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ABSTRACT OF THE DISSERTATION

Behavioral Effects in Financial Markets

by

Chandler Joseph Lutz

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2011

Dr. Marcelle Chauvet, Chairperson

We develop sentiment indexes to study the relationship between sentiment and stock

returns. For the first index, we use only market return data; for the second, we use

traditional indicators including the closed-end fund discount, NYSE share turnover,

and the equity-share of new issues. In sample we find that rising sentiment leads to

rising returns and lower risk. We also show that sentiment cycles lead bear markets.

In a forecasting exercise we develop two-stage model averaging (2SMA). 2SMA is a

flexible framework that allows researchers to incorporate prior economic information

into their forecasts. Through 2SMA we develop two-stage Bayesian model averaging

(2SBMA) and two-stage equal-weighted averaging (2SEWA). With these techniques we

forecast stock returns using investor sentiment. We find that the 2SBMA and 2SEWA

forecasts beat their traditional model-averaging counterparts and beat the benchmark

random-walk plus drift in a statistically significant manner.
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Chapter 1

Introduction

Rational arbitraguers have a profit incentive to ride waves of investor sentiment: Bank

stocks rode the liquidity bubble through 2007; hedge funds were overweight tech stocks

in the late 1990s; and Sir Issac Newton rode the South Sea Bubble in the 1720s.1. Yet

classic finance theory fails to explain these historical episodes. In classical financial

theory, rational arbitrageurs quickly exploit any mispricing. The failures of the classical

financial theory have led to the rise of behavioral finance. In behavioral finance, rational

arbitrageurs interact with irrational agents. These irrational agents suffer from one or

more behavioral biases that affect their decision making process.

For example, Abreu and Brunnermeier develop a bubble where irrational traders

drive asset prices away from equilibrium. The rational arbitrageurs then receive a signal

sequentially about the nature of the bubble. This creates a coordination problem. In the

model’s equilibrium, the rational arbitraguers ride the bubble and try to exit the market

just prior to the crash. Hence, rising sentiment leads to rising returns. This theoretical

model matches the anecdotal accounts mentioned above. But recent empirical research

in behavioral finance, such as Baker and Wurgler (2006, 2007) and Frazzini and Lamont

(2008), finds that high sentiment relates to low future returns. Hence, the empirical

1See Brunnmermeier (2009), Brunnermeier and Nagel (2004), and Temin and Voth (2004)

1



research contradicts the theoretical models and the real-world examples.

In this dissertation we develop two new sentiment indexes for the stock market.

In chapter 2, we develop a real time stock market sentiment index using only return data.

We develop another sentiment index using traditional indicators in chapter 4. With both

of these indexes we study the relationship between sentiment and stock returns. We find

that rising sentiment leads to rising returns, and vice versa.

In chapter 2 we find that rising sentiment leads lower risk and that cycles in

sentiment growth often lead bull and bear markets. Sentiment has its largest on stocks

just after bear markets.

We study the time-varying relationship between sentiment and stock returns in

chaprter 4. We find that the effects of sentiment have been growing over time. We also

find that sentiment sentiment has its largest effect on stocks just after bear markets.

In chapter 3 we develop two-stage model averaging (2SMA). 2SMA is a flexible

framework that allows researchers to incorporate prior economic information information

into their forecasts. Furthermore, 2SMA handles the ‘crowding out effect.’ The crowding

out effect occurs when a given forecast that performs well over time and doesn’t receive

a large enough weight in the final forecast.

We combine 2SMA and dynamic Bayesian model averaging to form two-stage

Bayesian model averaging (2SBMA). Similarly, we combine 2SMA and equal weighted

averaging to develop two-stage equal-weighted averaging (2SEWA). We use 2SBMA

and 2SEWA to forecast returns one-step ahead using investor sentiment. We find that

2SBMA and 2SEWA both outperform the benchmark random-walk plus drift and their

traditional model averaging counterparts.

Overall, our results correspond with the theoretical predictions of Abreu and

Brunnermeier (2003) and anecdotal accounts of investor sentiment. We find that rising

2



sentiment leads to rising returns and lower risk; and vice versa. Whence, rational

arbitrageurs have a profit incentive to ride waves of investor sentiment.

Our 2SMA framework is the first forecasting procedure, to our knowledge, that

allows researchers to incorporate prior economic in a non-parametric way. Researchers

can apply the 2SMA framework to any problem where a given forecast is known to

perform well over time.

This dissertation extends the empirical literature in behavioral finance. Unlike

previous empirical work, our results match the theoretical and anecdotal literature.

The forecasting work in this dissertation is related to model averaging by clus-

tering. Aiolfi and Timmermann (2006) group forecasts into based on prior forecasting

performance, pool within groups, and then shrink the optimal combination weights

across clusters to equal weights.
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Chapter 2

Real Time Investor Sentiment and the

Cross-Correlation of Stock Returns

Abstract: Using only market return data we develop a new index for agent sentiment

in the stock market via a dynamic factor model with Bayesian estimation. This index

accurately times sentiment episodes. We find that rising sentiment leads to rising re-

turns and lower risk, and vice versa. While sentiment affects most stocks, it has its

largest effect on small, young, and volatile stocks, stocks without earnings or dividends,

stocks in distress, and high momentum stocks. We also quantitatively chronicle cycles

in sentiment growth with a modified Bry-Boschan algorithm. These cycles lead bear

and bull markets.
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Throughout history sophisticated investors have tried to ride waves of investor

sentiment: hedge funds were overweight tech stocks in the late 1990s, banks rode the

liquidity bubble through 2007, and Sir Isaac Newton rode the South Sea Bubble in

the 1720s.1 These historical episodes match the theoretical predictions of Abreu and

Brunnermeier (2003). Abreu and Brunnermeier find that rational arbitrageurs have a

profit incentive to ride waves of investor sentiment and that rising sentiment leads to

rising returns. Yet recent empirical research, such as Baker and Wurgler (2006, 2007)

and Frazzini and Lamont (2008), contends that high sentiment relates to low future stock

returns. Therefore, these empirical papers suggest that rational arbitrageurs should bet

against waves of investor sentiment rather than ride them.

In this paper, we develop a novel stock market sentiment index (SENT here-

after) using only market return data. With this index we study the relationship between

investor sentiment and stock returns. We report the following findings: (1) SENT accu-

rately times sentiment episodes; (2) rising sentiment leads to above average returns and

lower risk, and vice versa; (3) sentiment has its largest effect on small firms, young firms,

volatile stocks, firms without earnings or dividends, high momentum stocks, growth

stocks, and firms in distress; (4) SENT is robust to the inclusion of macroeconomic

indicators and measures of time-varying risk as additional controls; and (5) cycles in

sentiment growth often lead bear and bull markets.

Our empirical result—that rising sentiment leads to rising returns and lower

risk—corresponds to the theoretical predictions of Abreu and Brunnermeier (2003).

Abreu and Brunnermeier build a model where agents face a coordination problem in

1See Brunnermeier and Nagal (2004), Brunnermeier (2009) and Abreu and Brunnermeier (2003) for
further examples where rational arbitrageurs ride waves of investor sentiment. Temin and Voth (2004)
describe the South Sea Bubble. They find that rational arbitrageurs had a profit incentive to ride the
bubble. Temin and Voth conclude that the evolution of the South Sea Bubble matches the theoretical
model of Abreu and Brunnermeier (2003).
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attacking a bubble. In the model’s equilibrium, rational arbitrageurs have a profit

incentive to ride the bubble. Hence, rising sentiment leads to a higher demand for

sentiment-driven stocks. The increase in demand then translates into higher prices.2

Our empirical results also match the anecdotal accounts in Temin and Voth

(2004), Brunnermeier and Nagel (2004), and Brunnermeier (2009). These papers con-

sider various asset bubbles throughout history. They find that rational arbitrageurs

have a profit incentive to ride waves of investor sentiment.

Using only market return data to develop SENT allows researchers, practi-

tioners, and policymakers to compile our index in real time and make decisions based

on current information. Market returns are also free from the surveying and sampling

issues that plague other macroeconomic and financial indicators. Yet returns are noisy,

differenced series. To deal with the noise in returns and construct an index in levels we

employ a dynamic factor model with Bayesian estimation. The dynamic factor model

(and Kalman filtering it relies on) smooths the large volatility in return data. Fur-

thermore, the dynamic factor model allows us to use the steady-state Kalman Gain, a

byproduct from the Kalman filter, to construct an index in levels. Thus, we can com-

pare SENT directly to other stock sentiment aggregates. The most ubiquitous of these

aggregates is the stock sentiment index of Baker and Wurgler (2006, 2007) (BWsent

hereafter). SENT and BWsent follow the same general pattern, but SENT more pre-

cisely times sentiment bubbles and crashes.

With SENT we study the relationship between sentiment and future returns.

2Baker and Wurgler (2006) also provide a theoretical foundation that explains the dynamics of the
sentiment-driven stocks. In particular, Baker and Wurgler contend that the sentiment-driven stocks are
hard-to-value and difficult-to-arbitrage. The sentiment-driven stocks have relatively less information
available since they are younger, smaller, without earnings or dividends, etc. This allows investors to
plausibly defend a wider range of valuations. D’Avalio (2002) finds that the sentiment-driven stocks are
costlier and riskier to arbitrage. Through the hard-to-value and difficult-to-arbitrage channels, sentiment
has a larger affect on the set of sentiment-driven stocks.
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First, we sort returns by firm characteristics and by the previous month’s sentiment

growth. We find that rising sentiment leads to above average future returns and lower

risk, and vice versa. This result holds for most stocks. Yet sentiment has its largest

effect on small, young, and volatile firms; firms without earnings or dividends; growth

firms; high momentum stocks; and stocks in distress. We label this set of stocks, the

stocks most affected by sentiment, as “the set of sentiment-driven stocks.”

Next, we run in-sample regressions. We conclude that rising sentiment relates

to rising future returns for the set of sentiment-driven stocks and vice versa. These

regression findings match our results based on sorts. Our regression results are robust

to the inclusion of macroeconomic indicators, measures of time-varying risk, the Fama-

French factors, and the momentum factor as additional controls.

Lastly, we quantitatively date cycles in sentiment growth using a modified Bry-

Boschan algorithm. The Bry-Boschan (1971) algorithm is a set of conditional rules to

find the highs and lows in a series. Cycles in sentiment growth often lead bear and bull

markets. More specifically, sentiment growth peaks prior to all bear markets over the

sample period except for the light bear markets that began in 1961 and 1990. Hence,

SENT may be useful for investment or policy decisions.

2.1 Related Literature

Baker and Wurgler (2006, 2007) develop a sentiment index from various monthly com-

ponents (BWsent hereafter). See appendix 4.8 for the description and analysis of Baker

and Wurgler’s (2006, 2007) data and index construction.

We plot BWsent at the monthly frequency in figure 4.1. Shaded areas represent

bear markets defined as a 20 percent or more drop in the S&P 500 over a two or more

month period. While BWsent follows general patterns of sentiment, it mis-times the

7



conclusion of certain sentiment episodes. We expect sentiment to rise as bubbles develop

and then crash as bubbles burst. Most notably, BWsent peaks nearly a year after the

tech bubble crash in 2000. This is surprising since many authors, such as Shiller (2006),

attribute the tech boom and bust to agent sentiment. BWsent also peaks well into the

bear markets in the late 1960s and the early 1980s.

[Insert figure 4.1 here]

Given figure 4.1, it is not surprising that Baker and Wurgler (2006, 2007)

find that high sentiment relates to low future returns. When sentiment is highest (as

measured by BWsent), stocks are suffering through bear markets. This result contradicts

the theoretical findings of Abreu and Brunnermeier (2003). As noted above, Abreu and

Brunnermeier conclude that rational arbitrageurs have a profit incentive to ride waves

of investor sentiment.

BWsent is also difficult to calculate in real time. One component of BWsent

is the equity-share of new issues (S).3 This variable is only available from the Federal

Reserve at lagged values.4 Hence, practitioners and policymakers cannot use BWsent

to make real time decisions.

Frazzini and Lamont (2008) use mutual fund flows to study the relationship

between sentiment and stocks. They also find that high sentiment relates to lower future

returns. Other papers use sentiment surveys to study the predictability of asset returns.

For example, Lemmon and Portniaguinia (2006) and Qui and Welch (2004) consider

consumer confidence. The surveys that these studies employ are only available at lagged

values and subject to measurement error. The market returns we use to develop SENT

are free from measurement error and are available in real time.

34.8 for a description of the equity-share of new issues.
4See the Federal Reserves’ website: http://www.federalreserve.gov/econresdata/releases/

corpsecure/current.htm
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2.2 The Data

Baker and Wurgler (2006, 2007), among others, find that agent sentiment affects small

firms, firms without earnings or dividends, and firms in distress. These results help

motivate the choice of the series used to construct the sentiment index in this paper.

We use long-short portfolios of equal weighted returns based on dividends, size

and earnings. More specifically, we examine the difference between market returns for

stocks that do not pay dividends and those that do, companies with earnings less than

or equal to zero and those with positive earnings, and small and large firms. We define a

small (large) firm as one whose market cap is in the bottom (upper) 20 percent. We also

consider the equal weighted returns of low momentum firms. We classify firms whose

returns are in the bottom ten percent for the previous two to twelve months as having

low momentum. We use the returns on low momentum firms to represent companies in

distress. The series are all monthly and compiled from Kenneth French’s data library.5

The correlation matrix for these variables is presented in table 2.1. The data for the series

comprised from momentum, size, and dividends are available from 1927M07, but the

data for earnings begins in 1951M07. Hence, our data contains 698 observations ranging

from 1951M07 to 2009M08. We also use the returns from the S&P500 to incorporate

the results from Glushkov (2006). He found that after controlling for size and volatility

that larger stocks with a higher likelihood of S&P500 membership are more affected by

sentiment.6

[Insert table 2.1 here]

Since we use only market return data, our index has two main advantages over

other sentiment measures and macroeconomic indicators. First, there is no measurement

5Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
6S&P500 data is available publicly from Robert Shiller’s website at http://www.

irrationalexuberance.com/
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error and no need for the data to be revised. This eliminates the uncertainty related

to surveying and sampling found in other sentiment aggregates. Second, firms and

policymakers could compile the data in real time and extend our model to make decisions

based on current information.

We abbreviate the series for the long-short portfolios based on dividends, earn-

ings and size as div, earn, and size, respectively. The returns for low momentum firms

will be abbreviated as lowmom. We represent the S&P500 variable as sp500.7

2.3 Model Estimation and Description

The return data we use is essentially log-differenced prices. Hence, the data is noisy.

If we were to apply principal component analysis (PCA) to the return data the result

could be interpreted as a differenced sentiment index. This index would be extremely

volatile and not be directly comparable to other sentiment measures. To create an index

in levels we use a dynamic factor model with Bayesian estimation. Like PCA, dynamic

factor models extract a common component from various series. Unlike PCA, dynamic

factor models smooth noisy series via the Kalman Filter. The dynamic factor model

also allows us to derive a sentiment series in levels. See Stock and Watson (1991) and

Kim and Nelson (1998, 1999) for more on dynamic factor models.

To estimate the model we first take each series in deviations from the mean.

The dynamic factor model then takes the following form:

∆yit = γi∆ct + εit, i = 1, . . . , 5 (2.1)

φ(L)∆ct = ωt, ωt ∼ N(0, 1) (2.2)

ψi(L)εit = vit, vit ∼ N(0, σ2) (2.3)

Where ∆yit = ∆Yit − ∆Ȳi, i = 1, ..., 5, represents one of the five series: div,

7Baker and Wurgler (2006) test the effects of BWsent on div and earn in their paper. They find a
statistically significant relationship between sentiment and the div and earn series.
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earn, size lowmom and sp500, respectively. ∆ct = ∆Ct − δ is the component common

to all series, εit is an idiosyncratic component, γi is the factor loading, and L is the

lag operator. To estimate the model and derive the common component, ∆ct, we cast

it into state-space form. Although a unique representation does not exist we elect a

form similar to Kim and Nelson (1998). This facilitates computation of the estimation

algorithm. Multiplying both sides of equation 4.1 by ψi(L) yields

ψi(L)∆yit = γiψi(L)∆ct + vit (2.4)

The Bayesian Information Criterion guides our choice of φ(L) and ψi(L) (given that the

number of lags in each equation is greater than or equal to one). We choose two lags

for φ(L) and two lags for ψi(L). Equations 4.2 and 4.3 become

∆ct = φ1∆ct−1 + φ2∆ct−2 + ωt (2.5)

εit = ψi1εi,t−1 + ψi2εi,t−2 + vit, i = 1, . . . , 5 (2.6)

We employ the following state-space form:

Measurement Equation:



∆y∗1t

∆y∗2t

∆y∗3t

∆y∗4t

∆y∗5t


=



γ1 −γ1ψ11 −γ1ψ12

γ2 −γ2ψ21 −γ2ψ22

γ3 −γ3ψ31 −γ3ψ32

γ4 −γ4ψ41 −γ4ψ42

γ5 −γ5ψ51 −γ5ψ52




∆ct

∆ct−1

∆ct−2

 +



v1t

v2t

v3t

v4t

v5t


(2.7)

In matrix form this becomes

(yt = Hβt + vt)
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Where y∗it = yit − ψi1yi,t−1 − ψi2yi,t−2 as in the left hand side of equation 4.4.

E(vtv
′
t) = R =



σ21 0 0 0 0

0 σ22 0 0 0

0 0 σ23 0 0

0 0 0 σ24 0

0 0 0 0 σ25


(2.8)

Transition Equation:


∆ct

∆ct−1

∆ct−2

 =


φ1 φ2 0

1 0 0

0 1 0




∆ct−1

∆ct−2

∆ct−3

 +


ωt

0

0

 (2.9)

Equation 4.15 can be written in matrix form as

(βt = Fβt−1 + et)

E(ete
′
t) =


1 0 0

0 0 0

0 0 0

 (2.10)

Estimating the above model will produce a series, ∆ct. We can interpret ∆ct

as the de-meaned first difference in sentiment. Yet our goal is to compile a sentiment

index in levels. To derive a common component representing the levels index, we need

to identify δ. Our approach follows Stock and Watson (1991). Stock and Watson (1991)

notice that ∆Ct is a function of past lags of ∆Yt. Stock and Watson then derive an

estimate of δ by taking the expected value of ∆Ct. This method employs the steady-

state Kalman gain. Once, we have an estimate for δ we can compile Ct. Ct is the

common component or sentiment index in levels. We label Ct as SENT.
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We estimate the model using the Bayesian multimove Gibbs-sampling approach

based on Carter and Kohn (1994) and Kim and Nelson (1998). The Bayesian method

takes into account parameter uncertainty by jointly estimating the state vector and

the model parameters. In contrast, traditional maximum likelihood treats the model

parameters as true values when estimating the state vector.

To implement the estimation algorithm we use the MCMC Gibbs-sampling

method. We run the algorithm 10,000 times and drop the first 2000 iterations. For

further explanation of these techniques see Kim and Nelson (1998, 1999).

2.4 Empirical Results

We interpret the common component, Ct as the sentiment index and label it SENT.

Table 2.2 shows the estimated parameters from the dynamic factor model. i = 1, . . . , 5

represent div, earn, size, lowmom, and sp500 respectively. As mentioned above, the

factor loading for variable i is γi. The factor loadings all have the expected positive sign.

Furthermore, the loadings for div, earn, size, and lowmom are much higher than the

loading for sp500. This results is not surprising: based on prior research we expect the

div, earn, size, and lowmom series to more directly capture sentiment. The parameters

φ1 and φ2 represent the autoregressive coefficients on the sentiment index. φ1 and φ2

are positive; this suggests that the sentiment index is persistent. Lastly, the coefficients

on the lags of the idiosyncratic components (the ψi’s) are small in magnitude. Hence,

idiosyncratic components are not persistent.

[Insert table 2.2 here.]

We plot SENT in figure 2.2. High values of SENT correspond to high levels of

agent sentiment or optimism; low values of SENT correspond to low levels of agent sen-

timent or pessimism. The gray bands around SENT represent its 95 percent confidence
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intervals. These confidence intervals are the 5th and 95th percentiles from the posterior

distribution of the Gibbs-sampler. The confidence intervals are extremely tight. This

shows the robustness of our estimation approach given the data. The vertical bars in

figure 2.2 represent bear markets defined as a 20 percent or more drop in the S&P500

over a two or more month period. Overall, SENT rises and falls with agent sentiment:

SENT levitates as bubbles develop and crashes as bear markets take hold.

[Insert figure 2.2 here.]

We plot SENT versus BWsent in figure 4.3. SENT is the solid line; BWsent

is the dotted line. SENT and BWsent follow the same overall pattern, but SENT more

accurately times sentiment episodes. For example, SENT peaks just prior to the bear

markets in the mid-1950s, late 1960s, mid 1970s, early 1980s and early 2000s. This

matches our expectations as sentiment cycles should coincide with stock booms and

busts. BWsent, on the other hand, continues to rise through the bear markets in the

late 1960s, early 1980s and early 2000s.

[Insert figure 4.3 here.]

SENT also corresponds with the anecdotal accounts of sentiment episodes out-

lined in Baker and Wurgler (2006). First, Baker and Wurgler (2006) find a bubble

during 1961. SENT reaches a local maximum during this period and then falls as the

bear market ensues in 1962. Baker and Wurgler (2006) document bubbles in 1977 and

1978 and again in the first half of 1983. Our index spikes around these bubbles. SENT

crashes through the bear markets in 1987 and 1990. SENT then rises through the mid-

1990s before peaking prior the 1997 Asian financial crisis and the collapse of Long Term

Capital Management. SENT rockets up during the internet bubble in the late 1990s

and then crashes in 2000. Lastly, SENT plummets through the credit crisis in 2008.
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2.4.1 SENT, Macroeconomic Indicators, and Time-Varying Risk

Next we check the robustness of our index to the inclusion macroeconomic indicators

and time-varying risk as additional controls. We use a process similar to Baker and

Wurgler (2006). For each component of our index we control for (regress out) growth

in industrial production (INDPRO), consumer durables (IPDCONGD), consumer

nondurables (IPNCONGD), the one month Treasury rate (TREAS), and NBER re-

cessions (NBER). These factors allow us to control for broad macroeconomic effects.

We also control for the S&P500 monthly volatility (sp500vol) and the BAA–AAA cor-

porate spread (BAA − AAA). sp500vol and (BAA − AAA) allow us to control for

time-varying risk in the stock and bond markets.8

We run the following regression where yit, i = 1, . . . , 5 is any of the components

our index.

yit = α+ β1INDPROt + β2IPDCONGDt + β3IPNCONGDt

+ β4TREASt + β5NBERt + β6sp500volt + β7(BAA−AAA) + εit (2.11)

We then re-compile our index using the residuals from the regression, εit, to develop an

“orthogonalized index.” If our original index and the orthogonalized index are similar,

we contend that our methodology is robust to business cycle indicators and time-varying

risk. The correlation between our original index and the macro-orthogonalized index

is 0.80. We plot the orthogonalized index and SENT if figure 2.4. SENT and the

orthogonalized index share the same pattern and turning points. The only difference is

the magnitude during some periods. The orthogonalized index stays below SENT prior

8We obtained growth in industrial production, consumer durables, consumer nondurables, and the
BAA and AAA series from the FRED economic database. The series IDs are INDPRO, IPDCONGD,
IPNCONGD, and BAA and AAA, respectively. The one-month Treasury rate is available from Kenneth
French’s Data library. We calculate the monthly volatility by taking the standard deviation of S&P500
daily returns for each month.
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to 1980 and above SENT after 1980. After the bear market in 2002, SENT and the

orthogonalized index are nearly identical. Overall, our sentiment index appears robust

to macro indicators and time-varying risk. As shown below, orthogonalizing SENT

to the macro indicators and time-varying risk does not affect the relationship between

sentiment and stocks returns.

[Insert figure 2.4 here.]

2.5 Empirical Tests

In this section we study the relationship between sentiment and future returns for vari-

ous types of stocks. We form decile portfolios based on the following firm characteristics:

(1) size (ME); (2) age; (3) volatility (Total Risk, σ); (4) the earnings-price ratio (Earn);

(5) the dividend-price ratio (Div); (6) the book-to-market ratio (BE/ME); and (7) mo-

mentum (Mom).9 Portfolios based on ME, Earn, Div, BE/ME, and Mom are from

Kenneth French’s Data Library. We compile the portfolios based on age and volatility

from the CRSP database using share codes 10 and 11. We count a stock’s age from

the first date it is listed in the CRSP. We then form decile breakpoints using the prior

month’s age. To compile the portfolios based on volatility, we calculate the prior 2-12

month standard deviation for each stock. We then construct decile based on volatility.

2.5.1 A Stationary Sentiment Index

The sentiment index, SENT, developed sections 4.2 and 4.3 is not stationary. Yet to

analyze the relationship between sentiment and stock returns we need a stationary series.

First, we test for breaks. We calculate the Quandt (1960) statistic and test the null

hypothesis of no structural break based on the Andrews (1993) critical values. Hansen

9These portfolios are similar to the portfolios studied in Baker and Wurgler (2006).
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(1997) develops p-values based on the Andrews critical values.10 We find a structural

break in 2000M12 with a Hansen (1997) p-value of 0.001. Based on this break date, we

split SENT into two subsamples: [1951M09, 2000M11] and [2001M01, 2009M09]. There

are no structural breaks in these subsamples. Hence, SENT contains only one break in

2000M12. After controlling for the break in 2000M12, we find that SENT is still not

stationary. Thus, we need to use a differenced series.

One benefit of the dynamic factor model is that it produces ∆ct as a byproduct.

As noted above, we interpret ∆ct as the de-meaned first difference in SENT (∆SENT∗

hereafter).11 ∆SENT∗ is a stationary series. Hence, we use it to study the relationship

between sentiment and stock returns in the remainder of the paper. We plot ∆SENT∗

in figure 4.4. As expected, ∆SENT∗ is most volatile around major episodes of investor

sentiment.

[Insert figure 4.4 here.]

2.5.2 Returns for Stocks Sorted by Firm Characteristics and Sentiment

Using the decile portfolios described in section 2.5, we sort returns based on the prior

month’s sentiment growth, ∆SENT∗. More specifically, we compare returns when

∆SENT∗ is high in the previous month to returns when ∆SENT∗ is low in the pre-

vious month. ∆SENT∗ is high in the previous month if it is above the mean and vice

versa. These conditional sorts allow us to non-parametrically study the relationship

between sentiment and future returns across different types of stocks.

Table 2.3 and figure 2.6 show the results. In both table 2.3 and figure 2.6

10The Quandt statistic is the maximum Chow (1960) statistic over the sample. We interpret the
Quandt statistic as the best candidate for a breakpoint. See Hansen (2001) for an overview of these
methods.

11We use ∆SENT∗ rather than the first difference in SENT since ∆SENT∗ comes directly from the
model. Recall that the dynamic factor model derives SENT from ∆SENT∗. Hence, ∆SENT∗ is a more
parsimonious than the first difference in SENT. Using the first difference in SENT does not significantly
affect our regression results below.
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High represents times when ∆SENT∗t−1 is above the mean; Low represents times when

∆SENT∗t−1 is below the mean; Ave represents the average across both High and Low;

and Dif represents the difference between High and Low. In figure 2.6 we plot Dif times

−1 so it is easily visible below the horizontal axis. As the effects of sentiment rise, Dif

increases in magnitude.

The top rows in table 2.3 and figure 2.6a show the results based on size (ME).

When ∆SENT∗t−1 is high, returns are above average for all but the largest stocks. In

orther words, rising sentiment magnifies the size effect of Banz (1981). Surprisingly, the

size effect reverses during times of falling sentiment: when ∆SENT∗t−1 is Low, smaller

stocks earn lower returns on average than larger stocks. For the top two deciles com-

prising the largest stocks, rising sentiment leads to below average returns and vice versa.

This negative relationship between sentiment and future returns is unique to the top

two deciles of the size-based portfolios.

Next, we examine the results for the portfolios based on age in the second set

of rows in table 2.3 and in figure 4.5b. Sentiment affects the entire cross-section, but the

effect is marginal for the oldest stocks. When ∆SENT∗t−1 is High, returns for all of the

deciles are above Ave; and vice versa when ∆SENT∗t−1 is Low. Thus, rising sentiment

leads to above average returns and vice versa.

The results in figure 4.5c for portfolios based on volatility are remarkable.

Sentiment has almost no effect on the least volatile stocks, the stocks constituting first

decile, but a large effect on the most volatile stocks, the stocks constituting the tenth

decile. For the most volatile stocks, Dif is large in magnitude; Dif then converges to

zero as volatility abates. Hence, the effect of sentiment is larger for riskier stocks.

Furthermore, the effect of ∆SENT∗t−1 is nearly symmetrical around Ave during periods

of rising or falling sentiment: High values of ∆SENT∗t−1 relate to high returns and vice
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versa. We discuss the relationship between sentiment and risk further in section 2.5.5.

Figures 4.5e and 4.5d show the sorts based on dividends and earnings. The zero

on the horizontal axis in figure 2.6 represents the portfolios comprising stocks without

earnings or stocks without dividends. Coinciding with our expectations, sentiment has

its largest effect on the stocks without dividends or earnings. The far right column of

table 2.3 shows the difference in monthly returns between stocks with positive earnings

and those without earnings; and the difference between stocks with positive dividends

and those without dividends. When ∆SENT∗t−1 is High, stocks without earnings or

dividends perform best; the opposite occurs when ∆SENT∗t−1 is Low. This result is

not surprising; stocks without earnings or dividends have less information available and

should be more affected by sentiment.

Figure 2.6f shows the results based on the book-to-market ratio (BE/ME).

Sentiment affects all stocks in the cross-section. Yet as demonstrated by the plot of Dif,

sentiment has its largest effect on low book-to-market stocks or growth stocks.

The sorts for the portfolios based on momentum are also noteworthy. The last

set of rows in table 2.3 and figure 2.6g show the results. The upward slope in Ave is

the well-documented momentum effect: high momentum portfolios earn higher future

returns and vice versa for low momentum portfolios. Sentiment affects the entire cross-

section of momentum stocks, but the effect is not constant. Sentiment has a larger

effect on the extreme momentum portfolios. The U-shaped pattern in Dif highlights

the varying effects of sentiment on momentum stocks. Sentiment has a larger effect

on the highest and lowest momentum stocks. When ∆SENT∗t−1 is High, high momen-

tum stock earn extremely high returns. For example, the tenth decile comprising the

highest momentum stocks produces monthly returns of 1.82% for Ave compared with

monthly returns of 2.52% when ∆SENT∗t−1 is High. This result corresponds with our
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expectations: during times of high sentiment, like during the 1990s tech bubble, high

momentum stocks perform well. The lowest momentum stocks, the losers constituting

the bottom decile, also perform well as sentiment rises. When ∆SENT∗t−1 is High, the

lowest momentum stocks earn 1.96% per month. Interestingly, the momentum effect

only persists for Low values of ∆SENT∗t−1; in figure 2.6g Low slopes upwards.

In summary, for all but the safest stocks, rising sentiment leads to above average

returns and vice versa. Yet sentiment has its largest effect on small, young and volatile

firms; firms without earnings or dividends; growth stocks; high momentum stocks; and

stocks in distress. As noted above, we call these stocks “the set of sentiment driven

stocks.”

2.5.3 Return Volatility for Stocks Sorted by Firm Characteristics and Sen-

timent

Next, we study the relationship between sentiment and return volatility for different

types of stocks. We sort stocks into bins based on firm characteristics and ∆SENT∗t−1

using the procedure in sections 2.5 and 2.5.2. Then we calculate standard deviation for

each bin. Table 2.4 and figure 2.7 show the results. The format of the table 2.4 and

figure 2.7 is similar to table 2.3 and figure 2.6 outlined in section 2.5.2.

For all of the decile portfolios in table 2.4 and figure 2.7, rising sentiment leads

to below average return volatility. When ∆SENT∗t−1 is high, the standard deviation

of the returns is below average, and vice versa. Thus, risk falls as sentiment rises.

This result holds for portfolios based on size (ME), age, volatility (Total Risk, σ), the

earnings-price-ratio, the dividend-price ratio, the book-to-market ratio, and momentum.

Rising sentiment leads to rising returns and lower risk, and vice versa. Hence,

our results show that investors should ride waves of agent sentiment and then exit the
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market before sentiment falls. These findings match the theoretical results of Abreu and

Brunnermeier (2003). Abreu and Brunnermeier find that rational arbitrageurs have a

profit incentive to ride waves of investor sentiment and then try to exit the market right

before the crash.

2.5.4 In-Sample Predictive Regressions

In this section, we run in-sample regressions to determine the predictive power of sen-

timent on future returns in a model-based framework. We use the stationary ∆SENT∗

series outlined in section 4.4

To conduct our regressions, we lag ∆SENT∗ by one period. We also control for

the three factors, MKT , HML and SMB of Fama and French (1993) and a momentum

factor. If one of these factors is used as the dependent variable we do not include it

in our set of regressors. We construct long-short portfolios based on the various firm

characteristics listed in section 2.5. We build the long-short portfolios by comparing the

high, medium and low deciles. The top three deciles are high; the middle four deciles

are medium; and the bottom three deciles are low. Let the variable Zt represent any of

the long-short portfolios. The regression equation becomes:

Zt = α+ β1∆SENT∗t−1 + β2MKTt + β3SMBt + β4HMLt + β5UMDt + εt (2.12)

Table 4.3 shows the regression results. The left panel shows the results for

∆SENT∗; the right panel shows the results using the orthogonalized index. We calculate

the orthogonalized index by first regressing out the macroeconomic and time-varying risk

indicators described in section 2.4.1. The left most column holds the dependent variable

used for the regression in equation 4.11. In each panel, the left column holds the beta on

the sentiment index and the right column holds its bootstrapped p-value in parentheses.

[Insert table 4.3 here]
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The results are similar for the regressions on ∆SENT∗ and orthogonalized

∆SENT∗: controlling for the macroeconomic and time-varying risk indicators only

marginally changes the coefficients or their p-values. Thus, the relationship between

sentiment and returns is robust to the inclusion of the macroeconomic and time-varying

risk indicators as additional controls.

Panel A shows the effects of sentiment on size (ME), age, and risk (σ). We

compare small and large firms; young and old firms; and high and low volatility stocks.

All of the regression coefficients are positive and significant at the one percent level.

Hence, sentiment has a larger effect on small, young and volatile firms. The positive

regression coefficients also suggest that rising sentiment relates to rising returns, and

vice versa.

In Panel B we study the effect of sentiment on earnings and dividend based

portfolios. More specifically, we compare firms without earnings to those with posi-

tive earnings, and firms without dividends to those with positive dividends. Clearly,

sentiment has a larger effect on stocks without earnings or dividends. The coefficients

are positive and significant at the one percent level. So, for stocks without earnings or

dividends, rising sentiment leads to rising returns.

Panels C and D show portfolios based on the book-to-market ratio. In Panel C,

we examine the effects of sentiment on HML. Stocks with a high book-to-market ratio

may be undervalued or in distress; stocks with a low book-to-market ratio are often

growth stocks. The positive regression coefficient suggests that sentiment has a larger

effect on stocks in distress. In Panel D, we focus on growth stocks. More specifically, we

study the Medium − Low long-short portfolio based on the book-to-market ratio. Not

surprisingly, the coefficient on the sentiment index is negative. Thus, sentiment has a

positive effect on growth stocks.

22



Panel E shows sentiment’s effect on the momentum factor, UMD. The top

momentum deciles are obviously high momentum stocks; the bottom deciles are stocks

in distress. In this case, the coefficient on the sentiment index is positive and significant.

Hence, sentiment has a larger effect on high momentum stocks.

In Panel F we focus soley on high momentum stocks using the long-short

portfolio High−Medium. In this regression we control for the momentum factor, UMD.

Yet the regression coefficient is still positive and statistically significant at the 10 percent

level. This implies that sentiment has an effect on high momentum stocks beyond the

momentum factor.

Panel G focuses on stocks in distress. In particular, we study the High −

Medium portfolio based on the book-to-market ratio, and the Medium− Low portfolio

based on momentum. The regression coefficients have the expected sign: the coefficient

is negative for the portfolio based on momentum and positive for the portfolio based on

the book-to-market ratio. Hence, rising sentiment lifts stocks in distress.

Overall, the coefficients are positive and significant when we go long the set

of sentiment driven stocks, and vice versa. The regressions are robust to the inclusion

of macroeconomic and time-varying risk indicators, the Fama-French Factors, the mo-

mentum factor as additional controls. These results match our findings based on sorts:

rising sentiment leads to rising returns for the set of sentiment driven stocks and vice

versa.

2.5.5 Sentiment and Risk

In section 2.4.1 we orthogonolized SENT to time-varying risk. In this section we examine

the relationship between our sentiment index and risk in the cross-section. Standard

portfolio theory (e.g. the CAPM model) contends that riskier portfolios should always
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have a higher expected return. The volatility is a measure of the portfolio’s risk. Hence,

a portfolio with a larger volatility should earn higher expected returns. From this

perspective, one may argue that our sentiment index is just capturing varying degrees

of risk rather than the effects of sentiment. To study this issue we consider an exercise

similar to that of Baker and Wurgler (2007). We form ten decile portfolios based on

volatility. The third set of rows in table 2.3 and figure 4.5c show the average returns for

these portfolios. The results coincide with our expectations: the more volatile portfolios

are riskier and earn larger average returns. Hence, on average, the CAPM predictions

hold. In addition, we examine portfolio returns when ∆SENT∗ is high in the previous

month and when ∆SENT∗ is low in the previous month. As mentioned above, ∆SENT∗

is low during the previous month if it is below the mean and vice versa for high levels of

∆SENT∗. When ∆SENT∗ is high during the previous month, the portfolios with higher

volatility earn much higher returns. The results reverse when ∆SENT∗ is low during

the previous month. In this case, high beta portfolios earn much lower returns than low

beta portfolios. These results violate CAPM predictions. Baker and Wurgler (2007)

label the graph in figure 4.5c as “the sentiment seesaw.” Not surprisingly, given the

above regressions, our empirical seesaw and Baker and Wurgler’s are inverses. We both

find, however, that standard portfolio theory fails to explain the results: for a given level

of sentiment, riskier stocks earn lower future returns. In Baker and Wurgler’s words,

“This is a powerful confirmation of the sentiment-driven mispricing view.”

2.6 Sentiment Cycles

Using the stationary ∆SENT∗ index outlined in sections 4.2 and 4.3 we date cycles in

sentiment growth. Recall that we interpret ∆SENT∗ as the first difference (or growth)

in sentiment. Hence, a peak in ∆SENT∗ indicates the point where sentiment grew the
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fastest and vice versa. Our goal is to determine trends in the growth rates of sentiment.

This will allow us to study the relationship between sentiment growth and bear markets.

We find that peaks in sentiment growth rates often act as a leading indicator of bear

markets. Hence, practitioners and policymakers could use sentiment growth rates to

make decisions regarding the state of the market.

To our knowledge, no other work has quantitatively chronicled sentiment cy-

cles.12 To date the cycles we employ a modified Bry-Boschan algorithm. The Bry-

Boschan algorithm is a set of conditional rules to find local highs and lows in a series.

We modify the algorithm by first adding an extra layer of smoothing. Then we change

the window lengths of the cycle durations in the algorithm to fit our data. We also

require that the magnitude of each phase be greater than 1.5 standard deviations of

the entire index. This ensures that small blips are not recorded as peaks or troughs in

sentiment growth. Appendix 2.9 shows the exact set of rules we set for the algorithm.

Table 2.7 and figure 2.8 show the results. The gray shaded areas in the figure represent

peak to trough episodes in ∆SENT∗; the light blue shaded areas are bear markets. The

modified algorithm appears to capture the dynamics in the growth rate of sentiment.

Furthermore, sentiment growth peaks prior to most bear markets. This is the case for

the bear markets that begin in 2008, 2000, 1987, 1981, 1976, 1968, 1966 and 1957. Our

algorithm does not record a peak in sentiment growth prior to the bear market in 1961.

Also, sentiment growth peaks just after the light bear market in the early 1990s.

In addition, the algorithm records other sentiment cycles. These usually occur

as sentiment growth levitates following bear markets. For example, the algorithm records

peaks following the bear markets in 2002, 1990, 1982 and 1957. This result is not

12Baker and Wurgler (2006) document anecdotal periods of sentiment. Their approach is qualitative.
We compare our sentiment index to these accounts in section 4.3.

25



surprising since the stocks most affected by sentiment produce their greatest returns

following bear markets. Clearly, there is a correlation between sentiment growth and

bear markets. More study is needed, however, to determine the nature of the relationship

and its causality.

[Insert table 2.7 and figure 2.8 here.]

2.7 Conclusion

In this paper we develop SENT, a market returns based measure of investor sentiment.

Using market returns frees SENT from the surveying and sampling issues that plague

other sentiment indexes. To compile SENT we use a dynamic factor model with Bayesian

estimation. This estimation technique smooths the noise found in return series and

compiles an index in levels that we compare directly to other sentiment aggregates. Using

conditional sorts we find that rising sentiment leads to rising returns and lower risk. In a

regression framework we control for macroeconomic and time-varying risk indicators the

Fama-French factors. We again find that rising sentiment leads to rising returns, and

vice versa. Furthermore, sentiment has its largest effect on the set of sentiment-driven

stocks. The sentiment-driven stocks are small, young and volatile stocks; stock without

earnings or dividends; growth stocks; momentum stocks; and stocks in distress. Lastly,

we quantitatively chronicle cycles in sentiment growth using a modified Bry-Boschan

algorithm. We find that cycles in sentiment growth often lead bear and bull markets.
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2.8 Appendix: Baker and Wurgler’s (2006, 2007) Sentiment Index

Data for Baker and Wurgler (2006, 2007) is available from Jeffrey Wurgler’s website.

The following list contains the components of Baker and Wurgler’s index:

• The closed end fund discount (CEFD): The average difference between the net-
asset-value (NAV) of closed-end stock funds and their market prices.

• NYSE share turnover (TURN): the ratio of reported share volume to the average
shares listed for the New York Stock Exchange

• The number of IPOs over a given month (NIPO)

• The average first day return of IPOs for each month (RIPO)

• The equity share of new issues (S): The gross equity issued divided by the gross
equity plus debt issued

• The dividend premium (PD−ND): the log difference between the average book-to-
market ratios of dividend and non-dividend paying stocks.

See Lee, Shleifer and Thaler (1991), Ibbotson, Sindelar and Ritter (1994),

Baker and Wurgler (2000), Baker and Stein (2004) and Baker and Wurgler (2004) for

more detailed analysis of these measures.

Baker and Wurgler use the first principal component as the factor loading

on each variable. The following equation of shows the construction of BWsent at the

monthly frequency as in Baker and Wurgler (2007):

BWsent =− 0.23CEFD + 0.23TURN + 0.24NIPO

+ 0.29RIPO +−0.32PD−ND + 0.23S (2.13)

Baker and Wurgler (2006) develop BWsent at an annual frequency and sim-

ilar results. Baker and Wurgler (2006) and Baker and Wurgler (2007) find a similar

relationship between sentiment and stock prices; high sentiment relates to low returns.
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2.9 Appendix: Procedure For Determination of Turning Points

1. Filter the series using the HP Filter with the smoothing parameter set to 150.

2. Remove outliers from the data and replace them using the Spencer curve.

3. Determination of initial turning points in raw data

(a) Determination of initial turning points in raw data by choosing local peaks
(troughs) as occurring when they are the highest (lowest) values in a window
12 months on either side of the date.

(b) Enforcement of alternation of turns by selecting highest of multiple peaks (or
lowest of multiple troughs)

4. Censoring operations (ensure alternation after each)

(a) Elimination of turns within 6 months of the beginning and end of the series

(b) Elimination of peaks (or troughs) at both ends of the series that are lower
(or higher) than values closer to the end

(c) Elimination of cycles whose duration is less than 24 months

(d) Elimination of phases whose duration is less than 4 months or whose magni-
tude is smaller than 1.5 standard deviations of the sentiment index.

5. Statement of final turning points
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2.10 Appendix: Tables

Table 2.1: The correlation of sentiment components

Div Earn Size Lowmom

Div 1 0.86 0.8 0.79
Earn 0.86 1 0.73 0.69
Size 0.8 0.73 1 0.62
Lowmom 0.79 0.69 0.62 1
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Table 2.2: Bayesian posterior distribution.

Variable Mean Med Std

φ1 0.233 0.234 0.014
φ2 0.009 0.009 0.014
γ1 3.660 3.657 0.092
ψ11 0.012 0.012 0.055
ψ12 0.006 0.006 0.055
σ21 0.561 0.555 0.121
γ2 3.778 3.777 0.119
ψ21 -0.168 -0.170 0.043
ψ22 0.025 0.025 0.042
σ22 4.809 4.794 0.287
γ3 6.282 6.274 0.237
ψ31 0.195 0.195 0.041
ψ32 -0.074 -0.074 0.041
σ23 24.211 24.182 1.358
γ4 3.233 3.230 0.120
ψ41 0.040 0.040 0.040
ψ42 0.053 0.054 0.041
σ24 6.414 6.401 0.374
γ5 1.324 1.321 0.118
ψ51 0.220 0.220 0.039
ψ52 -0.055 -0.054 0.037
σ25 9.728 9.683 0.534

Notes: See section 4.2 for a description of the model. i = 1, . . . , 5 represent the five series, div, earn,
size, lowmom and sp500, respectively. γi is the coefficient on the common component in equation 4.1.
φi are the coefficients on lags of the common component in equation 4.2. ψi are the coefficients on lags
of the idiosyncratic component in equation 4.3.
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Table 2.6: Regressions—Portfolio Returns and Sentiment

∆SENT∗t−1 Ortho ∆SENT∗t−1

β p-val β p-val

Panel A: Size, Age, and Risk

ME SMB 0.288 (0.004) 0.260 (0.007)
Age Young-Old 0.189 (0.000) 0.172 (0.000)
σ High-Low 0.556 (0.000) 0.512 (0.000)

Panel B: Profitability and Dividends

DIV = 0− > 0 0.699 (0.000) 0.638 (0.000)
EARN ≤ 0− > 0 0.875 (0.000) 0.875 (0.000)

Panel C: Growth Opportunities and Distress

BE/ME HML 0.180 (0.031) 0.181 (0.026)

Panel D: Growth Opportunities

BE/ME Medium-Low -0.103 (0.012) -0.106 (0.007)

Panel E: Momentum and Distress

Mom UMD 0.418 (0.003) 0.440 (0.001)

Panel F: Momentum

Mom High-Medium 0.050 (0.090) 0.055 (0.069)

Panel G: Distress

BE/ME High-Medium 0.098 (0.005) 0.078 (0.007)
Mom Medium-Low -0.198 (0.001) -0.152 (0.011)

Notes: Regressions of long-short portfolios at time t on ∆SENT∗
t−1. See equation 4.11. In each regression

we control for the Fama-French factors and the momentum factor. If one of the the Fama-French
factors or the momentum factor is the dependent variable, then we eliminate from the set of regressors.
Portfolios are formed on size (ME), age, total risk (σ), the dividend-price ratio (Div), the earnings-price
ratio (Earn), the book-to-market-ratio (BE/ME), or momentum (Mom). High represents the top three
deciles, medium represents the middle four deciles, and low represents the bottom three deciles. The left
panel shows the results using the original sentiment index. The right panel shows the results using the
sentiment index orthogonalized to the macro indicators listed in section 2.4.1. The left column of each
panel lists the regression coefficient (β) on the sentiment index; the right column lists the bootstrapped
p-value.
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Table 2.7: Peaks and troughs in Sentiment.

Peak Trough

195412 195707
195808 196004
196512 196608
196707 197003
197201 197212
197504 197608
197804 197902
198001 198110
198302 198406
198703 198711
199107 199207
199601 199701
199911 200011
200306 200408
200511 200806

Notes: The algorithm used to determine the turning points is described in sections 2.6 and appendix
2.9.
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2.11 Appendix: Figures

Figure 2.1: Baker and Wurgler’s Sentiment Index (BWsent)
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Notes: Shaded areas are bear markets defined by a 20 percent or more drop in the S&P 500 over a two
or month period. Data is monthly. The horizontal axis holds the date.
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Figure 2.2: SENT
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Notes: The sentiment index (SENT) developed in section 4.2. The Date is along the horizontal axis
and the level of agent sentiment (SENT) is along the vertical axis. High values of SENT correspond to
high levels of agent sentiment. The gray bands represent 95 percent confidence intervals for SENT. The
shaded vertical bars represent bear markets defined as 20 percent or more drop in the S&P 500 over a
two or more month period.

Figure 2.3: BWsent vs. SENT
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Notes: Shaded areas are bear markets defined by a 20 percent or more drop in the S&P 500 over a two
or month period. The black line is SENT. We compile SENT via a dynamic factor model. The red
dashed line is BWsent. The horizontal axis holds the date.
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Figure 2.4: SENT vs. Orthogonalized SENT
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Notes: SENT (the black line) is the sentiment index developed in section 4.2. We calculate Orthogonal-
ized SENT (the red, dashed line) by first regressing the components of SENT on macroeconomic factors
and then compiling the index. Orthogonalized SENT accounts for the macroeconomic and time-varying
indicators described in 2.4.1. Shaded areas are bear markets defined by a 20 percent or more drop in
the S&P 500 over a two or month period. The horizontal axis shows the date.

Figure 2.5: ∆SENT*
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Notes: The graph of ∆SENT*. We interpret ∆SENT* as the first difference in sentiment. The vertical
bars represent bear markets defined as a 20 percent of more drop in the S&P 500 over a two or more
month period.
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Figure 2.6: Returns for Stocks Sorted by Firms Characteristics and ∆SENT∗
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Notes: This figure shows returns sorted by firm characteristics and by ∆SENT∗
t−1. Decile portfolios

are on the horizontal axis and monthly returns are on the vertical axis. Panel (h) shows the legend.
The solid black line represents average monthly returns (Ave); the dashed line represents returns when
∆SENT∗ is high in the previous month (High); the dotted line represents returns when ∆SENT∗ is low
in the previous month (Low); and the dash-dot represents -1 times the difference between returns when
∆SENT∗ is high in the previous month and when ∆SENT∗ is low on the previous month (Dif). For
Panels (a) through (g), portfolios are based on size (ME), age, total risk (σ), the earnings-price ratio
(Earn), the dividend-price ratio (Div), the book-to-market ratio (BE/ME), and momentum (Mom). For
the portfolios based on earnings and dividends, zero on the horizontal axis represents firms with no
earnings or no dividends.
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Figure 2.7: Return Volatility for Stocks Sorted by Firms Characteristics and ∆SENT∗
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Notes: This figure shows return volatility sorted by firm characteristics and by ∆SENT∗
t−1. Decile

portfolios are on the horizontal axis and monthly returns are on the vertical axis. Panel (h) shows the
legend. The dashed line represents the standard deviation of monthly returns when ∆SENT∗ is high
in the previous month (High); the dotted line represents the standard deviation of monthly returns
when ∆SENT∗ is low in the previous month (Low); the solid black line represents the average standard
deviation over both High and Low (Ave); and the dash-dot represents the difference between High and
Low (Dif). For Panels (a) through (g), portfolios are based on size (ME), age, total risk (σ), the earnings-
price ratio (Earn), the dividend-price ratio (Div), the book-to-market ratio (BE/ME), and momentum
(Mom). For the portfolios based on earnings and dividends, zero on the horizontal axis represents firms
with no earnings or no dividends.
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Figure 2.8: Cycles in sentiment growth
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Notes: SENT is the black line. The gray bands around SENT are its 95 percent confidence intervals.
The shaded gray areas represent peaks to troughs in sentiment growth, ∆SENT∗. The modified Bry-
Boschan algorithm described in section 2.6 and appendix 2.9 determines the turning points in sentiment
growth, ∆SENT∗. The shaded light blue areas represent bear markets defined as a 20 percent or more
drop in the S&P500 over a two or more month period.
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Chapter 3

Two-Stage Model Averaging: An Application to

Forecasting Stock Returns using Investor Senti-

ment

Abstract: We develop two-stage model averaging (2SMA), an extension of model av-

eraging. 2SMA is an easy-to-implement, flexible framework that allows researchers to

incorporate prior economic information. 2SMA helps researchers deal with the ‘crowding

out effect.’ Researchers can combine 2SMA with any other model averaging technique.

In an application, we develop two-stage Bayesian model averaging (2SBMA), the two-

stage model averaging extension of dynamic Bayesian model averaging, and two-stage

equal-weighted averaging (2SEWA). Through 2SBMA and 2SEWA we forecast stock

returns using investor sentiment. We find that the 2SBMA and 2SEWA forecasts sta-

tistically outperform the benchmark random walk plus drift over the sample period.

The 2SBMA and 2SEWA forecasts also both beat their traditional model averaging

counterparts.
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Researchers consider a large number of models that often contain a large num-

ber of specifications when developing their forecasts. To circumvent choosing just one

model with one specification researchers use model averaging. Model averaging allows

researchers to diversify, account for uncertainty, reduce volatility, and improve accu-

racy. But as the number of models and specifications grow, the weights on consistently

top-performing models may fall.1 We call this the ‘the crowding out effect.’

Crowding out is problematic when certain models perform well over time and

don’t receive a large enough weight in the final forecast.2 For example, suppose we

want to forecast stock returns one step ahead; where yt+1 is the return at time t + 1.

Suppose moreover that we use an exogenous variable, xt to forecast yt+1 with a linear

model. We may have many specifications to choose from for the linear model. Yet the

efficient market hypothesis says that the random-walk plus drift model, whose forecast

is an equal-weighted average, should outperform other models over time.3 So, to create

the final forecast we average over the random-walk plus drift and the linear model. In

all likelihood, there is uncertainty regarding the choice of the optimal specification of

the linear model. If we consider all possible specifications in the combined forecast, the

weights on the specifications of the linear model may crowd out the random-walk plus

drift. This is especially true if we use equal or relative weights. Hence, the random-walk

plus drift may receive a lower weight than we expect. In essence, crowding out occurs

when there is unexploited prior information in a model averaging problem.

Previously, researchers dealt with crowding out in one of the following ways:

1. Use equal-weights to average across all specifications of the linear model and the

1This result holds for the popular equal-weights and for schemes based relative weighting. Equal
weights and relative weights usually perform best in practice. See Timmermann (2006)

2Aiolfi and Timmermann (2006) say models that perform well over time are ‘persistent.’
3The random-walk plus drift also performs well compared to various individual models in practice.

See Goyal and Welch (2008), Timmermann (2008).
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random-walk plus drift: Even though equal weights often perform well in practice

(Timmermann (2006)), as noted above, crowding out will occur.

2. Use a model selection criterion to choose a specification for the linear model:

Timmermann (2008) and Aiolfi and Timmermann (2006) use the Bayesian infor-

mation criterion (BIC) to choose the optimal specification for the linear model.

This approach neglects information contained in competing specifications and the

uncertainty related to the choice of the optimal specification.

3. Trimming: If we trim poor performing specifications of the linear model there is

still no guarantee that crowding out will not occur.

4. Estimate the weights based on past performance: Estimating the weights based on

past performance has received much attention in the literature.4 Yet these methods

may not eliminate the crowding out effect.5 Schemes based on past performance

may also place large weights on models that perform well for short periods or

randomly just prior to the forecast date. The weights on these forecasts may

overpower a different model that is known to perform well over time. This point

is alluded to in Timmermann (2008).6 Furthermore, as noted by Timmermann

(2006), more complicated weighting schemes rarely beat simple weighting schemes

in practice.7

To deal with the crowding out effect and incorporate prior economic informa-

tion, this paper develops two-stage model averaging (2SMA). Two-stage model averaging

is a flexible framework that researchers can combine with any other model averaging

4See Timmermann (2006) for an overview of these methods.
5We demonstrate this point in the application below using dynamic Bayesian Model Averaging in

section 3.2.
6Timmermann notes, when forecasting stock returns, that models show local predictability and then

lose their predictive power over time.
7See also Clemen (1989).
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technique. Two-stage model averaging has the following advantages: (1) 2SMA han-

dles the crowding out effect; (2) 2SMA incorporates economic information into a model

averaging framework which can improve forecast performance; (3) 2SMA is easy to

implement; and (4) 2SMA retains all of benefits of traditional model averaging.

2SMA is a two-stage approach. To implement 2SMA in the above example,

we first average over all specifications of the linear model in the first stage, and then

average over both the random-walk plus drift and the linear model in the second stage.

This approach will place a large weight on the random-walk plus drift model even if

we use equal weights. Hence, 2SMA diversifies across specifications of the linear model

while retaining the strong performance of the random-walk plus drift. In general, 2SMA

incorporates prior information by saving the predetermined top-performing model(s) for

the second stage; averaging over other models or specifications in the first stage. In our

above example, we saved the random-walk plus drift for the second stage and averaged

over the linear model in the first stage. The most obvious use for 2SMA occurs when

there is a known benchmark that is difficult to beat. Yet through 2SMA researchers can

augment any model that is known to perform well over time with alternative forecasts.

2SMA easily extends to the case where researchers have different exogenous variables or

different exogenous variables and different models with different specifications.

2SMA is related to model averaging based on clustering. Aiolfi and Timmer-

mann (2006) group forecasts into clusters based on prior forecasting performance, pool

within clusters, and then shrink the optimal combination weights across clusters to-

ward equal weights.8 Practitioners may prefer 2SMA when they have prior information

about a given model that performs well over long time periods even as other models

8Aiolfi and Timmermann use the Bayesian information criterion to choose the specification for the
linear model, 18 Artificial Neural Network Models, 15 Logistic STAR models, and 21 time-varying
autoregressive models.
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show strong performance for short intervals. Hence, 2SMA will perform well when pre-

dictability is ‘elusive’ (Timmermann 2008). Furthermore, 2SMA is easy for practitioners

to implement.

In an application, we forecast market-weighted returns out-of-sample using the

sentiment index of Lutz (2011). We combine 2SMA and Bayesian model averaging

(BMA) to develop two-stage Bayesian model averaging (2SBMA). We compare these

results to two-stage equal-weighted averaging (2SEWA). We find that both the 2SBMA

and 2SEWA techniques beat their traditional model averaging counterparts and outper-

form the benchmark random-walk plus drift in a statistically significant manner. Lastly,

we combine equal-weighted averaging and Bayesian model averaging within the 2SMA

framework to form an equal-weight, Bayesian model averaging hybrid. This technique

also beats the benchmark in a statistically significant manner. We use both Bayesian

model averaging and equal-weighted averaging to demonstrate that the 2SMA approach

can be easily work with simple and more complicated averaging schemes. Overall, our

2SMA forecasts are noteworthy since equal-weights are difficult to beat in practice (Tim-

mermann 2006).

We introduce the application in section 3.1. In section 3.2 and appendix 3.8 we

describe dynamic Bayesian model averaging and demonstrate the crowding out effect.

In section 3.3 we extend dynamic Bayesian model averaging by exploring methods to

choose the optimal training length. We also use these methods to in the first stage of

2SBMA.9 In section 3.4 we outline the two-stage model averaging procedure (2SMA).

Lastly, in section 3.5 we develop two-stage Bayesian model averaging (2SBMA) and

two-stage equal weighted averaging (2SEWA).

9Generally, choosing a training length is necessary for the first stage of 2SMA whenever the weights
are estimated based on past performance.
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3.1 The Data and Application

We introduce the application to serve as an instructive example. Our goal is to predict

market-weighted returns, yt, one-step ahead using the stock sentiment index of Lutz

(2011).10 Lutz (2011) finds that sentiment cycles lead bear markets. Lutz’s sentiment

index uses only return data. So, we can use the sentiment index to replicate a real-

time forecasting exercise. In appendix 3.7, we describe the construction of the index.

Following the notation of Lutz (2011), we represent the sentiment index as ∆SENT∗.

To avoid look ahead bias, we re-estimate ∆SENT∗ for each in-sample period considered.

We have information available up to time period t and forecast returns at time

t+1. Let yt+1 represent returns for time t+1 and εt+1 represent an unpredictable white

noise process.

The benchmark model we consider is the random walk plus drift:

yt+1 = β0 + εt+1 (3.1)

The forecast for this model is the unconditional mean. In out-of-sample forecasting ex-

ercises researchers have struggled to outperform this benchmark on a consistent basis.11

The next model we consider is a linear autoregressive model where lags of

the market return and the sentiment index represent the independent variables. The

specification for this model is as follows:

yt+1 = β0 +

p∑
j=1

αjyt+1−j +

q∑
j=1

βj∆SENT∗t+1−j + εt+1 (3.2)

We force the model to contain at least one independent variable. This ensures

that the linear model differs from the random walk plus drift.

We employ a NARX neural network which approximates an equation of the

10Market-weighted returns are available from Kenneth French’s data library. Other recent sentiment
indexes are developed by Baker and Wurgler (2006, 2007) and Frazzani and Lamont (2008). These
sentiment measures, however, cant not be calculated in real time.

11See Goyal and Welch (2008) and Timmermann (2008).
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following form in a non-linear fashion:

rt+1 = f(rt, rt−1, . . . , rt−p,∆SENT∗t ,∆SENT∗t−1, . . . ,∆SENT∗t−q) (3.3)

For our NARX forecast we consider a model with one hidden layer and one output layer.

We use ten neurons in the hidden layer. To train the network, we opt for Bayesian

regulation. This helps avoid overfitting.12

To evaluate the forecasts we employ the out-of-sample (OOS) R2 measure used

in Campbell and Thompson (2007) and Goyal and Welch (2008). The formula for the

OOS R2 is

R2 = 1− MSEn

MSERWD
(3.4)

Where MSEn is the mean-squared error for model n and MSERWD is the mean-squared

error for the benchmark random walk plus drift. If the OOS R2 is positive, then model n

outperforms the benchmark. We follow the literature and express the OOS R2 statistic

as a percentage.

To evaluate the statistical significance of a model’s performance compared to

the benchmark, we employ the Diebold-Mariano test for non-nested models and the

Clark and West (2007) test for models that nest the benchmark. These tests compare the

loss-differential between the benchmark and the given model. Rejecting the null implies

a statistically significant difference in the loss-differential between the two models.

3.1.1 Individual Forecasts

We show the individual model forecasts in table 3.1. We compile the forecasts from

1970M01 to 2009M09 using a rolling window and recursive estimation.13 We use ten

years of data for the rolling window forecasts and all available data for the recursive

12For more on Bayesian regulation see MacKay (1992) or Foresee and Hagan (1997).
13We estimate the sentiment index using a rolling window (recursively) for the rolling window (re-

cursive) forecasts.
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forecasts. In this section we choose the optimal specification for both the linear and

NARX models using standard econometric techniques.14

We report the mean-absolute error (MAE) for each decade and the OOS R2

statistic for the overall sample. In table 3.1 RWD is the random-walk plus drift model.

Under rolling window estimation, the linear model beats the random-walk plus drift for

the overall sample but the loss-differential is not statistically significant. The linear and

the NARX models both beat the benchmark in the 1970s and 2000s subperiods.

Under recursive estimation, both the linear model and the NARX neural net-

work beat the random-walk plus drift. The loss-differential is significant at the 15

percent level for the linear model.

The random-walk plus drift is more difficult to beat under rolling window

estimation. So, in the remainder of the paper we use the rolling window forecasts for

the individual models and their specifications.

3.2 Average Forecasts and the Crowding Out Effect

We average forecasts using a simple equal-weighted average and Bayesian model aver-

aging (BMA). BMA takes into account the uncertainty regarding the true nature of the

process. There are two main ways implement BMA. The first method assumes that

there is one correct model but the econometrician is ignorant to its true form. Raftery

(1995) and Hoeting et al. (1999) outline this use of BMA. Cremers (2002) and Avramov

(2002) apply this type of BMA procedure to stock return data. Raftery et al. (2005)

develop a dynamic BMA procedure where the correct model changes from time period

to time period. Hence, dynamic BMA estimates the model weights based on past perfor-

14We use the Bayesian Information Criterion (BIC) to choose the optimal specification for the linear
model. For the NARX model, we regress the fitted values on the actual values. We then use the R2 to
choose the optimal specification for the NARX network. This is standard practice in the neural network
literature.
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mance. The dynamic BMA technique then creates the optimal forecast from a weighted

average over a given set of models. Furthermore, dynamic BMA only requires the model

forecasts. This makes it convenient to average over linear and non-linear specifications.

In essence, the dynamic BMA procedure produces an optimal forecast by mixing over a

given set of models. We describe dynamic Bayesian model averaging in more detail in

appendix 3.8.

To implement dynamic Bayesian model averaging we need to choose a training

length over which to estimate the posterior weights. We discard the first 60 observations

to study the different training lengths. This implies we are eliminating half of the 1970s

from our out-of-sample exercise. As noted in table 3.1, the 1970s were a subperiod where

both the linear model and the NARX model outperformed the benchmark. Hence, not

using the first half of the 1970s will negatively affect our results. Despite this handicap,

we do not change the out-of-sample period to avoid data mining.

The dynamic BMA approach combines the random walk plus drift, linear and

NARX forecasts. This implies that the BMA forecast nests the random-walk plus drift

model. Therefore, we must use the Clark and West (2007) test to evaluate forecast

performance.

We consider eight specifications for the linear model (not including the random-

walk plus drift) and eight specifications for the NARX neural network. These specifica-

tions correspond to the number of lags for the autoregressive and sentiment components.

As noted in the introduction, researchers have traditionally averaged over dif-

ferent models with various specifications in the following ways: (1) using equal weights;

(2) estimating the weights based on past performance; or (3) using a model selection

criterion to determine the optimal specification. But all of these techniques are suscep-

tible to the ‘crowding out effect.’ The crowding out effect occurs when the weight on a
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model known to perform well falls as the number of peripheral forecasts grow.

In table 3.2 we average over all models and all specifications using dynamic

Bayesian model averaging and equal-weights.15 The far left column shows the training

length. The middle columns show the average weight applied to each model; standard

deviations are in parentheses. The far right column shows the OOS R2 statistic. For

each ARp,q, p is the number of autoregressive lags and q is the number of sentiment

lags. Similarly for NARXp,q. The last row shows the results using equal weights.

The efficient market hypothesis says that stock returns are unforecastable over

time. This implies that the random-walk plus drift will be the top model. Furthermore,

as noted above, the random-walk plus drift performs well in practice versus other indi-

vidual models. Yet there are 17 different forecasts when we consider all models and all

specifications. Hence, when we use equal-weights, the random-walk plus drift receives a

weight of only 1/17 (5.6 percent); the other forecasts crowd out the random-walk plus

drift. The equal-weighted forecast also performs poorly with an OOS R2 statistic of

-0.123 percent.

Dynamic BMA partially alleviates the crowding out effect: the average weight

on the random-walk plus drift varies from 7.3 percent to 12.6 percent depending on the

training length. The top-performing BMA forecast uses a training length of 40 periods.

Yet the average weight on the random-walk plus drift for this forecast is only 8.9 percent,

a small increase compared to equal-weights. Clearly, the crowding out effect still occurs

under dynamic BMA.

Dynamic BMA does improve performance compared to the equal-weighted fore-

cast. The OOS R2 statistic is positive for 15, 20, 25, 30, 35, 40, 45 and 50 training

lengths. The loss differential between the benchmark and the BMA forecast is sta-

15Table 3.2 extends over two pages.
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tistically significant when we use 25, 40, or 45 training lengths. 40 training lengths

produces the largest OOS R2 statistic at 0.571 percent. Dynamic BMA also beats the

equal-weighted forecasts.

In dynamic BMA, we can interpret the average posterior weights as the average

forecasting performance over the sample. So, the best model overall is the random-walk

plus drift. But the standard deviations of the posterior weights are quite large. This

suggests that the optimal model, according to dynamic BMA, changes over time.

As previously mentioned, we can also choose the optimal specification for each

model and then average over all models to deal with the crowding out effect. This implies

that we average over just three forecasts: one for the random-walk plus drift, one for

the linear model, and one for the NARX neural network. We apply this approach to our

application and show the results in table 3.3. We choose the optimal specification for

the linear model using the Bayesian information criterion (BIC). For the NARX neural

network, we regress the fitted values on the actual data and choose the specification with

the highest R2. We then average over the random-walk plus drift, the linear model, and

the NARX neural network. As noted above, choosing just one specification for each

model neglects information contained in competing specifications.

In table 3.3, the far left column holds the number of training periods for the

dynamic BMA process (the last column shows the results using equal-weights). The

middle columns hold the average posterior weights with their standard deviations in

parentheses. The far right column shows the OOS R2 statistic expressed as a percentage.

Since we average over just three models, the weight on the random-walk plus

drift is 1/3 for equal weights. Yet the OOS R2 statistic is about 0. The weight on the

random-walk plus drift grows when we use dynamic BMA. This leads to an increase in

the OOS R2 statistic.
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Under dynamic BMA, the OOS R2 statistic is positive except when we use

45 or 60 training lengths. Clearly, the drawback to using a model selection criterion

is losing information contained in competing specifications. In our case, this loss of

information adversely affects performance.

Through our application, we have demonstrated that averaging over all speci-

fications for all models crowds out the top-performing forecasts. Furthermore, choosing

the optimal specification via a selection criterion neglects the information contained in

competing model specifications. To deal with the crowding out effect while diversifying

across all models we develop two-stage model averaging in section 3.4.

3.3 Choosing a Training Length

Model averaging techniques that use past information need a window over which to

estimate the weights. For example, we consider various training lengths to estimate the

posterior weights in the dynamic BMA process. In this section, we outline methods

to choose this training length. Below, we apply these methods to dynamic BMA and

two-stage Bayesian model averaging (2SBMA).

We consider the following methods to determine the optimal training length:

1. Pooled: Average across all considered training lengths.

2. Cross-Validation (CV): The following steps describe the cross-validation technique.

(a) For each model, suppose we have the forecasts, ŷ1, . . . , ŷt, of y1, . . . , yt.

(b) For each training length k, estimate the weight on each model using ŷk, . . . , ŷt

and yk, . . . , yt, compute the average forecast ŷavet+1,k, and compute the forecast

error ε̂avet+1,k = yt+1 − ŷavet+1,k.

(c) Repeat step (b) for t = m, . . . , n− 1 where m is the number of observations
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used for the longest training length. Hence, we use n−m observations in the

cross-validation procedure.

(d) For each training length considered, compute the MSE from ε̂avem+1,k, . . . , ε̂
ave
n,k

(e) Select the training length that produces the lowest MSE. Using this training

length, create the forecast for time n+ 1, ŷaven+1.

3. Inverse-Error (InvErr): This procedure is equivalent to cross-validation except

in step (e) we average across training lengths using the inverse MSE. Thus, we

calculate the weight, wi, on each training length as follows:

wi =
1/MSEi∑n
j=1 1/MSEj

(3.5)

Where n is the number of different training lengths.

4. Cross-Validation Window (CVwin): Conduct the cross-validation procedure de-

scribed above to determine the optimal training length and select a window around

this length. Then average around the optimal training length using equal weights.

This procedure takes into account the uncertainty related to choosing the training

length via cross-validation.

We apply these training length selection techniques to the dynamic BMA fore-

casts. The above methods to choose a training length extend the dynamic BMA frame-

work of Raftery et al. (2005). Table 3.4 shows the results.

We estimate CV, InvErr and CVwin using windows of 1, 5 or 10 periods. The

far left column in table 3.4 shows the training length selection method. CV-1, CV-5, and

CV-10 represent the cross-validation technique using 1, 5, and 10 periods respectively.

Similarly for InvErr and CVwin. All of the OOS R2 statistics in table 3.4 are positive,

but none of the loss differentials are statistically significant. The top-performing training
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length criterion is CV-5 with an OOS R2 statistic of 0.426 percent.

3.4 Two-Stage Model Averaging (2SMA)

In the introduction and in section 3.2 we outlined and defined the crowding out effect. In

model averaging, crowding out occurs when the weights on the top-performing models

drop as the number of alternative forecasts grow. Crowding out is particularly prob-

lematic when we consider equal or relative weights. Furthermore, as demonstrated in

section 3.2, crowding out can occur even when we estimate the weights based on past

performance.

If researchers use economic information a priori to determine models that will

perform well over time, then two-stage model averaging can circumvent the crowding

out effect. Two-stage model averaging (2SMA) incorporates prior information to ensure

that top-performing models receive a large weight in the final forecast. 2SMA is a two

stage approach that requires the following steps:

Stage 1:

1. Use prior economic information to determine the top-performing models. Save

these models and their forecasts for the second stage.

2. Average over the other models and specifications to develop the stage 1 forecasts.

Stage 2:

1. Average over the saved models and the stage 1 forecasts to develop the 2SMA

forecasts.

Since 2SMA saves the top-performing models for the second stage and averages

over other forecasts in the first stage, it will eliminate the crowding out effect while
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diversifying across a large number of models. Also, researchers can combine 2SMA with

any other model averaging technique.

To see why 2SMA improves forecast performance consider the following exam-

ple: Suppose, for time t+1 we want to average over n forecasts, ŷ1t+1, . . . , ŷ
n
t+1. Suppose

moreover that prior economic information tells us that the forecast from model 1, ŷ1,

performs well over time. As noted above, when we use equal-weights, relative-weights,

or estimated weights, the alternative forecasts will crowd out ŷ1. In 2SMA, however,

we average over ŷ2, . . . , ŷn to develop the first stage forecast. Then we average over the

first-stage forecast and ŷ1 to develop the 2SMA forecast. This ensures that ŷ1 receives

a large weight in the final forecast.

If researchers use past performance to select the weights for the stage 1 fore-

casts, then they need to choose a window over which to estimate these weights. This

window is commonly called the training window or the training length. In section 3.3

we outline various methods to choose a training length or average over different training

lengths. These methods include pooling across training lengths, using cross-validation,

weighting training lengths based on past performance, or using a cross-validation win-

dow. The window selection techniques from section 3.3 apply to any scheme that esti-

mates weights based on past performance.

3.4.1 Choosing What to average over in the First and Second Stages

An important issue is how to choose what to average over in the first and second stages.

Prior economic information will play a large roll in this decision. Researchers should

reserve models or specifications that are known to perform well for the second stage.

This will ensure that they receive a large weight in the final forecast. For example,

the efficient market hypothesis states that the random-walk plus drift will outperform
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other forecasting models over time. So, in the application in section 3.5 we reserve the

random-walk plus drift model for the second stage.

The simplest way to implement 2SMA is to save the models known to perform

well, average over all other forecasts in stage 1, and then average over the stage 1 forecast

and the saved models in stage 2. This approach will directly incorporate economic

information and eliminate the crowding out effect. We demonstrate this approach in

section 3.5. Yet there are other ways to choose the first and second stage forecasts.

When considering different models with one or zero exogenous variables, a

natural approach is to first average all specifications for each model; then average over

all models. This technique first takes into account the uncertainty related to choosing

the optimal specification for each model and the uncertainty related to choosing the

optimal model. This approach also allows researchers to study the performance of each

model in the first stage. We use this intuitive technique for the application in section

3.5. A similar approach applies when researchers are considering multiple exogenous

variables and only one model.

The choice becomes trickier when there are multiple models and multiple exoge-

nous variables. In this case, researchers may develop the first-stage forecasts by applying

2SMA to each exogenous variable for the various models and their specifications. Then

the researchers could average over the first-stage forecasts and the saved models to de-

velop the 2SMA forecasts. Researchers must be careful, however, as a large number of

first-stage forecasts may crowd out the top-performing models originally saved for stage

2.

A more methodical approach involves clustering forecasts. Researchers can

cluster forecasts based on performance in the first stage, average within clusters, and

then average across clusters in the second stage. Aiolfi and Timmermann (2006) use
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this approach.16 But Aiofli and Timmermann do not save models known to perform

well for the second stage. Hence, Aiofli and Timmermann’s technique is susceptible to

the crowding out effect.

Regardless of the methods used in the first stage, the top-performing models,

based on prior economic information, must receive large weights in the second stage.

This will eliminate the crowding out effect and improve performance.

3.4.2 A Bayesian Analogy

Bayesian estimation combines a prior distribution with the likelihood function to develop

a posterior distribution. Researchers then use the posterior distribution for inference.

Researchers incorporate economic information through the form prior distribution.

2SMA uses prior economic information to weight some forecasts more than

others. More precisely, in 2SMA researchers have some prior belief regarding the per-

formance of a certain forecast. They save this forecast for the second stage. Researchers

average over peripheral models in the first stage and then ‘update’ the pre-selected

forecasts in the second stage. In this sense, 2SMA is Bayesian approach.

3.5 Two-Stage Bayesian Model Averaging (2SBMA) and Two-Stage

Equal-Weighted Averaging (2SEWA)

Next, we apply 2SMA to dynamic BMA and equal-weighted averaging to develop two-

stage Bayesian model averaging (2SBMA) and two-stage equal-weighted averaging (2SEWA).

In 2SEWA we use equal weights to average forecasts in stage 1 and stage 2. Similarly,

in 2SBMA we use dynamic BMA to average forecasts in both stages. We implement

2SBMA in the following way:

16Aiofli and Timmermann use equal weights to average within clusters in the first stage, and then
optimal weights based on least squares shrunk to equal weights to average across clusters in the second
stage.
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Stage 1:

1. Save the predetermined top-performing forecasts for the second stage.

2. Apply the BMA procedure over all other forecasts up to time t+ 1 using different

window lengths.

3. Record the corresponding mean-squared errors.

Stage 2:

1. Select the training length that produces to lowest MSE for the forecast at time

period t.

2. Apply the BMA procedure again over the stage 1 forecast and the saved models

to develop the 2SBMA forecast for time t+ 1.

Note that we use leave-one-out cross-validation (CV-1) to determine the optimal training

length in Stage 1; this produces a single forecast stage 1 forecast.

We apply 2SBMA and 2SEWA to our application and forecast stock returns

using investor sentiment. As noted above, prior economic research and the efficient

market hypothesis state that the random-walk plus drift should be the top-performing

model over time. Hence, we save the random-walk plus drift for the second stage. Also,

since 2SBMA uses dynamic BMA in both stages, we need twice as many forecasts to

verify the training length. Thus, we are eliminating the 1970s from our out-of-sample

exercise. This will negatively affect our results as the 1970s were a period where both

the linear model and the NARX neural network beat the benchmark.17

In stage 1, we average over all of the specifications of the linear model and the

NARX neural network. Table 3.5 presents the stage 1 forecasts.18 The far left column

17See section 3.1.1.
18Table 3.5 extends over two pages.
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shows the number of training periods used for the BMA process, the middle columns

show the posterior weights, and the far right column shows the OOS R2 statistic. The

last row displays the results based on equal-weights. The OOS R2 statistic is positive

when 25-55 training lengths are used. The loss differential between the stage 1 forecasts

and the benchmark is also statistically significant for a training length of 25, 30, 40 or

45 periods. The top-performing specification, according to the BMA weights, is AR0,1.

This specification corresponds to zero autoregressive lags and one sentiment lag.

Table 3.6 displays the results from the second stage. The second column lists

the weight on the random-walk plus drift and the third column lists the weight on the

stage 1 forecast. The last column shows the OOS R2 statistic. The second-to-last row

shows the 2SEWA forecast results where we use equal-weights in the first and second

stages. Finally, the last row shows the 2SMA results from an equal-weight, dynamic

BMA hybrid. In this hybrid, we use dynamic BMA in the first stage and equal-weights

in the second stage.

All of the OOS R2 statistics in table 3.6 are positive and large in magnitude.

For all of the stage 2 forecasts, the loss differential relative to the random-walk plus

drift is statistically significant at the 5 or 1 percent level. Dynamic BMA using 20

training lengths produces the largest OOS R2 statistic at 2.096 percent. Furthermore,

the 2SBMA and 2SEWA forecasts beat their traditional averaging counterparts, dynamic

BMA and equal-weighted averaging, by a large margin.19

Not surprisingly, the alternative forecasts do not crowd out the random-walk

plus drift in 2SBMA and 2SEWA. The weight on the random-walk plus drift is greater

than or equal to 1/2 for all of the forecasts in table 3.6.

To further show the flexibility of the 2SMA framework we augment the above

19See section 3.2 for the traditional dynamic BMA and equal-weighted averaging forecasts.
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approach and separately average over each model in stage 1.20 This approach allows

us to compare the performance of the linear and the NARX models. So, 2SBMA now

involves the following steps.

Stage 1:

1. Save the predetermined top-performing forecasts for the second stage.

2. Apply the BMA procedure for each model21 over all considered specifications up

to time t+ 1 using different window lengths.

3. Record the corresponding mean-squared errors.

Stage 2:

1. Select the optimal window length for each model (from Stage 1) by choosing the

window length that produces the lowest mean-squared error for the forecast at

time period t.

2. Apply the BMA procedure again over all models to develop the 2SBMA forecast

for time t+ 1.

Hence, in stage 2, we average over the forecasts from the linear model, the NARX neural

network, and the random-walk plus drift.

Table 3.7 shows the results for the linear model. Under dynamic BMA, the

specification corresponding to zero autoregressive lags and one sentiment lag, AR0,1,

receives the largest weight on average. This implies that AR0,1 is top performing spec-

ification for the linear model on average. Yet the standard deviations for the weights

are large; this suggests that the optimal changes over time. For the top-performing

20We described this technique in 3.4.1.
21In our application the models are the linear model and the NARX neural network.
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training length of 30 periods, the OOS R2 statistic is 0.4 percent. The forecast using

equal weights does not beat the benchmark.

Table 3.8 displays the results for the NARX neural network. In this case, under

dynamic BMA the OOS R2 statistic is positive and the loss differential, relative to the

benchmark, is statistically significant when we use 20, 25, or 40-60 training lengths. The

top-performing forecast under dynamic BMA uses 60 training lengths. Lastly, the OOS

R2 statistic using equal-weights is negative.

An interesting result in tables 3.7 and 3.8 is length of the optimal training

window. For the linear model in table 3.7, a training window of 30 periods seems most

appropriate. Yet the NARX model in table 3.8 produces its best forecasts using much

longer training windows. Step 1 in the second stage of the 2SBMA process selects the

optimal window length for each model in stage 1. Hence, step 1 of stage 2 allows us to

use cross-validation to choose shorter windows for the linear model and longer windows

for the NARX network. This improves performance of the 2SBMA technique.

Table 3.9 shows the second stage forecast results. The OOS R2 statistics are

positive and among the largest in our study. Using dynamic BMA with a training length

of 10 periods produces the largest OOS R2 statistic at 2.018 percent. The loss differential

relative to the benchmark is statistically significant at the 5 or 1 percent level for all

the forecasts in table 3.9. The weight on the random-walk plus drift is at least 1/3 in

all cases. Thus, the linear and NARX models do not crowd out the random walk plus

drift.

3.6 Conclusion

This paper develops two-stage model averaging (2SMA). 2SMA is a flexible framework

that allows researchers to incorporate prior economic information. To implement 2SMA,
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researchers use economic information to save certain models for the second stage, and

average over peripheral models in the first stage. In the second stage, the researcher

then averages over the saved models and the stage 1 forecasts. This approach ensures

that the saved models receive a large weight in the final forecast.

In an application, we combine 2SMA with dynamic Bayesian model averaging

and equal-weighted averaging to develop two-stage Bayesian model averaging (2SBMA)

and two-stage equal-weighted averaging (2SEWA). Through 2SBMA and 2SEWA we

forecast stock returns using investor sentiment. We find that these forecasts statistically

outperform the benchmark random-walk plus drift and beat traditional forecasts that

use equal weights.
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3.7 Appendix: The Dynaimc Factor Model with Bayesian Estimation

We follow Lutz (2011) in the estimation of the index. To estimate the model we first

take each series in deviations from the mean. The dynamic factor model then takes the

following form:

∆yit = γi∆ct + εit, i = 1, . . . , 5 (3.6)

φ(L)∆ct = ωt, ωt ∼ N(0, 1) (3.7)

ψi(L)εit = vit, vit ∼ N(0, σ2) (3.8)

Where ∆yit = ∆Yit − ∆Ȳi, i = 1, ..., 5, represents one of the five series: div,

earn, size lowmom and sp500, respectively. ∆ct = ∆Ct − δ is the component common

to all series, εit is an idiosyncratic component, γi is the factor loading and L is the lag

operator. To estimate the model and derive the common component, ∆ct, we cast it into

state-space form. Lutz (2010) uses the state-space form in Kim and Nelson (1998). This

facilitates computation of the estimation algorithm. Multiplying both sides of equation

4.1 by ψi(L) yields

ψi(L)∆yit = γiψi(L)∆ct + vit (3.9)

By the Bayesian Information Criterion, Lutz (2010) chooses two lags for φ(L) and two

lags for ψi(L). Equations 4.2 and 4.3 become

∆ct = φ1∆ct−1 + φ2∆ct−2 + ωt (3.10)

εit = ψi1εi,t−1 + ψi2εi,t−2 + vit, i = 1, . . . , 5 (3.11)

Hence, we employ the following state-space form:

Measurement Equation:

65





∆y∗1t

∆y∗2t

∆y∗3t

∆y∗4t

∆y∗5t


=



γ1 −γ1ψ11 −γ1ψ12

γ2 −γ2ψ21 −γ2ψ22

γ3 −γ3ψ31 −γ3ψ32

γ4 −γ4ψ41 −γ4ψ42

γ5 −γ5ψ51 −γ5ψ52




∆ct

∆ct−1

∆ct−2

 +



v1t

v2t

v3t

v4t

v5t


(3.12)

In matrix form this becomes

(yt = Hβt + vt)

Where y∗it = yit − ψi1yi,t−1 − ψi2yi,t−2 as in the left hand side of equation 4.4.

E(vtv
′
t) = R =



σ21 0 0 0 0

0 σ22 0 0 0

0 0 σ23 0 0

0 0 0 σ24 0

0 0 0 0 σ25


(3.13)

Transition Equation:


∆ct

∆ct−1

∆ct−2

 =


φ1 φ2 0

1 0 0

0 1 0




∆ct−1

∆ct−2

∆ct−3

 +


ωt

0

0

 (3.14)

Equation 4.15 can be written in matrix form as

(βt = Fβt−1 + et)

E(ete
′
t) =


1 0 0

0 0 0

0 0 0

 (3.15)
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Lutz (2011) then augments the common component, ∆ct using the steady-state

Kalman Gain to develop a sentiment index in levels. The levels index is not stationary.

Hence, we use stationary series ∆ct and re-label it ∆SENT∗. Lutz (2011) interprets

∆SENT∗ as the growth or first difference in sentiment.

To avoid look-ahead bias we re-estimate the sentiment index for each in-sample

period considered. Over time, the exact specification of the dynamic factor model may

change. So, we augment Lutz’s approach and average over three specifications of the

dynamic factor model. This allows us to take into account some uncertainty regarding

the structure of the model.

3.7.1 Appendix: Bayesian Estimation of the Factor Model

We follow Lutz (2010) and estimate the model using the Bayesian multimove Gibbs-

sampling approach based on Carter and Kohn (1994) and Kim and Nelson (1998). The

Bayesian method takes into account parameter by jointly estimating the state vector

and the model parameters. In contrast, traditional maximum likelihood treats the model

parameters as true values when estimating the state vector. To implement the estimation

algorithm we use the MCMC Gibbs-sampling method. We run the algorithm 10,000

times and drop the first 2000 iterations. For further explanation of these techniques see

Kim and Nelson (1998, 1999)
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3.8 Appendix: Dynamic Bayesian Model Averaging

In this appendix we describe Bayesian model averaging (BMA). In a forecasting exercise

dynamic Bayesian model averaging forms posterior weights based on past forecasting

performance.

BMA takes into account the uncertainty regarding the true nature of the pro-

cess. There are two main ways implement BMA. The first method assumes that there

is one correct model but the researcher is ignorant to its true form. Raftery (1995) and

Hoeting et al. (1999) outline this use of BMA. Cremers (2002) and Avramov (2002)

apply this type of BMA procedure to stock return data. Raftery et al. (2005) develop

a dynamic BMA procedure where the correct model changes from time period to time

period. The dynamic BMA technique draws the optimal specification from the weighted

average over a given set of models. Furthermore, this technique only requires the model

forecasts. This makes it convenient to average over linear and non-linear specifications.

In essence, the dynamic BMA procedure produces an optimal forecast by mixing over

the forecasts from a given set of models.

In all likelihood, the DGP of stock returns changes over time. Also, we want to

combine the linear and non-linear models depicted above. Hence, we select the dynamic

BMA approach.

Following the notation of Raftery et al. (2005), the BMA predictive pdf is

given by

p(y|f1, . . . , fK) =

K∑
k=1

wkgk(y|fk) (3.16)

Where y is the quantity to be forecast, K is the number of models, wk is the weight

applied to each model, and gk(·) is an assumed probability distribution. wk is the

posterior probability. We interpret gk(y|fk) as the pdf of y conditional on fk given that
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model k produced the best forecast over the training period.

We form the log-likelihood function based on the distribution in equation 3.16.

We specify a functional form for gk(y|fk). Since this is a finite mixture model we can

apply the EM algorithm to maximize the likelihood function. Before we execute the

EM algorithm we must also choose the length of the training period. To accommodate

the changes in the DGP over time we use a rolling window of forecast data to estimate

the likelihood function. Shorter rolling windows allow the model to adjust quickly to

changes in the structure of the process. Longer windows use more information. This

yields better estimation of model parameters. Researchers widely believe stock returns

follow a distribution with thick tales such as the t-distribution. Despite this fact, we

consider the normal distribution for gk(·). As noted by Peel and McLachlan (2000),

mixing over the t-distribution simply produces less extreme results than the normal

distribution. Hence, using the normal distribution instead of the t-distribution allows

us to add larger weights to better forecasts and further punish poor performing models.22

We discard the first 60 observations to use as verification. This implies we are

eliminating half of the 1970s from our out-of-sample exercise. As noted in table 3.1, the

1970s were a subperiod where both the linear model and the NARX model outperformed

the benchmark. Hence, not using the first half of the 1970s will negatively affect our

results. Despite this handicap, we do not change the out-of-sample period to avoid data

mining.

The dynamic BMA approach combines the random walk plus drift, linear and

NARX forecasts. This implies that the BMA forecast nests the random-walk plus drift

model. Therefore we must use the Clark and West (2007) test to evaluate forecast

22Results for the t-distribution are available upon request. Using the t-distribution did not improve
our results.
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performance.
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3.9 Appendix: Tables
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Table 3.3: Average forecasts using the optimal specifications for each model

Periods RWD Linear NARX R2 (%)

10
0.381 0.337 0.282 0.015

(0.324) (0.317) (0.295)

15
0.376 0.305 0.320 0.432

(0.277) (0.260) (0.264)

20
0.378 0.301 0.321 0.443

(0.245) (0.228) (0.239)

25
0.379 0.297 0.325 0.317

(0.232) (0.203) (0.224)

30
0.371 0.290 0.339 0.262

(0.216) (0.184) (0.225)

35
0.365 0.283 0.352 0.317

(0.208) (0.168) (0.227)

40
0.366 0.274 0.360 0.177

(0.204) (0.156) (0.229)

45
0.372 0.270 0.357 -0.004

(0.207) (0.149) (0.225)

50
0.374 0.271 0.356 0.051

(0.198) (0.134) (0.217)

55
0.374 0.276 0.350 0.035

(0.185) (0.120) (0.201)

60
0.376 0.286 0.338 -0.074

(0.168) (0.112) (0.181)

EW
1/3 1/3 1/3 0.000

(0.000) (0.000) (0.000)

Notes: The far left column holds the length of the training window. The average posterior weight ap-
plied to each model is listed in columns two through four. The standard deviations of the weights are
in parentheses. The far right column holds the OOS R2 statistic. One, two, three and four asterisks
represent a statistically significant difference in the loss-differential between the forecast and the bench-
mark random-walk plus drift at the 15, 10, 5 and 1 percent levels, respectively. The last row shows the
results using equal weights.
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Table 3.4: The optimal BMA training length using the optimal specification for each
model

RWD Linear NARX R2 (%)

Pooled 0.374 0.290 0.336 0.002
(0.146) (0.120) (0.171)

CV-1 0.374 0.306 0.320 0.245
(0.280) (0.255) (0.265)

CV-5 0.390 0.289 0.321 0.426
(0.256) (0.218) (0.241)

CV-10 0.382 0.293 0.325 0.107
(0.253) (0.221) (0.237)

InvErr-1 0.376 0.290 0.334 0.234
(0.149) (0.123) (0.171)

InvErr-5 0.374 0.290 0.336 0.203
(0.146) (0.120) (0.171)

InvErr-10 0.374 0.290 0.336 0.208
(0.145) (0.120) (0.171)

CVwin-1 0.373 0.296 0.331 0.239
(0.204) (0.195) (0.206)

CVwin-5 0.382 0.282 0.336 0.383
(0.205) (0.177) (0.203)

CVwin-10 0.379 0.288 0.333 0.127
(0.215) (0.183) (0.207)

Notes: The far left column holds the the criterion for the choice of the training window over the
dynamic Bayesian model averaging procedure. Pooled is an equal-weighted average across all training
lengths. CV-1, CV-5, and CV-10 represent the cross-validation method using 1, 5, and 10 periods,
respectively. InvErr-1, InvErr-5 and InvErr-10 represent the Inverse MSE method using 1, 5, and 10
periods, respectively. CVwin-1, CVwin-5, and CVwin-10 represent a window around the optimal training
length chosen by cross-validation (We average the forecasts on each side of the optimal training length).
The average posterior weight applied to each model is listed in columns two through four. The standard
deviations of the weights are in parentheses. The far right column holds the OOS R2 statistic. One, two,
three and four asterisks represent a statistically significant difference in the loss-differential between the
forecast and the benchmark random-walk plus drift at the 15, 10, 5 and 1 percent levels, respectively.
The last row shows the results using equal weights.
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Table 3.6: Two-stage Model Averaging—Stage 2 Forecasts

Periods RWD Stage 1 R2 (%)

10
0.524 0.476 1.833****

(0.318) (0.318)

15
0.539 0.461 1.874****

(0.286) (0.286)

20
0.552 0.448 2.096****

(0.258) (0.258)

25
0.536 0.464 1.775****

(0.229) (0.229)

30
0.530 0.470 1.901****

(0.211) (0.211)

35
0.524 0.476 1.945****

(0.189) (0.189)

40
0.519 0.481 1.806****

(0.172) (0.172)

45
0.517 0.483 1.981****

(0.147) (0.147)

50
0.531 0.469 1.891****

(0.116) (0.116)

55
0.535 0.465 1.982****

(0.103) (0.103)

60
0.532 0.468 1.988****

(0.093) (0.093)

EW1 and 2
1/2 1/2 1.205****

(0.000) (0.000)

EW2 only
1/2 1/2 1.699****

(0.000) (0.000)

Notes: The second stage of the 2SMA process. The far left column holds the length of the training
window. The average posterior weight applied to each model is listed in columns two and three. The
standard deviations of the weights are in parentheses. The far right column holds the OOS R2 statistic.
One, two, three and four asterisks represent a statistically significant difference in the loss-differential
between the forecast and the benchmark random-walk plus drift at the 15, 10, 5 and 1 percent levels,
respectively. The second-to-last row shows the results using using equal-weights in the first and the
second stage. The last row shows the results using BMA in the first stage and equal-weights in the
second stage.
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Table 3.9: Stage 2 forecasts over the RWD, Linear and NARX models

Periods RWD Linear NARX R2 (%)

10
0.420 0.296 0.284 2.018****

(0.352) (0.314) (0.310)

15
0.425 0.305 0.269 1.585****

(0.323) (0.259) (0.261)

20
0.439 0.300 0.261 1.365***

(0.292) (0.236) (0.234)

25
0.431 0.310 0.259 1.470***

(0.248) (0.211) (0.194)

30
0.412 0.326 0.262 1.506****

(0.213) (0.190) (0.165)

35
0.397 0.326 0.277 1.552****

(0.188) (0.171) (0.166)

40
0.397 0.320 0.283 1.441***

(0.167) (0.156) (0.162)

45
0.388 0.321 0.291 1.530***

(0.152) (0.149) (0.160)

50
0.380 0.325 0.296 1.573***

(0.139) (0.133) (0.146)

55
0.377 0.328 0.295 1.635****

(0.128) (0.122) (0.126)

60
0.376 0.327 0.297 1.609****

(0.124) (0.118) (0.119)

EW1 and 2
1/3 1/3 1/3 1.474****

(0.000) (0.000) (0.000)

EW2 only
1/3 1/3 1/3 1.910****

(0.000) (0.000) (0.000)

Notes: The second stage of the 2SMA process. The far left column holds the length of the training
window. The average posterior weight applied to each model is listed in columns two through four. The
standard deviations of the weights are in parentheses. The far right column holds the OOS R2 statistic.
One, two, three and four asterisks represent a statistically significant difference in the loss-differential
between the forecast and the benchmark random-walk plus drift at the 15, 10, 5 and 1 percent levels,
respectively. The last row shows the results using equal weights.
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Chapter 4

The time-varying cross-sectional effects of investor

sentiment

Abstract: We develop a new sentiment index for the stock market that accurately times

sentiment bubbles and crashes. We compile this index from the closed end fund discount,

NYSE share turnover, the dividend premium and the equity-share of new issues. To

estimate the index we use a dynamic factor model with Bayesian techniques. In static

regressions we find that rising sentiment relates to rising returns for portfolios based

on size, dividends, earnings and momentum. We then use our index to study the time-

varying effects of agent sentiment on stock returns. We find that the relationship between

sentiment and returns has increased dramatically since the late 1990s. We also find a

strong relationship between relationship between sentiment and future returns following

bear markets.
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Since the tech bubble burst in 2000 and the credit crisis in 2008 there has

been a growing interest in stock market sentiment. Baker and Wurgler (2006, 2007)

develop an index for agent sentiment in the stock market (BWsent hereafter). This index

generally captures trends in stock market sentiment. Baker and Wurgler conclude that

high sentiment relates to low future returns. Lutz (2011) notes, however, that BWsent

‘mis-times’ the conclusion of many bear markets. Furthermore, Baker and Wurgler’s

empirical findings contradict the theoretical predictions of Abreu and Brunnermeier

(2003). Abreu and Brunnermeier (2003) develop a theoretical bubble model. They find

that rational arbitrageurs have a profit incentive to ride sentiment bubbles. In other

words, rising sentiment relates to rising future returns.

In this paper we develop a new sentiment index (Sent hereafter) using the data

from Baker and Wurgler (2006, 2007). Baker and Wurgler (2006, 2007) use principal

component analysis to develop their sentiment index. We use a dynamic factor model

with Bayesian estimation. Sent and BWsent both capture the same general patterns

in sentiment, but Sent more accurately times sentiment and bear market episodes. In

in-sample predictive regressions we find that rising sentiment relates to rising returns

for portfolios based on size, dividends, earnings, and momentum. These regression

results match the theoretical predictions of Abreu and Brunnermeier (2003) and previous

anecdotal accounts of investor sentiment. Brunnermeier (2009), Nagel and Brunnermeier

(2004), and Temin and Voth (2004) consider various asset bubbles throughout history.

They find that rational arbitrageurs have a profit incentive to ride the bubble and that

rising sentiment relates to rising returns.

We also consider time-varying parameter regressions. In these models the beta

on the sentiment index can change over time. We find that the relationship between

sentiment and future returns has increased since 2000. This result corresponds to the
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anecdotal accounts in Shiller (2006). Furthermore, the betas increase along with senti-

ment and returns after bear markets. Yet the magnitudes of the betas drop during the

1990s tech bubble. Hence, sentiment-driven agents were not the only investors taking

part in the boom. This finding matches Abreu and Brunnermeier’s theoretical results.

As noted above, Abreu and Brunnermeier find that rational arbitrageurs also participate

in sentiment-driven bubbles.

Other papers have examined the relationship between sentiment and stock

returns, but to our knowledge this is the first study to do so in a dynamic framework.

Frazzini and Lamont (2008) use mutual fund flows to construct a sentiment indicator.

They find that high sentiment relates to low future returns. Lemmon and Portniaguinia

(2006) and Qui and Welch (2004) examine the relationship between consumer confidence

and stock returns. Brown and Cliff (2004, 2005) use sentiment driven surveys to study

return predictability.

4.1 Data

We develop a sentiment index using the data compiled in Baker and Wurgler (2006,

2007).1 Baker and Wurgler use six components to compile their index. These compo-

nents are the closed end fund discount (CEFD), NYSE share turnover (TURN), the

number of IPOs over a given month (NIPO), the average first day return on these IPOs

(RIPO), the equity-share of new issues (S), and the dividend premium (PD−ND). CEFD

is the the average difference between the net-asset-value (NAV) of closed-end stock funds

and their market prices. TURN is the ratio of reported share volume to the average

shares listed for the New York Stock Exchange. The equity-share of new issues (S) is

gross equity issued divided by the gross equity plus gross long-term debt issued. The

1The data is available on Jeffrey Wurgler’s website: http://pages.stern.nyu.edu/~jwurgler/
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dividend premium (PD−ND) is the log difference of the average market-to-book ratio

of dividend and non-dividend paying stocks. Previous research found all of these mea-

sures to be proxies of agent sentiment in the the stock market. See Lee, Shleifer and

Thaler (1991), Ibbotson, Sindelar and Ritter (1994), Baker and Wurgler (2000), Baker

and Stein (2004) and Baker and Wurgler (2004) for more detailed analysis of these mea-

sures. We describe BWsent further in appendix 4.8. The data is monthly from 1965M07

to 2007M12. The RIPO series contains some missing observations. These missing ob-

servations correspond to months with no IPOs. RIPO is missing during the mid 1970s

and after the tech crash in 2000. These episodes correspond to times of low sentiment.

There is no clear way to deal with the missing data in RIPO. Data imputation may pro-

vide one solution. Imputation methods, however, typically assume that data is missing

completely at random (MCAR) or missing at random (MAR). This is not the case with

RIPO. RIPO is missing during times of low sentiment. Furthermore, in many months

only a few IPOs occur. For example, in 99 out of 510 months there were five or fewer

IPOs. Hence, RIPO draws from a small sample almost 20 percent of the time. In these

cases, RIPO may reflect idiosyncrasies in the companies going public rather than the

nature of the IPO market. For these reasons we choose to drop the RIPO variable. This

still leaves five series that represent agent sentiment. From these five series we compile

a sentiment index.

4.2 Model Estimation and description

We combine the information from the five series and extract a common component using

a dynamic factor model. Baker and Wurgler (2006, 2007) note that TURN follows an

exponential trend. Hence TURN is not stationary. To use the dynamic factor model
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we require that all the series be stationary.2 Therefore, we take the first difference in

TURN. In this case, Baker and Wurgler (2007) recommend to take the first difference

of all of the index components. Table 4.1 shows the correlation matrix between the first

differenced series. Unfortunately, the differenced series are largely uncorrelated. Below

we discuss how the small correlation between the variables affects our results. Using the

first difference in each series will lead to the first difference of the sentiment index. To

derive a levels index we employ the method outlined in Stock and Watson (1991) and

Kim and Nelson (1998, 1999). We take each series in deviation from from the mean.

Hence, the model takes the following form:

∆yit = γi∆ct + εit, i = 1, . . . , 5 (4.1)

φ(L)∆ct = ωt, ωt ∼ N(0, 1) (4.2)

ψi(L)εit = vit, vit ∼ N(0, σ2) (4.3)

Where ∆yit = ∆Yit−∆Ȳi, i = 1, ..., 5, represents one of the five series: PD−ND,

NIPO, TURN, CEFD, and S, respectively. ∆ct = ∆Ct − δ is the common component,

εit is the idiosyncratic component, γi is the factor loading, and L is the lag operator. To

estimate the model and derive the common component, ∆ct, we cast it into state-space

form. Although a unique representation does not exist we elect a form similar to that of

Kim and Nelson (1998). This facilitates computation of the estimation algorithm. We

multiply both sides of equation 4.1 by ψi(L) which yields

ψi(L)∆yit = γiψi(L)∆ct + vit (4.4)

The Bayesian Information Criterion guides our choice of φ(L) and ψi(L) (given that the

number of lags in each equation is greater than or equal to one). We choose two lags

for φ(L) and two lags for ψi(L). Equations 4.2 and 4.3 become

2Bakera and Wurgler (2006) consider the natural log of TURN minus it five year moving average
for annual data. Subtracting moving averages did not make TURN stationary for our monthly data
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∆ct = φ1∆ct−1 + φ2∆ct−2 + ωt (4.5)

εit = ψi1εi,t−1 + ψi2εi,t−2 + vit, i = 1, . . . , 5 (4.6)

Hence, we employ the following state-space form:

Measurement Equation:



∆y∗1t

∆y∗2t

∆y∗3t

∆y∗4t

∆y∗5t


=



γ1 −γ1ψ11 −γ1ψ12

γ2 −γ2ψ21 −γ2ψ22

γ3 −γ3ψ31 −γ3ψ32

γ4 −γ4ψ41 −γ4ψ42

γ5 −γ5ψ51 −γ5ψ52




∆ct

∆ct−1

∆ct−2

 +



v1t

v2t

v3t

v4t

v5t


(4.7)

Which in matrix form becomes

(yt = Hβt + vt)

Where y∗it = yit − ψi1yi,t−1 − ψi2yi,t−2 as in the left hand side of equation 4.4.

E(vtv
′
t) = R =



σ21 0 0 0 0

0 σ22 0 0 0

0 0 σ23 0 0

0 0 0 σ24 0

0 0 0 0 σ25


(4.8)

Transition Equation:


∆ct

∆ct−1

∆ct−2

 =


φ1 φ2 0

1 0 0

0 1 0




∆ct−1

∆ct−2

∆ct−3

 +


ωt

0

0

 (4.9)
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Equation 4.15 can be written in matrix form as

(βt = Fβt−1 + et)

E(ete
′
t) =


1 0 0

0 0 0

0 0 0

 (4.10)

Estimating the above model will produce the first difference in sentiment. The

first difference in sentiment is a noisy series. We want to compile sentiment index in levels

to compare it to Baker and Wurgler (2006, 2007). To derive the common component

representing the sentiment index in levels, we identify δ using the procedure outlined in

Stock and Watson (1991). Stock and Watson (1991) notice that ∆Ct is a function of

past lags of ∆Yt. From there they derive an estimate of δ by taking the expected value

of ∆Ct. This method employs the steady-state Kalman gain to derive an estimate of

δ. Once we have an estimate for δ we can compile Ct. Ct is the common component or

sentiment index in levels.

We follow Lutz (2011) and estimate the model using the Bayesian multimove

Gibbs-sampling approach based on Carter and Kohn (1994) and Kim and Nelson (1998).

This methodology allows us just to jointly estimate the state vector and the model

parameters. To implement the estimation algorithm we use the MCMC Gibbs-sampling

method. We run the algorithm 10,000 times and drop the first 2000 iterations. For

further explanation of these techniques see Kim and Nelson (1998, 1999).

4.3 Empirical Results

Table 4.2 shows the results. γi, i = 1, . . . , 5 represent the factor loadings for ∆PD−ND,

∆NIPO, ∆TURN, ∆CEFD and ∆S, respectively. As noted in table 4.1, the correlation

between the variables is very small. Hence, the factor loadings are quite small. Also,
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the variance on the error for ∆NIPO is very large. This is not surprising since the

changes in ∆NIPO from one month to the next can be extreme. We do not make

further alterations to the sentiment components to avoid data mining.3 Despite these

drawbacks, the common component representing the sentiment index captures trends

in sentiment. Figure 4.2 shows our sentiment index (Sent). Baker and Wurgler (2006)

document anecdotal accounts of agent sentiment. Sent generally coincides with their

findings. For example, Sent peaks just prior to the bear market in the late 1960s and

crashes through the bear market in the early 1970s. Furthermore, Sent reaches its nadir

during the 1970s. Baker and Wurgler characterize the mid-1970s as a time of very low

sentiment. The index pauses for bear markets as it climbs through the rest of the sample.

Most notably, the index crashes prior to the bear markets in 1987 and 2000.

Figure 4.3 compares our sentiment index with Baker and Wurgler’s sentiment

index (BWsent). The overall pattern and trend of the sentiment indexes are the same.

This validates our estimation methodology. Yet our sentiment index more accurately

times sentiment episodes. Most notably, our index peaks just prior to the bear episodes

in the late 1960s and early 2000s. BWsent continues to rise through these down markets.

Lastly, employing the Kalman filter in the estimation procedure makes our sentiment

index smoother than BWsent.

4.4 A Stationary Sentiment Index

The sentiment index, Sent, developed sections 4.2 and 4.3 is not stationary. Yet to

analyze the relationship between sentiment and stock returns we need a stationary

series. First, we test for breaks. We calculate the Quandt (1960) statistic and test

the null hypothesis of no structural break based on the Andrews (1993) critical values.

3We also want our data to coincide as closely as possible to Baker and Wurgler (2006, 2007).
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Hansen (1997) develops p-values based on the Andrews critical values.4 We find no

structural breaks in the series. Hence, we need to use a stationary series.

One benefit of the dynamic factor model is that it produces ∆ct as a byproduct.

As noted above, we interpret ∆ct as the de-meaned first difference in Sent (∆Sent∗

hereafter).5 ∆Sent∗ is a stationary series. Hence, we use it to study the relationship

between sentiment and stock returns in the remainder of the paper. We plot ∆Sent∗

in figure 4.4. As expected, ∆Sent∗ is most volatile around major episodes of investor

sentiment. We use ∆Sent∗ in the for the in-sample and time-varying regressions below.

[Insert figure 4.4 here.]

∆Sent∗ captures the changes in sentiment over the sample period: ∆Sent∗

peaks prior at the of bubbles and crashes as bear markets take hold. Interestingly,

∆Sent∗ falls dramatically just prior to the 1987 stock market crash. ∆Sent∗ then rises

through the mid-1990s before crashing prior to the 1997s Asian financial crisis. Lastly,

∆Sent∗ crashes prior to the beginning of the bear market in 2000. ∆Sent∗ then rises

once the bear market concludes in 2003.

4.5 In-sample predictive regressions

We study the relationship between sentiment and stock returns for various types of

stocks based on the following characteristics: (1) size (ME); (2) age; (3) volatility (Total

Risk, σ); (4) the earnings-price ratio (Earn); (5) the dividend-price ratio (Div); (6) the

book-to-market ratio (BE/ME); and (7) momentum (Mom).6 Portfolios based on ME,

Earn, Div, BE/ME, and Mom are from Kenneth French’s Data Library. We compile

4The Quandt statistic is the maximum Chow (1960) statistic over the sample. We interpret the
Quandt statistic as the best candidate for a breakpoint. See Hansen (2001) for an overview of these
methods.

5We use ∆Sent∗ rather than the first difference in Sent since ∆Sent∗ comes directly from the model.
Recall that the dynamic factor model derives Sent from ∆Sent∗. Hence, ∆Sent∗ is a more parsimonious
than the first difference in Sent. Using the first difference in Sent does not significantly affect our
regression results below.

6These portfolios are similar to the portfolios studied in Baker and Wurgler (2006).
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the portfolios based on age and volatility from the CRSP database using share codes 10

and 11. We count a stock’s age from the first date it is listed in the CRSP. We then

form decile breakpoints using the prior month’s age. To compile the portfolios based on

volatility, we calculate the prior 2-12 month standard deviation for each stock and then

form the decile breakpoints. Through the return portfolios listed above, we examine the

relationship between sentiment and the cross-section of stock returns.

We run in-sample regressions to determine the predictive power of sentiment

on future returns in a model-based framework. We use the stationary ∆Sent∗ outlined

in section 4.4

To conduct our regressions, we lag ∆Sent∗ by one period. We also control for

the three factors, MKT , HML and SMB of Fama and French (1993) and a momentum

factor. If one of these factors is used as the dependent variable we do not include it

in our set of regressors. We construct long-short portfolios based on the various firm

characteristics listed above. We build the long-short portfolios by comparing the high,

medium and low deciles. The top three deciles represent the set of high deciles; the

middle four deciles represent the set of medium deciles; and the bottom three deciles

represent the set low deciles. Let the variable Zt represent any of the long-short portfo-

lios. The regression equation becomes:

Zt = α+ β1∆Sent∗t−1 + β2MKTt + β3SMBt + β4HMLt + β5UMDt + εt (4.11)

Table 4.3 shows the regression results. The left panel shows the results based

on the raw ∆SENT∗ series. In the right panel, we show the results after not controlling

for the Fama-French and Momentum factors. The left most column holds the dependent

variable used for the regression in equation 4.11. In each panel, the left column holds

the beta on the sentiment index and the right column holds its bootstrapped p-value in
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parentheses.

[Insert table 4.3 here]

First, the results are similar for the left and the right panels. Thus, controlling

for the Fama-French factors does significantly affect our results.

Panel A shows the effects of sentiment on size (ME), age, and risk. We compare

small and large firms (SMB); young and old firms; and high volatility and low volatility

stocks. All of the regression coefficients are positive, but the results are only significant

when size (SMB) is the dependent variable. This implies that sentiment has a larger

effect on small firms and that rising sentiment relates to rising returns.

In Panel B we study the effect of sentiment on earnings and dividend based

portfolios. More specifically, we compare firms without earnings to those with positive

earnings (Earn); and firms without dividends to those with positive dividends (Div).

Clearly, sentiment has a larger effect on stocks without earnings or dividends. The

coefficients are positive and significant at the one percent level; suggesting that rising

sentiment relates to rising returns.

Panels C and D show portfolios based on the book-to-market ratio. In Panel C,

we examine the effects of sentiment on HML. Stocks with a high book-to-market ratio

may be undervalued or in distress; stocks with a low book-to-market ratio are often

growth stocks. The regression coefficient in Panel C is negative, but not statistically

significant. In Panel D, we focus on growth stocks. More specifically, we study the

Medium-Low long-short portfolio based on the book-to-market ratio. Not surprisingly,

the coefficient on the sentiment index is negative. This suggests that sentiment has a

positive effect on growth stocks. The regression coefficient, however, is not statistically

significant.

Panel E shows sentiment’s effect on the momentum factor, UMD. The top
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momentum deciles are high momentum stocks; the bottom deciles are stocks in distress.

In this case, the coefficient on the sentiment index is positive and significant. Hence,

sentiment has a larger effect on high momentum stocks.

In Panel F we focus on high momentum stocks using the long-short portfolio

High-Medium. In the left panel we control for the momentum factor, UMD. In this case

the regression coefficient is positive but not statistically significant. In the left panel,

we do not control for the momentum factor. The p-value then falls to 0.107.

Panel G focuses on stocks in distress. In particular, we study the High-Medium

portfolio based on the book-to-market ratio and the Medium-Low portfolio for the mo-

mentum stocks. The regression coefficients are negative but not statistically significant.

4.6 Time-varying betas

In section 4.5 we discussed the relationship between sentiment and future returns. In

this section we study the time-varying relationship between investor sentiment and stock

returns.

Shiller (2006) posits that sentiment’s effect on stock returns has increased since

the early 1980s. Also, Gonzalez-Rivera (1997) finds evidence of time-varying betas in

Arbitrage Pricing Theory models. Huang and Hueng (2008) consider a time-varying

parameter beta in the capital asset pricing model (CAPM). They find that the beta

risk-return relationship changes over time and depends the state of the market. Hence,

time-varying betas appear to apply to stock returns.

We augment the regression in equation 4.11 to allow the beta on Sent to vary

over time:

Zt = α+ β1t∆Sent
∗
t−1 + β2MKT RFt + β3SMBt + β4HMLt + β5UMDt + εt (4.12)

β1t = β1,t−1 + vt, vt ∼ N(0, σ21) (4.13)
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To our knowledge, there is no previous theory that describes the evolution of β1t. Hence,

we model β1t as a random-walk process. The model specification in equations 4.12 and

4.13 allows for easy comparison to the regressions in section 4.5. To estimate the model

we need to cast equations 4.12 and 4.13 into state-space form and apply the Kalman

Filter. Equations 4.12 and 4.13 are nearly in state-space form. All we need to do is

group the non-dynamic factors in a matrix. Hence we can write the measurement and

transition equations:

Measurement Equation

Zt = β1tSentt−1 +Azt + εt, εt ∼ N(0, σ2) (4.14)

Transition Equation

β1t = β1,t−1 + vt, vt ∼ N(0, σ21) (4.15)

Where A = [α β2 β3 β4 β5] and zt = [1 MKT RFt SMBt HMLt UMDt]
′.

Now we can estimate the model’s parameters using maximum likelihood. We calculate

the state vector, β1t, using the Kalman filter.

If MKT, SMB, HML, or UMD is the regressand then we do not include it in

the set of regressors. Figure 4.5 shows the results.

It is important to recall that the time-varying beta describes the relationship

between sentiment and the given long-short portfolio over time. When the beta is posi-

tive, there is positive correlation between sentiment and the long portfolio and negative

correlation between sentiment and the short portfolio; and vice versa. Larger magni-

tudes indicate a stronger relationship.

In general, the magnitudes of the time-varying betas increase over time. This

is especially true after the bear market ended in 2003. This results corresponds to the

findings of Shiller (2006). Shiller contends that the proliferation of the internet and
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low trading fees through online brokers have increased the effect of sentiment on the

markets.

The relationship between ∆Sent∗ strengthens after most bear markets. Most

notably, the magnitudes of the betas rise dramatically following the end of the bear

market in 2003. This result is not surprising as the stocks most affected by sentiment

generate their largest returns following bear markets. Furthermore, figure 4.4 shows

that the change in sentiment spikes after bear markets.

The magnitudes of the betas shrink, however, during the 1990s tech bubble.

During the 1990s, the sentiment index did not rise as fast as returns. Hence, sentiment-

driven agents were not the only investors participating in stock market boom. This

result corresponds to the theoretical model of Abreu and Brunnermeier (2003). Abreu

and Brunnermeier find that rational arbitrageurs ride waves of investor sentiment.

Panel (a) shows the time-varying beta when SMB is the dependent variable.

The beta is high during the first half of the sample. Hence, sentiment is strongly related

to size effect of Benz (1981) through the early 1980s. The relationship between sentiment

and SMB falls after the stock market crash in 1987 through the 1997 Asian financial

crisis. The beta then rises after the bear market in 2003.

Panels (b), (c), (d), and (e) show the time-varying betas when age, volatility,

Div, or Earn is the dependent variable. For all these cases, the beta increases over time

and sharply rises after the end of the bear market in 2003. We see the similar results

in panel (f) for HML. For HML, however, the time-varying beta is mostly negative as

sentiment has a larger effect on growth stocks (low book-to-market ratio) than value

stocks (high book-to-market ratio). We see a similar result in panel (g).

Panel (h) shows the time-varying result when the dependent variable is UMD.

The beta switches sign over time. This is not surprising since sentiment affects both
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high momentum and low momentum stocks (Lutz 2011). When the beta is positive

there is a stronger relationship between sentiment and high momentum stocks, and vice

versa.

Panel (i) shows the results for high momentum stocks. Not surprisingly, the

beta is positive for most of the sample. Hence, there is a positive relationship between

sentiment and momentum. Moreover, the beta grows over time.

Panels (j) and (k) show the results for stocks in distress. The betas are posi-

tive except around the crisis periods in 1987, 1997 and 2000. This suggests a positive

relationship between sentiment and distressed stocks in normal times, and a negative

relationship during times of crisis.

4.7 Conclusion and further discussion

Using the closed-end fund discount, NYSE share turnover, the dividend premium, and

the equity-share of new issues, we create an index for stock market sentiment. Through

static regressions we find that rising sentiment relates to rising returns. This result

corresponds to the theoretical predictions of Abreu and Brunnermeier (2003). We also

employ time-varying parameter regressions. We find that the relationship between sen-

timent and future returns has increased dramatically since the mid-1990s. We also find

that the relationship between sentiment and future returns strengthens following bear

markets.

Future research may develop other measure for aggregating agent sentiment

in the stock market. Using these measures researchers could study the relationship

between sentiment and bear markets. Future research may also study sentiment in

different industries.
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4.8 Appendix: Baker and Wurgler’s (2006, 2007) Sentiment Index

Data for Baker and Wurgler (2006, 2007) is available from Jeffrey Wurgler’s website.

The following list contains the components of Baker and Wurgler’s index:

• The closed end fund discount (CEFD): The average difference between the net-
asset-value (NAV) of closed-end stock funds and their market prices.

• NYSE share turnover (TURN): the ratio of reported share volume to the average
shares listed for the New York Stock Exchange

• The number of IPOs over a given month (NIPO)

• The average first day return of IPOs for each month (RIPO)

• The equity share of new issues (S): The gross equity issued divided by the gross
equity plus debt issued

• The dividend premium (PD−ND): the log difference between the average book-to-
market ratios of dividend and non-dividend paying stocks.

See Lee, Shleifer and Thaler (1991), Ibbotson, Sindelar and Ritter (1994),

Baker and Wurgler (2000), Baker and Stein (2004) and Baker and Wurgler (2004) for

more detailed analysis of these measures.

Baker and Wurgler use the first principal component as the factor loading

on each variable. The following equation of shows the construction of BWsent at the

monthly frequency as in Baker and Wurgler (2007):

BWsent =− 0.23CEFD + 0.23TURN + 0.24NIPO

+ 0.29RIPO +−0.32PD−ND + 0.23S (4.16)

Baker and Wurgler (2006) develop BWsent at an annual frequency and sim-

ilar results. Baker and Wurgler (2006) and Baker and Wurgler (2007) find a similar

relationship between sentiment and stock prices; high sentiment relates to low returns.
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4.9 Appendix: Tables

Table 4.1: Correlation of Sentiment Components

∆PD−ND ∆NIPO ∆TURN ∆CEFD ∆S

∆PD−ND 1.000 -0.124 -0.060 -0.090 -0.030
∆NIPO -0.124 1.000 -0.049 0.038 0.192
∆TURN -0.060 -0.049 1.000 0.068 -0.013
∆CEFD -0.090 0.038 0.068 1.000 0.060
∆S -0.030 0.192 -0.013 0.060 1.000

Notes: The correlation of the first difference of the sentiment components. The data is described in
section 4.1.

99



Table 4.2: Parameter estimates

Variable Mean Std Med

φ1 0.866 0.087 0.878
φ2 0.010 0.045 0.012
γ1 -0.001 0.087 -0.001
ψ11 0.103 0.045 0.103
ψ12 -0.032 0.045 -0.032
σ21 10.551 0.674 10.499
γ2 0.010 0.198 0.010
ψ21 -0.330 0.047 -0.329
ψ22 -0.205 0.043 -0.204
σ22 151.160 9.331 150.865
γ3 0.000 0.001 0.000
ψ31 -0.504 0.048 -0.504
ψ32 -0.366 0.043 -0.367
σ23 0.008 0.000 0.008
γ4 -0.001 0.040 0.001
ψ41 -0.156 0.045 -0.154
ψ42 -0.079 0.044 -0.079
σ24 3.574 0.225 3.564
γ5 0.000 0.001 0.000
ψ51 -0.426 0.047 -0.424
ψ52 -0.330 0.042 -0.330
σ25 0.004 0.000 0.004

Notes: Parameter estimates for the model in section 4.2. i = 1, . . . , 5 correspond to ∆PD−ND, ∆NIPO,
∆TURN, ∆CEFD and ∆S, respectively.
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Table 4.3: Regresssions—Portfolio returns and sentiment

∆Sent∗t−1 ∆Sent∗t−1 No FF

β p-val β p-val

Panel A: Size, Age, and Risk

ME SMB 0.289 (0.021) 0.341 (0.007)
Age Young-Old 0.009 (0.444) 0.118 (0.444)
σ High-Low 0.444 (0.257) 0.444 (0.630)

Panel B: Profitability and Dividends

DIV = 0− > 0 0.315 (0.006) 0.654 (0.000)
EARN ≤ 0− > 0 0.253 (0.053) 0.554 (0.003)

Panel C: Growth Opportunities and Distress

BE/ME HML -0.016 (0.445) -0.113 (0.197)

Panel D: Growth Opportunities

BE/ME Medium-Low -0.018 (0.376) -0.018 (0.375)

Panel E: Momentum and Distress

Mom UMD 0.445 (0.022) 0.197 (0.031)

Panel F: Momentum

Mom High-Medium 0.420 (0.408) 0.382 (0.107)

Panel G: Distress

BE/ME High-Medium -0.009 (0.420) -0.017 (0.382)
Mom Medium-Low -0.012 (0.446) 0.116 (0.290)

Notes: Regressions of long-short portfolios at time t on ∆Sent∗t−1. See equation 4.11. In the left panel, we
control for the Fama-French factors and the momentum factor. If one of the the Fama-French factors or
the momentum factor is the dependent variable, then we eliminate from the set of regressors. In the right
panel, we do not control for the Fama-French Factors or the momentum factors. Portfolios are formed
on size (ME), age, total risk (σ), the dividend-price ratio (Div), the earnings-price ratio (Earn), the
book-to-market-ratio (BE/ME), or momentum (Mom). High represents the top three deciles, medium
represents the middle four deciles, and low represents the bottom three deciles. The left panel shows the
results using the original sentiment index. The left column of each panel lists the regression coefficient
(β) on the sentiment index; the right column lists the bootstrapped p-value.
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4.10 Appendix: Figures

Figure 4.1: Baker and Wurgler’s Sentiment Index (BWsent)
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Notes: Shaded areas are bear markets defined by a 20 percent or more drop in the S&P 500 over a two
or month period. Data is monthly. The horizontal axis holds the date.
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Figure 4.2: Agent Sentiment (Sent)
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Notes: The sentiment index (Sent) in levels from the model described in section 4.2. Shaded areas are
bear markets defined as a 20 percent or more drop over a two or more month period.

Figure 4.3: Sent and BWsent
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Notes: The sentiment index (Sent) and BWsent in levels from the model described in section 4.2. Shaded
areas are bear markets defined as a 20 percent or more drop over a two or more month period.
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Figure 4.4: ∆Sent*
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Notes: The graph of ∆Sent*. We interpret ∆Sent* as the first difference in sentiment. The vertical bars
represent bear markets defined as a 20 percent of more drop in the S&P 500 over a two or more month
period.
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Figure 4.5: Time-Varying Betas
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Notes: Figure continued on next page. These figures show the time-varying betas for different
portfolio characteristics. See section 4.6.
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Figure 4.5 Continued: Time-Varying Betas
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Chapter 5

Conclusion

In this dissertation we develop two new indexes for agent sentiment in the stock market.

Using both of these indexes we find that rising sentiment leads to rising returns; and

vice versa. In chapter 2 we also find that rising sentiment leads to lower risk. Our

results in chapter 2 are robust to the inclusion of macroeconomic indicators, risk factors

and the Fama-French factors as additional controls. Furthermore, we find that cycles in

sentiment growth often lead bear and bull markets.

In chapter 3 we forecast stock returns using investor sentiment. More specif-

ically, we use the index outlined in chapter 2 for out-of-sample prediction. We also

develop two-stage model averaging (2SMA). 2SMA is a flexible framework that allows

researchers to incorporate prior economic information. We combine 2SMA with dynamic

Bayesian model averaging to develop two-stage Bayesian model averaging (2SBMA).

We also combine 2SMA and equal-weighted averaging to for two-stage equal-weighted

averaging (2SEWA). The 2SBMA and 2SEWA forecasts statistically outperform the

random-walk plus drift and their traditional model averaging counterparts. Our 2SMA

results are noteworthy since forecasts using equal-weights are difficult to beat in practice

(Timmermann 2006).

In chapter 4 we develop another new sentiment index using traditional senti-
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ment indicators. These indicators include the closed-end fund discount, the equity-share

of new issues and the number of IPOs in a given month. Using this index we find that

rising sentiment leads to rising returns for stocks based on earnings, dividends, and mo-

mentum. We also find that the effect of sentiment has been increasing over time. Lastly,

we show that sentiment has its largest effect on stocks just after bear markets.

Future research should study the relationship between sentiment and volatility.

Also, the causal relationship between sentiment and bear markets is not clear.
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