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Cell Volume Regulation by
Amphiuma Red Blood Cells

The Role of Ca *'as a Modulator
ofAlkali MetallH- Exchange

PETER M . CALA

From the Department of Human Physiology, School of Medicine, University of California, Davis,
California 95616

ABSTRACT In response to osmotic perturbation, the Amphiuma red blood
cell regulates volume back to "normal" levels . After osmotic swelling, the cells
lose K, Cl, and osmotically obliged H2O (regulatory volume decrease [RVD]) .
After osmotic shrinkage, cell volume is regulated as a result of Na, Cl, and H2O
uptake (regulatory volume increase [RVI]). As previously shown (Cala, 1980a),
ion fluxes responsible for volume regulation are electroneutral, with alkali
metal ions obligatorily counter-coupled to H, whereas net Cl flux is in exchange
for HCO3 . When they were exposed to the Ca ionophore A23187, Amphiuma
red blood cells lost K, Cl, and H2O with kinetics (time course) similar to those
observed during RVD. In contrast, when cells were osmotically swollen in Ca-
free media, net K loss during RVD was inhibited by ^" 60%. A role for Ca in
the activation of K/H exchange during RVD was suggested from these experi-
ments, but interpretation was complicated by the fact that an increase in cellular
Ca resulted in an increase in the membrane conductance to K (GK) . To
determine the relative contributions of conductive K flux and K/H exchange
to total K flux, electrical studies were performed and the correspondence of
net K flux to thermodynamic models for conductive vs . K/H exchange was
evaluated . These studies led to the conclusion that although Ca activates both
conductive and electroneutral K flux pathways, only the latter pathways con-
tribute significantly to net K flux . On the basis of observations that A23187
did not activate K loss from cells during RVI (when the Na/H exchange was
functioning) and that amiloride inhibited K/H exchange by swollen cells only
when cells had previously been shrunk in the presence ofamiloride, I concluded
that Na/H and K/H exchange are mediated by the same membrane transport
moiety .

INTRODUCTION

The regulation of cell volume after osmotic perturbation has been an area
of much interest in recent years . The initial studies of this process in
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vertebrate cells were focused on erythrocytes and other blood components
(Fugelli, 1967; Kregenow, 1971a, b; Poznansky and Solomon, 1972; Roti-
Roti and Rothstein, 1973; Parker, 1973x, b; Weissenberg and Katz, 1975 ;
Cala, 1977, 1980x, b ; Schmidt and McManus, 1977 ; Siebens and Kregenow,
1978, 1980 ; Lauf, 1982). Subsequently, cell volume regulation, or processes
that can be construed as such, has been demonstrated in renal proximal
tubule, Ehrlich ascites cells, mitochondria, cardiac tissue, nervous tissue, and
mammalian gall bladder (Dellasega and Grantham, 1973 ; Grantham et al .,
1974; Hendil and Hoffmann, 1974 ; Garlid, 1978; E. K . Hoffmann, 1978 ;
Vislie, 1980 ; Kevers et al ., 1981 ; Fisher et al ., 1981). Although the details of
the volume-regulatory mechanisms characteristic of various cells differ, there
are general features that are becoming apparent . It appears that volume
regulation by vertebrate cells is the result of H2O flow, which is secondary
to net inorganic ion fluxes, and that these ion fluxes are not directly coupled
to cellular metabolism .
On the basis of measurements of ion fluxes as well as direct measurement

of the cell membrane potential, this laboratory was able to demonstrate that
cell volume regulation by Amphiuma red blood cells is the result of ion fluxes
by electroneutral pathways (Cala, 1980x). Further, studies designed to deter-
mine the nature of volume-regulatory ion fluxes in other systems (duck and
fish red blood cells and gall bladder) have shown, with a few exceptions
(Grinstein et al ., 1982x, b ; E. K. Hoffmann, 1978, 1982), that cell volume
regulation is secondary to electroneutral ion transport (Siebens and Krege-
now, 1980; Kregenow, 1981 ; Fisher et al ., 1981 ; Haas and McManus, 1982).
The possibility that volume regulation by Amphiuma red blood cells was

mediated by electroneutral ion flux was first suggested in studies using
valinomycin (Val) (Cala, 1980x) . These studies showed that Val treatment in
isotonic media resulted in a 20-30-mV membrane hyperpolarization in
response to a Val-induced K flux of 10-20 mmol/kg dry cell solid (dcs) in 1
h. On the basis of the above values, the Val-induced membrane conductance
to K (GK``') was calculated to be "̂ 9 X 10-' SZ-' CM-2 . Since a Val-induced GKof g

X 10-7 S2-I cm-2 resulted in a 20-30-mV membrane hyperpolarization,
it was concluded that, in the absence of Val, the total membrane conductance
(G � ,) must be of the order of 10-6 fl-' cm-2 (within an order of magnitude of
GKa' ; see also Lassen et al ., 1978, 1980 ; cf. Stoner and Kregenow, 1980). In
contrast, when cells were osmotically perturbed (in the absence of Val), net
alkali metal ion fluxes were nominally one to two orders of magnitude larger
than the Val-induced K fluxes, but during volume regulation, the membrane
potential (E�,) remained unchanged relative to ionophore-free cells in isotonic
medium. Upon exposure to Val and anisotonic media, however, the Em of
volume-regulating cells assumed the same value as that of Val-treated cells in
isotonic medium (Ema' - -40 mV). Since the Val-induced K current (IKai)

aandEm'are volume insensitive, it was concluded that GKa' is also independent
of volume . Further, since Ewa' is in all cases the same, then IKa'/Im, and
therefore GKa'/Gn� are volume independent. It follows, then, that Im and Gm
are invariant with volume and that the volume-dependent (volume-regula-
tory) ion fluxes do not contribute to the membrane current.
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On the basis of the above and the observation that, during volume
regulation, net alkali metal ion fluxes can be much greater than those of Cl,
a model was proposed and tested. The salient features of the model are that
alkali metal ion fluxes responsible for volume regulation are obligatorily
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Proposed volume-regulatory ion flux pathways in Amphiuma red
blood cells . The models are based upon ion flux and electrical measurements
presented in a previous publication (Gala, 1980a) . The salient feature of this
model is that net alkali metal and Cl- fluxes are electroneutral by virtue of
obligatory counter-coupling with H+ and HCO3, respectively . Although H' and
HCO3 serve as counter-ions in an electrical sense, they are without osmotic
effect because these ions are cycled through the membrane alternately as H+
and HC03 or C02 and H2O. The only ion fluxes of osmotic consequence are
those of the alkali metals and chloride. The electroneutral alkali metal H
exchangers and the Cl-/HC03 exchange are functionally coupled as a result of
the flux of H+. This is in contrast to anion and cation fluxes via conductive
pathways, wherecoupling occurs throughEm. A represents the ion flux pathways
responsible for volume regulation after osmotic swelling (regulatory volume
decrease [RVD]). Net K flux via K/H exchange is generally greater (by as much
as three times) than net CI- flux via the Cl-/HCO3 exchanger. B represents the
ion flux pathways responsible for volume regulation after osmotic shrinkage
(regulatory volume increase [RVI]) . The net Na and Cl- fluxes via the Na/H
and CI-/HC03 exchangers, respectively, are generally in close correspondence
(in contrast to K/H and Cl-/HC03) with net Na flux equal to or slightly (10%)
greater than that of Cl-.

counter-coupled to H while net Cl flux occurs in exchange for HCO3 . As a
result, net alkali metal and Cl fluxes are electroneutral and proceed in the
same direction, coupled as a consequence of the flux of H. The proposed
pathways responsible for volume regulation after cell swelling (regulatory
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volume decrease [RVD]) and shrinkage (regulatory volume increase [RVI])
are depicted in Fig . 1, A and B, respectively .

During the above studies, the Ca ionophore A23187 was used to activate
the Ca-gated K conductance of Amphiuma red cells and thereby alter E,m . As
previously described by others (Lassen et a1 ., 1974, 1976 ; Gardos et al .,
1976), such treatment resulted in membrane hyperpolarization with Em
actually assuming the value ofEK (- -90 mV) in some cases . In parallel ion
flux studies performed on A23187-treated cells, net cellular K losses as large
as 200 mmol/kg dcs in 15 min were observed . The magnitude of the net K
flux induced by A23187 was difficult to rationalize with previous estimates
of G �, (^-10-6 S2_ I cm2) . Thus, it appeared that either A23187 exposure
resulted in a large (two orders of magnitude) increase in Gm or a substantial
fraction of the ionophore-induced K flux is electroneutral . In similar studies
using Amphiuma red blood cells, Lassen et al . (1976) reported that increasing
Ca. to 15 mM caused the membranes to hyperpolarize transiently and that,
in association with hyperpolarization, the cells lost K at a rate two orders of
magnitude greater than could be explained on the basis of estimates of G �, .
The above observations of large Ca-induced net K fluxes, taken together

with demonstrations by this laboratory that cell K loss during RVD is
electroneutral, suggested the possibility that Ca might activate both conduc-
tive and electroneutral K loss . That is, if a large fraction of the Ca-induced
net K loss were electroneutral, then zFJK2s187 >) IK2s187 and calculations of
GK2318' based upon fK28'8' would be overestimates . The possibility that Ca
may serve as an activator of electroneutral alkali metal/H exchange was also
of interest as it might elucidate the underlying control of volume-regulatory
ion flux pathways . Previous studies by this laboratory (Cala, 1980x, b), which
are consistent with this notion, suggested that changes in pH may be involved
in the activation and control of volume-regulatory ion fluxes . Given the
suggestion of Ca involvement, the previously reported pH effects upon
volume-regulatory ion fluxes may have been referable to pH-dependent Ca
binding rather than a more direct effect of pH on the alkali metal/H exchange
mechanism . This hypothesis is made more attractive in light of the increas-
ingly recognized role of intracellular Ca as a second messenger ; the normally
low, free intracellular [Ca] (-1 jM) would make Ca a particularly sensitive
transducer for osmotic phenomena .
The data presented in this study support a role for Ca as a modulator of

the K/H exchange responsible for RVD. The arguments presented are based
upon inferences drawn from ion flux and electrical and thermodynamic
considerations . The flux studies (a) demonstrate similarities between volume-
and A23187-stimulated cell K loss, (b) illustrate a large disparity between net
cell K and Cl loss, an observation consistent with the notion that a substantial
fraction of Ca-induced K loss is electroneutral, and (c) establish that K/H
exchange during RVD is sensitive to media Ca in the absence of A23187 .
The electrical studies provide information regarding membrane voltage and,
when evaluated in terms of evidence demonstrating that Gm is volume
independent, they permit an upper-limit estimate of the Ca-induced conduc-
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tive K loss . The thermodynamic studies performed under conditions where
the driving forces for A23187-induced K flux via conductive and electroneu-
tral pathways differ in both magnitude anddirection permit a clear distinction
between the two modes of transport. These latter studies establish not only
that the A23187-induced K flux is electroneutral but that it is electroneutral
by virtue of coupling with H (OH). Finally, evidence will be presented
supporting the hypothesis that K/H exchange and Na/H exchange are
different transport modes mediated by the same membrane component(s).

Preliminary reports of some of these data were presented to the Red Blood
Cell Club, Houston, TX (1981), and have appeared in abstract form (Gala,
1982).

MATERIALS AND METHODS

General

Blood was obtained from healthy adult Amphiuma by cardiac puncture . Blood was
drawn into a heparinized syringe, the cells were separated from plasma by centrif-
ugation for 1 min at 1,000 g, and the plasma was removed by aspiration . The cells
were then suspended in control Ringer (23°C) and centrifuged, the supernatant was
removed by aspiration, and the cells were resuspended for a total of three washes in
40 vol each of Ringer . The control (isotonic) Ringer contained: 110 mM NaCl, 3
mM KCI, 1 mM MgC12, 0.5 mM CaC12, 20 mM imidazole, and 10 mM glucose. This
medium was gassed with water-saturated room air and adjusted to pH 7.65 (23°C)
by titration with HCl . The washed cells were finally suspended in isotonic (control)
medium at 10% hematocrit and incubated for 1 .5 h with gentle agitation to assure
that the cells had reached steady state with respect to the ion and H2O content before
experimental treatment. To begin an experiment, cells were removed from suspen-
sion in control medium by centrifugation and resuspended (10% hematocrit) in the
appropriate experimental medium (at time zero). The experimental suspension
medium of all cells intended for analysis of cell ion and water content contained
["C]polyethyleneglycol (6,000 mol wt) as an extracellular space marker . Samples
(375 ul) were then removed at predetermined intervals (15, 30, or 45 min), placed
in 400-,ul polyethylene tubes (Stockwell Scientific, Monterey Park, CA), and centri-
fuged in a microcentrifuge (model 3200 ; Brinkman, Westbury, NJ) at 12,800 g for
2 min . After centrifugation the supernatant was removed and saved for analysis . The
400-,I polyethylene tube and wet cell pellet were weighed (24-48 mg wet pellet),
dried in an oven at 80°C for 48 h, cooled in a desiccator, andreweighed to determine
the dry pellet weight (8-12 mg). Finally, the dry pellet was extracted by addition of
250 ul of glass-distilled H2O to the tube containing the dry pellet . After a 3-d
extraction, aliquots of the extract were removed for ion analysis and liquid scintilla-
tion counting. All cell ion and water contents were corrected for extracellular
contribution .

Cell Ion and H2O Content

The procedure for determining cellular content of ions (Na, K, Cl) and water was
described previously (Gala, 1980a). Briefly, after extraction the following aliquots
were removed: 100 Wl for chloridometry (Buchler Instruments Div., Searle Diagnos-
tics, Inc., Fort Lee, NJ), 50 jl for Na and K flame photometry (model 343;
Instrumentation Laboratories, Lexington, MA), and 40 Al for scintillation counting
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(Searle Mark 11, liquid scintillation system ; Searle Diagnostics, Inc., Des Plaines, IL).
The raw data thus obtained, as well as the pellet wet and dry weights, were then used
to calculate the cellular ion and H2O content corrected for extracellular contribution .
The cell ion and H2O content determined by this procedure is given in Table 1 .

Experimental Media

All experimental media were variants of the control media in that Mg+2 , Ca12,
imidazole buffer, and glucose were present in the same concentrations as described
for control media, unless otherwise specified . Media osmolarity was altered by
changing the concentration of NaCl . Media was buffered with imidazole at 20 mM
and gassed with room air . Experiments using the Ca12 ionophore A23187 (Cal-
biochem-Behring Corp ., San Diego, CA) were performed in a dimly lighted room
and the cell suspensions were kept from light except during sampling. A23187 was
present throughout the experimental period and was freshly prepared for each
experiment . These precautions improved the reproducibility of experiments using
the ionophore (G . Plishker, personal communication) .

TABLE I
Ion and H20 Content ofAmphiuma Red Blood Cells in Isotonic, Hypotonic, and

Hypertonic Media

The values presented are means ± SEM for determinations using cells from 20
animals.

* Although the ion and H2O content of cells in isotonic medium is invariant with
time, the values obtained from cells in anisotonic media are not, as a result of volume
regulation . As such, the ion and H2O contents associated with cells in hypo- and
hypertonic media were obtained from samples taken within 1 .5 min of suspension
in anisotonic media .

Electrical Measurements

MEMBRANE POTENTIAL

	

Measurements of the Amphiuma red blood cell mem-
brane potential (Em) were obtained as previously described (see Cala, 1980x) .

DETERMINATION OF K TRANSFERENCE (tK)

	

The K transference of Amphiuma
red blood cells was determined graphically from the maximum slope region of a plot
of Em vs . log[K]o using the expression

c3Em =
[clog[K].JF,

	

58 tK

(Brown et al ., 1970 ; Christoffersen, 1973). The maximum slope of E*n vs . log[K]o is
at [K]o > 20 mM (Cala, 1980x) for Amphiuma red blood cells exposed to A23187
and/or valinomycin; therefore, measurements of Em were performed between 20 and
40 mM [K]o. This expression assumes (a) a linear relation between Em and log[K]o ;
(b) that the total membrane current equals 0(dEm/dt = 0); and (c) that the equilibrium

Medium H2O Na K CI

1/kg dcs mmol/kg dcs

Isotonic (232 mosmol) 2.1±0 .1 30±2 241±4 90±5
Hypotonic (158 mosmol)* 2.83±0.04 30±2 237±6 84±5
Hypertonic (340 mosmol)* 1 .59±0.02 32±3 239±4 78±4
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potentials of the primary charge-carrying species (E;) are constant. Between [K]o 20
and 40 mM, the relationship between log[K]o and Em is linear ; therefore, assumption
a is met. Since E� , is invariant with time, assumption b is appropriately met. With
regard to assumption c, the equilibrium potential for the primary charge carrier, Cl
(Lassen et al ., 1978), is unaltered, but as [K]o is increased at the expense of [Na] o ,
EN, is decreased by 15% . Since the change in ENa is slight and the fraction of the
membrane current carried by Na is small (<10% of I.), the changes in ENa are
insignificant and have no consequence.

RESULTS

Effects ofA23187 on K and Cl Loss and E�,

Fig. 2A depicts changes in the cell K and Cl content of Amphiuma red blood
cells exposed to the Ca ionophore A23187 in isotonic medium. Measurements
of E�, performed in parallel experiments reveal that the membranes of the
A23187-treated cells are hyperpolarized (Emssis7 = -55 mV) relative to the
ionophore-free controls (Em = -23 mV). The hyperpolarization exhibited by
ionophore-treated cells is due to increased GK (Lassen et al ., 1974, 1976;
Gardos et al ., 1976) with E�, varying by as much as 40 mV/decade A[K]o, at
[K]o > 20 mM. The data in Fig. 2B were obtained from parallel studies
performed on cells in hypotonic medium in the absence and presence of
A23187 . As was the case for cells in isotonic medium, exposure to A23187
resulted in cellular K loss and caused membrane hyperpolarization (EM23187
_ -55 mV) relative to cells swollen in ionophore-free medium (Em = -23
mV) . Fig. 3, A andB, shows that at 7 juM A23187 (the highest concentration
used in this study), cellular K loss in isotonic (Fig . 3A) and hypotonic (Fig .
3B) media is a function of media [Ca] . These data establish that the effects
of A23187 upon cell K loss are referable to its ionophoretic activity and not
to a Ca-independent disruption of membrane structure .

Effect of Ca Removal on K/H Exchange Flux in Osmotically Swollen Cells
On the basis of the observations that (a) exposure to A23187 results in
membrane hyperpolarization, and (b) although in the absence of A23187 Em
is virtually independent of [K]o, and after ionophore treatment E� , varies by
35-40 mV/decade A[K]o, it is clear that addition of A23187 results in an
increased GK. However, as stated in the Introduction, I hypothesized that Ca
may also play a role as an activator of the electroneutral K flux associated
with volume regulation after cell swelling . If indeed the volume-regulatory
K loss is activated by Ca, it should be possible to inhibit such K loss by
swelling cells in Ca-free medium. Table II presents data obtained from cells
osmotically swollen in normal (0 .5 mM) Ca" medium and in Ca'-free,
EGTA-containing medium. These data illustrate that in the absence of
external Ca" and in the presence of EGTA (1 mM), net K loss during RVD
is inhibited by 56% . Since all K loss during RVD is electroneutral (Cala,
1980a), it follows that Ca is able to modulate the electroneutral, volume-
regulatory K flux pathway .
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Although the above studies are consistent with a role for Ca12 in activating
K/H exchange, they do not resolve the problem that exposure of cells to

Separation of Conductive and Electroneutral Components ofA23187-induced
Net K Flux: Attempts Based on Ion Flux and Membrane Voltage

FIGURE 2 .

	

Cell K content as a function of time following transfer of cells from
isotonic ionophore-free medium to (A) media ofthe same osmolarity containing
0.5 (O) or 1 AM (") A23187 . The cell K contents in B were obtained from cells
transferred from isotonic ionophore-free medium to hypotonic media contain-
ing 0, (A), 0.1 (A), 0.5 (O), or 1 AM (0) A23187 . These data represent seven
such paired experiments performed in iso- and hypotonic media. Cell H2O
content (not shown) changes in parallel with ion content (see Cala, 1980a) .

A23187 results in net cellular K loss, at least some of which, based upon
measurements of E�� is conductive. Thus, it was necessary to attempt to

distinguish between Ca+2-activated conductive (JK) and electroneutral (JK) K
flux.

Using cells from the same animal, exposure to a given concentration of
A23187 results in the same degree ofmembrane hyperpolarization regardless
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of cell volume (see discussion of Figs . 2 and 3 and Table V). I have
demonstrated in a previous publication (Cala, 1980a) that membrane con-
ductance is volume insensitive, and barring some peculiar effect of volume
upon A23187-induced K conductance, the ionophore-induced K current
required to produce a given AE,,, should be the same regardless of cell
volume . In the most simple case, if the ionophore-induced K flux is all

120 1 1 1
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FIGURE 3.

	

Effects of varied Ca (50, A; 250, V; 500, El ; 1,000 ,M, O) upon K
content of cells in isotonic (A) and hypotonic (B) media. The points obtained
at no ionophore and 500 jM Ca (A) represent controls in iso- and hypotonic
media and were in all cases indistinguishable from K contents of cells exposed
to 7,uM A23187 and 50 uM Ca (O). All other cell subsamples were exposed to
7,uM A23187 . The data illustrated are typical of 10 such experiments.
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conductive, given that the volume-induced K loss is all electroneutral, then
net K loss from cells swollen in the presence of A23187 should be due to the
parallel operation of conductive and electroneutral K flux pathways . As such,
Ca-induced conductive (JK) and electroneutral (JK) K flux should be additive :
in paired experiments performed using cells from the same animals, net K
loss from swollen cells (JK) plus that from cells in isotonic A23187-containing
medium (JK) should equal net K loss from cells swollen in the presence of
A23187 (JK + JK). The data in Fig. 4 were obtained using cells from the
same animal suspended in isotonic medium in the presence of A23187 and
in hypotonic media in the presence and absence of A23187. These data show
that the sum of net K loss from ionophore-treated cells in isotonic medium
and net K loss from swollen cells is not equal to net K loss from cells swollen
in the presence of A23187. The non-additive nature of K fluxes, while not
conclusive, is consistent with the notion that a fraction of the ionophore-
induced K loss is non-conductive .

TABLE II

Net K Lossfrom Annphiuma Red Blood Cells Swollen in the Absence and Presence
ofExternal Ca''

* Mean ± SEM (n = animals) .
Studies performed on cells in media containing 1 mM EGTA and 1 .5 mM [Cal.
were indistinguishable from those performed at 0 .5 mM [Cal.. As such, any inhibi-
tory effects of EGTA upon K loss during RVD appear unlikely . Simple Ca removal
in the absence of EGTA provided similar results to those obtained in Ca-free EGTA-
containing media, but the results were more variable, presumably because of Ca
contamination .

The Nature ofA23187-induced K Flux
INFERENCE BASED ON IONIC TRANSFERENCE AND ESTIMATES OF MEMBRANE

CONDUCTANCE In the presence of 0.5 mM Cao and 7 /.tM A23187, net K
loss in osmotically swollen Amphimna red blood cells can be as great as 200
mmol/kg dcs per 15 min. If all of the ionophore-induced K loss is conductive
(zFJK2~'a

	

= IKla's7), given the measured E� , = -55 mV, then GK23187
[G K2s "8' = zFJK23'87/(E� , - EK)] is of the order of 5 X 10-5 fl- ' cm-2 . This
value is in sharp contrast to GKa' [zFJK`''/(En, - EK)],which is calculated to be
9.3 X 10-7 fl-' cm-2 . Given the disparity in the calculated values of GKa' and
GK2s's7 , cells exposed to Val and A23187 should be indistinguishable (elec-
trically) from those exposed to A23187 alone; the fraction of the membrane
current carried by the Val-K complex will be small relative to that carried by
the Ca-gated K conductance (GK s'e~) . However, exposure of cells to 1 /.1M
Val (K. = 3) and 7 jM A23187 resulted in a 12 ± 3-mV hyperpolarization
relative to cells exposed only to A23187. This observation suggests that

Treatment Jx̀ in 90 min Percent inhibition

mmollkg dcs
RVD 55±5 (5)* -

RVD + I mM EGTA 24±4 (5) 56
(Ca-free)
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GK23187' calculated assuming that zFJK23187 = IK231s7, is an overestimate and
inferentially that zFJK23187 IK23187 . The values for K transference obtained
from cells treated with A23187 and/or Val (Table 111) also support the notion
that GK23187, calculated assuming that zFJK23187 - IK23187, is an overestimate .
Since the partial ionic transference (t) of a membrane to an ion (i) is equal to

POTASSIUM

IfR+.5aMA23187)ACP-30
IRVO+.3A,MA23187)
ACS-24

FIGURE 4.

	

Amphiuma red blood cell K and Na content as a function of time
after osmotic swelling in the presence (A) and absence (O) of 0.5 ;LM A23187
or exposure of cells in isotonic medium to 0.5 AM A23187 (A) . These data
were obtained from paired experiments performed upon subsamples of cells
obtained from the same animal . The cell suspension media contained 1 mM Ca
and differences in osmolarity are due to differences in media [NaCI] . These
results are typical of those from five identical treatments .

Gi/G�� where Gi is the conductance to ion i and G �, is the sum of the
conductances to all charge carriers including i, then:

where GK"- i s the Val-induced K conductance minus the K conductance (GK)
of the unmodified membrane (included in GK23'e7), and Goth,, is the sum of

G Val

tK
Val K-_ (1)

GVal + GotherK
GA23187

tK
A23187 __

(2)GA23187 + GotherK
G K231a7 + GKaI'

tK
A23187+Va1 __ (3)

GA23187 Vxl'K + G K + Gother
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the membrane conductance to all charge carriers other than K (i.e ., Gc, +
GN., + GOH + GHCO, + GH) . If GA23187 = 5 X 10-5 S2-' CM-2, and GKV is 9 .3 X
10-' 12- ' cm-2 , then tK23'8' should be unaffected by the addition of Val (see
Eq . 3) . However, the addition of Val to cells treated with A23187 (Table 111)
results in an increase in tK from 0.62 to 0.86 . Thus, it appears that GK2sts7
(calculated assuming ZFfK23'8' = IK2s 18 7) is overestimated ; therefore,
zFJK23 i s' > IK2s ' S' and a substantial fraction ofJK23ts7 is electroneutral .

The Nature ofA23187-induced K Flux

DISTINCTION BETWEEN CONDUCTIVE AND ELECTRONEUTRAL K FLUX BASED
ON THERMODYNAMIC CRITERIA If net K flux in A23187-treated cells is
electroneutral K/H exchange, it should be possible to drive net conservative

TABLE III
Amphiuma Red Blood Cell Membrane K Transference (tK) in the Presence ofA23187 (7 uM) and/or

Valinomycin (1 AM)

t
A23187
K t A23187+Val

K

0.62±0.04 (8)*

	

0.5±0.03 (10)

	

0.86±0.05 (6)

* Mean ± SEM (number of animals) .
The data presented were calculated from measured values of Em ([K]o = 20-40 mM) obtained from cells
in isotonic medium (see below) containing 500,uM Ca . The value of Em at any given [K]o was taken as the
mean of at least 10 measurements . All measurements of Em were made within the first 15 min because
this is the period during which A23187-induced K loss is greatest. Values of t K were calculated using the
expression :

where E«,,« signifies the equilibrium potential of all charge carriers other than K (Brown, 1970 ;
Christofferson, 1973 ; Lassen et al ., 1978) . The measurements of Em were obtained at [K)o 20-40 mM
because (a) the slope of Em vs . log[K]o is maximal and linear in this region and (b) E;_ for all ions other
than Na is unchanged, whereas changes in EN . are small . Although the data reported were obtained from
cells in isotonic medium, indistinguishable results were obtained from swollen and shrunken cells (thus,
G� , must be the same regardless of cell volume) . The cells in isotonic medium were preferred because [K)
is more stable than that of swollen cells and the cells are more easily impaled than those in hyperosmotic
media (possibly because ofthe relatively high surface to volume of the latter). The value of tA23197 obtained
in the present studies is in remarkably good agreement with that obtained by Lassen et al . (1974) (t K =
0.6), who used repeated cell puncture to introduce Ca into the cell interior .

K flux with the H gradient . Although net conductive K flux is responsive to
the electrochemical potential difference for K ([OAK/zF = (E� , - EK)], where
EK is the potassium equilibrium potential), K flux via K/H exchange depends
upon the difference in the K and H chemical potential differences (OAK -
OIiH, where OAK = RT ln[K]i/[K]o and AAH = RT In[H]i/[H]o) . To determine
D~K and ApK - DUH, it is necessary to obtain values for Em, [K]o/[K] i , and
[H],,/[H]i . With the exception of [H]o/[H] i , all of the above can easily be
measured directly. The transmembrane [H] distribution, while not directly
measured, can be calculated from the chloride distribution, if, as is the case
for the human red blood cell, [Cl] i/[Cl]o = [H]o/[H]i (Funder and Wieth,
1966). To test the applicability of the above relative to Antphimna red blood
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cells, I made use of the fact if [H]./[H];= [Cl];/[Cl]o, then [H]o x [Cl]. =
[H] ; x [Cl] ; . The above relations predict (a) that independent changes in
[H] or [Cl] should result in flux of both H and Cl until [H]./[H];= [Cl];/
[Cl]o, and (b) that alteration of [H] or [Cl] at constant product should result
in no net H or CI flux . In agreement with the above predictions, increasing
[H]� from 2 .2 x 10-8 (pH 7.65) to 8 .9 x 10-8 (pH 7.05) resulted in net cell-
ular uptake of 46 ± 5 mmol Cl/kg dcs. In paired experiments where [H]. and
[Cl],) were changed at constant product (A[H]o, 2 .2 x 10-8 mM to 8.9 x
10-8 mm ; A[Cl]o, 110-28 mM), there was no measurable net Cl flux . Given
the above, it appears that [H]o/[H] ; = [Cl];/[Cl]o in the Amphiuma redblood cell
and as such [H]; can be determined from a knowledge of [H]o, [Cl] ;, and
[Cl]".
Thus, it is possible, by altering external K in the medium bathing A23187-

treated cells, to change both ASK and AJUK - AAH. The relevant driving force
for net K flux (,12318) can be determined from a knowledge of the magnitude
and direction ofj12318' and its correspondence to either ASK or AUK - AAH.

Because [Cl];/[Cl],, = [H],,/[H];in theAmphiuma. redblood cells, the driving
force for K/H exchange (AAK - AAH) is equal in magnitude and direction
(sign) to that for K + Cl cotransport (AAK + ANAc,) (see Cala, 1983). Conse-
quently, the observation that K flux corresponds to predictions of one of the
above expressions does not in the absence of additional information establish
the mode of transport . Since osmotically perturbed and A23187-treated
Amphiuma red blood cells transport alkali metal ions with no net Cl transport
(Figs . 2 and 4 ; Cala, 1980a), the notion that K flux is due to K + Cl
cotransport is rejected in favor of a K/H exchange model.
To evaluate the correspondence between net K flux and ASK or AAK -

AIuH, cells were osmotically swollen in medium containing 70 mM [K]', and 7
,uM A23187 (Table IV) . Under these conditions, E�, = -4 mV, whereas EK
= -5 mV ([K] ; = 85 mM) and the net force (AwK) driving K out of the cell
via conductive routes is 1 mV (96 J mol-') . In contrast to the above situation
regarding conductive flux, given a chloride distribution ratio of 0 .34, [K]o =
70 mM and [K]; = 85 mM; the driving force acting upon an electroneutral
K/H exchanger (AUK - AAH) is directed into the cell and equals -2,150 J
mol' (see Table IV). Measurements of the K content of cells treated as
described above reveal a net (K) uptake of 96 ± 4(3) mmol K/kg dcs per 15
min (Table IV).

Separation of Conductive and Electroneutral Components of Ca-activated K
Flux: Inference Based on the Effects of Cell Volume

In a previous study (Cala, 1980a), cells in anisotonic and isotonic media were
exposed to the K ionophore valinomycin. This study showed that volume-
induced ion fluxes were without effect upon Val-induced membrane hyper-
polarization and lead to the conclusion that the Val-induced K current (and
therefore GK') was the same fraction of total membrane current in all cases.
Given the above, it follows that G� , is volume insensitive. Further, since the
Val-induced net K flux was one to two orders of magnitude smaller than the
volume-induced ion fluxes, I concluded that fluxes of the latter type are
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TABLE IV
Net K Flux Associated with Osmotically Swollen Amphiuma Red Blood Cells
Exposed to 7 uM A23187 at External [K] = 3 or 70 mM: Correspondence

Between Flux and Driving Force

TABLE V

Net driving force

The data were obtained from cells osmotically swollen in the presence of 7 AM
A23187 at external [K] = 3 or 70 mM. The intracellular [K] was equal to 85 ± 2
mM for both treatments, whereas H;/Ho was assumed to be equal to [CI]./[Cl];a
2.94 . At [K]o = 3 mM, Em was measured at -55.4 ± 3 (60), whereas at [K] o = 70
mM, Em was -4 mV ± 1 .4 (40) .

* Relevant driving force for conductive flux .
Relevant driving force for K/H exchanger.
A positive value for flux denotes a net efflux, whereas a negative value denotes
cellular uptake. Similarly, a negative value for driving force denotes a gradient
directed from medium to cell, whereas a positive value signifies the cell-to-medium
direction . Thus, under conditions where the net driving force for conductive K loss
(A4K) is decreased by 97% (K . = 70 mM), net K flux is high and in the opposite
direction of the electrochemical driving force . In contrast, the driving force for K/
H exchange, (AAK - AAH) at Ko = 70 mM, is relatively large and in the direction of
the observed flux . The above data support the hypothesis that the bulk of Ca-
induced K flux is electroneutral K/H exchange. Mean ± SEM (n).

Membrane Potentials ofAmphiuma Red Blood Cells in Isotonic and Anisotonic Ca-
containing (0.5 mM) Media in the Presence ofA23187 (1-7 tubl)

* Mean ± SEM (n); n is the number of individual measurement based upon using cells
from at least four different animals .
Although the ionophore concentration required to produce a K flux of a given
magnitude was reproducible from one batch of cells to the next, this was not true
with respect to the membrane voltage. In some batches of cells, I AM A23187
resulted in membrane hyperpolarization to -55 mV, whereas 7 AM A23187 was
required in others . Within any given batch of cells (obtained from the same animal),
however, the ionophore concentration required to produce a given AE. was inde-
pendent of cell volume . Thus, the membrane voltages presented were obtained by
performing paired experiments upon cells from the same animals and exposing the
cells to progressively higher concentrations of A23187 (in isotonic medium) until
E �, a -55 mV. After the concentration of A23187 required to cause the membrane
to hyperpolarize to -55 mV was found, the samples of the same batch of cells were
suspended in hypo- and hypertonic media at the same ionophore concentration and
Em measurements were performed . As shown in the table, A23187-induced mem-
brane hypopolarization is volume independent .

Condition [K]o
mM

JK
mmol/kg dcs X 15 min

AIAK*

J

AAK - AAHt

mol -,
RVD + A23187 3 +101±6 (5)s +2,824 +5,509
RVD + A23187 70 -96±4 (3) +97 -2,150

Medium Em

MV

Isotonic -55.1±2 .2 (80)*
RVD (hyperonic) -53.4±3 (62)
RVI (hypertonic) -57.1±2 .5 (67)
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electroneutral . The experiments presented in this section are similar to those
described above in that they investigate the effects of A23187 upon cell
membrane potential and ion fluxes across cells in isotonic and anisotonic
media. As with the studies with valinomycin, exposure of cells to A23187
(1-7 AM) resulted in the same degree of membrane hyperpolarization,
regardless of volume status (Table V). As shown in Figs. 2-4 and Table IV,
the addition of A23187 to cells in isotonic and hypotonic media results in
net K fluxes as large as 130 mmol/kg dcs per 15 min. In contrast, cells
exposed to 7 AM A23187 at Ca. = 500 AM in hypertonic media lose only 9 .3
f 2 mmol K/kg dcs per 30 min (16 trials). The data in Table V show that
the E�, of A23187-treated cells is volume independent, whereas the data
presented in Table III (discussed in the legend) indicate that the Gm of
A23187-treated cells is also volume insensitive. Since membrane voltage and
conductance are the same for all cells exposed to A23187, regardless of
volume, it must be concluded that membrane current is the same in all cases.
More precisely, since A23187-induced membrane hyperpolarization is due
to increased K current, IK must be the same in all cases. As such, the smallest
measured net K flux associated with a given level of membrane hyperpolari-
zation is the upper limit for conductive K loss ; zFJ'K°" >-- IK .
The results obtained in studies of cells exposed to A23187 during RVI

support the notion that a large fraction of the ionophore-induced K flux is
electroneutral . The data in Table IV show that the electroneutral K loss
activated by A23187 is K/H exchange .

The Relationship Between Na/H andK/HExchange : Studies Using Amilonde

The inability of A23187 to stimulate K loss from shrunken cells when Na/H
exchange is operative raises the question of why activation of Na/H exchange
during RVI should prevent ionophore-induced K/H exchange . One expla-
nation is that both Na/H and K/H exchange are mediated by the same
transport entity, which in response to events associated with osmotic pertur-
bation and/or [Ca] is committed to function in either an Na/H or K/H
exchange mode. If this hypothetical case is correct, amiloride may be useful
in establishing the validity of such a relationship . As first shown by Siebens
and Kregenow (1978), amiloride is a potent inhibitor of Na uptake during
RVI, but it is without effect upon K loss during RVD. If indeed Na/H and
K/H exchange are carried out by the same membrane transport compo-
nent(s), it may be possible to "lock" the transporter into the Na/H mode by
shrinking the cells in the presence of amiloride and thereby prevent K loss
from cells subsequently swollen still in the presence of amiloride . The data
obtained from this experiment are presented in Fig. 5. These data show that
swelling cells in the presence of amiloride, after preincubation in isotonic
amiloride-containing media, is without effect upon cell K loss (lower line,
closed circles), as is swelling cells in amiloride-free medium after preincuba-
tion in hypertonic amiloride-containing medium (lower line, open circles) . In
contrast, if cells are preincubated in hypertonic amiloride-containing me-
dium, followed by swelling in amiloride-containing medium, net cell K loss
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(K/H exchange) is inhibited (upper line, open triangles) . The hypertonic
medium used in the above studies was made hypertonic by increasing [NaCI]
to 1 .5 times (1 .5R) the values of control medium. Similar studies performed
in progressively more hypertonic media (1 .7 and 1 .9R) show that net cell K
loss after resuspension in hypotonic amiloride-containing media was progres-
sively inhibited (data not shown) .
Taken together, the data associated with Fig. 5 and the observation that

A23187 is not able to stimulate K/H exchange in cells where Na/H exchange
is functioning support the hypothesis that Na/H and K/H exchange are
alternative modes of the same transport moiety (Fig . 6) .

240

n
220
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Y 200

0
E 180
E

FIGURE 5.

	

The K content of cells osmotically swollen by transfer (at time
zero) from iso- to hypotonic medium (0); from hypertonic amiloride- (10' M)
containing medium to hypotonic medium (O); and from hypertonic amiloride-
(10' M) containing medium to hypotonic amiloride- (10' M) containing
medium (A). When cells are shrunken in amiloride-free medium followed by
swelling in the absence of amiloride (not shown), net K loss proceeds normally
during RVD.

DISCUSSION
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The data presented show that Ca i has a profound stimulatory effect upon net
K flux . As initially shown by Gardos (1956, 1958) in his studies of metaboli-
cally depleted human red blood cells, Ca activates a K conductance pathway.
Previous studies (Gardos et a1 ., 1976; Lassen et al ., 1976) have shown that
Amphiuma red blood cells respond to increased cell Ca by exhibiting a K-
dependent membrane hyperpolarization (increased GK)- Ion flux studies
performed upon Amphiuma red cells exposed to high [Ca] . (Lassen et al .,
1976) or to A23187, as in the present study, reveal K fluxes one to two
orders of magnitude larger than expected based upon estimates of G,,, . Since
a previous work (Cala, 1980a) showed that the Amphiuma red blood cell is
capable of electroneutral K loss during RVD, it seemed that the disparity
between measured net K flux and predictions based upon Gm might reflect
K loss by both conductive and electroneutral routes . The most direct means
of separating conductive and electroneutral components would be to measure
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G�, in the presence and absence of A23187 and determine whether A23187
induces an increase in G �, large enough to support the observed K flux . Since
this is not possible because of poor electrode-membrane sealing, less direct
means were necessary (see Lassen and Rasmussen, 1977 ; Lassen, 1977; Cala,
1980x) .

CELL MEDIUM

K
OR
H

C1
OR

HCO3

No
OR
H

HCO3
OR
C1

FIGURE 6.

	

Current view of the alkali metal/H exchanger responsible for cell
volume regulation . In a previous study (Cala, 1980x), Na/H and K/H exchange
were assumed to occur by separate and distinct pathways; the data in the present
study indicate that Na/H and K/H exchange are mediated by the same mem-
brane transport component(s). The above conclusion is based upon the obser-
vation that (a) A23187 is unable to activate K/H exchange by shrunken cells
when Na/H exchange is operative, and (b) amiloride, although unable to inhibit
K/H exchange by swollen cells, is inhibitory to K/H exchange by cells previously
shrunken in, and continuously exposed to, amiloride . Selectivity of the alkali
metal/H exchanger for K or Na would appear to be determined by cytosolic
reactions that occur as a result of swelling or shrinkage . The present studies
suggest a central role for Ca12 in the activation of K/H exchange .

Separation of Conductive and Electroneutral K Fluxes : Estimates of the
Magnitude ofG""87 Based on a Determination of tx

Although flux studies suggest that the Ca-activated K flux by Amphiuma red
cells occurs primarily via electroneutral K/H exchange, more quantitative
arguments can be made based upon electrophysiological studies . A previous
study (Cala, 1980x) investigating valinomycin-induced DE�, and K flux estab-
lished that the Ainphiunia red blood cell G �, = 106 St- ' cm-2 and that G �, was
invariant with volume (see also Lassen et al ., 1974, 1976, 1978j. F . Hoffman
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et al ., 1979). Since tva' = [GK"'/(GKa' + Gother)], where Goth,, is the membrane
conductance to all other charge carriers and tKA' = 0.5 (Table III), GK"' _
Gother . On the basis of measurements offKa' and Ema', GKa' is calculated to be
9.3 X 10-' S2-' CM-2 and G~a' (GK"' +Gother) = 1 .8 X 10-6 . Given estimates of
GK for untreated membranes of 2 .5 X 10-7 S2-' cm-2 (see also Lassen et al .,
1978), the normal membrane conductance of the Amphiuma red blood cell
membrane is of the order of 1 .1 X 10-6 St-' CM-2. On exposure to A23187
in Ca-containing medium, net K fluxes as large as 200 mmol/kg dcs in 15
min, which corresponds to a calculated K conductance of 5 X 10- (assuming
XFJK2S187 = IK2818 )~ have been observed . Thus, the calculated value of
GK2s ' s7 is over an order of magnitude greater than the G�, of untreated cells.
As a result, unless the conductance to some other ionic species is also increased
such that G~2s'a7 = 10-a SZ-' cm-2 , the membranes will not support K flux
(via conductive routes) of the magnitudeobserved in the presence of A23187.

If, as calculated fromfK2s'a', GK2sis7 = 5 X 10-5 S2- ' cm-2 , and if we assume
that Goo, is unchanged from the value calculated in experiments performed
using Val (9.3 X 10-' S2-' cm-2), then, from Eq. 2, tK2sfs7 should equal 0.98.
However, as seen in Table 111, tA23187_= 0.62, as calculated from the maximum
slope region ([K]o > 20 AM) of the curve relating E�, to log[K]o (see also
Lassen et al ., 1974). This value of 0.62 supests that GK23'87 is <5 X 10-5
and/or Goth,, is >9.3 X 10-7 . If in fact GK2s' 7 = 5 X 10-5 52 -- ' cm-2 (and/or
Goth,, is >9.3 X 10-7 12-' cm-2), then the addition of Val would be without
electrical consequence since the additional K conductance (GKa~ - GK, where
GKa'= 9.3 X 10-7 and GK = 2 .5 X 10-7 ) would be insignificant . Exposure of
cells to both Val and A23187 caused tK (measured over the same range of Ko
and Em) to increase from 0.62 to 0.86. Clearly, then, GK2s187 is <<5 X 10-5
S2-' CM-2. Using Gother = 9.3 X 10-7 S2-' cm-2 and tK2sis7 = 0.62, Eq . 2 can
be solved for GK28187 This solution is independent of assumptions re arding
fK2a'87 and yields a value of 1 .5 X 10-6 SZ-' CM-2 for GK28187 . Given Em2sIa7
-55 mV (Table V) and GK2sla7 = 1 .5 X 10-6 S2-' cm-2 , the maximum value
for A23187-induced, conductive K flux is =7 mmol/kg dcs in 15 min. This
value is consistent with (a) measured values of Et� in the presence of Val and
A23187, (b) inferences based upon studies evaluating JK2s '87 in terms of
Af6K and O,UK - OIAH, and (c) measured values of E� , associated with and net
K loss from osmotically shrunken, A23187-treated cells.
Although the above calculation of GK28'87 avoids assumptions regarding

JK29'87, it relies upon the assumption that Goth,, is not increased in the presence
of A23187 (if Goth,,. is decreased, the arguments are strengthened) . In regard
to assumptions concerning the Ca insensitivity of Goth,,, If GK2sis7 = 1 .5 X
10-6 52 -1 cm-2 and Gather = GKA = 9 .3 X 10-7 S2- ' cm-2 , then tA23'87+val should
equal 0 .7 . Since tK29187+Va1 = 0.86, either the presence of both A23187 and
Val leads to an augmentation of A23187 and Val effects upon GK or Gother is
decreased by A23187 . Of the two possibilities, the latter seems to be the
most probable explanation since addition of both Val and A23187 to Am-
phiuma red blood cells does not result in a significant increase in K flux, and,
as reported by Low (1978), increased [Ca] ; results in inhibition of anion
exchange . Since the anion exchange and conductance appear to be intimately



PETER M. CALA

	

Cell Volume Regulation by Amphiuma Red Blood Cells

	

779

related, the notion that Ca inhibits Ganion, and therefore Gother, is consistent
with the present observation . If indeed this is the case, then the calculated
value of GK23187 (1 .5 X 10_s S2- ' cm-2) is an overestimate and the argument
that conductive K loss contributes minimally to total A23187-induced K flux
is strengthened .

Given the uncertainties regarding the Ca insensitivity of Gother, the calcu-
lated value of GK23187 (1 .5 x 10 6 S2- ' cm-2) should be viewed as an order of
magnitude estimate . Since the arguments being made are aimed at distin-
guishing between possible values of GK2sIS7 that are separated by more than
an order of magnitude, the uncertainty associated with calculated values of
GK2si87 does not detract from the validity of the conclusions . Taken together,
the data obtained in ion flux and electrophysiological studies are internally
consistent . Using 1 .5 X 10-6 12-1 cm-2 as an upper limit for A23187-induced
K conductance, 7 mmol/kg dcs in 15 min is an upper-limit estimate for ft.
Inferentially, then, the bulk of the A23187-induced K flux is electroneutral .

Separation ofElectroneutral and Conductive Components ofA23187-induced
K Flux: A23187-treated, Osmotically Shrunken Cells

Consistent with the above estimates of Ca-induced conductive K loss is the
net K flux associated with osmotically shrunken cells during RVI . From the
fact that Val is able to produce the same degree of membrane hyperpolari-
zation (and Val-induced K flux) regardless of cell volume, I concluded that
G�, was volume insensitive (Cala, 1980a) . This conclusion is confirmed and
extended to include cells exposed to A23187 (Tables III and V, see legends) .
Given that G n , is independent of cell volume and that Em in the presence of
A23187 is invariant with volume, the A23187-induced potassium current
must be the same for all cells regardless of volume . Since the net cell K loss
from osmotically shrunken, A23187-treated cells is 9.3 ± 2 mmol K/kf dcs
in 30 min, IK2s ' 7 has as its maximum value zF 9.3 X 10-s mol/1 .2 x 10 cm2
x 1,800 s . That is, since Em2s187 and G in2s ' 87 are independent of volume,
IK23187 is the same for all cells regardless of volume . As such, the smallest
A23187-induced net K flux required to produce a given AEm (in this case,
the AEm during RVI) is the upper limit for conductive K flux (IK2s187

zFfK29187) . On the basis ofestimates of GK2a'87 from transference experiments
(Table III), conductive K flux is estimated at 7 mmol/kg dcs in 15 min,
whereas the estimates obtained using shrunken cells setjK as 59 .3 mmol/kg
dcs in 30 min .
The above estimates of conductive flux rate and magnitude are at the

lower limit of K fluxes measured studying A23187-treated cells . It is reason-
able to conclude that although A23187-induced K loss by Amphiuma red
blood cells is due to flux via both conductive and electroneutral pathways,
the latter is the primary contributor to measurable net flux .

The Nature ofA23187-induced K Flux: Identification of the Major Component
as K/H Exchange, Based upon Thermodynamic Criteria

When Amphiuma red blood cells are osmotically swollen in the presence of 7
,uM A23187 at external [K] = 70 mM, E�, = -4 mV and EK =-5 mV. The
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driving force for conductive K flux (E �, - EK) is small (1 mV) and is directed
out of the cell . The magnitude (96 mmol K/kg dcs in 15 min) and direction
(medium to cell) of net K flux under such conditions are clearly in opposition
to predictions based upon the assumption that A23187-induced K flux is
conductive (Table IV). The net K flux is, however, consistent with the
predicted behavior of a K/H exchanger since the driving force for K/H
exchange (AAK - OAH) is large (2,200 J mol-'; 23 mV) and directed into the
cell . In this regard, at [K]o = 70 mM the ratio of [K];/[K].is "̂ 1 .2, but the
ratio [H];/[H],, is -3 . As such, the H gradient drives the secondary active,
cellular uptake of K. That the dissipative transport of H is able to drive the
conservative transport of K is strongly supportive of the notion that Ca-
activated net K flux occurs via K/H exchange . It should be noted that the
absolute magnitude of the driving force for K/H exchange (AUK - DJUH) is
decreased by 50% relative to conditions at [K]o = 3, but the magnitude of
the flux is not substantially decreased relative to cells suspended in medium
where [K]o = 3. Possible explanations for this are that (a) the K/H exchange
is saturated at I OIUK - DAH I >- 2,200 J mol-', and/or (b) since as cells gain K
and volume at [K] (, = 70 mM, the K/H exchanger is stimulated (kinetically)
to transport K at higher rates.
The data presently available suggest that both explanations may apply

because when external K is reduced to 1 MM, OAK - AAH is increased from
5,000 to 8,000 J mol- ' with no discernible effect upon the rate or magnitude
of cell K loss . Clearly then, the K flux pathway is saturable at driving forces
of >5,000 J mol- ' . With regard to the second point, as cells are swollen to
progressively greater volume, JK` is increased, even though, because of
dilution of [K];, OAK - DISH is decreased . Since at [K]o = 70 mM the cells
(already osmotically swollen and/or exposed to A23187) rapidly gain K and
swell, the apparent insensitivity of K flux to the decreased magnitude Of DAK
- AAH may be referable to superimposition of volume-related stimulation . In
this regard, when cells are swollen in high K medium, but in the absence of
A23187, the rate of net K uptake increases as cells gain K and therefore
volume. Thus, the observed K uptake by cells exposed to 7 AM A23187 and
70 mM [K]o supports the notion that K uptake is a result of K/H exchange
and is consistent with known responses of the volume-regulatory flux pathway
(K/H) to changes in driving force and volume.

Finally, it is important to note that, on the basis of thermodynamic
arguments, the distinction between conductive and electroneutral transport
is complicated if one of the co/counter-ions participating in an electroneutral
transport process is distributed at electrochemical equilibrium; for any and
all ions i distributed at electrochemical equilibrium, Em = E; . Thus, although
the force (in joules mole-') driving the flux of ion J by conductive routes =
0~j (zFER , - zFEJ), the force (joules mole') driving the obligatorily coupled
electroneutral exchange flux of J for some equilibrium-distributed species i
is Oui - Og; = (zFE; - zFEJ ) = (zFEm - zFEJ) . As such, it is necessary to move
the co/counter species away from electrochemical equilibrium (E .. :0 E i ) in
order to distinguish between electroneutral coupled flux of species J and i
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(for all species i that are normally distributed at electrochemical equilibrium)
and the conductive flux of J. In the present study this criterion has been
satisfied since the A23187-induced K conductance causes the membrane
voltage to change away from its resting value so that EH # Em and therefore
Ak # AIAK - A14H (for a more detailed discussion see Cala, 1983).

The Relationship Between Na/H and K/H Exchange: Studies Using Amiloride
An intimate relationship between Na/H and K/H exchange is suggested by
the fact that exposure of osmotically swollen cells and those in isotonic
medium to A23187 results in large net K loss, although the ionophore
produces only modest K loss from (shrunken) cells when the Na/H exchange
is operative (Figs. 2 and 3 and Table V). That the failure of A23187 to
stimulate K flux is not some peculiarity of ionophore/Ca interaction with
osmotically shrunken cells is shown by the fact that although the ionophore-
induced K flux is modest, the membrane hyperpolarization is not different
from that of cells at normal or expanded volume. Since Gm is volume
insensitive, as shown previously (Cala, 1980a) and in the present study (see
the legend to Table III), the decrease in ionophore-induced K flux is
attributable to that by electroneutral (K/H) routes . The decreased rate of
ionophore-induced K/H exchange in shrunken cells when the Na/H ex-
change is operating suggested that Na/H and K/H exchange might represent
different operating modes of the same transport entity . Since amiloride is a
potent inhibitor of Na/H exchange by Ainphiuma red cells but has no effect
upon K/H exchange (Cala, 1980a), this compound was used to evaluate the
relationship between Na/H and K/H exchange . Further, support for the
notion that Na/H and K/H exchange are mediated by the same transport
pathway was obtained from studies of cells shrunken in amiloride-containing
medium and subsequently swollen in the presence of amiloride (Fig . 5) . It
appears that by activating Na/H exchange, while binding it with amiloride,
the transporter is prevented from exiting the Na/H mode and affecting K/
H exchange upon swelling (if amiloride is continually present) . In this regard,
if the cells are shrunken in amiloride, washed (2 min), and immediately
swollen in amiloride-containing medium, amiloride is without effect upon
cell K loss . Similarly, preincubation in isotonic amiloride-containing medium
followed by swelling in amiloride has no effect upon K loss . Amiloride
inhibition of K loss by swollen cells requires (a) previous interaction between
amiloride and the Na/H exchanger (shrunken cells) and (b) the continued
presence of amiloride in the medium in which cells are swollen. Taken
together, the observations that A23187 is unable to stimulate K/H exchange
in shrunken cells when Na/H exchange is operative, and that amiloride is
inhibitory to K/H exchange by swollen cells only when cells have previously
been shrunk in amiloride, support the notion that Na/H and K/H exchange
represent different modes of the same transport moiety .

In summary, the data presented show that Ca has a profound stimulatory
effect upon K loss by Antphiuma red blood cells. Since Ca causes K-dependent
changes in E�� a component of K loss is conductive . However, on the basis
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of kinetic similarities and the fact that electroneutral, volume-regulatory K
loss is Ca dependent (Table II), a substantial fraction of Ca-activated K flux
was thought to be electroneutral . Independent attempts to evaluate the
contribution of conductive to total Ca-activated net K flux, based upon
electrical, thermodynamic, and kinetic criteria, established 5-7 mmol K/kg
dcs in 15 min as an upper limit for flux via conductive routes . Since Ca-
activated net K flux can be as great as 200 mmol/kg dcs in 15 min, the major
component is electroneutral . The correspondence of the Ca-activated K flux
to expressions for the driving force relevant to K/H exchange (or K/OH
cotransport) leads to the conclusion that the electroneutral K flux is referable
to K/H exchange (K + OH cotransport) . The data demonstrating that Ca is
an activator of K/H exchange, taken together with the observation that
removal of external Ca is inhibitory to K flux during RVD, suggest that Ca
plays a role in activation and/or control of K/H exchange responsible for
RVD. Finally, the inability of A23187 to activate K/H exchange by shrunken
cells when Na/H exchange is operative, and the ability of amiloride to inhibit
K/H exchange during RVD only when cells are previously shrunken in and
continually exposed to amiloride, suggest a common pathway for both Na
and K/H exchange.
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