussed in Section 2.3.1, the group assignments from GAM are continuous

values Cnk ∈ [0,1]. Therefore, to convert these probability distributions to one-hot encoded

format (similar to Fig 2.1) we can compute the top-k and obtain the k-hot encoded matrix, where

k is one in this case.

38

Learning by Grouping (LBG)

We assume there are K latent subgroups. Let C be a matrix denoting the learnable

‘ground-truth’ grouping of the training samples. The size of C is N×K where N is the number

of training examples - row n represents the grouping of the n-th training example. We relax the

values in each row from a one-hot encoding to continuous values in order to perform gradient

descent, so that Cnk ∈ [0,1] denotes the probability that the n-th training example belongs to

the k-th latent subgroup. Subgroups C are initialized randomly. The latent subgroup labels for

subgroups are permutation-invariant. We then assign the n-th training example to subgroup

jn such that jn = argmaxeCne, and let Gn =Cn jn be the probability of grouping the sample xn

to subgroup jn. Let the GAM be represented by f (xn;T) with SoftMax output, which takes

a data example xn as input and predicts which subgroup xn should be assigned to. T is the

weights parameter of this network. The output of f (xn;T) is a K-dimensional vector, where the

k-th element fk(xn;T) denotes the probability that xn should be assigned to the k-th subgroup.

The sum of elements in f (xn;T) is one. Let ĵn = argmaxe fe(xn;T), and let En = f ĵn(xn;T) be

the confidence of the GAM in assigning xn the subgroup ĵn. We then have a GSCM classifier

f (xn;S ĵn) for each latent subgroup ĵn ∈ {1 . . .K}, which predicts the class label for a data

example xn that has been assigned ĵn as its GSCM by the GAM: f (xn;T). S ĵn are the network

weights of this GSCM classifier.

Stage I.

In the first stage, we optimize the GAM: f (x;T) given C by solving the following

‘relaxed’ negative log-likelihood optimization problem:

T ∗(C) = argmin
T

N

∑
n=1
−Gn(C) log f jn(xn;T) (2.1)

Note that we do not update the ‘ground-truth’ subgroups C in this stage.

39

Stage II.

In the second stage, we learn the K GSCM models. For each latent subgroup k, there is a

GSCM classifier f (x;Sk) with parameters Sk, which predicts the class label for a data example

x assigned k as its subgroup by the GAM. Let Dn = {xn} denote the subset of training data

examples assigned subgroup k by GAM. We want to learn Sk by minimizing the following loss:

∑
xn∈Dn

ℓ(f (xn;Sk),yn) (2.2)

where yn is the class label of xn . l(·, ·) is the cross-entropy loss. In addition, we take into account

the confidence of the GAM in assigning the training example xn to its corresponding GSCM ĵn.

So we relax the above equation, and summarize the total loss of all GSCM models and objective

of this stage as:

{S∗k(T ∗(C))}K
k=1 = argmin

{Sk}K
k=1

N

∑
n=1

En (xn;T ∗(C))ℓ(f (xn;S ĵn),yn) (2.3)

where S∗k(T
∗(C)) for k ∈ {1 . . .K} denotes the optimal solution set for the K GSCM classifiers.

Stage III.

Given T ∗(C) and S∗k(T
∗(C)), we apply them to make predictions on the validation

examples and update the ‘ground-truth’ matrix C. The validation loss is:

min
C

M

∑
i=1

ℓ
(

E ĵi (xi;T ∗(C)) f
(

xi;S∗ĵi(T
∗(C))

)
,yi

)
(2.4)

where ĵi = argmaxe fe(xi;T ∗(C)) and M is the number of validation examples. yi is the class

label of xi. We update C by minimizing this validation loss.

Putting these pieces together, we have the following optimization problem:

min
C

M

∑
i=1

ℓ
(

E ĵi (xi;T ∗(C)) f
(

xi;S∗ĵi(T
∗(C))

)
,yi

)

40

s.t.{S∗k(T ∗(C))}K
k=1 = argmin

{Sk}K
k=1

N

∑
n=1

En (xn;T ∗(C))ℓ(f (xn;S ĵn),yn) (2.5)

T ∗(C) = argmin
T

N

∑
n=1
−Gn(C) log f jn(xn;T)

Domain Adaptive LBG

In our proposed Learing by Grouping (LBG) from Section 2.3.1, the N training examples

are divided into K subgroups. As a result, each subgroup has approximately N/K training

examples. The reduced number of training examples in small datasets can potentially lead

to higher risk of overfitting for each subgroup. To address this problem, we propose domain-

adaptive LBG (DALBG) where we treat each subgroup as a domain. During the second stage of

our framework, when we are training a group-specific classifier for a subgroup k, we perform

domain adaptation to adapt examples from other subgroups into subgroup k and use these adapted

examples as additional training data for subgroup k. For the sake of simplicity, our proposed

framework employs the MMD-based [127] domain adaptation approach. However, it should be

noted that other domain adaptation techniques can also be incorporated within our framework.

For a specific subgroup, k, let {xk
i }

Nk
i=k represent the examples assigned to this subgroup and

{x−k
j }

N−Nk
j=1 represent the examples not assigned to this subgroup. In order to adapt {x−k

j }
N−Nk
j=1

into subgroup k, we minimize the Maximum Mean Discrepancy (MMD) loss as follows:

Mk =

∥∥∥∥∥ 1
Nk

Nk

∑
i=1

φ

(
xk

i ;Sk

)
− 1

N−Nk

N−Nk

∑
j=1

φ

(
x−k

j ;Sk

)∥∥∥∥∥
2

2

(2.6)

where φ
(
xk

i ;Sk
)

denotes the embedding of xk
i extracted by Sk. This loss can be relaxed to:

Mk =

∥∥∥∥∥ 1
N

N

∑
n=1

fk (xn;T ∗(C))φ (xn;Sk)−
1
N

N

∑
n=1

(1− fk (xn;T ∗(C)))φ (xn;Sk)

∥∥∥∥∥
2

2

(2.7)

Thus, by adding Mk to our second stage Eq. (2.3) we define the following domain

41

adaptive LBG (DALBG) problem:

min
C

M

∑
i=1

ℓ
(

E ĵi (xi;T ∗(C)) f
(

xi;S∗ĵi(T
∗(C))

)
,yi

)

s.t.{S∗k(T ∗(C))}K
k=1 = argmin

{Sk}K
k=1

N

∑
n=1

En (xn;T ∗(C))ℓ(f (xn;S ĵn),yn)+λMk (2.8)

T ∗(C) = argmin
T

N

∑
n=1
−Gn(C) log f jn(xn;T)

where λ is a tradeoff parameter. Note that our proposed LBG in Eq. (2.5) method is a special

case of DALBG in Eq. (2.8) with λ = 0. For the sake of simplicity, we refer to both Learning by

Grouping with/without domain adaptation as (DA)LBG.

Neural Architecture Search Application

In this section, we extend the formulation in Eq. (2.5) to be applicable to neural architec-

ture search. Similar to [122], the k-th GSCM has a differentiable architecture Ak. The search

space of Ak is composed of large number of building blocks, where the output of each block

is associated with a weight a indicating the importance of the block. After learning, the block

whose weight a is among the largest are retained to form the final architecture. To this end,

architecture search amounts to optimizing the set of architecture weights Ak = {a}.

Stage I and Stage II have the same procedure as Eq. (2.1) and Eq. (2.7). In the second

stage, the network weights Sk of the expert model are a function of its architecture Ak. We keep

the architecture fixed at this stage, and learn the weights Sk(Ak). However, Stage III does not

precisely follow Eq. (2.4). Given T ∗(C) and S∗k(Ak,T ∗(C)), we apply them to make predictions

on the validation examples and update the ‘ground-truth’ matrix C, as well as the architectures

Ak based on the validation loss, where k ∈ {1 . . .K} . Hence, we update Eq. (2.4) as follows:

min
C,{Ak}K

k=1

M

∑
i=1

ℓ
(

E ĵi (xi;T ∗(C)) f
(

xi;S∗ĵi(A ĵi,T
∗(C))

)
,yi

)
(2.9)

42

Thus, the overall optimization problem with learnable architecture is as follows:

min
C,{Ak}K

k=1

M

∑
i=1

ℓ
(

E ĵi (xi;T ∗(C)) f
(

xi;S∗ĵi(A ĵi,T
∗(C))

)
,yi

)

s.t.{S∗k(Ak,T ∗(C))}K
k=1 = argmin

{Sk}K
k=1

N

∑
n=1

En (xn;T ∗(C))ℓ(f (xn;S ĵn(A ĵn),yn)+λMk (2.10)

T ∗(C) = argmin
T

N

∑
n=1
−Gn(C) log f jn(xn;T)

Our framework is orthogonal to existing differentiable NAS methods, and hence can be

applied on top of any like DARTS [122], P-DARTS [29], PC-DARTS [196], and DARTS− [35]

among the others.

2.3.2 Optimization Algorithm

We promote an efficient algorithm to solve the LBG, DALBG, and LBG-NAS problems

described in Eq. (2.5), Eq. (2.8), and Eq. (2.10), respectively. We utilize a fairly similar procedure

as [122] to calculate the gradient of Eq. (2.1) w.r.t T and approximately update T ∗(C) via one-

step gradient descent. Then since DALBG in Eq. (2.8) is the generalized version of LBG in

Eq. (2.5), we plug the approximation T
′
(C) into the Eq. (2.7) to get an OSk , which denotes the

approximated objective of Sk. Similarly to the previous step, we approximate S∗k(T
′
(C)) using

a one-step gradient descent update of Sk based on the gradient of the approximated objective.

Note that in LBG-NAS, we approximate S∗k(Ak,T ∗(C)), which is also a function of architecture

Ak. Finally, we plug the approximations T
′
(C) and S

′
k(T

′
(C)) into the third stage equations to

get the third approximate objective denoted by OC. C can be updated using gradient descent on

OC. In LBG-NAS, we update the architectures {Ak}K
k=1, as well. Thus, use the same approach to

find the approximate objective of the architectures {Ak} : O{Ak} for each k ∈ {1 . . .K}, and we

update it using gradient descent. We do these steps until convergence.

43

2.4 Experiments

In this section, we investigate the effectiveness of our proposed (DA)LBG framework

with both fixed human-designed GSCMs and searchable GSCMs. The differentiable NAS

approach consists of architecture search and evaluation stages, where the optimal cell obtained

from the search stage is stacked several times into a larger composite network. We then train the

resultant composite network from scratch in the evaluation stage.

2.4.1 Datasets

Various experiments are conducted on four datasets: ISIC-18, CelebA, CIFAR-10,

CIFAR-100, and ImageNet [47] for image classification. The CelebA dataset, consisting of 200k

images of human faces with 40 features per image [126], is used in this study. From the dataset,

we select a sample of 10,000 images, with 70% allocated for training, 15% for validation, and

15% for testing. The Skin ISIC 2018 dataset [37, 176] consists of a total of 11,720 dermatological

images, specifically curated for the purpose of 7-class skin cancer classification. In this research

paper, we have identified gender (male and female) as the sensitive attribute that may introduce

bias. To mitigate this potential bias, we have performed a partitioning of the dataset into training,

validation, and testing sets. The training set comprises 10,015 images, the validation set contains

1,512 images, and the testing set consists of 193 images, collectively representing the entirety

of the dataset. The CIFAR-10 dataset contains of 10 distinct classes, while the CIFAR-100

dataset encompasses 100 classes. Each dataset holds 60K images. For each of the datasets,

during grouping and architecture search processes, we use 25K images as the training set, 25K

images as the validation set, and the rest of the 10K images as the test set. During grouping and

architecture evaluations, the combination of the above training and validation set is used as the

training set of size 50k images. ImageNet carries 1.2M training images and 50K test images

with 1000 classes. Due to extensive amount of images in ImageNet, the architecture search can

be pretty costly. Thus, following [196], we randomly choose 10%, and 2.5% of the 1.2M images

44

Table 2.1. Results on CelebA with the target label of ”attractive” and sensitive attribute of
”gender”.

Methods Error (%) DP DEO Architecture
ResNet18 17.57 0.5023 0.5683 Manual
LBG-ResNet18 (ours) 17.02 0.2173 0.0596 Manual
DALBG-ResNet18 (ours) 16.84 0.2116 0.0835 Manual
DARTS 16.39 0.4571 0.3606 NAS
LBG-DARTS (ours) 15.91 0.2149 0.0535 NAS
DALBG-DARTS (ours) 15.22 0.2185 0.0891 NAS

to create a new training set and validation set, respectively, for the architecture search phase.

Then, we utilize all the 1.2M images through the evaluation.

2.4.2 Experimental Settings

We compare the (DA)LBG image classification tasks with fixed architectures to the

following MoE baselines: ResNet [78], Swin-T [125], T2T-ViT [204], DeepMOE [183], and

MGE-CNN [210]. Next, we compare LBG-NAS on image classification with DARTS-based

methods including DARTS [122], P-DARTS [29], and PC-DARTS [196]. To ensure the training

costs of our methods with K GSCM models are similar to those of baselines, we reduce the

parameter number of each expert to 1/K of the parameter number of the baseline models by

reducing the number of layers in each GSCM model. In this way, the total size of our methods

are comparable to the baselines. In addition, we train each group-specific sub-model only using

examples assigned to its corresponding subgroup, rather than using all training examples. So the

computation cost is O(N) rather than O(NK), where N is the number of training examples and

K is the number of latent subgroups. In each iteration of the algorithm, we use minibatches of

training examples to update sub-models, which further reduces computation cost. We utilize the

Betty library [34] for the implementation of our multilevel optimization tasks.

45

Table 2.2. Results of ISIC when the sensitive attribute is ”gender”.

Methods Error(%) SPD EOD AOD
ResNet18 14.3 0.114 0.143 0.170
LBG-ResNet18 (ours) 12.8 0.051 0.088 0.074
DARTS 10.2 0.121 0.139 0.154
LBG-DARTS (ours) 8.4 0.048 0.065 0.069

Human-Designed GSCMs.

For experiments on CIFAR-10/100 and ImageNet datasets, we use ResNet [78], Swin-T

[125], and T2T-ViT [204] models as our base GSCM models in the conducted experiments.

For consistency and a fair comparison, we apply K = 2 latent subgroups to our four image

classification datasets. To train our models, first we apply our proposed LBG training, where

we use half of training images as the training set and the other half as the validation set, for

100 epochs with early stopping technique to obtain the optimal subgroups. Then, we use the

obtained subgroups to fine-tune our GSCM models using the standard training settings with SGD

optimizer for 200 epochs on the entire training examples. The initial learning rate is set to 0.1

with momentum 0.9 and will be reduced using a cosine decay scheduler with the weight decay

of 3e-4. The batch size for CIFAR-10 and CIFAR-100 is set to 128, while for ImageNet we

use the batch size of 1024. The rest of hyperparameter settings follows as [73]. In all DALBG

experiments we use λ = 0.1. In this study, the Adam optimizer has been employed to train all

models on the CelebA dataset, utilizing a learning rate of 5e-4, and implementing a batch size of

64. On the other hand, for the ISIC-18 experiments, we have set the learning rate to 1e-3, and

the batch size to 32. For the experiments involving CelebA and ISIC-18, we leverage models

that have been pretrained on ImageNet. Our models are trained for a range of 30 to 50 epochs,

incorporating early stopping techniques to enhance efficiency.

GSCMs with Searchable Architectures.

We apply LBG to various DARTS-based approaches: DARTS [122], P-DARTS [29], and

PC-DARTS [196]. The search spaces of these methods are the combination of (dilated) separable

46

Table 2.3. Test errors comparison of vanilla (base) models, baselines and LBG on CIFAR-10,
CIFAR-100, and ImageNet.

Dataset Model Error(%)
CIFAR-10 ResNet56 (vanilla) 6.55
CIFAR-10 DeepMOE-ResNet56 6.03
CIFAR-10 MGE-CNN-ResNet56 5.91
CIFAR-10 LBG-ResNet56 (ours) 5.53
CIFAR-10 DALBG-ResNet56 (ours) 5.47
CIFAR-100 ResNet56 (vanilla) 31.46
CIFAR-100 DeepMOE-ResNet56 29.77
CIFAR-100 MGE-CNN-ResNet56 29.82
CIFAR-100 LBG-ResNet56 (ours) 27.96
CIFAR-100 DALBG-ResNet56 (ours) 27.95
ImageNet ResNet18 (vanilla) 30.24
ImageNet DeepMOE-ResNet18 29.05
ImageNet MGE-CNN-ResNet18 29.30
ImageNet LBG-ResNet18 (ours) 28.21
ImageNet DALBG-ResNet18 (ours) 28.08
ImageNet T2T-ViT-14 (vanilla) 17.16
ImageNet LBG-T2T-ViT-14 (ours) 15.50
ImageNet DALBG-T2T-ViT-14 (ours) 15.47
ImageNet Swin-T (vanilla) 18.70
ImageNet LBG-Swin-T (ours) 16.81
ImageNet DALBG-Swin-T (ours) 16.64

47

Table 2.4. Test errors, number of model parameters (in millions), and search costs (GPU days on
a Tesla v100) on CIFAR-100 and CIFAR-10. (DA)LBG-DARTS represents (DA)LBG applied to
DARTS. Similar meanings hold for other notations in such a format.

CIFAR-100 CIFAR-10
Method Error(%) Param(M) Cost Error(%) Param(M) Cost
DARTS [122] 20.58±0.44 3.4 1.5 2.76±0.09 3.3 1.5
LBG-DARTS (ours) 18.02±0.36 3.6 1.7 2.62±0.08 3.5 1.6
DALBG-DARTS (ours) 17.97±0.43 3.7 2.0 2.64±0.12 3.6 2.0
PC-DARTS [196] 17.96±0.15 3.9 0.1 2.57±0.07 3.6 0.1
LBG-PCDARTS (ours) 16.21±0.19 4.1 0.3 2.51±0.11 3.7 0.3
DALBG-PCDARTS (ours) 16.18±0.21 4.2 0.4 2.48±0.15 3.8 0.4
P-DARTS [29] 17.49 3.6 0.3 2.50 3.4 0.3
LBG-PDARTS (ours) 16.46±0.54 3.7 0.6 2.48±0.16 3.5 0.5
DALBG-PDARTS (ours) 16.39±0.48 3.9 0.6 2.47±0.19 3.7 0.6

convolutions with two different sizes of 3× 3 and 5× 5, max pooling with the size of 3× 3,

average pooling with the size of 3× 3, identity, and zero operations. Each LBG experiment

was repeated five times with different random seeds. The mean and standard deviation of

classification errors obtained from the experiments are reported.

In the architecture search stage, for CIFAR-10 and CIFAR-100, the architecture of each

group-specific classification model contains 5 cells – reduced from 8 cells to 5 cells to match

the parameter numbers of our baseline models – and each cell consists of 7 nodes. We use two

group-specific sub-models (i.e., two subgroups K = 2) in the search process with the initial

channels of 16. The search algorithm was based on SGD with a batch size of 64, the initial

learning rate of 0.025 (reduced in later epochs using a cosine decay scheduler), epoch number

of 50, weight decay of 3e-4, and momentum of 0.9. The rest of hyperparameters mostly follow

the original settings in DARTS, P-DARTS, and PC-DARTS. For a fair comparison, in all the

DALBG-NAS experiments λ = 0.1. For ISIC-18 and CelebA experiments, we utilize the same

setting as described in the previous part.

During architecture evaluation, each GSCM sub-model is formed by stacking 11 copies

(reduced from 20 layers to align with the baselines’ sizes) of the corresponding optimally

searched cell for CIFAR-10 and CIFAR-100 experiments. The initial channel number is set to 36.

We train the networks with a batch size of 96 and 600 epochs on a single Tesla V100 GPU. For

48

evaluation of ImageNet, we use the searched architectures on CIFAR-10 and we stack 8 copies

(similarly reduced from 14 layers to match the baselines’ sizes) of obtained cells are stacked

into each GSCM larger network, which was trained using four Tesla V100 GPUs on the 1.2M

training images, with the batch size of 1024 and initial channel number of 48 for 250 epochs.

Finally, for the evaluation of architecture in ISIC-18 and CelebA, we follow the same settings as

those described for fixed human-designed GSCMs. However, as we don’t have models pretrained

on ImageNet available, we supplement our training with additional data for both CelebA and

ISIC-18.

2.4.3 Results

First, we evaluate and compare the fairness of our proposed methods with the our

baselines on CelebA dataset. In line with the methodology of [185], we use ”attractive” as the

binary class label for prediction, and as bias-sensitive attribute, we consider ”gender” (male and

female) in relation to the predicted labels. For evaluation we use Demographic Parity (DP) and

Difference in Equalized Odds (DEO) metrices similar to [185]. The results of our experiments,

as shown in Table 2.1, demonstrate that our proposed methods can improve accuracy while

simultaneously mitigating unfair decision-making on minority groups. This is achieved through

the use of group-specific models, which are trained on individual groups. We can also observe

that DALBG improves accuracy more than LBG, but LBG achieves better fairness results on the

DEO metric. This could be due to the fact that domain adaptation incorporated in DALBG may

perpetuate or even amplify any existing biases present in the source domain, which may not be

fully removed if the target domain is significantly different.

Table 2.2 demonstrates the results of fairness experiments on the ISIC-18 dataset where

gender is the sensitive attribute and we use Statistical Parity Difference (SPD), Equal Opportunity

Difference (EOD), and Average Odds Difference (AOD) as metrics to evaluate a model’s fairness.

This table shows that our method not only boosts accuracy performance, but also improves

fairness by effectively mitigating bias in both fixed human-designed neural networks and NAS.

49

This performance improvement is attributable to our group-aware approach, which effectively

groups similar samples with respect to unprotected sensitive attributes. This proves the advantage

of our methods in addressing imbalanced attributes in the data.

Furthermore, in Table 2.3, we compare our proposed method with ResNet, Vision

Transformers (Swin-T and T2T-ViT) ,and our MoE baselines (i.e., MGE-CNN and DeepMOE).

The results in this table verify that our proposed method performs better than the baselines on all

CIFAR-10, CIFAR-100, and ImageNet datasets considerably. This empirically verifies our claim

that (DA)LBG reduces the overfitting risk found in MoE methods since the group assignments

are learned by minimizing the validation loss during a multi-stage optimization.

Table 2.4 shows the comparison of our proposed methods and the existing works, which

includes the classification errors with error bars, the number of model parameters, and search

costs on CIFAR-10 and CIFAR-100 test sets. By comparing different methods, we make the

following observation. Applying (DA)LBG to different NAS methods, including DARTS, P-

DARTS, and PC-DARTS, the classification errors of these methods are greatly reduced. For

instance, the original error of DARTS on CIFAR-100 is 20.58%; when DALBG is applied, this

error is significantly reduced to 17.97%. As another example, after applying LBG to PC-DARTS

and P-DARTS, the errors of CIFAR-100 experiments are decreased from 17.96% to 16.21% and

17.49% to 16.46%, respectively. Similarly for CIFAR-10, utilizing (DA)LBG in DARTS-based

methods manages to reduce the errors and overfittings. These results strongly indicate the broad

effectiveness of our framework in searching better neural architectures.

In Table 2.5, we compare different methods on ImageNet, in terms of top-1 and top-5

errors on the test set and number of model parameters, where the search costs are the same as the

ones reported in Table 2.4. In these experiments, the architectures are searched on CIFAR-10 and

evaluated on ImageNet similar to original DARTS [122]. DALBG-DARTS-CIFAR10 denotes

that DALBG is applied to DARTS and performs search on CIFAR-10. Similar meanings hold

for other notations in such a format. The observations made from these results are consistent

with those made from Table 2.4. The architectures searched using our methods are consistently

50

Table 2.5. Results of ImageNet with gradient-based NAS methods.

Top-1 Top-5 Param
Method Error (%) Error (%) (M)

DARTS-CIFAR10 [122] 26.7 8.7 4.7
DALBG-DARTS-CIFAR10 (ours) 24.9 8.1 4.9
P-DARTS (CIFAR10) [29] 24.4 7.4 4.9
DALBG-PDARTS-CIFAR10 (ours) 23.9 6.9 5.0
PC-DARTS-CIFAR10 [196] 24.8 7.3 5.3
DALBG-PCDARTS-CIFAR10 (ours) 23.1 6.3 5.7

better than those searched by corresponding baselines. For example, DALBG-DARTS-CIFAR10

achieves 1.8% lower top-1 error than DARTS-CIFAR10. To the best of our knowledge, DALBG-

PCDARTS-CIFAR10 is the new SOTA on mobile setting of Imagenet.

2.4.4 Ablation Studies

In this section, we conduct ablation studies to analyze the impact of individual compo-

nents in our proposed frameworks.

Ablation on tradeoff parameter λ :

We study the effectiveness of tradeoff parameter λ in Eq. (2.8) on accuracy and fairness.

We apply DALBG on CelebA dataset with two searchable GSCMs (i.e., K = 2) with the same

setting as described in Section 2.4.2. In Table 2.6, we illustrate how the accuracy and fairness of

DALBG on the test sets of CelebA are affected by increasing the tradeoff parameter λ . It can

be observed that increasing λ from 0 to 0.1 leads to a decrease in fairness but an increase in

accuracy, as a result of the MMD loss feedback. However, continuing to increase λ leads to a

drop in accuracy as well. This is because placing too much emphasis on domain shift can result

in less focus on in-domain performance ability.

51

Table 2.6. Ablation results on tradeoff parameter λ .

Methods Error (%) DEO
LBG-DARTS with λ = 0 15.91 0.0535
DALBG-DARTS with λ = 0.01 15.73 0.0754
DALBG-DARTS with λ = 0.1 15.22 0.0891
DALBG-DARTS with λ = 1 15.38 0.0917

Ablation on number of subgroups:

Next, we examine how different numbers of GSCM models with different number of

subgroups K ∈ {1,2,3,4} in Eq. (2.10) impact both accuracy and fairness performances. We

apply (DA)LBG to DARTS. Table 2.7 indicates that for CelebA larger number of subgroups

can decrease the classification error and improve the fairness. However, in our experiments

number of subgroups K = 3 and K = 4 seem to achieve on par results, while K = 3 is more

computationally efficient. The improved performance with a larger number of subgroups can

be due to the fact that, in real life, many unprotected attributes may not be considered, but their

combinations can still be used as proxies and affect decision-making processes. Thus, depending

on the data and task, we can choose the most suitable number of subgroups, which can be

different in various scenarios. Also, additional experiments and comparisons of (DA)LBG with

bagging-based model ensemble can be found in the Supplements.

Table 2.7. Ablation results on number of subgroups.

Methods Error (%) DEO
LBG-ResNet18 with K = 1 17.59 0.5427
LBG-ResNet18 with K = 2 17.02 0.0596
LBG-ResNet18 with K = 3 16.88 0.0541
LBG-ResNet18 with K = 4 16.85 0.0533

Ablation on different domain adaptation techniques:

In this study, we aim to investigate the efficacy of different distance measuring approaches,

namely Maximum Mean Discrepancy (MMD), Correlation Alignment (CORAL), Kullback-

Leibler (KL) divergence, and Contrastive Domain Discrepancy (CDD), by incorporating them

52

into our framework. We conduct our experiments on DARTS with a similar experimental setup

to Table 2.1. The results, presented in Table 2.8, indicate that MMD loss is the most effective

approach in achieving both high accuracy and fairness compared to the other three methods. The

superior performance of MMD in our framework can be attributed to its non-parametric nature

and ability to capture non-linear relationships due to its kernel-based approach. In contrast,

KL divergence relies on the assumption that both distributions are well-defined probability

distributions and, along with CDD, may struggle to capture non-linear relationships in the data.

Furthermore, while CORAL aligns the second-order statistics (i.e., covariance matrices) of the

feature distributions, MMD maps the data into a Reproducing Kernel Hilbert Space (RKHS) using

kernel functions. This capability enables MMD to capture more intricate relationships between

data points, potentially resulting in improved performance within our framework. However, it is

worth noting that the effectiveness of a domain adaptation technique may vary depending on the

specific task and the degree of domain shift between the source and target domains. Thus, the

choice of an appropriate technique should be based on the unique characteristics of the data and

the task at hand.

Table 2.8. Ablation results on different domain adaptation techniques.

Methods Error (%) DEO
DALBG-DARTS-MMD 15.22 0.0891
DALBG-DARTS-CORAL 15.71 0.1137
DALBG-DARTS-KL 15.36 0.0945
DALBG-DARTS-CDD 15.80 0.1142

2.5 Conclusions and Discussion

In this chapter, we propose a novel MLO approach, called Learning by Grouping (LBG),

drawing from humans’ grouping-driven methodology of solving problems. Our approach learns

to group a diverse set of problems into distinct subgroups where problems in the same subgroups

53

are similar; a group-specific solution is developed to solve problems in the same subgroups.

We formulate our LBG as a multi-level optimization problem which is solved end-to-end. An

efficient gradient-based optimization algorithm is developed to solve the LBG problem. We

further incorporate domain adaptation in our framework to reduce the risk of overfitting. In our

experiments on various datasets, we demonstrate that the proposed framework not only helps to

mitigate overfitting and improve fairness, but also consistently outperforms baseline methods.

The main limitation of LBG is that it cannot be applied to non-differentiable NAS approaches up

to a point. In our future works, we will extend learning by grouping to reinforcement learning

and evolutionary algorithms.

2.6 Appendix

2.6.1 Optimization Algorithm

We develop an efficient optimization algorithm to solve our proposed LBG problem.

Notations are given in Table 2.9. We define group jn such that jn = argmaxk Cnk, and let Gn =

Cn jn be the ground truth assignments of the sample xn to group jn. Let ĵn = argmaxk fk(xn;T),

and let En = f ĵn(xn;T) be the confidence of the GAM in assigning xn to the group ĵn.

Table 2.9. Notations used in LBG

Notation Meaning
Ak Architecture of the Group-Specific Classification Model (GSCM) of group k (Only in NAS applications)
Sk Network weights of the Group-Specific Classification Models f (x;Sk) of group k
T Network weights of the Group Assignment Model (GAM) f (x;T)
C Learnable ‘ground-truth’ categorization matrix
Dn Training data
Di Validation data

We approximate T ∗(C) using one step gradient descent w.r.t ∑
N
n=1−Gn(C) log f jn(xn;T):

T ∗(C)≈ T ′ = T −ηt∇T

N

∑
n=1
−Gn(C) log f jn(xn;T) (2.11)

Then we plug T ′ into ∑
N
n=1 En (xn;T ∗(C))ℓ(f (xn;S ĵn(A ĵn),yn) and get an approximated objective.

54

And we approximate S∗
ĵn
(T ∗(C)) using one step gradient descent w.r.t the approximated objective:

S∗ĵn(T
∗(C))≈ S′ĵn = S ĵn−ηs∇S ĵn

N

∑
n=1

En
(
xn;T ′(C)

)
ℓ(f (xn;S ĵn(A ĵn)),yn) (2.12)

Finally, we plug T ′ and S′
ĵn

into ∑
M
i=1 ℓ

(
E ĵi (xi;T ∗(C)) f

(
xi;S∗

ĵi
(A ĵi,T

∗(C))
)
,yi

)
and get an

approximated objective. Then we update A by gradient descent:

C←C−ηc∇C

M

∑
i=1

ℓ
(

E ĵi

(
xi;T ′(C)

)
f
(

xi;S′ĵi(A ĵi,T
′(C))

)
,yi

)
, (2.13)

where by applying chain rule it yields:

∇C

M

∑
i=1

ℓ
(

E ĵi (xi;T ∗(C)) f
(

xi;S∗ĵi(A ĵi ,T
∗(C))

)
,yi

)
=

∂T ′

∂C

M

∑
i=1

∂S′ĵi
∂T ′

∇S′
ĵi
ℓ
(

E ĵi

(
xi;T ′(C)

)
f
(

xi;S′ĵi(A ĵi ,T
′(C))

)
,yi

)
+ (2.14)

∂T ′

∂C
∇T ′

M

∑
i=1

ℓ
(

E ĵi

(
xi;T ′(C)

)
f
(

xi;S′ĵi(A ĵi ,T
′(C))

)
,yi

)

and ∂T ′
∂C and

∂S′
ĵi

∂T ′ are computed as follows:

∂T ′

∂C
=−ηt∇

2
C,T

N

∑
n=1
−Gn(C) log f jn(xn;T) (2.15)

∂S′
ĵi

∂T ′
=−ηs∇

2
T ′,S ĵi

N

∑
n=1

En
(
xn;T ′(C)

)
ℓ(f (xn;S ĵn(A ĵn)),yn) (2.16)

For the NAS applications we also update architectures A ĵi , where ĵi ∈ K:

A← A−ηa∇A

M

∑
i=1

ℓ
(

E ĵi

(
xi;T ′(C)

)
f
(

xi;S′ĵi(A ĵi,T
′(C))

)
,yi

)
, (2.17)

similar to group updating in Eq. 2.14, we apply chain rule as follows:

55

∇A

M

∑
i=1

ℓ
(

E ĵi (xi;T ∗(C)) f
(

xi;S∗ĵi(A ĵi ,T
∗(C))

)
,yi

)
= (2.18)

M

∑
i=1

∂S′ĵi
∂A ĵi

∇S′
ĵi
ℓ
(

E ĵi

(
xi;T ′(C)

)
f
(

xi;S′ĵi(A ĵi ,T
′(C))

)
,yi

)

and
∂S′

ĵi
∂A ĵi

can be computed using the following equation:

∂S′ĵi
∂A ĵi

=−ηs∇
2
A ĵi

,S ĵi

N

∑
n=1

En
(
xn;T ′(C)

)
ℓ(f (xn;S ĵn(A ĵn)),yn) (2.19)

This algorithm is summarized in Algorithm 2.
Algorithm 2: Optimization algorithm for Learning by Grouping

while not converged do

1. Update the group assignment model’s weights T using Eq. 2.11.

2. Update the group-specific classification models’ weights {Sk}K
k=1 using

Eq. 2.12.

if NAS application then
3. Update the group-assignment matrix C and the group-specific

classification models’ architectures {Ak}K
k=1 using Eq. 2.13 and Eq. 2.17.

else

3. Only update the group-assignment matrix C using Eq. 2.13.

end

end

2.6.2 Additional Experiments

2.6.3 Comparison with Bagging-based Model Ensemble

In this section we compare our proposed method (LBG) with bagging-based model

ensemble, which uses three models (the same as our method). Table 2.10 demonstrates the

results. Our method works better than model ensemble because it uses a divide-and-conquer

56

strategy. It divides data examples into groups where examples in the same group are similar; then

for each group, an expert model is learned. Divide-and-conquer makes model training easier,

because it is easier to train a highly-performant model for a group of similar examples than for

a mixture of dissimilar examples from different groups. In ensemble learning, each model is

trained on a mixture of dissimilar examples from different groups, which is a harder problem to

solve. Additionally, in our method, the expert for each group can capture the unique data patterns

in that group. Capturing group-specific data patterns can help to make more accurate predictions.

In contrast, each model in ensemble learning is trained on all examples from different groups,

which does not take group-specific data patterns into account.

Table 2.10. Comparison of our work with existing bagging-based model ensemble on CIFAR-
100.

Methods Test error (%)
Ensemble+DARTS-2nd 19.66±0.34
LBG-DARTS-2nd (ours) 18.02±0.36

Ensemble+P-DARTS 17.32±0.27
LBG-PDARTS (ours) 16.46±0.54

Language Tasks

In this section, we apply LBG with fixed human-designed architectures to language

understanding tasks. We conducted experiments on the various tasks of the General Language

Understanding Evaluation (GLUE) benchmark [181]. GLUE contains nine tasks, which are two

single-sentence tasks (CoLA and SST-2), three similarity and paraphrase tasks (MRPC, STS-B,

and QQP), and four inference tasks (MNLI, QNLI, RTE, WNLI). We test the performance of

LBG in language understanding by submitting our inference results to the GLUE evaluation

server. GLUE offers training and development data splits, that are used as training and validation

data. For the test dataset, and GLUE organisers provide a submission server that reports the

performance on the private held out test dataset.

57

Table 2.11. Comparison of BERT-based and RoBERTa-based experiments on GLUE sets.

Corpus BERT LBG-BERT RoBERTa LBG-RoBERTa
CoLA (Matthews Corr.) 60.5 62.8 68.0 69.5
SST-2 (Accuracy) 94.9 96.5 96.4 96.8
MRPC (Accuracy/F1) 85.4/89.3 86.2/89.5 90.9/92.3 90.2/92.4
STS-B (Pearson/Spearman Corr.) 87.6/86.5 88.4/87.9 92.4/92.0 92.5/92.3
QQP (Accuracy/F1) 89.3/72.1 89.6/72.3 92.2/- 92.6/77.0
MNLI (Matched/Mismatched Accuracy) 86.7/85.9 86.5/85.9 90.2/90.2 91.1/91.1
QNLI (Accuracy) 92.7 93.5 94.7 94.9
RTE (Accuracy) 70.1 72.4 86.6 86.7
WNLI (Accuracy) 65.1 66.3 91.3 86.3

Experimental Settings

We examine our proposed method by conducting varied experiments on several different

tasks and datasets. We compare LBG on language understanding tasks with fixed architectures

using BERT [50] and RoBERTa [124]. BERT [50] and RoBERTa [124] initialize the Transformer

encoder with pre-trained BERT and RoBERTa, respectively, with the intentions of masked

language modeling and next sentence prediction. Then, they utilize the pre-trained encoder and a

classification head to build a text classification model. This text classification model latter will

be fine-tuned on a target classification task.

To examine our method in language understanding, we employ BERT and RoBERTa as

the group-specific sub-models with K = 4 latent subgroups on the GLUE tasks. LBG-BERT and

LBG-RoBERTa are optimized using Adam optimizer [141]. The maximum length of text was

set to 512 tokens. Our hyperparameter settings for BERT and RoBERTa experiments are the

same as in [73]. Each GLUE task has a different batch size, learning rate, and number of epochs,

where they are within the batch sizes ∈ {16,32}, learning rates ∈ {1e−5,2e−5,3e−5,4e−5}, and

number of epochs ∈ {3,4,5,6,10}.

Results

Table 2.11 demonstrates the comparison of our methods with BERT and RoBERTa

methods on nine different GLUE tasks. It is shown in this table that LBG can efficiently enhance

the performance of existing base models in various language understanding tasks. In most of the

58

tasks, LBG-BERT and LBG-RoBERTa outperform BERT and RoBERTa, respectively. In MNLI

and MRPC, the results of our methods are on par with the baselines, while RoBERTa achieves a

slightly better result than our methods on the WNLI task.

2.7 Acknowledgements

Chapter 2, in part, has been published in the Proceedings of the 2023 International

Conference on Machine Learning (ICML) under the title “Fair and Accurate Decision Making

through Group-Aware Learning” by Ramtin Hosseini, Bhanu Garg, Li Zhang, and Pengtao Xie.

The dissertation author was the primary author of this material.

59

Chapter 3

Advancing Generalizability in NAS with
Self-Training

3.1 Introduction

The rapid advancement of deep learning techniques is assisting with resolving social

difficulties in various fields. One of these fields that has recently attracted the researchers’

attention is image understanding (e.g., image captioning). Image Captioning is a multi-model

task that evaluates the computer’s ability to understand images by generating the language

descriptions of the input images, as shown in Figure 3.1. Solving this visual-language problem

can be challenging, considering the complexity of understanding the relationships of recognized

critical objects in the images. Since the architecture design of deep neural networks plays a

critical role in the performance enhancement of the model, researchers have proposed a significant

number of techniques in order to enhance the performance of their models by designing proper

architectures for the encoder and the decoder modules for various tasks. However, obtaining

high-performance human-designed architectures for each dataset with different distributions is

exhausting and time-consuming.

Recently, neural architecture search (NAS) has achieved remarkable progress in obtaining

the optimal architectures automatically, which helps attain better performances in computer

vision and natural language processing applications. Nevertheless, most researchers in this area

have focused on applying NAS methods to language modeling [216], image classification[218,

60

Figure 3.1. Overview of an Image Captioning task.

219, 195, 144, 60, 82], and adversarial training[85], while image captioning study with NAS is

still largely underexplored. Several works have been investigated in employing NAS methods on

image captioning, such as [216], where they focus only on searching for the architecture of the

decoder module (i.e., language generation module) by using Reinforcement Learning [216].

In this chapter, we propose a three-stage optimization problem, called Image Under-

standing by Captioning (IUC), that applies differentiable architecture search [122] on image

captioning tasks. Unlike the previous related works [216] that apply Reinforcement Learning

based (RL-based) NAS methods only on decoder modules, we utilize differentiable architecture

search based (DARTS-based) approaches on both encoder and decoder modules to improve

our model’s performance and, also, study the effectiveness and importance of each module.

Extensive experiments on COCO datasets [118] explicate that our proposed methods outperform

the existing strategies and can achieve state-of-the-art performances in image captioning.

61

3.2 Related Works

3.2.1 Image Captioning

Image Captioning is a multi-modal task that generates textual descriptions of input images.

In order to perform this vision-language process, we need an encoder-decoder framework, where

the encoders take the input images and create embeddings to feed them into the decoders to

generate captions. Various techniques have been introduced in the past few years to enhance

image captioning. Early works [133] in this area mostly use CNN as the image encoder,

and LSTM [180] and RNN [203] as the language decoder to generate the captions of the

input images. Later on, various attempts [33] showed performance improvements by applying

attention mechanisms for more information exchange between the encoder and decoder modules.

In several recent works, significant progress has been made with transformers [39] architectures.

On the other hand, various approaches have been made to enhance the object detection task part

of the image captioning, such as employing grid feature, region feature, and relation-aware visual

feature. In the most recent works [115], researchers exhibit that vision-language pre-training on

large image-text datasets can improve image captioning performances significantly. Moreover,

several other recent works have been studying the importance of the image-captioning encoder-

decoder architecture [8] by investigating different encoder-decoder architectures’ performances

versus their model sizes. Despite all the progress that has been made in image captioning tasks

over the past decade, most of the existing image captioning models suffer from the design of their

encoder and decoder architectures, which are fixed human-designed. Recently, AutoCaption

[216] has proposed applying reinforcement learning-based neural architecture search (NAS)

to image captioning tasks in order to design a better language decoder on the X-LAN [139].

Since reinforcement learning-based neural architecture search methods are mainly expensive

for computer vision tasks (e.g., image classification), the existing image captioning methods

that utilize NAS are inefficient in searching for the image encoder architecture. To address this

problem, we propose a novel method that uses differentiable architecture search techniques to

62

obtain the optimal task-specific image encoder and language decoder architectures for image

captioning tasks.

Figure 3.2. Overview of Image Understanding by Captioning (IUC) optimization framework.

3.3 Methods

In this section, we propose a novel method called Image Understanding by Captioning

(IUC), where we apply differentiable architecture search techniques to obtain the optimal

architectures for the encoder-decoder model. Inspired by [122], the architecture cells are directed

63

acyclic graphs (DAG) with N nodes (i.e., latent representations) and directed edges, representing

the operation between the corresponding nodes. Our three-level optimization framework contains

an encoder-decoder image captioning model with searchable architecture and a predictive image

captioning (IC) model with fixed human-designed architecture. The searchable encoder-decoder

model learns to take an image and generate text descriptions of the given image. Then, using

the learned encoder-decoder model, we generate a pseudo image captioning dataset from the

unlabeled dataset, and we train our predictive model on the new pseudo-IC dataset. Lastly,

the trained predictive model validates its performance on the validation set of the IC dataset

and minimizes its validation loss. To independently investigate the effectiveness of the image

encoder module and language decoder module, we perform image encoder and language decoder

architecture searches individually. Figure 3.2 illustrates our three-level optimization framework

(IUC), where the solid arrows represent that the predictions are made and training/validation

losses are determined; and the dotted arrows denote that the gradient updates of network weights

and architecture variables are determined and weights/architecture are updated.

3.3.1 Image Understanding by Captioning

In our framework, there are three learning stages. In the first stage, a model learns to

create image captions. The model has an encoder-decoder architecture. The encoder takes an

input image and produces an embedding. The embedding is fed into the decoder, which decodes

a textual description. We use the image captioning datasets to train the encoder and decoder by

solving the following problem:

E∗(A),F∗(A) = argmin
E,F

L(E,A,F,D(tr)) (3.1)

where F and E denote the network weights of the decoder and the encoder, respectively, and

A represents the architectures of the encoder and the decoder. D(tr) is an image captioning dataset.

64

Algorithm 3: Optimization algorithm for image understanding by captioning
while not converged do

1. Update encoder weights:
E← E−ηe∇EL(E,A,F,D(tr))

2. Update decoder weights:
F ← F−η f ∇FL(E,A,F,D(tr))

3. Update predictive model weights:
W ←W −ηw∇W L(W,U,E ′,F ′)

4. Update the encoder-decoder architecture:
A← A−ηa∇AL(W ′,D(val)))

end

In the second stage, we use the trained encoder E∗(A) and decoder F∗(A) with searchable

architectures from the first stage to generate a pseudo image captioning dataset using unlabeled

images U . Then, using this new dataset, we train the network weights W of the predictive model

with a fixed architecture by minimizing the following training loss:

W ∗(E∗(A),F∗(A)) = argmin
W

L(W,U,E∗(A),F∗(A)) (3.2)

Finally, we evaluate W ∗(E∗(A),F∗(A)) in the third stage on the image captioning

validation set and update A by minimizing the validation loss:

min
A

L(W ∗(E∗(A),F∗(A)),D(val)) (3.3)

The predictive model in our framework assists the initial image captioning model to

obtain the optimal architecture by testing its caption generating performance. Putting these

pieces together, we get the following optimization problem:

min
A

L(W ∗(E∗(A),F∗(A)),D(val))

s.t. W ∗(E∗(A),F∗(A)) = argmin
W

L(W,U,E∗(A),F∗(A))

E∗(A),F∗(A) = argmin
E,F

L(E,A,F,D(tr))

(3.4)

65

The architecture searches for the image encoder and the language decoder modules

are similar to Conventional Cell Search and Recurrent Cell Search as proposed in DARTS

[122], respectively. The encoder during the architecture search contains 8 optimal cells, and the

decoder is a single cell. Our proposed IUC framework is orthogonal to the various differentiable

NAS methods, and it can be employed on any DARTS-based method, including DARTS [122],

P-DARTS [195], PC-DARTS [194], and DATA [20].

Image Encoder Architecture Search.

In order to obtain the optimal image encoder architecture for image captioning on

a particular dataset, we search for convolutional cells similar to DARTS [122] to optimize

the encoder module architecture A using Eq.3.4. Inspired by [122], the encoder module is a

convolution network built by stacking the learned cells together. The search spaces for the

encoder architectures include (dilated) separable convolutions with sizes of 3×3 and 5×5, max

pooling with the size of 3×3, average pooling with the size of 3×3, identity, and zero.

Table 3.1. Notations in Image Understanding by Captioning (IUC).

Notation Meaning
E Encoder weights
F Decoder weights
W Network weights of predictive model
A Encoder-Decoder architecture

D(tr) Image captioning training set
D(val) Image captioning validation set

U Unlabeled image dataset
ηe Learning rate of E
η f Learning rate of F
ηw Learning rate of W
ηa Learning rate of A

Language Decoder Architecture Search.

To design the language decoder module, we perform the architecture searching for

recurrent cells analogous to DARTS [122]. In this case, The architecture A in Eq.3.4 represents

the decoder architecture, where the learned cells are recursively connected in order to build

66

the recurrent network of the language decoder. Our defined primitive operations in the search

space for the recurrent cell of the language decoder include linear transformations followed by

activation functions, the identity mapping, and the zero operation. The activation functions are

chosen from one of the following: relu, tanh, sigmoid, elu, celu, or gelu.

3.3.2 Optimization Algorithm

In this section, we develop an optimization algorithm to solve the problem in Eq.(3.4)

with our defined notations from Table 3.1. We approximate E∗(A) and F∗(A) using one-step

gradient descent w.r.t L(E,A,F,D(tr)):

E∗(A)≈ E ′ = E−ηe∇EL(E,A,F,D(tr)) (3.5)

F∗(A)≈ F ′ = F−η f ∇FL(E,A,F,D(tr)) (3.6)

We plug E ′ and F ′ into L(W,U,E∗(A),F∗(A)) and get an approximated objective. We

approximate W ∗(E∗(A),F∗(A)) using one-step gradient descent w.r.t the approximated objective:

W ∗(E∗(A),F∗(A))≈W ′ =W −ηw∇W L(W,U,E ′,F ′) (3.7)

We plug W ′ into L(W ∗(E∗(A),F∗(A)),D(val)) and get an approximated objective. Thus,

we update A using gradient descent:

A← A−ηa∇AL(W ′,D(val)), (3.8)

where by applying chain rule to the approximate architecture gradient Eq. 3.8, we get:

∇AL(W ′,D(val)) = (
∂E ′

∂A
∂W ′

∂E ′
+

∂F ′

∂A
∂W ′

∂F ′
)∇W ′L(W

′,D(val)) =

(ηeηw∇
2
A,EL(E,A,F,D(tr))∇2

E ′,W L(W,U,E ′,F ′)+η f ηw∇
2
A,F (3.9)

67

L(E,A,F,D(tr)))∇2
F ′,W L(W,U,E ′,F ′))∇W ′L(W

′,D(val))

The overall algorithm of IUC is shown in Algorithm 3.

Table 3.2. Comparison of our methods and the state-of-the-art image captioning models on the
COCO “Karpathy” test split (single-model). Methods with † are using NAS methods.

Cross-Entropy Loss Encoder-Decoder
BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE Architecture

LSTM [180] - 29.6 25.2 52.6 94.0 - manual
SCST [152] - 30.0 25.9 53.4 99.4 - manual
LSTM-A [202] 75.4 35.2 26.9 55.8 108.8 20.0 manual
RFNet [98] 76.4 35.8 27.4 56.5 112.5 20.5 manual
Up-Down [6] 77.2 36.2 27.0 56.4 113.5 20.3 manual
GCN-LSTM [201] 77.3 36.8 27.9 57.0 116.3 20.9 manual
LBPF [146] 77.8 37.4 28.1 57.5 116.4 21.2 manual
SGAE [198] 77.6 36.9 27.7 57.2 116.7 20.9 manual
AoANet [90] 77.4 37.2 28.4 57.5 119.8 21.3 manual
X-LAN [139] 78.0 38.2 28.8 58.0 122.0 21.9 manual
X-Transformer[139] 77.3 37.0 28.7 57.5 120.0 21.8 manual
OSCARL [115] - 37.4 30.7 - 127.8 23.5 manual
OSCAR+L w/ VINVL [211] - 38.5 30.4 - 130.8 23.4 manual
AutoCaption [216]† 79.4 39.2 29.0 58.6 125.2 22.4 RL
IUC-D (ours) † 79.6 39.5 30.8 58.9 130.6 23.8 gradient-based
IUC-E (ours) † 79.9 40.0 30.9 59.3 131.1 23.7 gradient-based

CIDEr Score Optimization Encoder-Decoder
BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE Architecture

LSTM [180] - 31.9 25.5 54.3 106.3 - manual
SCST [152] - 34.2 26.7 55.7 114.0 - manual
LSTM-A [202] 78.6 35.5 27.3 56.8 118.3 20.8 manual
RFNet [98] 79.1 36.5 27.7 57.3 121.9 21.2 manual
Up-Down [6] 79.8 36.3 27.7 56.9 120.1 21.4 manual
GCN-LSTM [201] 80.5 38.2 28.5 58.3 127.6 22.0 manual
LBPF [146] 80.5 38.3 28.5 58.4 127.6 22.0 manual
SGAE [198] 80.8 38.4 28.4 58.6 127.8 22.1 manual
AoANet [90] 80.2 38.9 29.2 58.8 129.8 22.4 manual
X-LAN [139] 80.8 39.5 29.5 59.2 132.0 23.4 manual
X-Transformer[139] 80.9 39.7 29.5 59.1 132.8 23.4 manual
Meshed-Memory Transformer [39] 80.8 39.1 29.2 58.6 131.2 22.6 manual
X-Transformer+PPO [209] 81.1 39.7 29.6 59.2 133.3 23.4 manual
OSCARL [115] - 41.7 30.6 - 140.0 24.5 manual
OSCAR+L w/ VINVL [211] - 41.0 31.1 - 140.9 25.2 manual
AutoCaption [216] † 81.5 40.2 29.9 59.5 135.8 23.8 RL
IUC-D (ours) † 81.8 40.9 31.0 59.5 140.6 25.3 gradient-based
IUC-E (ours) † 82.3 42.1 31.4 60.1 141.9 25.8 gradient-based

3.4 Experiments

In this section, we apply our proposed IUC methods to perform image encoder and

language decoder architecture searches. Each experiment consists of two steps: architecture

search and architecture evaluation. The optimal cell is obtained in the search process, and it will

68

be evaluated in the evaluation stage based on the formed large network from the optimal cell.

The large network will be retrained from scratch for the architecture evaluation.

3.4.1 Datasets

We perform experiments on the COCO captions dataset [118] to evaluate and compare

our proposed methods. The COCO captions dataset contains 82,783 and 40,504 images in the

training and validation sets, respectively. We conduct thorough experiments by analyzing our

models on the offline and the online evaluations. Each image in the dataset holds five captions,

which were annotated by humans. During the offline evaluation, we utilize the ‘Karpathy’

splits setting [102], which has 113,287 images and 5000 images in the training set and test set,

respectively. At the second stage of the architecture search, we use the 123K unlabeled images

of the COCO dataset, which has a similar class distribution as the labeled images, and we use our

trained encoder-decoder model from the first stage to generate a textual description of the images.

Then the pre-trained predictive IC model will be trained based on the generated pseudo-dataset.

Finally, we update the architecture of the encoder-decoder by minimizing the validation loss of

the predictive model on the validation set.

3.4.2 Experimental Settings

Recall that our proposed framework IUC is a comprehensive differentiable method,

which can be applied with any differentiable architecture search approach. With that being said,

we employ DARTS-2nd [122] in the conducted experiments that are exhibited in Table 3.2, 3.4,

and 3.5, and DARTS [122], PC-DARTS [194], and DATA [20] in Table 3.6 of the Ablation

3.4.4, which is shown in Table 3.6. We introduce two variants of our IUC method: 1) IUC with

image encoder architecture search (IUC-E); and 2) IUC with language decoder architecture

search (IUC-D). Moreover, we simultaneously apply IUC architecture searching on both the

image encoder and the language decoder in Ablation 3.4.4. Note that the common operations

in differentiable architecture searches usually do not contain some practical operations such as:

69

Table 3.3. Comparison of our methods and the state-of-the-art image captioning models on the
COCO “Karpathy” test split with multiple models (Ensemble/Fusion). Methods with † are using
NAS methods.

Cross-Entropy Loss Encoder-Decoder
BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE Architecture

SCSTΣ [152] - 32.8 26.7 55.1 106.5 - manual
RFNetΣ [98] 77.4 37.0 27.9 57.3 116.3 20.8 manual
GCN-LSTMΣ [201] 77.4 37.1 28.1 57.2 117.1 21.1 manual
SGAEΣ [198] - - - - - - manual
AoANetΣ [90] 78.7 38.1 28.5 58.2 122.7 21.7 manual
X-LANΣ [139] 78.8 39.1 29.1 58.5 124.5 22.2 manual
X-TransformerΣ[139] 77.8 37.7 29.0 58.0 122.1 21.9 manual
AutoCaptionΣ [216] † 79.8 40.3 29.6 59.2 128.5 22.8 RL
IUC (ours) † 80.0 40.6 31.2 59.4 132.8 23.9 gradient-based

CIDEr Score Optimization Encoder-Decoder
BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE Architecture

SCSTΣ [152] - 35.4 27.1 56.6 117.5 - manual
RFNetΣ [98] 80.4 37.9 28.3 58.3 125.7 21.7 manual
GCN-LSTMΣ [201] 80.9 38.3 28.6 58.5 128.7 22.1 manual
SGAE [198] 81.0 39.0 28.4 58.9 129.1 22.2 manual
AoANetΣ [90] 81.6 40.2 29.3 59.4 132.0 22.8 manual
X-LANΣ [139] 81.6 40.3 29.8 59.6 133.7 23.6 manual
X-TransformerΣ[139] 81.7 40.7 29.9 59.7 135.3 23.8 manual
AutoCaptionΣ [216] † 82.9 42.1 30.4 60.4 139.5 24.3 RL
IUC (ours) † 82.4 42.5 31.8 60.4 142.7 25.9 gradient-based

attention, top-down, or RoI pooling. To address this issue, we modify our image encoder and

language decoder inspired by some SoTA methods such as Faster R-CNN [150] and X-LAN

[139] techniques.

Architecture Search Details.

During the search stage, we use Faster R-CNN [150] and X-LAN [139] as our image

encoder and sentence decoder of the image captioning model, respectively. In IUC-E, we switch

their human-designed architecture network with 8 convolutional cells (each holding 7 nodes),

while during the IUC-D search we replace their LSTMs with our recurrent cell, which consists of

12 nodes. In IUC-D, ResNeXt-152 is adopted as the CNN in the Faster R-CNN. In addition, the

initial convolutional architectures of the image encoder in IUC-E are pre-trained on ImageNet

[47], and Visual Genome [105] datasets prior to the search for improving the object feature

extractions. Following the settings in DARTS [122], we use SGD for the IUC-E architecture

searching with a batch size of 128, an initial learning rate of 0.025, weight decay of 3e-4, and

a momentum of 0.9 for 50 epochs. More detailed hyperparameter settings are exhibited in the

70

Appendix. Due to high-performance achievements of OSCAR [115], we use pre-trained OSCARL

[115] as our predictive model to help us obtain the optimal encoder-decoder architecture. At the

second stage of architecture search, the trained encoder-decoder from the first stage generates

a textual description of the input image. Then, the predictive model learns from the generated

pseudo dataset and validates its performance on the validation set to update the architecture of

our encoder-decoder. In this chapter, we constructed our experiments with similar settings as

OSCARL [115] for a fair comparison.

Architecture Evaluation Details.

For a fair comparison, we adopt X-LAN [139] method as our language decoder and

Faster R-CNN [150] as the image decoder. In IUC-E, we replace the convolution neural network

architecture of Faster R-CNN [150] with our obtained image encoder architecture, designed

by stacking 14 searched optimal convolution cells. Later, we pre-train the model on ImageNet

[47] and Visual Genome [105] to extract the object tags and image region features. Similarly,

in IUC-D, we use Faster R-CNN [150] with ResNeXt-152 pre-trained on ImageNet and Visual

Genome dataset datasets, and we change the LSTMs of the X-LAN with our optimal architecture

that was obtained during the architecture search. Then, we train our constructed large network

with cross-entropy loss for 100 epochs and 10000 warmup steps. Next, we choose the model

that achieves the highest CIDEr score, and we CIDEr score optimization with the learning rate

of 0.00001 for another 100 epochs. During the validation, we utilize the beam search with the

beam size of 3 and our models are trained with Adam optimizer [104].

Metrics.

We adopt the official evaluation metrics - including BLEU-N[140], METEOR [10],

ROUGE[117], CIDEr [178], and SPICE[5] - to analyze and compare our proposed methods’

performances with the other existing approaches in image captioning tasks.

71

3.4.3 Results

We evaluate the image captioning results of our proposed methods on the COCO ”Karpa-

thy” test split [102] to compare with the recent proposals in this area, which have achieved

noteworthy performances. Our primary baselines include: LSTM [180] and LSTM-A[202],

which are non-attention based; SCST[152] that proposes employing attention over the grid of

features; RFNet[98] merges CNN features by adopting recurrent fusion networks; Up-Down[6]

uses attention over regions; GCN-LSTM[201] uses visual relations between image regions;

SGAE[198] utilizes auto-encoding scene graphs for sentence generation; AoANet[90] applies

attention on attention and LSTM as the image encoder and language decoder, respectively;

Meshed-Memory Transformer[39] constructs mesh-like transformer connectivity between the

encoder and the decoder; X-LAN[139] plugs unified attention blocks, called X-Linear attention

blocks, into the encoder-decoder architecture, and further uses such blocks in the Transformer-

based encoder-decoder architecture, which is called X-Transformer[139]; OSCAR[115] adopts

object tags as anchor points to enhance the learning of the image-text semantic alignments;

OSCAR+ with VINVL[211] shows that visual features are crucial in image understanding tasks

by improving object detection model of OSCAR+; X-Transformer+PPO[209] applies proximal

policy optimization to X-Transformer; and AutoCaption [216] that applies neural architecture

search on the language decoder with a similar structure as X-LAN.

Table 3.2 reports the performance comparisons of our proposed methods (IUC-D and

IUC-E) and the state-of-the-art models on the offline COCO ”Karpathy” test split for both cross-

entropy loss and CIDEr score optimization. It is shown that our method IUC-E outperforms

the baselines and elevates the state-of-the-art in most of the metrics, while IUC-D frequently

exhibits the second-best performances among the other methods. IUC-D performs slightly

better than IUC-E in SPICE. Our proposed IUC-E model can achieve 141.9 on CIDEr using

CIDEr score optimization, which indicates an improvement of 1 CIDEr point compared to

OSCAR+ with VINVL, and 6.1 points improvement in comparison to AutoCaption. This

72

performance enhancement verifies the critical advantage of employing architecture search to

design the encoder and the decoder architectures. Additionally, the better performances of IUC-E

compared to IUC-D in the evaluation results demonstrate the urgency of the architecture design

of the image encoder, which has not been investigated relatively. Finally, we ensemble our

IUC-E and IUC-D models, called IUC, for further improvement. In Table 3.3, we evaluate and

compare the performance of IUC and the existing works by utilizing ensemble models. Our

extensive experiments show that IUC can outperform the existing image captioning models in

single and ensemble model settings with both Cross-Entropy loss optimization and CIDEr Score

optimization.

Figure 3.3 showcases different exemplar of generated captions by our IUC and our

baseline (AutoCaptionΣ [216]) along with the human-annotated ground truth (GT) captions.

As it is shown, our model generates more accurate, clear, and detailed textual descriptions in

challenging image cases, since our encoder-decoder architecture in IUC is task-specific designed,

while AutoCaption [216] aims only to design the language decoder using NAS. This implies that

the architecture design of the image encoder has more impact on the model’s performance than

the language decoder’s architecture design.

3.4.4 Ablation Studies

Ablation 1.

We are interested in verifying the critical advantage of employing architecture search in

image captioning tasks. In this study, we employ architecture search and random sampling for

the architecture designs of the image encoder and the language decoder.

Table 3.4. Comparison of searched (S) and randomly sampled (R) encoder and decoder architec-
tures on COCO “Karpathy” test split (single-model with Cross-Entropy Loss).

Encoder Decoder BLEU-4 METEOR CIDEr SPICE
R R 37.7 28.0 117.9 21.7
R S 37.9 28.7 122.1 21.9
S R 38.3 29.4 127.3 22.6

73

AutoCaption: Some
food is on a white plate.
IUC: A white plate
of fish and broccoli is
sitting on a table
GT: The meal of fish has
a side of broccoli.

AutoCaption: A street
sign next to a tree.
IUC: A red do not enter
sign with two green street
signs above it.
GT: A red do not enter
sign under a green street
sign.

AutoCaption: A young
man is standing next to a
bed.
IUC: A man with a leop-
ard robe is standing next
to a white bed.
GT: A man dressed in
leopard robe next to a
bed.

AutoCaption: A white
refrigerator in the patio.
IUC: A dirty refrigerator
and some garbage on the
floor next to a building.
GT: An abandoned re-
frigerator next to a build-
ing with a window.

Figure 3.3. Exemplar captions generated by IUC and AutoCaption as well as their corresponding
ground truth sentences generated by humans.

Similar to Section 3.4.2; first, we perform an architecture search or random sampling to obtain

the optimal cells, then we construct the large network by using the optimal cells, and finally,

we train and evaluate the large network. To get a deeper understanding of the impact that each

module’s architecture (i.e., image encoder and language decoder) has on the image captioning

performance, we do not use the OSCAR pre-training during this study - unlike the experiments

in Table 3.2 - to reduce the constraints and dependencies of our investigation. Similar to DARTS

[122], image encoder and language decoder architectures are searched or randomly sampled

from convolutional or recurrent cells, respectively. Table 3.4 shows that architecture search can

significantly enhance the image captioning models’ performance, and the architecture design of

the image encoder is more crucial for achieving higher performance than the architecture design

of the language decoder.

Ablation 2.

In this setting, we investigate how the IUC-E model’s performance varies as the tradeoff

parameters λ and γ change in Eq.(3.10).

74

min
A

λL(W ∗(E∗(A),F∗(A)),D(val))+ γL(E∗(A),F∗(A),D(val))

s.t. W ∗(E∗(A),F∗(A)) = argmin
W

L(W,U,E∗(A),F∗(A)) (3.10)

E∗(A),F∗(A) = argmin
E,F

L(E,A,F,D(tr))

Table 3.5. Image captioning evaluation with different tradeoff parameters (λ and γ) on COCO
“Karpathy” test split (single-model with Cross-Entropy Loss).

Lambda λ Gamma γ BLEU-4 METEOR CIDEr SPICE
1 0 39.7 30.9 131.1 23.8
0 1 39.1 29.7 129.9 22.9
1 1 39.5 30.4 130.6 23.1

Table 3.5 demonstrates the performance of IUC-E in three different cases: 1) λ = 1 and γ = 0,

the encoder-decoder model updates its architecture by minimizing the validation loss of the

predictive model only, without considering the validation loss of itself - similar to Eq.(3.4) - and

this model achieves the best performance on all four metrics. 2) λ = 0 and γ = 1. Unlike the

first case, we have a bi-level optimization problem since the encoder-decoder model updates its

architecture by minimizing its validation loss without going through the second stage. This model

exhibits the lowest performance. 3) When λ = 1 and γ = 1, we are combining the validation

loss of the predictive model and encoder-decoder model. In this scenario, we can achieve higher

performance than in the second case since the predictive model provides more useful feedback,

which assists in better learning. The achievement of these three cases implies the significant

impact of L(W ∗(E∗(A),F∗(A)),D(val)) in the validation loss, which helps the model to improve

its understanding of the images.

Ablation 3.

In spite of the high achievements of DARTS [122], some of the newer variations of

differentiable NAS methods were able to enhance the performance of DARTS and reduce its

memory cost by utilizing different techniques on DARTS.

75

Table 3.6. Comparison of utilizing various differentiable architecture search based methods with
IUC on the COCO “Karpathy” test split (single-model with Cross-Entropy Loss).

Methods BLEU-4 METEOR CIDEr SPICE
IUC-E + DARTS 39.7 30.9 131.1 23.8

IUC-E + PC-DARTS 39.8 31.2 131.6 24.1
IUC-E + DATA 40.1 31.3 131.9 23.9

To study some of these methods for additional enhancements, we evaluate our proposed models

in image captioning by applying various DARTS-based methods, including DARTS, PC-DARTS,

and DATA to search for the image encoder architecture of the IUC-E model. Evaluation results

in Table 3.6 show that utilizing more advanced DARTS-based methods, such as DATA, can be

applied for further improvements on top of IUC.

3.5 Conclusion

In mission-critical applications (e.g., disease diagnosis), if the textual descriptions gen-

erated by image captioning models are incorrect, they may mislead human decision-makers

and have potential negative social impacts. Thus, it is crucial to minimize the prediction error

in such tasks. To tackle this issue, we presented a novel approach for image captioning tasks

by utilizing differentiable NAS techniques to obtain the high-performance encoder-decoder

model architectures. We introduced a three-level optimization problem by formulating IUC and

provided efficient solutions to this specific framework. Furthermore, our investigations show

the effectiveness of the encoder and decoder modules individually in image understanding. We

applied our proposed methods on COCO image captions dataset to verify IUC can outperform

the existing state-of-the-art methods in the image captioning tasks.

3.6 Acknowledgements

Chapter 3, in part, has been published in the 2022 ACM Multimedia (ACM MM)

Conference under the title ”Image Understanding by Captioning with Differentiable Architecture

76

Search” by Ramtin Hosseini, and Pengtao Xie. The dissertation author was the primary author

of this material.

77

Chapter 4

Interpretable NAS via Saliency Learning

4.1 Introduction

Neural architecture search (NAS) [218, 122, 148], which aims to automatically identify

highly performant neural architectures, has received much attention recently. Existing NAS

methods treat all elements in an input data example (such as pixels in an image, tokens in a

sentence, etc.) as being equally important, without considering the different saliency of individual

elements, which leads to less-optimal performance. In machine learning applications, an input

data example typically consists of many data elements. For instance, an image example consists

of a grid of pixel elements and a sentence example consists of a sequence of token elements.

When used to make a prediction, different data elements have different importance (or saliency).

For example, when predicting which object category an image belongs to, pixels in foreground

object regions are more important than those in background regions. Such saliency information

is not leveraged by existing NAS methods.

In this chapter, we aim to bridge this gap, by proposing a saliency-aware NAS method

which automatically identifies the saliency of data elements and leverages that to search for better

architectures. Our framework is formulated as a four-level optimization problem. At the first

level, the model tentatively fixes its architecture and trains its first set of network weights. At

the second level, the trained model generates saliency maps using an adversarial attack-based

method [56]. At the third level, input data is reweighted using saliency maps and the second

78

set of model weights are trained using reweighted data. At the fourth level, the two sets of

trained model weights are evaluated on a human-provided validation set and the architecture is

optimized by minimizing the validation losses.

4.2 Related works

Saliency detection.

Many methods [205, 217, 166, 136, 156, 154, 145] have been proposed for saliency

detection, based on perturbing inputs [205, 217], propagating gradients [9, 164, 166], atten-

tion [113, 200, 136], model approximation [153, 4], etc. Several works [156, 154, 145] show that

leveraging saliency of input data can enhance model’s predictive power. Rieger et al. [154] lever-

age domain-specific rules or knowledge to provide “groundtruth” saliency. Such rules/knowledge

are difficult to obtain in many applications. Pillai and Pirsiavash [145] encourage a prediction

model to produce saliency maps that are consistent with those generated by GradCAM [159].

GradCAM is an unsupervised approach; without any supervision from humans, its generated

saliency maps may not be reliable. For example, it is shown in [167] that GradCAM cannot

highlight adversarial image patches that cause wrong predictions. In [156], saliency maps

are either labeled by humans or auto-generated based on gradient magnitude with no human

supervision, which suffers the same problems as [159, 154]. Different from existing works, our

method generates saliency maps with weak supervision such as human-provided class labels.

Such weak supervision is much easier to obtain than human annotations of saliency maps and

can yield more reliable saliency maps than using no supervision at all.

Bi-level optimization.

Many ML methods [57, 11, 59, 122, 163, 212] have been formulated as bi-level opti-

mization (BLO) problems. In these methods, network weights are learned by solving an inner

optimization problem defined on a training set while meta parameters are learned by solving an

outer optimization problem defined on a validation set. BLO-based methods have been applied

79

Train model
weights𝑊!

Generate
saliency maps

Saliency-
reweighted data Train model

weights𝑊"

Measure validation
loss

Update
architecture

Figure 4.1. Overview of our framework.

for neural architecture search [122], hyperparameter tuning [57], learning rate adaptation [11],

data selection [163, 151, 184], meta learning [59], label correction [212], etc., where meta

parameters are neural architectures, hyperparameters, importance weights of data examples,

meta network weights, etc. Many optimization algorithms [40, 62, 67, 97, 123, 197] have been

developed for solving BLO problems where convergence analysis is provided.

4.3 Methods

In this section, we propose a four-level optimization based framework to perform saliency-

aware neural architecture search. For the ease of presentation, we assume the task is image

classification. In the experiments, we show that our method can be applied for other tasks as

well.

4.3.1 A four-level optimization framework

In our framework (Figure 4.1), a model has a learnable architecture A and two sets of

learnable network weights W1 and W2. W2 is a tensor that has the same dimensions as W1. The

weight values in W2 and W1 are different. It consists of four stages performed end-to-end. At

the first stage, the model trains its network weights W1 with the architecture A tentatively fixed.

At the second stage, the trained W1 generates saliency maps for input images: a saliency score

is calculated for each pixel. At the third stage, images are reweighted using saliency maps

and saliency-reweighted images are used to train model weights W2. At the fourth stage, the

trained W2 is evaluated on a human-labeled validation set and the architecture A is updated by

80

minimizing the validation loss.

Stage I.

At the first stage, the model trains its first set of network weights W1 by minimizing a

loss L on training dataset D(tr), with the architecture A tentatively fixed:

W ∗1 (A) = argminW1
L(W1,A,D(tr)). (4.1)

To define the training loss, we need to use both the architecture parameters A and network

weights W1. However, A cannot be updated by minimizing the training loss. Otherwise, a trivial

solution of A will be yielded: A can perfectly overfit the training data but will make incorrect

predictions on unseen data examples. W ∗1 (A) denotes that the optimal weights W ∗1 depends on A.

This is because L(W1,A,D(tr)) is a function of A, and W ∗1 depends on L(W1,A,D(tr)).

Stage II.

At the second stage, the trained W ∗1 (A) is used to generate saliency maps. Specifi-

cally, given an input image x, we first use W ∗1 (A) and A to predict the class label (denoted by

f (x;W ∗1 (A),A)) of x. Then an adversarial attack based approach [65, 56] is leveraged to calculate

saliency scores of pixels. Adversarial attack adds small random perturbations δ to pixels in x so

that the prediction outcome on the perturbed image x+δ is no longer f (x;W ∗1 (A),A). Pixels per-

turbed more are more correlated with the prediction outcome f (x;W ∗1 (A),A) and are considered

to be more salient. This process amounts to solving the following optimization problem:

{δ ∗i (W ∗1 (A),A)}N
i=1 = argmax{∥δi∥∞≤ε}N

i=1
∑

N
i=1 ℓ(f (xi +δi;W ∗1 (A),A), f (xi;W ∗1 (A),A))

(4.2)

where δi is the perturbation added to image xi and ε is a small norm-bound. N is the number

of images. f (xi + δi;W ∗1 (A),A) and f (xi;W ∗1 (A),A) are predictions made by W ∗1 (A) and A on

xi +δi and xi. Assume the number of classes is K. f (xi +δi;W ∗1 (A),A) and f (xi;W ∗1 (A),A) are

81

K-dimensional vectors containing prediction probabilities on individual classes. ℓ(·, ·) is the

cross-entropy loss with ℓ(a,b) =−∑
K
k=1 bi logai. In this optimization problem, we aim to find

perturbations for each image so that the predicted outcome on the perturbed image is largely

different from that on the original image. The learned optimal perturbations are considered as

saliency scores of pixels: larger perturbations indicate that the corresponding pixels are more

correlated with the prediction outcome and therefore are more salient. δ ∗i depends on W ∗1 (A) and

A since δ ∗i depends on the loss in Eq.(4.2), and the loss is a function of W ∗1 (A) and A.

Stage III.

At the third stage, given the saliency scores {δ ∗i (W ∗1 (A),A)}N
i=1, the second set of model

weights W2 are trained. We use the saliency scores to reweight the pixels: x⊙δ , where⊙ denotes

element-wise multiplication (we compare with other reweighting mechanisms in Table 4.4).

Pixels that are more salient are given more weights. Then W2 is trained on these weighted pixels:

W ∗2 ({δ ∗i (W ∗1 (A),A)}N
i=1,A) = argminW2 ∑

N
i=1 ℓ(f (δ ∗i (W

∗
1 (A),A)⊙ xi;W2,A), ti), (4.3)

where f (δ ∗i (W
∗
1 (A),A)⊙ xi;W2,A) is the prediction made by W2 and A on the weighted image

δ ∗i (W
∗
1 (A),A)⊙ xi, and ti is the class label. W ∗ depends on {δ ∗i (W ∗1 (A),A}N

i=1 and A since W ∗

depends on the loss in Eq.(4.3), and the loss is a function of {δ ∗i (W ∗1 (A),A)}N
i=1 and A.

Stage IV.

At the fourth stage, W ∗2 ({δ ∗i (W ∗1 (A),A)}N
i=1,A) and W ∗1 (A) are evaluated on a human-

labeled validation set D(val). The architecture A is updated by minimizing the validation losses:

minA L(W ∗2 ({δ ∗i (W ∗1 (A),A)}N
i=1,A),A,D

(val))+ γL(W ∗1 (A),A,D
(val)), (4.4)

where γ is a tradeoff parameter.

82

Four-level optimization framework.

We integrate the four stages into a unified four-level optimization framework and obtain

the following formulation:

minA L(W ∗2 ({δ ∗i (W ∗1 (A),A)}N
i=1,A),A,D

(val))+ γL(W ∗1 (A),A,D
(val))

s.t. W ∗2 ({δ ∗i (W ∗1 (A),A)}N
i=1,A) = argminW2 ∑

N
i=1 ℓ(f (δ ∗i (W

∗
1 (A),A)⊙ xi;W2,A), ti)

{δ ∗i (W ∗1 (A),A)}N
i=1 = argmax{∥δi∥∞≤ε}N

i=1
∑

N
i=1 ℓ(f (xi +δi;W ∗1 (A),A), f (xi;W ∗1 (A),A))

W ∗1 (A) = argminW1
L(W1,A,D(tr)).

(4.5)

In this framework, there are four optimization problems, each corresponding to a learning stage.

From bottom to up, the optimization problems correspond to learning stage I to IV respectively.

The first three optimization problems are nested on the constraint of the fourth optimization

problem. These four stages are conducted end-to-end in this unified framework. The solution

W ∗1 (A) obtained at the first stage is used to generate explanations at the second stage. The

saliency maps {δ ∗i (W ∗1 (A),A)}N
i=1 obtained at the second stage are used to train W2 at the third

stage. The solutions obtained at the first and third stage are used to calculate validation losses

at the fourth stage. The architecture A updated at the fourth stage changes the training loss

at the first stage and consequently changes the solution W ∗1 (A), which subsequently changes

{δ ∗i (W ∗1 (A),A)}N
i=1 and W ∗2 ({δ ∗i (W ∗1 (A),A)}N

i=1,A).

Optimization algorithm.

To solve the problem in Eq.(4.5), we used a standard algorithm developed in [122], which

is broadly used in many previous works and demonstrated to be effective in the literature. The con-

vergence analysis of this algorithm has been given in many works [62, 67, 97, 123, 197]. The opti-

mization algorithm is not the focus or contribution of our work. In this algorithm, we calculate the

83

gradient of L(W1,A,D(tr)) w.r.t W1 and approximate W ∗1 (A) using a one-step gradient descent up-

date of W1. We plug the approximation W ′1 of W ∗1 (A) into ℓ(f (xi+δi;W ∗1 (A),A), f (xi;W ∗1 (A),A))

and obtain an approximated objective denoted by Oδi . Then we approximate δ ∗i (W
∗
1 (A),A) using

a one-step gradient ascent update of δi based on the gradient of Oδi . Next, we plug the approxi-

mation δ ′i of δ ∗i (W
∗
1 (A),A) into ℓ(f (δ ∗i (W

∗
1 (A),A)⊙ xi;W2,A), ti) and get another approximated

objective denoted by OW2 . Then we approximate W ∗2 ({δ ∗i (W ∗1 (A),A)}N
i=1,A) using a one-step

gradient descent update of W2 based on the gradient of OW2 . Finally, we plug the approximation

W ′1 of W ∗1 (A) and the approximation W ′2 of W ∗2 ({δ ∗i (W ∗1 (A),A)}N
i=1,A) into the validation loss

and get the third approximate objective OA. A is updated by descending the gradient of OA.

These steps iterate until convergence.

4.4 Experiments

In this section, we present experimental results.

4.4.1 Experiments on image classification

Following [122] the architecture A is parameterized in a differentiable way. A contains

a set of importance weights, each multiplied to the output of a candidate architecture block.

Architecture search amounts to learning these weights using gradient methods. After learning,

blocks with top weights compose an architecture. Each experiment consists of two phrases:

1) architecture search where an optimal cell is identified, and 2) architecture evaluation where

multiple copies of the optimal cell are stacked into a larger network, which is retrained from

scratch.

Datasets

We used three datasets: CIFAR-10 [107], CIFAR-100 [108], and ImageNet [47]. Both

CIFAR-10 and CIFAR-100 contain 60K images from 10 classes. For each of them, we split it into

a train, validation, and test set with 25K, 25K, and 10K images respectively. ImageNet contains

84

1.2M training images and 50K test images from 1000 objective classes. Following [196], we

randomly sample 10% of the 1.2M images to form a new training set and another 2.5% to form a

validation set, then perform a search on them.

Experimental settings

We experimented with the search spaces in DARTS [122], P-DARTS [29], and PC-

DARTS [196]. The tradeoff parameter γ is set to 2. The norm bound ε of perturbations is set to

0.03. During architecture search, for CIFAR-10 and CIFAR-100, the architecture of the target

is a stack of 8 cells. Each cell consists of 7 nodes. Initial channel number is 16. The search

algorithm was based on SGD, with a batch size of 64, an initial learning rate of 0.025 with cosine

scheduling, an epoch number of 50, a weight decay of 3e-4, and a momentum of 0.9. We update

the architecture A every 5 mini-batches (iterations), update model weights W2 and perturbations

δ every 3 mini-batches, and update W1 on every mini-batch. The rest of hyperparameters mostly

follow those in DARTS, P-DARTS, and PC-DARTS. We compare with the following baselines:

1) explanation constraints (EC) [156]; 2) contextual decomposition explanation penalization

(CDEP) [154]; 3) global max pooling + GradCAM (GMPGC) [145]. The mean and standard

deviation of 10 random runs are reported.

Results and analysis on CIFAR-100 and CIFAR-10

Table 4.1 shows results on CIFAR-100 and CIFAR-10. Applying our framework to

DARTS, P-DARTS, and PC-DARTS, test errors are greatly reduced, which shows that by end-

to-end detecting and leveraging saliency of pixels, the quality of searched architectures can be

improved. Another observation from Table 4.1 is: the performance gain of our method does not

come at the cost of substantially increasing model size (number of parameters) or search cost.

Table 4.1 shows that our methods outperform EC, CDEP, and GMPGC. These methods

use GradCAM, gradient magnitude, and pretrained semantic segmentation models to calculate

saliency scores, which are not very reliable. In contrast, the calculation of saliency in our method

is weakly supervised by the validation loss of the second model calculated on human-provided

85

Table 4.1. Test errors on CIFAR-100 (C100) and CIFAR-10 (C10), number of model parameters
(in millions), and search cost (GPU days on a Nvidia 1080Ti).

Method Error-C100 Error-C10 Param. Cost

ResNet [78] 22.10 6.43 1.7 -
DenseNet [88] 17.18 3.46 25.6 -
PNAS [120] 19.53 3.41±0.09 3.2 150
ENAS [144] 19.43 2.89 4.6 0.5
AmoebaNet [148] 18.93 2.55±0.05 3.1 3150
GDAS [52] 18.38 2.93 3.4 0.2
R-DARTS [207] 18.01±0.26 2.95±0.21 - 1.6
DARTS− [35] 17.51±0.25 2.59±0.08 3.3 0.4
AutoFormer [23] 17.42±0.17 2.72±0.09 3.7 2.8
Sampling [72] 17.30±0.10 2.75±0.11 3.8 2.0
DropNAS [81] 16.95±0.41 2.58±0.14 4.4 0.7
DrNAS [28] - 2.54±0.03 4.0 0.4
ISTA-NAS [199] - 2.54±0.05 3.3 0.1
MiLeNAS [76] - 2.51±0.11 3.9 0.3
GAEA [114] - 2.50±0.06 - 0.1
PDARTS-ADV [27] - 2.48±0.02 3.4 1.1
Darts2nd [122] 20.58±0.44 2.76±0.09 3.1 4.0
EC-darts2nd [156] 20.05±0.31 2.83±0.12 3.3 5.7
CDEP-darts2nd [154] 19.53±0.46 2.75±0.05 3.2 5.3
GMPGC-darts2nd [145] 19.08±0.36 2.81±0.07 3.2 5.6
Ours-darts2nd 16.42±0.09 2.54±0.05 3.2 4.6
Pcdarts [196] 17.96±0.15 2.57±0.07 3.9 0.1
EC-pcdarts [156] 17.83±0.28 2.63±0.11 4.1 0.9
CDEP-pcdarts [154] 17.88±0.13 2.75±0.08 4.0 1.1
GMPGC-pcdarts [145] 17.73±0.09 2.64±0.05 4.0 1.0
Ours-pcdarts 16.19±0.04 2.49±0.03 3.9 0.8
Prdarts [213] 16.48±0.06 2.37±0.03 3.4 0.2
EC-prdarts [156] 17.32±0.14 2.58±0.08 3.5 1.1
CDEP-prdarts [154] 16.86±0.07 2.54±0.05 3.4 1.3
GMPGC-prdarts [145] 16.37±0.10 2.46±0.06 3.6 1.1
Ours-prdarts 16.01±0.03 2.30±0.04 3.6 0.8
Pdarts [29] 17.52±0.06 2.54±0.04 3.6 0.3
EC-pdarts [156] 17.25±0.11 2.68±0.07 3.8 1.3
CDEP-pdarts [154] 17.49±0.08 2.63±0.10 3.6 0.9
GMPGC-pdarts [145] 17.33±0.10 2.59±0.07 3.7 1.1
Ours-pdarts 15.16±0.09 2.45±0.03 3.6 1.1

86

Table 4.2. Top-1 and top-5 test errors on ImageNet in the mobile setting.

Method Top-1 Top-5

Inception-v1 [172] 30.2 10.1
MobileNet [86] 29.4 10.5
ShuffleNet 2× (v2) [130] 25.1 7.6
NASNet-A [219] 26.0 8.4
PNAS [120] 25.8 8.1
MnasNet-92 [174] 25.2 8.0
AmoebaNet-C [148] 24.3 7.6
PARSEC-CIFAR10 [18] 26.0 8.4
GDAS-CIFAR10 [52] 26.0 8.5
DSNAS-ImageNet [87] 25.7 8.1
AutoFormer [23] 25.3 7.4
Sampling [72] 25.3 -
SDARTS-ADV-CIFAR10 [27] 25.2 7.8
PC-DARTS-CIFAR10 [196] 25.1 7.8
ProxylessNAS-ImageNet [16] 24.9 7.5
FairDARTS-ImageNet [36] 24.4 7.4
PR-DARTS [213] 24.1 7.3
DARTS−-ImageNet [35] 23.8 7.0
Darts2nd-cifar10 [122] 26.7 8.7
EC-darts2nd-cifar10 [156] 26.4 8.5
CDEP-darts2nd-cifar10 [154] 26.5 8.5
GMPGC-darts2nd-cifar10 [145] 26.3 8.2
SANAS-darts2nd-cifar10 (ours) 24.8 8.3
Pdarts-cifar100 [29] 24.7 7.5
EC-pdarts-cifar100 [156] 24.5 7.3
CDEP-pdarts-cifar100 [154] 24.6 7.4
GMPGC-pdarts-cifar100 [145] 24.5 7.4
SANAS-pdarts-cifar100 (ours) 23.8 6.6
Pcdarts-ImageNet [196] 24.2 7.3
EC-pcdarts-ImageNet [156] 24.0 7.2
CDEP-pcdarts-ImageNet [154] 23.9 7.3
GMPGC-pcdarts-ImageNet [145] 24.0 7.3
SANAS-pcdarts-ImageNet (ours) 22.2 6.1

87

class labels, which have higher fidelity. As analyzed earlier, saliency with higher fidelity can

result in higher-quality architectures.

Results on ImageNet

In Table 4.2, we compare different methods on ImageNet. In experiments based on PC-

DARTS, architectures are searched on a subset of ImageNet. In other experiments, architectures

are searched on CIFAR-10 and CIFAR-100. Ours-darts2nd-cifar10 denotes that our method

is applied to DARTS-2nd and performs search on CIFAR10. Similar meanings hold for other

notations in such a format. The observations made from these results are consistent with those

made from Table 4.1. The architectures searched using our methods are consistently better

than those searched by corresponding baselines. These results again show that by end-to-end

detecting and leveraging saliency can improve architecture search.

Sanity check of saliency maps

We evaluate saliency maps generated by the adversarial saliency method using model

parameter cascading randomization tests [2]. The model architecture is searched by SANAS

on ImageNet. Figure 4.2(left) shows that saliency maps change considerably as more layers

are randomized, on multiple ImageNet examples. Figure 4.2(right) shows the Spearman rank

correlation (with absolute values) between original saliency maps and randomized saliency maps,

on ImageNet. The rank correlation consistently decreases as more layers are randomized. These

results demonstrate that saliency maps generated by the adversarial saliency method are sensitive

to model parameters and pass the sanity check.

Human evaluation of saliency

We randomly sampled 100 images from the test set of ImageNet and generated saliency

maps for them using different methods. Then we asked three undergraduates to judge whether

the saliency maps are sensible. The ratings are from 1-5 (higher is better). Table 4.3 summarizes

the mean and standard deviation of ratings. Our methods achieve significantly higher ratings

(significance test results are in the supplements), which demonstrates that our methods can

88

Figure 4.2. Sanity check of saliency maps. Logits−n is the n-th layer below the logits layer.

Table 4.3. Human evaluation of saliency.

Ratings
Darts2nd 3.30±0.24
EC-darts2nd [156] 3.42±0.16
CDEP-darts2nd [154] 3.58±0.11
GMPGC-darts2nd [145] 3.51±0.12
SANAS-darts2nd (ours) 3.93±0.06
Pdarts 3.26±0.14
EC-pdarts [156] 3.59±0.21
CDEP-pdarts [154] 3.46±0.19
GMPGC-pdarts [145] 3.50±0.09
SANAS-pdarts (ours) 4.07±0.11

generate more accurate saliency maps than the baselines. Inter-annotator Kappa score is 0.71,

which shows strong agreements among annotators.

Visualization of saliency

In Figure 4.3, we visualize the saliency maps generated for some randomly-sampled

ImageNet images. These saliency maps are very sensible. Warmer color (representing higher

saliency) regions correspond to objects. Colder color regions correspond to background. These

results show that our method is effective in generating correct saliency maps. In contrast, the

saliency maps generated by baselines are less sensible. For example, in the schipperke, hay,

89

Figure 4.3. Visualization of saliency maps.

container ship, ice lolly images, higher saliency regions of baselines are in the background

instead of on objects.

Ablation studies

In terms of how to use saliency scores to reweight pixels, we compare the element-wise

product between pixels and saliency scores in Eq.(4.3) with 1) element-wise addition between

pixels and saliency scores; 2) element-wise product between pixels and the absolute values of

saliency scores; 3) concatenate saliency map with input image and feed the concatenation into

the second model W2; 4) no reweighting. Table 4.4 shows results where our method is applied

to DARTS2nd and P-DARTS. From this table, we make the following observations. First,

product works better than addition. The reason is: magnitude of saliency scores (perturbations)

is very small; adding them to pixels does not render a significant change of pixel values, and

consequently cannot distinguish important pixels from unimportant ones. In contrast, the relative

difference between saliency scores is significantly large; multiplying them to pixels can better

distinguish important and unimportant pixels. Second, reweighting pixels using signed saliency

score and absolute saliency scores does not have a significant difference. This shows that signs

of saliency scores do not matter too much. Third, product works better than concatenation. The

90

Table 4.4. Test errors of different reweighting mechanisms.

CIFAR-100 CIFAR-10
Ours+darts Ours+pdarts Ours+darts Ours+pdarts

Product 16.4±0.09 15.2±0.09 2.54±0.05 2.45±0.03
Addition 20.3±0.27 17.7±0.03 2.71±0.11 2.53±0.06
Absolute 16.8±0.11 15.4±0.12 2.55±0.08 2.48±0.07
Concatenate 17.9±0.11 16.4±0.06 2.74±0.07 2.61±0.08
No reweight 20.6±0.44 17.5±0.06 2.76±0.09 2.54±0.04

possible reason is: compared with concatenation, product can better differentiate important and

unimportant pixels using the saliency scores. Fourth, reweighting pixels works better than no

reweighting. This demonstrates that multiplying saliency scores to inputs is indeed helpful in

identifying important pixels, which helps to improve classification performance.

In the next ablation study, we compare the adversarial attack (AA) based saliency

detection method with another two saliency detection methods, including integrated gradients

(IG) [171] and SmoothGrad (SG) [166] by plugging them into our framework. These studies

are performed on Darts2nd and Pdarts. Table 4.5 shows the results, where we make two

observations. First, our framework with IG and SG still outperforms vanilla Darts2nd and Pdarts.

This demonstrates that our framework is a general one that generalizes beyond a single saliency

detection method. Second, IG and SG perform worse than AA. A possible reason is: IG and SG

restrict the definition of saliency to be gradient-based. In contrast, AA treats saliency scores as

optimization variables and automatically learns them by solving an optimization problem, which

is more flexible.

To better understand the effectiveness of the proposed four stages performed end-to-end,

we compare with the following two ablation settings, which are performed on Darts-2nd and

Pdarts.

• Perform the four stages separately (denoted as Separate) instead of end-to-end.

• Perform stages I, II, III by optimizing the weighted sum of their objective functions with

91

Table 4.5. Ablation results on saliency detection methods.

CIFAR-100 CIFAR-10
Darts [122] 20.58±0.44 2.76±0.09
IG+darts 16.92±0.08 2.62±0.06
SG+darts 17.05±0.11 2.59±0.03
AA+darts 16.42±0.09 2.54±0.05
Pdarts [29] 17.52±0.06 2.54±0.04
IG+pdarts 15.83±0.08 2.47±0.03
SG+pdarts 15.81±0.05 2.48±0.04
AA+pdarts 15.16±0.09 2.45±0.03

weights 1, 0.5, 1, in a multi-task learning (MTL) manner (denoted as MTL).

Table 4.7 shows the results on Separate and MTL. We make two observations. First,

our end-to-end method works better than Separate which conducts the four stages separately.

Conducting the four stages end-to-end can enable them to mutually influence each other to

achieve the overall best performance. In contrast, when conducted separately, earlier stages

cannot be influenced by later stages (e.g., stage I cannot be influenced by stage IV), which

leads to worse performance. Second, our method performs better than MTL. The tasks in stages

I-III have an inherent order: before detecting saliency maps using a model, we first need to

train this model; before training the second model on saliency-reweighted data, we need to

detect the saliency maps first. MTL performs these three tasks simultaneously by minimizing a

single objective, which breaks their inherent order and therefore leads to worse performance. In

contrast, our method preserves this order using multi-level optimization.

Figure 4.4(right) shows how the test error of SANAS-darts2nd on CIFAR100 varies with

γ . When γ = 0, the validation loss of W1 is not used for architecture search and the performance

is inferior (compared with γ = 2). A γ in the middle ground which properly balances the

two validation losses yields the optimal performance. Using the validation loss of W1 only is

equivalent to vanilla DARTS-2nd (results are in the supplements).

92

Table 4.6. Results on the GLUE benchmark.

Method # Param. Infer SST-2 MRPC QQP MNLI QNLI RTE Average
BERT12 109M 1x 93.5 88.9 71.2 84.6 90.5 66.4 82.5
BERT12-T 109M 1x 93.3 88.7 71.1 84.8 90.4 66.1 82.4
BERT6-PKD 67.0M 1.9x 92.0 85.0 70.7 81.5 89.0 65.5 80.6
BERT3-PKD 45.7M 3.7x 87.5 80.7 68.1 76.7 84.7 58.2 76.0
DistilBERT4 52.2M 3.0x 91.4 82.4 68.5 78.9 85.2 54.1 76.8
TinyBert4 14.5M 9.4x 92.6 86.4 71.3 82.5 87.7 62.9 80.6
BiLSTMSOFT 10.1M 7.6x 90.7 - 68.2 73.0 - - -
AdaBERT 8.3M 16.1x 91.9 85.3 70.2 81.9 86.9 64.8 80.2
EC-AdaBERT 8.7M 15.8x 91.9 85.6 70.7 81.8 86.9 65.0 80.3
CDEP-AdaBERT 8.8M 16.4x 92.5 85.9 70.6 82.2 87.4 65.2 80.6
GMPGC-AdaBERT 8.1M 15.5x 92.0 85.6 71.4 82.8 87.1 65.0 80.7
Ours-AdaBERT 8.2M 16.3x 93.4 87.0 71.8 83.7 88.5 66.6 81.8

4.4.2 Experiments on text classification

In this section, we apply the proposed framework for text classification. The Gumbel

softmax trick [95] is leveraged to deal with non differentiability of texts.

Datasets

We conduct experiments on six datasets in the GLUE benchmark [182]: SST-2, MRPC,

QQP, MNLI, QNLI and RTE. SST-2 is a sentiment classification dataset where the input text is

movie review and the output label is whether the review is positive or negative. In MRPC and

QQP, the input is a pair of sentences and the output is whether they are semantically equivalent.

MNLI, QNLI, and RTE are textual entailment recognition datasets.

Baselines

We compare with the following baselines: 1) BERT [49], 2) BERT-PKD [170], 3)

Distil-BERT [158], 4) TinyBERT [99], 5) BiLSTMSOFT [175], 6) AdaBERT [21], 7) EC-

AdaBERT [156], 8) CDEP-AdaBERT [154], and 9) GMPGC-AdaBERT [145].

93

Table 4.7. Ablation results on Separate and MTL.

CIFAR-100 CIFAR-10
Separate+darts 18.05±0.27 2.68±0.06
MTL+darts 18.26±0.12 2.70±0.05
Ours+darts 16.42±0.09 2.54±0.05
Separate+pdarts 16.49±0.07 2.51±0.03
MTL+pdarts 16.83±0.10 2.52±0.04
Ours+pdarts 15.16±0.09 2.45±0.03

Hyperparameter settings

Candidate operations are commonly used operations in convolutional networks, including

1D convolution, dilated convolution, pooling, identify, and zero. In dilated convolution, the

kernel size includes 3, 5, and 7. Each convolution operation consists of an Relu-Conv-BatchNorm

sequence. For pooling, we used average pooling and max pooling, where the kernel size is set to

3. The “SAME” padding is utilized for convolution and pooling. We optimize weight parameters

using SGD. The initial learning rate is set to 2e−2. It is annealed using a cosine scheduler. The

momentum is set to 0.9. We use Adam [103] to optimize the architecture variables. The learning

rate is set to 3e−4 and weight decay is set to 1e−3.

Main results

Table 4.6 shows the results. We make the following observations. First, our method

works better than AdaBERT, which is an NAS method without saliency detection. This further

demonstrates the effectiveness of saliency detection in improving NAS. Second, our method

works better than EC, CDEP, and GMPGC. This further shows that performing saliency detection

and NAS jointly is better than conducting them separately as the three baselines do. Third,

compared with BERT12 and BERT12-T, our method achieves similar performance while using

much fewer parameters and being much faster during inference.

94

0
1
2
5

100
20.58
17.65
16.39
19.42

20.58

17.65
16.39

19.42

16

18

20

22

0 1 2 5

Er
ro
r(
%
)

Gamma

CIFAR-100

Figure 4.4. How errors change with γ .

Qualitative results

Table 4.8 shows salient words detected by different methods on a randomly sampled

sentence (whose sentiment is labeled as being positive). As can be seen, our method can

successfully recognize the words “entertaining” and “please” which are mostly relevant to a

positive sentiment. In contrast, the two baselines fail to do that.

4.5 Conclusions and discussions

In this chapter, we propose to leverage the saliency information of input data to improve

NAS. Our work makes the following contributions. First, our method can detect saliency and

perform NAS end-to-end, based on a four-level optimization framework. The framework per-

forms four stages in a unified way: train a preliminary model, generate saliency maps using the

preliminary model, retrain the model on saliency-reweighted data, and update architecture by

minimizing validation losses. Second, our framework is end-to-end differentiable, allowing using

efficient gradient-based algorithms as solvers. Third, our method provides a mechanism to evalu-

ate generated saliency maps by checking whether they are helpful for improving classification

performance. We demonstrate the effectiveness of our method on several datasets.

95

Table 4.8. Top-2 salient words (marked with red color) detected by different methods.

EC an entertaining mix of period
drama and flat-out farce that
should please history fans.

GMPGC an entertaining mix of period
drama and flat-out farce that
should please history fans.

Ours an entertaining mix of period
drama and flat-out farce that
should please history fans.

EC a very witty take on change, risk
and romance, and the film uses
humor to make its points about
acceptance and growth.

GMPGC a very witty take on change, risk
and romance, and the film uses
humor to make its points about
acceptance and growth.

Ours a very witty take on change, risk
and romance, and the film uses
humor to make its points about
acceptance and growth.

96

One major limitation of this work is that it cannot be easily applied to non-differentiable

NAS methods that are based on reinforcement learning (RL) and evolutionary algorithm (EA).

The reason is that our method uses a gradient-based optimization algorithm to solve the multi-

level optimization problem. For non-differentiable NAS methods, their non-differentiable objec-

tive functions do not have gradients, which therefore are not compatible with the gradient-based

algorithm used by our method. Please see Appendix 4.7.1 for discussion on how to extend our

method to non-differentiable NAS methods. Another limitation of our method is its higher time

cost than baselines, due to the extra computation needed for detecting saliency maps. Considering

the benefits and limitations of our method, we recommend using our method in applications

that strongly need high-performance architectures capable of generating sensible saliency maps

but do not have strong efficiency requirements on architecture search time. For applications

which have high restrictions on search cost but allow sacrificing some performance and ignoring

saliency maps, other NAS methods might be better choices. Please see Appendix 4.7.1 for a

more detailed discussion.

One potential negative societal impact of our work is: in mission-critical applications such

as disease diagnosis and autonomous driving, if saliency maps generated by our method are not

correct, they may mislead human decision-makers. For future works, we plan to investigate these

ideas: 1) formulate saliency-based network pruning [214] as a saliency-aware NAS problem and

automatically search for the optimal pruning decisions based on detected saliency; 2) extend the

notion of saliency from input data to blocks in neural networks, develop multi-level optimization

based frameworks to detect the saliency of blocks, and perform pruning on blocks based on

detected saliency.

97

4.6 Healthcare Applications – Brain Tumors Classification

4.6.1 Introduction

Brain tumor is a life-threatening disease and causes about 0.25 million deaths worldwide

in 2020. Deep learning methods have been developed to classify brain tumors based on magnetic

resonance imaging (MRI), to assist physicians in accurately diagnosing and determining the

subtypes of brain tumors. Existing methods rely heavily on human experts to design deep neural

networks, which is time-consuming, labor-intensive, and sometimes sub-optimal. To address

this problem, we apply SANAS for MRI-based brain tumor classification, including four classes:

glioma, meningioma, pituitary tumor, and healthy. The dataset contains 3264 MRI images.

Results show that our method can search for neural architectures that achieve better classification

accuracy than manually-designed deep neural networks while having fewer model parameters.

For example, our method achieves a test accuracy of 90.6% with 3.75M parameters while the

accuracy of a human-designed network – ResNet101 – is 84.5% with 42.56M parameters.

Brain tumor, where abnormal brain cells grow in an uncontrollable way, is a life-

threatening disease that causes about 0.25 million deaths worldwide in 2020[1]. The 5-year

survival rate for people with brain tumors is about 36% and the 10-year survival rate is about

31%[1]. Brain tumors vary from non-cancerous benign variants to much more harmful malignant

ones[14]. The World Health Organisation (WHO) has assigned grades[128] (I through IV) to

tumors based on their severity and other molecular characteristics. Higher-grade tumors are more

malignant, with patients having smaller survival rates[14]. Immediate diagnosis and treatment

are crucial for improving the survival rate[14]. Among various tests for identifying the existence

and types of brain tumors, Magnetic Resonance Imaging (MRI) is frequently used due to its

noninvasive nature, being less harmful to human bodies, the ability to capture high-resolution

images, and the timeliness in getting results[131]. Detecting brain tumors and determining their

types from MRI is a highly challenging medical task, which requires many years of training

and medical practice[131]. In medically less developed regions such as rural areas, physicians

98

who can accurately interpret MRI images to diagnose and assess the severity of brain tumors are

highly lacking[131].

To address this problem, artificial intelligence methods (especially deep learning methods)

[131, 3, 74, 63, 51] have been developed to provide physicians with decision support for brain

tumor classification. In these methods, deep neural networks are manually designed by human

experts, which is time-consuming and labor-intensive. To address this problem, we propose a

method that can automatically search for neural architectures to perform accurate classification of

brain tumors and are computationally efficient. Neural architecture search (NAS) [218, 144, 219,

122, 168] has been broadly studied previously. The performance of these methods is not stable

and architectures searched by these methods oftentimes perform less well than human-designed

architectures

Our proposed framework is applied for classifying brain tumors from MRI images.

The dataset used in our experiments contains 3264 MRI images from four classes: glioma,

meningioma, pituitary tumor, and healthy. Our method achieves better classification accuracy

with fewer model parameters compared with manually-designed neural networks and previous

neural architecture search methods.

4.6.2 Related Works

A variety of deep learning methods[92] have been proposed for brain tumor classification

and segmentation. Menze et al.[134] developed a multi-modal brain tumor image segmentation

benchmark, where 20 tumor segmentation algorithms were evaluated on 65 multi-contrast MRI

images that have low-grade and high-grade glioma. Pereira et al.[143] utilized convolutional

neural networks for brain tumor segmentation in MRI images. Havaei et al.[75] proposed a

convolutional neural network for brain tumor classification, which exploits both local features

and global contextual features. Afshar et al.[3] utilized capsule networks to perform brain

tumor classification. Chen et al.[25] proposed a dual-force convolutional neural network for

brain tumor segmentation, which leverages multi-level information and a dual-force training

99

mechanism to improve latent representations. Sajjad et al.[157] utilized deep CNN with data

augmentation for multi-grade brain tumor classification. Kaldera et al.[100] utilized faster region-

based convolutional neural networks for brain tumor classification and segmentation. Ghosal et

al.[64] utilized a squeeze and excitation ResNet model for brain tumor classification. Mzoughi

et al.[137] proposed a multi-scale three-dimensional convolutional neural network for glioma

brain tumor classification based on the whole volumetric T1-Gado MRI sequence. Pei et al.[142]

proposed a 3D context aware deep learning method for brain tumor segmentation, subtype

classification, and survival prediction. Ghassemi et al.[63] pretrained a deep neural network

as the discriminator of a generative adversarial network (GAN) for extracting robust features,

which is utilized for classifying brain tumors. Shaik et al.[160] proposed a multi-level attention

mechanism for brain tumor recognition, where spatial and cross-channel attention is utilized

to identify tumor regions and maintain cross-channel temporal dependencies. Hao et al. [74]

proposed a transfer learning based active learning method for brain tumor classification. This

method aims to reduce human annotation cost and stabilize model performance. Lu et al.[129]

proposed data distillation and augmentation methods for brain tumor detection. This method

distills representative examples which are mixed to create augmented examples. Deepak et

al.[45] leveraged siamese network and neighborhood analysis for brain tumor classification. Dı́az-

Pernas et al.[51] utilized a multiscale convolutional neural network for brain tumor classification

and segmentation.

4.6.3 Datasets

The data used for this work is from a public dataset [13] on Kaggle. There are 3264

MRI images in total, which are from four classes: Glioma, Meningioma, Pituitary, and Healthy.

Glioma is the most frequent type of malignant brain tumor[44], which typically occurs in the

glial cells of the brain and spinal cord. Meningioma is a type of benign brain tumor; however, it

can develop into malignant tumors without proper intervention. Meningioma is typically located

in meninges, which are protective membranes enclosing the brain. Like meningioma, pituitary

100

tumors are benign and formed in the pituitary gland below the brain. Both meningioma and

pituitary tumors are difficult to diagnose as they show very few symptoms. The correctness

of class labels are verified by medical practitioners. The size of input images is 64×64. The

dataset is split into a training set with 2870 images and a test set with 394 images. Table 4.9

shows data split statistics. Image augmentation is performed using AutoAugment [43].

Table 4.9. Number of training and test images per class

Tumor Type Number of Training Images Number of Test Images
Glioma 826 100
Meningioma 822 115
Healthy 395 105
Pituitary 827 74

4.6.4 Experimental Settings

Our framework is orthogonal to existing NAS approaches and can be applied to any

differentiable NAS method. In the experiments, SANAS was applied to DARTS [122], P-

DARTS [29], and PC-DARTS [196]. The search spaces of these methods are composed of

(dilated) separable convolutions with sizes of 3×3 and 5×5, max pooling with size of 3×3,

average pooling with size of 3×3, identity, and zero. Following Liu et al.[122], each experiment

consists of two phrases: 1) architecture search where an optimal cell is identified, and 2)

architecture evaluation where multiple copies of the optimal cell are stacked into a larger

network, which is retrained from scratch. During architecture search, the architecture of the

explainer is a stack of 8 cells. Each cell consists of 7 nodes. We set the initial channel number to

16. For the audience model, we set it to ResNet-18 [79]. We set the tradeoff parameter γ to 1. We

randomly split the training set into two parts. During architecture search in SANAS, the first part

is used as D(tr)
e and D(tr)

a , and the second part is used as D(val)
e and D(val)

a . During architecture

evaluation, the composed large network is trained on the entire training set. The search algorithm

was based on SGD, with a batch size of 64, an initial learning rate of 0.025 (reduced in later

epochs using a cosine decay scheduler), an epoch number of 50, a weight decay of 3e-4, and

101

a momentum of 0.9. The rest of hyperparameters mostly follow those in DARTS, P-DARTS,

and PC-DARTS. During architecture evaluation, a larger network of the explainer is formed by

stacking 12 copies of the searched cell. The initial channel number was set to 36. We trained

the network with a batch size of 96, an epoch number of 3000, on a single Tesla v100 GPU. We

compared with manually-designed neural architectures including ResNet[77], VGGNet[165],

and DenseNet[89].

4.6.5 Results and Discussion

Table 4.10. Test accuracy and number of model parameters of different methods.

Method Accuracy (%) Parameters (M)
DenseNet40 83.50 0.25
DenseNet101 86.80 0.95
VGGNet13 88.07 10.72
VGGNet16 88.33 16.03
ResNet50 85.79 23.54
ResNet101 84.52 42.56
DARTS 89.34 3.85
SANAS+DARTS 90.61 3.75
PCDARTS 88.07 3.57
SANAS+PCDARTS (γ = 0.1) 89.60 4.27
SANAS+PCDARTS (γ = 0.5) 89.09 4.05
SANAS+PCDARTS (γ = 1) 88.83 4.25
PDARTS 88.33 3.85
SANAS+PDARTS 88.83 3.77

Table 4.10 shows test accuracy and number of model parameters of different methods.

From this table, we make the following observations. First, our SANAS+DARTS method

achieves the highest test accuracy among all methods. Its accuracy is much higher than ResNet

and VGGNet, while its parameter size is much smaller than ResNet and VGGNet. For instance,

our method achieves a test accuracy of 90.6% with 3.75M parameters while the accuracy of a

human-designed network – ResNet101 – is 84.5% with 42.56M parameters. Second, applying

our proposed SANAS method to different NAS baselines including DARTS, PCDARTS, and

PDARTS improves the performance of these baselines. For example, by applying SANAS, the

102

Table 4.11. Results of the ablation study where the explainer updates its architecture by
minimizing the validation loss of the audience only.

Method Error (%)
Audience only (SANAS+DARTS) 90.18
Audience + explainer (SANAS+DARTS) 90.61
Audience only (SANAS+PDARTS) 88.49
Audience + explainer (SANAS+PDARTS) 88.83

test accuracy of DARTS is improved from 89.34% to 90.61%. These results strongly demonstrate

the broad effectiveness of our framework in searching for better neural architectures. The reason

behind this is: in our framework, the explanations made by the explainer are used to train the

audience model; the validation performance of the audience reflects how good the explanations

are; to make good explanations, the explainer’s model has to be trained well; driven by the goal

of helping the audience to learn well, the explainer continuously improves the training of itself.

Such an explanation-driven learning mechanism is lacking in baseline methods, which are hence

inferior to our method.

To better understand our proposed method, we perform an ablation study where the

explainer updates its architecture by minimizing the validation loss of the audience only, without

considering the validation loss of itself. Table 4.11 shows the results of SANAS+DARTS and

SANAS+PDARTS. As can be seen, “audience + explainer” where the validation losses of both

the audience model and explainer itself are minimized to update the explainer’s architecture

works better than “audience only” where only the audience’s validation loss is used to learn

the architecture. Audience’s validation loss reflects how good the explanations made by the

explainer are. Explainer’s validation loss reflects how strong the explainer’s prediction ability is.

Combining these two losses provides more useful feedback to the explainer than using one loss

only, which hence can help the explainer to learn better.

We also performed an ablation study on how the choice of audience models affects

test accuracy. We experimented with two architectures for the audience model: ResNet18

and VGGNet13, where ResNet18 is more expressive than VGGNet13 since it has more layers.

103

Table 4.12. Results on how different choices of audience models affect test accuracy.

Method Accuracy (%)
SANAS+DARTS (VGGNet13) 90.17
SANAS+DARTS (ResNet18) 90.61
SANAS+PDARTS (VGGNet13) 88.56
SANAS+PDARTS (ResNet18) 88.83

Table 4.12 shows the results. As can be seen, in SANAS applied to DARTS and PDARTS, using

ResNet18 as the audience achieves better performance than using VGGNet13. The reason is that

to help a stronger audience to learn better, the explainer has to be even stronger. For a stronger

audience model, it already has great capability in achieving excellent classification performance.

To further improve this audience, the explanations used to train this audience need to be very

sensible and informative. To generate such explanations, the explainer has to force itself to learn

very well.

We investigated how test accuracy changes with the tradeoff parameter γ . The third

panel in Table 4.10 shows the results of SANAS+PCDARTS. As can be seen, the test accuracy

increases when we increase γ from 0 (which is equivalent to vanilla PCDARTS) to 0.1. The

reason is that a larger γ enables the audience to provide stronger feedback to the explainer

regarding how good the explanations are. Such feedback can guide the explainer to refine its

architecture for generating better explanations. However, if γ is further increased, the error

becomes worse. Under such circumstances, too much emphasis is put on evaluating how good

the explanations are and less attention is paid to the predictive ability of the explainer. The

architecture is biased to generating good explanations with predictive performance compromised,

which leads to inferior performance.

We perform visualization of the results. Figure 4.5 shows the convergence curves of

validation accuracy for different NAS methods with and without SANAS, convergence curves of

validation accuracy for SANAS+PCDARTS under different γ values, and convergence curves

of validation accuracy for non-NAS methods. Figure 4.6 show the architectures searched by

SANAS+DARTS, SANAS+PCDARTS, and SANAS+PDARTS.

104

Figure 4.5. Left: Convergence curves of validation accuracy for different NAS methods with and
without SANAS; Middle: Convergence curves of validation accuracy for SANAS+PCDARTS
under different γ values; Right: Convergence curves of validation accuracy for non-NAS
methods.

(a) Normal Cell (b) Reduce Cell

(c) Normal Cell (d) Reduce Cell

(e) Normal Cell (f) Reduce Cell

Figure 4.6. (a-b): the architecture searched by SANAS+DARTS; (c-d): the architecture searched
by SANAS+PCDARTS; (e-f): The architecture searched by SANAS+PDARTS.

4.7 Appendix

4.7.1 Limitations

Apply SANAS to non-differentiable NAS methods.

To apply SANAS to non-differentiable NAS methods, we have to change the current

gradient-based optimization algorithm to some other non-gradient-based optimization algorithms

(such as REINFORCE [189] for reinforcement learning), which might incur higher computational

costs. To apply SANAS to reinforcement learning (RL) based NAS methods, we perform the

following procedures. First, we use an RL controller [218] to generate a set of candidate

105

architectures. Second, given a candidate architecture, we train its weight parameters on a

training dataset, similar to stage I in SANAS. Third, given the trained model, we perform

adversarial attacks to detect the saliency maps of the training data, similar to stage II in SANAS.

Fourth, we use saliency maps to reweight training data and retrain the model on reweighted

data, similar to stage III in SANAS. Fifth, we evaluate the retrained model on a validation set

and use validation accuracy as a reward for this architecture. We repeat steps 2-5 for every

candidate architecture, calculate the mean reward on all candidate architectures, and update the

RL controller by maximizing the mean reward using policy gradient [218]. These procedures

repeat until convergence. Similar procedures can be conducted to perform saliency-aware

architecture search in evolutionary algorithm based NAS methods.

When to use SANAS and when not.

It is recommended to use SANAS in applications that strongly need high-performance

neural architectures capable of generating sensible saliency maps but do not have strong require-

ments on the time spent on architecture search. For example, imaging-based disease diagnosis

is a good application scenario of SANAS, for two reasons. First, disease diagnosis needs to

be highly accurate and needs high-fidelity saliency maps for interpreting predicted diagnosis

outcomes. Second, to use an automatically searched neural architecture in hospitals, FDA

approval is needed, which usually takes several months. To successfully pass the FDA approval,

it is acceptable to take some extra time to search for a high-quality neural architecture. For

applications which have high restrictions on search cost but allow sacrificing some performance

and ignoring saliency maps, other NAS methods that have higher search efficiency but lower

performance and weaker saliency-generation capability than our method might be better choices.

Examples of such applications are online learning applications which need to update architectures

in real time.

106

Figure 4.7. More examples of visual saliency maps.

4.7.2 Visualization of saliency maps

Figure 4.7 shows more examples of visual saliency maps. The saliency maps detected by

our method are more sensible than those detected by baselines.

4.7.3 Salient word detection

Table 4.13 shows more examples of salient words detected by different methods. In each

example, the top-2 words detected by our method are more salient than baselines. The prediction

task corresponding to Table 4.8 and 4.13 is sentiment classification. A word is more salient if it

has a stronger correlation with a sentiment (either positive or negative). For example, the word

“entertaining” in Table 4.8 implies a positive sentiment, and therefore is considered to be salient.

In contrast, the word “mix” is a neutral word that is irrelevant to sentiments, and therefore is not

considered to be salient.

4.7.4 Improving computational efficiency

We improved the computational efficiency of our method from both the algorithm side

and implementation side. On the algorithm side, we speed up computation by approximating the

optimal solution at each stage using a one-step gradient descent update [122] and reducing the

107

Table 4.13. Top-2 salient words (marked with red color) detected by different methods.

EC with youthful high spirits, tautou remains captivating
throughout michele’s religious and romantic quests, and
she is backed by a likable cast.

GMPGC with youthful high spirits, tautou remains captivating
throughout michele’s religious and romantic quests, and
she is backed by a likable cast.

Ours with youthful high spirits, tautou remains captivating
throughout michele’s religious and romantic quests, and
she is backed by a likable cast.

EC the title’s lameness should clue you in on how bad the movie
is.

GMPGC the title’s lameness should clue you in on how bad the movie
is.

Ours the title’s lameness should clue you in on how bad the movie
is.

frequencies of these updates. Specifically, we update the architecture A every 5 mini-batches.

In contrast, baselines (including Darts, Parts, Pcdarts, Prdarts) update A on every mini-batch.

We update model weights W2 and perturbations δ every 3 mini-batches, and update W1 on every

mini-batch. We empirically found that reducing the update frequencies of certain parameters can

significantly speed up convergence without sacrificing performance. Besides, when calculating

hypergradients of A, we recursively approximate matrix-vector multiplications using finite-

difference calculations [122], which reduces the computation cost from being quadratic in matrix

dimensions down to linear.

On the implementation side, we speed up computation by leveraging techniques and

tricks including 1) automatic mixed precision [135], 2) using multiple (4, specifically) workers

and pinned memory in PyTorch DataLoader, 3) using cudNN autotuner, 4) kernel fusion, etc.

4.7.5 Hyperparameter tuning strategies

Most hyperparameters in our method follow their default values used in baseline methods.

The only hyperparameter needing to be tuned is the tradeoff parameter γ . To tune γ on CIFAR-

108

100, we randomly sample 2.5K data from the 25K training set and sample 2.5K data from the 25K

validation set. Then we use the 5K sampled data as a hyperparameter tuning set. γ is tuned in

0.1, 0.5, 1, 2, 3. For each configuration of γ , we use the remaining 22.5K training data and 22.5K

validation data to perform architecture search and use their combination to perform architecture

evaluation (retraining a larger stacked network from scratch). Then we measure the performance

of the stacked network on the 5K sampled data. γ value yielding the best performance on the 5K

sampled data is selected. For γ in CIFAR-10 and ImageNet experiments, we simply used the

value tuned on CIFAR-100 and did not conduct further tuning.

4.8 Acknowledgements

Chapter 4, in part, has been published in the Proceedings of the 2022 Neural Information

Processing Systems (NeurIPS) Conference under the title ”Saliency-Aware Neural Architecture

Search” by Ramtin Hosseini and Pengtao Xie. Additionally, a portion of this chapter has been

published in the 2022 Nature Scientific Reports as ”Brain Tumor Classification Based on Neural

Architecture Search” by Ramtin Hosseini, Shubham Chitnis, and Pengtao Xie. The dissertation

author served as the primary author for these publications.

109

Conclusion and Future Works

In conclusion, neural architecture search (NAS) has emerged as a powerful tool for

automating the design of deep neural networks. However, Trustworthy Neural Architecture

Search is essential for any successful deep learning system and in order to be truly useful in

real-world applications, NAS must be made trustworthy in terms of interpretability, fairness,

robustness, and out-of-domain generalization. Where interpretability is a crucial aspect of NAS,

as it allows researchers and practitioners to understand the reasoning behind the selected archi-

tecture. This is particularly important in applications where the consequences of a mistake are

severe, such as medical imaging or self-driving cars. One approach to addressing interpretability

in NAS is to use architectures that are composed of modules with simple, interpretable functions.

Additionally, techniques such as visualization and explainability methods can be used to gain

insights into the internal workings of NAS models. Fairness is another important consideration in

NAS. This is because NAS models are often used in applications where the consequences of bias

can be severe, such as in criminal justice or hiring. To address fairness in NAS, one approach

is to use architectures that are designed to be robust to bias in the training data. Additionally,

techniques such as adversarial training and debiasing methods can be used to mitigate bias in

NAS models. Robustness is another key consideration in NAS. This is because NAS models

are often used in applications where the operating conditions may be uncertain or adversarial,

such as in autonomous vehicles or cybersecurity. To address robustness in NAS, one approach

is to use architectures that are designed to be robust to various types of perturbations, such

as noise and adversarial examples. Additionally, techniques such as adversarial training and

robust optimization can be used to improve the robustness of NAS models. Out-of-domain

110

generalization is the final key consideration in NAS. This is because NAS models are often used

in applications where the test data may be different from the training data, such as in natural

language processing or computer vision. To address out-of-domain generalization in NAS, one

approach is to use architectures that are designed to be robust to changes in the input distribution.

Additionally, techniques such as domain adaptation and meta-learning can be used to improve

the out-of-domain generalization of NAS models. With the right approaches, Neural Architecture

Search can be a powerful tool for creating robust and reliable deep learning systems that are

reliable and trustworthy. It has shown that through the use of interpretability, fairness, robustness,

and out-of-domain generalization, neural architecture search can be used to identify optimal

architectures for specific tasks, while maintaining trustworthiness. The results of this research

have shown that these four trustworthiness criteria are beneficial in neural architecture search,

and that they can be used to improve the performance of a network. In particular, interpretability

can be used to better understand the network, fairness can be used to ensure that the network

does not discriminate against certain groups, robustness can be used to ensure that the network is

robust to changes in the data, and out-of-domain generalization can be used to ensure that the

network is generalizable to new data.

In this thesis, we addressed these four trustworthiness criteria of robustness,, fairness,

out-of-domain generalization, and interpretability. In chapter 1, we introduced techniques

for searching for robust neural architectures in a differentiable manner. Our methods define

two differentiable metrics for measuring the robustness of architectures, which are based on

certified lower bounds and Jacobian norm bounds. The goal of our search is to find architectures

that maximize these robustness metrics. Unlike previous methods that aim to enhance the

robustness of architectures through implicit means such as adversarial training or adding random

noise, our techniques explicitly and directly optimize for robustness metrics to achieve more

robust architectures. In chapter 2, we proposed a machine learning framework inspired by

the human ability to learn by categorization to address the fairness issue of NAS techniques,

which divides a wide range of problems into distinct categories and solves each one using

111

a category-specific sub-model. This framework is formulated as a three-level optimization

problem, which consists of three stages of learning that are carried out in a joint manner with

gradient descent. We have developed an efficient optimization algorithm to address this problem

and applied it to differentiable neural architecture search methods. Experiments on GLUE,

CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate the effectiveness of our method,

which can reduce overfitting and achieve state-of-the-art results with both fixed and searchable

network architectures. In chapter 3, we proposed a three-level optimization framework that

leverages self-training technique to tackle the generalization issue in existing NAS techniques.

Finally, in chapter 4, we proposed an interpratible framework that uses four-level optimization

to dynamically detect the salience of input data, reweight data based on salience maps, and

search for architectures on the reweighted data. The first stage involves training a model with a

fixed architecture. The second level generates salience maps using the trained model. The third

stage retrains the model on data reweighted by the salience maps. The fourth and final stage

evaluates the model on a validation set and updates the architecture to minimize the validation

loss. Experiments on several datasets have proven the efficacy of our framework. Furthermore,

we applied this proposed method in healthcare applications (i.e., brain tumor classification).

Future Directions in Neural Architecture Search

Enhancing the trustworthiness and efficiency of Neural Architecture Search (NAS)

presents a comprehensive challenge that necessitates innovative approaches. Herein, we outline

several directions for future research aimed at refining NAS processes to ensure they are inter-

pretably fair, robust, and generalizable across domains, while also optimizing computational and

data efficiency.

As the primary aim is to embed different trustworthiness principles such as interpretability,

fairness, robustness, generalization, and efficiency directly into the NAS framework, here are

some future directions that can be studied:

112

• Interpretability: Integrating understandable components and regularization techniques to

foster architectures that are transparent and comprehensible.

• Fairness: Including fairness metrics in the evaluation criteria and enforcing search con-

straints to avoid bias, ensuring solutions are equitable across diverse groups.

• Robustness: Employing strategies like adversarial training and regularization to enhance

resilience against perturbations and attacks.

• Generalization: Leveraging meta-learning and transfer learning to improve performance

on unseen data, extending applicability beyond the training domain.

• Advanced Sampling Techniques: Employing weight sharing and one-shot NAS, and

leveraging architectural priors to streamline the search process.

• Data Efficiency: Utilizing active learning, transfer learning, and domain adaptation to

optimize NAS performance with limited or skewed datasets.

• Adaptive NAS: Developing models capable of dynamic adjustment to evolving data and

environments through online NAS or continuous learning mechanisms.

• Domain-Specific NAS Methods: Creating approaches tailored for challenges in fields

such as graph neural networks, reinforcement learning, and generative models.

• Correlational Studies: Exploring the relationship between NAS-generated architectures

and specific problem characteristics.

• Optimization Techniques: Implementing weight sharing and one-shot architectures,

incorporating existing knowledge to streamline the search.

• Data-Driven Efficiency: Enhancing data efficiency through active learning and domain-

specific adaptation techniques.

113

• Customized NAS for Unique Architectures: Designing NAS solutions for specialized

structures such as recurrent and graph neural networks.

• Environmental Adaptability: Crafting NAS models with intrinsic capability to adapt to

data and environmental shifts.

• New Domain Applications: Exploring NAS in areas like reinforcement learning and

generative models, requiring domain-specific innovations.

• Efficiency and Adaptability: Refining NAS to improve its efficiency and adaptability

across a broader spectrum of applications.

In summary, the future of NAS lies in addressing multidimensional challenges through

dedicated research and development efforts, significantly enhancing the potential of automated

architecture design.

114

Bibliography

[1] https://www.cancer.net/cancer-types/brain-tumor/statistics.

[2] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim. Sanity checks for saliency maps. Advances in neural information processing systems,
31, 2018.

[3] Parnian Afshar, Arash Mohammadi, and Konstantinos N. Plataniotis. Brain tumor type
classification via capsule networks, 2018.

[4] David Alvarez-Melis and Tommi S Jaakkola. Towards robust interpretability with self-
explaining neural networks. arXiv preprint arXiv:1806.07538, 2018.

[5] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic
propositional image caption evaluation. In European conference on computer vision,
pages 382–398. Springer, 2016.

[6] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen
Gould, and Lei Zhang. Bottom-up and top-down attention for image captioning and
visual question answering. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6077–6086, 2018.

[7] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
Square attack: a query-efficient black-box adversarial attack via random search. In
European Conference on Computer Vision, pages 484–501. Springer, 2020.

[8] Viktar Atliha and Dmitrij Šešok. Image-captioning model compression. Applied Sciences,
12(3):1638, 2022.

[9] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen,
and Klaus-Robert Müller. How to explain individual classification decisions. Journal of
Machine Learning Research, 11(Jun):1803–1831, 2010.

[10] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation
with improved correlation with human judgments. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summa-
rization, pages 65–72, Ann Arbor, Michigan, June 2005. Association for Computational
Linguistics.

115

[11] Atilim Gunes Baydin, Robert Cornish, David Martı́nez-Rubio, Mark Schmidt, and
Frank D. Wood. Online learning rate adaptation with hypergradient descent. CoRR,
abs/1703.04782, 2017.

[12] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank
Wood. Online learning rate adaptation with hypergradient descent. arXiv preprint
arXiv:1703.04782, 2017.

[13] Sartaj Bhuvaji, Ankita Kadam, Prajakta Bhumkar, Sameer Dedge, and Swati Kanchan.
Brain tumor classification (mri), 2020.

[14] Melissa L Bondy, Michael E Scheurer, Beatrice Malmer, Jill S Barnholtz-Sloan, Faith G
Davis, Dora Il’Yasova, Carol Kruchko, Bridget J McCarthy, Preetha Rajaraman, Ju-
dith A Schwartzbaum, et al. Brain tumor epidemiology: consensus from the brain tumor
epidemiology consortium. Cancer, 113(S7):1953–1968, 2008.

[15] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Cnn-cert:
An efficient framework for certifying robustness of convolutional neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3240–
3247, 2019.

[16] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on
target task and hardware. In ICLR, 2019.

[17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[18] Francesco Paolo Casale, Jonathan Gordon, and Nicoló Fusi. Probabilistic neural architec-
ture search. CoRR, abs/1902.05116, 2019.

[19] Alvin Chan, Yi Tay, Yew Soon Ong, and Jie Fu. Jacobian adversarially regularized
networks for robustness. arXiv preprint arXiv:1912.10185, 2019.

[20] Jianlong Chang, Yiwen Guo, GAOFENG MENG, SHIMING XIANG, Chunhong Pan,
et al. Data: Differentiable architecture approximation. Advances in Neural Information
Processing Systems, 32:876–886, 2019.

[21] Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo
Deng, Jun Huang, Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression
with differentiable neural architecture search. arXiv preprint arXiv:2001.04246, 2020.

[22] Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh. Show-
and-fool: Crafting adversarial examples for neural image captioning. arXiv preprint
arXiv:1712.02051, 2017.

[23] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching
transformers for visual recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12270–12280, 2021.

116

[24] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, pages 15–26, 2017.

[25] Shengcong Chen, Changxing Ding, and Minfeng Liu. Dual-force convolutional neural
networks for accurate brain tumor segmentation. Pattern Recognition, 88:90–100, 2019.

[26] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via
perturbation-based regularization. In International conference on machine learning, pages
1554–1565. PMLR, 2020.

[27] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via
perturbation-based regularization. CoRR, abs/2002.05283, 2020.

[28] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh.
Drnas: Dirichlet neural architecture search. CoRR, abs/2006.10355, 2020.

[29] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In ICCV, 2019.

[30] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh.
Query-efficient hard-label black-box attack: An optimization-based approach. arXiv
preprint arXiv:1807.04457, 2018.

[31] Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. Seq2sick:
Evaluating the robustness of sequence-to-sequence models with adversarial examples. In
AAAI, pages 3601–3608, 2020.

[32] Shubham Chitnis, Ramtin Hosseini, and Pengtao Xie. Brain tumor classification based on
neural architecture search. Scientific Reports, 12(1):19206, 2022.

[33] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing multimedia content
using attention-based encoder-decoder networks. IEEE Transactions on Multimedia,
17(11):1875–1886, 2015.

[34] Sang Keun Choe, Willie Neiswanger, Pengtao Xie, and Eric Xing. Betty: An automatic
differentiation library for multilevel optimization. arXiv preprint arXiv:2207.02849, 2022.

[35] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan.
DARTS-: robustly stepping out of performance collapse without indicators. CoRR,
abs/2009.01027, 2020.

[36] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS: eliminating
unfair advantages in differentiable architecture search. CoRR, abs/1911.12126, 2019.

117

[37] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza,
David Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti,
et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the
international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368, 2019.

[38] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via
randomized smoothing. arXiv preprint arXiv:1902.02918, 2019.

[39] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. Meshed-memory
transformer for image captioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10578–10587, 2020.

[40] Nicolas Couellan and Wenjuan Wang. On the convergence of stochastic bi-level gradient
methods. Optimization, 2016.

[41] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a
fast adaptive boundary attack. In International Conference on Machine Learning, pages
2196–2205. PMLR, 2020.

[42] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In ICML, 2020.

[43] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Au-
toaugment: Learning augmentation policies from data, 2019.

[44] Mary Elizabeth Davis. Glioblastoma: Overview of disease and treatment. Clinical journal
of oncology nursing, 20(5 Suppl):S2–S8, Oct 2016. 27668386[pmid].

[45] S Deepak and PM Ameer. Brain tumour classification using siamese neural network and
neighbourhood analysis in embedded feature space. International Journal of Imaging
Systems and Technology, 31(3):1655–1669, 2021.

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[48] Chaitanya Devaguptapu, Devansh Agarwal, Gaurav Mittal, and Vineeth N Balasubrama-
nian. An empirical study on the robustness of nas based architectures. arXiv preprint
arXiv:2007.08428, 2020.

[49] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

118

[50] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguis-
tics.

[51] Francisco Javier Dı́az-Pernas, Mario Martı́nez-Zarzuela, Mı́riam Antón-Rodrı́guez, and
David González-Ortega. A deep learning approach for brain tumor classification and
segmentation using a multiscale convolutional neural network. In Healthcare, volume 9,
page 153. Multidisciplinary Digital Publishing Institute, 2021.

[52] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours.
In CVPR, 2019.

[53] Xuefeng Du and Pengtao Xie. Small-group learning, with application to neural architecture
search. arXiv preprint arXiv:2012.12502, 2020.

[54] Xuefeng Du, Haochen Zhang, and Pengtao Xie. Learning by passing tests, with application
to neural architecture search. arXiv preprint arXiv:2011.15102, 2020.

[55] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Push-
meet Kohli. A dual approach to scalable verification of deep networks. In UAI, volume 1,
page 2, 2018.

[56] Christian Etmann, Sebastian Lunz, Peter Maass, and Carola-Bibiane Schönlieb. On
the connection between adversarial robustness and saliency map interpretability. arXiv
preprint arXiv:1905.04172, 2019.

[57] Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian hyperparameter
optimization via meta-learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2015.

[58] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Initializing bayesian hy-
perparameter optimization via meta-learning. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, page 1128–1135. AAAI Press, 2015.

[59] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages
1126–1135. PMLR, 2017.

[60] Bhanu Garg, Li Zhang, Pradyumna Sridhara, Ramtin Hosseini, Eric Xing, and Pengtao
Xie. Learning from mistakes–a framework for neural architecture search. arXiv preprint
arXiv:2111.06353, 2021.

[61] Bhanu Garg, Li Lyna Zhang, Pradyumna Sridhara, Ramtin Hosseini, Eric Xing, and
Pengtao Xie. Learning from mistakes - a framework for neural architecture search. In
AAAI Conference on Artificial Intelligence, 2021.

119

[62] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming.
arXiv preprint arXiv:1802.02246, 2018.

[63] Navid Ghassemi, Afshin Shoeibi, and Modjtaba Rouhani. Deep neural network with
generative adversarial networks pre-training for brain tumor classification based on mr
images. Biomedical Signal Processing and Control, 57:101678, 2020.

[64] Palash Ghosal, Lokesh Nandanwar, Swati Kanchan, Ashok Bhadra, Jayasree Chakraborty,
and Debashis Nandi. Brain tumor classification using resnet-101 based squeeze and
excitation deep neural network. In 2019 Second International Conference on Advanced
Computational and Communication Paradigms (ICACCP), pages 1–6. IEEE, 2019.

[65] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[66] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object
recognition: An unsupervised approach. In 2011 International Conference on Computer
Vision, pages 999–1006, 2011.

[67] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the
iteration complexity of hypergradient computation. In International Conference on
Machine Learning, pages 3748–3758. PMLR, 2020.

[68] Arthur Gretton, Karsten Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander J
Smola. A kernel method for the two-sample problem. arXiv preprint arXiv:0805.2368,
2008.

[69] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten M. Borgwardt,
Bernhard Schölkopf, Quiñonero Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D. Lawrence. Covariate shift by kernel mean matching. In NIPS 2009, 2009.

[70] Yu-Chao Gu, Li-Juan Wang, Yun Liu, Yi Yang, Yu-Huan Wu, Shao-Ping Lu, and Ming-
Ming Cheng. Dots: Decoupling operation and topology in differentiable architecture
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12311–12320, 2021.

[71] Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua Lin. When nas meets
robustness: In search of robust architectures against adversarial attacks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 631–640,
2020.

[72] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. In European
Conference on Computer Vision, pages 544–560. Springer, 2020.

[73] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A Smith. Don’t stop pretraining: Adapt language models to domains
and tasks. arXiv preprint arXiv:2004.10964, 2020.

120

[74] Ruqian Hao, Khashayar Namdar, Lin Liu, and Farzad Khalvati. A transfer learning–
based active learning framework for brain tumor classification. Frontiers in Artificial
Intelligence, 4, 2021.

[75] Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville,
Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor
segmentation with deep neural networks. Medical image analysis, 35:18–31, 2017.

[76] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architec-
ture search via mixed-level reformulation, 2020.

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

[78] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[79] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[80] Judy Hoffman, Daniel A Roberts, and Sho Yaida. Robust learning with jacobian regular-
ization. arXiv preprint arXiv:1908.02729, 2019.

[81] Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang, Yunhe Wang, Zhenguo Li, and
Yong Yu. Dropnas: Grouped operation dropout for differentiable architecture search. In
IJCAI, 2020.

[82] Ramtin Hosseini and Pengtao Xie. Learning by self-explanation, with application to
neural architecture search. arXiv preprint arXiv:2012.12899, 2020.

[83] Ramtin Hosseini and Pengtao Xie. Image understanding by captioning with differentiable
architecture search. In Proceedings of the 30th ACM International Conference on Multi-
media, MM ’22, page 4665–4673, New York, NY, USA, 2022. Association for Computing
Machinery.

[84] Ramtin Hosseini and Pengtao Xie. Saliency-aware neural architecture search. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[85] Ramtin Hosseini, Xingyi Yang, and Pengtao Xie. Dsrna: Differentiable search of robust
neural architectures. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6196–6205, 2021.

[86] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

121

[87] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and
Dahua Lin. DSNAS: direct neural architecture search without parameter retraining. In
CVPR, 2020.

[88] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In CVPR, 2017.

[89] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks, 2018.

[90] Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong Wei. Attention on attention for
image captioning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4634–4643, 2019.

[91] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial
attacks with limited queries and information. arXiv preprint arXiv:1804.08598, 2018.

[92] Ali Işın, Cem Direkoğlu, and Melike Şah. Review of mri-based brain tumor image
segmentation using deep learning methods. Procedia Computer Science, 102:317–324,
2016.

[93] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local
experts. Neural Computation, 3:79–87, 1991.

[94] Daniel Jakubovitz and Raja Giryes. Improving dnn robustness to adversarial attacks using
jacobian regularization. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 514–529, 2018.

[95] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

[96] I-Hong Jhuo, Dong Liu, D. T. Lee, and Shih-Fu Chang. Robust visual domain adaptation
with low-rank reconstruction. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2168–2175, 2012.

[97] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882–4892.
PMLR, 2021.

[98] Wenhao Jiang, Lin Ma, Yu-Gang Jiang, Wei Liu, and Tong Zhang. Recurrent fusion
network for image captioning. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 499–515, 2018.

[99] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

122

[100] HNTK Kaldera, Shanaka Ramesh Gunasekara, and Maheshi B Dissanayake. Brain tumor
classification and segmentation using faster r-cnn. In 2019 Advances in Science and
Engineering Technology International Conferences (ASET), pages 1–6. IEEE, 2019.

[101] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation
network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4893–4902, 2019.

[102] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3128–3137, 2015.

[103] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations, 12 2014.

[104] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[105] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense image annotations. Interna-
tional journal of computer vision, 123(1):32–73, 2017.

[106] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[107] Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10.
Unpublished manuscript, 40(7):1–9, 2010.

[108] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Citeseer, 2009.

[109] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[110] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathemati-
cal Statistics, 22(1):79–86, 1951.

[111] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. public, 2010.

[112] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana.
Certified robustness to adversarial examples with differential privacy. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 656–672. IEEE, 2019.

[113] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
2016.

123

[114] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware
gradient algorithms for neural architecture search, 2021.

[115] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang,
Houdong Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training
for vision-language tasks. In European Conference on Computer Vision, pages 121–137.
Springer, 2020.

[116] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen
Zhuang, and Zhenguo Li. Darts+: Improved differentiable architecture search with early
stopping. arXiv preprint arXiv:1909.06035, 2019.

[117] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text
summarization branches out, pages 74–81, 2004.

[118] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014.

[119] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-
Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Computer Vision (ECCV), pages
19–34, 2018.

[120] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-
Fei, Alan L. Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, 2018.

[121] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical representations for efficient architecture search. In ICLR,
2018.

[122] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture
search. In ICLR, 2019.

[123] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel
optimization with non-convex followers and beyond. Advances in Neural Information
Processing Systems, 34, 2021.

[124] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[125] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10012–10022, 2021.

124

[126] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of the IEEE international conference on computer vision, pages
3730–3738, 2015.

[127] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable
features with deep adaptation networks. In International conference on machine learning,
pages 97–105. PMLR, 2015.

[128] David N. Louis, Hiroko Ohgaki, Otmar D. Wiestler, Webster K. Cavenee, Peter C. Burger,
Anne Jouvet, Bernd W. Scheithauer, and Paul Kleihues. The 2007 who classification
of tumours of the central nervous system. Acta Neuropathologica, 114(2):97–109, Aug
2007.

[129] Diyuan Lu, Nenad Polomac, Iskra Gacheva, Elke Hattingen, and Jochen Triesch. Human-
expert-level brain tumor detection using deep learning with data distillation and augmen-
tation. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3975–3979. IEEE, 2021.

[130] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical
guidelines for efficient CNN architecture design. In ECCV, 2018.

[131] Marc C Mabray, Ramon F Barajas, and Soonmee Cha. Modern brain tumor imaging.
Brain tumor research and treatment, 3(1):8–23, 2015.

[132] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[133] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L Yuille. Explain images with
multimodal recurrent neural networks. arXiv preprint arXiv:1410.1090, 2014.

[134] Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Fara-
hani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, et al.
The multimodal brain tumor image segmentation benchmark (brats). IEEE transactions
on medical imaging, 34(10):1993–2024, 2014.

[135] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al.
Mixed precision training. arXiv preprint arXiv:1710.03740, 2017.

[136] James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. Ex-
plainable prediction of medical codes from clinical text. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), pages 1101–1111,
2018.

125

[137] Hiba Mzoughi, Ines Njeh, Ali Wali, Mohamed Ben Slima, Ahmed BenHamida, Chokri
Mhiri, and Kharedine Ben Mahfoudhe. Deep multi-scale 3d convolutional neural network
(cnn) for mri gliomas brain tumor classification. Journal of Digital Imaging, 33(4):903–
915, 2020.

[138] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adaptation
via transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199–210,
2011.

[139] Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. X-linear attention networks for image
captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10971–10980, 2020.

[140] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual meeting
of the Association for Computational Linguistics, pages 311–318, 2002.

[141] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017.

[142] Linmin Pei, Lasitha Vidyaratne, Md Monibor Rahman, and Khan M Iftekharuddin. Con-
text aware deep learning for brain tumor segmentation, subtype classification, and survival
prediction using radiology images. Scientific Reports, 10(1):1–11, 2020.

[143] Sérgio Pereira, Adriano Pinto, Victor Alves, and Carlos A Silva. Brain tumor segmentation
using convolutional neural networks in mri images. IEEE transactions on medical imaging,
35(5):1240–1251, 2016.

[144] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018.

[145] Vipin Pillai and Hamed Pirsiavash. Explainable models with consistent interpretations.
UMBC Student Collection, 2021.

[146] Yu Qin, Jiajun Du, Yonghua Zhang, and Hongtao Lu. Look back and predict forward in
image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8367–8375, 2019.

[147] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized Evolution for
Image Classifier Architecture Search. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):4780–4789, July 2019. Number: 01.

[148] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019.

126

[149] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Jie Tan, Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv
preprint arXiv:1703.01041, 2017.

[150] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[151] Zhongzheng Ren, Raymond Yeh, and Alexander Schwing. Not all unlabeled data are
equal: Learning to weight data in semi-supervised learning. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 21786–21797. Curran Associates, Inc., 2020.

[152] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel.
Self-critical sequence training for image captioning. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 7008–7024, 2017.

[153] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1135–1144.
ACM, 2016.

[154] Laura Rieger, Chandan Singh, William Murdoch, and Bin Yu. Interpretations are useful:
penalizing explanations to align neural networks with prior knowledge. In International
Conference on Machine Learning, pages 8116–8126. PMLR, 2020.

[155] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton,
André Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture
of experts. Advances in Neural Information Processing Systems, 34, 2021.

[156] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. Right for the right
reasons: Training differentiable models by constraining their explanations. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages 2662–
2670, 2017.

[157] Muhammad Sajjad, Salman Khan, Khan Muhammad, Wanqing Wu, Amin Ullah, and
Sung Wook Baik. Multi-grade brain tumor classification using deep cnn with extensive
data augmentation. Journal of computational science, 30:174–182, 2019.

[158] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

[159] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on
computer vision, pages 618–626, 2017.

127

[160] Nagur Shareef Shaik and Teja Krishna Cherukuri. Multi-level attention network: ap-
plication to brain tumor classification. Signal, Image and Video Processing, pages 1–8,
2021.

[161] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[162] Parth Sheth, Yueyu Jiang, and Pengtao Xie. Learning by teaching, with application to
neural architecture search. arXiv preprint arXiv:2103.07009, 2021.

[163] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng.
Meta-weight-net: Learning an explicit mapping for sample weighting. In Advances in
Neural Information Processing Systems, pages 1919–1930, 2019.

[164] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[165] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

[166] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[167] Akshayvarun Subramanya, Vipin Pillai, and Hamed Pirsiavash. Fooling network interpre-
tation in image classification. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2020–2029, 2019.

[168] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
Generative teaching networks: Accelerating neural architecture search by learning to
generate synthetic training data. CoRR, abs/1912.07768, 2019.

[169] Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for unsupervised
domain adaptation. Domain adaptation in computer vision applications, pages 153–171,
2017.

[170] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert
model compression. arXiv preprint arXiv:1908.09355, 2019.

[171] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 3319–3328. JMLR. org, 2017.

[172] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In CVPR, 2015.

128

[173] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[174] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard,
and Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In
CVPR, 2019.

[175] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Dis-
tilling task-specific knowledge from bert into simple neural networks. arXiv preprint
arXiv:1903.12136, 2019.

[176] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large
collection of multi-source dermatoscopic images of common pigmented skin lesions.
Scientific data, 5(1):1–9, 2018.

[177] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui
Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization
method for attacking black-box neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 742–749, 2019.

[178] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based
image description evaluation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4566–4575, 2015.

[179] Luis N. Vicente and Paul H. Calamai. Bilevel and multilevel programming: A bibliography
review, 1994.

[180] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3156–3164, 2015.

[181] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium, November
2018. Association for Computational Linguistics.

[182] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. Glue: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461, 2018.

[183] Shuai Wang, Bo Kang, Jinlu Ma, Xianjun Zeng, Mingming Xiao, Jia Guo, Mengjiao
Cai, Jingyi Yang, Yaodong Li, Xiangfei Meng, et al. A deep learning algorithm using ct
images to screen for corona virus disease (covid-19). medRxiv, 2020.

[184] Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang. Meta-semi: A meta-learning approach
for semi-supervised learning. CoRR, abs/2007.02394, 2020.

129

[185] Zhibo Wang, Xiaowei Dong, Henry Xue, Zhifei Zhang, Weifeng Chiu, Tao Wei, and Kui
Ren. Fairness-aware adversarial perturbation towards bias mitigation for deployed deep
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10379–10388, 2022.

[186] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning,
Inderjit S Dhillon, and Luca Daniel. Towards fast computation of certified robustness for
relu networks. arXiv preprint arXiv:1804.09699, 2018.

[187] Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-unet: Neural architecture search
for medical image segmentation. IEEE Access, 7:44247–44257, 2019.

[188] Yu Weng, Tianbao Zhou, Lei Liu, and Chunlei Xia. Automatic convolutional neural
architecture search for image classification under different scenes. IEEE Access, 7:38495–
38506, 2019.

[189] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3):229–256, 1992.

[190] Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In International Conference on Machine Learning, pages
5286–5295. PMLR, 2018.

[191] Eric Wong, Leslie Rice, and Zico J. Kolter. Fast is better than free: Revisiting adversarial
training. ICLR, 2020.

[192] Pengtao Xie, Xuefeng Du, and Hao Ban. Skillearn: Machine learning inspired by humans’
learning skills. arXiv preprint arXiv:2012.04863, 2020.

[193] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architec-
ture search. In ICLR, 2019.

[194] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai
Xiong. Pc-darts: Partial channel connections for memory-efficient differentiable architec-
ture search. arXiv preprint arXiv:1907.05737, 2019.

[195] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai
Xiong. Pc-darts: Partial channel connections for memory-efficient architecture search,
2020.

[196] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai
Xiong. PC-DARTS: partial channel connections for memory-efficient architecture search.
In ICLR, 2020.

[197] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimiza-
tion. Advances in Neural Information Processing Systems, 34, 2021.

130

[198] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai. Auto-encoding scene graphs
for image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10685–10694, 2019.

[199] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, and Zhouchen Lin. Ista-nas:
Efficient and consistent neural architecture search by sparse coding, 2020.

[200] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1480–1489, 2016.

[201] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship for image
captioning. In Proceedings of the European conference on computer vision (ECCV), pages
684–699, 2018.

[202] Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, and Tao Mei. Boosting image captioning
with attributes. In Proceedings of the IEEE international conference on computer vision,
pages 4894–4902, 2017.

[203] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning
with semantic attention. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4651–4659, 2016.

[204] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH
Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers
from scratch on imagenet. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 558–567, 2021.

[205] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European Conference on Computer Vision, pages 818–833. Springer, 2014.

[206] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank
Hutter. Understanding and robustifying differentiable architecture search. arXiv preprint
arXiv:1909.09656, 2019.

[207] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank
Hutter. Understanding and robustifying differentiable architecture search. In ICLR, 2020.

[208] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient
neural network robustness certification with general activation functions. In Advances in
neural information processing systems, pages 4939–4948, 2018.

[209] Le Zhang, Yanshuo Zhang, Xin Zhao, and Zexiao Zou. Image captioning via proximal
policy optimization. Image and Vision Computing, 108:104126, 2021.

131

[210] Lianbo Zhang, Shaoli Huang, Wei Liu, and Dacheng Tao. Learning a mixture of
granularity-specific experts for fine-grained categorization. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pages 8330–8339. IEEE, 2019.

[211] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin
Choi, and Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5579–5588, 2021.

[212] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan T. Dumais. Meta label correction
for learning with weak supervision. CoRR, abs/1911.03809, 2019.

[213] Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H. Hoi. Theory-inspired
path-regularized differential network architecture search. CoRR, abs/2006.16537, 2020.

[214] Jihong Zhu and Jihong Pei. Progressive kernel pruning with saliency mapping of input-
output channels. Neurocomputing, 467:360–378, 2022.

[215] Wenwu Zhu, Xin Wang, and Pengtao Xie. Self-directed machine learning. arXiv preprint
arXiv:2201.01289, 2022.

[216] Xinxin Zhu, Weining Wang, Longteng Guo, and Jing Liu. Autocaption: Image captioning
with neural architecture search. arXiv preprint arXiv:2012.09742, 2020.

[217] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep
neural network decisions: Prediction difference analysis. International Conference on
Learning Representations, 2017.

[218] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
ICLR, 2017.

[219] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

[220] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on
neural networks for graph data. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2847–2856, 2018.

132

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Backgrounds
	Robust NAS Against Adversarial Attacks
	Introduction
	Related Works
	Adversarial Attacks and Defenses
	Robustness Verification of Neural Networks

	Methods
	Defining Differentiable Robustness Metrics
	Differentiable Search of Robust Neural Architectures

	Experiments
	Dataset
	Experimental Settings
	Results

	Conclusion
	Appendix
	Acknowledgements

	Bias Mitigation in NAS for Fairness
	Introduction
	Related Works
	Mixture of Experts
	Domain Adaptation
	Multi-Level Optimization

	Methods
	Three-Level Optimization Framework
	Optimization Algorithm

	Experiments
	Datasets
	Experimental Settings
	Results
	Ablation Studies

	Conclusions and Discussion
	Appendix
	Optimization Algorithm
	Additional Experiments
	Comparison with Bagging-based Model Ensemble

	Acknowledgements

	Advancing Generalizability in NAS with Self-Training
	Introduction
	Related Works
	Image Captioning

	Methods
	Image Understanding by Captioning
	Optimization Algorithm

	Experiments
	Datasets
	Experimental Settings
	Results
	Ablation Studies

	Conclusion
	Acknowledgements

	Interpretable NAS via Saliency Learning
	Introduction
	Related works
	Methods
	A four-level optimization framework

	Experiments
	Experiments on image classification
	Experiments on text classification

	Conclusions and discussions
	Healthcare Applications – Brain Tumors Classification
	Introduction
	Related Works
	Datasets
	Experimental Settings
	Results and Discussion

	Appendix
	Limitations
	Visualization of saliency maps
	Salient word detection
	Improving computational efficiency
	Hyperparameter tuning strategies

	Acknowledgements

	Conclusion and Future Works
	Bibliography

