UC San Diego UC San Diego Electronic Theses and Dissertations

Title

A plasma membrane protein proteomic approach to elucidate the role of ubiquitindependent endocytosis and lysosomal degradation in cortical neurons

Permalink https://escholarship.org/uc/item/7tr5962z

Author Guan, April Baoyi

Publication Date 2016

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A plasma membrane protein proteomic approach to elucidate the role of ubiquitindependent endocytosis and lysosomal degradation in cortical neurons

A thesis submitted in partial satisfaction of the requirements for the degree Master of Science

in

Biology

by

April Baoyi Guan

Committee in charge:

Professor Gentry Patrick, Chair Professor Randy Hampton Professor Jim Wilhelm

Copyright April Baoyi Guan, 2016 All rights reserved. The thesis of April Baoyi Guan is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2016

Dedication

I dedicate this thesis to everyone who gave me strength when I was weak, especially my mom, John, Chuck, Jessie and May. I couldn't do it without your support.

成功乃是失败之母。

(Failure is the mother of success.)

The Flood Control by Gun and Yu

Table of Contents

Signatu	re Pageiii
Dedicat	ioniv
Table o	f Contentsv
List of l	Figuresvi
List of	Tablesvii
Acknow	vledgments
Abstrac	t of the Thesisix
I.	Introduction1
II.	Results9
III.	Discussion
IV.	Materials and Methods
V.	References

List of Figures

Figure 1.	Total protein stains of synaptic membrane fractions	10
Figure 2.	Ubiquitinated proteins on the cell membrane	11
Figure 3.	Ubiquitinated proteins on the cell membrane under lysosomal inhibition and proteasomal inhibition	d 12
Figure 4.	Cytotoxicity under lysosomal inhibition treatments	13
Figure 5.	Induction of autophagy by lysosomal inhibitors	14
Figure 6.	Acidification of lysosomes in the cells treated with leupeptin, bafilomycin, and chloroquine	15
Figure 7.	Lysosomal enzymatic activity under drug treatments	16
Figure 8.	Schematized overview of proteomic screen	17
Figure 9.	Bar graph shows plasma membrane protein levels	18
Figure 10.	Bar graph shows cell adhesion protein levels	19
Figure 11.	Bar graph shows cellular homeostasis regulators protein levels	19
Figure 12.	Bar graph shows cellular localization regulators protein levels	20
Figure 13.	Bar graph shows calcium ion transport regulators protein levels	20
Figure 14.	Bar graph shows synaptic plasticity regulators protein levels	21
Figure 15.	Bar graph shows synaptic transmission regulators protein levels	21

List of Tables

Table 1.	Functional categories of plasma membrane proteins by DAVID and IPA22
Table 2.	Plasma membrane proteins identified by DAVID and IPA23
Table 3.	Synaptic candidate ubiquitinated membrane proteins44

Acknowledgments

Thinking back, I still remember the interview talk I had with my thesis adviser, Dr. Gentry Patrick, as a freshman applying for lab assistant job in his lab. He explained what his lab does and what he expected from me. Honestly, I did not understand a word he says at that time, I was just this miserable freshman trying to figure out what I want to do. Never have I thought I would have the honor to be his student for the next five years. He provided all the resource and opportunity I needed even I was just a freshman washing dishes in his lab. When I asked for hands-on research, Dr. Gentry Patrick gave me a project without hesitation; he has trust in me more than I have trust in myself. I remember Dr. Gentry Patrick saying that research is not a nine to five job, it requires real commitment, and he has never been so right. I admit there were times I wanted to give up, thank you for pulling me back in during those times.

Not only I have gained enormous knowledge on scientific research, I have obtained lifetime friendships all because of this lab. Alice Molteni and Feline Lindhout, who I can count on anytime, every bit of moment we spent together has been a real bless. We have shared laughter, frustrations, and tears, thank you for making me a better person and giving all the supports I needed in and outside of the lab. Frankie Gonzales, who shows his affections through mockery, you have inspired me to be a stronger person. Despite all the "attacking," I do not know what I would do without you, I have learned so much from you, thank you for being so real and kind to me.

ABSTRACT OF THE THESIS

A plasma membrane protein proteomics approach to elucidate the role of ubiquitindependent endocytosis and lysosomal degradation in cortical neurons

by

April Baoyi Guan Master of Science in Biology

University of California, San Diego, 2016 Professor Gentry Patrick, Chair

Ubiquitin-dependent receptor endocytosis and subsequent endocytic sorting to the lysosome for degradation plays an essential role in synaptic plasticity by changing the number of membrane receptors at the synaptic sites. However, our knowledge of this pathway on the overall synaptic membrane protein population is still rudimentary. Here, we identify surface synaptic membrane proteins as candidate ubiquitinated targets of the lysosome. We show that the lysosomal inhibition increases surface synaptic membrane protein ubiquitination in neurons. We combine the isolation of biotinylated cell surface membrane proteins, lysosomal perturbation and mass spectroscopy analysis to generate the first large-scale proteomic analysis of the surface synaptic proteome as candidate ubiquitinated targets of the lysosome. After 12 hours treatment, we compared biochemically purified synaptic cell membrane protein fractions between normal and lysosome-perturbed conditions through tandem mass spectrometry. A total of 1600 proteins were identified and quantified, including 539 plasma membrane proteins. Out of these plasma membrane proteins, we found that 105 of them were upregulated, and 207 were downregulated, while 226 did not significantly change in protein level. The proteins with altered pattern include proteins involved in regulating cell adhesion, cellular homeostasis, synaptic transmission, and cellular localization. This suggests that the ubiquitin-dependent lysosomal degradation pathway is important in maintaining synaptic function.

I. Introduction

Synaptic plasticity

Our brain is remodeled constantly in response to our daily activities such as learning and recalling past events (Morris 1999). This alternation is called synaptic plasticity, which refers to the ability of synapses to strengthen or weaken in response to the change of activities (Hughes 1958).

There are two well-known mechanisms to attain synaptic plasticity, which are to change the level of neurotransmitters such as glutamate released into a synapse, and to change the number of transmembrane receptors on the postsynaptic membrane (Schwarz and Patrick 2012, Goo, Scudder et al. 2015). The ability of a neuron to respond to outside stimuli depends on the density of transmembrane receptors at the postsynaptic density (Malinow and Malenka 2002, Malenka 2003). To regulate the density of the membrane population of these receptors, transmembrane receptors are added to the membrane by exocytosis and removed by endocytosis. Endocytosis of transmembrane receptors involves a modification step that signals them for internalization, and a delivery step in which the receptors are either sent for degradation or recycled back to the cell surface (Marsh and McMahon 1999). In recent years, studies have shown that ubiquitination acts as a signal for the internalization and sorting of plasma membrane proteins.

Ubiquitination

Ubiquitination is the covalent modification of proteins in which a highly conserved 76 amino acid protein called ubiquitin is added to a lysine residue on the target proteins, and these ubiquitinated proteins are sent for degradation (Pickart and Eddins 2004). Ubiquitination is a highly regulated process in mammalian cells. It involves three

main enzymatic steps. First, ubiquitin is activated by the ubiquitin-activating enzymes (E1s); then this activated ubiquitin is transferred to the ubiquitin-conjugating enzymes (E2s), and ligates with substrates through the help of ubiquitin ligase (E3s) (Ciechanover 1998). There are several types of ubiquitin modification: monoubiquitination, the attachment of a single ubiquitin; multiple monoubiquitination, the attachment of multiple single ubiquitin molecules to several lysine residues in the target protein, and polyubiquitination, a modification with ubiquitin chains of diverse lengths and linkages. After transmembrane proteins are ubiquitinated, they are internalized either by clathrindependent or clathrin-independent endocytosis mechanism. They then proceed to the delivery step, where they are either sent for degradation or recycled back to the cell surface (Sorkin and von Zastrow 2009). Depending on the topology and length of the ubiquitin chain, the fate of the ubiquitinated protein such as interaction, localization can be changed. Ubiquitination is a highly reversible process. Ubiquitinated proteins can be reversed its modification by the action of deubiquitinating enzymes (DUBs), and these de-ubiquitinated proteins will then recycle back to the cell surface.

Ubiquitin-dependent degradation pathways

There are two main degradation pathways for ubiquitinated proteins: the Ubiquitin Proteasomal System (UPS) and the lysosomal pathway (Pickart and Eddins 2004). The destined degradation pathway of ubiquitinated proteins depends on the type of ubiquitination. Proteins with a single ubiquitin molecule attached is called mono-ubiquitinated proteins; proteins with additional ubiquitin molecules attached and form a polyubiquitin chain is called polyubiquitination, which are usually targeted to the

ubiquitin-proteasomal degradation pathway and degraded by the large multi-subunit protease called the 26S proteasome. The synaptic membrane proteins are typically monoubiquitinated or with short chain of ubiquitin, and they are normally degraded by the lysosomal degradation pathway (Pickart and Eddins 2004, Clague and Urbe 2010). Membrane proteins are first tagged with ubiquitin, which are recognized by the endosomal sorting complexes required for transport (ESCRT) machinery and recruited to the endosome. Endosome is then developed into late endosome and becomes the multi-vesicular body (MVBs); it is fused with lysosome for protein degradation (Piper and Luzio 2007). If a DUB reverses ubiquitination of the targeted protein in the early endosome, the protein can be recycled back to the plasma membrane.

Ubiquitination of epidermal growth factor receptor (EGFR)

One well-studied example of ubiquitin-dependent endocytosis of surface receptor and subsequently targeted for lysosomal degradation is the epidermal growth factor receptor (EGFR). Extensive studies have shown that direct ubiquitination of EGFR by c-Cb1 serve as a signal for the assembly of clathrin-mediated endocytic machinery and subsequent endocytosis, and endosomal sorting for degradation (de Melker, van der Horst et al. 2001, Goh and Sorkin 2013). These studies indicate that ubiquitination acts as a necessary signal to send receptor for endosomal sorting and subsequent lysosomal degradation. They show that mutant EGFRs without ubiquitination sites are not targeted for lysosomal degradation but send back to the plasma membrane from the endosomes, this implies that ubiquitination is required for the subsequent lysosomal degradation (Raiborg, Bache et al. 2002, Peschard and Park 2003).

Ubiquitination in endocytosis and endosomal sorting of AMPARs and GABARs

Another striking example of a synaptic membrane protein that is degraded by the lysosomal degradation pathway is the α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), an ionotropic transmembrane receptor for glutamate, which mediates synaptic transmission (Schwarz and Patrick 2012, Goo, Scudder et al. 2015). AMPARs are known for their role in synaptic plasticity; by regulating the amount of neurotransmitters transported into the cell, AMPA receptors can initiate long-term potentiation (LTP) and long-term depression (LTD) (Shepherd and Huganir 2007). Therefore, changing the number of AMPA receptors on the postsynaptic membrane is one way to achieve synaptic plasticity. Recent studies found that stimulation of AMPA receptors by the agonist AMPA causes robust ubiquitination, leads to internalization, and subsequent trafficking into lysosomal degradation pathway for degradation in hippocampal neurons (Shepherd and Huganir 2007, Schwarz, Hall et al. 2010). Besides AMPAR, ubiquitin-dependent regulation and lysosomal degradation has been shown to be crucial for inhibitory synaptic transmission. γ -Aminobutyric acid (GABA) receptors, inhibitory synaptic receptors that hinder action potential, have also been found to be modified by ubiquitin and degraded by the lysosomes; mutation of their ubiquitination sites disables their ability to be degraded by the lysosomes (Arancibia-Carcamo, Yuen et al. 2009). There are many other surface proteins that are modified by ubiquitin and trafficked to the lysosomes for degradation; it is crucial to identify these components and connect them with synaptic plasticity.

The proteasome, lysosome, and autophagy

We mentioned the two main ubiquitin-dependent degradation pathways, and how their regulation can affect synaptic plasticity. Another degradation pathway, which does not involve ubiquitin modification, but also degrades damaged cytoplasmic proteins and cell organelles with the help of autophagosomes, it's the autophagy pathway (Mizushima 2007). Although this pathway does not involve in ubiquitination, it is part of the lysosome system; therefore, dysfunction of this pathway might affect the efficacy of the endosome-lysosome pathway. One study showed that lysosome is activated through a dual mechanism between mTORC1 suppression and autophagosome-lysosome fusion (Zhou, Tan et al. 2013). Since the endosome-lysosome system has been shown to play a crucial role in synaptic plasticity, the autophagy pathway could also be a player in synaptic plasticity. In fact, there are a few reports indicate this relationship (Shen and Ganetzky 2009, Shehata, Matsumura et al. 2012); the role of this pathway is still rudimentary.

Neurodegeneration involves proteolytic dysfunction

Synaptic strength is partly depended on the number of receptors at the postsynaptic surface; for example, it is shown that insertion of AMPA-type glutamate receptor (AMPARs) at the synapse lead to long-term potentiation. Therefore, looking the change of overall membrane proteins in response to lysosomal inhibition can unravel the role of lysosomal degradation pathway in synaptic plasticity. Furthermore, impairment in synaptic plasticity underlies the cause of many neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease; numerous studies have shown a strong

correlation between synapse impairment and accumulation of plaque and tangle (Hardy and Selkoe 2002, Rodrigues, Scudder et al. 2016). These studies suggest that these plaques, particularly pathogenic peptide amyloid β -protein (A β), hinder synaptic transmission by promoting downregulation of surface AMPARs through ubiquitination, internalization, and subsequent endocytic sorting to the lysosome for degradation (Rodrigues, Scudder et al. 2016). Observing membrane protein changes in response to lysosomal inhibition in a global scale can not only help us understanding synaptic plasticity, but also potentially provide an overview of neuronal network.

Mass spectrometry-based proteomics analysis

Mass spectrometry is the mainstream approach for identification and quantification of proteins and posttranslational modifications, with in small scale or in the entire proteome (Pagala, High et al. 2015). Individual peptide can be isolated from a mixture sample through multiple rounds of mass spectrometry, usually through molecule fragmentation. This gives out more accurate protein identification and a more comprehensive characterization of proteins with quantitative and qualitative changes. For example, by utilizing LC-MS/MS, a novel candidate synaptic ubiquitinated protein STIM1 was identified in the proteomic screening (Keil, Shen et al. 2010). Furthermore, proteomic techniques that are used for characterizing specific sites of ubiquitination in a large-scale fashion have been well established. Researchers found that all of the ubiquitinated proteins contain two C-terminal glycine residues of ubiquitin after digestion with trypsin; they took advantage of this di-glycine site and identify ubiquitination sites of digested substrate proteins by the utilization of di-glycine antibody, which specifically recognize and immunoprecipiate peptides containing the modified lysine residues in digested substrate proteins. One large-scale proteomic study focuses on analysis of ubiquitinated proteome in rate brain uses similar monoclonal antibody that recognizes the di-glycine tag on lysine residues in trypsinized peptides (K-GG peptides). In this study, they reveals a wide range of ubiquitination events on key components in pre and post-synaptic region, and able to determine ubiquitination sites on key agents in several neurodegenerative diseases (Na and J.Peng 2012).

The main goal of this project is to look at the role of ubiquitin-dependent endocytosis and trafficking in the plasma membrane protein population, and systematically analyze the change of proteome in response to lysosomal inhibition in addition to identify key synaptic plasticity players that are regulated by the same mechanism as AMPAR. In the present study, we use biotinylation and quantitative mass spectrometry-based techniques (LC-MS/MS) to investigate the effects of a 12 h treatment of leupeptin and chloroquine on the proteome in cortical neurons. By perturbing ubiquitin-dependent protein degradation pathway such as the lysosomal pathway, we can identify membrane surface proteins that are regulated through ubiquitin-lysosomal degradation pathway. We hope to identify substrate-processing factors that act as critical mediators of the turnover of ubiquitin-dependent membrane proteins. Lastly, examining the change of plasma membrane proteins in different neuronal activity paradigms can provide us a better understanding of the role of ubiquitination in controlling surface membrane proteins, which is strongly related to neuronal development and function, and we aim to find novel targets of ubiquitin-dependent trafficking.

II. Results

Figure 1: Total protein stains of synaptic fractions isolated from cortical neurons after 12 hr lysosomal inhibition with 200uM leupeptin and chloroquine. Cell membrane proteins of Synaptic fraction were separated by SDS-PAGE and visualized by staining fixed gels with Sypro Ruby.

Figure 2: Ubiquitinated proteins on the cell membrane at the synapse after 12 and 24 hours lysosomal inhibition treatment with 200uM leupeptin and chloroquine. Biotin-avidin pulldown assays were performed on cortical neuron synaptosomal membranes. Eluted proteins were assayed for ubiquitin conjugates by anti-ubiquitin immunoblot.

Figure 4: Cytotoxicity under lysosomal inhibition treatment for 12hr and 24hr. Immunocytochemical staining of neuronal dendrites marker, Microtubule-associated protein 2 (MAP2), shows the health of hippocampal neurons after 12hr and 24hr treated with 200uM leupeptin, 200uM chloroquine, and 200uM of leupeptin and chloroquine.

Figure 5: Induction of autophagy by lysosomal inhibitors time-dependent and dosedependent in dissociated cortical neurons. (A) Neurons were treated with Chloroquine (25uM), Bafilomycin A1 (10nM), Leupeptin (200uM) for 3hrs, 5hrs, 12hrs, and 24hrs. (B) Neurons were treated with Leupeptin (20uM, 200uM, 400uM, 2000uM), Bafilomycin A1 (10nM, 50nM, 100nM), Chloroquine (25uM, 50uM, 100uM) for 12 hrs.

Figure 6: Acidification of lysosomes in the cells treated with leupeptin, bafilomycin, and chloroquine. (A) Hippocampal neurons were treated with leupeptin (400uM), bafilomycin A1 (10nM, 50nM), chloroquine (25uM, 50uM) for 12 hrs. Cells were then stained with LysoTracker Red DND-99 in MatTeks (70nM) for 30 min. Immunofluorescent images of dissociated hippocampal neurons expressing GFP and LysoTracker signals.

Figure 7: Lysosomal enzymatic activity under drug treatments. To determine the inhibition level of leupeptin and chloroquine on lysosomal enzyme Cathepsin B function, in vitro Cathepsin B activity was measured with the fluorogenic Cathepsin B Z-RR-AMC (fluorophore) was used. Increasing leupeptin concentration decreases enzymatic activity as measured by AMC hydrolysis. (P<0.0001).

Figure 8: Schematized overview of proteomic screen for the isolation and identification of synaptic membrane proteins from hippocampal neurons treated with lysosomal inhibitors and control conditions.

Red bars: Proteins that are identified as synaptic candidate ubiquitinated proteins (Keil and Patrick 2010). Green bars: Proteins that are identified as synaptic candidate ubiquitinated proteins and contain identified ubiquitination sites (Na and J.Peng 2012).

Figure 9: Bar graph shows plasma membrane protein levels between normal and lysosomal inhibited conditions by the spectral count ratio. Out of these plasma membrane proteins, we found that 105 of them were upregulated, and 207 were downregulated, while 226 did not change in protein level.

Figure 10: Bar graph shows cell adhesion protein levels at the synaptic membrane between normal and lysosomal inhibited conditions by the spectral count ratio.

Figure 11: Bar graph shows cellular homeostasis regulators protein levels at the synaptic membrane between normal and lysosomal inhibited conditions by the spectral count ratio.

Figure 12: Bar graph shows cellular localization regulators protein levels at the synaptic membrane between normal and lysosomal inhibited conditions by the spectral count ratio.

Figure 13: Bar graph Bar graph shows calcium ion transport regulators protein levels at the synaptic membrane between normal and lysosomal inhibited conditions by the spectral count ratio.

Figure 14: Bar graph Bar graph shows synaptic plasticity regulators protein levels at the synaptic membrane between normal and lysosomal inhibited conditions by the spectral count ratio.

Figure 15: Bar graph Bar graph shows synaptic transmission regulators protein levels at the synaptic membrane between normal and lysosomal inhibited conditions by the spectral count ratio.

Туре	Total (David)	Total (IPA)	Percentage
Enzyme	95	9	19%
G-protein coupled receptor	12	2	3%
Growth factor	1	0	0%
Ion channel	28	3	6%
Kinase	46	3	9%
Other	152	50	38%
Peptidase	6	1	1%
Phosphatase	6	7	2%
Transcription regulator	11	0	2%
Translation regulator	2	0	0%
Transmembrane receptor	7	5	2%
Transporter	82	11	17%
Grand Total	448	91	100%

Table 1: Summary of functional categories of detected plasma membrane proteins by DAVID and IPA.

Table 2: Plasma membrane proteins identified by DAVID and IPA						
LDUDDOT	Official		C(1	Leu		
UNIPRO I Number	Gene	Gene Name	Ctrl	SC	Ratio	
INUITOEI	Symbol	Engrand	50			
Enzyme					0.60	
Q04400	adcy5	adenylate cyclase 5	5	3	0.60	
P63245	GNB2L1	protein), beta polypeptide 2 like 1	7.5	1.5	0.20	
Q9EP80	PICK1	protein interacting with PRKCA 1	4	1	0.25	
Q62904	hsd17b7	hydroxysteroid (17-beta) dehydrogenase 7	4	1	0.25	
P62494	Rab11a	RAB11a, member RAS oncogene family	4	1	0.25	
D20171	1	similar to GTPase HRas precursor (Transforming protein p21) (p21ras) (H-Ras-1) (c-H-ras); Harvey rat	10.5	2.5	0.22	
P20171	hras	sarcoma virus oncogene	10.5	3.5	0.33	
*P07632	SOD1	superoxide dismutase 1, soluble	3	1	0.33	
		protein), beta polypeptide 1; guanine nucleotide binding protein (G protein),				
O35353	GNB1	beta polypeptide 4	9.5	4.5	0.47	
Q62845	Cntn4	contactin 4	28	12	0.43	
Q6AYG3	PRUNE	prune homolog (Drosophila)	9	4	0.44	
P61751	ARF4	ADP-ribosylation factor 4	13	6	0.46	
P97528	CNTN6	contactin 6	6	3	0.50	
156275	GGT7	gamma-glutamyltransferase 7	2	1	0.50	
P49803	rgs7	regulator of G-protein signaling 7	7.5	4.5	0.60	
P62836	RAP1A	RAP1A, member of RAS oncogene family	6.5	7	1.08	
P26769	ADCY2	adenylate cyclase 2 (brain)	5	3	0.60	
D10004	CNAM	guanine nucleotide binding protein (G protein), alpha inhibiting 1; guanine nucleotide binding protein (G protein),		14.5	0.50	
P10824	GNAII	alpha inhibiting 3	24.5	14.5	0.59	
P09527	RAB/A	RAB/A, member RAS oncogene family	16.5	11.5	0.70	
Q04970	NRAS	neuroblastoma ras oncogene	16	10	0.63	
P62882	GNB5	protein), beta 5	4.5	3	0.67	
P35281	RAB10	RAB10, member RAS oncogene family	13.5	8.5	0.63	
P70478	APC	adenomatous polyposis coli	3	2	0.67	
P23711	Hmox2	heme oxygenase (decycling) 2	6	4	0.67	
Q63941	RAB3B	RAB3B, member RAS oncogene family	12	8	0.67	
366227	APMAP	adipocyte plasma membrane associated	3	2	0.67	

Table 2. (Continued)						
29254	MGLL	monoglyceride lipase	3	2	0.67	
Q06000	Lpl	lipoprotein lipase	7	5	0.71	
P84083	arf5	ADP-ribosylation factor 5	12	7	0.58	
Q62888	Nlgn2	neuroligin 2	13	9	0.69	
P19627	GNAZ	guanine nucleotide binding protein (G protein), alpha z polypeptide	19	14	0.74	
Q9JJM9	GP1BB	glycoprotein Ib (platelet), beta polypeptide; septin 5	18	15.5	0.86	
P35280	RAB8A	RAB8A, member RAS oncogene family	13	10	0.77	
Q6Q7Y5	Gna13	guanine nucleotide binding protein, alpha 13	10.5	8	0.76	
P39052	DNM2	dynamin 2	9	7	0.78	
Q9QYF3	MYO5A	myosin Va	44	30.5	0.69	
Q62889	NLGN3	neuroligin 3	29.5	25	0.85	
P61227	RAP2B	RAP2B, member of RAS oncogene family	5	4	0.80	
P70550	RAB8B	RAB8B, member RAS oncogene family	15	12	0.80	
Q9WU34	septin 3	septin 3	11.5	7.5	0.65	
*Q63198	Cntn1	contactin 1	223	175	0.78	
P61589	RHOC	ras homolog gene family, member A; ras homolog gene family, member C	13.5	11	0.81	
Q62952	Dpysl3	dihydropyrimidinase-like 3	90.5	75	0.83	
**D50015	CNIA O1	guanine nucleotide binding protein (G protein), alpha activating activity	112.5	0.4	0.02	
**P59215	GNAUI	polypeptide O	113.5	94	0.83	
294930	NCEHI	neutral cholesterol ester hydrolase 1	12	10	0.83	
Q99ML5	PCYOXI	prenylcysteine oxidase 1	5.5	4.5	0.82	
P62909	rps3	ribosomal protein S3	45	26	0.58	
035049	Smpd3	sphingomyelin phosphodiesterase 3, neutral	5.5	6	1.09	
		enolase 1, alpha pseudogene; similar to Alpha enolase (2-phospho-D-glycerate hydro-lyase); enolase 1, (alpha); similar to Alpha-enolase (2-phospho-D- glycerate hydro-lyase) (Non-neural				
P04764	enol	enolase) (NNE) (Enolase 1)	67	60.5	0.90	
Q9JID2	GNA11	guanine nucleotide binding protein, alpha 11	12	11.5	0.96	
P61107	Rab14	RAB14, member RAS oncogene family	22	19	0.86	
P04762	cat	catalase	27.5	25	0.91	
Q62812	MYH9	myosin, heavy chain 9, non-muscle	49	41.5	0.85	
Q6RUV5	rac1	ras-related C3 botulinum toxin substrate 1	21	18	0.86	

Table 2. (Co	ntinued)						
Q05683	GAD2	glutamate decarboxylase 2	13	12	0.92		
Q5U316	RAB35	RAB35, member RAS oncogene family	10.5	9.5	0.90		
P63012	RAB3A	RAB3A, member RAS oncogene family	24.5	21	0.86		
		dihydrolipoamide S-succinyltransferase					
		(E2 component of 2-oxo-glutarate					
Q01205	DLST	complex)	5.5	5.5	1.00		
Q99PW3	Neu1	sialidase 1 (lysosomal sialidase)	8	8	1.00		
Q63364	pja2	praja 2, RING-H2 motif containing	1.5	1.5	1.00		
P22734	COMT	catechol-O-methyltransferase	2	2	1.00		
Dagage	G	synuclein, alpha (non A4 component of	24	26	1.00		
P3/3//	Snca	amyloid precursor)	36	36	1.00		
P07323	eno2	enolase 2, gamma, neuronal	39	39	1.00		
83512	FADS2	fatty acid desaturase 2	2	2	1.00		
D02471	CNAO	guanine nucleotide binding protein,	20	20.5	1.05		
P824/1	GNAQ	aipina q polypeptide	28	29.5	1.05		
		oncogene family RAB1 member RAS					
O6NYB7	Rab1A	oncogene family	27.5	28	1.02		
		v-ral simian leukemia viral oncogene					
P63322	RALA	homolog A (ras related)	19	20	1.05		
116743	SH3GL2	SH3-domain GRB2-like 2	21	21	1.00		
		aldo-keto reductase family 1, member					
P51635	AKR1A1	A1 (aldehyde reductase)	17.5	16.5	0.94		
Q6GQP4	rab31	RAB31, member RAS oncogene family	4	3.5	0.88		
P62824	Rab3c	RAB3C, member RAS oncogene family	16	14.5	0.91		
0.00040		neural precursor cell expressed,			1.10		
Q62940	NEDD4	developmentally down-regulated gene 4	4	4.5	1.13		
P63095	Gnas	GNAS complex locus	22	22.5	1.02		
		similar to Aspartate aminotransferase,					
		A) (Glutamate oxaloacetate					
		transaminase 2): glutamic-oxaloacetic					
		transaminase 2, mitochondrial					
P00507	Got2	(aspartate aminotransferase 2)	66	57	0.86		
		guanine nucleotide binding protein (G					
P54313	gnb2	protein), beta polypeptide 2	19	17.5	0.92		
025500	DAD11D	RAB11B, member RAS oncogene	C	7	1 17		
035509	RABIIB		6	1	1.17		
P05714	rab4a	RAB4A, member RAS oncogene family	5	6	1.20		
499913	ABHD12	abhydrolase domain containing 12	6	7	1.17		
P20070	cyb5r3	cytochrome b5 reductase 3	11	11	1.00		
Q9Z1A5	Nae1	NEDD8 activating enzyme E1 subunit 1	4	5	1.25		
025254	D 1 01	protein phosphatase 1, regulatory	22.5		1.1.6		
035274	Ppp1r9b	subunit 9B	33.5	39	1.16		
Table 2. (Continued)							
----------------------	----------	--	------	-----	------	--	--
Q566R0	them4	thioesterase superfamily member 4	3	4	1.33		
P35286	RAB13	RAB13, member RAS oncogene family	5	7	1.40		
		similar to Septin-2 (Protein NEDD5)					
		(Neural precursor cell expressed					
0.047704		developmentally down-regulated			1.50		
Q91Y81	Septin-2	protein 5); septin 2	6	9.5	1.58		
Q03555	GPHN	gephyrin	13.5	20	1.48		
Q99P75	RAB9A	RAB9A, member RAS oncogene family	2	3	1.50		
		v-Ki-ras2 Kirsten rat sarcoma viral	-				
P08644	Kras	oncogene homolog	6	9	1.50		
D19162	ACSI 1	acyl-CoA synthetase long-chain family	5	0	1.60		
P18103	ACSLI		5	8	1.00		
P51146	KAB4B	RAB4B, member RAS oncogene family	8	13	1.63		
191576	TECR	trans-2,3-enoyl-CoA reductase	4	5	1.25		
P04785	p4hb	prolyl 4-hydroxylase, beta polypeptide	30.5	48	1.57		
		similar to 60 kDa heat shock protein,					
		mitochondrial precursor (Hsp60) (60 kDa abaparanin) (CPN60) (Haat shock					
		protein 60) (HSP-60) (Mitochondrial					
		matrix protein P1) (HSP-65): similar to					
		60 kDa heat shock protein,					
		mitochondrial precursor (Hsp60); heat					
		shock protein 1 (chaperonin); similar to					
P63039	HSPD1	heat shock protein 1 (chaperonin)	42	115	2.74		
	G 1 40	cell division cycle 42 (GTP binding			1.01		
Q8CFN2	Cdc42	protein)	11.5	22	1.91		
500282	ARL8B	ADP ribosylation factor like GTPase 8B	7	6	0.86		
Q6P7C7	GPNMB	glycoprotein (transmembrane) nmb	2	1	0.50		
O(MCD5		hydroxysteroid (17-beta)	1	2	2.00		
Q6MGB5	HSD1/B8	denydrogenase 8	1	2	2.00		
P9/538	mras	muscle RAS oncogene homolog	4	8	2.00		
P21396	MAOA	monoamine oxidase A	13	14	1.08		
P37996	Arl3	ADP-ribosylation factor-like 3	3	1	0.33		
Q62639	rheb	Ras homolog enriched in brain	1	3	3.00		
P62747	RHOB	ras homolog gene family, member B	9	14	1.56		
Q91ZY8	TRIM9	tripartite motif-containing 9	1	4	4.00		
		thiosulfate sulfurtransferase,					
P24329	TST	mitochondrial	1	8	8.00		
		aldehyde dehydrogenase 3 family,	_				
P30839	aldh3a2	member A2	5	2	0.40		
025547	A cc14	acyl-CoA synthetase long-chain family	21	21	1.00		
033347	ACS14		21	21	1.00		
		G-protein coupled receptor					
P35400	GRM7	glutamate receptor, metabotropic 7	6	2	0.33		

Table 2. (Co	ntinued)				
		5-hydroxytryptamine (serotonin)			
P35365	Htr5b	receptor 5B	2	1	0.50
O88917	ADGRL1	latrophilin 1	36	18	0.50
291352	GPR158	G protein-coupled receptor 158	25	17	0.68
		cadherin, EGF LAG seven-pass G-			
0.00 0-0 0		type receptor 3 (flamingo homolog,	10	0	0.00
088278	Celsr3	Drosophila)	13	9	0.69
Q9Z173	ADGRL3	latrophilin 3	36	24	0.67
P22909	Adra2a	adrenergic, alpha-2A-, receptor	4	3	0.75
Q8K3V3	GPR56	G protein-coupled receptor 56	6.5	6.5	1.00
		cadherin, EGF LAG seven-pass G-			
0001/102	CEL CD2	type receptor 2 (flamingo homolog,	1.5	10	0.07
Q9QYP2	CELSR2	Drosophila)	15	13	0.87
171447	ADGRL2	I 2	10	9	0.90
088023	ADGRL2	latrophilip 2	10	0	0.90
088925	ADUKL2	gamma-aminobutyric acid (GABA)	10	7	0.90
088871	Gabbr2	B receptor 2	13.5	10	0.74
P31424	Grm5	glutamate receptor metabotropic 5	95	9	0.95
	Onne	gamma-aminobutvric acid (GABA)	7.0		0.50
Q9Z0U4	GABBR1	B receptor 1	5.5	5.5	1.00
O9ERO6	cspg5	chondroitin sulfate proteoglycan 5	3	3	1.00
		Ion channel			
	CACNA2	calcium channel, voltage-dependent,			
Q8CFG5	D3	alpha2/delta subunit 3	6	2	0.33
		potassium large conductance			
		calcium-activated channel, subfamily	_	-	
Q62976	KCNMA1	M, alpha member 1	7	3	0.43
D20226		gamma-aminobutyric acid (GABA)	7	2	0.42
P20230	GABRAS	A receptor, arpha 5	1	2	0.45
306439	GPM6A	glycoprotein M6A	6	3	0.50
OSCEG6	D2	alpha 2/delta subunit 2	8	4	0.50
200100	02	sodium channel voltage-gated type	0		0.50
P04775	Scn2a1	II, alpha 1	10	5	0.50
		sodium channel, voltage gated, type			
24766	SCN2A	II alpha subunit	10	5	0.50
		glutamate receptor, ionotropic,			
P19491	GRIA2	AMPA 2	38	21	0.55
DC2912	Cohro 1	gamma-aminobutyric acid (GABA)	12	0	0.62
P02813			15	ð 	0.02
PUC5X8	ttyhl	tweety homolog I (Drosophila)	1.5	5.5	0.73
P19492	Gria3	AMPA 3	10	7	0.70
P10/00	GRIA1	glutamate recentor ionotronia	25	18	0.70
F19490	UNIAI	giutamate receptor, ionotropic,	23	10	0.72

Table 2. (Co	Table 2. (Continued)							
		calcium channel, voltage-dependent,						
*P54290	Cacna2d1	alpha2/delta subunit 1	70	51.5	0.74			
D10402	CDIA 4	glutamate receptor, ionotropic,	5	4	0.00			
P19493	GRIA4	AMPA4	5	4	0.80			
P54000	SCN2B	U beta	4.5	4	0.80			
1 34900	SCN2D	voltage-dependent anion channel 1:	4.5	4	0.89			
		similar to Voltage-dependent anion-						
		selective channel protein 1 (VDAC-						
		1) (Outer mitochondrial membrane						
		protein porin); similar to Voltage-						
		dependent anion-selective channel						
		protein 1 (VDAC-1) (mVDAC1)						
		(mVDAC5) (Outer mitochondrial						
**007010		membrane protein porin 1)	20.5	22.5	0.77			
**Q9Z2L0	VDACI	(Plasmalemmal porin)	30.5	23.5	0.77			
	Coonge	calcium channel, voltage-dependent,	75	7	0.02			
	Cacingo		1.5	/	0.95			
P48037	ANXA6	annexin A6	12.5	12.5	1.00			
000060	GRINDR	mothyl D aspartate 2P	12.5	12	0.80			
Q00900	UKIN2D	ableride intrecellular channel 4	13.5	12	0.89			
0970W7	CLIC4	(mitochondrial)	1.5	1.5	1.00			
ROL PN/	PVP2	ryanodina recentor 2 cardiac	5	5	1.00			
DULI IN4	SHROOM		5	5	1.00			
O7TP36	2	shroom family member 2	5	5	1.00			
Q/1150	2	FXYD domain-containing ion	5		1.00			
Q91XV6	fxyd6	transport regulator 6	5	5	1.00			
		potassium channel, voltage gated						
		subfamily A regulatory beta subunit						
29738	KCNAB2	2	5	5	1.00			
		calcium channel, voltage-dependent,						
P54287	CACNB3	beta 3 subunit	9	7.5	0.83			
D54000		calcium channel, voltage-dependent,	0	0.5	1.0.0			
P54283	CACNBI	beta I subunit	9	9.5	1.06			
D25420	CDINI	glutamate receptor, ionotropic, N-	0	10	1.25			
F 5 5 4 5 9	GKINI	gamma aminobutyric acid (GABA)	0	10	1.23			
P63079	GABRB3	A recentor beta 3	9	13	1 44			
105075	GIIDIUD	transient receptor potential cation	,	15	1.11			
O9WUD2	TRPV2	channel, subfamily V, member 2	4	6	1.50			
		potassium voltage gated channel,						
P15387	KCNB1	Shab-related subfamily, member 1	4	7	1.75			
P84903	STIM1	stromal interaction molecule 1	1	3	3.00			
		Kinase						
Q03351	NTRK3	neurotrophic tyrosine kinase,	3	2	0.67			

Table 2. (Co	ntinued)				
O35276	NRP2	neuropilin 2	17	5	0.29
P32577	CSK	c-src tyrosine kinase	4	2	0.50
		3-phosphoinositide dependent			
055173	PDPK1	protein kinase-1	4	2	0.50
0(005)	F 11.4	v-erb-a erythroblastic leukemia viral	_	2	0.00
Q62956	Erbb4	oncogene homolog 4 (avian)	5	3	0.60
29202	EPHA6	EPH receptor A6	5	3	0.60
P97523	MET	met proto-oncogene	3	2	0.67
		(NM22P) expressed in: non			
		(NM23B) expressed in, non- metastatic cells 2, protein (NM23B)			
P19804	NME2	expressed in pseudogene 1	24.5	17	0.69
062696	DI G1	discs large homolog 1 (Drosonhila)	8	6	0.75
Q02070	DLUI	calcium/calmodulin-dependent	0	0	0.75
		serine protein kinase (MAGUK			
**Q62915	CASK	family)	16	12	0.75
P47858	PFKM	phosphofructokinase, muscle	23	17	0.74
Q63092	CAMKV	CaM kinase-like vesicle-associated	22.5	17	0.76
	PRKAR2	protein kinase, cAMP dependent			
P12368	А	regulatory, type II alpha	20.5	18	0.88
P31016	DLG4	discs, large homolog 4 (Drosophila)	20.5	17	0.83
Q63622	Dlg2	discs, large homolog 2 (Drosophila)	17	14.5	0.85
		neurotrophic tyrosine kinase,			
Q63604	NTRK2	receptor, type 2	7	6	0.86
B2DD29	Brsk1	BR serine/threonine kinase 1	6.5	4	0.62
007070	OTT 1	G protein-coupled receptor kinase	17	155	0.01
Q9Z272	GITT	interacting ArtGAP 1	17	15.5	0.91
P07335	СКВ	creatine kinase, brain	36	38.5	1.07
		similar to CG2662-PA; protein			
P27791	PRKACA	alpha	18	17	0.94
12////		Rho-associated coiled-coil	10	17	0.91
Q62868	ROCK2	containing protein kinase 2	4	3	0.75
		calcium/calmodulin-dependent			
**P15791	CAMK2D	protein kinase II delta	43.5	46	1.06
D 400 4 (MITOD	mechanistic target of rapamycin	2	2	1.00
P42346	MTOR	(serine/threonine kinase)	3	3	1.00
Q62833	GRK5	G protein-coupled receptor kinase 5	4	4	1.00
79208	EPHA5	EPH receptor A5	7	7	1.00
P09216	Prkce	protein kinase C, epsilon	9	9.5	1.06
**D11075	Combo	calcium/calmodulin-dependent	675	60 5	1.01
P20060		protein kinase n'aipna	07.3	08.3	1.01
P39069			35	30	1.03
Q01986	MAP2K1	mitogen activated protein kinase	12	13	1.08

Table 2. (Co	ntinued)				
P68403	PRKCB	protein kinase C, beta	12.5	14	1.12
P0C1X8	aak1	AP2 associated kinase 1	6.5	7.5	1.15
Q62936	DLG3	discs, large homolog 3 (Drosophila)	40	43	1.08
		FYN oncogene related to SRC, FGR,			
Q62844	FYN	YES	11.5	10.5	0.91
P26817	ADRBK1	adrenergic, beta, receptor kinase 1	7	8	1.14
		membrane associated guanylate			
000202		kinase, WW and PDZ domain	~	6	1.20
088382	MAGI2	containing 2	5	6	1.20
Q03114	cdk5	cyclin-dependent kinase 5	8	10	1.25
P05696	Prkca	protein kinase C, alpha	14.5	17.5	1.21
		membrane associated guanylate			
041.114	MAGI1	containing 1	55	6.5	1 18
P05708	HK 1	hevokinase 1	87	74	0.85
105708	CDC42BP	CDC42 binding protein kinase beta	07	/ 4	0.05
Q7TT49	B	(DMPK-like)	10.5	13.5	1.29
117542	BAIAP2	BAI1-associated protein 2	25	25.5	1.02
		microtubule associated			
Q810W7	MAST1	serine/threonine kinase 1	2	3	1.50
		phosphatidylinositol-5-phosphate 4-			
088377	PIP4K2B	kinase, type II, beta	7.5	7.5	1.00
O08680	EPHA3	Eph receptor A3	1	2	2.00
054974	CDC42BP	CDC42 kinding anotain kinaga alaha	2.5	5	2.00
054874	A	membrane associated guanylate	2.5	5	2.00
		kinase WW and PDZ domain			
Q9JK71	MAGI3	containing 3	3	6	2.00
P97874	GAK	cyclin G associated kinase	2	5	2.50
		membrane protein, palmitoylated 3			
O88954	MPP3	(MAGUK p55 subfamily member 3)	1	3	3.00
		MAP/microtubule affinity-regulating			
O08679	MARK2	kinase 2	4	15	3.75
	1	Other			[
308912	DCHS1	dachsous cadherin-related 1	7	1	0.14
P51653	Gpc2	glypican 2	6	1	0.17
(00701		leucine rich repeat and fibronectin	<i>.</i>		0.15
688/21	LRFN4	type III domain containing 4	6	1	0.17
Q00657	cspg4	chondroitin sulfate proteoglycan 4	13	2.5	0.19
29602	PTGFRN	prostaglandin F2 receptor inhibitor	5	1	0.20
DOCZIC	I DENI	leucine rich repeat and fibronectin	F	1	0.20
PUC/J6	LKFNI	type III domain containing I MAM domain containing	5	1	0.20
P60756	MDGA2	glycosylphosphatidylinositol anchor	5	1	0.20

Table 2. (Continued)							
P30427	PLEC	plectin 1	4	1	0.25		
365216	CADM4	cell adhesion molecule 4	4	1	0.25		
100359982	MPC2	mitochondrial pyruvate carrier 2	4	1	0.25		
24588	Nefm	neurofilament, medium polypeptide	9	2.5	0.28		
		MAM domain containing					
		glycosylphosphatidylinositol anchor	_	_			
P85171	MDGA1	1	7	2	0.29		
088339	epn1	Epsin 1	10	3	0.30		
P52796	efnb1	ephrin B1	10	3	0.30		
216205	LDENO	leucine rich repeat and fibronectin	2	1	0.22		
316205	LKFN2	VPS33B interacting protein anical	3	1	0.33		
		basolateral polarity regulator spe-39					
681989	VIPAS39	homolog	3	1	0.33		
191571	FAT3	FAT atypical cadherin 3	22	8	0.36		
	CNTNAP						
84008	1	contactin associated protein 1	6	2.5	0.42		
		glutamate receptor, ionotropic, delta	_		0.40		
Q62640	GRIDI	I ADD2 action mellate discussion 2	5	2	0.40		
04V7C7	ACTR3	homolog (veast)	18	14	0.78		
01WIM2	CADM2	cell adhesion molecule 2	15	7	0.70		
252892	L GI1	leucine_rich_glioma inactivated 1	10.5	5 5	0.52		
232672	LOII	signal recognition particle receptor	10.5	5.5	0.52		
Q4FZX7	SRPRB	B subunit; transferrin	4	2	0.50		
B5DF41	SNPH	syntaphilin	4	2	0.50		
		rho/rac guanine nucleotide exchange					
Q5FVC2	Arhgef2	factor (GEF) 2	4	2	0.50		
P84087	CPLX2	complexin 2	16	8	0.50		
		transmembrane protein with EGF-					
0003771	TMEEE1	like and two follistatin-like domains	2	1	0.50		
Q9Q1V1		1	<u> </u>	2	0.50		
Q63418	PCDHB12	protocadnerin beta 12	4	2	0.50		
Q6P5P3	11090	fibronactin louging righ	1	2	2		
3662.05	FLRT3	transmembrane protein 3	10	5	0.50		
**097214	HOMER1	homer homolog 1 (Drosonhila)	11.5	6.5	0.57		
Q72211	HOMERI	contactin 3 (plasmacytoma	11.5	0.5	0.57		
Q62682	CNTN3	associated)	9.5	6.5	0.68		
P55280	CDH6	cadherin 6	7	4.5	0.64		
		RAB1B, member RAS oncogene					
D1052 <i>4</i>	DIDID	family, pseudogene 1; RAB1B,	10-		0.5		
P10536	RAB1B	member RAS oncogene family	13.5	7.5	0.56		
Q8R491	ehd3	similar to EH-domain containing 3;	24	13	0.54		

Table 2. (Continued)							
		ELKS/RAB6-interacting/CAST					
*Q8K3M6	ERC2	family member 2	11	6	0.55		
Q07310	Nrxn3	neurexin 3	43	25.5	0.59		
P97527	Cntn5	contactin 5	25.5	20.5	0.80		
P22063	CNTN2	contactin 2 (axonal)	20	13	0.65		
		activated leukocyte cell adhesion					
035112	Alcam	molecule	5.5	3	0.55		
Q6JP77	AKAP7	A kinase (PRKA) anchor protein 7	5	3	0.60		
Q62768	UNC13A	unc-13 homolog A (C. elegans)	5	3	0.60		
**D0702(11 1	discs, large (Drosophila) homolog-	~	2	0.00		
**P9/836	digapi	associated protein 1	5	3	0.60		
091ZV2	dchld2	containing 2	5	3	0.60		
Q712+2	utoruz	ArfGAP with SH3 domain. ankvrin		5	0.00		
314961	ASAP1	repeat and PH domain 1	5	3	0.60		
		guanine nucleotide binding protein					
P04897	gnai2	(G protein), alpha inhibiting 2	26.5	16.5	0.62		
P55067	NCAN	neurocan	10	6	0.60		
P63170	dynll1	dynein light chain LC8-type 1	10	6.5	0.65		
Q9Z1E1	flot1	flotillin 1	14.5	9.5	0.66		
Q63537	Syn2	synapsin II	18.5	15	0.81		
Q9Z1Y3	CDH2	cadherin 2	10	6.5	0.65		
		neuronal guanine nucleotide					
Q5BKC9	Ngef	exchange factor	3	2	0.67		
25592	AGRN	agrin	3	2	0.67		
0000001		low density lipoprotein receptor-	22	1.5	0.00		
Q9QYP1	LKP4	related protein 4	22	15	0.68		
64865	PCDH8	protocadherin 8	29	20	0.69		
25595	MAP2	microtubule associated protein 2	127	171.5	1.35		
Q9JKE3	Scamp5	secretory carrier membrane protein 5	10	7	0.70		
P70490	MEGE8	milk fat globule-EGF factor 8	10.5	7	0.67		
08R553	Cletn3	calsyntenin 3	7	5	0.71		
208202	STOMI 2	stomatin like 2	7	3	0.71		
298203	STOWILZ	phosphatidylinositol binding clathrin	/	4	0.37		
O55012	PICALM	assembly protein	9.5	7.5	0.79		
P97685	Nfasc	neurofascin	70	48.5	0.69		
		membrane protein, palmitoylated 7					
Q5U2Y3	MPP7	(MAGUK p55 subfamily member 7)	4	3	0.75		
P97686	nrcam	neuronal cell adhesion molecule	81	57.5	0.71		
64457	NDRG4	NDRG family member 4	12	9	0.75		
117242	TENM2	teneurin transmembrane protein 2	21	16	0.76		
Q05695	L1cam	L1 cell adhesion molecule	95	70.5	0.74		

Table 2. (Co	ntinued)				
290364	ITM2B	integral membrane protein 2B	5	4	0.80
P29066	ARRB1	arrestin, beta 1	5	4	0.80
Q767I8	Pcdha4	protocadherin alpha 4	5	4	0.80
P70483	strN	striatin, calmodulin binding protein	6.5	5	0.77
360921	RUFY3	RUN and FYVE domain containing 3	23.5	16.5	0.70
288480	ΔΙΜΡΣ	aminoacyl tRNA synthetase complex-interacting multifunctional	2.5	1	0.40
200400	MAP1LC	microtubule-associated protein 1	2.5	1	0.40
Q62625	3B	light chain 3 beta	11	9	0.82
**P13596	Ncam1	neural cell adhesion molecule 1	194	154	0.79
O55043	Arhgef7	Rho guanine nucleotide exchange factor (GEF7)	10.5	9	0.86
25567	TNR	tenascin R	54	45.5	0.84
Q6P0K8	JUP	junction plakoglobin	6	5	0.83
P69682	Necap1	NECAP endocytosis associated 1	18	15	0.83
Q9JJ50	HGS	hepatocyte growth factor-regulated tyrosine kinase substrate	2	3	1.50
O08838	ampH	amphiphysin; similar to amphiphysin 1; similar to Amphiphysin	39	33	0.85
Q9Z1T4	CNKSR2	suppressor of Ras 2	6.5	7	1.08
60465	CTTN	cortactin	36.5	30.5	0.84
P32736	OPCML	opioid binding protein/cell adhesion molecule-like	21.5	18.5	0.86
Q78P75	Dynll2	dynein light chain LC8-type 2	16	14	0.88
Q9Z2S9	FLOT2	flotillin 2	16	14	0.88
P13852	PRNP	prion protein	10.5	8	0.76
P63025	vamp3	vesicle-associated membrane protein 3	8	8.5	1.06
001110	SLC9A3R	solute carrier family 9 (sodium/hydrogen exchanger),	1.5	17	1.12
Q9JJ19		member 3 regulator 1	15	17	1.13
QIWIM3	CADM3	cell adhesion molecule 3	23	20.5	0.89
P11442	CLTC	clathrin, heavy chain (Hc)	178	161.5	0.91
**P07936	gap43	growth associated protein 43	53.5	47.5	0.89
Q62718	Ntm	neurotrimin	16	13.5	0.84
007070		membrane protein)-associated	40.5	20.5	0.01
Q9Z270		protein A	42.5	38.5	0.91
Q9Z0J8	NEGRI	neuronal growth regulator 1	20	20	1.00
Q4KM74	SEC22B	homolog B (S. cerevisiae)	6	5.5	0.92

Table 2. (Co	ntinued)				
24851	Tpm1	tropomyosin 1, alpha	41	38	0.93
Q3B7U9	FKBP8	FK506 binding protein 8, 38kDa	4	3.5	0.88
29272	DPP6	dipeptidyl-peptidase 6	18.5	13	0.70
Q9JLT0	myh10	myosin, heavy chain 10, non-muscle	206.5	197	0.95
		translocase of outer mitochondrial			
Q3KRD5	TOMM34	membrane 34	7.5	8	1.07
P04218	Cd200	Cd200 molecule	5.5	5	0.91
Q6AXS5	serbp1	Serpine1 mRNA binding protein 1	8	7.5	0.94
0.000	ARHGDI	Rho GDP dissociation inhibitor	10	10	1.00
Q5X173	A	(GDI) alpha	19	19	1.00
O7TNY6	ACBD3	containing 3	7	7	1.00
097216	Sy2c	synaptic vesicle glycoprotein 2c	2	2	1.00
008774	rgs12	regulator of G protein signaling 12	2	2	1.00
008774	1g512	signal transducing adaptor molecule	2	2	1.00
Q5XHY7	STAM2	(SH3 domain and ITAM motif) 2	2	2	1.00
Q6P730	DAB2IP	DAB2 interacting protein	3	3	1.00
P47728	CALB2	calbindin 2	4	4	1.00
A8WCF8	TPRG1L	hypothetical protein LOC687090	4	4	1.00
O04940	NRGN	neurogranin	4	4	1.00
P21818	STMN2	stathmin-like 2	7	7	1.00
P97546	NPTN	neuroplastin	13	13	1.00
	PHACTR				
*P62024	1	phosphatase and actin regulator 1	6	6	1.00
Q8VH46	AFAP1	actin filament associated protein 1	2	2	1.00
	MARCKS				
Q9EPH2	L1	MARCKS-like 1	5	5	1.00
Q80WD1	RTN4RL2	reticulon 4 receptor-like 2	5	5	1.00
0011114	SUANK2	domains 2	5	5 5	1 10
062717	CADPS	C_{a++} dependent secretion activator	12.5	10	0.74
208571		louging righ report containing 4P	10.5	0	0.74
508571	LKKC4D	ARP2 actin-related protein 2	10.5	9	0.80
289820	ACTR2	homolog (veast)	18	18	1.00
304543	MLEC	malectin	5	5	1.00
24915	PDLIM4	PDZ and LIM domain 4	4	4	1.00
292139	SHTN1	shootin 1	3	3	1.00
	~	CAP, adenylate cyclase-associated			
Q08163	CAP1	protein 1 (yeast)	26.5	27	1.02
		chaperonin containing Tcp1, subunit			
060502	Cat2	3 (gamma); similar to chaperonin	10	40	1.02
D25465	Dol-1	p21 protoin (Cdo42/Doo) activated	40	49	0.79
r 5 5 4 0 5	r'ak i	p21 protein (Cuc42/Kac)-activated	4.3	3.3	U./ð

Table 2. (Continued)							
		limbic system-associated membrane					
Q62813	lsamp	protein	34	36.5	1.07		
Q2HWF0	fnbp11	formin binding protein 1-like	5	4	0.80		
P70587	lrrc7	leucine rich repeat containing 7	9.5	14	1.47		
O08719	EVL	Enah/Vasp-like	6.5	6.5	1.00		
Q05140	SNAP91	synaptosomal-associated protein 91	28.5	30.5	1.07		
100911769		erythrocyte membrane protein band					
59317	EPB41L1	4.1-like 1	33	33.5	1.02		
Q9Z2Q1	SEC31A	SEC31 homolog A (S. cerevisiae)	13	14	1.08		
Q62847	ADD3	adducin 3 (gamma)	12.5	14	1.12		
Q9WTP0	Epb4.111	erythrocyte protein band 4.1-like 1	33	33.5	1.02		
Q91ZN1	Corola	coronin, actin binding protein 1A	3.5	4.5	1.29		
		VAMP (vesicle-associated					
		membrane protein)-associated					
Q9Z269	vapB	protein B and C	17	19	1.12		
64159	SPTAN1	spectrin alpha, non-erythrocytic 1	319	341	1.07		
P16086	Spna2	alpha-spectrin 2	319	341	1.07		
P61265	STX1B	syntaxin 1B	24.5	22	0.90		
		bassoon presynaptic cytomatrix					
29138	BSN	protein	34	25.5	0.75		
308869 100	LAMTOR	late endosomal/lysosomal adaptor,					
361543	1	MAPK and MTOR activator 1	2.5	3	1.20		
207600	стр а р	serine/threonine kinase receptor	o	0	1 1 2		
297099	GTYDD5	associated protein	0	9	1.13		
Q9WU70	STABPS	syntaxin binding protein 5 (tomosyn)	3	3.5	1.17		
P48679	Imna	lamin A	14	20	1.43		
09WV48	SHANK 1	domains 1	41	17	1 1 5		
Q9 W V 40	SHANKI	FERM ARH/RhoGEF and	41	+/	1.15		
306183	FARP1	pleckstrin domain protein 1	9.5	10	1.05		
O9JK11	rtn4	reticulon 4	27	28	1 04		
092000	nalm	paralemmin	25	31	1 24		
<u>Q920Q0</u>	arhgan17	Rho GTPase activating protein 17		5	1.21		
066480	A ron 1	arabain 1	- 	2	0.80		
Q001180	Altin	microtubule-associated protein	2.3	2	0.80		
		RP/EB family member 1 similar to					
		Microtubule-associated protein					
		RP/EB family member 1 (APC-					
		binding protein EB1) (End-binding					
Q66HR2	MAPRE1	protein 1) (EB1)	35	44	1.26		
0001111	SYNGAP	synaptic Ras GTPase activating	20	20 5	1.22		
Q9QUH6	1	protein 1 nomolog (rat)	30	59.5	1.32		
035880	mllt/	leukemia	13	17.5	1 35		
055009	1111114	ivukullila	13	17.5	1.35		

Table 2. (Continued)							
		similar to hypothetical protein;					
		hypothetical gene supported by					
		X51706; similar to ribosomal protein					
		L9; similar to 60S ribosomal protein					
D17077	10	L9; ribosomal protein L9; EH-	C	2	0.50		
P1/0//	rp19	domain containing 2	6	3	0.50		
*Q63028	Add1	adducin 1 (alpha)	39.5	40.5	1.03		
P31000	VIM	vimentin	60.5	64.5	1.07		
2 (1022		ankyrin 3, node of Ranvier (ankyrin	<u> </u>	25.5	1.45		
361833	ANK3	G)	24.5	35.5	1.45		
DOCKS7	ANIZCID	ankyrin repeat and sterile alpha motif	05	11.5	1 25		
P0C057	ANKSID		8.3	11.5	1.55		
P08082	Cltb	clathrin, light chain (Lcb)	20	27	1.35		
O6XVN8	man11c3a	light chain 3 alpha	6	7	1 17		
070441	SVN3	synansin III	12	15	1.17		
D551(1	NCKADI	NCK approximately 1	12	17	1.25		
P33101	NCKAPI	discs large (Drosophila) homolog	12.5	1/	1.30		
286930	DLGAP4	associated protein 4	45	75	1.67		
200750	DEGINI	vesicle-associated membrane protein	1.5	7.0	1.07		
P63045	vamp2	2	14	20	1.43		
P15205	MAP1B	microtubule-associated protein 1B	86	122	1.42		
290823	ERLIN2	ER lipid raft associated 2	7	10	1.43		
**P19332	mapt	microtubule-associated protein tau	55.5	61.5	1.11		
Q9Z250	Lin7a	lin-7 homolog a (C. elegans)	10	15	1.50		
116493	GRIPAP1	GRIP1 associated protein 1	4	4	1.00		
362173	CAPRIN1	cell cycle associated protein 1	44	22	0.50		
502175		discs. large (Drosophila) homolog-			0.00		
**P97837	DLGAP2	associated protein 2	3.5	7	2.00		
		SH3 and multiple ankyrin repeat					
Q9QX74	SHANK2	domains 2	15.5	31	2.00		
P08592	APP	amyloid beta (A4) precursor protein	1	3	3.00		
Q91XU1	qk	quaking	-3	-5	1.67		
	ARFGAP	ADP-ribosylation factor GTPase					
Q3MID3	2	activating protein 2	3	5	1.67		
P24587	AKAP5	A kinase (PRKA) anchor protein 5	3	8	2.67		
Q9WVE9	ITSN1	intersectin 1 (SH3 domain protein)	14	28.5	2.04		
O35763	msn	moesin	6	9.5	1.58		
		integrin alpha FG-GAP repeat					
Q8R4E1	ITFG1	containing 1	4	7	1.75		
*007020	DICLES	discs, large (Drosophila) homolog-	2		1.22		
*P9/838	DLGAP3	associated protein 3	3	4	1.33		
D52401	CADO	CAP, adenyiate cyclase-associated	11	E	0.55		
r 32481	UAP2	protein, 2 (yeast)	11	0	0.33		

Table 2. (Co.	ntinued)				
		protein phosphatase 1, regulatory			
O35867	ppp1r9a	(inhibitor) subunit 9A	18	10	0.56
114028	CTNND2	catenin delta 2	8	5	0.63
P08081	CLTA	clathrin, light chain (Lca)	13	19	1.46
000000	1	G-protein signaling modulator 1	6.5	0.5	1.40
Q9R080		(AGS3-like, C. elegans)	0.5	9.5	1.40
65138	ADKMI	adnesion regulating molecule 1	17	3	3.00
114901	SORBS2	sorbin and SH3 domain containing 2	1/	33	1.94
117106	SCARB2	scavenger receptor class B member 2	2	4	2.00
Q5FVH4	AKTIP	AKT interacting protein	1.5	2.5	1.67
**Q9Z327	SYNPO	synaptopodin	19	39	2.05
338401	Crip2	cysteine rich protein 2	2.5	5.5	2.20
245709	EXOC8	exocyst complex component 8	10	9	0.90
Q9JIR4	RIMS1	regulating synaptic membrane exocytosis 1	16	11	0.69
		similar to Bcl2-like 1 isoform 3;			
P53563	BCL2L1	Bcl2-like 1	1	3	3.00
P0C219	SLMAP	sarcolemma associated protein	2	7	3.50
298024	AKAP2	A-kinase anchoring protein 2	3	1	0.33
		receptor type, f polypeptide (PTPRF), interacting protein (liprin),			
140592	Ppfia4	alpha 4	1	4	4.00
Q05764	add2	adducin 2 (beta)	24.5	19	0.78
Q9QZM5	Abi1	abl-interactor 1	6	7.5	1.25
		Peptidase			
		thyrotropin-releasing hormone			
366894	TRHDE	degrading enzyme	5	1	0.20
P55213	Casp3	caspase 3, apoptosis related cysteine protease	6	4	0.67
0.004		arginyl aminopeptidase			0.01
009175	Rnpep	(aminopeptidase B)	11.5	10.5	0.91
Q07009	CAPN2	calpain 2	4.5	4	0.89
Q64537	capnsl	calpain, small subunit l	2	3	1.50
P007/87	CTSB	cathepsin B	8	4	0.50
Q9JHW1	cpd	carboxypeptidase D	2	5	2.50
	ľ	Phosphatase			[
D20650		protein phosphatase 1A, magnesium	Λ	1	0.25
120030	TIMIA	pyridoxal (pyridoxine vitamin B6)	+	1	0.23
727679	PDXP	phosphatase	9	3	0.33
P08289	ALPL	alkaline phosphatase,	4	2	0.50

Table 2. (Co	ntinued)				
`		protein tyrosine phosphatase,			
Q64604	ptprf	receptor type, F	28	26	0.93
P97710	Sirpa	signal-regulatory protein alpha	23	14	0.61
		protein tyrosine phosphatase,			
25613	PTPRZ1	receptor type Z1	18.5	10	0.54
		protein phosphatase 2 regulatory		_	0.40
315648	PPP2R1B	subunit A, beta	10.5	5	0.48
25520	DTDDC	protein tyrosine phosphatase,	165	20	0.02
25529	PIPRS	receptor type S	46.5	38	0.82
Q/TMB/	LPPR4	plasticity related gene 1	17	17	1.00
20714	DTDDNO	protein tyrosine phosphatase,	15	4	0.00
29/14	PIPKN2	receptor type N2	4.5	4	0.89
24675	PPP3CB	subunit beta isozyme	15.5	46	1.01
24073	ПТЭСБ	protein phosphatase 2 (formerly 2A)	чЈ.Ј		1.01
P63331	PPP2CA	catalytic subunit, alpha isoform	7.5	8.5	1.13
		protein tyrosine phosphatase.	,		
		receptor type, f polypeptide			
		(PTPRF), interacting protein (liprin),			
140591	PPFIA3	alpha 3	40	27	0.68
Transcription regulator					
Q9QW30	Notch2	Notch homolog 2 (Drosophila)	3	1	0.33
		glutamate receptor interacting			
P97879	GRIP1	protein 1	2	1	0.50
Q9Z1W6	MTDH	metadherin	4	3	0.75
P97603	NEO1	neogenin homolog 1 (chicken)	110	84	0.76
P58405	STRN3	striatin, calmodulin binding protein 3	5	4	0.80
catenin (cadherin associated protein),					
Q9WU82	CTNNB1	beta 1	31	25.5	0.82
P67779	Phb	similar to prohibitin; prohibitin	22	22.5	1.02
**Q9Z1P2	actn1	actinin, alpha 1	30	32	1.07
P18418	CALR	calreticulin	8	9.5	1.19
		brain abundant, membrane attached			
*Q05175	Basp1	signal protein 1	30.5	31	1.02
Q6IRE4	Tsg101	tumor susceptibility gene 101	3	4	1.33
		eukaryotic translation initiation			
Q3T1J1	eif5a	factor 5A	6.5	3	0.46
		similar to 40S ribosomal protein SA			
DA 0 0 0 A		(p40) (34/67 kDa laminin receptor);		10.5	0.07
P38983	rpsA	ribosomal protein SA	14	13.5	0.96
		Transmembrane receptor			
P29534	Vcam1	vascular cell adhesion molecule 1	5	1	0.20
P97829	CD47	Cd47 molecule	4	1	0.25
O55005	ROBO1	roundabout homolog 1 (Drosophila);	6	1.5	0.25

Table 2. (Co	ntinued)				
Q08406	CNTFR	ciliary neurotrophic factor receptor	2.5	1	0.40
P35053	GPC1	glypican 1	6.5	4.5	0.69
81005	NPTXR	neuronal pentraxin receptor	12	10	0.83
246331	NRP1	neuropilin 1	4	3	0.75
25311	DCC	DCC netrin 1 receptor	55	43	0.78
		low density lipoprotein receptor-			
*Q99068	Lrpap1	related protein associated protein 1	15.5	16.5	1.06
0.000.000		coxsackie virus and adenovirus	10		0.00
Q9R066	cxadr	receptor	13	11.5	0.88
309280	PLXNA3	plexin A3	3	7	2.33
201049	DCDMC1	progesterone receptor membrane	5	11	2.20
291948	PGRMCI		5	11	2.20
	avpropri	Iransporter			
Q62876	SYNGR1	synaptogyrin 1	4	1	0.25
064.096	Vng26g	vacuolar protein sorting 26 homolog	2.5	1	0.20
QUATOO	v ps20a	A (S. politice)	5.5	1	0.29
		dependent inorganic phosphate			
O62634	slc17a7	cotransporter), member 7	6	2	0.33
		adaptor-related protein complex 2,			
P62744	AP2S1	sigma 1 subunit	5	2	0.40
		vesicle transport through interaction			
Q9JI51	vtila	with t-SNAREs homolog 1A (yeast)	5	2	0.40
		solute carrier family 6			
P31662	SLC6A17	(neurotransmitter transporter), member 17	7	3	0.43
131002	SLC0A1/	solute carrier family 39 (metal ion	/	5	0.45
*O4V887	SLC39A6	transporter), member 6	9	4	0.44
		solute carrier family 16, member 1			
P53987	SLC16A1	(monocarboxylic acid transporter 1)	4	2	0.50
Q63564	SV2B	synaptic vesicle glycoprotein 2b	6	3	0.50
		solute carrier family 2 (facilitated			
Q07647	SLC2A3	glucose transporter), member 3	6.5	3.5	0.54
60391	NRXN1	neurexin 1	47	26.5	0.56
	a	solute carrier family 4, sodium	_		o
Q9R1N3	Slc4a7	bicarbonate cotransporter, member 7	1	4	0.57
P07825	Syp	synaptophysin	4	2.5	0.63
64832	CPLX1	complexin 1	11	7	0.64
*001000	DOL O	piccolo (presynaptic cytomatrix	165	0	0.55
* <u>Q</u> 9JKS6	FULO	protein)	16.5	9	0.55
054922	EXOC/	exocyst complex component /	3	2	0.67
Q99376	TFRC	transferrin receptor	7	4.5	0.64
P35952	Ldlr	low density lipoprotein receptor	13	9	0.69
**P21707	Syt1	synaptotagmin I	41	32	0.78

Table 2. (Co	ntinued)				
		ATPase, Na+/K+ transporting, beta 1			
P07340	Atp1b1	polypeptide	20	14.5	0.73
		amyloid beta (A4) precursor protein-			
O35430	apbA1	binding, family A, member 1	11.5	8	0.70
		solute carrier family 1 (glial high			
		affinity glutamate transporter),			
P24942	SLC1A3	member 3	24	15.5	0.65
		apolipoprotein B (including Ag(x)			
Q7TMA5	Apob	antigen)	4	3	0.75
		solute carrier family 3 (activators of			
		dibasic and neutral amino acid			
Q794F9	SLC3A2	transport), member 2	30.5	22	0.72
25696	VLDLR	very low density lipoprotein receptor	4	3	0.75
		solute carrier family 2 (facilitated			
171147	SLC2A13	glucose transporter), member 13	4	3	0.75
		solute carrier family 1 (glial high			
		affinity glutamate transporter),			
P31596	Slc1a2	member 2	36	28.5	0.79
		solute carrier family 12 (potassium-			
**Q63633	SLC12A5	chloride transporter), member 5	22	17.5	0.80
Q5U211	SNX3	similar to sorting nexin 3	5	4	0.80
		solute carrier family 30 (zinc			
Q6QIX3	SLC30A3	transporter), member 3	5	4	0.80
		ATPase, Ca++ transporting, plasma			
Q64542	atp2b4	membrane 4	49	42	0.86
	1	adaptor-related protein complex 2,			
		beta 1 subunit; similar to adaptor-			
		related protein complex 2, beta 1			
P62944	AP2B1	subunit	89	71	0.80
	ATP6V1E	ATPase, H+ transporting, lysosomal			
Q6PCU2	1	V1 subunit E1	17	14	0.82
		solute carrier family 12			
		(potassium/chloride transporters),			
Q66HR0	SLC12A9	member 9	6	5	0.83
**P32851	STX1A	syntaxin 1A (brain)	36	30	0.83
		ATP synthase, H+ transporting,			
		mitochondrial F1 complex, alpha			
P15999	Atp5a1	subunit 1, cardiac muscle	79	67	0.85
	ATP6V0A	ATPase, H+ transporting, lysosomal			
P25286	1	V0 subunit A1	45.5	38.5	0.85
		solute carrier family 27 (fatty acid			
P97849	SLC27A1	transporter), member 1	3	2.5	0.83
		N-ethylmaleimide-sensitive factor			
P85969	napB	attachment protein, beta	13	11.5	0.88
		adaptor-related protein complex 2,			
P18484	Ap2a2	alpha 2 subunit	83.5	75	0.90

Table 2. (Co	ntinued)				
		adaptor-related protein complex 1,			
P52303	AP1B1	beta 1 subunit	50	42	0.84
		solute carrier family 6			
		(neurotransmitter transporter,			
P23978	SLC6A1	GABA), member 1	4.5	4	0.89
116595	NRXN2	neurexin 2	46.5	29	0.62
		ATG2 autophagy related 2 homolog			
0.64476		A (S. cerevisiae); EH-domain			0.04
Q641Z6	Atg2a	containing l	16	15	0.94
025142	a amh 2	coatomer protein complex, subunit	15	25	2.22
035142		beta 2 (beta prime)	1.5	3.5	2.33
287721	VATI	vesicle amine transport 1	14.5	14	0.97
D11505		A I Pase, Ca++ transporting, plasma	60 5	67	0.00
P11303	AIP2DI	ATPasa Ca±± transporting plasma	08.3	0/	0.98
P11506	ATP2B2	membrane 2	52	51.5	0.99
P61765	STYPD1	suntavin hinding protoin 1	55.5	52.5	0.95
P01703	STADE1	syntaxin binding protein 1	33.3	32.3	1.00
Q62991	SCFDI	sec1 family domain containing 1	4	4	1.00
QSQD51	AKAP12	A kinase (PRKA) anchor protein 12	2	2	1.00
0(2(1(Vera 22D	vacuolar protein sorting 33 homolog	2	2	1.00
Q03010	vps35B	B (yeast)	3	3	1.00
063344	slc16a7	(monocarboxylic acid transporter 2)	3	3	1.00
Q03344	5101007	ATPase Na+/K+ transporting beta 2	5	5	1.00
P13638	Atp1b2	polypeptide	3.5	3.5	1.00
Q99N27	SNX1	sorting nexin 1	4	4	1.00
25673	ANXA5	annexin A5	4	4	1.00
252881	EXOC3	exocyst complex component 3	4	4	1.00
O02563	SV2A	synaptic vesicle glycoprotein 2a	10.5	11	1.05
		ATPase, Na+/K+ transporting, alpha			
P06686	Atp1a2	2 polypeptide	57.5	58.5	1.02
O70257	STX7	syntaxin 7	7	7	1.00
		ATPase, Na+/K+ transporting, alpha			
P06685	ATP1A1	1 polypeptide	83	87.5	1.05
		ATPase, Na+/K+ transporting, alpha			
**P06687	atp1a3	3 polypeptide	136	142	1.04
Q99MZ8	LASP1	LIM and SH3 protein 1	25	27.5	1.10
		ATPase, Ca++ transporting, plasma			
Q64568	Atp2b3	membrane 3	32	35.5	1.11
		solute carrier family 7 (cationic			
062016	SI CZAS	amino acid transporter, y+ system),	0	0.5	1.00
Q03010	SLC/A3	adaptor related protein complex 2	У	9.3	1.00
P84092	AP2M1	mu 1 subunit	39.5	44 5	1 1 3
007217	SVOD	SV2 related protein	6	7	1 17
Q7641/	SVUE	5×2 related protein	U	/	1.1/

Table 2. (Co	ntinued)				
P02650	APOE	apolipoprotein E	40	38	0.95
		ATP synthase, H+ transporting,			
		mitochondrial F1 complex, beta			
		polypeptide; similar to ATP synthase			
P10719	ATP5B	beta chain, mitochondrial precursor	175.5	176.5	1.01
P26453	bsg	basigin	5	6	1.20
		ATPase, H+ transporting, lysosomal			
Q6AXS4	ATP6AP2	accessory protein 2	20	24	1.20
		solute carrier family 6			
D21(17		(neurotransmitter transporter,			1.00
P31647	SLC6A11	GABA), member 11	7.5	7.5	1.00
032006	on 1 m 1	adaptor-related protein complex 1,	75	7	0.02
Q32Q00	aprilli		7.5	7	0.95
Q08851	STX5	syntaxin 5	4	5	1.25
100250512		vesicle transport through interaction	4	5	1.25
100359512	VIIIB	with t-SNARES IB	4	5	1.25
044 559	ConG	coatomer protein complex, subunit	7	0	1 20
Q4AEF8	Сорб	ATPase H transporting lysosomal	/	9	1.29
P62815	atn6v1h2	V1 subunit B2	16.5	56.5	1 22
102015	atp0v102	solute carrier family 32 (GABA	40.5	50.5	1.22
83612	SLC32A1	vesicular transporter) member 1	6	8	1 33
**P60881	SNAP25	synantosomal-associated protein 25	15.5	21.5	1 30
100001	ATP6V1C	ATPase H+ transporting lysosomal	15.5	21.3	1.57
O5FVI6	1	V1 subunit C1	15.5	21.5	1 39
201 +10	-	N-ethylmaleimide-sensitive factor	10.0		1.07
P54921	napA	attachment protein, alpha	4	5.5	1.38
	•	solute carrier family 4, sodium			
		bicarbonate transporter-like, member			
Q80ZA5	SLC4A10	10	2.5	3	1.20
P09951	syn1	synapsin I	28	40.5	1.45
		ATP synthase, H+ transporting,			
		mitochondrial F1 complex, O			
Q06647	atp5o	subunit	4	13	3.25
		solute carrier family 4 (anion			
Q6RVG2	SLC4A8	exchanger), member 8	1	2	2.00
Q7TNK0	SERINC1	serine incorporator 1	1	2	2.00
		solute carrier family 8			
	ar	(sodium/calcium exchanger),	_		
Q01728	SLC8A1	member 1	5	10	2.00
D41542	LICOL	USOI homolog, vesicle docking	4.5	2	0.77
P41542	USOI	protein (yeast)	4.5	3	0.67
P47709	RPH3A	rabphilin 3A	7	11	1.57
		solute carrier family 12			
20701	GL C124.4	(potassium/chloride transporter),	1	2	2.00
29501	SLC12A4	member 4	1	3	3.00

Table 2. (Continued)						
		coatomer protein complex, subunit				
P23514	COPB1	beta 1	8	3	0.38	
		adaptor-related protein complex 3,				
P53678	AP3M2	mu 2 subunit	2.5	7.5	3.00	
		solute carrier family 4 (anion				
Q9JI66	SLC4A4	exchanger), member 4	1	4	4.00	

Note:

*: Proteins that are identified as synaptic candidate ubiquitinated proteins (Keil and Patrick 2010). **: Proteins that are identified as synaptic candidate ubiquitinated proteins and contain identified

ubiquitination sites (Na and J.Peng 2012).

Table 3: Synaptic candidate ubiquitinated membrane proteins						
Uniprot			GG			
ID	Gene Name	GG Peptides	sites			
P07632	superoxide dismutase 1, soluble	#N/A	#N/A			
	calcium/calmodulin-dependent protein					
P11275	kinase II alpha	K.DLINK#MLTINPSK.R	K250			
P62024	phosphatase and actin regulator 1	#N/A	#N/A			
	discs, large (Drosophila) homolog-					
P97838	associated protein 3		#N/A			
0(2015	calcium/calmodulin-dependent serine	R.EIGQQFAVK#IVDVA	V 41			
Q62915	protein kinase (MAGUK family)		K 41			
P15701	kinase II delta	K.IPTOQETAAK#IINTK.	K13			
115771	guanine nucleotide hinding protein (G	K	IX7J			
	protein), alpha activating activity	R.AM%DTLGVEYGDK#				
P59215	polypeptide O	ER.K	K98			
		K.NVNAGGHK#LGLGLE				
Q9Z2L0	voltage-dependent anion channel 1	FQA	K274			
Q63028	adducin 1 (alpha)	#N/A	#N/A			
		K.LTAALLESTANVK#Q				
Q9Z214	homer homolog 1 (Drosophila)	WK.Q	K221			
Q9JKS6	piccolo (presynaptic cytomatrix protein)	#N/A	#N/A			
Q9Z1P2	actinin, alpha 1	R.QK#ASIHEAWTDGK.E	K402			
		K.LK#SIEQSIEQEEGLNR				
P32851	syntaxin 1A (brain)	.S	K94			
	low density lipoprotein receptor-related					
Q99068	protein associated protein 1	#N/A	#N/A			
D54000	calcium channel, voltage-dependent,					
P54290	alpha2/delta subunit 1	#N/A	#N/A			
Q8K3M	ELKS/RAB6-interacting/CAS1 family	#N1/A	#NI/A			
D1250(#1N/A			
P13596	neural cell adhesion molecule 1		K/85			
P10332	microtubule-associated protein tau	R.LQTAPVPNIPDLK#NV	K 565			
11/552	solute carrier family 12 (notassium-	K.5	K303			
063633	chloride transporter) member 5	K K#DLTTFLYHLR I	K896			
200000	myozenin 3: similar to myozenin 3:	K.GOVVPANK#TGILEES	11070			
Q9Z327	synaptopodin	MAR.R	K596			
	brain abundant, membrane attached signal					
Q05175	protein 1	#N/A	#N/A			
P21707	synaptotagmin I	K.LTVVILEAK#NLK.K	K297			
	ž , ž	R.M%LQLVEESK#DAGI				
P60881	synaptosomal-associated protein 25	R.T	K40			
		K.EK#DDAPVADGVEK.				
P07936	growth associated protein 43	K	K69			
Q63198	contactin 1	#N/A	#N/A			

Table 3.	(Continued)		
	discs, large (Drosophila) homolog-		
P97837	associated protein 2	K.AVLVSK#AEELLK.S	K709
	solute carrier family 39 (metal ion		
Q4V887	transporter), member 6	#N/A	#N/A
	discs, large (Drosophila) homolog-	R.EVYQK#ASVNMDQA	
P97836	associated protein 1	VVK.S	K300
	ATPase, Na+/K+ transporting, alpha 3	R.AVFK#GGQDNIPVLK.	
P06687	polypeptide	R	K424

Accumulation of ubiquitin-conjugates at the synaptic membrane

Because the turnover of many membrane proteins occurs through covalent attachment of a single or short-chain ubiquitin at K63 and subsequent degradation by the lysosome, we examined whether lysosomal activity regulates ubiquitin conjugation of membrane proteins (Clague and Urbe 2010, Schwarz and Patrick 2012). We first observed the effect of lysosomal activity on the overall protein landscape by using Sypro Ruby staining. The synaptic fraction from cultured cortical neurons was isolated after 12 hours treatment with a lysosomal protease inhibitor, leupeptin (200uM), and a compartment acidification inhibitor, chloroquine (200uM); total protein visualization showed a small increase from control after 12 hours of lysosomal perturbation (Fig.1). Although this is not a dramatic increase in intensity, this increase can be observed with higher resolution imaging (Not shown). Next, to specifically look at the difference in ubiquitin-conjugates after treatment, eluted proteins were assayed for ubiquitinconjugates by anti-ubiquitin immunoblot. Remarkably, ubiquitin conjugates in the synaptic membrane fraction were abundant under lysosomal inhibition (Fig. 2). No detectable ubiquitinated proteins were bound by avidin beads alone, indicating the specificity of the biotin-avidin affinity isolation. This finding supports ubiquitindependent lysosomal targeting of synaptic membrane proteins and a significant portion of membrane protein turnover is due to the targeting of membrane proteins for degradation by the lysosome. To further prove that the accumulation of ubiquitin-conjugates on the cell membrane is selective for lysosome-mediated degradation, a similar experiment was done but with inhibition of the proteasome, MG132. In contrast to the effect of lysosomal inhibition, inhibition of proteasome had no significant effect on membrane ubiquitinconjugates (Fig.3). This indicates that the degradation of many membrane proteins occurs via lysosomal and not proteasomal mechanisms.

These initial experiments provide strong evidence that a significant portion of membrane protein turnover is due to the ubiquitination and subsequent lysosomal degradation. This leads to my thesis project, which is to identify ubiquitinated membrane proteins by using mass spectrometry, and to assess the role of lysosome-mediated degradation of membrane proteins by looking at abundance after lysosomal perturbation. This proteomic study can provide a basic understanding of the molecular composition of membrane protein population under normal condition and lysosomal dysfunction condition with molecular abundance, and build a foundation for further studies on synaptic function and plasticity.

Lysosomal inhibition by leupeptin, bafilomycin A1, and chloroquine

Three lysosomal inhibitors are used: leupeptin, bafilomycin A1, and chloroquine. Leupeptin is a lysosomal protease inhibitor that can inhibit cysteine, serine, and threonine peptidases (Maeda, Kawamura et al. 1971). Bafilomycin A1 is a potent specific V-ATPase inhibitor and is thus able to abolish lysosomal acidification. It prevents maturation of autophagosomes into autolysosomes by inhibiting fusion between autophagosomes and lysosomes (Yamamoto, Tagawa et al. 1998). Chloroquine is a lysosomotropic agent widely used to neutralize lysosomal pH and block lysosomal degradation (Solomon and Lee 2009). Although leupeptin, bafilomycin A1, and chloroquine are three widely used drugs for lysosomal inhibition, little is known about the effect of each on the cell health, lysosomal activity, the ability to disrupt the autophagy pathway, and the ability to de-acidify cell compartments. To investigating the effect of each inhibitor has on the cortical neurons, we performed a series of control experiments, so that we can ensure our observed effects on membrane proteins were attributable to a specific blockade of lysosomal enzymatic activity and de-acidification of cellular compartment, and not neurotoxicity.

Cell integrity after drug treatments

Before we further precede our experiments, we want to obtain an optimal treatment time point where the accumulation of membrane ubiquitin-conjugates reaches maximum while cell integrity is preserved. We treated cortical neurons with 200uM leupeptin and chloroquine for 12 hours and 24 hours, and predicted that ubiquitin conjugations accumulation should increase with inhibition time. We noticed after 12 hours, robust ubiquitin-conjugates were observed at the synaptic membrane. However, this effect was not seen after 24 hours (Fig 1). One possible explanation is that the neuronal cell health was compromised at 24 hours drug treatment. To monitor the neurotoxicity in response to drug treatments, immunocytochemistry for neuronal marker, microtubule-associated protein 2 (MAP2), was used followed by microscopic visualization to obtain representative cell images after treatment. After 12 hours treatment with 200uM leupeptin by itself, 200uM chloroquine by itself, and the combination of both, neurons appear healthy with widespread dendritic branches (Fig 4). On the contrary, same treatments but with 24 hours showed loss of dendrites, and cells were dying. This suggests that 12-hour treatment with both leupeptin and chloroquine at 200 uM was able to perturb the lysosome and preserve cell integrity at the same time,

while inhibition after 12 hours accelerates decline and dysfunction, which increases a cell's vulnerability and triggers apoptosis.

Disruption of autophagy by lysosomal inhibitors

Many studies focus on the ubiquitin proteasome system and the endosomelysosome system, as these are the two major degradation pathways in the cell; the autophagy pathway, on the other hand, is less mainstream. Autophagy is responsible for cytoplasmic molecules degradation similar to the ubiquitin proteasome system, but targets for long-lived or aggregated proteins and damaged organelles, and it fuses with lysosomes for final degradation (Mizushima 2007). Since lysosome is required for the autophagy pathway, we then examine the effect of lysosomal dysfunction on the autophagy pathway. To determine whether the autophagy pathway is disrupted, LC3-II, a protein that binds to the autophagosomal membrane that it is commonly used as a marker of autophagy, was examined in treated samples (Mizushima 2007). In total lysates of control and treated samples, bafilomycin and chloroquine treatments, even at a low dose (50nM and 25uM relatively), significantly increased LC3-II levels (Fig 5). Leupeptin, on the other hand, does not disrupt the autophagy pathway with high dose treatment (2000uM) and long hour inhibition (24h). These data indicate that chloroquine and bafilomycin are capable of affecting autophagosome content, but not leupeptin.

Inhibition of lysosomal function by lysosomal inhibitors

To further test out the effects of lysosomal inhibitors, we used LysoTracker and a cell lysate-based cathepsin enzyme activity assay to look at the acidity of lysosomes and the lysosomal enzymatic activity after treatments. As expected, both bafilomycin and

chloroquine are able to abolish lysosomal acidification at low concentration; treatment at various concentrations with either bafilomycin or chloroquine abolishes LysoTracker staining (Fig 6). Treatment with leupeptin at 400uM did not affect the acidity of the lysosome, as its LysoTracker staining was similar to control. Next, cathepsin B activity was accessed through cell lysate-based activity assay. As expected, leupeptin, which targets at the proteases in the lysosome, effectively inactivated cathepsin B activity at the concentration 200uM while chloroquine was ineffective to inhibit cathepsin B (Fig 2d). These results indicate that 12 hours treatment with 200uM leupeptin inhibited a significant amount of lysosomal enzymatic activity in cortical neurons.

In summary, the optimal concentration we decided to use for mass spectrometry experiment is 200uM leupeptin and 200uM chloroquine for 12 hours. Under this condition, lysosome protease activity is inhibited, the autophagic activity is disrupted, and lysosomal acidification is abolished while cell health is preserved.

Identifying cell membrane proteins by mass spectrometry

Many well-known cell surface receptors such as EGFRs, GABARs, AMPARs, depend on lysosomal degradation as their final terminal, we thus asked whether there are other membrane proteins directly modified by ubiquitin and sent to lysosomal degradation pathway (Goh and Sorkin 2013, Schwarz, Hall et al. 2010, Arancibia-Carcamo, Yuen et al. 2009). To answer this question, we used live-labeling biotinylation followed by synaptic fractionation to purify synaptic membrane protein population in cortical neurons (DIV 21). Eluted proteins were then precipitated, solubilized, digested

and then subjected to liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Data analysis is done to MS dataset.

We detected about 1600 unique proteins with tandem mass spectrometry, including about 539 plasma membrane proteins, and 149 of them contain transmembrane region. Receptors and channels, most of the major PSD glutamate receptors such as NMDA receptors (NR1, NR2B), AMPA receptors (GluR1, GluR2, GluR3, GluR4), and metabotropic glutamate receptors (mGluR5, mGluR7) were identified by mass spectrometry. Although many proteins were found localized at the plasma membrane, the majority was localized at the intracellular organelles including ER, mitochondria, nucleus, Golgi and so on. This is not surprising since our preparation of crude membrane fractions were included a significant proportion of intracellular transmembrane proteins. Using the spectral abundance of each identified protein from control and treated samples, we calculated the normalized Leu/Ctrl spectral ratio for each identified protein. We considered identified membrane proteins with a Leu/Ctrl ratio greater than 2 to be upregulated and less than 0.5 to be downregulated. Out of these plasma membrane proteins, we found that 105 of them were upregulated, and 207 were downregulated, while 226 did not significantly change in protein level.

Gene ontology (GO) analysis performed using two bioinformatics programs: Database for Annotation, Visualization and Integrated Discovery (DAVID), and Ingenuity Pathway Analysis (IPA), on the biological functions executed by plasma membrane proteins only. The functions of plasma membrane proteins were of interest because receptors and antigens involved in cellular signaling are often located on the cell surface. In our data, the majority of plasma membrane proteins were identified as ion channels and transporters, implicating the important role of these molecules in the cellular homeostasis.

Based on a mass spectrometry data analysis done previously by a former lab member, Jeff Keil, 29 plasma membrane proteins were identified as synaptic candidate ubiquitinated proteins. In his experiment, he isolated and identified novel synaptic ubiquitinated proteins using mutant mice expressing 6-histidine-tagged ubiquitin and wild-type mice. He extracted synaptosomal membrane fractions from both samples and performed nickel affinity chromatography. And the eluted proteins were sent to tandem mass spectrometry. These 29 proteins were synaptic candidate ubiquitinated membrane proteins. To further investigate these proteins, we used another data analysis produced by Junming Peng and his colleages. We were able to find ubiquitination sites for 18 of these synaptic ubiquitinated membrane proteins with diglycine peptides sequence.

Additional function analysis done on these plasma membrane proteins indicates that there were 60 cell adhesion molecules, 40 cellular homeostasis regulators, 90 cellular localization regulators, and 14 calcium ion transport regulators in the mass spectrometry data set and some were altered in protein level. This suggests that the ubiquitin-dependent lysosomal degradation pathway is important in maintaining synaptic functions. We also looked at genes that involve in synaptic transmission and plasticity. In fact, there were a number of molecules involving inhibitory synaptic transmission. Ubiquitin-dependent regulation of receptor trafficking and turnover has been shown to be important for inhibitory synaptic transmissions, such as GABAR, are directly ubiquitinated to regulate their trafficking and turnover at synapse. Using the pathway analysis generated by Ingenuity pathway analysis on GABA receptor signaling pathway, we found that many regulators that involve in GABAR signaling pathway such as AP2S1, GABRA3, ADCY2, ADCY5, GABRA1, GABBR2, AP2B1, AP1B1, AP2A2, SLC6A1, GAD2, GABBR1, SLC6A11, GNAS, AP2M1, GABRB3, GPHN, MRAS, and some of them downregulated under lysosomal inhibited conditions. Further experiments are needed to search for an answer. This however provides some information shows the crucial role on both excitatory and inhibitory synaptic transmission by controlling postsynaptic receptors numbers.

III. Discussion

Ubiquitin-dependent endocytosis of neuronal membrane proteins is a key biological mechanism to control synaptic plasticity by altering the number of membrane proteins (Schwarz and Patrick 2012). After internalization, these short-chain or monoubiquitinated proteins are either being recycled or targeted for lysosomal degradation (Clague and Urbe 2010). Here, we investigated the role of this regulated endocyticsorting pathway on the internalization of membrane proteins by looking at the change of overall membrane protein levels under lysosomal inhibition.

We tested many different combinations of lysosome inhibitors and examined their effects on the lysosomal protease activity, autophagy pathway, acidification, and cell integrity. Treatment with lysosome inhibitors 200uM leupeptin + 200uM chloroquine for 12 hours was the most effective in blocking the internalization of membrane proteins, and causing the accumulation of membrane proteins without affecting cell viability. Treating neurons with leupeptin along with chloroquine, which inhibits acidification of intracellular compartments, shows more robust ubiquitin-conjugates accumulation compared to treating with leupeptin by itself. This could mean two things: chloroquine is able to completely abolish the endosome-lysosome pathway by deterring acidification, and thus, generate a bigger effect. It is also possible that the internalization of membrane proteins relates not only on the endosome-lysosome pathway, but also the autophagy pathway. Chloroquine is shown to have a strong effect on inhibiting the autophagy pathway; the autophagy pathway targets cytoplasmic molecules, such as damaged organelles and protein aggregates. It is possible that proteins that mediate membrane protein ubiquitination and internalization are degraded or regulated by the autophagy

pathway in the cytosol, and thus, the autophagy pathway could play a role in the internalization of membrane proteins indirectly.

In our initial data, an increased of ubiquitinated proteins was observed after inhibition of lysosomal activity. Was it caused by the accumulation of ubiquitinated proteins on the cell membrane or was it caused by an increased of ubiquitination of membrane proteins after inhibiting lysosomes? Could they become highly ubiquitinated after blocking lysosomal activity? If the proteasome is upregulated to compensate lysosomal dysfunction, it is possible that membrane proteins are being poly-ubiquitinated under lysosomal inhibition, and thus more likely to be sent for proteasomal degradation. This could be a compensatory mechanism in order to control the turnover of the membrane proteins under lysosomal dysfunction. Moreover, it has been thought that the ubiquitin proteasome system and the autophagy pathway are two independent pathways with no intersection. However, recent studies show that they can act as compensatory degradation system to each other (Pandey, Nie et al. 2007, Korolchuk, Mansilla et al. 2009, Kraft, Peter et al. 2010, Lamark and Johansen 2010). If the autophagic machinery and the proteasome were interconnected, the autophagy was inhibited by chloroquine, and proteasomal activity could be upregulated and caused membrane proteins polyubiquitinated. What is the proteasome activity under inhibition of lysosome and autophagy? Could lysosomal inhibition cause an increase in proteasomal activity?

Despite our mass spectrometry results did not show a robust increase in extracted membrane proteins after inhibition of lysosomal activity, we were able to identify molecular composition of overall extracted membrane proteins in the cortical neurons. Most of the detected membrane proteins show a downregulation after lysosomal inhibition. Even though these results do not match with our expectation, it does not necessary mean there are not accumulation of membrane protein. In fact, there are more thorough ways to analyze the MS data, such as the topological network approach. This approach focuses on identifying the common regulators of a set of proteins based on their expression level. It locates upstream regulators of these proteins individually and elucidates the common regulators for a combined signaling pathway. Network topology of protein co-abundance networks identifies proteins that have been dismissed during measurement techniques or may not be highly regulated, and it allows for better predication of biologically important targets (McDermott, Diamond et al. 2012, Haider and Pal 2013).

There are many factors to consider for data improvement, such as the stability of ubiquitinated proteins in our prep condition, the effectiveness of our pulldown assay, and the data analyzing method. A major concern for biochemically purified synaptic membrane population is the contamination created by the subcellular structures, and it usually gives out low amount of total proteins. Such impurities would contribute artifactually to the observed multiplicity of proteins in the membrane population. The mass spectrometer is a concentration sensitive detector and yet, we failed to obtain a number of known, short-lived UPS regulators, and ubiquitin-related proteins. Many of these proteins are so quickly degraded after ubiquitination that they can be measured only after stabilization techniques. We used DUBs inhibitor 25mM N-Ethylmaleimide (NEM) to obtain ubiquitinated proteins. Is this sufficient to maintain ubiquitinated proteins?

Could it be possible that the number of purified ubiquitin-related proteins is small compared to the overall pulldown and make it insignificant in MS screening?

The ultimate goal of this project was to identify membrane substrates for ubiquitin conjugation and potential ligases of specific ubiquitinated proteins, I have tried to immunoprecipitate ubiquitin-conjugates using ubiquitin antibody in the membrane population by incorporating biotinylation in the experiment; however, I was not able to get it to work despite countless of attempts. Another alternative approach was to purify membrane proteins and compare the changes under lysosomal inhibition. However, the sensitivity of this mass spectrometry is not high and the detected membrane proteins are not all ubiquitin conjugates. The same experiment is worth repeating with the use of diglycine antibody to enrich ubiquitinated proteins from the pull down population, with the goal of characterizing both ubiquitin conjugates and precise sites of ubiquitination. IV. Materials and Methods

Antibodies and reagents.

Antibodies were as follows: mAb ubiquitin (P4D1; Santa Cruz Biotechnology); pAb LC3/MAP1LC3B (Novus); mAb Tubulin (Sigma); pAb MAP2 Chicken (Abcam). Reagents were as follows: Chloroquine diphosphate (CQ, MP Biomedicals); bafilomycin A1 (Baf A1, Fisher Scientific); leupeptin (Leup, Millipore); N-ethylmaleimide (NEM, Fisher Scientific); LysoTracker Red DND-99(Life Technologies); Cathepsin substrate Z-RR-AMC for cathepsin B (VWR International).

Neuronal cultures.

Rat dissociated hippocampal or cortical neurons from postnatal day 1 were plated at a density of 45,000 cells/cm2 onto poly-D-lysine-coated coverslips, 25 mm dishes (hippocampal cultures) (Mattek) or poly-D-lysine-coated 6-well plastic dishes, 10cm dishes (cortical cultures) and were maintained in B27 supplemented Neurobasal media (Invitrogen) until in vitro (DIV) 14-21, as described previously (Djakovic et al., 2009; Schwarz et al., 2010; Djakovic et al., 2012).

Biotinylation of surface proteins.

Dissociated cortical neurons (DIV 21) were treated with leupeptin (200uM) and chloroquine (200uM) for 12 hours prior to biotinylation. To purify surface membrane proteins, cultured cortical neurons were rinsed with PBS-MC (10 mM phosphate buffer, 2.7 mM KCl, 137 mM, NaCl, 1 mM CaCl2, 0.5 mM MgCl2, 25mM NEM, pH 7.4), placed on ice, rinsed with cold PBS-MC, incubated with 0.5mg/ml Sulfo-NHS-SS-Biotin (Pierce) for 30 min at 4°C, and then rinsed again with 0.1% BSA in PBS-MC. Cells were

scraped into HEPES-buffered sucrose (0.32 M sucrose, 4 mM HEPES, 25mM NEM, pH 7.4, supplemented with protease inhibitors) and performed synaptic membrane enrichment. Protein concentration of synaptic membrane fraction was then measured by BCA protein assay (Pierce), and an equal amount of protein per sample was incubated with monomeric avidin agarose (Pierce) overnight at 4°C. Agarose was then rinsed 3 times, and bound proteins were stored in HEPES-buffered sucrose and were used for LC-MS/MS analysis.

Synaptosome isolation.

Rat cortical neurons were homogenized in HEPES-buffered sucrose (0.32 M sucrose, 4 mM HEPES, pH 7.4, 25mM NEM, and protease inhibitors) with 15 strokes in a glass Teflon homogenizer. The homogenate was centrifuged at 1,000 X g for 10 min at 4 °C to remove nuclei and cellular debris (P1). The supernatant (S1) was centrifuged at 15,000 X g for 15 min at 4°C to yield a synaptosomal pellet (P2). The resulting pellet was suspended with 1 ml HEPES-buffered sucrose solution and was used for subsequent pull-down experiment.

Mass spectrometry and identification of peptides and proteins.

Purified synaptic membrane samples were digested sequentially with trypsin. Eluted peptides were analyzed by LC-MS/MS on an LTQ Orbitrap Velos. MS/MS spectra searches (Sequest), target-decoy peptide filtering, and linear discriminant analysis were performed as described (Huttlin et al., 2010) with an initial 1% peptide level false discovery rate and final protein level false discovery rate of 1%.
Statistical analysis

The fold change was transformed using the log2 function, so that the data is centered around zero.

Total protein visualization

Cell membrane proteins of Synaptic fraction were separated by SDS-PAGE and visualized by staining fixed gels with Sypro Ruby.

SDS-PAGE and western blot.

Total protein lysates were generated by scraping cells into RIPA buffer with protease inhibitors, incubating for 20 min at 4°C, and centrifuging at 14,000 rpm at 4°C. Protein concentration was determined by BCA protein assay (Pierce), and equal protein amounts were loaded. Samples were boiled with sample buffer, resolved on 12% SDS-PAGE, and probed with primary and then secondary HRP-conjugated antibodies. Blots were digitized by scanning films.

Estimation of intralysosomal pH using LysoTracker.

The intralysosomal pH was estimated using LysoTracker, following manufacturer's instructions. The fluorescence intensity was observed under a confocal microscope (Leica DMI6000 inverted microscope).

Cathepsin B activity assay.

The cathepsin B enzymatic activity was measured using a cell lysate-based assay that has already been established (Zhou J et al. 2012). Briefly, cells were lysed in M2 buffer, and different concentration of drugs were added to the lysate and then incubated with 50uM of the fluorogenic cathepsin B substrate Z-RR-AMC in 100ul cell-free system buffer (10mM HEPES-NaOH, pH 7.4, 220mM mannitol, 68mM sucrose, 2mM NaCl, 2.5 mM KH2PO4, 0.5 mM EGTA, 2mM MgCl2, 5 mM pyruvate, 0.1 mM PMSF and 1 mM dithiothreitol) in a 96-well plate for 1h at 37°C. The fluorescence intensity was monitored by a fluorometer at an excitation wavelength of 380 nm and an emission wavelength of 460 nm.

Immunostaining.

After drug treatment, neurons were washed with cold PBS-MC and fixed with a 4% PFA/sucrose solution for 10 min. Cells were permeabilized with 0.2% Triton X-100 and 2% BSA in PBS-MC for 20 min, followed by overnight block in 5% BSA in PBS-MC. Primary and secondary antibodies were diluted into 2% BSA in PBS-MC and applied to neurons, overnight at 4°C for primary and 1h at room temperature for secondary. Coverslips were mounted onto glass slides for confocal imaging.

Confocal microscopy and image analysis.

All images were acquired with a Leica DMI6000 inverted microscope equipped with a Yokogawa Nikon spinning I6000 inverted microscope equipped with a Yokogawa Nikon spinning disk confocal head, an Orca ER high-resolution black and white cooled CCD camera (6.45 m/pixel at 1), Plan Apochromat 63/1.4 numerical aperture objective, and an argon/krypton 100 mW air-cooled laser for 488/568/647 nm excitations. Maximum projected Z-stacks were analyzed with National Institutes of Health ImageJ.

V. References

- Arancibia-Carcamo, I. L., E. Y. Yuen, J. Muir, M. J. Lumb, G. Michels, R. S. Saliba, T. G. Smart, Z. Yan, J. T. Kittler and S. J. Moss (2009). "Ubiquitin-dependent lysosomal targeting of GABA(A) receptors regulates neuronal inhibition." <u>Proc Natl Acad Sci U S A</u> 106(41): 17552-17557.
- 2. Ciechanover, A. (1998). "The ubiquitin-proteasome pathway: on protein death and cell life." <u>EMBO J</u> 17(24): 7151-7160.
- 3. Clague, M. J. and S. Urbe (2010). "Ubiquitin: same molecule, different degradation pathways." <u>Cell</u> **143**(5): 682-685.
- 4. de Melker, A. A., G. van der Horst, J. Calafat, H. Jansen and J. Borst (2001). "c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route." J Cell Sci **114**(Pt 11): 2167-2178.
- 5. Goh, L. K. and A. Sorkin (2013). "Endocytosis of receptor tyrosine kinases." <u>Cold</u> <u>Spring Harb Perspect Biol</u> **5**(5): a017459.
- Goo, M. S., S. L. Scudder and G. N. Patrick (2015). "Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors." <u>Front Mol Neurosci</u> 8: 60.
- Hardy, J. and D. J. Selkoe (2002). "The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics." <u>Science</u> 297(5580): 353-356.
- 8. Hughes, J. R. (1958). "Post-tetanic potentiation." Physiol Rev 38(1): 91-113.
- 9. Keil, J. M., Z. Shen, S. P. Briggs and G. N. Patrick (2010). "Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS)." <u>PLoS One</u> **5**(10): e13465.
- Maeda, K., K. Kawamura, S. Kondo, T. Aoyagi and T. Takeuchi (1971). "The structure and activity of leupeptins and related analogs." <u>J Antibiot (Tokyo)</u> 24(6): 402-404.
- 11. Malenka, R. C. (2003). "Synaptic plasticity and AMPA receptor trafficking." <u>Ann</u> <u>N Y Acad Sci</u> **1003**: 1-11.
- Malinow, R. and R. C. Malenka (2002). "AMPA receptor trafficking and synaptic plasticity." <u>Annu Rev Neurosci</u> 25: 103-126.
- 13. Marsh, M. and H. T. McMahon (1999). "The structural era of endocytosis." <u>Science</u> **285**(5425): 215-220.

- 14. Mizushima, N. (2007). "Autophagy: process and function." <u>Genes Dev</u> 21(22): 2861-2873.
- 15. Morris, R. G. (1999). "D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949." <u>Brain Res Bull</u> **50**(5-6): 437.
- 16. Na and J.Peng. "Synaptic Protein Ubiquitination in Rat Brain Revealed by Antibody-based Ubiquitome Analysis." <u>J.Proteome Res. Journal of Proteome</u> <u>Research</u> 11.9 (2012): 4722-732. Web.
- Pagala, V. R., A. A. High, X. Wang, H. Tan, K. Kodali, A. Mishra, K. Kavdia, Y. Xu, Z. Wu and J. Peng (2015). "Quantitative protein analysis by mass spectrometry." <u>Methods Mol Biol</u> **1278**: 281-305.
- Peschard, P. and M. Park (2003). "Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases." <u>Cancer</u> <u>Cell</u> 3(6): 519-523.
- 19. Pickart, C. M. and M. J. Eddins (2004). "Ubiquitin: structures, functions, mechanisms." <u>Biochim Biophys Acta</u> 1695(1-3): 55-72.
- Piper, R. C. and J. P. Luzio (2007). "Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes." <u>Curr Opin Cell Biol</u> 19(4): 459-465.
- Raiborg, C., K. G. Bache, D. J. Gillooly, I. H. Madshus, E. Stang and H. Stenmark (2002). "Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes." <u>Nat Cell Biol</u> 4(5): 394-398.
- Rodrigues, E. M., S. L. Scudder, M. S. Goo and G. N. Patrick (2016). "Abeta-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1." J <u>Neurosci</u> 36(5): 1590-1595.
- 23. Schwarz, L. A., B. J. Hall and G. N. Patrick (2010). "Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway." J Neurosci **30**(49): 16718-16729.
- Schwarz, L. A. and G. N. Patrick (2012). "Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins." <u>Mol Cell Neurosci</u> 49(3): 387-393.
- Shehata, M., H. Matsumura, R. Okubo-Suzuki, N. Ohkawa and K. Inokuchi (2012). "Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression." J <u>Neurosci</u> 32(30): 10413-10422.

- 26. Shen, W. and B. Ganetzky (2009). "Autophagy promotes synapse development in Drosophila." J Cell Biol **187**(1): 71-79.
- 27. Shepherd, J. D. and R. L. Huganir (2007). "The cell biology of synaptic plasticity: AMPA receptor trafficking." <u>Annu Rev Cell Dev Biol</u> 23: 613-643.
- 28. Solomon, V. R. and H. Lee (2009). "Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies." <u>Eur J Pharmacol</u> **625**(1-3): 220-233.
- 29. Sorkin, A. and M. von Zastrow (2009). "Endocytosis and signalling: intertwining molecular networks." Nat Rev Mol Cell Biol **10**(9): 609-622.
- Yamamoto, A., Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki and Y. Tashiro (1998). "Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells." <u>Cell Struct Funct</u> 23(1): 33-42.
- 31. Zhou, J., S. H. Tan, V. Nicolas, C. Bauvy, N. D. Yang, J. Zhang, Y. Xue, P. Codogno and H. M. Shen (2013). "Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion." <u>Cell Res</u> 23(4): 508-523.