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Abstract

This paper investigates the role of the assumption of class-
conditional independence of object features in human classi-
fication learning. This assumption holds that object feature
values are statistically independent of each other, given knowl-
edge of the object’s true category. Treating features as class-
conditionally independent can in many situations substantially
facilitate learning and categorization even if the assumption is
not perfectly true. Using optimal experimental design princi-
ples, we designed a task to test whether people have this de-
fault assumption when learning to categorize. Results provide
some supporting evidence, although the data are mixed. What
is clear is that classification behavior adapts to the structure of
the environment: a category structure that is unlearnable under
the assumption of class-conditional independence is learned by
all participants.

Keywords:  Multiple-cue classification learning; class-
conditional independence; naive Bayes; causal Markov con-
dition

Introduction

Categorization is fundamental for cognition. Grouping to-
gether objects or events helps us to efficiently encode envi-
ronmental patterns, make inferences about unobserved prop-
erties of novel instances, and make decisions. Without cate-
gorization we could not see the woods for the trees.

Despite the ease with which we form categories and use
them to make inferences or judgments, from a computational
perspective categorization is a challenging problem. For in-
stance, different diseases can cause similar symptoms, en-
tailing that diagnostic inferences are often only probabilistic.
Patients may have new symptom combinations and still re-
quire a diagnosis. Depending on the specific assumptions the
physician makes about the relationship between the diseases
and symptoms, a physician could justifiably make very dif-
ferent inferences about the diseases.

In the present paper, we investigate the role of the possi-
ble assumption of class-conditional independence of features
in category learning. Class-conditional independence holds if
the features of the category members are statistically indepen-
dent given the true class. This assumption can facilitate clas-
sification and learning of category structures. The concept
of class-conditional independence underlies the naive Bayes
classifier in machine learning (Domingos & Pazzani, 1997),
and is also a key assumption in some psychological classifica-
tion models (e.g., Fried & Holyoak, 1984; Anderson, 1991).
It is related to ideas of channel separability in sensory percep-
tion (Movellan & McClelland, 2001). Similar ideas are found

in Reichenbach’s (1956) common-cause principle in the phi-
losophy of science and in causal modeling (Spirtes, Glymour,
& Scheines, 1993; Pearl, 2000).

Both the philosophical and psychological literature make
claims about the normative bases of the assumption of class-
conditional-independence of features. Our focus here is not
on the general normativity or nonnormativity of that assump-
tion, but on whether the assumption of class-conditional inde-
pendence may (perhaps tacitly) underlie people’s inferences
in learning and multiple-cue categorization tasks. We think
of this assumption as one of many possible default (heuris-
tic or meta-heuristic) assumptions that, if close enough to an
environment’s actual structure, may facilitate learning and in-
ferences.

The Psychology of Conditional Independence

Some psychological models of categorization incorporate as-
sumptions of class-conditional independence, such as the cat-
egory density model (Fried & Holyoak, 1984) or Anderson’s
(1991) rational model of categorization. Both models treat
features of instances as class-conditionally independent to
make inferences about category membership or unobserved
item properties.

Other research has focused more directly on the role of
conditional independence assumptions in human reasoning.
For instance, a key assumption in many formal causal mod-
eling approaches (e.g., Pearl, 2000; Spirtes et al., 1993) is
the so-called causal Markov condition, which assumes that a
variable in a causal network is independent of all other vari-
ables (except for its causal descendants), conditional on its di-
rect causes. As this assumption facilitates probabilistic infer-
ences across complex causal networks it was suggested that
people’s causal inferences could also comply with this condi-
tional independence assumption.

Von Sydow, Meder, and Hagmayer (2009) investigated
reasoning about causal chains and found that subjects’ infer-
ences indicated a use of conditional independence assump-
tions, even if the learning data suggested otherwise.! Other
research, however, found violations of the causal Markov
condition (Rehder & Burnett, 2005). Asked to infer the prob-

IFor instance, applying the causal Markov condition to a causal
chain X — Y — Z entails that Z is independent of X given Y (e.g.,
P(z]y,x) = P(z]y, ~).
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ability for one effect when knowing the common cause of
several effects, people’s judgments were influenced by the
status of the other effects rather than treating all effects as
independent of each other given the cause. One explanation
for this “nonindependence effect” (Rehder & Burnett, 2005)
is that it might be due to subjective explanations that disable
all causal links between the cause and effects at once (Walsh
& Sloman, 2007). Other researchers have argued that these
Markov violations do not indicate flawed human reasoning,
but reflect the use of abstract causal knowledge that is sen-
sitive to contextual information (Mayrhofer, Hagmayer, &
Waldmann, 2010).

Research Questions

Should the assumption of class-conditional feature indepen-
dence be used in classification learning? Do people use that
assumption to guide learning about the structure of a novel
environment? We extend previous research fourfold: (1) We
use optimal experimental design principles (Myung & Pitt,
2009; Nelson, 2005) to explicitly address the assumption in
classification, (2) we are interested in categorization learn-
ing as opposed to causal reasoning, (3) we investigate how
people’s experience with a new environment shapes their
classification behavior, whereas many previous studies have
measured explicit numerical probability judgments. (4) We
use an experience-based research paradigm, whereas previ-
ous studies used numerical (Rehder & Burnett, 2005) or ver-
bal (Mayrhofer et al., 2010) formats. Personal experience
of events has been shown to result in different behavior and
learning than word- or number-based presentation of prob-
abilities (Hertwig, Barron, Weber, & Erev, 2004; Nelson,
McKenzie, Cottrell, & Sejnowski, 2010). Before describing
the task we designed, let us turn to the normative question of
class-conditional independence in classification.

Class-Conditional Independence in Classification

Categorization entails assigning an object to a class. Let F
denote an object consisting of a vector of feature values f,
and let C denote a random variable whose values are the pos-
sible classes cy,...,c,. The posterior probability of the class
given the observed feature values, P(class | features), can be
inferred using Bayes’ rule:

P(F=f|C=c)P(C=c)
PF=1)

where P(F = f | C = ¢) denotes the likelihood of feature
value vector f given class ¢, P(C = ¢) is the prior probability
of the class, and P(F = f) is the occurrence probability of the
feature configuration. An important question is how we esti-
mate the relevant probabilities to infer the posterior probabil-
ity. Estimating the classes’ prior probabilities, P(C = ¢), from
the data is relatively straightforward. However, estimating the
likelihood of the features given the class, P(F = f | C = ¢),
is more complicated, as the number of probabilities grows
exponentially with the number of features (the curse of di-

P(C=c|F=f)= (1

mensionality). One way to sidestep the problem is to assume
that features are class-conditionally independent.

Class-Conditional Independence

If class-conditional independence holds the individual fea-
tures within a class are statistically independent (e.g., Domin-
gos & Pazzani, 1997). This means that the probability of
a feature configuration given a class can be factorized such
that:

J
PFE=flC=o=[]PE=F1C=0) @
j=1

where P(F = f | C = ¢) denotes the likelihood of the fea-
ture configuration given the class, P(F; = f; | C = ¢) is the
marginal likelihood of the j™ feature value given the class,
and j =1,...,J indexes the different features. Thus, accord-
ing to the assumption of class-conditional independence, the
likelihood of each feature value combination can be estimated
from the likelihoods of the individual feature values.

Advantages The key advantage of assuming that features
are class-conditionally independent is that it reduces the curse
of dimensionality. For example, for 10 binary features there
are 20 possible feature configurations. That means, we
have to estimate 1024 likelihoods of feature configurations
for each class. Assuming class-conditional independence re-
duces the number of required likelihoods from 1024 to 8.
Another benefit is that class-conditional independence al-
lows inferences about new feature configurations. Even if
a particular combination of feature values has not been ob-
served yet, assuming class-conditional independence allows
inference of the likelihood of the feature configuration from
the marginal likelihoods of the individual feature values,
thereby enabling computing the posterior class probabilities.

Robustness While class-conditional independence may
rarely exactly hold in real-world environments, violations
of this assumption do not necessarily impair performance.
For instance, a widely used classifier in machine learning
is the naive Bayes model, which treats features as class-
conditionally independent and computes the posterior class
probabilities accordingly. Both simulation studies and ana-
lytic results demonstrate the robustness of this model under
a variety of conditions (Domingos & Pazzani, 1997). For
instance, if the optimality criterion is classification accuracy
(error minimization, i.e., a zero-one loss function), then even
if the derived posterior probabilities do not exactly corre-
spond to the true posterior, as long as the correct category
receives the highest posterior probability, classification error
will be minimized.

Summary Treating features as class-conditionally indepen-
dent in a classification task can be helpful, as it simplifies
the problem of parameter estimation and violations of class-
conditional independence do not necessarily entail a loss in
classification accuracy. On the other hand, assuming class-
conditional independence also puts constraints on the types
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of classification problems that can be solved. For instance,
treating features as class-conditionally independent can make
it impossible to solve certain classification problems, such as
nonlinearly-separable category structures (Domingos & Paz-
zani, 1997).

From a psychological perspective, however, presuming
class-conditional independence might be a plausible default
assumption in category learning. If features are (approxi-
mately) class-conditionally independent, this facilitates learn-
ing and inference substantially. We designed an experiment to
investigate whether people initially presume class-conditional
independence, and if people change their beliefs and classi-
fication behavior when class-conditional independence does
not hold in the environment.

Experiment

Our goal was to examine whether people use class-
conditional independence as a default assumption in cate-
gory learning when the true environmental probabilities are
not known yet, that is, early in learning. In order to test this
question, we designed a learning environment in which clas-
sification decisions would be strongly different if the learner
presumes class-conditional feature independence, rather than
basing classification decisions solely on the previous in-
stances with the exact same configuration of feature values.

Method

Participants Thirty subjects (Mg, = 23,5D = 3.3 years,
70 % females) participated in a computer-based experiment
in exchange for 12 Euro.

Task Participants’ task was to learn classify objects with
three binary features into one out of two categories. As stim-
uli we used simulated biological “plankton” specimens differ-
ing in three binary features (“eye”, “tail”, and “claw”, shown
in the left image in Figure 1). The classes were labelled as
“Species A” vs. “Species B”. The assignment of the actual
physical features and their values to the underlying proba-
bilities, as well as the class labels, were randomized across

participants.

Procedure We used a trial-by-trial supervised multiple-
cue probabilistic category learning paradigm (e.g., Knowlton,
Squire, & Gluck, 1994; Meder & Nelson, 2012; Nelson et al.,
2010; Rehder & Hoffman, 2005). After introducing the task
and familiarizing subjects with the three features, on each
trial a plankton exemplar with a specific feature value com-
bination was randomly drawn according to the true environ-
mental probabilities (see below) and displayed on the screen.
After participants made a classification decision, feedback on
the true class was given and the next trial started. Learning
continued until criterion performance was achieved. Crite-
rion performance was defined as both (1) an overall classifi-
cation accuracy of 98 % over the last 100 trials, and (2) accu-
rate classification of the last five instances of every individual
configuration of features.

Environment Using optimal experimental design (OED)
principles (Myung & Pitt, 2009; Nelson, 2005) we conducted
simulations to find environmental probabilities that best dif-
ferentiate between a learner that assumes class-conditional in-
dependence and a learner that makes predictions based only
on previous instances of the same feature configuration. The
possible environmental probabilities for our task consisted
of the following parameters: (i) the base rate of Species A
(determining the Species B base rate), (ii) the likelihoods of
each of the eight possible feature value combinations given
Species A and (iii) the corresponding values for Species B.
The parameter values were obtained via optimization, us-
ing genetic algorithms to search for desirable environments
which had frequent configurations of features with large ab-
solute discrepancies between the actual posterior probability
of Species A, and the posterior probability presumed based
on the class-conditional independence assumption. Formally,
the genetic algorithm optimized the following fitness func-
tion:

[Prue(C=c¢ | F = f;) = Pi(C=c | F = f)? x P(F = f;)*
3)

where i indexes all possible feature value combinations and
the subscripts true vs. cci indicate the posteriors calculated
according to the true vs. class-conditionally independent pa-
rameters.

The obtained environment is summarized in Figure 1. The
environment contains five out of eight possible feature com-
binations (henceforth denoted as 111, 000, 100, 010, 001);
the remaining three combinations (011, 101, 110) do not oc-
cur. The figure illustrates the category base rates, the likeli-
hoods of the feature configurations given the two classes, as
well as the marginal likelihoods of the features, which pro-
vide the basis for inferring posterior probabilities according
to the class-conditional independence assumption. Note that
although nothing in the optimization prescribed finding a de-
terministic environment, in fact the posterior probabilities of
Category A are one or zero, for each of the feature configura-
tions that occurs.

In this environment, assuming class-conditional indepen-
dence leads to classification decisions that systematically de-
viate from decisions based on the true environmental proba-
bilities. Table 1 summarizes the feature configurations, their
probability of occurrence, the posterior probabilities accord-
ing to the true environmental probabilities, and the poste-
rior probabilities derived assuming class-conditional inde-
pendence. For four out of the five feature configurations, the
classification decision derived assuming class-conditional in-
dependence conflicts with the actual class membership (indi-
cated by # in Table 1).

Consider feature configuration 111. This item always be-
longs to Species A in the true environment. If features
are treated as class-conditionally independent, it belongs to
Species A with probability 0.91. The small difference be-
tween the actual probability of 1.00 and 0.91 should not

M~

i=1
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a) b) ©

Stimuli True environment cci environment
Category base rates Joint likelihoods

P(A)=0.67 P(1111A) 0582

P(B)=0.33 P(1101A) 0.000

Marginal likelihoods
P(1xxIA) 0.582
—p P(xIxIA) 0.582
P(xx11A) 0.582

P(1011A) 0.000
P(0111A) 0.000
P(1001A) 0.000
P(0101A) 0.000
P(0011A) 0.000
P(000IA) 0418

P(111IB)  0.000
P(110iB)  0.000
P(1011B)  0.000
P(O11B)  0.000
N P(100iB) 0333
' P(010B) 0333
P(001B) 0333
P(000B) _0.000

Marginal likelihoods
P(1xxIB) 0.333
—» PxIxIB) 0333
P(xx1IB) 0.333

Species A or B?

Figure 1: Task environment. a) Stimuli and base rates of
classes. b) Joint likelihoods of true environment. ¢) Marginal
likelihoods used assuming class-conditional independence

change the learner’s classification decision for this stimulus.
This, however, is not true for the other items. For instance, ac-
cording to the true environment, item 000 belongs to Species
A with probability 1, but assuming class-conditional indepen-
dence entails that it belongs to Species B with probability
0.67. Thus, a learner assuming class-conditional indepen-
dence would believe that on average about 67 % of the 000
items belong to Species B, despite experiencing that it al-
ways belongs to Species A. The same divergence holds for
the other three configurations (100, 010, 001): whereas all of
those items actually belong to category B, treating features
as class-conditionally independent entails that the probability
for category A is higher (0.58).

Table 1: True environment vs. assuming class-
conditional independence (cci).

Features P(features) P(class | features)
true env  true env with cci
111 0.39 A1l = A091
100 0.11 B 1 # A058
010 0.11 B 1 # AO0S58
001 0.11 B 1 # A058
000 0.28 A1 # BO0.67

The strongest discrepancy is for the 000 configuration,
which is the second-most-frequent configuration, occurring
with probability .28. Note that a hypothetical learner (even
with perfect memory) who assumes class-conditional inde-
pendence of features, and is unable to give up this assump-
tion, will never learn the true statistical structure of this envi-
ronment, even after completing a quadrillion learning trials.

Achieving criterion performance would also be impossible
if learners looked at one feature only (at 1xx, or x1x, or xx1
and ignoring the x). Considering single features, participants
should think any feature configuration belongs to Species A

with probability 0.78. This holds for attending solely to any
of the three features.

Hypotheses

If participants make no (not even tacit) assumptions of class-
conditional feature independence, and learn each item sep-
arately, then items could be learned in order of their fre-
quency of occurrence (a frequency-of-configuration hypoth-
esis). If participants approach the task by assuming features
to be class-conditionally independent, classification decisions
should systematically deviate from ones derived from the true
environmental probabilities, especially early in learning (a
posterior-discrepancy hypothesis).

Both hypotheses predict the fewest errors for item 111,
the most frequent feature configuration and the one for
which the class-conditional independence posterior is clos-
est to accurate. For the four critical items, the differ-
ence in posterior probability is the largest for item 000.
The posterior-discrepancy hypothesis predicts the most er-
rors for item 000, and thus that the ordering of errors should
be 111<100~010~001<000. However, the frequency-of-
configuration hypothesis predicts that the ordering of classi-
fication errors should be 111<000<100~010~001.

Key empirical questions are therefore whether there are
any systematic differences in learning rate for the individual
items, whether the early learning data suggest a presumption
of class-conditional independence, and if so, whether the oc-
currence frequency of an item or the degree to which class-
conditional independence fails on it determine learning.

Results and Discussion

All participants reached criterion performance, i.e. learned
the category structure (in a mean number of 391 trials,
SD=155, Md=348, range 210 to 808 trials). To reach criterion
performance, participants needed to classify each individual
feature configuration correctly five times in a row. To investi-
gate whether there was a difference in learning speed for the
different feature configurations, we calculated the number of
times each item needed to be observed before reaching this
criterion (Table 2). We will first consider learning time and
then error rates.

Table 2: Number of trials an item needed to be
seen to correctly classify it five times in a row.

Features Trials

mean SD (SE) median
1 11 10.4 10.7 (1.9) 7.0
1 00 11.4 8.0(2.1) 7.5
010 11.5 7.7 2.1) 9.0
001 11.5 7.0 (2.1) 9.0
000 15.8 11.5(2.9) 13.5

In our data most subjects learned item 111 before item
000 (22 out of 30, binomial p < .02), which is con-
sistent with both hypotheses. Did learning time follow
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the frequency-of-configuration hypothesis, or the posterior-
discrepancy hypothesis?  The posterior-discrepancy hy-
pothesis predicts an ordering of 111<100~010~001<000,
whereas the item-frequency hypothesis’s ordering prediction
is 111<000<100~010~001. The critical difference in pre-
dictions is between the learning time for items 100, 010, and
001 and item 000. The frequency hypothesis predicts that
item 000 will be learned faster, whereas the posterior discrep-
ancy hypothesis predicts that items 100, 010, and 001 will be
learned first. Here, our results strongly support the posterior
discrepancy hypothesis, and contradict the item frequency hy-
pothesis. Items 100, 010 and 001 were learned more quickly
by more people than item 000, despite item 000’s greater fre-
quency (item 001 faster: 21 out of 30, binomial p < .05; item
010 faster: 20 out of 30, binomial p < .1; item 100 faster:
21 out of 30, binomial p < .05). Moreover, there was a non-
significant trend for items 100, 010, and 001 to take longer
than item 111; consistent with the posterior discrepancy hy-
pothesis but not the configuration frequency hypothesis.

60%

50%

Stimulus
— 000
=001
—010
100
111

40%

30%

20%

Mean percentage incorrect classifications
up to trial t

10% T T T T
10 20 30 40 50

Trials t

Figure 2: Percentage incorrect classifications for the first 50
trials each item was encountered.

The error rates throughout early learning are summarized
in Figure 2. This figure corroborates the analysis of the num-
ber of learning trials required for each stimulus configuration:
item 000 was clearly the most difficult to learn. As this fea-
ture configuration is the one for which the difference in pos-
terior probability is largest when assuming class-conditional
independence versus using the full true environmental prob-
abilities, this finding is consistent with the idea that people
treat features as being class-conditionally independent early
in learning. However, items 100, 010 and 001 were much
closer to (or even indistinguishable from) item 111, consis-
tent with the above analysis in Table 2.

General Discussion

The present paper examined the role of the assumption of
class-conditional independence of features in category learn-
ing. While different types of conditional independence as-
sumptions play an important role in various scientific debates
and computational models of cognition, little is known about
their descriptive validity in the context of classification learn-
ing with multiple cues. Our goal was to empirically investi-
gate whether people initially (early in learning) treat features
as class-conditionally independent. The present results par-
tially support the idea that people initially treat features as
class-conditionally independent and make classification deci-
sions accordingly. We think of the results as tentative because
some aspects of the data are not perfectly clear.

Our focus in the present study was on participants’ be-
havior early in learning, when evidence about the category
structure and environmental probabilities is limited. This ap-
proach is similar to the studies of Smith and Minda (1998),
who investigated possible transitions in categorization strate-
gies and stimulus encoding over the course of learning.Their
finding was that late in learning exemplar models (e.g., Medin
& Schaffer, 1978) accounted best for subjects’ behavior, but
that this was not the case early in learning (in which a pro-
totype model seemed to better account for human perfor-
mance, see below). This is also a possible explanation for
the finding that despite strongly violating class-conditional
independence, the environment in our experiment was clearly
learnable. Participants could have initially treated features as
class-conditionally independent and computed posteriors ac-
cordingly and later shifted to an exemplar-based strategy to
minimize classification error.

A key methodological aspect of our study was to use opti-
mal experimental design principles to find environments that
would allows us to directly test whether people use class-
conditional independence as a default assumption in catego-
rization. Interestingly, the optimizations told us that the best
environment to differentiate between a learner that assumes
class-conditional independence and a learner that makes pre-
dictions based only on previous instances of the same feature
configuration was deterministic. The crucial aspect of this
environment, however, is not that it is deterministic, but that
it entails a nonlinearly separable category structure. Since the
class-conditional independence model induces a linear deci-
sion bound (Domingos & Pazzani, 1997), it could not achieve
criterion performance in this particular task environment.

This, in turn, relates our study to earlier research in psy-
chology, which investigated whether linearly separable cat-
egories are easier to learn than nonlinearly separable ones
(e.g., Medin & Schaffer, 1978; Medin & Schwanenflugel,
1981). This research focused on two types of categorization
models, exemplar- and prototype-models, both of which as-
sume that categorization decisions are derived from similar-
ity comparisons (either to specific exemplars stored in mem-
ory or to prototypes of categories). By contrast, we investi-
gated category learning and human subjects’ initial assump-
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tions from the perspective of probabilistic inference (see also
Anderson, 1991; Fried & Holyoak, 1984), a conceptually dif-
ferent view. Nevertheless, there are some interesting connec-
tions between our work and these earlier (similarity-based)
models. For instance, assuming class-conditional indepen-
dence entails that not all information (about feature configu-
rations and corresponding class probability) is encoded dur-
ing learning, but only marginalized conditional likelihoods
and category base rates. In this respect the class-conditional
independence model is similar to prototype models, which
encode parametric information of central tendencies (e.g.,
mean or mode of feature values) that form the prototype (e.g.,
Smith & Minda, 1998).

Importantly, these accounts assume that information is
stored separately for each feature and the to-be-classified item
is compared to the prototypes separately on each feature di-
mension individually. Conversely, a learner who makes no as-
sumptions about the structure of the relations between classes
and features and directly tracks the true environmental prob-
abilities is conceptually more similar to exemplar models of
category learning. The difference is that prototype models,
like our independence model, do not need to store each indi-
vidual instance that is experienced.

In sum, the current paper adds to the debate about the role
of conditional independence assumptions for computational
models of cognition. The task environment identified based
on optimal experimental design principles allowed us to di-
rectly examine the descriptive validity of this assumption in
category learning. Here, we do find evidence consistent with
its use.
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