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ABSTRACT OF THE DISSERTATION

Behavioral Effects in Financial Markets
by
Chandler Joseph Lutz

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2011
Dr. Marcelle Chauvet, Chairperson

We develop sentiment indexes to study the relationship between sentiment and stock
returns. For the first index, we use only market return data; for the second, we use
traditional indicators including the closed-end fund discount, NYSE share turnover,
and the equity-share of new issues. In sample we find that rising sentiment leads to
rising returns and lower risk. We also show that sentiment cycles lead bear markets.
In a forecasting exercise we develop two-stage model averaging (2SMA). 2SMA is a
flexible framework that allows researchers to incorporate prior economic information
into their forecasts. Through 2SMA we develop two-stage Bayesian model averaging
(2SBMA) and two-stage equal-weighted averaging (2SEWA). With these techniques we
forecast stock returns using investor sentiment. We find that the 2SBMA and 2SEWA
forecasts beat their traditional model-averaging counterparts and beat the benchmark

random-walk plus drift in a statistically significant manner.
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Chapter 1

Introduction

Rational arbitraguers have a profit incentive to ride waves of investor sentiment: Bank
stocks rode the liquidity bubble through 2007; hedge funds were overweight tech stocks
in the late 1990s; and Sir Issac Newton rode the South Sea Bubble in the 1720s[] Yet
classic finance theory fails to explain these historical episodes. In classical financial
theory, rational arbitrageurs quickly exploit any mispricing. The failures of the classical
financial theory have led to the rise of behavioral finance. In behavioral finance, rational
arbitrageurs interact with irrational agents. These irrational agents suffer from one or
more behavioral biases that affect their decision making process.

For example, Abreu and Brunnermeier develop a bubble where irrational traders
drive asset prices away from equilibrium. The rational arbitrageurs then receive a signal
sequentially about the nature of the bubble. This creates a coordination problem. In the
model’s equilibrium, the rational arbitraguers ride the bubble and try to exit the market
just prior to the crash. Hence, rising sentiment leads to rising returns. This theoretical
model matches the anecdotal accounts mentioned above. But recent empirical research
in behavioral finance, such as Baker and Wurgler (2006, 2007) and Frazzini and Lamont

(2008), finds that high sentiment relates to low future returns. Hence, the empirical

!See Brunnmermeier (2009), Brunnermeier and Nagel (2004), and Temin and Voth (2004)



research contradicts the theoretical models and the real-world examples.

In this dissertation we develop two new sentiment indexes for the stock market.
In chapter|2, we develop a real time stock market sentiment index using only return data.
We develop another sentiment index using traditional indicators in chapter {4l With both
of these indexes we study the relationship between sentiment and stock returns. We find
that rising sentiment leads to rising returns, and vice versa.

In chapter [2| we find that rising sentiment leads lower risk and that cycles in
sentiment growth often lead bull and bear markets. Sentiment has its largest on stocks
just after bear markets.

We study the time-varying relationship between sentiment and stock returns in
chaprter [l We find that the effects of sentiment have been growing over time. We also
find that sentiment sentiment has its largest effect on stocks just after bear markets.

In chapter [3|we develop two-stage model averaging (2SMA). 2SMA is a flexible
framework that allows researchers to incorporate prior economic information information
into their forecasts. Furthermore, 2SMA handles the ‘crowding out effect.” The crowding
out effect occurs when a given forecast that performs well over time and doesn’t receive
a large enough weight in the final forecast.

We combine 2SMA and dynamic Bayesian model averaging to form two-stage
Bayesian model averaging (2SBMA). Similarly, we combine 2SMA and equal weighted
averaging to develop two-stage equal-weighted averaging (2SEWA). We use 2SBMA
and 2SEWA to forecast returns one-step ahead using investor sentiment. We find that
2SBMA and 2SEWA both outperform the benchmark random-walk plus drift and their
traditional model averaging counterparts.

Overall, our results correspond with the theoretical predictions of Abreu and

Brunnermeier (2003) and anecdotal accounts of investor sentiment. We find that rising



sentiment leads to rising returns and lower risk; and vice versa. Whence, rational
arbitrageurs have a profit incentive to ride waves of investor sentiment.

Our 2SMA framework is the first forecasting procedure, to our knowledge, that
allows researchers to incorporate prior economic in a non-parametric way. Researchers
can apply the 2SMA framework to any problem where a given forecast is known to
perform well over time.

This dissertation extends the empirical literature in behavioral finance. Unlike
previous empirical work, our results match the theoretical and anecdotal literature.

The forecasting work in this dissertation is related to model averaging by clus-
tering. Aiolfi and Timmermann (2006) group forecasts into based on prior forecasting
performance, pool within groups, and then shrink the optimal combination weights

across clusters to equal weights.



Chapter 2

Real Time Investor Sentiment and the

Cross-Correlation of Stock Returns

Abstract: Using only market return data we develop a new index for agent sentiment
in the stock market via a dynamic factor model with Bayesian estimation. This index
accurately times sentiment episodes. We find that rising sentiment leads to rising re-
turns and lower risk, and vice versa. While sentiment affects most stocks, it has its
largest effect on small, young, and volatile stocks, stocks without earnings or dividends,
stocks in distress, and high momentum stocks. We also quantitatively chronicle cycles
in sentiment growth with a modified Bry-Boschan algorithm. These cycles lead bear

and bull markets.



Throughout history sophisticated investors have tried to ride waves of investor
sentiment: hedge funds were overweight tech stocks in the late 1990s, banks rode the
liquidity bubble through 2007, and Sir Isaac Newton rode the South Sea Bubble in
the 1720sE| These historical episodes match the theoretical predictions of Abreu and
Brunnermeier (2003). Abreu and Brunnermeier find that rational arbitrageurs have a
profit incentive to ride waves of investor sentiment and that rising sentiment leads to
rising returns. Yet recent empirical research, such as Baker and Wurgler (2006, 2007)
and Frazzini and Lamont (2008), contends that high sentiment relates to low future stock
returns. Therefore, these empirical papers suggest that rational arbitrageurs should bet
against waves of investor sentiment rather than ride them.

In this paper, we develop a novel stock market sentiment index (SENT here-
after) using only market return data. With this index we study the relationship between
investor sentiment and stock returns. We report the following findings: (1) SENT accu-
rately times sentiment episodes; (2) rising sentiment leads to above average returns and
lower risk, and vice versa; (3) sentiment has its largest effect on small firms, young firms,
volatile stocks, firms without earnings or dividends, high momentum stocks, growth
stocks, and firms in distress; (4) SENT is robust to the inclusion of macroeconomic
indicators and measures of time-varying risk as additional controls; and (5) cycles in
sentiment growth often lead bear and bull markets.

Our empirical result—that rising sentiment leads to rising returns and lower
risk—corresponds to the theoretical predictions of Abreu and Brunnermeier (2003).

Abreu and Brunnermeier build a model where agents face a coordination problem in

!See Brunnermeier and Nagal (2004), Brunnermeier (2009) and Abreu and Brunnermeier (2003) for
further examples where rational arbitrageurs ride waves of investor sentiment. Temin and Voth (2004)
describe the South Sea Bubble. They find that rational arbitrageurs had a profit incentive to ride the
bubble. Temin and Voth conclude that the evolution of the South Sea Bubble matches the theoretical
model of Abreu and Brunnermeier (2003).



attacking a bubble. In the model’s equilibrium, rational arbitrageurs have a profit
incentive to ride the bubble. Hence, rising sentiment leads to a higher demand for
sentiment-driven stocks. The increase in demand then translates into higher prices?]

Our empirical results also match the anecdotal accounts in Temin and Voth
(2004), Brunnermeier and Nagel (2004), and Brunnermeier (2009). These papers con-
sider various asset bubbles throughout history. They find that rational arbitrageurs
have a profit incentive to ride waves of investor sentiment.

Using only market return data to develop SENT allows researchers, practi-
tioners, and policymakers to compile our index in real time and make decisions based
on current information. Market returns are also free from the surveying and sampling
issues that plague other macroeconomic and financial indicators. Yet returns are noisy,
differenced series. To deal with the noise in returns and construct an index in levels we
employ a dynamic factor model with Bayesian estimation. The dynamic factor model
(and Kalman filtering it relies on) smooths the large volatility in return data. Fur-
thermore, the dynamic factor model allows us to use the steady-state Kalman Gain, a
byproduct from the Kalman filter, to construct an index in levels. Thus, we can com-
pare SENT directly to other stock sentiment aggregates. The most ubiquitous of these
aggregates is the stock sentiment index of Baker and Wurgler (2006, 2007) (BWsent
hereafter). SENT and BWsent follow the same general pattern, but SENT more pre-
cisely times sentiment bubbles and crashes.

With SENT we study the relationship between sentiment and future returns.

?Baker and Wurgler (2006) also provide a theoretical foundation that explains the dynamics of the
sentiment-driven stocks. In particular, Baker and Wurgler contend that the sentiment-driven stocks are
hard-to-value and difficult-to-arbitrage. The sentiment-driven stocks have relatively less information
available since they are younger, smaller, without earnings or dividends, etc. This allows investors to
plausibly defend a wider range of valuations. D’Avalio (2002) finds that the sentiment-driven stocks are
costlier and riskier to arbitrage. Through the hard-to-value and difficult-to-arbitrage channels, sentiment
has a larger affect on the set of sentiment-driven stocks.



First, we sort returns by firm characteristics and by the previous month’s sentiment
growth. We find that rising sentiment leads to above average future returns and lower
risk, and vice versa. This result holds for most stocks. Yet sentiment has its largest
effect on small, young, and volatile firms; firms without earnings or dividends; growth
firms; high momentum stocks; and stocks in distress. We label this set of stocks, the
stocks most affected by sentiment, as “the set of sentiment-driven stocks.”

Next, we run in-sample regressions. We conclude that rising sentiment relates
to rising future returns for the set of sentiment-driven stocks and vice versa. These
regression findings match our results based on sorts. Our regression results are robust
to the inclusion of macroeconomic indicators, measures of time-varying risk, the Fama-
French factors, and the momentum factor as additional controls.

Lastly, we quantitatively date cycles in sentiment growth using a modified Bry-
Boschan algorithm. The Bry-Boschan (1971) algorithm is a set of conditional rules to
find the highs and lows in a series. Cycles in sentiment growth often lead bear and bull
markets. More specifically, sentiment growth peaks prior to all bear markets over the
sample period except for the light bear markets that began in 1961 and 1990. Hence,

SENT may be useful for investment or policy decisions.
2.1 Related Literature

Baker and Wurgler (2006, 2007) develop a sentiment index from various monthly com-
ponents (BWsent hereafter). See appendix for the description and analysis of Baker
and Wurgler’s (2006, 2007) data and index construction.

We plot BWsent at the monthly frequency in figure Shaded areas represent
bear markets defined as a 20 percent or more drop in the S&P 500 over a two or more

month period. While BWsent follows general patterns of sentiment, it mis-times the



conclusion of certain sentiment episodes. We expect sentiment to rise as bubbles develop
and then crash as bubbles burst. Most notably, BWsent peaks nearly a year after the
tech bubble crash in 2000. This is surprising since many authors, such as Shiller (2006),
attribute the tech boom and bust to agent sentiment. BWsent also peaks well into the
bear markets in the late 1960s and the early 1980s.

[Insert figure here]

Given figure it is not surprising that Baker and Wurgler (2006, 2007)
find that high sentiment relates to low future returns. When sentiment is highest (as
measured by BWsent), stocks are suffering through bear markets. This result contradicts
the theoretical findings of Abreu and Brunnermeier (2003). As noted above, Abreu and
Brunnermeier conclude that rational arbitrageurs have a profit incentive to ride waves
of investor sentiment.

BWsent is also difficult to calculate in real time. One component of BWsent
is the equity-share of new issues (S)E| This variable is only available from the Federal
Reserve at lagged Valuesﬁ Hence, practitioners and policymakers cannot use BWsent
to make real time decisions.

Frazzini and Lamont (2008) use mutual fund flows to study the relationship
between sentiment and stocks. They also find that high sentiment relates to lower future
returns. Other papers use sentiment surveys to study the predictability of asset returns.
For example, Lemmon and Portniaguinia (2006) and Qui and Welch (2004) consider
consumer confidence. The surveys that these studies employ are only available at lagged
values and subject to measurement error. The market returns we use to develop SENT

are free from measurement error and are available in real time.

for a description of the equity-share of new issues.
“See the Federal Reserves’ website: http://www.federalreserve.gov/econresdata/releases/
corpsecure/current.htm
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2.2 The Data

Baker and Wurgler (2006, 2007), among others, find that agent sentiment affects small
firms, firms without earnings or dividends, and firms in distress. These results help
motivate the choice of the series used to construct the sentiment index in this paper.

We use long-short portfolios of equal weighted returns based on dividends, size
and earnings. More specifically, we examine the difference between market returns for
stocks that do not pay dividends and those that do, companies with earnings less than
or equal to zero and those with positive earnings, and small and large firms. We define a
small (large) firm as one whose market cap is in the bottom (upper) 20 percent. We also
consider the equal weighted returns of low momentum firms. We classify firms whose
returns are in the bottom ten percent for the previous two to twelve months as having
low momentum. We use the returns on low momentum firms to represent companies in
distress. The series are all monthly and compiled from Kenneth French’s data hbraryﬁ
The correlation matrix for these variables is presented in table[2.I] The data for the series
comprised from momentum, size, and dividends are available from 1927MO07, but the
data for earnings begins in 1951M07. Hence, our data contains 698 observations ranging
from 1951MO07 to 2009MO08. We also use the returns from the S&P500 to incorporate
the results from Glushkov (2006). He found that after controlling for size and volatility
that larger stocks with a higher likelihood of S&P500 membership are more affected by
sentiment %]

[Insert table here]

Since we use only market return data, our index has two main advantages over

other sentiment measures and macroeconomic indicators. First, there is no measurement

5Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
5S&P500 data is available publicly from Robert Shiller’s website at http://www.
irrationalexuberance.com/
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error and no need for the data to be revised. This eliminates the uncertainty related
to surveying and sampling found in other sentiment aggregates. Second, firms and
policymakers could compile the data in real time and extend our model to make decisions
based on current information.

We abbreviate the series for the long-short portfolios based on dividends, earn-
ings and size as div, earn, and size, respectively. The returns for low momentum firms

will be abbreviated as lowmom. We represent the S&P500 variable as sp500m
2.3 Model Estimation and Description

The return data we use is essentially log-differenced prices. Hence, the data is noisy.
If we were to apply principal component analysis (PCA) to the return data the result
could be interpreted as a differenced sentiment index. This index would be extremely
volatile and not be directly comparable to other sentiment measures. To create an index
in levels we use a dynamic factor model with Bayesian estimation. Like PCA, dynamic
factor models extract a common component from various series. Unlike PCA, dynamic
factor models smooth noisy series via the Kalman Filter. The dynamic factor model
also allows us to derive a sentiment series in levels. See Stock and Watson (1991) and
Kim and Nelson (1998, 1999) for more on dynamic factor models.

To estimate the model we first take each series in deviations from the mean.

The dynamic factor model then takes the following form:

Ayir = vilAcy + e, i =1,...,5 (2.1)
¢(L)A0t = W, Wt ~ N(O, 1) (22)
$i(L)eir = vig, vie ~ N(0,0?) (2.3)

Where Ay;; = AY;; — AY;, i = 1,...,5, represents one of the five series: div,

"Baker and Wurgler (2006) test the effects of BWsent on div and earn in their paper. They find a
statistically significant relationship between sentiment and the div and earn series.

10



earn, size lowmom and sp500, respectively. Ac; = ACy — § is the component common
to all series, €; is an idiosyncratic component, 7; is the factor loading, and L is the
lag operator. To estimate the model and derive the common component, Ac;, we cast
it into state-space form. Although a unique representation does not exist we elect a
form similar to Kim and Nelson (1998). This facilitates computation of the estimation

algorithm. Multiplying both sides of equation by 1;(L) yields
@bl(L)Aylt = ’Yiwi(L)ACt + Vit (24)
The Bayesian Information Criterion guides our choice of ¢(L) and v;(L) (given that the

number of lags in each equation is greater than or equal to one). We choose two lags

for ¢(L) and two lags for ¢;(L). Equations /4.2 and 4.3 become

Acy = p1Aci—1 + p2Aci—o + wy (2.5)
€it = Vi1€it—1 + Yingip—2 v, 1 =1,...,5 (2.6)

We employ the following state-space form:

Measurement Equation:

_ Ayiy _ _ Mo o—mYn vz _ _ v _
Ays, Y2 =2t —2tbe2 Acy Vot
Ayz | = | 13 3z —sPse Aciy | T | vy (2.7)
Ayy, M v —vaee || Ace | o

LAy | [ s —sse | | st |

In matrix form this becomes

(yt =Hp, + Vt)

11



Where v, = yit — ¥i1yit—1 — Yi2Yi+—2 as in the left hand side of equation

Transition Equation:

Acy ¢1 ¢2 0 Aci—1 wi
A1 | =11 0 0 Acis | 1] 0 (2.9)
ACt_Q 0 1 0 Act_g 0

Equation can be written in matrix form as

(B =FB,_1 +et)

100
Eleret) =10 0 0 (2.10)
000

Estimating the above model will produce a series, Ac;. We can interpret Acy
as the de-meaned first difference in sentiment. Yet our goal is to compile a sentiment
index in levels. To derive a common component representing the levels index, we need
to identify 6. Our approach follows Stock and Watson (1991). Stock and Watson (1991)
notice that AC; is a function of past lags of AY;. Stock and Watson then derive an
estimate of § by taking the expected value of AC;. This method employs the steady-
state Kalman gain. Once, we have an estimate for § we can compile C;. C; is the

common component or sentiment index in levels. We label C; as SENT.

12



We estimate the model using the Bayesian multimove Gibbs-sampling approach
based on Carter and Kohn (1994) and Kim and Nelson (1998). The Bayesian method
takes into account parameter uncertainty by jointly estimating the state vector and
the model parameters. In contrast, traditional maximum likelihood treats the model
parameters as true values when estimating the state vector.

To implement the estimation algorithm we use the MCMC Gibbs-sampling
method. We run the algorithm 10,000 times and drop the first 2000 iterations. For

further explanation of these techniques see Kim and Nelson (1998, 1999).
2.4 Empirical Results

We interpret the common component, C; as the sentiment index and label it SENT.
Table shows the estimated parameters from the dynamic factor model. ¢ =1,...,5
represent div, earn, size, lowmom, and sp500 respectively. As mentioned above, the
factor loading for variable i is ;. The factor loadings all have the expected positive sign.
Furthermore, the loadings for div, earn, size, and lowmom are much higher than the
loading for sp500. This results is not surprising: based on prior research we expect the
div, earn, size, and lowmom series to more directly capture sentiment. The parameters
¢1 and ¢9 represent the autoregressive coefficients on the sentiment index. ¢; and ¢9
are positive; this suggests that the sentiment index is persistent. Lastly, the coefficients
on the lags of the idiosyncratic components (the ;’s) are small in magnitude. Hence,
idiosyncratic components are not persistent.

[Insert table here.]

We plot SENT in figure High values of SENT correspond to high levels of
agent sentiment or optimism; low values of SENT correspond to low levels of agent sen-

timent or pessimism. The gray bands around SENT represent its 95 percent confidence

13



intervals. These confidence intervals are the 5th and 95th percentiles from the posterior
distribution of the Gibbs-sampler. The confidence intervals are extremely tight. This
shows the robustness of our estimation approach given the data. The vertical bars in
figure represent bear markets defined as a 20 percent or more drop in the S&P500
over a two or more month period. Overall, SENT rises and falls with agent sentiment:
SENT levitates as bubbles develop and crashes as bear markets take hold.

[Insert figure here.|

We plot SENT versus BWsent in figure SENT is the solid line; BWsent
is the dotted line. SENT and BWsent follow the same overall pattern, but SENT more
accurately times sentiment episodes. For example, SENT peaks just prior to the bear
markets in the mid-1950s, late 1960s, mid 1970s, early 1980s and early 2000s. This
matches our expectations as sentiment cycles should coincide with stock booms and
busts. BWsent, on the other hand, continues to rise through the bear markets in the
late 1960s, early 1980s and early 2000s.

[Insert figure here.]

SENT also corresponds with the anecdotal accounts of sentiment episodes out-
lined in Baker and Wurgler (2006). First, Baker and Wurgler (2006) find a bubble
during 1961. SENT reaches a local maximum during this period and then falls as the
bear market ensues in 1962. Baker and Wurgler (2006) document bubbles in 1977 and
1978 and again in the first half of 1983. Our index spikes around these bubbles. SENT
crashes through the bear markets in 1987 and 1990. SENT then rises through the mid-
1990s before peaking prior the 1997 Asian financial crisis and the collapse of Long Term
Capital Management. SENT rockets up during the internet bubble in the late 1990s

and then crashes in 2000. Lastly, SENT plummets through the credit crisis in 2008.

14



2.4.1 SENT, Macroeconomic Indicators, and Time-Varying Risk

Next we check the robustness of our index to the inclusion macroeconomic indicators
and time-varying risk as additional controls. We use a process similar to Baker and
Wurgler (2006). For each component of our index we control for (regress out) growth
in industrial production (INDPRO), consumer durables (IPDCONGD), consumer
nondurables (IPNCONGD), the one month Treasury rate (TTREAS), and NBER re-
cessions (NBER). These factors allow us to control for broad macroeconomic effects.
We also control for the S&P500 monthly volatility (sp500vol) and the BAA-AAA cor-
porate spread (BAA — AAA). sp500vol and (BAA — AAA) allow us to control for
time-varying risk in the stock and bond marketsﬁ

We run the following regression where y;;, i = 1,...,5 is any of the components

our index.
Yit =+ S1INDPRO; + B2l PDCONGD; + 831 PNCONGD,
+ 64TREAS1§ + 55NBER,§ + 568]75001)0% + B7(BAA — AAA) + it (211)

We then re-compile our index using the residuals from the regression, €;;, to develop an
“orthogonalized index.” If our original index and the orthogonalized index are similar,
we contend that our methodology is robust to business cycle indicators and time-varying
risk. The correlation between our original index and the macro-orthogonalized index
is 0.80. We plot the orthogonalized index and SENT if figure 2.4 SENT and the
orthogonalized index share the same pattern and turning points. The only difference is

the magnitude during some periods. The orthogonalized index stays below SENT prior

8We obtained growth in industrial production, consumer durables, consumer nondurables, and the
BAA and AAA series from the FRED economic database. The series IDs are INDPRO, IPDCONGD,
IPNCONGD, and BAA and AAA, respectively. The one-month Treasury rate is available from Kenneth
French’s Data library. We calculate the monthly volatility by taking the standard deviation of S&P500
daily returns for each month.
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to 1980 and above SENT after 1980. After the bear market in 2002, SENT and the
orthogonalized index are nearly identical. Overall, our sentiment index appears robust
to macro indicators and time-varying risk. As shown below, orthogonalizing SENT
to the macro indicators and time-varying risk does not affect the relationship between

sentiment and stocks returns.

[Insert figure here.]
2.5 Empirical Tests

In this section we study the relationship between sentiment and future returns for vari-
ous types of stocks. We form decile portfolios based on the following firm characteristics:
(1) size (ME); (2) age; (3) volatility (Total Risk, o); (4) the earnings-price ratio (Earn);
(5) the dividend-price ratio (Div); (6) the book-to-market ratio (BE/ME); and (7) mo-
mentum (Mom)ﬂ Portfolios based on ME, Earn, Div, BE/ME, and Mom are from
Kenneth French’s Data Library. We compile the portfolios based on age and volatility
from the CRSP database using share codes 10 and 11. We count a stock’s age from
the first date it is listed in the CRSP. We then form decile breakpoints using the prior
month’s age. To compile the portfolios based on volatility, we calculate the prior 2-12

month standard deviation for each stock. We then construct decile based on volatility.
2.5.1 A Stationary Sentiment Index

The sentiment index, SENT, developed sections and is not stationary. Yet to
analyze the relationship between sentiment and stock returns we need a stationary series.
First, we test for breaks. We calculate the Quandt (1960) statistic and test the null

hypothesis of no structural break based on the Andrews (1993) critical values. Hansen

9These portfolios are similar to the portfolios studied in Baker and Wurgler (2006).

16



(1997) develops p-values based on the Andrews critical valuesm We find a structural
break in 2000M12 with a Hansen (1997) p-value of 0.001. Based on this break date, we
split SENT into two subsamples: [1951M09, 2000M11] and [2001M01, 2009M09]. There
are no structural breaks in these subsamples. Hence, SENT contains only one break in
2000M12. After controlling for the break in 2000M12, we find that SENT is still not
stationary. Thus, we need to use a differenced series.

One benefit of the dynamic factor model is that it produces Ac; as a byproduct.
As noted above, we interpret Ac; as the de-meaned first difference in SENT (ASENT*
hereafter)m ASENT™ is a stationary series. Hence, we use it to study the relationship
between sentiment and stock returns in the remainder of the paper. We plot ASENT*
in figure As expected, ASENT* is most volatile around major episodes of investor
sentiment.

[Insert figure here.]
2.5.2 Returns for Stocks Sorted by Firm Characteristics and Sentiment

Using the decile portfolios described in section [2.5] we sort returns based on the prior
month’s sentiment growth, ASENT*. More specifically, we compare returns when
ASENT” is high in the previous month to returns when ASENT” is low in the pre-
vious month. ASENT™ is high in the previous month if it is above the mean and vice
versa. These conditional sorts allow us to non-parametrically study the relationship
between sentiment and future returns across different types of stocks.

Table and figure show the results. In both table and figure

"The Quandt statistic is the maximum Chow (1960) statistic over the sample. We interpret the
Quandt statistic as the best candidate for a breakpoint. See Hansen (2001) for an overview of these
methods.

1We use ASENT”* rather than the first difference in SENT since ASENT* comes directly from the
model. Recall that the dynamic factor model derives SENT from ASENT”. Hence, ASENT" is a more
parsimonious than the first difference in SENT. Using the first difference in SENT does not significantly
affect our regression results below.
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High represents times when ASENT;_; is above the mean; Low represents times when
ASENT}_; is below the mean; Ave represents the average across both High and Low;
and Dif represents the difference between High and Low. In figure [2.6] we plot Dif times
—1 so it is easily visible below the horizontal axis. As the effects of sentiment rise, Dif
increases in magnitude.

The top rows in table and figure show the results based on size (ME).
When ASENT]_; is high, returns are above average for all but the largest stocks. In
orther words, rising sentiment magnifies the size effect of Banz (1981). Surprisingly, the
size effect reverses during times of falling sentiment: when ASENT}_; is Low, smaller
stocks earn lower returns on average than larger stocks. For the top two deciles com-
prising the largest stocks, rising sentiment leads to below average returns and vice versa.
This negative relationship between sentiment and future returns is unique to the top
two deciles of the size-based portfolios.

Next, we examine the results for the portfolios based on age in the second set
of rows in table and in figure Sentiment affects the entire cross-section, but the
effect is marginal for the oldest stocks. When ASENT}_; is High, returns for all of the
deciles are above Ave; and vice versa when ASENT;_; is Low. Thus, rising sentiment
leads to above average returns and vice versa.

The results in figure for portfolios based on volatility are remarkable.
Sentiment has almost no effect on the least volatile stocks, the stocks constituting first
decile, but a large effect on the most volatile stocks, the stocks constituting the tenth
decile. For the most volatile stocks, Dif is large in magnitude; Dif then converges to
zero as volatility abates. Hence, the effect of sentiment is larger for riskier stocks.
Furthermore, the effect of ASENT]_; is nearly symmetrical around Ave during periods

of rising or falling sentiment: High values of ASENT}_; relate to high returns and vice
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versa. We discuss the relationship between sentiment and risk further in section [2.5.5]

Figures and [4.5d|show the sorts based on dividends and earnings. The zero
on the horizontal axis in figure [2.6] represents the portfolios comprising stocks without
earnings or stocks without dividends. Coinciding with our expectations, sentiment has
its largest effect on the stocks without dividends or earnings. The far right column of
table shows the difference in monthly returns between stocks with positive earnings
and those without earnings; and the difference between stocks with positive dividends
and those without dividends. When ASENT;_; is High, stocks without earnings or
dividends perform best; the opposite occurs when ASENT} ; is Low. This result is
not surprising; stocks without earnings or dividends have less information available and
should be more affected by sentiment.

Figure shows the results based on the book-to-market ratio (BE/ME).
Sentiment affects all stocks in the cross-section. Yet as demonstrated by the plot of Dif,
sentiment has its largest effect on low book-to-market stocks or growth stocks.

The sorts for the portfolios based on momentum are also noteworthy. The last
set of rows in table and figure show the results. The upward slope in Ave is
the well-documented momentum effect: high momentum portfolios earn higher future
returns and vice versa for low momentum portfolios. Sentiment affects the entire cross-
section of momentum stocks, but the effect is not constant. Sentiment has a larger
effect on the extreme momentum portfolios. The U-shaped pattern in Dif highlights
the varying effects of sentiment on momentum stocks. Sentiment has a larger effect
on the highest and lowest momentum stocks. When ASENT}_; is High, high momen-
tum stock earn extremely high returns. For example, the tenth decile comprising the
highest momentum stocks produces monthly returns of 1.82% for Ave compared with

monthly returns of 2.52% when ASENT}_; is High. This result corresponds with our
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expectations: during times of high sentiment, like during the 1990s tech bubble, high
momentum stocks perform well. The lowest momentum stocks, the losers constituting
the bottom decile, also perform well as sentiment rises. When ASENT;_; is High, the
lowest momentum stocks earn 1.96% per month. Interestingly, the momentum effect
only persists for Low values of ASENT}_;; in figure Low slopes upwards.

In summary, for all but the safest stocks, rising sentiment leads to above average
returns and vice versa. Yet sentiment has its largest effect on small, young and volatile
firms; firms without earnings or dividends; growth stocks; high momentum stocks; and
stocks in distress. As noted above, we call these stocks “the set of sentiment driven

stocks.”

2.5.3 Return Volatility for Stocks Sorted by Firm Characteristics and Sen-

timent

Next, we study the relationship between sentiment and return volatility for different
types of stocks. We sort stocks into bins based on firm characteristics and ASENT}_;
using the procedure in sections and Then we calculate standard deviation for
each bin. Table 2.4 and figure 2.7 show the results. The format of the table [2.4] and
figure 2.7 is similar to table [2.3] and figure [2.6] outlined in section [2.5.2

For all of the decile portfolios in table and figure rising sentiment leads
to below average return volatility. When ASENT}_; is high, the standard deviation
of the returns is below average, and vice versa. Thus, risk falls as sentiment rises.
This result holds for portfolios based on size (ME), age, volatility (Total Risk, o), the
earnings-price-ratio, the dividend-price ratio, the book-to-market ratio, and momentum.

Rising sentiment leads to rising returns and lower risk, and vice versa. Hence,

our results show that investors should ride waves of agent sentiment and then exit the
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market before sentiment falls. These findings match the theoretical results of Abreu and
Brunnermeier (2003). Abreu and Brunnermeier find that rational arbitrageurs have a
profit incentive to ride waves of investor sentiment and then try to exit the market right

before the crash.
2.5.4 In-Sample Predictive Regressions

In this section, we run in-sample regressions to determine the predictive power of sen-
timent on future returns in a model-based framework. We use the stationary ASENT*
series outlined in section 4.4]

To conduct our regressions, we lag ASENT* by one period. We also control for
the three factors, M KT, HM L and SM B of Fama and French (1993) and a momentum
factor. If one of these factors is used as the dependent variable we do not include it
in our set of regressors. We construct long-short portfolios based on the various firm
characteristics listed in section We build the long-short portfolios by comparing the
high, medium and low deciles. The top three deciles are high; the middle four deciles
are medium; and the bottom three deciles are low. Let the variable Z; represent any of

the long-short portfolios. The regression equation becomes:
Zy = a+ B1ASENT;_ | + oM KT + 3SM By + fsHM L, 4+ BsUM D, + ¢ (2.12)

Table shows the regression results. The left panel shows the results for
ASENT™; the right panel shows the results using the orthogonalized index. We calculate
the orthogonalized index by first regressing out the macroeconomic and time-varying risk
indicators described in section The left most column holds the dependent variable
used for the regression in equation In each panel, the left column holds the beta on
the sentiment index and the right column holds its bootstrapped p-value in parentheses.

[Insert table here]
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The results are similar for the regressions on ASENT* and orthogonalized
ASENT*: controlling for the macroeconomic and time-varying risk indicators only
marginally changes the coefficients or their p-values. Thus, the relationship between
sentiment and returns is robust to the inclusion of the macroeconomic and time-varying
risk indicators as additional controls.

Panel A shows the effects of sentiment on size (ME), age, and risk (o). We
compare small and large firms; young and old firms; and high and low volatility stocks.
All of the regression coefficients are positive and significant at the one percent level.
Hence, sentiment has a larger effect on small, young and volatile firms. The positive
regression coeflicients also suggest that rising sentiment relates to rising returns, and
vice versa.

In Panel B we study the effect of sentiment on earnings and dividend based
portfolios. More specifically, we compare firms without earnings to those with posi-
tive earnings, and firms without dividends to those with positive dividends. Clearly,
sentiment has a larger effect on stocks without earnings or dividends. The coefficients
are positive and significant at the one percent level. So, for stocks without earnings or
dividends, rising sentiment leads to rising returns.

Panels C and D show portfolios based on the book-to-market ratio. In Panel C,
we examine the effects of sentiment on HML. Stocks with a high book-to-market ratio
may be undervalued or in distress; stocks with a low book-to-market ratio are often
growth stocks. The positive regression coeflicient suggests that sentiment has a larger
effect on stocks in distress. In Panel D, we focus on growth stocks. More specifically, we
study the Medium — Low long-short portfolio based on the book-to-market ratio. Not
surprisingly, the coefficient on the sentiment index is negative. Thus, sentiment has a

positive effect on growth stocks.
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Panel E shows sentiment’s effect on the momentum factor, UMD. The top
momentum deciles are obviously high momentum stocks; the bottom deciles are stocks
in distress. In this case, the coefficient on the sentiment index is positive and significant.
Hence, sentiment has a larger effect on high momentum stocks.

In Panel F we focus soley on high momentum stocks using the long-short
portfolio High — Medium. In this regression we control for the momentum factor, UMD.
Yet the regression coefficient is still positive and statistically significant at the 10 percent
level. This implies that sentiment has an effect on high momentum stocks beyond the
momentum factor.

Panel G focuses on stocks in distress. In particular, we study the High —
Medium portfolio based on the book-to-market ratio, and the Medium — Low portfolio
based on momentum. The regression coefficients have the expected sign: the coeflicient
is negative for the portfolio based on momentum and positive for the portfolio based on
the book-to-market ratio. Hence, rising sentiment lifts stocks in distress.

Overall, the coefficients are positive and significant when we go long the set
of sentiment driven stocks, and vice versa. The regressions are robust to the inclusion
of macroeconomic and time-varying risk indicators, the Fama-French Factors, the mo-
mentum factor as additional controls. These results match our findings based on sorts:
rising sentiment leads to rising returns for the set of sentiment driven stocks and vice

versa.
2.5.5 Sentiment and Risk

In section [2.4.1] we orthogonolized SENT to time-varying risk. In this section we examine
the relationship between our sentiment index and risk in the cross-section. Standard

portfolio theory (e.g. the CAPM model) contends that riskier portfolios should always
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have a higher expected return. The volatility is a measure of the portfolio’s risk. Hence,
a portfolio with a larger volatility should earn higher expected returns. From this
perspective, one may argue that our sentiment index is just capturing varying degrees
of risk rather than the effects of sentiment. To study this issue we consider an exercise
similar to that of Baker and Wurgler (2007). We form ten decile portfolios based on
volatility. The third set of rows in table and figure show the average returns for
these portfolios. The results coincide with our expectations: the more volatile portfolios
are riskier and earn larger average returns. Hence, on average, the CAPM predictions
hold. In addition, we examine portfolio returns when ASENT”* is high in the previous
month and when ASENT* is low in the previous month. As mentioned above, ASENT*
is low during the previous month if it is below the mean and vice versa for high levels of
ASENT*. When ASENT” is high during the previous month, the portfolios with higher
volatility earn much higher returns. The results reverse when ASENT”* is low during
the previous month. In this case, high beta portfolios earn much lower returns than low
beta portfolios. These results violate CAPM predictions. Baker and Wurgler (2007)
label the graph in figure [£.5d as “the sentiment seesaw.” Not surprisingly, given the
above regressions, our empirical seesaw and Baker and Wurgler’s are inverses. We both
find, however, that standard portfolio theory fails to explain the results: for a given level
of sentiment, riskier stocks earn lower future returns. In Baker and Wurgler’s words,

“This is a powerful confirmation of the sentiment-driven mispricing view.”
2.6 Sentiment Cycles

Using the stationary ASENT* index outlined in sections and we date cycles in
sentiment growth. Recall that we interpret ASENT™ as the first difference (or growth)

in sentiment. Hence, a peak in ASENT* indicates the point where sentiment grew the
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fastest and vice versa. Our goal is to determine trends in the growth rates of sentiment.
This will allow us to study the relationship between sentiment growth and bear markets.
We find that peaks in sentiment growth rates often act as a leading indicator of bear
markets. Hence, practitioners and policymakers could use sentiment growth rates to
make decisions regarding the state of the market.

To our knowledge, no other work has quantitatively chronicled sentiment cy-
clesE To date the cycles we employ a modified Bry-Boschan algorithm. The Bry-
Boschan algorithm is a set of conditional rules to find local highs and lows in a series.
We modify the algorithm by first adding an extra layer of smoothing. Then we change
the window lengths of the cycle durations in the algorithm to fit our data. We also
require that the magnitude of each phase be greater than 1.5 standard deviations of
the entire index. This ensures that small blips are not recorded as peaks or troughs in
sentiment growth. Appendix shows the exact set of rules we set for the algorithm.
Table and figure [2.8 show the results. The gray shaded areas in the figure represent
peak to trough episodes in ASENT?; the light blue shaded areas are bear markets. The
modified algorithm appears to capture the dynamics in the growth rate of sentiment.
Furthermore, sentiment growth peaks prior to most bear markets. This is the case for
the bear markets that begin in 2008, 2000, 1987, 1981, 1976, 1968, 1966 and 1957. Our
algorithm does not record a peak in sentiment growth prior to the bear market in 1961.
Also, sentiment growth peaks just after the light bear market in the early 1990s.

In addition, the algorithm records other sentiment cycles. These usually occur
as sentiment growth levitates following bear markets. For example, the algorithm records

peaks following the bear markets in 2002, 1990, 1982 and 1957. This result is not

2Baker and Wurgler (2006) document anecdotal periods of sentiment. Their approach is qualitative.
We compare our sentiment index to these accounts in section
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surprising since the stocks most affected by sentiment produce their greatest returns
following bear markets. Clearly, there is a correlation between sentiment growth and
bear markets. More study is needed, however, to determine the nature of the relationship

and its causality.
[Insert table and figure here.]

2.7 Conclusion

In this paper we develop SENT, a market returns based measure of investor sentiment.
Using market returns frees SENT from the surveying and sampling issues that plague
other sentiment indexes. To compile SENT we use a dynamic factor model with Bayesian
estimation. This estimation technique smooths the noise found in return series and
compiles an index in levels that we compare directly to other sentiment aggregates. Using
conditional sorts we find that rising sentiment leads to rising returns and lower risk. In a
regression framework we control for macroeconomic and time-varying risk indicators the
Fama-French factors. We again find that rising sentiment leads to rising returns, and
vice versa. Furthermore, sentiment has its largest effect on the set of sentiment-driven
stocks. The sentiment-driven stocks are small, young and volatile stocks; stock without
earnings or dividends; growth stocks; momentum stocks; and stocks in distress. Lastly,
we quantitatively chronicle cycles in sentiment growth using a modified Bry-Boschan

algorithm. We find that cycles in sentiment growth often lead bear and bull markets.
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2.8 Appendix: Baker and Wurgler’s (2006, 2007) Sentiment Index

Data for Baker and Wurgler (2006, 2007) is available from Jeffrey Wurgler’s website.

The following list contains the components of Baker and Wurgler’s index:

e The closed end fund discount (CEFD): The average difference between the net-
asset-value (NAV) of closed-end stock funds and their market prices.

e NYSE share turnover (TURN): the ratio of reported share volume to the average
shares listed for the New York Stock Exchange

e The number of IPOs over a given month (NIPO)
e The average first day return of IPOs for each month (RIPO)

e The equity share of new issues (S): The gross equity issued divided by the gross
equity plus debt issued

e The dividend premium (PP~VP): the log difference between the average book-to-
market ratios of dividend and non-dividend paying stocks.

See Lee, Shleifer and Thaler (1991), Ibbotson, Sindelar and Ritter (1994),
Baker and Wurgler (2000), Baker and Stein (2004) and Baker and Wurgler (2004) for
more detailed analysis of these measures.

Baker and Wurgler use the first principal component as the factor loading
on each variable. The following equation of shows the construction of BWsent at the

monthly frequency as in Baker and Wurgler (2007):
BWsent = — 0.23CEFD + 0.23TURN + 0.24NIPO
+ 0.29RIPO + —0.32PP~ND 1 0.238 (2.13)

Baker and Wurgler (2006) develop BWsent at an annual frequency and sim-
ilar results. Baker and Wurgler (2006) and Baker and Wurgler (2007) find a similar

relationship between sentiment and stock prices; high sentiment relates to low returns.
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2.9 Appendix: Procedure For Determination of Turning Points

1. Filter the series using the HP Filter with the smoothing parameter set to 150.
2. Remove outliers from the data and replace them using the Spencer curve.
3. Determination of initial turning points in raw data

a) Determination of initial turning points in raw data by choosing local peaks

Determinati f initial turni ints i data by choosing local ki
(troughs) as occurring when they are the highest (lowest) values in a window
12 months on either side of the date.

(b) Enforcement of alternation of turns by selecting highest of multiple peaks (or
lowest of multiple troughs)

4. Censoring operations (ensure alternation after each)

(a) Elimination of turns within 6 months of the beginning and end of the series

(b) Elimination of peaks (or troughs) at both ends of the series that are lower
(or higher) than values closer to the end

(c) Elimination of cycles whose duration is less than 24 months

(d) Elimination of phases whose duration is less than 4 months or whose magni-
tude is smaller than 1.5 standard deviations of the sentiment index.

5. Statement of final turning points
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2.10 Appendix: Tables

Table 2.1: The correlation of sentiment components

Div Earn Size Lowmom

Div 1 086 0.8 0.79
Earn 0.86 1 0.73 0.69
Size 0.8 0.73 1 0.62
Lowmom 0.79 0.69 0.62 1
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Table 2.2: Bayesian posterior distribution.

Variable Mean Med Std

) 0.233  0.234 0.014
b2 0.009  0.009 0.014
T 3.660  3.657 0.092
(3 0.012  0.012 0.055
19 0.006  0.006 0.055
o? 0.561  0.555 0.121
Y2 3.778  3.777 0.119
Va1 -0.168  -0.170 0.043
P22 0.025  0.025 0.042
o3 4.809  4.794 0.287
V3 6.282  6.274 0.237
P31 0.195 0.195 0.041
P32 -0.074 -0.074 0.041
o3 24.211 24.182 1.358
V4 3.233  3.230 0.120
Va1 0.040  0.040 0.040
Va2 0.053  0.054 0.041
o3 6.414  6.401 0.374
Vs 1.324  1.321 0.118
P51 0.220  0.220 0.039
V52 -0.055 -0.054 0.037
o2 9.728  9.683 0.534

Notes: See section for a description of the model. ¢ = 1,...,5 represent the five series, div, earn,
size, lowmom and sp500, respectively. ~; is the coefficient on the common component in equation
¢; are the coefficients on lags of the common component in equation 2} 1; are the coefficients on lags
of the idiosyncratic component in equation
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Table 2.6: Regressions—Portfolio Returns and Sentiment

ASENT} Ortho ASENT]}_;
B p-val B p-val
Panel A: Size, Age, and Risk
ME SMB 0.288 (0.004) 0.260 (0.007)
Age Young-Old 0.189 (0.000) 0.172 (0.000)
o High-Low 0.556 (0.000) 0.512 (0.000)
Panel B: Profitability and Dividends
DIV =0->0 0.699 (0.000) 0.638 (0.000)
EARN <0->0 0.875 (0.000) 0.875 (0.000)
Panel C: Growth Opportunities and Distress
BE/ME HML 0.180 (0.031) 0.181 (0.026)
Panel D: Growth Opportunities
BE/ME Medium-Low -0.103 (0.012) -0.106 (0.007)
Panel E: Momentum and Distress
Mom UMD 0.418 (0.003) 0.440 (0.001)
Panel F: Momentum
Mom High-Medium 0.050 (0.090) 0.055 (0.069)
Panel G: Distress
BE/ME High-Medium 0.098 (0.005) 0.078 (0.007)
Mom Medium-Low -0.198 (0.001) -0.152 (0.011)

Notes: Regressions of long-short portfolios at time t on ASENT;_;. See equation In each regression
we control for the Fama-French factors and the momentum factor.
factors or the momentum factor is the dependent variable, then we eliminate from the set of regressors.
Portfolios are formed on size (ME), age, total risk (o), the dividend-price ratio (Div), the earnings-price
ratio (Earn), the book-to-market-ratio (BE/ME), or momentum (Mom). High represents the top three
deciles, medium represents the middle four deciles, and low represents the bottom three deciles. The left
panel shows the results using the original sentiment index. The right panel shows the results using the
sentiment index orthogonalized to the macro indicators listed in section The left column of each
panel lists the regression coefficient (3) on the sentiment index; the right column lists the bootstrapped

p-value.
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Table 2.7: Peaks and troughs in Sentiment.

Peak Trough

195412 195707
195808 196004
196512 196608
196707 197003
197201 197212
197504 197608
197804 197902
198001 198110
198302 198406
198703 198711
199107 199207
199601 199701
199911 200011
200306 200408
200511 200806

Notes: The algorithm used to determine the turning points is described in sections and appendix

B3
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2.11 Appendix: Figures

Figure 2.1: Baker and Wurgler’s Sentiment Index (BWsent)

—| BWsent

BWsent

I I I I I I I I I
1967 1972 1977 1982 1987 1992 1997 2002 2007

Notes: Shaded areas are bear markets defined by a 20 percent or more drop in the S&P 500 over a two
or month period. Data is monthly. The horizontal axis holds the date.
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Figure 2.2: SENT

— SENT

SENT

-1

I I I I I I I
66 1971 1976 1981 1986 1991 1996 2001 2006 2011

I I
1951 1956 1961 19

Notes: The sentiment index (SENT) developed in section The Date is along the horizontal axis
and the level of agent sentiment (SENT) is along the vertical axis. High values of SENT correspond to
high levels of agent sentiment. The gray bands represent 95 percent confidence intervals for SENT. The
shaded vertical bars represent bear markets defined as 20 percent or more drop in the S&P 500 over a
two or more month period.

Figure 2.3: BWsent vs. SENT

, 5

0 i B P R EA Ty W ---- BWsent
4 B 2oV’ W — SENT

] g

_2 — :

I I I I I I I I I I I I I
1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 2006 2011

Notes: Shaded areas are bear markets defined by a 20 percent or more drop in the S&P 500 over a two
or month period. The black line is SENT. We compile SENT via a dynamic factor model. The red
dashed line is BWsent. The horizontal axis holds the date.
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Figure 2.4: SENT vs. Orthogonalized SENT

I I I I I I I I I I I I I
1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 2006 2011

Notes: SENT (the black line) is the sentiment index developed in section We calculate Orthogonal-
ized SENT (the red, dashed line) by first regressing the components of SENT on macroeconomic factors
and then compiling the index. Orthogonalized SENT accounts for the macroeconomic and time-varying
indicators described in Shaded areas are bear markets defined by a 20 percent or more drop in

the S&P 500 over a two or month period. The horizontal axis shows the date.

Figure 2.5: ASENT*

I I I I I I I I I I I I I
1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 2006 2011

Notes: The graph of ASENT*. We interpret ASENT* as the first difference in sentiment. The vertical
bars represent bear markets defined as a 20 percent of more drop in the S&P 500 over a two or more

month period.
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Figure 2.6: Returns for Stocks Sorted by Firms Characteristics and ASENT*

(a) ME (b) Age (c) Total Risk (o)
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Notes: This figure shows returns sorted by firm characteristics and by ASENT;_;. Decile portfolios
are on the horizontal axis and monthly returns are on the vertical axis. Panel (h) shows the legend.
The solid black line represents average monthly returns (Ave); the dashed line represents returns when
ASENT™ is high in the previous month (High); the dotted line represents returns when ASENT” is low
in the previous month (Low); and the dash-dot represents -1 times the difference between returns when
ASENT” is high in the previous month and when ASENT" is low on the previous month (Dif). For
Panels (a) through (g), portfolios are based on size (ME), age, total risk (o), the earnings-price ratio
(Earn), the dividend-price ratio (Div), the book-to-market ratio (BE/ME), and momentum (Mom). For
the portfolios based on earnings and dividends, zero on the horizontal axis represents firms with no
earnings or no dividends.
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Figure 2.7: Return Volatility for Stocks Sorted by Firms Characteristics and ASENT*

(a) ME (b) Age (c) Total Risk (o)
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Notes: This figure shows return volatility sorted by firm characteristics and by ASENT;_;. Decile
portfolios are on the horizontal axis and monthly returns are on the vertical axis. Panel (h) shows the
legend. The dashed line represents the standard deviation of monthly returns when ASENT”* is high
in the previous month (High); the dotted line represents the standard deviation of monthly returns
when ASENT” is low in the previous month (Low); the solid black line represents the average standard
deviation over both High and Low (Ave); and the dash-dot represents the difference between High and
Low (Dif). For Panels (a) through (g), portfolios are based on size (ME), age, total risk (¢), the earnings-
price ratio (Earn), the dividend-price ratio (Div), the book-to-market ratio (BE/ME), and momentum
(Mom). For the portfolios based on earnings and dividends, zero on the horizontal axis represents firms
with no earnings or no dividends.
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Figure 2.8: Cycles in sentiment growth

— SENT

SENT

1 1 1 1 1 1 1 1 1 1 1 1 1
1951 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 2006 2011

Notes: SENT is the black line. The gray bands around SENT are its 95 percent confidence intervals.
The shaded gray areas represent peaks to troughs in sentiment growth, ASENT”*. The modified Bry-
Boschan algorithm described in section |2.6|and appendix determines the turning points in sentiment
growth, ASENT”. The shaded light blue areas represent bear markets defined as a 20 percent or more
drop in the S&P500 over a two or more month period.
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Chapter 3

Two-Stage Model Averaging: An Application to
Forecasting Stock Returns using Investor Senti-

ment

Abstract: We develop two-stage model averaging (2SMA), an extension of model av-
eraging. 2SMA is an easy-to-implement, flexible framework that allows researchers to
incorporate prior economic information. 2SMA helps researchers deal with the ‘crowding
out effect.” Researchers can combine 2SMA with any other model averaging technique.
In an application, we develop two-stage Bayesian model averaging (2SBMA), the two-
stage model averaging extension of dynamic Bayesian model averaging, and two-stage
equal-weighted averaging (2SEWA). Through 2SBMA and 2SEWA we forecast stock
returns using investor sentiment. We find that the 2SBMA and 2SEWA forecasts sta-
tistically outperform the benchmark random walk plus drift over the sample period.
The 2SBMA and 2SEWA forecasts also both beat their traditional model averaging

counterparts.
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Researchers consider a large number of models that often contain a large num-
ber of specifications when developing their forecasts. To circumvent choosing just one
model with one specification researchers use model averaging. Model averaging allows
researchers to diversify, account for uncertainty, reduce volatility, and improve accu-
racy. But as the number of models and specifications grow, the weights on consistently
top-performing models may fallH We call this the ‘the crowding out effect.’

Crowding out is problematic when certain models perform well over time and
don’t receive a large enough weight in the final forecastﬂ For example, suppose we
want to forecast stock returns one step ahead; where y;y1 is the return at time ¢ + 1.
Suppose moreover that we use an exogenous variable, x; to forecast y; 11 with a linear
model. We may have many specifications to choose from for the linear model. Yet the
efficient market hypothesis says that the random-walk plus drift model, whose forecast
is an equal-weighted average, should outperform other models over timeﬂ So, to create
the final forecast we average over the random-walk plus drift and the linear model. In
all likelihood, there is uncertainty regarding the choice of the optimal specification of
the linear model. If we consider all possible specifications in the combined forecast, the
weights on the specifications of the linear model may crowd out the random-walk plus
drift. This is especially true if we use equal or relative weights. Hence, the random-walk
plus drift may receive a lower weight than we expect. In essence, crowding out occurs
when there is unexploited prior information in a model averaging problem.

Previously, researchers dealt with crowding out in one of the following ways:

1. Use equal-weights to average across all specifications of the linear model and the

!This result holds for the popular equal-weights and for schemes based relative weighting. Equal
weights and relative weights usually perform best in practice. See Timmermann (2006)

2Aiolfi and Timmermann (2006) say models that perform well over time are ‘persistent.’

3The random-walk plus drift also performs well compared to various individual models in practice.
See Goyal and Welch (2008), Timmermann (2008).
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random-walk plus drift: Even though equal weights often perform well in practice

(Timmermann (2006)), as noted above, crowding out will occur.

. Use a model selection criterion to choose a specification for the linear model:
Timmermann (2008) and Aiolfi and Timmermann (2006) use the Bayesian infor-
mation criterion (BIC) to choose the optimal specification for the linear model.
This approach neglects information contained in competing specifications and the

uncertainty related to the choice of the optimal specification.

. Trimming: If we trim poor performing specifications of the linear model there is

still no guarantee that crowding out will not occur.

. Estimate the weights based on past performance: Estimating the weights based on
past performance has received much attention in the literatureﬁ Yet these methods
may not eliminate the crowding out effectﬂ Schemes based on past performance
may also place large weights on models that perform well for short periods or
randomly just prior to the forecast date. The weights on these forecasts may
overpower a different model that is known to perform well over time. This point
is alluded to in Timmermann (2008)@ Furthermore, as noted by Timmermann
(2006), more complicated weighting schemes rarely beat simple weighting schemes

in practicem

To deal with the crowding out effect and incorporate prior economic informa-

tion, this paper develops two-stage model averaging (2SMA). Two-stage model averaging

is a flexible framework that researchers can combine with any other model averaging

*See Timmermann (2006) for an overview of these methods.

5We demonstrate this point in the application below using dynamic Bayesian Model Averaging in
section

STimmermann notes, when forecasting stock returns, that models show local predictability and then
lose their predictive power over time.

"See also Clemen (1989).
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technique. Two-stage model averaging has the following advantages: (1) 2SMA han-
dles the crowding out effect; (2) 2SMA incorporates economic information into a model
averaging framework which can improve forecast performance; (3) 2SMA is easy to
implement; and (4) 2SMA retains all of benefits of traditional model averaging.

2SMA is a two-stage approach. To implement 2SMA in the above example,
we first average over all specifications of the linear model in the first stage, and then
average over both the random-walk plus drift and the linear model in the second stage.
This approach will place a large weight on the random-walk plus drift model even if
we use equal weights. Hence, 2SMA diversifies across specifications of the linear model
while retaining the strong performance of the random-walk plus drift. In general, 2SMA
incorporates prior information by saving the predetermined top-performing model(s) for
the second stage; averaging over other models or specifications in the first stage. In our
above example, we saved the random-walk plus drift for the second stage and averaged
over the linear model in the first stage. The most obvious use for 2SMA occurs when
there is a known benchmark that is difficult to beat. Yet through 2SMA researchers can
augment any model that is known to perform well over time with alternative forecasts.
2SMA easily extends to the case where researchers have different exogenous variables or
different exogenous variables and different models with different specifications.

2SMA is related to model averaging based on clustering. Aiolfi and Timmer-
mann (2006) group forecasts into clusters based on prior forecasting performance, pool
within clusters, and then shrink the optimal combination weights across clusters to-
ward equal Weightsﬁ Practitioners may prefer 2SMA when they have prior information

about a given model that performs well over long time periods even as other models

8 Ajolfi and Timmermann use the Bayesian information criterion to choose the specification for the
linear model, 18 Artificial Neural Network Models, 15 Logistic STAR models, and 21 time-varying
autoregressive models.
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show strong performance for short intervals. Hence, 2SMA will perform well when pre-
dictability is ‘elusive’ (Timmermann 2008). Furthermore, 2SMA is easy for practitioners
to implement.

In an application, we forecast market-weighted returns out-of-sample using the
sentiment index of Lutz (2011). We combine 2SMA and Bayesian model averaging
(BMA) to develop two-stage Bayesian model averaging (2SBMA). We compare these
results to two-stage equal-weighted averaging (2SEWA). We find that both the 2SBMA
and 2SEWA techniques beat their traditional model averaging counterparts and outper-
form the benchmark random-walk plus drift in a statistically significant manner. Lastly,
we combine equal-weighted averaging and Bayesian model averaging within the 2SMA
framework to form an equal-weight, Bayesian model averaging hybrid. This technique
also beats the benchmark in a statistically significant manner. We use both Bayesian
model averaging and equal-weighted averaging to demonstrate that the 2SMA approach
can be easily work with simple and more complicated averaging schemes. Overall, our
2SMA forecasts are noteworthy since equal-weights are difficult to beat in practice (Tim-
mermann 2006).

We introduce the application in section In section [3.2)and appendix [3.8] we
describe dynamic Bayesian model averaging and demonstrate the crowding out effect.
In section [3.3| we extend dynamic Bayesian model averaging by exploring methods to
choose the optimal training length. We also use these methods to in the first stage of
QSBMAH In section we outline the two-stage model averaging procedure (2SMA).
Lastly, in section we develop two-stage Bayesian model averaging (2SBMA) and

two-stage equal weighted averaging (2SEWA).

9Generally, choosing a training length is necessary for the first stage of 2SMA whenever the weights
are estimated based on past performance.
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3.1 The Data and Application

We introduce the application to serve as an instructive example. Our goal is to predict
market-weighted returns, ¢, one-step ahead using the stock sentiment index of Lutz
(2011)@ Lutz (2011) finds that sentiment cycles lead bear markets. Lutz’s sentiment
index uses only return data. So, we can use the sentiment index to replicate a real-
time forecasting exercise. In appendix [3.7] we describe the construction of the index.
Following the notation of Lutz (2011), we represent the sentiment index as ASENT*.
To avoid look ahead bias, we re-estimate ASENT™ for each in-sample period considered.

We have information available up to time period ¢ and forecast returns at time
t+1. Let y; 11 represent returns for time ¢+ 1 and e441 represent an unpredictable white
noise process.

The benchmark model we consider is the random walk plus drift:

Yir1 = Po + €141 (3.1)

The forecast for this model is the unconditional mean. In out-of-sample forecasting ex-
ercises researchers have struggled to outperform this benchmark on a consistent basisE
The next model we consider is a linear autoregressive model where lags of

the market return and the sentiment index represent the independent variables. The

specification for this model is as follows:

p q
Yer1 = Bo+ Y ajyeri—j+ Y BASENT, ;i + e (32)
j=1 j=1

We force the model to contain at least one independent variable. This ensures
that the linear model differs from the random walk plus drift.

We employ a NARX neural network which approximates an equation of the

1Market-weighted returns are available from Kenneth French’s data library. Other recent sentiment
indexes are developed by Baker and Wurgler (2006, 2007) and Frazzani and Lamont (2008). These
sentiment measures, however, cant not be calculated in real time.

HSee Goyal and Welch (2008) and Timmermann (2008).
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following form in a non-linear fashion:
Tt+1 = f(?”t, Tt—1,---,Tt—p, ASENT:, ASENTI_l, ceey ASENT:_q> (33)

For our NARX forecast we consider a model with one hidden layer and one output layer.
We use ten neurons in the hidden layer. To train the network, we opt for Bayesian
regulation. This helps avoid overﬁttingE

To evaluate the forecasts we employ the out-of-sample (OOS) R? measure used
in Campbell and Thompson (2007) and Goyal and Welch (2008). The formula for the

00S R? is
MSE,,

R2=1-——"_

(3.4)

Where MSE,, is the mean-squared error for model n and MSE gy p is the mean-squared
error for the benchmark random walk plus drift. If the OOS R? is positive, then model n
outperforms the benchmark. We follow the literature and express the OOS R? statistic
as a percentage.

To evaluate the statistical significance of a model’s performance compared to
the benchmark, we employ the Diebold-Mariano test for non-nested models and the
Clark and West (2007) test for models that nest the benchmark. These tests compare the
loss-differential between the benchmark and the given model. Rejecting the null implies

a statistically significant difference in the loss-differential between the two models.
3.1.1 Individual Forecasts

We show the individual model forecasts in table We compile the forecasts from
1970MO1 to 2009MO09 using a rolling window and recursive estimationE We use ten

years of data for the rolling window forecasts and all available data for the recursive

2For more on Bayesian regulation see MacKay (1992) or Foresee and Hagan (1997).
13We estimate the sentiment index using a rolling window (recursively) for the rolling window (re-
cursive) forecasts.
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forecasts. In this section we choose the optimal specification for both the linear and
NARX models using standard econometric techniques[]

We report the mean-absolute error (MAE) for each decade and the OOS R?
statistic for the overall sample. In table RWD is the random-walk plus drift model.
Under rolling window estimation, the linear model beats the random-walk plus drift for
the overall sample but the loss-differential is not statistically significant. The linear and
the NARX models both beat the benchmark in the 1970s and 2000s subperiods.

Under recursive estimation, both the linear model and the NARX neural net-
work beat the random-walk plus drift. The loss-differential is significant at the 15
percent level for the linear model.

The random-walk plus drift is more difficult to beat under rolling window
estimation. So, in the remainder of the paper we use the rolling window forecasts for

the individual models and their specifications.
3.2 Average Forecasts and the Crowding Out Effect

We average forecasts using a simple equal-weighted average and Bayesian model aver-
aging (BMA). BMA takes into account the uncertainty regarding the true nature of the
process. There are two main ways implement BMA. The first method assumes that
there is one correct model but the econometrician is ignorant to its true form. Raftery
(1995) and Hoeting et al. (1999) outline this use of BMA. Cremers (2002) and Avramov
(2002) apply this type of BMA procedure to stock return data. Raftery et al. (2005)
develop a dynamic BMA procedure where the correct model changes from time period

to time period. Hence, dynamic BMA estimates the model weights based on past perfor-

We use the Bayesian Information Criterion (BIC) to choose the optimal specification for the linear
model. For the NARX model, we regress the fitted values on the actual values. We then use the R? to
choose the optimal specification for the NARX network. This is standard practice in the neural network
literature.
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mance. The dynamic BMA technique then creates the optimal forecast from a weighted
average over a given set of models. Furthermore, dynamic BMA only requires the model
forecasts. This makes it convenient to average over linear and non-linear specifications.
In essence, the dynamic BMA procedure produces an optimal forecast by mixing over a
given set of models. We describe dynamic Bayesian model averaging in more detail in
appendix

To implement dynamic Bayesian model averaging we need to choose a training
length over which to estimate the posterior weights. We discard the first 60 observations
to study the different training lengths. This implies we are eliminating half of the 1970s
from our out-of-sample exercise. As noted in table the 1970s were a subperiod where
both the linear model and the NARX model outperformed the benchmark. Hence, not
using the first half of the 1970s will negatively affect our results. Despite this handicap,
we do not change the out-of-sample period to avoid data mining.

The dynamic BMA approach combines the random walk plus drift, linear and
NARX forecasts. This implies that the BMA forecast nests the random-walk plus drift
model. Therefore, we must use the Clark and West (2007) test to evaluate forecast
performance.

We consider eight specifications for the linear model (not including the random-
walk plus drift) and eight specifications for the NARX neural network. These specifica-
tions correspond to the number of lags for the autoregressive and sentiment components.

As noted in the introduction, researchers have traditionally averaged over dif-
ferent models with various specifications in the following ways: (1) using equal weights;
(2) estimating the weights based on past performance; or (3) using a model selection
criterion to determine the optimal specification. But all of these techniques are suscep-

tible to the ‘crowding out effect.” The crowding out effect occurs when the weight on a
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model known to perform well falls as the number of peripheral forecasts grow.

In table we average over all models and all specifications using dynamic
Bayesian model averaging and equal—weightsﬁ The far left column shows the training
length. The middle columns show the average weight applied to each model; standard
deviations are in parentheses. The far right column shows the OOS R? statistic. For
each AR 4, p is the number of autoregressive lags and q is the number of sentiment
lags. Similarly for NARX,, 4. The last row shows the results using equal weights.

The efficient market hypothesis says that stock returns are unforecastable over
time. This implies that the random-walk plus drift will be the top model. Furthermore,
as noted above, the random-walk plus drift performs well in practice versus other indi-
vidual models. Yet there are 17 different forecasts when we consider all models and all
specifications. Hence, when we use equal-weights, the random-walk plus drift receives a
weight of only 1/17 (5.6 percent); the other forecasts crowd out the random-walk plus
drift. The equal-weighted forecast also performs poorly with an OOS R? statistic of
-0.123 percent.

Dynamic BMA partially alleviates the crowding out effect: the average weight
on the random-walk plus drift varies from 7.3 percent to 12.6 percent depending on the
training length. The top-performing BMA forecast uses a training length of 40 periods.
Yet the average weight on the random-walk plus drift for this forecast is only 8.9 percent,
a small increase compared to equal-weights. Clearly, the crowding out effect still occurs
under dynamic BMA.

Dynamic BMA does improve performance compared to the equal-weighted fore-
cast. The OOS R? statistic is positive for 15, 20, 25, 30, 35, 40, 45 and 50 training

lengths. The loss differential between the benchmark and the BMA forecast is sta-

5 Table extends over two pages.
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tistically significant when we use 25, 40, or 45 training lengths. 40 training lengths
produces the largest OOS R? statistic at 0.571 percent. Dynamic BMA also beats the
equal-weighted forecasts.

In dynamic BMA, we can interpret the average posterior weights as the average
forecasting performance over the sample. So, the best model overall is the random-walk
plus drift. But the standard deviations of the posterior weights are quite large. This
suggests that the optimal model, according to dynamic BMA, changes over time.

As previously mentioned, we can also choose the optimal specification for each
model and then average over all models to deal with the crowding out effect. This implies
that we average over just three forecasts: one for the random-walk plus drift, one for
the linear model, and one for the NARX neural network. We apply this approach to our
application and show the results in table [3.3] We choose the optimal specification for
the linear model using the Bayesian information criterion (BIC). For the NARX neural
network, we regress the fitted values on the actual data and choose the specification with
the highest R%. We then average over the random-walk plus drift, the linear model, and
the NARX neural network. As noted above, choosing just one specification for each
model neglects information contained in competing specifications.

In table the far left column holds the number of training periods for the
dynamic BMA process (the last column shows the results using equal-weights). The
middle columns hold the average posterior weights with their standard deviations in
parentheses. The far right column shows the OOS R? statistic expressed as a percentage.

Since we average over just three models, the weight on the random-walk plus
drift is 1/3 for equal weights. Yet the OOS R? statistic is about 0. The weight on the
random-walk plus drift grows when we use dynamic BMA. This leads to an increase in

the OOS R? statistic.
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Under dynamic BMA, the OOS R? statistic is positive except when we use
45 or 60 training lengths. Clearly, the drawback to using a model selection criterion
is losing information contained in competing specifications. In our case, this loss of
information adversely affects performance.

Through our application, we have demonstrated that averaging over all speci-
fications for all models crowds out the top-performing forecasts. Furthermore, choosing
the optimal specification via a selection criterion neglects the information contained in
competing model specifications. To deal with the crowding out effect while diversifying

across all models we develop two-stage model averaging in section
3.3 Choosing a Training Length

Model averaging techniques that use past information need a window over which to
estimate the weights. For example, we consider various training lengths to estimate the
posterior weights in the dynamic BMA process. In this section, we outline methods
to choose this training length. Below, we apply these methods to dynamic BMA and
two-stage Bayesian model averaging (2SBMA).

We consider the following methods to determine the optimal training length:

1. Pooled: Average across all considered training lengths.

2. Cross-Validation (CV): The following steps describe the cross-validation technique.

(a) For each model, suppose we have the forecasts, 91,..., 9, of y1,...,y;.
(b) For each training length k, estimate the weight on each model using gy, . .., Ut
and y, ..., Y, compute the average forecast Uiy o and compute the forecast

Lave — ~ave
eITOr &y 1k = Yt+1 — Yig1 ke

(c) Repeat step (b) for t = m,...,n — 1 where m is the number of observations
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used for the longest training length. Hence, we use n — m observations in the
cross-validation procedure.

Lave Lave

(d) For each training length considered, compute the MSE from &% ko Enk

(e) Select the training length that produces the lowest MSE. Using this training

length, create the forecast for time n + 1, §5%.

3. Inverse-Error (InvErr): This procedure is equivalent to cross-validation except
in step (e) we average across training lengths using the inverse MSE. Thus, we

calculate the weight, w;, on each training length as follows:

1/MSE;
Z?:l 1/MSE;

Where n is the number of different training lengths.

(3.5)

Ww; =

4. Cross-Validation Window (CVwin): Conduct the cross-validation procedure de-
scribed above to determine the optimal training length and select a window around
this length. Then average around the optimal training length using equal weights.
This procedure takes into account the uncertainty related to choosing the training

length via cross-validation.

We apply these training length selection techniques to the dynamic BMA fore-
casts. The above methods to choose a training length extend the dynamic BMA frame-
work of Raftery et al. (2005). Table shows the results.

We estimate CV, InvErr and CVwin using windows of 1, 5 or 10 periods. The
far left column in table 3.4 shows the training length selection method. CV-1, CV-5, and
CV-10 represent the cross-validation technique using 1, 5, and 10 periods respectively.
Similarly for InvErr and CVwin. All of the OOS R? statistics in table are positive,

but none of the loss differentials are statistically significant. The top-performing training
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length criterion is CV-5 with an OOS R? statistic of 0.426 percent.
3.4 Two-Stage Model Averaging (2SMA)

In the introduction and in section [3:2] we outlined and defined the crowding out effect. In
model averaging, crowding out occurs when the weights on the top-performing models
drop as the number of alternative forecasts grow. Crowding out is particularly prob-
lematic when we consider equal or relative weights. Furthermore, as demonstrated in
section crowding out can occur even when we estimate the weights based on past
performance.

If researchers use economic information a priori to determine models that will
perform well over time, then two-stage model averaging can circumvent the crowding
out effect. Two-stage model averaging (2SMA) incorporates prior information to ensure
that top-performing models receive a large weight in the final forecast. 2SMA is a two
stage approach that requires the following steps:

Stage 1:

1. Use prior economic information to determine the top-performing models. Save

these models and their forecasts for the second stage.
2. Average over the other models and specifications to develop the stage 1 forecasts.
Stage 2:

1. Average over the saved models and the stage 1 forecasts to develop the 2SMA

forecasts.

Since 2SMA saves the top-performing models for the second stage and averages

over other forecasts in the first stage, it will eliminate the crowding out effect while
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diversifying across a large number of models. Also, researchers can combine 2SMA with
any other model averaging technique.

To see why 2SMA improves forecast performance consider the following exam-
ple: Suppose, for time ¢+ 1 we want to average over n forecasts, gtlﬂ, .o+ ¥4 1. Suppose
moreover that prior economic information tells us that the forecast from model 1, ¢,
performs well over time. As noted above, when we use equal-weights, relative-weights,
or estimated weights, the alternative forecasts will crowd out §'. In 2SMA, however,
we average over 42, ...,4" to develop the first stage forecast. Then we average over the
first-stage forecast and 4! to develop the 2SMA forecast. This ensures that §' receives
a large weight in the final forecast.

If researchers use past performance to select the weights for the stage 1 fore-
casts, then they need to choose a window over which to estimate these weights. This
window is commonly called the training window or the training length. In section
we outline various methods to choose a training length or average over different training
lengths. These methods include pooling across training lengths, using cross-validation,
weighting training lengths based on past performance, or using a cross-validation win-
dow. The window selection techniques from section [3.3] apply to any scheme that esti-

mates weights based on past performance.
3.4.1 Choosing What to average over in the First and Second Stages

An important issue is how to choose what to average over in the first and second stages.
Prior economic information will play a large roll in this decision. Researchers should
reserve models or specifications that are known to perform well for the second stage.
This will ensure that they receive a large weight in the final forecast. For example,

the efficient market hypothesis states that the random-walk plus drift will outperform
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other forecasting models over time. So, in the application in section [3.5] we reserve the
random-walk plus drift model for the second stage.

The simplest way to implement 2SMA is to save the models known to perform
well, average over all other forecasts in stage 1, and then average over the stage 1 forecast
and the saved models in stage 2. This approach will directly incorporate economic
information and eliminate the crowding out effect. We demonstrate this approach in
section Yet there are other ways to choose the first and second stage forecasts.

When considering different models with one or zero exogenous variables, a
natural approach is to first average all specifications for each model; then average over
all models. This technique first takes into account the uncertainty related to choosing
the optimal specification for each model and the uncertainty related to choosing the
optimal model. This approach also allows researchers to study the performance of each
model in the first stage. We use this intuitive technique for the application in section
A similar approach applies when researchers are considering multiple exogenous
variables and only one model.

The choice becomes trickier when there are multiple models and multiple exoge-
nous variables. In this case, researchers may develop the first-stage forecasts by applying
2SMA to each exogenous variable for the various models and their specifications. Then
the researchers could average over the first-stage forecasts and the saved models to de-
velop the 2SMA forecasts. Researchers must be careful, however, as a large number of

first-stage forecasts may crowd out the top-performing models originally saved for stage

A more methodical approach involves clustering forecasts. Researchers can
cluster forecasts based on performance in the first stage, average within clusters, and

then average across clusters in the second stage. Aiolfi and Timmermann (2006) use
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this approachF_g] But Aiofli and Timmermann do not save models known to perform
well for the second stage. Hence, Aiofli and Timmermann’s technique is susceptible to
the crowding out effect.

Regardless of the methods used in the first stage, the top-performing models,
based on prior economic information, must receive large weights in the second stage.

This will eliminate the crowding out effect and improve performance.
3.4.2 A Bayesian Analogy

Bayesian estimation combines a prior distribution with the likelihood function to develop
a posterior distribution. Researchers then use the posterior distribution for inference.
Researchers incorporate economic information through the form prior distribution.
2SMA uses prior economic information to weight some forecasts more than
others. More precisely, in 2SMA researchers have some prior belief regarding the per-
formance of a certain forecast. They save this forecast for the second stage. Researchers
average over peripheral models in the first stage and then ‘update’ the pre-selected

forecasts in the second stage. In this sense, 2SMA is Bayesian approach.

3.5 Two-Stage Bayesian Model Averaging (2SBMA) and Two-Stage

Equal-Weighted Averaging (2SEWA)

Next, we apply 2SMA to dynamic BMA and equal-weighted averaging to develop two-
stage Bayesian model averaging (2SBMA) and two-stage equal-weighted averaging (2SEWA).
In 2SEWA we use equal weights to average forecasts in stage 1 and stage 2. Similarly,
in 2SBMA we use dynamic BMA to average forecasts in both stages. We implement

2SBMA in the following way:

16 Aiofli and Timmermann use equal weights to average within clusters in the first stage, and then
optimal weights based on least squares shrunk to equal weights to average across clusters in the second
stage.
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Stage 1:

1. Save the predetermined top-performing forecasts for the second stage.

2. Apply the BMA procedure over all other forecasts up to time ¢ + 1 using different

window lengths.

3. Record the corresponding mean-squared errors.
Stage 2:

1. Select the training length that produces to lowest MSE for the forecast at time

period t.

2. Apply the BMA procedure again over the stage 1 forecast and the saved models

to develop the 2SBMA forecast for time ¢ 4 1.

Note that we use leave-one-out cross-validation (CV-1) to determine the optimal training
length in Stage 1; this produces a single forecast stage 1 forecast.

We apply 2SBMA and 2SEWA to our application and forecast stock returns
using investor sentiment. As noted above, prior economic research and the efficient
market hypothesis state that the random-walk plus drift should be the top-performing
model over time. Hence, we save the random-walk plus drift for the second stage. Also,
since 2SBMA uses dynamic BMA in both stages, we need twice as many forecasts to
verify the training length. Thus, we are eliminating the 1970s from our out-of-sample
exercise. This will negatively affect our results as the 1970s were a period where both
the linear model and the NARX neural network beat the benchmark[[]

In stage 1, we average over all of the specifications of the linear model and the

NARX neural network. Table presents the stage 1 forecasts@ The far left column

7See section
BTable extends over two pages.
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shows the number of training periods used for the BMA process, the middle columns
show the posterior weights, and the far right column shows the OOS R? statistic. The
last row displays the results based on equal-weights. The OOS R? statistic is positive
when 25-55 training lengths are used. The loss differential between the stage 1 forecasts
and the benchmark is also statistically significant for a training length of 25, 30, 40 or
45 periods. The top-performing specification, according to the BMA weights, is ARg 1.
This specification corresponds to zero autoregressive lags and one sentiment lag.

Table displays the results from the second stage. The second column lists
the weight on the random-walk plus drift and the third column lists the weight on the
stage 1 forecast. The last column shows the OOS R? statistic. The second-to-last row
shows the 2SEWA forecast results where we use equal-weights in the first and second
stages. Finally, the last row shows the 2SMA results from an equal-weight, dynamic
BMA hybrid. In this hybrid, we use dynamic BMA in the first stage and equal-weights
in the second stage.

All of the OOS R? statistics in table are positive and large in magnitude.
For all of the stage 2 forecasts, the loss differential relative to the random-walk plus
drift is statistically significant at the 5 or 1 percent level. Dynamic BMA using 20
training lengths produces the largest OOS R? statistic at 2.096 percent. Furthermore,
the 2SBMA and 2SEWA forecasts beat their traditional averaging counterparts, dynamic
BMA and equal-weighted averaging, by a large margin@

Not surprisingly, the alternative forecasts do not crowd out the random-walk
plus drift in 2SBMA and 2SEWA. The weight on the random-walk plus drift is greater
than or equal to 1/2 for all of the forecasts in table

To further show the flexibility of the 2SMA framework we augment the above

19See section for the traditional dynamic BMA and equal-weighted averaging forecasts.
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approach and separately average over each model in stage 1@ This approach allows
us to compare the performance of the linear and the NARX models. So, 2SBMA now
involves the following steps.

Stage 1:
1. Save the predetermined top-performing forecasts for the second stage.

2. Apply the BMA procedure for each mode over all considered specifications up

to time t + 1 using different window lengths.
3. Record the corresponding mean-squared errors.
Stage 2:

1. Select the optimal window length for each model (from Stage 1) by choosing the
window length that produces the lowest mean-squared error for the forecast at

time period t.

2. Apply the BMA procedure again over all models to develop the 2SBMA forecast

for time t + 1.

Hence, in stage 2, we average over the forecasts from the linear model, the NARX neural
network, and the random-walk plus drift.

Table [3.7] shows the results for the linear model. Under dynamic BMA, the
specification corresponding to zero autoregressive lags and one sentiment lag, ARg 1,
receives the largest weight on average. This implies that AR is top performing spec-
ification for the linear model on average. Yet the standard deviations for the weights

are large; this suggests that the optimal changes over time. For the top-performing

20We described this technique in
2In our application the models are the linear model and the NARX neural network.
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training length of 30 periods, the OOS R? statistic is 0.4 percent. The forecast using
equal weights does not beat the benchmark.

Table displays the results for the NARX neural network. In this case, under
dynamic BMA the OOS R? statistic is positive and the loss differential, relative to the
benchmark, is statistically significant when we use 20, 25, or 40-60 training lengths. The
top-performing forecast under dynamic BMA uses 60 training lengths. Lastly, the OOS
R? statistic using equal-weights is negative.

An interesting result in tables and is length of the optimal training
window. For the linear model in table a training window of 30 periods seems most
appropriate. Yet the NARX model in table produces its best forecasts using much
longer training windows. Step 1 in the second stage of the 2SBMA process selects the
optimal window length for each model in stage 1. Hence, step 1 of stage 2 allows us to
use cross-validation to choose shorter windows for the linear model and longer windows
for the NARX network. This improves performance of the 2SBMA technique.

Table shows the second stage forecast results. The OOS R? statistics are
positive and among the largest in our study. Using dynamic BMA with a training length
of 10 periods produces the largest OOS R? statistic at 2.018 percent. The loss differential
relative to the benchmark is statistically significant at the 5 or 1 percent level for all
the forecasts in table The weight on the random-walk plus drift is at least 1/3 in
all cases. Thus, the linear and NARX models do not crowd out the random walk plus

drift.
3.6 Conclusion

This paper develops two-stage model averaging (2SMA). 2SMA is a flexible framework

that allows researchers to incorporate prior economic information. To implement 2SMA,
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researchers use economic information to save certain models for the second stage, and
average over peripheral models in the first stage. In the second stage, the researcher
then averages over the saved models and the stage 1 forecasts. This approach ensures
that the saved models receive a large weight in the final forecast.

In an application, we combine 2SMA with dynamic Bayesian model averaging
and equal-weighted averaging to develop two-stage Bayesian model averaging (2SBMA)
and two-stage equal-weighted averaging (2SEWA). Through 2SBMA and 2SEWA we
forecast stock returns using investor sentiment. We find that these forecasts statistically
outperform the benchmark random-walk plus drift and beat traditional forecasts that

use equal weights.
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3.7 Appendix: The Dynaimc Factor Model with Bayesian Estimation

We follow Lutz (2011) in the estimation of the index. To estimate the model we first
take each series in deviations from the mean. The dynamic factor model then takes the

following form:

Ayt = viAcy + €1 =1,...,5 (3.6)
¢(L)Act = W, Wt ~ N(O, 1) (37)
¢i(L)5it = Vjt, Ut ~ N(O, 0'2) (38)

Where Ay;; = AY; — AY;, i = 1,...,5, represents one of the five series: div,
earn, size lowmom and sp500, respectively. Ac; = ACy — § is the component common
to all series, €; is an idiosyncratic component, v; is the factor loading and L is the lag
operator. To estimate the model and derive the common component, Ac¢;, we cast it into
state-space form. Lutz (2010) uses the state-space form in Kim and Nelson (1998). This
facilitates computation of the estimation algorithm. Multiplying both sides of equation
by ¥i(L) yields

Vi(L)Ayir = yipi(L)Acy + vi (3.9)

By the Bayesian Information Criterion, Lutz (2010) chooses two lags for ¢(L) and two

lags for 1;(L). Equations and become

Acy = p1Act—1 + ¢2Aci_2 + wy

—

3.10)
3.11)

—

€it = Yi1€it—1 + Visgit—2 + Vi, i =1,...,5

Hence, we employ the following state-space form:

Measurement Equation:
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_ Ayiy | ] Mo —nvn —7ie _ V1
Ays, Y2 V2o —Yet2e Acy vy
Ays | = | 13 —1s¥s1 —sds2 Aciy | T | vz (3.12)
Ayyy M —vha —vathee || Ac o
| Avyse | | s s¥st —sYse | Vst
In matrix form this becomes
(yt = HB; +vy)
Where v, = yit — Vi1Yii—1 — Vi2yi—2 as in the left hand side of equation
_ o2 0 0 0 0 _
0 02 0 0 0
E(viv)=R=| 0 0 o2 0 0 (3.13)
0 0 0 o2 0
(00 0 0 of]
Transition Equation:
_ Acy | _¢1 G2 0_ _Athl_ wi
Acer | = 1 0 0] | Aga |T] 0 (3.14)
_Act_g_ I 0 1 0_ _Act_g_ 0
Equation can be written in matrix form as
(Be =FBi1 + &)
_ 1 0 0 _
E(eet)=10 0 0 (3.15)
I 0 00 |
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Lutz (2011) then augments the common component, Ac; using the steady-state
Kalman Gain to develop a sentiment index in levels. The levels index is not stationary.
Hence, we use stationary series Ac; and re-label it ASENT*. Lutz (2011) interprets
ASENT™ as the growth or first difference in sentiment.

To avoid look-ahead bias we re-estimate the sentiment index for each in-sample
period considered. Over time, the exact specification of the dynamic factor model may
change. So, we augment Lutz’s approach and average over three specifications of the
dynamic factor model. This allows us to take into account some uncertainty regarding

the structure of the model.
3.7.1 Appendix: Bayesian Estimation of the Factor Model

We follow Lutz (2010) and estimate the model using the Bayesian multimove Gibbs-
sampling approach based on Carter and Kohn (1994) and Kim and Nelson (1998). The
Bayesian method takes into account parameter by jointly estimating the state vector
and the model parameters. In contrast, traditional maximum likelihood treats the model
parameters as true values when estimating the state vector. To implement the estimation
algorithm we use the MCMC Gibbs-sampling method. We run the algorithm 10,000
times and drop the first 2000 iterations. For further explanation of these techniques see

Kim and Nelson (1998, 1999)
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3.8 Appendix: Dynamic Bayesian Model Averaging

In this appendix we describe Bayesian model averaging (BMA). In a forecasting exercise
dynamic Bayesian model averaging forms posterior weights based on past forecasting
performance.

BMA takes into account the uncertainty regarding the true nature of the pro-
cess. There are two main ways implement BMA. The first method assumes that there
is one correct model but the researcher is ignorant to its true form. Raftery (1995) and
Hoeting et al. (1999) outline this use of BMA. Cremers (2002) and Avramov (2002)
apply this type of BMA procedure to stock return data. Raftery et al. (2005) develop
a dynamic BMA procedure where the correct model changes from time period to time
period. The dynamic BMA technique draws the optimal specification from the weighted
average over a given set of models. Furthermore, this technique only requires the model
forecasts. This makes it convenient to average over linear and non-linear specifications.
In essence, the dynamic BMA procedure produces an optimal forecast by mixing over
the forecasts from a given set of models.

In all likelihood, the DGP of stock returns changes over time. Also, we want to
combine the linear and non-linear models depicted above. Hence, we select the dynamic
BMA approach.

Following the notation of Raftery et al. (2005), the BMA predictive pdf is
given by

K
plfis- s fx) = wigr(yl fr) (3.16)

k=1
Where y is the quantity to be forecast, K is the number of models, wy is the weight
applied to each model, and gx(-) is an assumed probability distribution. wy is the

posterior probability. We interpret gi(y|fx) as the pdf of y conditional on f; given that

68



model k£ produced the best forecast over the training period.

We form the log-likelihood function based on the distribution in equation [3.16
We specify a functional form for gi(y|fx). Since this is a finite mixture model we can
apply the EM algorithm to maximize the likelihood function. Before we execute the
EM algorithm we must also choose the length of the training period. To accommodate
the changes in the DGP over time we use a rolling window of forecast data to estimate
the likelihood function. Shorter rolling windows allow the model to adjust quickly to
changes in the structure of the process. Longer windows use more information. This
yields better estimation of model parameters. Researchers widely believe stock returns
follow a distribution with thick tales such as the t-distribution. Despite this fact, we
consider the normal distribution for gx(-). As noted by Peel and McLachlan (2000),
mixing over the t-distribution simply produces less extreme results than the normal
distribution. Hence, using the normal distribution instead of the t-distribution allows
us to add larger weights to better forecasts and further punish poor performing models@

We discard the first 60 observations to use as verification. This implies we are
eliminating half of the 1970s from our out-of-sample exercise. As noted in table the
1970s were a subperiod where both the linear model and the NARX model outperformed
the benchmark. Hence, not using the first half of the 1970s will negatively affect our
results. Despite this handicap, we do not change the out-of-sample period to avoid data
mining.

The dynamic BMA approach combines the random walk plus drift, linear and
NARX forecasts. This implies that the BMA forecast nests the random-walk plus drift

model. Therefore we must use the Clark and West (2007) test to evaluate forecast

2ZResults for the t-distribution are available upon request. Using the t-distribution did not improve
our results.
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performance.
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3.9 Appendix: Tables
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Table 3.3: Average forecasts using the optimal specifications for each model

Periods RWD  Linear NARX R? (%)
10 0.381 0.337 0.282 0.015
(0.324)  (0.317) (0.295)

15 0.376 0.305 0.320 0.432
(0.277)  (0.260) (0.264)

20 0.378 0.301 0.321 0.443
(0.245) (0.228) (0.239)

95 0.379 0.297 0.325 0.317
(0.232) (0.203) (0.224)

30 0.371 0.290 0.339 0.262
(0.216) (0.184) (0.225)

35 0.365 0.283 0.352 0.317
(0.208) (0.168) (0.227)

40 0.366 0.274 0.360 0.177
(0.204)  (0.156) (0.229)

45 0.372 0.270 0.357 -0.004
(0.207)  (0.149) (0.225)

50 0.374 0.271 0.356 0.051
(0.198) (0.134) (0.217)

55 0.374 0.276 0.350 0.035
(0.185) (0.120) (0.201)

60 0.376 0.286 0.338 -0.074
(0.168) (0.112) (0.181)
oW /3 1/3  1/3  0.000
(0.000)  (0.000)  (0.000)

Notes: The far left column holds the length of the training window. The average posterior weight ap-
plied to each model is listed in columns two through four. The standard deviations of the weights are
in parentheses. The far right column holds the OOS R? statistic. One, two, three and four asterisks
represent a statistically significant difference in the loss-differential between the forecast and the bench-
mark random-walk plus drift at the 15, 10, 5 and 1 percent levels, respectively. The last row shows the

results using equal weights.
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Table 3.4: The optimal BMA training length using the optimal specification for each
model

RWD  Linear NARX R2? (%)

Pooled 0.374 0290  0.336  0.002
(0.146)  (0.120) (0.171)

CV-1 0.374  0.306  0.320  0.245
(0.280) (0.255) (0.265)

CV-5 0.390  0.289  0.321  0.426
(0.256) (0.218) (0.241)

CV-10 0.382  0.293  0.325  0.107

(0.253) (0.221) (0.237)
InvErr-1 0376 0290  0.334  0.234
(0.149) (0.123) (0.171)
InvErr-5 0374 0290  0.336  0.203
(0.146) (0.120) (0.171)
InvErr-10 0374 0290  0.336  0.208
(0.145)  (0.120) (0.171)
CVwin-1 0373 0296 0.331  0.239
(0.204) (0.195) (0.206)
CVwin-5 0382 0282 0.336  0.383
(0.205) (0.177) (0.203)
CVwin-10  0.379  0.288  0.333  0.127
(0.215) (0.183) (0.207)

Notes: The far left column holds the the criterion for the choice of the training window over the
dynamic Bayesian model averaging procedure. Pooled is an equal-weighted average across all training
lengths. CV-1, CV-5, and CV-10 represent the cross-validation method using 1, 5, and 10 periods,
respectively. InvErr-1, InvErr-5 and InvErr-10 represent the Inverse MSE method using 1, 5, and 10
periods, respectively. CVwin-1, CVwin-5, and CVwin-10 represent a window around the optimal training
length chosen by cross-validation (We average the forecasts on each side of the optimal training length).
The average posterior weight applied to each model is listed in columns two through four. The standard
deviations of the weights are in parentheses. The far right column holds the OOS R? statistic. One, two,
three and four asterisks represent a statistically significant difference in the loss-differential between the
forecast and the benchmark random-walk plus drift at the 15, 10, 5 and 1 percent levels, respectively.
The last row shows the results using equal weights.
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Table 3.6: Two-stage Model Averaging—Stage 2 Forecasts

Periods RWD  Stage 1 R? (%)
0.524 0.476  1.833%***

10 (0.318)  (0.318)
5 0.539  0.461  1.874%%**
(0.286)  (0.286)
%0 0.552  0.448  2.096%***
(0.258)  (0.258)
. 0.536  0.464  1.775%F*
(0.229)  (0.229)
20 0.530  0.470  1.901%%**
(0.211)  (0.211)
. 0.524  0.476  1.945%%%x
(0.189)  (0.189)
10 0519  0.481  1.806%***
(0.172)  (0.172)
5 0.517  0.483  1.981%%**
(0.147)  (0.147)
0 0.531  0.469  1.891%%**
(0.116)  (0.116)
. 0.535  0.465  1.982%%**
(0.103)  (0.103)
60 0.532  0.468  1.988%***
(0.093)  (0.093)
1/2 1/2  1.205%*
EW and 2 (0.000)  (0.000)
kokskk
BW» ony 1/2 1/2  1.699

(0.000)  (0.000)

Notes: The second stage of the 2SMA process. The far left column holds the length of the training
window. The average posterior weight applied to each model is listed in columns two and three. The
standard deviations of the weights are in parentheses. The far right column holds the OOS R? statistic.
One, two, three and four asterisks represent a statistically significant difference in the loss-differential
between the forecast and the benchmark random-walk plus drift at the 15, 10, 5 and 1 percent levels,
respectively. The second-to-last row shows the results using using equal-weights in the first and the
second stage. The last row shows the results using BMA in the first stage and equal-weights in the
second stage.
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Table 3.9: Stage 2 forecasts over the RWD, Linear and NARX models

Periods RWD  Linear NARX R? (%)
0.420  0.296  0.284  2.018%***

10 (0.352) (0.314) (0.310)

5 0425  0.305  0.269  1.585%%¥*
(0.323)  (0.259) (0.261)

20 0439 0300  0.261  1.365%**
(0.292) (0.236) (0.234)

. 0431 0310  0.259  1.470%**
(0.248) (0.211) (0.194)

20 0412  0.326  0.262  1.506%%%*
(0.213)  (0.190) (0.165)

. 0.397  0.326  0.277  1.552%¥¥
(0.188) (0.171) (0.166)

10 0.397  0.320  0.283  1.441%%*
(0.167) (0.156) (0.162)

i 0.388  0.321  0.291  1.530%**
(0.152) (0.149) (0.160)

0 0.380  0.325  0.296  1.573%%*
(0.139) (0.133) (0.146)

. 0.377  0.328  0.295  1.635%¥*x
(0.128) (0.122) (0.126)

60 0.376  0.327  0.297  1.609%*¥*
(0.124) (0.118) (0.119)

- 1/3 1/3 1/3  1.474%0%x
Land29.000) (0.000) (0.000)

kkoskok

W) ouns 1/3 1/3 1/3  1.910

(0.000)  (0.000)  (0.000)

Notes: The second stage of the 2SMA process. The far left column holds the length of the training
window. The average posterior weight applied to each model is listed in columns two through four. The
standard deviations of the weights are in parentheses. The far right column holds the OOS R? statistic.
One, two, three and four asterisks represent a statistically significant difference in the loss-differential
between the forecast and the benchmark random-walk plus drift at the 15, 10, 5 and 1 percent levels,
respectively. The last row shows the results using equal weights.
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Chapter 4

The time-varying cross-sectional effects of investor

sentiment

Abstract: We develop a new sentiment index for the stock market that accurately times
sentiment bubbles and crashes. We compile this index from the closed end fund discount,
NYSE share turnover, the dividend premium and the equity-share of new issues. To
estimate the index we use a dynamic factor model with Bayesian techniques. In static
regressions we find that rising sentiment relates to rising returns for portfolios based
on size, dividends, earnings and momentum. We then use our index to study the time-
varying effects of agent sentiment on stock returns. We find that the relationship between
sentiment and returns has increased dramatically since the late 1990s. We also find a
strong relationship between relationship between sentiment and future returns following

bear markets.
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Since the tech bubble burst in 2000 and the credit crisis in 2008 there has
been a growing interest in stock market sentiment. Baker and Wurgler (2006, 2007)
develop an index for agent sentiment in the stock market (BWsent hereafter). This index
generally captures trends in stock market sentiment. Baker and Wurgler conclude that
high sentiment relates to low future returns. Lutz (2011) notes, however, that BWsent
‘mis-times’ the conclusion of many bear markets. Furthermore, Baker and Wurgler’s
empirical findings contradict the theoretical predictions of Abreu and Brunnermeier
(2003). Abreu and Brunnermeier (2003) develop a theoretical bubble model. They find
that rational arbitrageurs have a profit incentive to ride sentiment bubbles. In other
words, rising sentiment relates to rising future returns.

In this paper we develop a new sentiment index (Sent hereafter) using the data
from Baker and Wurgler (2006, 2007). Baker and Wurgler (2006, 2007) use principal
component analysis to develop their sentiment index. We use a dynamic factor model
with Bayesian estimation. Sent and BWsent both capture the same general patterns
in sentiment, but Sent more accurately times sentiment and bear market episodes. In
in-sample predictive regressions we find that rising sentiment relates to rising returns
for portfolios based on size, dividends, earnings, and momentum. These regression
results match the theoretical predictions of Abreu and Brunnermeier (2003) and previous
anecdotal accounts of investor sentiment. Brunnermeier (2009), Nagel and Brunnermeier
(2004), and Temin and Voth (2004) consider various asset bubbles throughout history.
They find that rational arbitrageurs have a profit incentive to ride the bubble and that
rising sentiment relates to rising returns.

We also consider time-varying parameter regressions. In these models the beta
on the sentiment index can change over time. We find that the relationship between

sentiment and future returns has increased since 2000. This result corresponds to the
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anecdotal accounts in Shiller (2006). Furthermore, the betas increase along with senti-
ment and returns after bear markets. Yet the magnitudes of the betas drop during the
1990s tech bubble. Hence, sentiment-driven agents were not the only investors taking
part in the boom. This finding matches Abreu and Brunnermeier’s theoretical results.
As noted above, Abreu and Brunnermeier find that rational arbitrageurs also participate
in sentiment-driven bubbles.

Other papers have examined the relationship between sentiment and stock
returns, but to our knowledge this is the first study to do so in a dynamic framework.
Frazzini and Lamont (2008) use mutual fund flows to construct a sentiment indicator.
They find that high sentiment relates to low future returns. Lemmon and Portniaguinia
(2006) and Qui and Welch (2004) examine the relationship between consumer confidence
and stock returns. Brown and Cliff (2004, 2005) use sentiment driven surveys to study

return predictability.
4.1 Data

We develop a sentiment index using the data compiled in Baker and Wurgler (2006,
2007)[| Baker and Wurgler use six components to compile their index. These compo-
nents are the closed end fund discount (CEFD), NYSE share turnover (TURN), the
number of IPOs over a given month (NIPO), the average first day return on these IPOs
(RIPO), the equity-share of new issues (S), and the dividend premium (PP~NP). CEFD
is the the average difference between the net-asset-value (NAV) of closed-end stock funds
and their market prices. TURN is the ratio of reported share volume to the average
shares listed for the New York Stock Exchange. The equity-share of new issues (S) is

gross equity issued divided by the gross equity plus gross long-term debt issued. The

!The data is available on Jeffrey Wurgler’s website: http://pages.stern.nyu.edu/~jwurgler/
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PP=ND) s the log difference of the average market-to-book ratio

dividend premium (
of dividend and non-dividend paying stocks. Previous research found all of these mea-
sures to be proxies of agent sentiment in the the stock market. See Lee, Shleifer and
Thaler (1991), Ibbotson, Sindelar and Ritter (1994), Baker and Wurgler (2000), Baker
and Stein (2004) and Baker and Wurgler (2004) for more detailed analysis of these mea-
sures. We describe BWsent further in appendix The data is monthly from 1965M07
to 2007TM12. The RIPO series contains some missing observations. These missing ob-
servations correspond to months with no IPOs. RIPO is missing during the mid 1970s
and after the tech crash in 2000. These episodes correspond to times of low sentiment.
There is no clear way to deal with the missing data in RIPO. Data imputation may pro-
vide one solution. Imputation methods, however, typically assume that data is missing
completely at random (MCAR) or missing at random (MAR). This is not the case with
RIPO. RIPO is missing during times of low sentiment. Furthermore, in many months
only a few IPOs occur. For example, in 99 out of 510 months there were five or fewer
IPOs. Hence, RIPO draws from a small sample almost 20 percent of the time. In these
cases, RIPO may reflect idiosyncrasies in the companies going public rather than the
nature of the IPO market. For these reasons we choose to drop the RIPO variable. This
still leaves five series that represent agent sentiment. From these five series we compile

a sentiment index.
4.2 Model Estimation and description

We combine the information from the five series and extract a common component using
a dynamic factor model. Baker and Wurgler (2006, 2007) note that TURN follows an

exponential trend. Hence TURN is not stationary. To use the dynamic factor model
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we require that all the series be stationaryﬂ Therefore, we take the first difference in
TURN. In this case, Baker and Wurgler (2007) recommend to take the first difference
of all of the index components. Table [4.1| shows the correlation matrix between the first
differenced series. Unfortunately, the differenced series are largely uncorrelated. Below
we discuss how the small correlation between the variables affects our results. Using the
first difference in each series will lead to the first difference of the sentiment index. To
derive a levels index we employ the method outlined in Stock and Watson (1991) and
Kim and Nelson (1998, 1999). We take each series in deviation from from the mean.

Hence, the model takes the following form:

Ayt = viAcg + e, =1,...,5 (4.1)
¢(L)A0t = W, W ~ N(O, 1) (42)
wi(L)Eit = Vjt, Uit ~ N(O, 02) (4.3)

Where Ay = AY;—AY;, i = 1, ..., 5, represents one of the five series: PP~ND,
NIPO, TURN, CEFD, and S, respectively. Ac; = AC; — 6 is the common component,
€t is the idiosyncratic component, +; is the factor loading, and L is the lag operator. To
estimate the model and derive the common component, Ac;, we cast it into state-space
form. Although a unique representation does not exist we elect a form similar to that of
Kim and Nelson (1998). This facilitates computation of the estimation algorithm. We

multiply both sides of equation by (L) which yields
Vi(L)Ayir = viti(L)Acy + vir (4.4)
The Bayesian Information Criterion guides our choice of ¢(L) and v;(L) (given that the

number of lags in each equation is greater than or equal to one). We choose two lags

for ¢(L) and two lags for ¢;(L). Equations 4.2/ and [4.3| become

2Bakera and Wurgler (2006) consider the natural log of TURN minus it five year moving average
for annual data. Subtracting moving averages did not make TURN stationary for our monthly data
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Act = p1Act—1 + Pp2Act—2 + wy

€it = Yi1€it—1 + VYisgi—2 + Vi, i =1,...,5

Hence, we employ the following state-space form:

Measurement Equation:

A?th
A?J;t
Ay | =

Ath

Ay, ]

il

V2

V3

V4
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Which in matrix form becomes

Where v, = yit — Yi1yit—1 — Yi2Yit—2 as in the left hand side of equation

Transition Equation:

E(vivy)) =R

ACt

Acyq

Aci_2

-7

—Y2121

—73131

—Yaha1

—Y5%51

7112 _
—Y2t22 Acy
—Y3t32 Acq
—aaz | | Ao
—Y5¢52 |

(Yt =Hp,; + Vt)

¢1

o)
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0 0

0 0
o3 0
0 o?

0 0

- Aciq
Aci_a
Aci_3

0

Wt

V1t

V2t

U3t
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Ust
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Equation [£.15] can be written in matrix form as

(B =FpB;_1 +e)

100
Elerer)=10 0 0 (4.10)
00 0

Estimating the above model will produce the first difference in sentiment. The
first difference in sentiment is a noisy series. We want to compile sentiment index in levels
to compare it to Baker and Wurgler (2006, 2007). To derive the common component
representing the sentiment index in levels, we identify § using the procedure outlined in
Stock and Watson (1991). Stock and Watson (1991) notice that AC} is a function of
past lags of AY;. From there they derive an estimate of § by taking the expected value
of AC}. This method employs the steady-state Kalman gain to derive an estimate of
6. Once we have an estimate for 4 we can compile Cy. C} is the common component or
sentiment index in levels.

We follow Lutz (2011) and estimate the model using the Bayesian multimove
Gibbs-sampling approach based on Carter and Kohn (1994) and Kim and Nelson (1998).
This methodology allows us just to jointly estimate the state vector and the model
parameters. To implement the estimation algorithm we use the MCMC Gibbs-sampling
method. We run the algorithm 10,000 times and drop the first 2000 iterations. For

further explanation of these techniques see Kim and Nelson (1998, 1999).
4.3 Empirical Results

Table shows the results. 7;, i = 1,...,5 represent the factor loadings for APP—ND,
ANIPO, ATURN, ACEFD and AS, respectively. As noted in table [£.1] the correlation

between the variables is very small. Hence, the factor loadings are quite small. Also,
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the variance on the error for ANIPO is very large. This is not surprising since the
changes in ANIPO from one month to the next can be extreme. We do not make
further alterations to the sentiment components to avoid data miningﬂ Despite these
drawbacks, the common component representing the sentiment index captures trends
in sentiment. Figure shows our sentiment index (Sent). Baker and Wurgler (2006)
document anecdotal accounts of agent sentiment. Sent generally coincides with their
findings. For example, Sent peaks just prior to the bear market in the late 1960s and
crashes through the bear market in the early 1970s. Furthermore, Sent reaches its nadir
during the 1970s. Baker and Wurgler characterize the mid-1970s as a time of very low
sentiment. The index pauses for bear markets as it climbs through the rest of the sample.
Most notably, the index crashes prior to the bear markets in 1987 and 2000.

Figure [4.3] compares our sentiment index with Baker and Wurgler’s sentiment
index (BWsent). The overall pattern and trend of the sentiment indexes are the same.
This validates our estimation methodology. Yet our sentiment index more accurately
times sentiment episodes. Most notably, our index peaks just prior to the bear episodes
in the late 1960s and early 2000s. BWsent continues to rise through these down markets.
Lastly, employing the Kalman filter in the estimation procedure makes our sentiment

index smoother than BWsent.
4.4 A Stationary Sentiment Index

The sentiment index, Sent, developed sections and is not stationary. Yet to
analyze the relationship between sentiment and stock returns we need a stationary
series. First, we test for breaks. We calculate the Quandt (1960) statistic and test

the null hypothesis of no structural break based on the Andrews (1993) critical values.

3We also want our data to coincide as closely as possible to Baker and Wurgler (2006, 2007).
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Hansen (1997) develops p-values based on the Andrews critical Valuesﬁ We find no
structural breaks in the series. Hence, we need to use a stationary series.

One benefit of the dynamic factor model is that it produces Ac; as a byproduct.
As noted above, we interpret Ac; as the de-meaned first difference in Sent (ASent*
hereafter)ﬂ ASent™ is a stationary series. Hence, we use it to study the relationship
between sentiment and stock returns in the remainder of the paper. We plot ASent*
in figure As expected, ASent* is most volatile around major episodes of investor
sentiment. We use ASent* in the for the in-sample and time-varying regressions below.

[Insert figure here.]

ASent* captures the changes in sentiment over the sample period: ASent*
peaks prior at the of bubbles and crashes as bear markets take hold. Interestingly,
ASent™ falls dramatically just prior to the 1987 stock market crash. ASent™ then rises
through the mid-1990s before crashing prior to the 1997s Asian financial crisis. Lastly,
ASent™ crashes prior to the beginning of the bear market in 2000. ASent* then rises

once the bear market concludes in 2003.
4.5 In-sample predictive regressions

We study the relationship between sentiment and stock returns for various types of
stocks based on the following characteristics: (1) size (ME); (2) age; (3) volatility (Total
Risk, 0); (4) the earnings-price ratio (Earn); (5) the dividend-price ratio (Div); (6) the
book-to-market ratio (BE/ME); and (7) momentum (Mom)ﬁ Portfolios based on ME,

Earn, Div, BE/ME, and Mom are from Kenneth French’s Data Library. We compile

“The Quandt statistic is the maximum Chow (1960) statistic over the sample. We interpret the
Quandt statistic as the best candidate for a breakpoint. See Hansen (2001) for an overview of these
methods.

5We use ASent* rather than the first difference in Sent since ASent* comes directly from the model.
Recall that the dynamic factor model derives Sent from ASent*. Hence, ASent* is a more parsimonious
than the first difference in Sent. Using the first difference in Sent does not significantly affect our
regression results below.

5These portfolios are similar to the portfolios studied in Baker and Wurgler (2006).
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the portfolios based on age and volatility from the CRSP database using share codes 10
and 11. We count a stock’s age from the first date it is listed in the CRSP. We then
form decile breakpoints using the prior month’s age. To compile the portfolios based on
volatility, we calculate the prior 2-12 month standard deviation for each stock and then
form the decile breakpoints. Through the return portfolios listed above, we examine the
relationship between sentiment and the cross-section of stock returns.

We run in-sample regressions to determine the predictive power of sentiment
on future returns in a model-based framework. We use the stationary ASent* outlined
in section [4.4]

To conduct our regressions, we lag ASent* by one period. We also control for
the three factors, M KT, HM L and SM B of Fama and French (1993) and a momentum
factor. If one of these factors is used as the dependent variable we do not include it
in our set of regressors. We construct long-short portfolios based on the various firm
characteristics listed above. We build the long-short portfolios by comparing the high,
medium and low deciles. The top three deciles represent the set of high deciles; the
middle four deciles represent the set of medium deciles; and the bottom three deciles
represent the set low deciles. Let the variable Z; represent any of the long-short portfo-

lios. The regression equation becomes:
Zy = a+ p1ASent;_; + foM KT, + B3SMB; + BaHM L, + BsUMD; + & (4.11)

Table shows the regression results. The left panel shows the results based
on the raw ASENT™ series. In the right panel, we show the results after not controlling
for the Fama-French and Momentum factors. The left most column holds the dependent
variable used for the regression in equation In each panel, the left column holds

the beta on the sentiment index and the right column holds its bootstrapped p-value in
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parentheses.

[Insert table here]

First, the results are similar for the left and the right panels. Thus, controlling
for the Fama-French factors does significantly affect our results.

Panel A shows the effects of sentiment on size (ME), age, and risk. We compare
small and large firms (SMB); young and old firms; and high volatility and low volatility
stocks. All of the regression coefficients are positive, but the results are only significant
when size (SMB) is the dependent variable. This implies that sentiment has a larger
effect on small firms and that rising sentiment relates to rising returns.

In Panel B we study the effect of sentiment on earnings and dividend based
portfolios. More specifically, we compare firms without earnings to those with positive
earnings (Earn); and firms without dividends to those with positive dividends (Div).
Clearly, sentiment has a larger effect on stocks without earnings or dividends. The
coefficients are positive and significant at the one percent level; suggesting that rising
sentiment relates to rising returns.

Panels C and D show portfolios based on the book-to-market ratio. In Panel C,
we examine the effects of sentiment on HML. Stocks with a high book-to-market ratio
may be undervalued or in distress; stocks with a low book-to-market ratio are often
growth stocks. The regression coefficient in Panel C is negative, but not statistically
significant. In Panel D, we focus on growth stocks. More specifically, we study the
Medium-Low long-short portfolio based on the book-to-market ratio. Not surprisingly,
the coefficient on the sentiment index is negative. This suggests that sentiment has a
positive effect on growth stocks. The regression coefficient, however, is not statistically
significant.

Panel E shows sentiment’s effect on the momentum factor, UMD. The top
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momentum deciles are high momentum stocks; the bottom deciles are stocks in distress.
In this case, the coefficient on the sentiment index is positive and significant. Hence,
sentiment has a larger effect on high momentum stocks.

In Panel F we focus on high momentum stocks using the long-short portfolio
High-Medium. In the left panel we control for the momentum factor, UMD. In this case
the regression coefficient is positive but not statistically significant. In the left panel,
we do not control for the momentum factor. The p-value then falls to 0.107.

Panel G focuses on stocks in distress. In particular, we study the High-Medium
portfolio based on the book-to-market ratio and the Medium-Low portfolio for the mo-

mentum stocks. The regression coefficients are negative but not statistically significant.
4.6 Time-varying betas

In section we discussed the relationship between sentiment and future returns. In
this section we study the time-varying relationship between investor sentiment and stock
returns.

Shiller (2006) posits that sentiment’s effect on stock returns has increased since
the early 1980s. Also, Gonzalez-Rivera (1997) finds evidence of time-varying betas in
Arbitrage Pricing Theory models. Huang and Hueng (2008) consider a time-varying
parameter beta in the capital asset pricing model (CAPM). They find that the beta
risk-return relationship changes over time and depends the state of the market. Hence,
time-varying betas appear to apply to stock returns.

We augment the regression in equation to allow the beta on Sent to vary

over time:
Zt =+ BltASGTlt:_l + BQMKT,RFt + BgSMBt + ﬁ4HMLt + B5UM.Dt + Et (412)

Bt = Bit—1 + v, ve ~ N(0,07) (4.13)
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To our knowledge, there is no previous theory that describes the evolution of 51;. Hence,
we model B1; as a random-walk process. The model specification in equations and
allows for easy comparison to the regressions in section 4.5l To estimate the model
we need to cast equations and into state-space form and apply the Kalman
Filter. Equations and are nearly in state-space form. All we need to do is
group the non-dynamic factors in a matrix. Hence we can write the measurement and
transition equations:

Measurement Equation

Zy = PuSenti—1 + Azy + 4,64 ~ N(0, 02) (4.14)

Transition Equation

Bt = Bri—1 + v, v ~ N(0,07) (4.15)

Where A = [a B2 3 B4 B5) and 2z, = [Il MKT_RF, SMBy HML, UMDy]'.
Now we can estimate the model’s parameters using maximum likelihood. We calculate
the state vector, (14, using the Kalman filter.

If MKT, SMB, HML, or UMD is the regressand then we do not include it in
the set of regressors. Figure shows the results.

It is important to recall that the time-varying beta describes the relationship
between sentiment and the given long-short portfolio over time. When the beta is posi-
tive, there is positive correlation between sentiment and the long portfolio and negative
correlation between sentiment and the short portfolio; and vice versa. Larger magni-
tudes indicate a stronger relationship.

In general, the magnitudes of the time-varying betas increase over time. This
is especially true after the bear market ended in 2003. This results corresponds to the

findings of Shiller (2006). Shiller contends that the proliferation of the internet and
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low trading fees through online brokers have increased the effect of sentiment on the
markets.

The relationship between ASent* strengthens after most bear markets. Most
notably, the magnitudes of the betas rise dramatically following the end of the bear
market in 2003. This result is not surprising as the stocks most affected by sentiment
generate their largest returns following bear markets. Furthermore, figure shows
that the change in sentiment spikes after bear markets.

The magnitudes of the betas shrink, however, during the 1990s tech bubble.
During the 1990s, the sentiment index did not rise as fast as returns. Hence, sentiment-
driven agents were not the only investors participating in stock market boom. This
result corresponds to the theoretical model of Abreu and Brunnermeier (2003). Abreu
and Brunnermeier find that rational arbitrageurs ride waves of investor sentiment.

Panel (a) shows the time-varying beta when SMB is the dependent variable.
The beta is high during the first half of the sample. Hence, sentiment is strongly related
to size effect of Benz (1981) through the early 1980s. The relationship between sentiment
and SMB falls after the stock market crash in 1987 through the 1997 Asian financial
crisis. The beta then rises after the bear market in 2003.

Panels (b), (c), (d), and (e) show the time-varying betas when age, volatility,
Div, or Earn is the dependent variable. For all these cases, the beta increases over time
and sharply rises after the end of the bear market in 2003. We see the similar results
in panel (f) for HML. For HML, however, the time-varying beta is mostly negative as
sentiment has a larger effect on growth stocks (low book-to-market ratio) than value
stocks (high book-to-market ratio). We see a similar result in panel (g).

Panel (h) shows the time-varying result when the dependent variable is UMD.

The beta switches sign over time. This is not surprising since sentiment affects both
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high momentum and low momentum stocks (Lutz 2011). When the beta is positive
there is a stronger relationship between sentiment and high momentum stocks, and vice
versa.

Panel (i) shows the results for high momentum stocks. Not surprisingly, the
beta is positive for most of the sample. Hence, there is a positive relationship between
sentiment and momentum. Moreover, the beta grows over time.

Panels (j) and (k) show the results for stocks in distress. The betas are posi-
tive except around the crisis periods in 1987, 1997 and 2000. This suggests a positive
relationship between sentiment and distressed stocks in normal times, and a negative

relationship during times of crisis.
4.7 Conclusion and further discussion

Using the closed-end fund discount, NYSE share turnover, the dividend premium, and
the equity-share of new issues, we create an index for stock market sentiment. Through
static regressions we find that rising sentiment relates to rising returns. This result
corresponds to the theoretical predictions of Abreu and Brunnermeier (2003). We also
employ time-varying parameter regressions. We find that the relationship between sen-
timent and future returns has increased dramatically since the mid-1990s. We also find
that the relationship between sentiment and future returns strengthens following bear
markets.

Future research may develop other measure for aggregating agent sentiment
in the stock market. Using these measures researchers could study the relationship
between sentiment and bear markets. Future research may also study sentiment in

different industries.
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4.8 Appendix: Baker and Wurgler’s (2006, 2007) Sentiment Index

Data for Baker and Wurgler (2006, 2007) is available from Jeffrey Wurgler’s website.

The following list contains the components of Baker and Wurgler’s index:

e The closed end fund discount (CEFD): The average difference between the net-
asset-value (NAV) of closed-end stock funds and their market prices.

e NYSE share turnover (TURN): the ratio of reported share volume to the average
shares listed for the New York Stock Exchange

e The number of IPOs over a given month (NIPO)
e The average first day return of IPOs for each month (RIPO)

e The equity share of new issues (S): The gross equity issued divided by the gross
equity plus debt issued

e The dividend premium (PP~VP): the log difference between the average book-to-
market ratios of dividend and non-dividend paying stocks.

See Lee, Shleifer and Thaler (1991), Ibbotson, Sindelar and Ritter (1994),
Baker and Wurgler (2000), Baker and Stein (2004) and Baker and Wurgler (2004) for
more detailed analysis of these measures.

Baker and Wurgler use the first principal component as the factor loading
on each variable. The following equation of shows the construction of BWsent at the

monthly frequency as in Baker and Wurgler (2007):
BWsent = — 0.23CEFD + 0.23TURN + 0.24NIPO
+ 0.29RIPO + —0.32PP~ND 1 0.238 (4.16)

Baker and Wurgler (2006) develop BWsent at an annual frequency and sim-
ilar results. Baker and Wurgler (2006) and Baker and Wurgler (2007) find a similar

relationship between sentiment and stock prices; high sentiment relates to low returns.
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4.9 Appendix: Tables

Table 4.1: Correlation of Sentiment Components

APP—ND  ANIPO ATURN ACEFD AS

APD-ND 1.000  -0.124 -0.060 -0.090 -0.030
ANIPO -0.124 1.000 -0.049 0.038 0.192
ATURN -0.060  -0.049 1.000 0.068 -0.013
ACEFD -0.090 0.038 0.068 1.000  0.060
AS -0.030 0.192 -0.013 0.060  1.000

Notes: The correlation of the first difference of the sentiment components. The data is described in

section E}
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Table 4.2: Parameter estimates

Variable Mean Std Med

b1 0.866 0.087  0.878
b2 0.010 0.045  0.012
M -0.001  0.087  -0.001
Y11 0.103 0.045  0.103
V12 -0.032  0.045  -0.032
o? 10.551 0.674  10.499
Yo 0.010 0.198  0.010
Yo -0.330  0.047  -0.329
Pa2 -0.205 0.043  -0.204
o3 151.160 9.331 150.865
Y3 0.000 0.001  0.000
Y31 -0.504 0.048  -0.504
P32 -0.366  0.043  -0.367
o3 0.008 0.000  0.008
Y4 -0.001  0.040  0.001
P4l -0.156  0.045  -0.154
V42 -0.079  0.044  -0.079
ol 3.574 0.225  3.564
75 0.000 0.001  0.000
V51 -0.426  0.047  -0.424
V52 -0.330  0.042  -0.330
025 0.004 0.000  0.004

Notes: Parameter estimates for the model in section i=1,...,5 correspond to APP~NP ANIPO,
ATURN, ACEFD and AS, respectively.
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Table 4.3: Regresssions—Portfolio returns and sentiment

ASenty ASent; ; No FF
B p-val B p-val
Panel A: Size, Age, and Risk
ME SMB 0.289 (0.021) 0.341 (0.007)
Age Young-Old 0.009 (0.444) 0.118 (0.444)
o High-Low 0.444 (0.257) 0.444 (0.630)
Panel B: Profitability and Dividends
DIV =0->0 0.315 (0.006) 0.654 (0.000)
EARN <0->0 0.253 (0.053) 0.554 (0.003)
Panel C: Growth Opportunities and Distress
BE/ME HML -0.016 (0.445) -0.113 (0.197)
Panel D: Growth Opportunities
BE/ME Medium-Low -0.018 (0.376) -0.018 (0.375)
Panel E: Momentum and Distress
Mom UMD 0.445 (0.022) 0.197 (0.031)
Panel F: Momentum
Mom High-Medium 0.420 (0.408) 0.382 (0.107)
Panel G: Distress
BE/ME High-Medium -0.009 (0.420) -0.017 (0.382)
Mom Medium-Low -0.012 (0.446) 0.116 (0.290)

Notes: Regressions of long-short portfolios at time ¢t on ASent;_;. See equationm In the left panel, we
control for the Fama-French factors and the momentum factor. If one of the the Fama-French factors or
the momentum factor is the dependent variable, then we eliminate from the set of regressors. In the right
panel, we do not control for the Fama-French Factors or the momentum factors. Portfolios are formed
on size (ME), age, total risk (o), the dividend-price ratio (Div), the earnings-price ratio (Earn), the
book-to-market-ratio (BE/ME), or momentum (Mom). High represents the top three deciles, medium
represents the middle four deciles, and low represents the bottom three deciles. The left panel shows the
results using the original sentiment index. The left column of each panel lists the regression coefficient
(8) on the sentiment index; the right column lists the bootstrapped p-value.
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4.10 Appendix: Figures

Figure 4.1: Baker and Wurgler’s Sentiment Index (BWsent)

— BWsent

BWsent

1 1 1 1 1 1 1 1 1
1967 1972 1977 1982 1987 1992 1997 2002 2007

Notes: Shaded areas are bear markets defined by a 20 percent or more drop in the S&P 500 over a two
or month period. Data is monthly. The horizontal axis holds the date.
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Figure 4.2: Agent Sentiment (Sent)
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Notes: The sentiment index (Sent) in levels from the model described in section M Shaded areas are
bear markets defined as a 20 percent or more drop over a two or more month period.

Figure 4.3: Sent and BWsent
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Notes: The sentiment index (Sent) and BWsent in levels from the model described in section Shaded
areas are bear markets defined as a 20 percent or more drop over a two or more month period.
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Figure 4.4: ASent*
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Notes: The graph of ASent*. We interpret ASent* as the first difference in sentiment. The vertical bars
represent bear markets defined as a 20 percent of more drop in the S&P 500 over a two or more month
period.
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Figure 4.5: Time-Varying Betas

(a) Size (SMB) (b) Age (Young-Old)
3 4
3.5
, | 3.0 -
2.5
11 2.0
1.5 1
0 - 1.0 -
0.5 4
-1 0.0
1967 1972 1977 1982 1987 1992 1997 2002 2007 1967 1972 1977 1982 1987 1992 1997 2002 2007
(¢) o (High-Low) (d) Div (=0— > 0)
4+ 41
31 31
2- 27
14 17
0 0
1967 1972 1977 1982 1987 1992 1997 2002 2007 1967 1972 1977 1982 1987 1992 1997 2002 2007
(e) Earn (< 0— > 0) (f) BE/ME (HML)
37 1.0 1
0.5 -
2] 0.0
. -05 -
-1.0 -
0 - -1.5 1
_2'0 4
-1+ -2.5 1
1967 1972 1977 1982 1987 1992 1997 2002 2007 1967 1972 1977 1982 1987 1992 1997 2002 2007

Notes: Figure continued on next page. These figures show the time-varying betas for different
portfolio characteristics. See section [.6]
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Figure Continued: Time-Varying Betas

(g) BE/ME (Medium-Low) (h) Mom (UMD)
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Chapter 5

Conclusion

In this dissertation we develop two new indexes for agent sentiment in the stock market.
Using both of these indexes we find that rising sentiment leads to rising returns; and
vice versa. In chapter [2| we also find that rising sentiment leads to lower risk. Our
results in chapter [2| are robust to the inclusion of macroeconomic indicators, risk factors
and the Fama-French factors as additional controls. Furthermore, we find that cycles in
sentiment growth often lead bear and bull markets.

In chapter [3] we forecast stock returns using investor sentiment. More specif-
ically, we use the index outlined in chapter [2| for out-of-sample prediction. We also
develop two-stage model averaging (2SMA). 2SMA is a flexible framework that allows
researchers to incorporate prior economic information. We combine 2SMA with dynamic
Bayesian model averaging to develop two-stage Bayesian model averaging (2SBMA).
We also combine 2SMA and equal-weighted averaging to for two-stage equal-weighted
averaging (2SEWA). The 2SBMA and 2SEWA forecasts statistically outperform the
random-walk plus drift and their traditional model averaging counterparts. Our 2SMA
results are noteworthy since forecasts using equal-weights are difficult to beat in practice
(Timmermann 2006).

In chapter [4] we develop another new sentiment index using traditional senti-
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ment indicators. These indicators include the closed-end fund discount, the equity-share
of new issues and the number of IPOs in a given month. Using this index we find that
rising sentiment leads to rising returns for stocks based on earnings, dividends, and mo-
mentum. We also find that the effect of sentiment has been increasing over time. Lastly,
we show that sentiment has its largest effect on stocks just after bear markets.

Future research should study the relationship between sentiment and volatility.

Also, the causal relationship between sentiment and bear markets is not clear.
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