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Abstract

The Momentum Yield of Clustered SNe;

Machine Learning to Identify Dwarf Galaxies

by

Eric S. Gentry

Stars are born in clusters and massive stars die relatively quickly, so we expect

core collapse supernovae (SNe) to be clustered in both space in time. Despite this,

traditional SN feedback models assume SN blasts are isolated and do not interact. In

my thesis I show that clustering might have a very large effect on the final momentum

added into the SN’s host galaxy’s interstellar medium (ISM ; as large as an order of

magnitude increase), but also that the actual effect size is still unknown and requires

further study.

Additionally, I perform experiments into machine learning-driven approaches

to identifying nearby dwarf galaxies (a 300:1 class imbalanced problem) within a large

(>100 TB) dataset of galaxy images. I show that our current training data and tools do

a good start, but are ultimately too limited to get to satisfactory levels of completeness

and purity for immediate use within a weak lensing analysis.
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Clustered SNe
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Chapter 1

Introduction

Energy and momentum injection from supernovae (SNe) are thought to be one

of the key ingredients regulating galaxy formation and the thermodynamics of the in-

terstellar and circumgalactic media (ISM and CGM, respectively), but knowing exactly

how much energy and momentum feeds back into the ISM is complicated.

At early times following a SN, it seems relatively simple. Detailed studies of

massive star evolution, SN progenitors and their blasts can predict the mass, amount

of metals and energy released by the blast (e.g., Sukhbold et al. 2016).

Unfortunately, the ISM does not actually retain all that mass, metals and

energy. Instead most of the energy is typically radiated away (e.g., Thornton et al.

1998) largely at wavelengths at which galaxies are optically thin, allowing this radiated

energy to escape. Similarly, if a SN is in a weak enough potential well, the SNR might

“breakout” from the galaxy, launching a wind containing some of the SN ejecta materials

(e.g., Mac Low et al. 1989). These types of losses, while complicating matters, are a key
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component to our understanding of SN feedback: without it our models of SN feedback

would be far too strong. In particular Dekel & Silk (1986) show that accounting for

radiative losses of SN is necessary to construct populations of dwarfs with realistic

properties, and that the amount of radiative losses could lead to different regimes of

galaxy evolution at the low mass end of the spectrum.

Unfortunately, both radiative processes in the ISM and the development of

shocks are non-linear processes, making it difficult to easily predict exactly how much

energy will be lost and how that will impact the development and evolution of the SN’s

shockwave. To highlight the challenge, early galaxy simulators (e.g., Katz 1992) tried

to directly inject 1051 erg per SN into hydrodynamic galaxy simulations and found that

it had much less impact than expected; their galaxies were much too dense near the

center and much too cold. While it was good that their numerical simulation could

account for cooling, they were finding that there was an emergent over-cooling problem

for which they had not accounted.

Numerical over-cooling, in the context of SN energy and the ISM, results from

using a method that spreads a fixed amount of injected energy over too much gas mass,

typically due to the limited numerical resolution of the method. While a SN should truly

be able to heat its ejecta to 1051 erg/(10M�kB/mH) ∼ 109 K shortly after the explosion,

if the energy is spread across increasingly more mass, the average temperature within

that mass will decrease. Initially (starting at high resolution) this is not a significant

problem; the local gas mass is dominated by the ejecta mass. Furthermore, typical

cooling functions within astrophysical plasma are less dependent of temperature at high
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temperatures (T & 106.5; see Draine (2011) figure 34.1). But once the temperature drops

too much (T . 106.5), the efficiency of cooling starts to increases sharply with decreased

temperature. This means that starting at very high resolution, the initial cooling rate

will at first be insensitive to worsening resolutions, but then start becoming much too

high once a critical resolution is passed.

This illustrates an important lesson that will come up in various forms: while

the problem is complex, non-linear and resolution-dependent, there is still hope of a

converged numerical answer with sufficiently high resolution (and good numerical meth-

ods). Alas, over-cooling is not just a problem at the moment of initial injection; it also

problematic at later times when a SN remnant (SNR) has formed. The prototypical

structure of a SNR is a hot, low-density bubble that contains most of the thermal en-

ergy, surrounded by a cold, high density shell that contains most of the mass. In theory

the radiatively-efficient shell is separated from the thermal-energy-filled bubble by a

contact discontinuity (e.g., Thornton et al. 1998), but as the resolution decreases, this

line becomes blurred, the phases become mixed, and the calculated radiative cooling

becomes too large.

Once again, this over-cooling problem does not require infinitely high resolution

to solve. In reality, physical processes exist which can transport mass or energy across a

contact discontinuity. (We will loosely refer to these as “mixing” processes, but do not

mean to imply that it must be mediated by moving mass across the boundary.) While

the “true” level of physical mixing should remain the same regardless of resolution,

artificial numerically-induced mixing should become weaker as resolution is improved;
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at high enough resolution, artificial mixing should be negligible compared to the physical

mixing that is present. Thermal conduction is a classic example of a physical mixing

process active in SNRs, transporting energy from the hot bubble into the cold dense

shell. This energy transport depends on the gradient of temperature though, and that

gradient is limited by the scales a simulation can resolve for a fixed jump in temperatures

between Thot and Tcold. If this temperature jump occurs over a length scale larger than

the Field length (Begelman & McKee 1990):

λF =

(
κ(T )T

n2Λ

)1/2

(1.1)

(for a typical gas density n within the transition region, temperature-dependent ther-

mal conduction constant κ, and cooling function Λ), then any energy conducted from

the hot bubble is expected to be radiated away before it can reach the cold shell or

significantly affect the structure of the transition layer in between. It is only when the

temperature jump can be resolved at scales smaller than this characteristic Field length

that significant amounts of energy can be conducted between the two layers, in turn

allowing a more physical (resolution-independent) structure to develop in this inter-

face region. Therefore, we can loosely expect that at resolutions worse than the Field

length, artificial mixing will be dominant and resolution-dependent, but at resolutions

better than the Field length, physical mixing will be dominant and relatively resolution-

independent. (In reality thermal conduction is not the only source of “other” physics

which can dominate mixing rates at high resolution; it simply serves as an example. The
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important thing to remember is that at sufficiently high resolution, we believe we can

achieve results that are converged with respect to resolution, even if those simulations

do not specifically include thermal conduction.)

Even though galactic and cosmological simulations will not be able to realisti-

cally reach these resolutions in the near future, we can still use a multi-scale approach:

run a “representative” set of simulations at very high resolution which hopefully span

the relevant parameter space, and use the results of these simulations to inform “sub-

grid” models that can be plugged into low resolution simulations. As we will discuss in

chapter 4, there are a variety of philosophies behind these subgrid models. Some try

to mimic the true behavior of SNRs by temporarily disabling different physics modules;

for example, Stinson et al. (2006) use an approach which disables radiative cooling in

young SNRs, while Springel & Hernquist (2003) disable hydrodynamic forces in “ejecta

particles”. Other groups take a different approach, and use high resolution simulations

to determine what impact the SNR will have at “late” times, and just change the lo-

cal hydrodynamic conservative variables in low resolution simulations accordingly (for

example, Hopkins et al. (2018b) simply inject the asymptotic radial momentum, rather

than trying to self-consistently develop a SNR with the proper radial structure).

One important output of high resolution simulations is the asymptotic radial

momentum; as mentioned a moment ago it is used in some subgrid models, and it is also

a key part of some more analytical studies of galaxies (e.g., Hayward & Hopkins 2017).

One of the major reasons why we care about the momentum from SNRs is that in disk

galaxies turbulence appears to be one of the dominant forms of support (Kim et al. 2011)
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and SNRs appear to be one of the largest contributors to that momentum (Agertz et al.

2013). As a convenient, but less direct benefit for studying the momentum (as opposed

to other quantities like added energy or the hot gas mass), the radial momentum only

changes slowly at late time (Kim & Ostriker 2015). In theory we will talk about this

value being “asymptotic” with respect to time, but in practice we will either measure

the maximum momentum or the momentum at a specified moment in time.

Finally, in order to create meaningful subgrid models, we need to identify

the parameter space that accounts for the most variation in behavior among SNRs.

Simulations have been run in a number of subspaces, studying the effects of: density

(Cioffi et al. 1988), metallicity (Thornton et al. 1998), location within a molecular cloud

(Iffrig & Hennebelle 2015), pre-stellar feedback (Walch & Naab 2015), turbulent velocity

dispersion (Martizzi et al. 2015) and bi-stable ISM (Kim et al. 2017) just to name a

few. Unfortunately, to ensure we have fully explored this parameter space using a grid

of simulations would require the number of simulations to scale exponentially with the

dimensionality of the parameter space1 Therefore, we typically restrict ourselves; we

will choose some of the dimensions that appear to cause the largest amount of variation

(density and metallicity), and will add another dimension—the number of core collapse

SNe coming from a given star cluster—which had shown interesting preliminary results

but which was lacking a well-designed, systematic study.

We will call these “clustered SNe”, as we expect the blasts to be clustered

in both space and time. Stars are typically formed in clusters, and massive stars die

1Although if feedback strength varied smoothly across this space, the number of simulations required
to fit an interpolating function might only scale linearly with the dimensionality.
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relatively quickly, so we expect most of the SN blasts to occur near each other (ignoring

the fraction of massive stars that are strongly kicked out of their birth clusters by

dynamical interactions). If the delay between SNe is short enough (i.e. the blasts are

sufficiently clustered in time), the energy from each blast can merge into a common

superbubble. For simplicity we will assume all core collapse SNe from a cluster are

clustered and merge into a single superbubble. To first order, we can include the fraction

of “kicked” stars, variations in the IMF or similar effects that might change the number

of SNe producing a superbubble, by parameterizing our fitted model as a function of

the number of SNe. At higher order, these changes in which stars explode presumably

affect things like the SN delay time distribution, the distribution of SN yields, and other

similar characteristics. This parameterizing also will not account for SNe which are so

far spaced in time that each SNR is mixed into the ISM before the subsequent SN

occurs. Still, parameterizing the effect by the number of SNe will give a good place to

start.

At the time this thesis began, the number of SNe resulting from a star cluster

was the parameter that led to the largest variation in momentum yield (i.e., the average

momentum per SN) in high resolution simulations, which had not been methodically

studied at a range of scales. For example, Kim & Ostriker (2015) found that a series

of clustered SNe might decrease the momentum yield by a factor of 2, whereas Walch

& Naab (2015) found as much as a 25% increase in the yield due to clustering. More

extreme yet, Keller et al. (2014) found that the momentum yield for a cluster’s worth of

SNe could be at least 5 times greater than the yield of a single isolated SN. This range
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in results, at least an order of magnitude depending on how clustering is included,

remains one of the largest known variations of SN feedback strength. Unfortunately,

these previous studies were rather limited: clustering of SNe was only meant to be a

minor part of each work. As a result, the simulations were too limited to build a broader

understanding. Some used extremely unlikely SNe delay time distributions (e.g., (Walch

& Naab 2015; Kim & Ostriker 2015)); some only measured momentum at a single cluster

mass (Keller et al. 2014); others were unconverged with respect to resolution (Fierlinger

et al. 2016).

In this half of my thesis, we systematically study how the clustering of SNe

affects the resulting momentum yield. In chapter 2, we run a suite of 1D, high resolution,

converged simulations across a variety of cluster sizes. This paints a broad picture of

how clustering can affect the momentum yield of SNe. Guided by those results, we

identify literature results that appear to be conflicting. Since the approaches that led

to these conflicting results differ in many ways (both in numerical methods as well as

physical setup), in chapter 3 we then run a number of 3D simulations to help us start to

understand how much of the conflict comes from different levels of artificial mixing and

how much is due to physical mixing. In chapter 4, we put these results into a broader

context, by evaluating what errors might exist within existing galactic simulations which

use previously-existing subgrid models (which typically do not explicitly account for

clustering). We do this by running 1D simulations at high resolution without those

models, and then comparing the results to low resolution simulations with a variety of

subgrid models. In chapter 10, we then identify key areas that remain uncertain with
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regard to clustering’s impact on SN momentum yields.
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Chapter 2

1D simulations of clustered SNe:

Enhanced momentum feedback from

clustered SNe

(Much of this text is going to come directly from Gentry et al. (2017); no

changes to the substance have been made.)

Young stars typically form in star clusters, so the supernovae (SNe) they pro-

duce are clustered in space and time. This clustering of SNe may alter the momentum

per SN deposited in the interstellar medium (ISM) by affecting the local ISM density,

which in turn affects the cooling rate. We study the effect of multiple SNe using ideal-

ized 1D hydrodynamic simulations which explore a large parameter space of the number

of SNe, and the background gas density and metallicity. The results are provided as a

table and an analytic fitting formula. We find that for clusters with up to ∼ 100 SNe
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the asymptotic momentum scales super-linearly with the number of SNe, resulting in a

momentum per SN that can be an order of magnitude larger than for a single SN, with

a maximum efficiency for clusters with 10−100 SNe. We argue that additional physical

processes not included in our simulations – self-gravity, breakout from a galactic disk,

and galactic shear – can slightly reduce the momentum enhancement from clustering,

but the average momentum per SN still remains a factor of 4 larger than the isolated

SN value when averaged over a realistic cluster mass function for a star-forming galaxy.

We conclude with a discussion of the possible role of mixing between hot and cold gas,

induced by multi-dimensional instabilities or preexisting density variations, as a limit-

ing factor in the buildup of momentum by clustered SNe, and suggest future numerical

experiments to explore these effects.

2.1 Introduction

Supernovae (SNe) play a key role in regulating star formation at galactic scales.

SN energy, if retained, can disrupt molecular clouds and small galaxies (Dekel & Silk

1986). Even if significant energy is lost to radiative cooling, SNe inject momentum that

cannot be radiated away, which drives turbulence, the dominant form of dynamical

pressure support in galactic discs (Kim et al. 2011; Jenkins & Tripp 2011). This tur-

bulent support both prevents the collapse of star-forming regions (locally limiting star

formation; Ostriker & Shetty 2011; Faucher-Giguère et al. 2013), and drives galactic

winds (globally limiting star formation; Murray et al. 2005; Hopkins et al. 2012; Dekel
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& Krumholz 2013; Creasey et al. 2013; Thompson & Krumholz 2016).

Unfortunately, the processes controlling supernova remnant (SNR) evolution

operate at smaller scales than what can typically be resolved by galaxy or cosmological

simulations. In particular, the dense shells of SNRs rapidly radiate away most of the SN

energy, leaving a cold dense shell and a hot diffuse interior. If a simulation cannot resolve

these two zones, then it cannot realistically evolve the SNR, resulting in problems such

as over-cooling (Katz 1992). To counteract this, some authors have prescribed turning

off cooling for young, unresolved SNRs (Gerritsen 1997; Stinson et al. 2006), while others

have proposed models which mimic the otherwise unresolved multi-phase nature of the

interstellar medium (ISM) (Keller et al. 2014). These methods have their strengths, but

the most direct way to incorporate the relevant physics is multiscale modeling: evolve

a number of SNRs in a representative set of environments using simulations with high

enough resolution to resolve the relevant processes, and use those results in large, low

resolution simulations.

Early attempts at using high resolution simulations to create subgrid SN feed-

back models focused on producing energy-driven models (Thornton et al. 1998), but

recently there has been increased interest in momentum-driven models, both by those

using high resolution simulations to study SNRs directly (Martizzi et al. 2015; Walch

& Naab 2015; Kim & Ostriker 2015; Iffrig & Hennebelle 2015) and by those who use

such models in lower resolution simulations (Hopkins et al. 2011; Shetty & Ostriker

2012; Hennebelle & Iffrig 2014; Goldbaum et al. 2016). This change in emphasis has

been driven by the realization that, while the energy content of SNRs is important for
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producing hot galactic winds that are observable in X-rays, the momentum budget is

more important when it comes to SNRs regulating star formation and possibly ejecting

cool gas from galaxies (Dekel & Krumholz 2013).

At early times, before radiative losses are important, a SNR is in the Sedov

stage, during which the energy is approximately conserved and the radial momentum is

increasing. Once radiative losses become significant, it enters a pressure-driven snowplow

phase, during which the energy is decreasing and the momentum is still increasing. As

the bubble expands and cools (adiabatically and radiatively), its pressure will eventually

decrease to the ISM pressure, at which point it becomes a momentum-driven snowplow.

Asymptotically, in the idealized case of a spherical SNR expanding into a uniform,

cold medium, this results in zero energy being added to the ISM, but a non-zero and

finite amount of momentum being added. The goal of high resolution simulations is

to follow all of these phases, and identify the asymptotic momentum as a function of

the properties of the driving stars and the large-scale environment, making this value

available for use in larger-scale models.

A number of authors have performed systematic parameter studies of the ex-

pansion of a SNR from a single SN in spherical symmetry (Chevalier 1974; Cioffi et al.

1988; Thornton et al. 1998). The most complete of these studies, that of Thornton et al.

(1998), spanned metallicities from 10−3 − 100.5 times Solar and ambient densities from

0.1 − 103 H atoms cm−3. More recently, there have been a number of 3D simulations

which allowed the study of SNR evolution within a more realistic, non-spherically sym-

metric background. Martizzi et al. (2015), Kim & Ostriker (2015), and Walch & Naab
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(2015) all found that inhomogeneities present prior to the first SN explosion – such as

those expected due to a multi-phase structure of the ISM or ionized bubbles created

by pre-SN radiation – did not change the final momentum by more than 60%. A more

interesting effect was found by considering the inhomogeneities that result from bub-

bles of previous SNRs. Kim & Ostriker (2015) found that a series of clustered SNe can

decrease the momentum per SN, in some cases by almost a factor of two. On the other

hand, Walch & Naab (2015) found that multiple SNe might increase the momentum

per SNe, by at least 25%, depending on the delay time between SNe. The dependence

on delay time further complicates this discrepancy between authors since neither set

of authors used realistic delay time distributions for the number of SNe considered.

Yadav et al. (2017) used 3D simulations to study how clustered SNe can merge into a

superbubble (using a realistic SN delay time distribution), but did not study the mo-

mentum produced and did not test the effect of gas metallicity. So we are left with

a series of questions: for a realistic delay time distribution of clustered SNe, does the

momentum per SN increase or decrease relative to single SN models, and by how much?

Does the result depend on the density or metallicity of the environment in which the

SNe explode? Does it vary systematically with the number of SNe that are clustered

together?

In this paper we seek to measure directly the impact that clustering has on the

momentum budget of SNe. In order to sample a wide range of densities, metallicities and

cluster sizes, we create a suite of several hundred 1D, spherically-symmetric simulations.

Using a 1D geometry means we lose the ability to simulate non-spherically symmetric

15



inhomogeneities but in doing so we gain the ability to probe a far wider parameter space

than any previous studies of multiple SNe, and to achieve far higher spatial resolutions

than previous works studying momentum feedback. As we will show, both are necessary

for understanding how clustering impacts momentum feedback.

The remainder of this paper is as follows. In section 2.2 we discuss the numer-

ical methods used in this study. The numerical results of our simulations are presented

in section 2.3. In section 2.4 we use these results to build a model that can predict the

momentum injection per SN as a function of density, metallicity and number of SNe,

in a form suitable for inclusion in subgrid and analytic models. We discuss the signifi-

cance of our results and model in section 2.5, comparing to previous works. Finally, we

summarize our conclusions in section 2.6.

2.2 Numerical Methods

Our simulations make use of a custom-built 1D spherically-symmetric moving-

mesh code that solves the finite volume equations of compressible hydrodynamics. Our

code includes radiative cooling and injection of mass and energy by both SNe and pre-

SN winds. The star cluster is assumed to lie at the centre of our simulation, with our

computational domain beginning just outside the cluster and extending outwards. SN

ejecta and pre-SN winds are added to the innermost zone of this domain. We run these

simulations until all SNe have occurred and the momentum reaches a maximum.

In the rest of this section we go into greater depth on the numerical methods

16



used in our simulations and the limitations of our assumptions. In Appendix A.1 we

test our code against both the analytic Sedov solution and the earlier numerical results

of Thornton et al. (1998) for isolated SNe, and verify that it reproduces them well. For

the interested reader, our code has been publicly released1.

2.2.1 Initial Conditions

All our simulations begin with a star cluster of mass Mcluster placed at the

origin surrounded by an initially-uniform, stationary ideal gas with adiabatic index

γ = 5/3. We vary Mcluster from 102 − 105 M� (using steps of 1 dex, with an additional

step at 102.5 M� to better resolve a key region of parameter space). We explore gas

mass densities in steps of 1 dex, ranging from ρ0 = 1.33× 10−3 − 102 mH cm−3, where

mH = 1.67 × 10−24 g is the mass of the hydrogen atom, corresponding to gas number

densities of n0 = ρ0/(1.33mH) H nuclei cm−3 for a helium mass fraction Y = 0.23 and a

metal mass fraction Z = .02. We consider gas metallicities in steps of half a dex, ranging

from Z0 = 10−3 − 100.5Z�, excluding 10−2.5Z�, where we have taken solar metallicity

to be Z� = 0.02. The density and metallicity grids are chosen to closely match those

explored by Thornton et al. (1998). Consistent with Thornton et al., we compute

mean molecular weights assuming a fixed helium mass fraction, Y = 0.23, taking the

remainder to be hydrogen (X = 1− Z − Y ). The gas has an initial temperature of 104

K, but is allowed to cool to lower temperatures via radiation – see subsection 2.2.3.

Our simulations start with 1024 zones, linearly spaced from radii Rin to Rout,

1Source code available at: github.com/egentry/clustered_SNe
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which follow the scaling

Rout = 300

(
ρ0

1.33mH cm−3

)−1/3(Mcluster

100M�

)1/3

pc (2.1)

Rin = 10−4Rout (2.2)

This scaling is somewhat arbitrary and was set by initial tests; it was chosen to approx-

imately reflect the final size of each simulation. If the outer boundary is too small, the

domain will automatically extend when a shock nears the outer boundary.

2.2.2 Hydrodynamics

Our code solves the equations of compressible hydrodynamics in spherical sym-

metry using a moving-mesh finite volume method, including source terms for radiative

cooling. Our method is an extension of the one implemented by Duffell (2016). The

equations we solve are

d

dt

∫
UdV −

∫
FdA = S (2.3)

where UdV is the vector of conserved quantities

U =



ρ

ρur

ρe

ρZ


(2.4)
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for a density ρ, a bulk fluid velocity u, a specific total energy e and a local metallicity

Z. The quantity F is the conservative flux, given by

F =



(ur − wr)ρ

(ur − wr)ρur +P

(ur − wr)ρe +Pur +H

(ur − wr)ρZ


(2.5)

where w is the computational mesh velocity, which is set to be the average velocity of

the two zones adjacent to the boundary

w(i+1/2)
r =

u
(i)
r + u

(i+1)
r

2
(2.6)

approximating Lagrangian hydrodynamics. Here P is the pressure given by

P = (γ − 1)ρeint (2.7)

and eint is the specific internal energy:

eint = e− 1

2
v2
r . (2.8)

At the inner boundary, we enforce a zero flux boundary condition; the outer boundary

condition does not matter, as we automatically add zones before the shock reaches the

outer boundary (and we have assumed the background is homogeneous).
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This formulation implicitly introduces artificial mesh viscosity, particular at

the inner boundary (i.e. wall heating), which leads to unphysically high temperatures.

We counteract this by explicitly including an artificial conduction term, H. We use the

artificial conduction prescription of Noh (1987) (Eq. 2.3):

H =


h0ρ|∆u|∆eint + h1ρcs∆eint ∆u < 0

0 ∆u > 0

(2.9)

where cs is the adiabatic sound speed, h0 and h1 are tunable constants, typically of order

unity, and ∆ represents the differential of a variable across adjacent zones. We chose

these constants to be h0 = 0 and h1 = 0.1, which experimentation showed were the

smallest values that were still sufficient to remove most unphysical wall heating. This

parameterization is similar to physical conduction in the strong-shock regime with a sat-

urated conduction coefficient which has been lowered by a factor of a few by turbulence

and magnetic fields (Cowie & McKee 1977).

In addition to these conservative fluxes, we also include non-conservative source

terms

S = Shydro + Scooling + Swinds (2.10)
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Shydro =



0∫
2(P/r)dV

0

0


(2.11)

Scooling =



0

0

Ėcooling

0


(2.12)

Swinds = Ṁwinds∆t



1

uwinds

(1/2)u2
winds + eint, winds

Zwinds


. (2.13)

We defer a discussion of the cooling rate Ėcooling to subsection 2.2.3, and a discussion

of the wind source term (which is only added to the innermost zone) to subsubsec-

tion 2.2.5.1.

The conservative fluxes (excepting conduction) were solved using an HLLC

Riemann solver (Toro et al. 1994) taken from the implementation of Duffell (2016).

Artificial conduction and the non-conservative source terms were handled by operator

splitting, solving each term individually.

By using a moving mesh with wr ≈ ur, we approximate Lagrangian hydrody-
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namics. This reduced numerical errors in the advective flux terms, as well as automat-

ically adjusting to give higher resolution at locations with higher densities (assuming

we start with a grid of uniform density). This improves our accuracy at shocks, where

high densities lead to rapid cooling, which drives the subsequent evolution of the SNR.

By using an approximately Lagrangian scheme, we can better resolve the dynamically

important regions, without wasting computational time on the less important diffuse

bubble.

For strong shocks we need to set a limit on how much zones can expand or

compress. The innermost zone (where SN energy is injected) will significantly expand,

so we need to split it in order to retain accuracy where our blasts are being injected.

For computational efficiency we also need to allow zones to merge, because otherwise

the zones near the shock become so thin that the computational cost of evolving them

is prohibitive. We handle zone splitting and merging using the adaptive mesh algorithm

implemented by Duffell (2016): zones thicker (thinner) than 10 (0.1) times the average

zone thickness are split (merged).

To improve numerical stability in regions of highly-supersonic flow, we also

implement a dual energy formalism. This approach counteracts the common problem

in conservative, total energy codes such as ours that, at Mach numbers greater than

unity, the internal energy eint can be much smaller than the total energy e, so that small

truncation errors in e can correspond to an order unity or larger error in eint, and thus

in the temperature and radiative cooling rate. Our dual energy approach is as follows.

For most zones and time steps, we follow the update procedure described above and
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derive eint from the mass, momentum and total energy (Equation 2.8). However, in any

zone and time step where this procedure yields a value of eint < 0, we instead compute

the internal energy via

eint(t+ ∆t) = eint(t)

(
dV (t+ ∆t)

dV (t)

)1−γ
+ ∆ecool. (2.14)

This includes adiabatic heating/cooling and radiative cooling; this ignores advective

fluxes, which should be minimal for a pseudo-Lagrangian code, and conductive fluxes.

The errors introduced by this dual energy formalism have negligible effects on the overall

dynamics and numerical conservation of energy.

2.2.3 Cooling

Cooling plays a significant role in SNR evolution, with most of the energy

from the SN being radiated from a thin, dense shell. To include this cooling, we use

the Grackle chemistry and cooling library (Bryan et al. 2014; Kim et al. 2014), using

operator splitting to evolve the thermal energy over each time step. Grackle sub-steps

the thermal evolution using cooling rates pre-computed using Cloudy (Ferland et al.

1998), assuming ionization equilibrium but not thermal equilibrium between metallicity-

dependent optically thin cooling and a cosmological UV background at redshift z = 0

providing photo-heating and photo-ionization (Haardt & Madau 2012). For simplicity

we only include heating from a cosmological background, rather than including galactic

heating sources. We leave testing more realistic heating backgrounds and non-ionization
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equilibrium cooling models for a later work.

2.2.4 Cluster Model

In order to test the SN momentum produced by a cluster, we need to determine

the number of SNe from a cluster and when those SNe will occur. For each simulation

with a given cluster mass, we use the SLUG2 code (da Silva et al. 2012; da Silva et al.

2014; Krumholz et al. 2015) to draw the desired mass in stars from a Kroupa (2002)

IMF, using the default “Stop-nearest” policy. All stars above an initial mass of 8 M� are

assumed to result in core-collapse SNe, after stellar lifetimes determined by the Geneva

stellar evolution tracks assuming solar metallicity (Z = 0.014) (Ekström et al. 2012).

Generally, we find 1 SN per roughly 100 M� of stars, and those SNe occur roughly 3−40

Myr after the birth of the cluster. Given the power-law tail of the IMF, we expect most

SN to come from relatively low mass stars, M? ≈ 8 M�. We do not include Type Ia

SNe for most of our simulations, but we do test the impact of short-delay Type Ia SNe

in subsubsection 2.5.3.2.

Since we are stochastically drawing an IMF, our results for low mass clusters

can depend significantly on the random seed. To minimize the uncertainty in our results

induced by this stochasticity, we ran multiple realizations of the lowest cluster masses.

Specifically, we ran 9 realizations of each 102 M� cluster and 4 realizations of each 102.5

M� cluster.

This cluster model is not perfect. The stellar evolution tracks assume a single

stellar metallicity, while ideally we would like the tracks to depend on the background
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metallicity for each simulation. Our cluster model also ignores the effects of stellar

rotation and binarity. All of these can affect stellar lifetimes.

2.2.5 SN Injection Model

When a SN occurs, we add energy, mass and metals to the innermost compu-

tational zone. For the energy, we adopt a fixed injection of 1051 ergs per SN. For the

mass and metallicity, we use the data of Woosley & Heger (2007), who provide a grid

of SN mass and metal yields as a function of initial stellar mass over a range of initial

masses from 12 M� to 120 M�. Within this range we linearly interpolate as a function

of initial mass; outside this range, we use the nearest neighbor (i.e. stars with masses

8− 12 M� are assumed to produce the same yield as 12 M� stars).

As with our cluster model, this SN model is imperfect. First, this model over-

predicts the ejecta mass for stars with initial masses of 8 − 12 M� (the most common

progenitors). For example this model predicts that a 9 M� star will eject 9.4 M� of

material. This is clearly unphysical, but the true ejected mass is comparable; Sukhbold

et al. (2016) show that the true ejected mass (≈ 7.4 M�) differs by less than 50% from

our simplified model. Overall, this will tend to over-predict the ejecta mass, biasing our

results towards slightly more efficient cooling and slightly lower momenta.

Biasing our results in the opposite direction (for fixed cluster mass), we assume

all of our massive stars explode, even though some low mass progenitors (8 − 9 M�)

may not explode (Woosley & Heger 2015) and some high mass progenitors will collapse

directly into black holes (Ertl et al. 2016; Sukhbold et al. 2016), a pathway which can
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depend significantly on the stellar metallicity (Pejcha & Thompson 2015). However,

while models differ as to whether more massive stars explode, almost all models agree

that all 9− 12 M� stars should explode, so the total number of SNe should not change

drastically.

More significantly, SN energies can vary with initial progenitor mass. In par-

ticular, Sukhbold et al. (2016) find that stars with initial masses of 9− 12 M� explode

with < 0.7× 1051 ergs of energy. As these are the most common progenitors, this leads

to an IMF-averaged explosion energy of ≈ 0.6 − 0.8 × 1051 ergs, depending on the ex-

plosion model. While it is common to assume an explosion energy of 1051 ergs (e.g.

(Thornton et al. 1998; Kim et al. 2014; Kim & Ostriker 2015; Iffrig & Hennebelle 2015;

Martizzi et al. 2015; Walch & Naab 2015), in doing so we over-predict the average SN

energy by a factor of 1.2− 1.7.

As with our stellar evolution tracks, the data of Woosley & Heger (2007) are

only for stars of solar metallicity, so we are unable to vary our SN model with the

background metallicity. Moreover, we are combining the ejecta computed by Woosley

& Heger (2007) with the lifetimes computed by Ekström et al. (2012); these make

different assumptions about stellar evolution, and are not fully consistent. Theoretical

uncertainties in stellar lifetimes are not too worrisome though; for low mass clusters,

we are dominated by stochastic scatter in the IMF; for high mass clusters, the SNe are

effectively a continuous wind. The models of Woosley & Heger (2007) and Ekström et al.

(2012) also differ in the details of pre-SN mass loss, but these discrepancies primarily

exist for the most massive stars, which are the least common in our simulations.
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2.2.5.1 Winds

If SN ejecta mass is important because more mass leads to faster cooling, then

we cannot simply ignore pre-SN mass loss; that mass has to go somewhere. The pre-SNe

mass loss can be determined from the data of Woosley & Heger (2007), but that does

not tell us when that mass was lost, or its physical properties when it was lost (e.g.

metallicity, wind velocity, wind energy). For simplicity, we assume that pre-SN mass

loss occurs uniformly through a star’s lifetime, as a wind with metallicity equal to the

background metallicity, at a velocity of 103 km s−1, and a temperature of 104 K. The

total mass, metal mass, momentum and energy of this wind are added to the innermost

zone.

2.3 Numerical Results
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Figure 2.1: Example density profile of a simulation with Z = Z�, ρ = 1.33 mH cm−3

and Mcluster = 105 M� (NSNe = 1008), shortly after the last SN (t = 38 Myr).
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Figure 2.2: The same simulation as the one shown in Figure 2.1, except now at the
moment of peak momentum (t = 285 Myr). The shock has weakened, causing it to
thicken considerably.
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Figure 2.3: The evolution of the momentum per SN of the cluster shown in Figure 2.1
and Figure 2.2. The time of maximal momentum is marked by a vertical black dashed
line; the duration of SN events is denoted by solid black ticks. For many SNe, the energy
injection behaves more like a continuous wind rather than discrete explosions.
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Figure 2.4: The evolution of the cumulative energy budget of the cluster shown in
Figures 2.1 through 2.3. The time of maximal momentum is marked by a vertical
black dashed line; SNe times are denoted by solid black ticks. The kinetic component is
measured directly from the simulation; the radiated component is inferred by comparing
the decrease in total energy compared to the decrease that would have occurred if there
were no SNe and the background cooled anyway; the thermal component is assumed to
be whatever remains.
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We run a total of 672 simulations, sampling a three-dimensional parameter

space composed of density ρ, metallicity, Z and cluster mass Mcluster. As an example of

the outcome of our simulations, in Figure 2.1 we show the density profile immediately

after the last SN occurs in the simulation with ρ = 1.33 mH cm−3, Z = Z� and

Mcluster = 105 M�. In Figure 2.2 we show the density profile for this simulation at the

time when the radial momentum reaches its maximum, and we show the momentum as

a function of time in Figure 2.3 and the cumulative energy budget as a function of time

in Figure 2.4.

In Table 2.1 we provide an overview of our results, extracting the following key

parameters when all SNe have occurred and the momentum reaches a maximum: the

peak momentum p; the time, t, at which the momentum reaches a maximum (defining

t = 0 as the time of cluster formation); the radius of the shock, R, at this time (defined

by the furthest zone with an over-density compared to the background); the mass of

the remnant, MR, enclosed by the shock radius at this time; and the kinetic and in-

ternal energies, ER,kin and ER,int, enclosed by the shock radius at this time; finally, we

also include a flag for untrustworthy results, which we explain in the next paragraph.

In Table 2.2, we provide the time-dependent evolution of these parameters for every

simulation and each snapshot before the time of peak momentum.

Not all of our simulations are trustworthy. In some runs, a strong reverse shock

reaches the inner boundary before the SNR momentum peaks. In these simulations the

shock reflects off our hard inner boundary, whereas in reality the shock converging on

the origin would certainly become unstable and would not reflect. In these cases, we
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cannot reasonably measure a maximum momentum. Fortunately, this behavior only

occurs in a small part of our parameter space (40/672 runs), and in what follows we will

exclude these runs from our analysis. We also exclude any other realizations of the same

initial conditions (an additional 99/672 runs) so as not to bias ourselves by only allowing

atypical realizations. In subsubsection 2.4.1.1 we explain the astrophysical causes and

implications of these flagged runs.

The quantities MR and ER,int need to be interpreted with some care. At late

times (when these quantities are extracted), the shock has weakened and is becoming a

linear sound wave moving through a uniform medium, as illustrated in Figure 2.2. At

this time, the bubble-shell decomposition no longer is a good description, and MR and

ER,int are becoming increasingly dominated by background material which has simply

had a sound wave pass through it, but has not been irreversibly affected by a shock.

It would be inaccurate to include this material and its internal energy in SN-driven

“feedback,” and it is difficult to meaningfully disentangle SN-dominated material and

background-dominated material as the SNR is merging into the ISM. It is easier to

disentangle kinetic variables since the background is static; all momentum and kinetic

energy must be a result of the SNe. The kinetic energy ER,kin does not asymptote, but

it varies slowly at late times, as illustrated in Figure 2.4.

As an example of how these results vary across our parameter space, we plot the

asymptotic momentum per SN in two cuts through this parameter space in Figure 2.5

(momentum per SN as a function of ρ and NSNe at fixed Z) and Figure 2.6 (momentum

per SN as a function of Z and NSNe at fixed ρ). In Figure 2.7 and Figure 2.8 we provide
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Figure 2.5: An overview of the final momentum per SN and how it varies with the
number of SNe and gas density at fixed metallicity (Z = Z�). The locations of our
simulations in parameter space are marked by black scatter points (excluding flagged
runs), which are not a perfect grid because the numbers of SNe are drawn stochastically.
The color image is an interpolation of our simulation results using a Gaussian radial
basis function, evaluated on a 100 by 100 grid with 7 greyscale contours logarithmically
spaced between 3× 103 and 6× 104 km s−1 (exclusive).

analogous figures for the asymptotic kinetic energy, which is typically 1–10% of the

injected SN energy.

2.4 The Momentum Budget of Clustered Supernovae

Figure 2.5 and Figure 2.6 show significant structure in the momentum as a

function of number of SNe, gas metallicity and density. In particular, we note three
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Figure 2.6: The same as the Figure 2.5, except now allowing metallicity to vary while
holding density fixed at 1.33 mH cm−3. The top contour level shown in Figure 2.5 is
not shown here, as the dynamic range of the data is not as large.
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Figure 2.7: Same as Figure 2.5, except now the color image shows final kinetic energy
with 4 greyscale contours linearly spaced between 2×1049 and 1.2×1050 ergs (exclusive).
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Figure 2.8: The same as Figure 2.7, except now allowing metallicity to vary while
holding density fixed at 1.33 mH cm−3. The top two contour levels shown in Figure 2.7
are not shown here, as the dynamic range of the data is not as large.
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behaviors: (1) For fixed density and metallicity, starting with a few SNe the momentum

per SN initially increases with increasing number of SNe, reaches a maximum between

10-100 SNe (the exact location depends on density and metallicity), then decreases.

(2) For a few SNe, the momentum per SN increases with decreasing density and gas

metallicity. (3) For many SNe the opposite is true, as momentum per SN increases with

increasing density and, to a smaller extent, metallicity. In this section we show how

these primary behaviors are a consequence of clustered SNR evolution falling into one

of two physical regimes: the small-N regime and the superbubble regime.

2.4.1 Qualitative Analysis

2.4.1.1 The Small-N Regime

To understand how SN momentum budgets act when the number of clustered

SNe is relatively small, we start with its limiting case: single, isolated SNe. Feedback

from isolated SNe has been well explored, as discussed in section 2.1. In particular,

Thornton et al. (1998) found that lower gas metallicities and densities resulted in higher

energy feedback, which is what we expect physically; lower gas metallicity and density

results in weaker cooling, sapping less energy from a SNR, increasing the amount of en-

ergy feedback. This is also expected to apply for momentum feedback, and in Figure 2.9

we show that our results match the scaling between momentum and density expected

by Cioffi et al. (1988).

As the number of SNe increases, the picture is similar to a series of isolated

SNe, but with each successive SN occurring in a lower density bubble. As discussed
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Figure 2.9: The scaling of momentum with background density, for Z = Z� and
NSNe = 1, compared to the p ∝ ρ−1/7 scaling (normalized to the mean momentum of
the lowest density clusters) expected for isolated SNe in a homogeneous background
(Cioffi et al. 1988).
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above, this leads to progressively more efficient momentum production as the region

is progressively evacuated. Figure 2.10 illustrates this process directly, by plotting the

momentum versus time for a simulation in which two SNe occur. The first SN occurs

20 Myr after cluster formation and its remnant quickly asymptotes to a momentum

≈ 3 × 105 M� km s−1, in agreement with the usual value found for single SNe. The

second SN occurs 5 Myr later, and thanks to the vastly lower density inside the bubble,

experiences much smaller radiative losses. This leads it to inject ≈ 2 × 106 M� km

s−1 of momentum by the time the momentum peaks, which is almost 10 times more

momentum than injected by the first SN.

This breaks down for the clusters with the fewest SNe embedded in the high-

est density backgrounds, which behave more like multiple, isolated SNe. As density

increases, SNRs evolve more rapidly, quickly cooling, lowering their internal pressure,

and then being crushed by the pressure of the surrounding ISM. For the most dense gas

with the fewest SNe, the SNR bubbles can be destroyed between SNe. As subsequent

SNe are no longer occurring in the bubble of previous SNe, we believe clustering effects

should be minimal.

Unfortunately, since the bubble has collapsed before all SNe have been injected,

our numerical methods break down due to the reverse shock propagating all the way

to the origin and undergoing unphysical reflection (see section 2.3). We are therefore

forced to exclude this regime from our analysis. In our three-dimensional parameter
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Figure 2.10: The evolution of the momentum per SN of a Z = Z�, ρ = 1.33 mH cm−3

and NSNe = 2 cluster. The moment of maximal momentum is marked by the vertical
dashed black line; the times of SNe are denoted by solid black ticks.
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space, the excluded region is roughly defined by the parameters

ρ ≥ 1.33 mH cm−3 and NSNe < 10 and Z < 0.1Z�.

While we cannot simulate this part of parameter space directly, the above analysis

suggests that there should be no clustering effects present in it, and thus for the purpose

of subgrid modeling it is likely safe to adopt a momentum budget of 3 × 105 M� km

s−1 per SN, the same as in the isolated SN regime.

2.4.1.2 The Superbubble Regime

While the few SNe model predicts that momentum efficiency increases as the

number of SNe increases, our data show a turnover after about 10-100 SNe, beyond

which the momentum efficiency begins to drop as the number of SNe increases. This

can be understood within the framework of a superbubble powered by a continuous wind

(see Figure 2.3 for an example of the momentum evolution of a large cluster). As more

SNe occur, the bubble density decreases while the bubble temperature increases, both

of which lead to less efficient cooling. While this leads to strong momentum feedback

for a few SNe, it eventually saturates; if most of the energy is already being retained,

suppressing cooling even further will only have a marginal effect.

Castor et al. (1975) provide a simplified bubble model which allows us to begin

to understand superbubble evolution. They assume a constant energy injection rate,

but if that energy is injected over a period of time that is the same for all clusters
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(effectively assuming stellar evolution models do not depend strongly on metallicity or

density), then their approach is also valid for an energy injection rate that is a power

law with respect to time. Using their bubble solution, we can find the momentum per

SN at the time of the last SN:

p(tlast SN)/NSNe ∝ N−0.2
SNe ρ

0.2
0 . (2.15)

We compare this predicted scaling to our numerical results for the lowest density simu-

lated (thereby ensuring we are as close as possible to the adiabatic limit) in Figure 2.11.

As the plot shows, the analytic scaling is in reasonable agreement with the numeric

results.

As shown in Figure 2.3, a significant amount of momentum evolution occurs

after the last SN. During this phase, the superbubble expands adiabatically until the

bubble pressure equals the ISM pressure, P0, at which point the shell’s momentum

reaches a maximum, since the pressure gradient switches direction. For an adiabatic

index γ = 5/3 for the gas inside the SNR, this results in a final momentum per SN

pfinal/NSNe ∝ P−1/(2γ)
0 N

−0.2+(0.2/γ)
SNe ρ

0.2+(0.3/γ)
0

≈ P−0.3
0 N−0.08

SNe ρ0.38
0 (2.16)

This analytic scaling with respect to number of SNe can be compared to our numeric

data in Figure 2.12; the scaling with respect to gas density is shown in Figure 2.13.
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Figure 2.11: The scaling of momentum per SN with number of SNe, evaluated at the
time of the last SN for each cluster. The clusters shown all have solar metallicity and
the lowest density simulated, 1.33× 10−3 mH cm−3. We plot the theoretical scaling for
an adiabatic superbubble (Equation 2.15), normalized to the cluster with the most SNe
(the cluster which is expected to best correspond to the adiabatic case).
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It is not surprising that these scalings are not perfect; Sharma et al. (2014) pre-

dict that even 103 SNe are not enough to satisfy assumptions behind models like those of

Castor et al. (1975). Specifically, Sharma et al. (2014) predict no wind-dominated region

(where ρ ∝ r−2) which ends in a stable termination shock before the pressure-dominated

bubble begins; these predictions are in agreement with our results (see Figure 2.1 and

Figure 2.2). Our simulations do not satisfy all of the assumptions of superbubble models

like those of Castor et al. (1975); these models are sufficient for a qualitative analysis,

but they are insufficient for a quantitative understanding.

2.4.2 Quantitative Model

Informed by the qualitative understanding developed in subsection 2.4.1, we

now construct a quantitative parametric model which we constrain using our simulation

results (Table 2.1). In both the small-N and superbubble limits, we expect the results

to behave like a power law in number of SNe, gas density and metallicity, but we expect

these to be different power laws. Therefore, we choose to construct a model of two

power laws with a smooth break. In the few SNe (small-N) limit, we use a model of

the form

(
p

NSNe

)
few

=

(
p

NSNe

)
0,few

(
Z

Z�

)ηZ,few
×
(

ρ

mH cm−3

)ηρ,few (NSNe

1

)ηN,few
(2.17)
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Figure 2.12: The scaling of asymptotic momentum per SN with number of SNe. These
are the same clusters as those shown in Figure 2.11 (1.33×10−3 mH cm−3; Z = Z�) but
evaluated at a different time. We plot theoretical scalings for an adiabatic superbubble
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and in the many SNe (superbubble) limit we use a similar form,

(
p

NSNe

)
many

=

(
p

NSNe

)
0,many

(
Z

Z�

)ηZ,many

×
(

ρ

mH cm−3

)ηρ,many
(
NSNe

1000

)ηN,many

(2.18)

which are smoothly combined using:

p

NSNe
=

(
p

NSNe

)
few

(
p

NSNe

)
many(

p
NSNe

)
few

+
(

p
NSNe

)
many

(2.19)

≈ min

[(
p

NSNe

)
few

,

(
p

NSNe

)
many

]
(2.20)

Assuming our simulation results have a random additive gaussian noise of

variance σ2, we can construct a gaussian likelihood function for the results of each sim-

ulation. Even though σ2 is unknown, this allows us to determine a maximum likelihood

estimate (MLE) for our best-fitting model parameters. We would also like to under-

stand the uncertainties in those parameters. For that we need the posterior, which

through Bayes’ theorem requires a prior distribution, π on those parameters. Since we

do not have strong prior information on most of these parameters, we choose uniform,

independent priors on our parameters: log
(
σ2
)
, log (p/NSNe)0,few, ηZ,few, ηρ,few, ηN,few,

log (p/NSNe)0,many, ηZ,many, ηρ,many, ηN,many.

Combining this prior with a gaussian likelihood for our data results in the

posterior distribution of our model parameters. We sample this posterior distribution
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using a Markov Chain Monte Carlo (MCMC) scheme, using Gibbs sampling to draw

samples of σ2 from an inverse gamma distribution and using a Metropolis-Hastings

random walk for the remaining parameters. We use the MLE as the starting guess,

discard the first 10000 steps as burn-in steps and save the next 100000 steps. Using

these samples, we can now estimate uncertainties on our model parameters: for each

parameter we use the median as our best-fitting value, and the 16th and 84th percentiles

as our uncertainty interval (effectively marginalizing over all other parameters) resulting

in

(
p

NSNe

)
0,few

= 4249+741
−683 · 100 M� km s−1 (2.21)

ηZ,few = 0.05+0.05
−0.06 (2.22)

ηρ,few = −0.06+0.03
−0.03 (2.23)

ηN,few = 2.20+0.24
−0.23 (2.24)(

p

NSNe

)
0,many

= 23546+1072
−1073 · 100 M� km s−1 (2.25)

ηZ,many = 0.15+0.01
−0.01 (2.26)

ηρ,many = 0.14+0.01
−0.01 (2.27)

ηN,many = −0.07+0.02
−0.02 (2.28)

σ = 6075+214
−202 · 100 M� km s−1 (2.29)

Our posterior samples are also useful for estimating the uncertainty in the
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predicted momentum from a particular cluster. For a given gas metallicity, density and

number of SNe, each posterior sample predicts a slightly different momentum and an

uncertainty σ on that momentum. For each posterior sample, we then generate realiza-

tions of the noise with variance σ2. For N posterior samples and M noise realizations,

this gives us N ×M samples of the momentum predictive distribution, which allows us

to estimate the median and the 16th and 84th percentiles of the predictive distribution

for a given cluster. We compare this predictive model and its uncertainties to our a

subset of our numeric data in Figure 2.14.

2.5 Discussion

Using our numeric results and quantitative model, we can now comment on

the significance of these results in the context of previous works. We first examine the

implications of our results for models of momentum-regulated star and galaxy forma-

tion in subsection 2.5.1. We then compare our results to those of previous authors in

subsection 2.5.2, and in subsection 2.5.3 we discuss the potential importance of physical

processes we have omitted.

2.5.1 Implications of High Momentum Efficiency of Clustered SNe

In models of momentum-driven feedback, the key parameter is p/m∗, the

amount of momentum injected per unit mass of stars formed in a given system. Non-

clustered models of SNe momentum production usually assume p/m∗ ≈ p/(100M�NSNe)

≈ 1000 − 3000 km s−1 (with a weak dependence on density) for a mass m∗ of stars
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Figure 2.14: Comparison of a slice of our simulation results (Z = Z�, ρ = 1.33 mH

cm−3) to our model with an uncertainty envelop bounding the 16th and 84th percentiles
of our predictive momentum model. Some slices fit better and some slices fit worse, but
overall this is a representative slice. For comparison, we also plot a typical unclustered
model, p/(100M�NSNe) = 3000 km s−1 (Ostriker & Shetty 2011; green dashed line).
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formed (Thompson et al. 2005; Ostriker & Shetty 2011; Shetty & Ostriker 2012; Dekel

& Krumholz 2013; Faucher-Giguère et al. 2013; Hopkins et al. 2014; Kim & Ostriker

2015; Kimm et al. 2015; Hayward & Hopkins 2017). For a star cluster with a single

SN (Mcluster ≈ 100M�), our best fit model is a little higher than but still consistent

with 1000 − 3000 km s−1 given the uncertainties in our model. For higher mass clus-

ters, the discrepancy becomes significant. The most extreme difference is found for

Mcluster = 103− 104M� (NSNe = 101− 102), for which our value of p/m∗ can be greater

than the unclustered value by an order of magnitude (see Figure 2.5 and Figure 2.14).

But these are just the extremes; for a typical distribution of cluster masses found in a

galaxy, what is the average effect?

To evaluate the mean value of p/m∗ for star formation on galactic scales, we

must integrate our model for individual clusters, p/Mcluster, over a cluster mass function

dN/dMcluster. The resulting mean momentum yield per unit mass of stars formed is

p

m∗
=

∫ (
p

Mcluster

)
dN

d lnMcluster
dMcluster. (2.30)

If we adopt a typical mass distribution dN/dMcluster ∝M−2
cluster over the range Mcluster =

102 − 105 M�, comparable to what is observed in nearby galaxies (Krumholz 2014 and

references therein), and use our fitting formula (Equation 2.19) to evaluate p/NSNe as a

function ofMcluster (forNSNe ≈Mcluster/100M�), this yields a value of p/m∗ ≈ 1−2×104

km s−1 over the metallicity range Z/Z� = 0.01−1 and density range ρ/mH = 0.1−105.

This is ∼ 0.5− 1 dex higher than the value usually adopted based on single SN models.
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This result is only logarithmically sensitive to the adopted limits on the cluster mass

function.

This increased momentum yield will significantly alter the conclusions of an-

alytic models in which star formation is regulated primarily by SN momentum input

(e.g., Ostriker & Shetty 2011; Shetty & Ostriker 2012; Faucher-Giguère et al. 2013;

Hayward & Hopkins 2017). The same is true for models where SN momentum is pri-

marily responsible for launching galactic winds (e.g., Dekel & Krumholz 2013; Hayward

& Hopkins 2017; Thompson & Krumholz 2016). In general, the higher momentum yield

we obtain will shift such models to predict lower star formation rates for fixed galactic

surface densities, which may require re-tuning of other parameters to bring the models

back into agreement with observed relationships between star formation rate and gas

content.2 The models will also predict stronger outflows, though these are significantly

less constrained by observations.

The momentum yield per SN is also a critical input to numerical methods that

handle subgrid feedback through explicit momentum injection (e.g., Kim et al. 2011;

Hopkins et al. 2014; Kimm et al. 2015; Goldbaum et al. 2016). These models should

be also be rerun using our updated estimates of the SN momentum yield. Even models

that do not use explicit momentum injection, but that attempt to include SN feedback

by explicitly resolving the Sedov phase (e.g., Hopkins et al. 2011), may need to be

reconsidered, at least for simulations of galaxies large enough for there to be significant

2The situation is more complex for models that include regulation of star formation by FUV radiation
instead of or in addition to SN feedback (e.g., Krumholz et al. 2009; Ostriker et al. 2010; Krumholz
2013). In these models, the effects of enhanced momentum injection will be more modest or absent,
depending on the details of the individual model.
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numbers of clustered SNe.

2.5.2 Comparison to Previous Work and Convergence Study

We find that clustered SNe generally lead to an increase in the momentum

injected by SNe, in some cases by an order of magnitude. The results of previous

authors diverge strongly, as noted in section 2.1, with some finding that clustering leads

to an enhancement in momentum per SN and others finding a decrease, but none finding

an increase as large as an order of magnitude. To understand this discrepancy, we need

to understand the role of mixing and how it enters various simulations.

In SNe-driven bubbles, the cooling rate plays a significant role in setting the

dynamics of the system. This cooling rate is itself affected by the mixing rate at inter-

faces between hot diffuse gas (which dominates the thermal energy) and cold dense gas

(which is most radiatively efficient). If the mixing of energy and matter increases, the

cooling rate can increase and the final momentum can decrease. This mixing can be

increased by both non-physical sources (i.e., due to numerical diffusion) and physical

sources (i.e., conduction or hydrodynamic instabilities that transport energy across the

contact discontinuity). While these two channels have very different causes, they can

have similar effects on the momentum and energy evolution of the system (Fierlinger

et al. 2016). We will look at these two channels in turn.

Hydrodynamic solvers that advect mass between adjacent cells fundamentally

introduce mixing errors. These errors can be decreased by improving the resolution or

decreasing the mass advected between cells (as we have done by moving our numerical
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Figure 2.15: The momentum evolution of a ρ = 1.33 mH cm−3, Z = Z�, Mcluster = 103

M� (NSNe = 11) cluster, rerun with a range of initial resolutions, using both Eulerian
and Lagrangian methods. The asymptotic momentum predicted by our model is shown
by the blue horizontal band which bounds the 16th and 84th percentiles of the predictive
distribution.
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Figure 2.16: Same as Figure 2.4, except now for a ρ = 1.33 mH cm−3, Z = Z�,
Mcluster = 103 M� (NSNe = 11) cluster, evolved using Lagrangian methods with an
initial resolution of 0.6 pc.
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Figure 2.17: Same as Figure 2.16, except with the resolution degraded to 2.5 pc, and
using a fixed Eulerian mesh.
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mesh with the fluid). In order to understand how the choice of resolution and numerical

methods affects our results, we re-ran one of our clusters (ρ = 1.33 mH cm−3, Z = Z�,

Mcluster = 103M�, NSNe = 11; this particular cluster will be useful in later compar-

isons to Kim & Ostriker (2015)) at a number of initial resolutions, using both a fixed

mesh and a moving mesh. (A fixed mesh corresponds to Eulerian hydrodynamics –

fixing w = 0 in our methods discussed in section 2.2 – which is less accurate and more

diffusive than our pseudo-Lagrangian methods.) We show the results in Figure 2.15

and note a few key observations. First, the Lagrangian runs appear to be converged

(within the uncertainties of our predictive model) by the resolution used for this cluster

in our parameter study (an initial resolution of 0.6 pc). Second, the Eulerian runs in-

troduce larger errors (as expected) and converge much more slowly. This suggests that

Eulerian and low resolution simulations could have greater errors than high resolution,

Lagrangian simulations. We can better understand these errors by comparing the en-

ergy evolution of a high resolution Lagrangian run (Figure 2.16) and a low resolution

Eulerian run (Figure 2.17). While the same amount of energy is injected for each SN in

both simulations, that energy is radiated away much more rapidly in the low resolution

(Eulerian) simulation, draining the bubble of the energy which drives the momentum

growth seen in Figure 2.15. (This connection between cooling time and resolution for

multiple SNe was also found by Krause et al. (2013).) The amount of mixing can sig-

nificantly impact the final momentum, but given the convergence seen in Figure 2.15,

the results we have obtained appear to be converged.

While our resolution study suggests that high resolution, low diffusion simula-
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tions are required to achieve accurate results, that conclusion might not apply if there

are stronger, physical diffusive processes are present (Fierlinger et al. 2016). For a SNR

or a superbubble, a number of processes can mix gas between the hot bubble interior

and the cool shell; for a review see Appendix B of Fierlinger et al. (2016). Our 1D

code cannot simulate many of these processes directly3, but higher dimensional simula-

tions can. In order to test the effects of these more complex mixing interfaces, we will

compare our results to existing 3D simulations of multiple SNe in an inhomogeneous

background.

Martizzi et al. (2015), Walch & Naab (2015) and Kim & Ostriker (2015) all

tested the effects that a turbulent or multi-phase background might have on SNR evo-

lution. For 1 SN, they all found that an inhomogeneous background makes a relatively

small difference: a change of less than 60%. They also test multiple SNe in an inhomo-

geneous background, but none compare the results to multiple SNe in a homogeneous

background. So in order to understand the effect of mixing in the case of multiple SNe,

we will compare one of our clusters (ρ = 1.33 mH cm−3, Z = Z�, Mcluster = 103M�,

NSNe = 11; the cluster used in our resolution study) with a multi-phase multiple SNe

cluster from Kim & Ostriker (2015) (ρ = 1.4 mH cm−3, Z = Z�, NSNe = 10). Note that

although these clusters were chosen to be as similar as possible (except with a difference

in background media), they also differ in SN delay time distributions, ejecta and mass

loss prescriptions. Nevertheless, we can compare our results to those of Kim & Ostriker

(2015) and find that their cluster cools much more rapidly than ours, leading to an

3There exist prescriptions for approximating mixing instabilities in 1D codes (e.g., Duffell 2016), but
none were incorporated in our work.
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asymptotic momentum per SN which is a factor of 20 lower than ours.

We believe that this difference is due to physical mixing that is present in their

simulations but not ours. While our results can be brought into agreement with theirs

by degrading our resolution and using less accurate numerical methods (as shown by our

convergence study), subsequent simulations have shown their results to be converged

with respect to resolution (Kim et al. 2017). If a two-phase background results in signif-

icantly increased physical mixing, that would explain how their converged simulations

could appear similar to our less-accurate, unresolved simulations: a strong source of

physical mixing can appear similar to strong artificial mixing (Fierlinger et al. 2016),

while being less sensitive to the resolution.

One might ask at this point whether the enhanced momentum injection we find

is solely a result of our use of 1D simulations, which necessarily suppressing mixing. Such

a conclusion might be comforting, but is far from warranted. The overall lesson to draw

from this comparison is that the cooling rate and momentum budget for bubbles pro-

duced by multiple SNe is exquisitely sensitive to the amount of mixing, whether physical

or numerical. For a homogeneous background, very high resolution is required to get a

converged value for the asymptotic momentum. This resolution requirement can be ren-

dered irrelevant if strong, physical mixing occurs, allowing convergence at much lower

resolution. But accurate results require more than just convergence; to be confident in

the accuracy of a set of results, one must be confident that the physical mixing processes

have been properly captured. In their multiple SNe simulations Kim & Ostriker (2015)

include a two-phase background, but not magnetic fields, which are known to suppress
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mixing across contact discontinuities in other contexts (e.g., Markevitch & Vikhlinin

2007). Thus their results should probably be regarded as lower limits. Sharma et al.

(2014) do include magnetic fields, but only the context of a uniform medium. Given

the state of the field, and the resolution requirements we have obtained in the uniform

case, it seems clear that there is an urgent need to re-examine the momentum budget

of clustered SNe in a multi-dimensional context, properly including all the mechanisms

that can both enhance and suppress mixing.

2.5.3 The Effects of Additional Physics

In order to render the problem as clean as possible, we have focused only

on type II SN feedback in a uniform medium. We now consider how other physical

processes that we have heretofore neglected might alter our results.

2.5.3.1 Pre-SN Radiative Feedback

Before any SNe occur, we expect pre-SN feedback to already be sculpting the

region. In particular, ionizing radiation from young stars can create an overpressured,

expanding bubble, lowering the density in which SNe occur. In addition, expansion of

the H ii region will by itself add some momentum to the gas. Neither effect is included

in our model, and we would like to understand if this significantly biases our results.

The ionizing luminosity of a cluster of massMcluster isQ = 1049.6 Mcluster/(103M�)

s−1 (Leitherer et al. 1999). These photons will ionize a bubble of gas around the cluster,

raising the temperature to 104 K. For density ρ < mH cm−3, this ionized region is not
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much hotter than the background (which has a temperature only slightly below 104 K,

appropriate for warm neutral gas). This means the ionized bubble will not be signifi-

cantly over-pressured compared to the background, so it will not expand significantly.

For clusters in backgrounds of density ρ < mH cm−3, we therefore do not expect pre-SN

radiative feedback to affect our results.

For higher densities, the equilibrium temperature of the gas is well below 104 K,

so the 104 K ionized bubble is significantly over-pressured compared to its surroundings.

This will allow it to expand, lowering the density in which SNe occur. For uniform

density, and neglecting the small range of parameter space where radiation pressure

effects will be significant (Krumholz & Matzner 2009), the H ii bubble radius rII will

be governed by the classical Spitzer (1978) solution4 (Krumholz 2017, chapter 7),

rII ≈ rS,0

(
7t

2
√

3tS,0

)4/7

, (2.31)

where rS,0 is the Strömgren radius at the start of expansion, given by5

rS,0 =

[
3Qµ2m2

H

4(1.1)παBρ2

]1/3

= 3.1Q
1/3
49 n

−2/3
2 T

0.272+0.007 lnTII,4
II,4 pc, (2.32)

and where Q49 = Q/1049 s−1, µ = 1.33, n2 = ρ/(µmH)/100 cm−3, TII is the temperature

4This solution assumes t � tS,0, otherwise expansion is expected to be negligible. For the cluster
masses considered, this assumption typically fails for n < 1 cm−3, but we already expected minimal
expansion in such backgrounds.

5Note that this and the following expressions assume that He is singly ionized.
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of the ionized gas, TII,4 = TII/104 K, αB ≈ 2.54× 10−13T
−0.8163−0.0208 lnTII,4
II,4 cm3 s−1 is

the case B recombination coefficient (Draine 2011), tS,0 = rS,0/cII,

cII =

√
2.2

kBTII

µmH
= 12T

1/2
II,4 km s−1, (2.33)

is the ionized gas sound speed. The corresponding density inside the H ii region is

ρII = ρ

(
r

rS,0

)−3/2

= ρ

(
7t

2
√

3tS,0

)−6/7

. (2.34)

The mass and velocity of the swept-up shell are

vII =
4

7

rII

t
(2.35)

Msh =
4

3
πr3

IIρ. (2.36)

We are interested in the properties of the H ii region at a time of ≈ 4 Myr, when the

first supernova occurs; these are

rII = 27M
1/7
cluster,3n

−2/7
2

(
t

4 Myr

)4/7

T
0.402+0.003 lnTII,4
II,4 pc (2.37)

ρII

ρ
= 0.077M

2/7
cluster,3n

−4/7
2

(
t

4 Myr

)−6/7

T
−0.195+0.006 lnTII,4
II,4 (2.38)

pII = 7.7× 105M
4/7
cluster,3n

−1/7
2

(
t

4 Myr

)−3/7

× T 1.41+0.02 lnTII,4
II,4 M� km s−1 (2.39)
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where Mcluster,3 = Mcluster/103M�, pII is the momentum of the shell. For the rest of

this section we assume TII,4 = 1.

Based on these results, for Mcluster ≈ 100 M� the extra momentum in the H ii

region (≈ 2×105 M� km s−1) is ∼ 50% smaller than that injected by SNe (≈ 3×105 M�

km s−1), and the fractional contribution drops fairly rapidly for more massive clusters

thanks to the sublinear scaling of pII with Mcluster (Equation 2.39). Thus the extra

momentum injected directly by the H ii region is mostly negligible.

The second effect, lowering the density of the medium into which the SNe

expand, matters if the region of lowered density encompasses where a SNR would oth-

erwise experience significant cooling: beyond the shell formation radius of the first SN

(when the remnant exits the Sedov phase). This radius is (Kim & Ostriker 2015; their

equation 8, assuming an energy budget of 1051 ergs per 100 M� of stars)

rsh = 6.4M0.29
cluster,3n

−0.42
2 pc. (2.40)

Given the weak scaling of both rsh and rII with Mcluster and n, and the lower coefficient

for rsh, this means that the presence of an H ii region can at least potentially affect the

evolution at densities n & 1 cm−3.

To quantify the effect of this radiative feedback, we can use the results of Walch

& Naab (2015), who ran simulations with and without pre-SN ionization for NSNe = 1

and ρ ≈ 100 mH cm−3. They found that ionization led to a pre-SNe bubble of density

ρ ≈ 10 mH cm−3, which resulted in a final momentum 50% higher than their simulation
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without ionization (runs “HCI” and “HC” respectively.) This change in momentum

can be explained well by re-scaling the results from the non-ionized run to the density

within the bubble of the ionized run (using the p ∝ ρ−1/7 scaling of Cioffi et al. (1988)),

with the added extra momentum injected by the H ii region directly. Thus for single

SNe, it appears that the relevant density for a momentum feedback model is the ionized

bubble density rather than the background density.

Assuming that this conclusion can be extended to the case of multiple SNe, we

can quantity the effects of pre-SN ionizing radiation simply by combining the density

scaling in Equation 2.38 with our best-fitting density dependences, p ∝ ρ−0.06 in the

few-SN regime and p ∝ ρ0.14 in the superbubble regime. In the few-SN regime, this

implies an increase in the momentum yield per SN by a factor of

fII,few ≈ 1.17M−0.017
cluster,3n

0.034
2 . (2.41)

The corresponding effect in the superbubble regime is a decrease in the momentum yield

by a factor of

fII,many ≈ 0.70M0.040
cluster,3n

−0.080
2 . (2.42)

Thus in general we expect that the effect of a pre-SN H ii region will be to

alter the final momentum yield at the tens of percent level, with the sign of the effect

depending on the whether we are in the few-SN or the superbubble regime.
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Figure 2.18: Comparison of simulations with just core-collapse SNe (marked by a blue
+), and simulations with core-collapse and Type Ia SNe (marked by a red ×) for a set
of simulations with Z = Z� and ρ = 1.33× 10−3 mH cm−3.
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Figure 2.19: Same as Figure 2.18, except now for ρ = 1.33× 102 mH cm−3 clusters.
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2.5.3.2 Type Ia SNe

We just discussed pre-SN alterations to our results – what about changes after

the core-collapse SNe occur? In particular, could subsequent Type Ia SNe rejuvenate

an old superbubble?

To test this we rerun a subset of our highest and lowest density simulations

with Type Ia SNe added after all the core-collapse SNe have occurred. We add 9.75×

10−4 Type Ia SNe per M� of stars, with the exact number sampled from a Poisson

distribution; this rate is taken from Kim et al. (2014), rescaled to a Kroupa (2002)

IMF. We draw Type Ia SN delay times from a t−1 distribution, beginning at t = 40 Myr

and extending to 100 Myr. This is not meant to be a complete accounting of the full

effect of Type Ia SNe; most Type Ia SNe occur after much longer delays, and within

40-100 Myr the delay time distribution is poorly constrained (Maoz et al. 2012); this is

simply to test the effects of SNe that might occur while the bubble still exists.

We show results for the low and high density runs in Figure 2.18 and Fig-

ure 2.19. For relatively short-delay Type Ia SNe, we find that they are consistent

with our model if NSNe is increased accordingly (NSNe = Ncore-collapse + NType Ia). For

long-delay SNe we caution against using our model; it is not guaranteed that both the

progenitor will remain within the cluster and that the bubble will survive much longer

than 100 Myr.
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2.5.3.3 Self-Gravity

Previous studies of SNRs and superbubbles have differed in regards to whether

they include or exclude gravitational forces. For example, Martizzi et al. (2015) and

Kim & Ostriker (2015) do not include gravity, while Thornton et al. (1998) and Walch

& Naab (2015) do include self-gravity. We chose not to include any gravitational forces

in our main simulations, and now we estimate what effect that has on our results. In

this section we focus on the effects of the self-gravity of the simulated gas, rather than

external gravitational forces.

First, it is useful to understand why we did not include gravity ... in our

simulations. This is partly a philosophical choice. The momentum budget we are

attempting to compute is frequently used as an input to models of feedback-regulated

star formation or wind generation. In such models, the feedback is compared to the

force of gravity either analytically or numerically. For this purpose, the momentum

budget in which we are interested is that before the effects of gravity are applied;

to include gravity would be in effect to double-count it, by inserting it once into the

subgrid feedback model and then a second time into the overall model. However, there

is also a practical reason that we omit gravity. Strictly speaking, the self-gravitational

potential of an infinite, uniform medium is undefined. We could assume an external

potential dominates, but only if it were spherically symmetric about the cluster, which

rules out many potentials of interest, like a galactic potential. Additionally, including

a gravitational force, especially self-gravity, would cause our uniform background to
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collapse. This was not a problem for Thornton et al. (1998), who simulated much less

than a free-fall time, but caused Walch & Naab (2015) to limit their simulations to 1

Myr in duration. Unfortunately, limiting the duration of our simulations was not an

option; we needed to simulate SNe over a period of at least 30 Myr, much longer than

a free-fall time for most of our densities. Rather than artificially require a pressure

gradient that ensures equilibrium, we chose to exclude gravitational forces.

Still, gravity exists in real systems, so we should try to understand its effect

on our work. First, we will use analytic, simplified arguments to predict the effects of

self-gravity on our simulations. We then use a simplified prescription to include self-

gravity directly in our numeric simulations. By comparing those results we can begin

to understand the effects of self-gravity and the limitations of our analytic model.

For an arbitrarily thin shell dominated by mass swept up from a constant

density background the force of self-gravity is

Fgrav =
GM2

shell

2R2
shell

=
8π2

9
Gρ2

0R
4
shell. (2.43)

When this inward force becomes greater than the force exerted by the pressure of the hot

bubble, the momentum will stop increasing, ending the simulation (unless the bubble

would have already mixed into the ISM and the simulation is already completed). This

competing force from the hot bubble gas is

Fgas ≈ 4πR2
shellPbubble = 3(γ − 1)

ER,int

Rshell
. (2.44)
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These two forces become equal at a radius

Rmax =

(
27

8π2
(γ − 1)

ER,int

Gρ2
0

)1/5

(2.45)

≈ 1200

(
NSNe

1000

)1/5( ρ0

1.33×mH cm−3

)−2/5

pc (2.46)

where Rmax is the maximum radius the bubble could reach, having assumed all the

injected energy is retained as internal energy (ER,int = NSNe×1051 ergs). This provides

a simple way to include the effects of gravity via post-processing: using the Rmax deter-

mined by Equation 2.45, we can truncate a simulation at that radius using the data in

Table 2.2. If the bubble mixes into the ISM at a radius smaller than Rmax, then gravity

is assumed to have no effect.

We can also re-run a subset of simulations including gravity explicitly. To do

this, we calculate the force of self-gravity and the force due to a central point source of

mass Mcluster, and use these forces to compute the appropriate source terms for momen-

tum and energy. These source terms are then only applied to the shocked gas (cells with

r < Rshock, where Rshock is the radius of the overdensity furthest from the center). By

only applying gravity to shocked gas, we are able to approximate our analytic approach

(which only considers gravity of the shell), and avoid the problem of our background

collapsing. This effectively assumes the background is kept in equilibrium by a corre-

sponding thermal or dynamic pressure gradient. We could have explicitly included this

pressure gradient in our simulations, but chose not to, so that our with-gravity simula-

tions would better correspond to our without-gravity simulations. A more sophisticated
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Figure 2.20: Comparison of simulations with no gravity (marked by a blue +) and
simulations with gravity applied to the remnant (marked by a red ×) for all of our
simulations with Z = Z� and ρ = 1.33×10−3 mH cm−3. We also include a simple post-
processing prediction for the effect of self-gravity, which truncates our without-gravity
simulations if and when they reach Rmax (Equation 2.45).
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treatment of gravity using higher dimensional simulations would be worthwhile.

In Figure 2.20 we compare the results for simulations with and without gravity,

and the results of our post-processing model which truncates the without-gravity simu-

lations. We see that including gravity in simulations can decrease the final momentum,

and that this decrease can be significant (compared to the uncertainties in our without-

gravity model), and as large as a factor of 2.3. We also see that the post-processing

truncation model typically over-predicts the final momentum (under-predicting the ef-

fects of gravity), relative to the simulations which incorporate gravity directly. This

is expected; our post-processing model assumes all the SN energy remains as thermal

energy, but in our simulations some SN energy is converted into kinetic energy, some

into potential energy and most is radiated away. This causes simulations to stop at

smaller radii than predicted, leading to lower final momenta than the post-processing

model predicts.

We find that self-gravity can significantly change the final momentum, espe-

cially for clusters of many SNe, but that momentum is nevertheless still enhanced by a

factor of about 4 compared to the single SN case.

2.5.3.4 Galactic Environment

In subsubsection 2.5.3.3 we investigated the effects of self-gravity, but in some

cases a galactic gravitational potential might play a larger role in shaping the late-time

dynamics of large bubbles. In this section we will estimate the effects of a galactic

gravitational potential, as well as the effects of rotational shear and disc breakout. For
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Figure 2.21: Comparison of simulations with no galactic gravity (marked by a blue
+) and our simple post-processing model of galactic gravity in a disc for all of our
simulations with Z = Z� and ρ = 1.33× 10−3 mH cm−3.

each of these effects, we will use a post-processing correction similar to that used in

subsubsection 2.5.3.3: calculate a radius or time where our assumptions break down,

and then use the data in Table 2.2 to truncate the bubble evolution at that radius or

time.

First, we consider the gravitational force perpendicular to a galactic disc, pro-

duced by the galactic gravitational potential. The acceleration due to this force can be

written as:

g =
z

rg

v2
c

rg
(2.47)
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where vc is the circular velocity at a galactocentric radius rg, and z is the distance from

the midplane. For simplicity, we will assume all of the mass of the shell is in a plane at

height z = Rshock. This results in a force

Fgrav = Mshell
Rshell

rg

v2
c

rg
. (2.48)

For a Milky Way-like galaxy with vc = 200 km s−1 and a cluster at rg = 3 kpc, this

gravitational force is equal to the force from the bubble pressure when the shock is at

a radius

Rmax =

(
9(γ − 1)

4π

1

ρ0

v2
c

r2
g

ER,int

)1/5

(2.49)

≈ 700

(
NSNe

1000

)1/5( ρ0

1.33×mH cm−3

)1/5

×
(

vc

200 km s−1

)−2/5( rg

3 kpc

)2/5

pc. (2.50)

As with our self-gravity model, we create a model which truncates our simulations

if and when they reach this radius. In Figure 2.21, we compare the results of this

galactic gravity model to a subset of our simulations. Similar to the self-gravity results

shown in Figure 2.20, galactic gravity has the largest effect for the largest clusters.

We also find that this galactic gravity model is able to reduce the momentum by a

greater factor than our self-gravity model; the self-gravity model never reduced the

momentum by more than a factor of 1.4, whereas the galactic gravity model can reduce

the momentum by up to a factor of 3.3. As with self-gravity, however, we caution that
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Figure 2.22: Comparison of simulations with no disc breakout (marked by a blue +)
and our simple post-processing model of disc breakout for all of our simulations with
Z = Z� and ρ = 1.33× 10−3 mH cm−3.

for many applications, the momentum budget of interest will be that excluding the

effects of disc gravity, since if disc gravity is included in the overall model, it should not

be double-counted by also including it in the subgrid feedback model.

Our disc gravity model is incomplete; among other things, it ignores the density

and pressure gradients that result from this gravitational potential. As a superbubble

expands vertically, it will find less dense and lower pressure gas; as it expands horizon-

tally, it will not experience such gradients in the background gas. This will break the

spherical symmetry of the bubble expansion, and can lead to disc breakout where the
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bubble expansion becomes predominantly vertical. When studying this phenomenon

with hydrodynamic simulations, Mac Low et al. (1989) found that spherical symmetry

is often broken and shell mixing instabilities are significant by the time the bubble has

expanded 3-4 scale heights in the vertical direction. Applying this to a Milky Way-like

galaxy, using a thin-disc scale height of 100 pc, we can create a model which cuts off the

momentum growth when a bubble reaches Rmax = 400 pc. The results of this model can

be seen in Figure 2.22. As with our previous models, the effect of this model is stronger

for larger clusters, but this model predicts effects which increase much more rapidly as

cluster size increases. While there is no significant effect on our 11 SNe simulation, it

has the largest effect for the 1008 SNe simulation for all of the models we have tested,

decreasing the momentum by a factor of about 10. It is important to understand that

this behaviour is not a result of the total momentum decreasing for large bubbles. It is

simply that, for the largest clusters, the bubble expands to the breakout radius before

a significant fraction of the SNe occur, and, by assumption, these additional SNe then

contribute no additional momentum. This causes the average momentum per SN to

fall, because the extra SNe are counted in the denominator but not the numerator of

our average.

In addition to considering distortions caused by expansion perpendicular to the

disc plane, we can also consider distortions due to shear within the disc plane. Adopting

a shear timescale

tshear = Ω−1
orb

rg

Rshell
(2.51)
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Figure 2.23: Comparison of simulations with no rotational shear (marked by a blue
+) and our simple post-processing model of rotational shear in a disc for all of our
simulations with Z = Z� and ρ = 1.33× 10−3 mH cm−3.

80



for a disc orbital frequency Ωorb = vc/rg, we can truncate our bubble evolution when

the bubble age (t− tfirst SN) exceeds the shear time. Results can be seen in Figure 2.23.

Once again, only the largest clusters are significantly affected, with the largest effect

being a decrease of a factor of 1.75 for the 1008 SNe cluster.

Comparing these post-processing models, we find that all of the galactic models

(gravity, breakout and shear) are predicted to have larger effects than the self-gravity

model, but these galactic models introduce a number of free parameters which we have

not explored (disc circular velocity, galactocentric radius and disc scale height). It

is important to remember that these models are only very rough estimates. When

investigating self-gravity, we found that directly including self-gravity in simulations led

to a much stronger effect than predicted by our simple model. The same is likely true for

these galactic effects, which we cannot directly include in our simulations. Still, even

though every model was structured to decrease the final momentum, we always saw

that clustering can lead to an increased momentum efficiency, compared to our single

SN results. Moreover, all of these corrections are relatively small for the most efficient

clusters, those producing ∼ 10 SNe (Mcluster ∼ 1000M�).

Overall, this suggests that superbubble models are less cleanly separable from

galactic dynamics than single SNR models. Single, isolated SNRs might only expand

to 100 pc over 2 Myr, allowing us to largely ignore effects like disc shear and galactic

gravity. As we have shown, these effects can play a significant role for models of clustered

SNe and superbubbles. Testing these effects self-consistently goes beyond the capability

of our 1D simulations, but we have already gained some insight from our simplified
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post-processing models. By design, all of these models lowered the final momenta of

our bubbles (by as much as a factor of 10, for the disc breakout model applied to our

largest bubble), but every model still predicted that clustered SNe lead to enhanced

momentum feedback (for instance, our disc breakout model still predicts an average

momentum per SN 4 times larger than the single SN value). Both clustering of SNe and

effects from the host galaxy seem to play significant roles in the overall SNe momentum

budget; it would be useful for higher dimensional simulations to explore these two effects

simultaneously in the future.

2.6 Conclusions

We perform several hundred 1D simulations to study the momentum delivered

to the interstellar medium by clustered supernova explosions over a wide range of star

cluster sizes, gas densities and metallicities. Our simulations use a realistic IMF paired

with realistic stellar lifetimes, and we evolve them at very high numerical resolution

until the momentum of the expanding shell reaches a maximum. At the end of our

simulations, we find that our clusters typically retain 1−10% of the injected SN energy

(similar to isolated SNe), but clustered SNe produce significantly more momentum per

SN than isolated SNe, i.e., the momentum injected by a star cluster is a superlinear

function of the number of SNe that explode within it. Clustering has the largest impact

for 10− 100 SNe, leading to an order of magnitude increase in the momentum per SN.

When integrating over the observed cluster mass function, our findings suggest that the
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mean SN momentum budget per mass of stars formed is p/m∗ ≈ 1 − 2 × 104 km s−1,

which is ∼ 0.5− 1 dex higher than the value of ≈ 3000 km s−1 most commonly adopted

in the literature.

The increased momentum budget for SNe will have strong implications for any

simulation or analytic model that relies on SN momentum injection. In galaxies where

the overall star formation rate is high enough for clustering of SNe to be significant for

quenching star formation and producing galactic winds (i.e., perhaps not in dwarfs, but

almost certainly in more massive galaxies), using our updated SN momentum budget

may cause these models’ predicted star formation rates to decrease by the same factor

of ∼ 0.5 − 1 dex by which the SN momentum budget increases. This may render

the models inconsistent with the observed relationship between gas and star formation

rate, which will require changes in other free parameters to bring the models back

into agreement. The implications for galactic wind launching are less clear, since the

increased SN momentum budget will be offset by overall lower star formation rates.

To facilitate the implementation of our results in 3D numerical simulations

that include explicit supernova momentum injection, we provide a fitting formula for

the momentum per SN as a function of cluster size, ambient density and metallicity.

This formula is suitable for implementation in galaxy simulations capable of resolving

individual star clusters, typically ∼ 102 − 105 M�. We also provide tabulated outputs

from our simulations, for those who wish to calibrate subgrid models at a range of size

scales. For lower resolution simulations we recommend the value of p/m∗ ≈ 1− 2× 104

km s−1 we obtain by integrating over the cluster mass function. Regardless of resolution,
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it is clear that the existing body of simulations may need to be revisited, and some of

the strong assumptions that previous authors have adopted to make feedback more

effective (e.g., assuming efficient trapping of infrared radiation) may be relaxed. Other

numerical schemes, such as turning off radiative cooling for an extended period of time

(e.g., Stinson et al. 2006) or stochastically injecting thermal energy in order to delay

cooling (e.g., Dalla Vecchia & Schaye 2012), may prove to be closer to reality than had

previously been assumed.

Properly capturing the effect of clustering in a 1D simulation requires very high

numerical resolution to avoid over-cooling through numerical mixing. The resolution

requirements may be less severe, and the momentum injection rate lower, in higher

dimensions where instabilities may produce mixing at large physical scales. However, the

size scale and mixing rate due to instabilities likely depends strongly on the properties of

the host galaxy, the nature of the background into which the SNR is propagating and the

microphysical details like magnetic fields and conduction near the contact discontinuity.

Since we are unable to directly include these effects in our simulations, we create simple

models to estimate the strengths of some of these effects. While these models are

able to decrease the momentum of the most-massive cluster by a factor of 10, lower

mass (more common) clusters are less affected. For each of our models, the average

momentum per SN remains greater than the fiducial, unclustered value by a factor of 4,

assuming a realistic cluster mass distribution. But these are just simple estimates; no

present simulation includes all these effects, and thus the correct momentum budget for

clustered SNe in multiple dimensions remains uncertain. While the correct momentum
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budget may not be as high as ∼ 0.5− 1 dex greater than the commonly-adopted single

SN value (as we find in one dimension), it is still likely greater than the single SN value.

There is clearly an urgent need for further study.
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Chapter 3

3D simulations of clustered SNe: The

momentum budget of clustered SN

feedback in a 3D, magnetized medium

(Much of this text is going to come directly from Gentry et al. (2019); no

changes to the substance have been made.)

While the evolution of superbubbles driven by clustered supernovae has been

studied by numerous authors, the resulting radial momentum yield is uncertain by as

much as an order of magnitude depending on the computational methods and assumed

properties of the surrounding interstellar medium (ISM). In this work, we study the

origin of these discrepancies, and seek to determine the correct momentum budget for

a homogeneous ISM. We carry out 3D hydrodynamic (HD) and magnetohydrodynamic

(MHD) simulations of clustered supernova explosions, using a Lagrangian method and
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checking for convergence with respect to resolution. We find that the terminal mo-

mentum of a shell driven by clustered supernovae is dictated primarily by the mixing

rate across the contact discontinuity between the hot and cold phases, and that this

energy mixing rate is dominated by numerical diffusion even at the highest resolution

we can complete, 0.03 M�. Magnetic fields also reduce the mixing rate, so that MHD

simulations produce higher momentum yields than HD ones at equal resolution. As a

result, we obtain only a lower limit on the momentum yield from clustered supernovae.

Combining this with our previous 1D results, which provide an upper limit because they

allow almost no mixing across the contact discontinuity, we conclude that the momen-

tum yield per supernova from clustered supernovae in a homogeneous ISM is bounded

between 2×105 and 3×106 M� km s−1. A converged value for the simple homogeneous

ISM remains elusive.

3.1 Introduction

Feedback from supernovae (SNe) is an important component of understanding

the interstellar medium (ISM), galactic winds, and galactic evolution (e.g., McKee &

Ostriker 1977; Dekel & Silk 1986; Murray et al. 2005; Ostriker & Shetty 2011; Kim et al.

2011; Jenkins & Tripp 2011; Hopkins et al. 2012; Dekel & Krumholz 2013; Faucher-

Giguère et al. 2013; Creasey et al. 2013; Thompson & Krumholz 2016). Unfortunately,

the processes governing the strength of SN feedback operate non-linearly and at small

scales. This makes it difficult to include the effects of SNe in analytic models or large
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galactic simulations without a simplified prescription for SN feedback.

In the past, most investigations of the key factors governing SN feedback

strength have focused on single, isolated SNe (e.g., Chevalier 1974; Cioffi et al. 1988;

Thornton et al. 1998; Iffrig & Hennebelle 2015). In reality, however, core collapse SNe

are clustered in space and time: massive stars are born in clusters, and explode after

∼ 3 − 40 Myr, before these stars can significantly disperse. The few studies that have

looked at the feedback from multiple clustered, interacting SNe have found conflicting

results. While some studies have found relatively small changes in the momentum from

clustering SNe (Kim & Ostriker 2015; Walch & Naab 2015; Kim et al. 2017), others

have found that it could increase the average momentum per SN to 5-10 times greater

than the traditional yields for isolated SNe (Keller et al. 2014; Gentry et al. 2017).

It has been suggested that the differences in results for clustered SN simulations

could stem from the different levels of mixing in the simulations, from both physical and

non-physical sources. Unfortunately, each recent simulation was idealized in significantly

different ways, which makes it difficult for us to directly isolate which aspects were the

primary drivers of the differences. Our goal in this paper is to identify the causes of the

discrepancies between different published results, and resolve whether, when including

appropriate physics, clustering does in fact lead to significant changes in the terminal

momentum of supernova remnants.

One of the key issues that we investigate is dimensionality and resolution. We

found that clustering produces an order of magnitude enhancement in momentum (Gen-

try et al. 2017), but these results were based on 1D spherically symmetric simulations.
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Assuming spherical symmetry is potentially misleading because we know of fluid in-

stabilities (such as the Vishniac instabilities and the Rayleigh–Taylor instability) that

affect SNR morphologies (Vishniac 1983, 1994; Mac Low & McCray 1988; Mac Low &

Norman 1993; Krause et al. 2013; Fierlinger et al. 2016). Even small perturbations can

be amplified and noticeably change key properties of SNR evolution. For isolated SN

simulations, 1D and 3D simulations do not produce significantly different terminal mo-

menta (e.g., Martizzi et al. 2015, Kim & Ostriker 2015, and Walch & Naab 2015 all find

differences of less than 60% between 1D and 3D), but it is worth re-investigating the

issue for clustered SNe. It could be that the longer time frame allows the instabilities

to grow to have larger effects.

Conversely, our 1D simulations achieved much higher resolution than in any

of the 3D simulations found in the literature. We found that the terminal momentum

for clustered SNe did not converge until we reached peak resolutions better than 0.1

pc, far higher than the resolutions of published 3D simulations. Moreover, we achieved

this convergence only by using pseudo-Lagrangian methods that minimized numerical

diffusion across the contact discontinuity at the inner edge of the superbubble, whereas

many of the published 3D results are based on Eulerian methods that, for fronts ad-

vecting across the grid at high speed, are much more diffusive. Indeed, it is noteworthy

that the one published 3D result that finds a significant momentum enhancement from

clustering (Keller et al. 2014) uses a Lagrangian method, while all the papers reporting

no enhancement are based on Eulerian methods. Clearly, given the conjoined issues of

resolution and dimensionality, further investigation is warranted.
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Since the suppression and enhancement of mixing is a key unknown for the

feedback budget of clustered SNe, we also explore the role of magnetic fields, which may

reduce the amount of physical mixing. Our interest in this possibility comes primarily

from the example of cold fronts in galaxy clusters, where magnetic fields draped across

a shock front have been used to explain the stability of these cold fronts against fluid

instabilities (Vikhlinin et al. 2001; Markevitch & Vikhlinin 2007; although see also

Churazov & Inogamov 2004 who show that magnetic fields might not be necessary for

stabilizing cold fronts).

In this paper, we first test the effects of bringing our simulations from 1D to 3D

and carry out a 3D convergence study, and then we test the effects of adding magnetic

fields into our 3D simulations. In section 3.2, we discuss our computational methods.

In section 3.3, we discuss the results of our simulations, with a more detailed physical

analysis of the significance of those results in section 3.4. In section 3.5, we discuss our

conclusions and compare to other works.

3.2 Computational Methods

For this work we repeat one of the 1D simulations from Gentry et al. (2017),

and conduct 3D simulations of the same set-up at a range of resolutions and including

or excluding magnetic fields. For the most part our 1D simulations reuse the code de-

veloped by Gentry et al. (2017), with minor changes that we discuss in subsection 3.2.1.

In subsection 3.2.2, we discuss the methodology for our 3D simulations, for which we
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use the GIZMO code (Hopkins 2015; Hopkins & Raives 2016). We use GIZMO for this work

because it has a Lagrangian hydrodynamic solver; in our previous 1D simulations, we

found that Lagrangian methods were more likely to converge for simulations of clustered

SNe (Gentry et al. 2017).

3.2.1 1D simulation

The methods for our 1D simulation are very similar to those used in our pre-

vious work (Gentry et al. 2017), with only slight modifications. First, we disable the

injection of pre-SN winds, because injecting small amounts of mass over extended pe-

riods is impractical at the resolutions we are able to achieve in the 3D simulations.

Second, we initialize the ISM to be at an equilibrium temperature (T ∼ 340 K or a

specific internal energy of eint ∼ 3.5 × 1010 erg g−1 for an initial ISM density of ρ0 =

1.33 mH cm−3 and gas-phase metallicity of Z = 0.02, rather than T ∼ 15 000 K).1 This

simplifies the analysis, as changes in energy now only occur in feedback-affected gas.

Furthermore the initial temperature makes little difference as the gas would otherwise

rapidly cool to its equilibrium state (the 15 000 K gas had a cooling time of a few kyr).

Using these modified methods we reran the most-studied cluster from our previous work,

one that had a stellar mass of M? = 103 M� (producing 11 SNe) and was embedded

in an ISM of initial density ρ0 = 1.33 mH cm−3 and an initial gas-phase metallicity of

Z = 0.02.2 These changes allowed for more direct comparison with our 3D simulations,

1Throughout this paper we will quote temperatures calculated by GRACKLE which accounts for tem-
perature dependence in the mean molecular weight, µ (Smith et al. 2017).

2This cluster can be found in the tables produced by Gentry et al. (2017) using the id
25451948-485f-46fe-b87b-f4329d03b203.
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and do not affect our final conclusions.

The remainder of our methodology is identical to that of Gentry et al. (2017),

which we summarize here for convenience. To generate a star cluster of given mass, we

used the SLUG code (da Silva et al. 2012; da Silva et al. 2014; Krumholz et al. 2015) to

realistically sample a Kroupa (2002) IMF of stars. We assume every star with an initial

mass above 8M� explodes as a core collapse SN. The lifetimes of these massive stars

are computed using the stellar evolution tracks of Ekström et al. (2012); the SN mass

and metal yields are computed using the work of Woosley & Heger (2007) while all SNe

are assumed to have an explosion energy of 1051 erg. This cluster of stars is embedded

in an initially static, homogeneous ISM, with each SN occurring at the same location.

The resulting superbubble is evolved using a 1D, spherically symmetric, Lagrangian hy-

drodynamic solver first developed by Duffell (2016). Cells are split (merged) when they

become sufficiently larger (smaller) than the average resolution. Metallicity-dependent

cooling (assuming collisional ionization equilibrium) is included using GRACKLE (Smith

et al. 2017). The simulation is evolved until the radial momentum reaches a maximum,

at which point it is assumed that the superbubble mixes into the ISM.

3.2.2 3D simulations

Rather than adapt our 1D code to work in 3D, we instead chose to use

the GIZMO simulation code (Hopkins 2015; Hopkins & Raives 2016), which includes

a Lagrangian hydrodynamic solver with additional support for magnetohydrodynamics

(MHD). For all of our runs, we used the Meshless Finite Mass solver on a periodic
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Table 3.1: Initial Conditions. The mass resolution ∆m is not included for the 1D run,
as it is neither constant in space nor time.

Name 1D/3D Bz,0 β ∆x0 ∆m L
(µG) (pc) (M�) (pc)

1D 06 HD 1D 0 ∞ 0.6 1200
3D 07 HD 3D 0 ∞ 0.7 0.01 300
3D 10 HD 3D 0 ∞ 1.0 0.03 600
3D 13 HD 3D 0 ∞ 1.3 0.08 400
3D 20 HD 3D 0 ∞ 2.0 0.26 600
3D 40 HD 3D 0 ∞ 4.0 2.10 600
3D 20 MHD 3D 5 0.05 2.0 0.26 1200

domain, while ignoring the effects of gravity. We assume the gas follows an ideal equa-

tion of state with a constant adiabatic index γ = 5/3, as in our 1D simulation. When

including magnetic fields, we used GIZMO’s standard solver for ideal MHD, as detailed

in Hopkins & Raives (2016).

We modify the standard GIZMO code in two ways.3 First, we added metallicity-

dependent cooling using GRACKLE (Smith et al. 2017). Second, we inject SN ejecta,

distributed in time, mass, and metal content using the same realization of SN properties

as our 1D simulation. At the time of each SN, we inject new gas particles (each with mass

approximately equal to the average existing particle mass) at random locations using

a spherical Gaussian kernel with a dispersion of 2 pc centred on the origin. Each new

particle has equal mass and metallicity, which are determined by the SN ejecta yields.4

For simulations which include magnetic fields, we linearly interpolate the magnetic field

vector from nearby existing particles to the origin, and initialize the new feedback

3Our modifications of GIZMO and our analysis routines can be found at: github.com/egentry/

gizmo-clustered-SNe.
4While this approach leads to a well-sampled injection kernel at our higher resolutions, the kernel

is only sampled by about five new particles for each SN in our lowest resolution run, 3D 40 HD. This
undersampling is not ideal and might slightly alter the bubble’s evolution, but the stochasticity this
introduces does not appear to affect our conclusions.
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particles with that interpolated magnetic field vector. This procedure does not exactly

preserve ∇ ·B = 0, but GIZMO’s divergence cleaning procedure rapidly damps away the

non-solenoidal component of the field produced by our injection procedure.

We initialize the 3D simulations with the same static (v = 0) homogeneous

ISM as our 1D simulations (ρ = 1.33mH cm−3, Z = 0.02 and T ∼ 340 K). For simula-

tions with magnetic fields, we include a homogeneous seed field, with B = (0, 0, 5) µG

(identical to Iffrig & Hennebelle 2015), corresponding to a plasma β ≈ 0.05. We place

particles of mass ∆m on an evenly spaced grid of spacing ∆x0, which extends for a box

size of L. Particle locations are perturbed on the mpc scale in order to avoid pathologies

in GIZMO’s density solver caused by the symmetric grid. In Table 3.1, we present the

parameters of the initial conditions. We typically5 run each 3D simulation for 40 Myr,

by which point the radial momentum, the quantity of primary interest for our study,

had stabilized. We also carry out a smaller set of simulations in which we give the ISM

a larger initial perturbation, whose magnitude shows a proper physical dependence on

resolution. We describe these simulations in Appendix B.1, where we show that their

results are nearly identical to those of our fiducial simulations. For this reason, we will

not discuss them further in the main text.

3.3 Results

5The only exceptions are simulations 3D 07 HD and 3D 13 HD, which cannot be run to completion
because they have smaller box sizes in order to minimize computational expense. These simulations are
run until the shock approximately reaches the edge of the box. They are not meant to provide final
values, but rather to enable us to investigate convergence of the results up to the times when these runs
end.
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In Table 3.2, we provide a summary of the key numeric results of each sim-

ulation. First, we extract the time of maximum momentum after the last SN (only

accurate within about 0.5 Myr.) At that time we extract the effective radius of the

region affected by the bubble (particles with speeds greater than 1 m s−1)

Reff =

 3

4π

∑
i:|vi|>1m s−1

Volumei

1/3

(3.1)

and the total mass of those particles, Maffected.6 Next we extract the kinetic energy

Ekin and the change in the internal energy ∆Eint of the entire domain (which should be

approximately equal to the values for the bubble-affected region). Finally, we extract

the radial momentum using three approaches: one by simply measuring the radial

momentum at the same time as the previous quantities (denoted pmax), another using

a “ratchet” approach justified and explained in subsection 3.3.2 (denoted pratchet), and

third by extracting the momentum at the last time achieved by all simulations (t = 6.46

Myr).

In the following subsections we discuss the results in greater detail. First, we

compare our 1D and 3D results in subsection 3.3.1. Second, we look at the effect of

including magnetic fields in our 3D simulations in subsection 3.3.2.
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Figure 3.1: Comparison of the momentum evolution of 1D and 3D simulations of the
same cluster (simulations 1D 06 HD, and 3D 20 HD, respectively). The ‘isolated SN’ value
is estimated using the first SN of the 3D 20 HD simulation, although it does not vary
substantially between any of our 3D simulations.
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Figure 3.2: Resolution study of our 3D HD simulations.
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Figure 3.3: Resolution study of our 3D HD simulations at the last time achieved by all
simulations. Colours are consistent with the resolution study figures above. The black
dashed line shows the best power-law fit to all 3D HD simulations except the worst
resolution simulation (3D 40 HD). Both axes are plotted using log scales.
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Figure 3.4: Reference density slice of the median resolution completed 3D simulation
(3D 20 HD) at t = 7.53 Myr, approximately 0.03 Myr after the sixth SN.
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Figure 3.5: Phase diagrams for our completed HD simulations at t = 7.53 Myr,
about 0.03 Myr after the sixth SN, when all simulations still retain almost all of the
energy from the most recent SN. The left column shows the distribution of mass within
temperature-density space, and the right column shows the cooling rate distribution
within the space. The rows show the non-magnetized simulations with initial resolution
worsening from top to bottom. To the right of each row, we give the cooling time of
each simulation, tcool ≡ Eint/Ėcool, for reference.
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3.3.1 Hydrodynamic results and convergence study

In Figure 3.1, we show the radial momentum evolution of our median-resolution

completed 3D simulation without MHD (3D 20 HD), and compare it to our 1D simula-

tion. As can be seen in that figure, we observe a significant difference between the final

momenta in our 1D and 3D simulations. While our 1D simulation of clustered SNe

shows a large gain in momentum per SN compared to the isolated SN yield,7 our 3D

simulation shows no such gain. That discrepancy needs to be addressed.

This cannot be explained just by the fact that the 3D simulation has a lower

initial resolution. In our previous work we tested the resolution dependence in our

1D simulations, and found that even with an initial spatial resolution of 5 pc, we still

measured a terminal momentum yield roughly 10 times higher than what we find in

our 3D simulation here as long as we ran our code in pseudo-Lagrangian rather than

Eulerian mode (Gentry et al. 2017, Figure 14). So the problem is not convergence in

our 1D simulation, but we have not yet shown whether our 3D results are converged.

To test for convergence in our 3D simulations, we compare our simulations

which differ only in resolution (3D 07 HD, 3D 10 HD, 3D 13 HD, 3D 20 HD and 3D 40 HD);

in Figure 3.2, we show the momentum evolution of each simulation. From that figure, we

conclude that our 3D simulations do not appear converged, unlike our 1D simulations.

The terminal momentum yield is increasing monotonically as we increase the resolution,

6The exact velocity threshold is somewhat arbitrary, leading to roughly 10 per cent uncertainty in
the affected mass depending on the chosen threshold.

7We estimate the isolated SN momentum yield, 2.4 × 105 M� km s−1, using the first SN of our
3D 20 HD simulation, although all of our 3D simulations would give the same value within a few percent.
This is approximately consistent with previous single SN simulations (e.g. Martizzi et al. 2015; Kim &
Ostriker 2015).
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so our 3D results are converging in the direction of our 1D results, but even at the highest

resolution we can afford the momentum yield remains well below the 1D case. Thus we

do not know if the 3D results would converge to the same value as the 1D case, even

with infinite resolution.

We further illustrate the non-convergence in Figure 3.3, which shows the mo-

mentum of the shell at 6.46 Myr, the latest time we are able to reach at all resolutions.

As the figure shows, with the exception of the lowest resolution run there is a clear trend

of increasing momentum at higher resolution; we discuss possible explanations for the

anomalous behaviour of the lowest resolution run in Appendix B.2. A simple power-law

fit to the points at resolutions of ∆x0 = 2 pc or better suggests that the momentum is

increasing with resolution as p ∝ ∆x−0.16
0 . If we naively extrapolate this trend to the

peak initial resolution of 0.03 pc achieved in our 1D simulations, the predicted momen-

tum would be a factor of ∼ 2 larger than the highest resolution run shown, though this

may well be an underestimate since Figure 3.3 shows that the momentum appears to

increase with resolution somewhat faster than predicted by a simple power-law fit. In

any event, it is clear that, even at a resolution of 0.7 pc, our results are not converged.

To gain additional insight into the resolution-dependence of our results, and

the differences between the 1D and 3D runs, we show a density slice through the centre

of simulation 3D 20 HD at t = 7.53 Myr shown in Figure 3.4. Clearly in 3D, the interface

between the hot bubble interior and the cold shell is not spherically symmetric. These

anisotropies are the result of physical instabilities (such as the Vishniac instabilities

and the Rayleigh–Taylor instability) amplifying numerical inhomogeneities in the back-
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ground ISM (Vishniac 1983, 1994; Mac Low & McCray 1988; Mac Low & Norman 1993;

Krause et al. 2013; Fierlinger et al. 2016; Yadav et al. 2017). To see how this might

affect the terminal momentum, we turn to density–temperature phase diagrams which

are shown in Figure 3.5. These phase diagrams correspond to a time soon after the

sixth SN, with a delay long enough to allow the injected energy to spread throughout

the bubble but sufficiently short to avoid significant energy losses due to cooling in any

simulation. All 3D simulations have about 1.1 × 1051 erg more total energy than the

start of the simulations, but 1D 06 HD retains more energy from previous SNe, and con-

tains about 2.7×1051 erg of total energy relative to the simulation start. When we look

at the mass-weighted phase diagram for our highest resolution completed simulation

(3D 10 HD), we see that the mass is dominated by a cold dense shell, with a minority of

mass in less-dense warm and hot phases (> 103 K).8 Even when we vary the resolution,

we only find negligible changes in the fraction of mass in the cold phase; the cold phase

(T < 103 K) contributes 99.2% of the affected mass in every completed simulation of our

resolution study (3D 10 HD, 3D 20 HD, and 3D 40 HD). What does change is the density

and temperature distribution of the warm/hot gas (T > 103 K). As we increase the reso-

lution, the warm/hot gas shifts to lower and lower densities. This effect is very apparent

for gas near the peak of the cooling curve (specifically 3 × 104 K < T < 3 × 105 K),

which has a mass-weighted median density of ∼ 10−1 mH cm−3 in our lowest resolution

run, and ∼ 10−2 mH cm−3 in our highest resolution completed run.

8We also see a negligible amount of mass at unusually low temperatures, < 100 K. These particles
are SN ejecta, which have very high metallicities that have been frozen-in due to the Lagrangian nature
of the code.
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This has a significant impact on the overall cooling times of the simulations.

The right column of Figure 3.5 shows that while the cold, dense phase dominates the

mass, the minority of mass in the warm/hot phases dominates the cooling rate. This

is important because resolution primarily affects these warm/hot phases, and it affects

those phases by shifting them to higher densities at lower resolution, causing each par-

ticle to become more efficient at cooling. This results in significantly shorter cooling

times: from 27 Myr at the best resolution to 0.3 Myr at the worst resolution, nearly

two orders of magnitude difference. This increase primarily occurs in the warm/hot

phases; at all resolutions gas warmer than 103 K constitutes slightly less than 1% of the

total mass, but this mass is responsible for 81% of the cooling at our highest resolution

completed run, and > 99% of the cooling at our lowest resolution.

When we look at the phase diagrams for our 1D simulation, we see significant

differences in the distributions of mass and cooling rate, leading to the very different

behaviour of the 1D simulation. In particular, the 1D simulation completely lacks

material at intermediate densities (∼ 10−2 − 100 mH cm−3) due to how well the 1D

simulation retains the contact discontinuity. The diffuse bubble-dense shell transition

occurs within only a few cells, and the entire dense shell is resolved by just 5-10 cells.

In our 3D simulations, these intermediate densities contribute a negligible amount of

mass, but are responsible for much of the cooling. Without this intermediate phase

material, almost all of the cooling in the 1D simulation occurs in the dense shell. We

defer further discussion about the physical nature of the intermediate-temperature gas,

and to what extent its properties are determined by physics versus numerics in the
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Figure 3.6: Same as Figure 3.2, except now including the momentum evolution of
our MHD simulation (3D 20 MHD; blue dashed curve), as well its “ratchet”-filtered mo-
mentum evolution, pratchet (red dashed curve), and excluding our incomplete HD runs
(3D 07 HD and 3D 13 HD).

various simulations, in section 3.4.

3.3.2 Magnetic fields

In subsection 3.3.1, we showed that our numerical methods and resolution are

not sufficient to achieve converged values of final radial momentum and other key pa-

rameters due to physical instabilities that develop within the superbubble shell. As
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Figure 3.7: Same as Figure 3.4, except now for simulation 3D 20 MHD with approximate
magnetic field lines overplotted, and at an earlier time (t = 2.56 Myr; approximately
0.02 Myr after the third SN).
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non-magnetized simulation with the same resolution (3D 20 HD).
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described in section 3.1, we expect that magnetic fields might affect the growth of phys-

ical instabilities, so we also run an MHD simulation as described in subsection 3.2.2 to

test the impact of magnetic fields on the final momentum. While the more standard

method of extracting momentum, pmax, quoted in Table 3.2 appears to show that the

inclusion of magnetic fields significantly decreases the final momentum, in this subsec-

tion we show that that method for estimating the asymptotic momentum (finding the

maximum momentum following the last SN) is an oversimplification for simulations with

magnetic fields. When we better isolate the momentum added by SNe, we find that

adding magnetic fields can actually increase the momentum yield at fixed resolution.

Indeed, our ∆x0 = 2.0 pc MHD run produces a larger momentum injection than our

∆x0 = 1.0 pc HD run.

First, to illustrate why the interpretation of the MHD simulation is more com-

plex, in Figure 3.6 we compare its momentum evolution to those of the non-magnetized

simulations. The MHD simulation initially shows an increased momentum yield rel-

ative to the corresponding simulation without magnetic fields at the same resolution

(3D 20 MHD), but then the momentum decreases due to magnetic tension forces. The

reason for this is obvious if we examine a density slice at an earlier time, 9 as shown

in Figure 3.7: the expanding shell bends magnetic field lines outward, and the field

lines exert a corresponding magnetic tension that reduces the radial momentum of the

9We chose to look at an earlier snapshot, when the magnetization has only perturbed the bubble
structure, rather than the later time shown in Figure 3.4, when the magnetization would have caused a
strong, non-linear change in the structure which could not be treated as a perturbation. In both cases
the magnetic tension is present, but the earlier time makes it more straightforward to compare to the
non-magnetized runs.
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expanding shell. This effect is so strong that the momentum peaks after just seven SNe;

the remaining four SNe clearly add momentum but not enough to overcome the steady

decline.

Due to this effect, the quantity pmax (the maximum momentum after the last

SN) that we have used to characterize the hydrodynamic simulations is somewhat mis-

leading, since our goal is to study the momentum injected by SNe, not the combined

effects of SNe and magnetic confinement. To avoid this, we define an alternative quan-

tity pratchet. To compute this quantity we sum any positive changes in radial momentum

between snapshots, while ignoring any negative changes. We plot pratchet in Figure 3.6,

and report the final value in Table 3.2. As expected, for the non-magnetic runs pratchet

and pmax are essentially the same, and thus examining pratchet allows us to make an

apples-to-apples comparison between the magnetic and non-magnetic results.

This comparison is revealing, in that it shows that our simulation with mag-

netic fields (3D 20 MHD) injects about 10% more momentum than the analogous simu-

lations without magnetic fields (3D 20 HD). The full explanation for this difference will

likely be complicated – for example, the bubble morphology and phase structure are

significantly altered at late times relative to the non-magnetized runs – but we can

see if our results are at least consistent with the hypothesis that magnetic fields could

inhibit the growth of instabilities, leading to less phase mixing and cooling. To test

this hypothesis, we compare phase diagrams for the resolution-matched magnetized and

non-magnetized runs in Figure 3.8, shown at the same time (t = 2.56 Myr) as Figure 3.7.

There we see that magnetic fields have an effect similar to that of increasing resolution in
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Figure 3.5: both suppress the growth of fluid instabilities, causing the material near the

peak of the cooling curve to stay at lower densities where it cools less efficiently. For gas

near the peak of the cooling curve (specifically 3× 104 K < T < 3× 105 K), the median

density of the non-magnetized run is 1.7× 10−1 mH cm−3, while in the magnetized run

it is 1.4 × 10−1 mH cm−3 – a modest change, but a change in the predicted direction.

As a result the overall cooling time is about two times longer in the MHD run. Thus

by suppressing the growth of instabilities, the inclusion of magnetic fields results in a

longer overall cooling time which should contribute to a higher yield of momentum.

3.4 Analysis

In section 3.3, we showed our broad results, which have three key features: (1)

Our 1D Lagrangian simulation finishes with about 10 times more momentum than our

3D simulations, and is converged with respect to resolution. (2) Our 3D HD simulations

show a general increase in momentum as resolution improves, but are not converged even

at the highest resolutions we can reach [similar to the 1D Eulerian simulations of Gentry

et al. (2017), which are not converged even at a resolution of 0.31 pc]. (3) Our MHD

simulations show less momentum than the resolution-matched HD simulation when the

momentum is estimated directly, but more momentum when our “ratchet” filter is used.

The phase diagrams shown in Figure 3.5 and Figure 3.8 reveal that the changes

in momentum budget appear to be associated with changes in the total mass and mean

density of gas at temperatures of ≈ 105 K, near the peak of the cooling curve, which
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dominates the cooling budget. In this section we seek to understand the physical origin

of these differences, with the goal of understanding whether the converged 1D or non-

converged 3D results are likely to be closer to reality.

3.4.1 What determines convergence or non-convergence?

As a first step in this analysis, we investigate why our 1D Lagrangian simula-

tions are converged while our 3D simulations are not. A simplistic view of superbubble

cooling is one where the diffuse bubble interior contains most of the thermal energy but

is radiatively inefficient, while the cold dense shell is radiatively efficient but does not

have significant amounts of thermal energy to radiate. The cooling rate is then set by

how quickly energy can transfer from one phase to the other.

The minimum amount of energy transfer comes from the fact that the hot

overpressured bubble is doing work on the shell, transferring thermal energy from the

interior into kinetic energy of the shell. As the shell sweeps up and shocks new material,

some of this kinetic energy will be transferred into thermal energy within the shell, where

it can be easily radiated. To lowest order, we predict this mechanical process would

result in the following cooling rate:

Ėcool,mechanical = 4πR2
shockVshockρ0

(
V 2

shock

2

)
. (3.2)

This expression assumes a supersonic shock, and that all of the energy that

is converted from kinetic to internal energy is immediately radiated away. At each
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Figure 3.9: Comparison of the numeric cooling rate with the cooling rate predicted by
our mechanical shock model, Equation 3.2, for our 1D Lagrangian simulation (1D 06 HD;
top), our 1D Eulerian simulation (1D 06 HD, but run with the code in Eulerian mode;
middle), and our 3D HD simulation with 2 pc initial resolution (3D 20 HD; bottom).
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simulation snapshot, we can compute Rshock and Vshock
10 and compute the expected

cooling rate using Equation 3.2. We can then compare that to the observed cooling

rate, calculated by GRACKLE for each snapshot.

We begin our predicted-versus-actual cooling rate comparisons with our 1D

Lagrangian simulation (1D 06 HD) shown in the top panel of Figure 3.9. In that figure

we can see that even though our mechanical shock model is simple, it does a generally

good job predicting the observed cooling rate. On the other hand, we can repeat this

with a simulation that is identical to 1D 06 HD except it uses an Eulerian hydrodynamic

solver, leading to the results shown in the middle panel of Figure 3.9. This reveals a very

different picture: there are many times when the observed cooling rate is over an order

of magnitude greater than our mechanical shock model would predict. And when the

observed rate is lower than predicted, it is because the shell has already transitioned from

a non-linear shock to a linear sound wave, for which we know Equation 3.2 should not

hold. While the mechanical shock model can explain most of the behaviour behind the

1D Lagrangian simulation, in the 1D Eulerian simulation the chosen numerical methods

lead to much higher cooling rates which must be powered by additional thermal energy

being pumped into the shell. When we apply this same approach to one of our 3D

Lagrangian simulations (specifically simulation 3D 20 HD, shown in the bottom panel of

Figure 3.9), we find a behaviour similar to the 1D Eulerian simulation and very different

from the 1D Lagrangian simulation: the actual cooling rates often far exceed the rate

10For our 3D simulations, we estimate Rshock as the mean radius of the overdense particles and Vshock

as the mean radial velocity of the overdense particles. For our 1D simulations, we determine Rshock as
the outermost overdense cell (see Gentry et al. 2017), and determine Vshock by taking the difference of
Rshock between snapshots.
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predicted by our mechanical shock cooling model.

This analysis makes it clear why the 1D Lagrangian simulations are converged:

the radiative cooling rate has reached the minimum allowed by the physical situation

of an adiabatic fluid doing work on a medium with a short radiative cooling time.

Consequently, increasing the resolution cannot further reduce the rate of radiative loss;

it is already as low as physically allowed. If we run the same problem in 1D Eulerian

mode, or in 3D but at much lower resolution, the cooling rate is far in excess of the

minimum. Cooling is powered not primarily by adiabatic compression of the cold gas

followed by radiative loss, but by direct transfer of thermal energy between the hot

and cold phases without doing any mechanical work. The rate of transfer is clearly

resolution-dependent, which explains why the 1D Eulerian and 3D simulations are not

converged.

3.4.2 Conduction and numerical mixing across the interface

Since the key difference between the converged 1D Lagrangian simulations

and the unconverged 3D simulations is the relative importance of energy transfer by

mechanical work versus other mechanisms, we next investigate the expected rate of

non-mechanical energy transfer in reality, and how that compares to the rate in our

simulations.

In a bistable radiative medium such as the one we are simulating, conductive

transfer occurs across an interface whose characteristic width, known as the Field length,
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is given by (Begelman & McKee 1990)

λF =

(
κT

n2Λ

)1/2

, (3.3)

where κ is the thermal conductivity and Λ is the cooling function. The conductive heat

flux is F ∼ κT/λF , so the total rate at which energy conducts across an interface of

area A and is lost to radiation is

Ėcond ∼ Ėcool ∼ A
κT

λF
. (3.4)

Figure 3.5 shows that, for simulation 3D 40 HD at time t = 7.53 Myr, typical values for

the gas that dominates the cooling are n = 1 cm−3 and T = 4×105 K. Using Begelman

& McKee (1990)’s expression for thermal conductivity, assuming no suppression by mag-

netic fields and no saturation, together with the approximate cooling function Λ from

Koyama & Inutsuka (2002) (their equation 4, which we use for simplicity, rather than

performing the full GRACKLE calculation), we find λF ≈ 0.003 pc. Using the lower den-

sity n ≈ 10−1 cm−3 found in our highest resolution completed 3D simulation (3D 10 HD)

would increase this to λF ≈ 0.03 pc. By contrast, our best 3D simulation resolution

is an order of magnitude larger; only our 1D Lagrangian simulation approaches this

resolution. Thus the true physical width of the interface is far from resolved in any of

our 3D simulations.

In our simulations, as opposed to reality, the width of the interface is set by
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Figure 3.10: Density (top) and temperature (bottom) slices of the highest resolution
3D simulation (3D 07 HD) at t = 1.01 Myr, approximately 0.5 Myr after the second SN.
The lighter cyan and darker red contours correspond to temperatures 3 × 104 K and
3× 105 K, respectively, which are roughly the bounds of the peak of the cooling curve.
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Table 3.3: Interface properties at t = 1.01 Myr (0.5 Myr after the second SN). Here
Npaticles and m are the number of particles and total mass in the interface (defined as
the set of particles with temperatures in the range 3× 104 − 3× 105 K, near the peak
of the cooling curve), rmedian is the median radius of interface particles, hmedian is the
median scale length of interface particles, ∆rIQR is the interquartile range of interface
particle radii.

Name Nparticles m rmedian hmedian ∆rIQR ∆rIQR/hmedian

(M�) (pc) (pc) (pc)

3D 40 HD 16 33.6 37.0 15.4 8.5 0.6
3D 20 HD 159 41.8 39.1 9.8 8.3 0.8
3D 13 HD 485 37.8 43.3 6.6 6.4 1.0
3D 10 HD 1303 42.8 45.4 4.9 5.1 1.0
3D 07 HD 4436 43.2 47.4 3.3 4.3 1.3

numerical resolution. We illustrate this point in Figure 3.10, which shows temperature

and density slices from our highest resolution simulation (3D 07 HD) shortly after the

second SN. We summarize the physical properties of the hot–cold interface, defined as

material between 3 × 104 K and 3 × 105 K, roughly corresponding to the peak of the

cooling curve, in Table 3.3; we include 3D 40 HD for completeness, but warn that, at

this early time, its interface is poorly sampled by only 16 particles, and thus the results

for it are not particularly meaningful. The main conclusion to make from Figure 3.10

and Table 3.3 is that the physical width of the interface region is of order a particle

smoothing length, so the width of the interface is determined by numerics rather than

physics.

What is the impact of this underresolution on the rate of radiative loss?

Though we do not include explicit conduction (nor would it matter if we did, since

our failure to resolve λF would lead us to greatly underestimate the true conduction

rate), any finite-resolution numerical method necessarily has some conduction-like dis-
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sipation at the resolution scale. It is convenient to characterize this dissipation in terms

of the effective Péclet number of the method, which is related to the effective thermal

conductivity of the numerical scheme κnum by

Pe ∼ LvnkB
κnum

, (3.5)

where L and v are the characteristic length and velocity scales. The exact value of

the Péclet number will depend on the numerical method. In Eulerian methods where

effective conduction is due to fluids mixing at the resolution scale ∆x, we expect to

have Pe ∼ 1 for L ∼ ∆x. In a Lagrangian method Pe will be substantially larger, since

mixing is suppressed. Ignoring this complication, if we replace κ with κnum and λF with

the interface width λI in Equation 3.4, the numerical conductive transport and cooling

rates are then

Ėcond,num ∼ Pe−1AnkBTv (∆x/λI) . (3.6)

Using the same values of n and T given above, the approximate velocity v ≈ 40 km s−1

for the shock at the time shown in Figure 3.10, and our empirical finding that ∆x/λI ∼ 1,

we find that for a method with Pe = 1 at the resolution scale, Ėcond,num ≈ 10Ėcond,

i.e., underresolving the interface causes us to overestimate the rate of energy loss by a

factor of ∼ 10. This overcooling problem is substantially reduced for the 1D Lagrangian

simulation, since compared to the other simulations it has both a smaller value of ∆x/λI

(due to its high resolution) and a larger value of Pe (due to its Lagrangian method).

Conversely, this analysis strongly suggests that the ultimate reason for non-convergence
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in our 3D simulations is that their rates of energy loss are dominated by resolution-

dependent artificial conduction. Thus the terminal momentum in these simulations

must be regarded as a lower limit on the true value.

3.4.3 The role of 3D instabilities

Before accepting the conclusion that artificial conduction is the culprit for

our non-convergence, however, we should examine an alternative hypothesis. The total

conductive transport rate (Equation 3.4) depends not just on the conductive flux, but on

the area of the interface. Examining Figure 3.10, it is clear that the area of the interface

is affected by 3D instabilities that are not properly captured in the 1D simulations.

Could the non-convergence in 3D be a result of the area not being converged, rather

than the conductive flux not being converged? This hypothesis might at first seem

plausible, because many instabilities (such as the Rayleigh–Taylor, Richtmyer–Meshkov

and Vishniac) initially grow fastest at the smallest scales (e.g., Taylor 1950; Richtmyer

1960; Vishniac 1983; Michaut et al. 2012). If the area of the interface is determined

by the amount of time that it takes perturbations to grow from the resolution scale

that might explain why our highest resolution simulation has the lowest cooling rate:

because it had the smallest perturbations to start, and it has the smallest interface area

later on, and thus the smallest rate of conduction.

However, we can ultimately rule out this hypothesis for two reasons. First, if

the rate of mixing and radiative loss were set by processes developing from grid-scale

perturbations, then changing the initial perturbation strength and scaling should have
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a noticeable impact on the cooling rate. However, as shown in Appendix B.1, our non-

convergence is quite robust to the details of the grid-scale perturbations. The results are

not any more converged when we impose perturbations whose power spectral density is

independent of resolution over all resolved scales, and increasing the initial perturbation

strength by a factor of > 25 has negligible effects on the outcome. Second, once they are

strongly non-linear, interface instabilities are typically dominated by larger rather than

smaller modes. Examining Figure 3.10, it is clear that even just after the second su-

pernova we already have strongly non-linear perturbations in the shell, with each spike

well resolved by many particles. If linear growth of instabilities from the grid scale were

the source of our non-convergence, we would expect to see the greatest resolution de-

pendence at early times, when the perturbations are smallest, and convergence between

the runs at later time, when the instabilities reach non-linear saturation. Examining

Figure 3.2, however, shows exactly the opposite pattern: resolution matters more at

later times than at earlier ones.

However, simply because we can rule out the hypothesis that the non-convergence

of the 3D simulations is a result of our failure to capture the growth of 3D instabilities,

it does not follow that the instabilities are not important. Figure 3.10 clearly shows

that the area of the interface in 3D is clearly larger than 4πR2
shock, and thus the rate of

conduction across the interface should be higher than it is in our 1D simulations. Thus

while our 3D simulations represent a lower limit on the terminal momentum, we must

regard the 1D simulations as representing an upper limit, since the interface in 1D has

the smallest possible area.
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3.5 Conclusions

In this paper, we revisit the question of whether clustering of SNe leads to

significant differences in the amount of momentum and kinetic energy that supernova

remnants deliver to the ISM. This question is strongly debated in the literature, with

published results offering a menu of answers that range from a relatively modest increase

or decrease (Kim & Ostriker 2015; Walch & Naab 2015; Kim et al. 2017) to a substantial

increase (Keller et al. 2014; Gentry et al. 2017). We investigate whether this discrepancy

in results is due to numerical or physical effects, and to what extent it might depend

on whether the flow is modelled as magnetized or non-magnetized.

Our results offer some encouragement and also some unhappy news regarding

the prospects for treating supernova feedback in galactic and cosmological simulations.

The encouraging aspect of our findings is that we have identified the likely cause of the

discrepancy between the published results. We find that the key physical mechanism

driving the differences between our runs, and almost certainly between other published

results, is the rate of mixing across the contact discontinuity between the hot interior

of a superbubble and the cool gas in the shell around it. Our 1D Lagrangian results

(Gentry et al. 2017) maintain the contact discontinuity nearly perfectly, and give it

the smallest possible area, and this explains why they produce large gains in terminal

momentum per supernova due to clustering. However, these results likely represent an

upper limit on the momentum gain, because they do not properly capture instabilities

that increase the area of the contact discontinuity and thus encourage mixing across it.
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In 3D, both physical instabilities and numerical mixing produce intermediate

temperature gas that radiates rapidly and saps the energy of the superbubble, lowering

the terminal momentum. Due to this mixing, we are unable to obtain a converged result

for the terminal momentum; we find that the terminal momentum continues to increase

with resolution even at the highest resolution that we complete (1 pc initial linear

resolution, 0.03 M� mass resolution). The cause of this effect is clear: as we increase

the resolution, we find that the mean density and total mass of gas near the peak of

the cooling curve continuously decreases (indicating a decrease in mixing), and this

typically leads to a decrease in the amount of energy lost to radiation. Consequently,

we are forced to conclude that even at our highest resolution in 3D, the mixing and

energy transfer rate across the contact discontinuity is dominated by numerical mixing.

As a result, our estimate of the momentum per supernova is only a lower limit.

Our tests with magnetic fields reinforce this conclusion. We find that magnetic

fields suppress the growth rate of physical instabilities. This leads an magnetized simu-

lation to inject more momentum per supernova than a non-magnetized simulation, but

both still inject far less than the no-mixing case. This is consistent with the conclusion

that physical mixing is present in our simulations but numerical mixing is the dominant

source. In the real ISM, magnetic fields are doubtless present, so this effect should not

be neglected, especially in simulations that are not dominated by numerical mixing.

Our findings cloud the prospects for obtaining a good first-principles estimate

of the true supernova momentum yield in a homogeneous ISM. Our peak spatial reso-

lution is higher than that achieved in previous 3D simulations, and we used Lagrangian
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methods rather than Eulerian methods. We note our choice of Lagrangian rather than

Eulerian methods was based on a 1D rather than 3D experiment, and that our results

are likely affected by multiple definitions of resolution, such as the mass resolution of

ejecta, and not just the peak spatial resolution. None the less, we are unable to reach

convergence. We are forced to conclude that the true momentum yield from clustered

SNe in a homogeneous ISM remains substantially uncertain. At this point we can only

bound it between ≈ 2.4 × 105 M� km s−1 per SN (our non-converged 3D result) and

≈ 3.4× 106 M� km s−1 per SN (our converged but 1D result). The 1D result certainly

produces too much momentum, since 3D instabilities must enhance the conduction rate

at least somewhat by increasing the area of the hotcold interface. Similarly, our 3D

results produce too little momentum, since our 3D results remain dominated by numer-

ical conduction even at the highest attainable resolution; we do not know how close a

converged 3D result would lie to the 1D, no-mixing limit.

We conclude by noting that we have not thus far investigated the effects of using

a realistically turbulent, multiphase ISM. The presence of density inhomogeneities could

well lead to higher rates of mixing across the contact discontinuity, and thus a reduction

in the supernova momentum yield. However, we urge caution in interpreting the results

of any investigations of these phenomena, since we have shown that even state-of-the-

art simulation methods operating at the highest affordable resolutions cannot reach

convergence in what should be substantially simpler problems. It is conceivable that the

more complex density field of a realistic ISM might make it easier to reach convergence,

but such a hope would need to be demonstrated rigorously using convergence studies in
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multiple numerical methods.
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Chapter 4

Momentum Injection by Clustered

Supernovae: Testing Subgrid Feedback

Prescriptions

This is meant to be submitted shortly, but is not ready quite yet, so we do not

have an arXiv number towards which to point you.

Using a 1D Lagrangian code specifically designed to assess the impact of mul-

tiple, time-resolved supernovae (SNe) from a single star cluster on the surrounding

medium, we test three commonly used feedback recipes: delayed cooling (e.g., used in

the GASOLINE-2 code), momentum-energy injection (a resolution-dependent transition

between momentum-dominated feedback and energy-dominated feedback which is, for

example, used in the FIRE-2 code), and simultaneous energy injection (e.g., used in the

EAGLE simulations). Our work provides an intermediary test for these recipes, since we
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analyse a setting that is more complex than the simplified scenarios many were designed

for, but one more controlled than a full galactic simulation. In particular, we test how

well these models can reproduce the enhanced momentum efficiency seen for an 11 SNe

cluster at high resolution (0.6 pc; a factor of 12 enhancement relative to the isolated

SN case) when these subgrid models are run at low resolution (20 pc). We find that

the delayed cooling model can be finely tuned to a given stellar cluster (resulting in at

least 9 times the momentum efficiency of the fiducial isolated SN value), but that those

tuned parameters may require a yet-to-be-calibrated dependence on cluster mass. The

momentum-energy model requires no tuning, while still producing good results (a factor

of 5 boost in efficiency). Injecting the energy from all SNe simultaneously does little to

prevent over-cooling and greatly under-produces the momentum deposited by clustered

SNe (resulting in a factor of 3 decrease in momentum efficiency on average).

4.1 Introduction

Energy and momentum injection from supernovae (SNe) are thought to be

one of the key ingredients regulating galaxy formation and the thermodynamics of the

interstellar and circumgalactic media. Without feedback processes that reheat and

redistribute gas in galaxies, simulated galaxies are found to be too cold and too centrally

compact (e.g., Katz & Gunn 1991). Despite its importance, however, a proper treatment

of feedback in 3D hydrodynamics simulations remains elusive; at high resolutions (. 7 pc

for n = 1 cm−3 and 1 SN; Kim & Ostriker 2015), we can simply inject 1051 erg of energy
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and get reasonable results, but at lower resolutions this direct injection approach yields

incorrect asymptotic properties for the SN remnant (SNR), and consequently erroneous

galaxy properties (Smith et al. 2018).

The fundamental cause of this is a phenomenon known as over-cooling (Katz

1992): the rate of radiative cooling in a hot astrophysical plasma is a highly non-linear

function of density and temperature, and when the energy deposited by an exploding

SN is spread over too large a volume or mass as a result of low resolution, this non-

linearity leads to a dramatic overestimate of the cooling rate. Since the full, complex

physics that describes the interaction of SN ejecta with the interstellar medium (ISM)

cannot be captured at currently-realistic resolutions in large galactic and cosmological

simulations, simulators have adopted a variety of simpler subgrid models that we hope

can capture the “main” behaviours of a SNR. This approach cannot hope to capture

every dependence on the environment or context, so we typically start with a simple

model, and then only add new dependencies as they are shown to be necessary.

One potentially strong dependence is on the clustering of core collapse SNe.

Depending on the frequency of SNe, it is possible that one or more SNe can occur within

the bubble of a previous SNR, forming a superbubble. Some models have shown that

feedback from superbubbles can be much more efficient than isolated SNe at ejecting

mass and adding momentum to the ISM (Roy et al. 2013; Sharma et al. 2014; Keller et al.

2014; Gentry et al. 2017; see Dekel et al. 2019 for a general discussion of regimes of SN

clustering). The amount of enhancement from clustering appears to depend sensitively

on the level of mixing across the interface between the hot SNR interior and the cool
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shell around it (Gentry et al. 2019; El-Badry et al. 2019) and the specific superbubble

regime being studied. The turbulent mixing rate is uncertain, and likely depends on

both the pre-existing clumpiness of the ISM and on the presence of magnetic fields,

which suppress instabilities such as the Rayleigh-Taylor instability that promote mixing

(Gentry et al. 2019). At present we lack detailed magnetohydrodynamic simulations of

SNRs including conduction with enough resolution to quantify the mixing rate, and

thus the amount of boosting due to clustering is uncertain (see the review by Krumholz

& Federrath 2019 for further discussion).

Since many traditional subgrid models for SNe do not directly account for

clustering, it is important to investigate whether this could constitute a significant error

in how we model feedback in galactic simulations. This is a question with at least three

parts: how well does a particular subgrid model approximate a given superbubble, how

well does it approximate each of the various regimes of superbubbles, and what is the

relative occurrence frequency for each superbubble regime? For simplicity, in this paper

we focus on the first question: how well is the behaviour of a particular 11 SNe bubble

captured by existing subgrid models at low resolution? We focus on this particular case

because the simulations of Gentry et al. (2017) show that it has near maximal effects

in terms of boosting the terminal momentum of the SNR, and thus can be used to set

an upper limit on the potential error that subgrid models make by ignoring the effects

of clustering.

In this paper, we use 1D spherically symmetric hydrodynamic simulations to

study what happens when a sample of common, traditional subgrid models are applied
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to a series of clustered SNe. We use these models to simulate our 11 SNe case at both

low resolution (∆r0 = 20 pc, typical of isolated galaxy or the best-resolved zoom-in

cosmological simulations) and high resolution (∆r0 = 0.6 pc, sufficient to obtain a

converged terminal momentum without an explicit subgrid model). While it would be

ideal for each subgrid model to perfectly match the final momentum of a converged high-

resolution 3D simulation, such a simulation is unfortunately not available for clustered

SNe. In 1D, Gentry et al. (2017) show that the converged result for the total momentum

enhancement due to clustering is a factor of ≈ 10 increase over simply adding up the

momentum of single SNe (though this can be reduced if one includes an explicit model

for turbulent conduction – see El-Badry et al. 2019), but Gentry et al. (2019) show that

3D simulations remain unconverged even at ≈ 1 pc resolution. However, the 3D result

does provide a lower limit to the amount by which clustering enhances the terminal

momenta of SNRs: by extrapolating the Field length, they show that the expanded

enhancement in terminal momentum per SN is at least a factor of 2− 3. This provides

our primary criterion for the success of a subgrid model: when applied to a low resolution

11 SNe cluster, does it result in a momentum efficiency at least 2 times greater than

the fiducial isolated SN momentum efficiency, thus reproducing the lower limit implied

by the 3D simulations?

Finally, we needed to choose specific subgrid models to test. For this work we

chose a sample of 3 commonly-used approaches: “delayed cooling” (specifically mimick-

ing the “blastwave” feedback method available in the GASOLINE-2 code; Stinson et al.

2006; Wadsley et al. 2017), “momentum-energy injection” (specifically mimicking the
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implementation used by the FIRE-2 simulations; Hopkins et al. 2018b) and finally “si-

multaneous energy injection” (specifically mimicking the implementation used by the

EAGLE simulations; Dalla Vecchia & Schaye 2012; Schaye et al. 2015; Crain et al. 2015).

This is not meant to be an exhaustive list, but covers some of the most common ap-

proaches which could be tested by our code1.

In section 4.2 we introduce the ideas behind each of these subgrid models at a

high level. In section 4.3 we discuss the numerical methods used in our 1D simulations,

and then the implementation details needed for each subgrid model. In section 4.4 we

show the results of each simulation and briefly comment on the differences. We put

these results in context in section 4.5 and then conclude in section 4.6.

4.2 Overview of Feedback Models

Before getting into the implementation of each subgrid model, we give a con-

ceptual overview of the physical motivation of each. In section 4.3 we cover these models

again at a lower level, specifying the implementation details of each step.

4.2.1 Delayed cooling feedback

Since the underlying problem is that at low resolutions SNRs cool too quickly,

before they are able to accelerate enough mass, one early approach was to simply “turn

1For example, we cannot meaningfully test the subgrid model used in the IllustrisTNG simulations
in a homogeneous ISM, as that model prescribes “wind” particles that travel from regions of high density
and only inject their energy into the ISM in regions of low density (Vogelsberger et al. 2013; Pillepich
et al. 2018). Our homogeneous ISM has no regions of low density, so these wind particles would never
re-couple with the ISM.
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off” radiative cooling, allowing the SNR to develop until the correct radiative cooling

timescale, and then turn cooling back on (at which point most of the energy is likely

rapidly radiated away). Since this delays the cooling, we will refer to this as the “delayed

cooling” model.

To focus on a specific example, we will mimic the model proposed by Stinson

et al. (2006) (although this idea dates back at least to Gerritsen 1997). This approach

is based on the well-studied stages of SNR evolution (allowing it incorporate effects

like a density dependence to the cooling shutoff duration; Chevalier 1974; McKee &

Ostriker 1977), but it still includes a crucial free parameter: how much energy should

be injected (which we will refer to as Eblast although they call it ESN). Even for a high

resolution simulation (which should not experience over -cooling), there will always be

some cooling, leading to a time-averaged energy less than 1051 erg. Thus if one injects

1051 erg of energy, and delays cooling until late times, the resulting explosions will be

too powerful because the gas retains too much energy during the crucial, early stages.

Thus in practice the blast energy within this delayed cooling model is treated as a free

parameter, less than the nominal 1051 erg. Stinson et al. (2006) ultimately make a

recommendation of 1050 erg, which we adopt for our tests here.

4.2.2 Momentum-energy feedback

A second class a models takes a different tack: rather than focusing on inter-

mediary steps (like mimicking the instantaneous cooling rate), we could instead focus on

directly prescribing the key final results. In particular, radial momentum is one of those
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key quantities. The radial momentum of a single SN expanding into a cold medium

asymptotes to a value (Cioffi et al. 1988) that is a function of the SN energy and the

density and metallicity of the ambient medium, and this momentum is expected to be

a key driver of small scale limits on star formation (e.g., by driving turbulence that

maintains the scale height of a galactic disc; Ostriker & Shetty 2011; Faucher-Giguère

et al. 2013), as well as large scale limits on star formation (e.g. galactic winds removing

gas from galaxies; Murray et al. 2005; Hopkins et al. 2012; Dekel & Krumholz 2013;

Creasey et al. 2013; Thompson & Krumholz 2016).

The specific model we will mimic is from the FIRE-2 methods (described in

greatest depth in Hopkins et al. 2018a and with more context in Hopkins et al. 2018b),

although numerous earlier authors adopted very similar approaches (e.g., Kim et al.

2011; Kimm & Cen 2014; Kimm et al. 2015; Simpson et al. 2015; Goldbaum et al.

2016). This is effectively a hybrid method: at high resolution it is primarily a direct

energy injection method (which requires very few assumptions), but at low resolution

it transitions to a momentum injection method when needed.

The FIRE-2 approach achieves this by first directly adding the ejecta to a

neighbourhood around the SN location, calculating if that region has sufficient resolution

to resolve the SNR evolution, and if not, adjusting the injected quantities (i.e. increasing

the injected momentum and decreasing the injected energy), to approximate the late-

time state of the SNR. When the expected cooling radius of a SN is unresolved, which

is the case in almost all cosmological or galaxy-scale simulations focusing on spiral
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galaxies,2 this recipe essentially reduces to injecting a fixed amount of radial momentum

per SN.

4.2.3 Simultaneous energy injection

The final class of models we will consider are those that explicitly harness the

clustering of SNe by releasing all of the cluster’s SN energy at one time, making it more

likely that the gas is heated beyond the peak of the cooling curve. For a specific example,

we will mimic the feedback model proposed by Dalla Vecchia & Schaye (2012) and used

in the EAGLE simulations (Schaye et al. 2015; Crain et al. 2015). In their method, Dalla

Vecchia & Schaye go one step beyond just injecting the energy simultaneously and

hoping it heats the affected resolution elements above the peak of the cooling curve;

they add a stochastic element that guarantees that any elements receiving energy are

heated beyond the peak of the cooling curve. (Dalla Vecchia & Schaye note that their

model can be extended to stochastically release energy across multiple timesteps rather

than simultaneously, but since their work focuses on the simultaneous case, we classify

it as a “simultaneous” model.)

The key parameter in the EAGLE approach is ∆ε, the increase in specific ther-

mal energy by a cell receiving SN energy (mostly equivalent to a desired change in

temperature, ∆T ). By making this a prescribed parameter, they can ensure that any

resolution element that receives energy is sufficiently hot (& 107.5 K) that it is radia-

2Though not in dwarfs, where lower densities yield larger cooling radii, and which can be simulated
at much higher resolution due to their smaller overall size – e.g., Forbes et al. (2016); Wheeler et al.
(2018).
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tively inefficient. This comes at a cost; in order to inject the right amount of energy

(on average), this sets a limit on the amount of mass (on average) in the resolution

elements that can receive the energy. This is especially difficult at low resolution (for

fixed cluster mass and SN energy), where we cannot easily partition the injection kernel

into the correct amount of mass that does and does not receive energy. To solve this,

Dalla Vecchia & Schaye (2012) prescribe a stochastic approach.

Within an injection kernel, each cell has a probability of receiving energy, p;

this probability depends on the mass within the kernel and the total blast energy, but

does not vary between cells. For the ith cell within the kernel, a thermal energy mi∆ε

is added with probability p. By choosing a sufficiently high ∆ε we can ensure that on

average we inject the correct energy, even if a particular cluster injects more or less

than the desired amount. They recommend choosing a value of ∆ε corresponding to

∆T = 107.5 K, but note that for fixed total SN energy, higher resolutions will require

higher values of ∆ε (or else the model would calculate a value p > 1 which leads to

always injecting too little energy). In Appendix C.1 we discuss how resolution, total

blast energy and the choice of ∆ε affect the variance of the injected energy, which can

guide the choice of ∆ε.

4.3 Numerical Methods

All the simulations we present here use the clustered SNe code described by

Gentry et al. (2017), with a few modifications. We will briefly describe the general
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framework of the code and then clearly state the modifications, before moving onto the

specific implementation details of each model added for this paper.

The clustered SNe code hydrodynamically evolves blasts in a 1D (spherically

symmetric) environment, with the assumption that all SNe occur at the same location

r = 0. The ISM is assumed to have an initial spatially constant density (we use ρ =

1.33mH cm−3 for all the simulations presented here) and metallicity (Z = 0.02 for all

simulations here); we only track total metallicity, not any specific species. The inner

boundary is a zero-flux, zero-velocity boundary; the outer boundary condition does not

matter since we choose a large enough domain so that the SNR does not reach the outer

boundary. This ISM mass and metallicity is placed within moving mesh cells, with an

initial spacing of ∆r0 that depends on the specific simulation and no initial velocity.

For a given cluster mass, the clustered SNe code uses the SLUG code (da Silva

et al. 2012; da Silva et al. 2014; Krumholz et al. 2015) to directly sample a Kroupa (2002)

IMF of stars, and then explodes any stars with an initial mass greater than 8M� after

a mass-dependent lifetime predicted by the Geneva stellar evolution models (Ekström

et al. 2012). Explosion mass and metal yields follow the results of Woosley & Heger

(2007), while each explosion is assumed to yield a constant Eblast = 1051 erg of energy

(unless otherwise specified by a feedback model).

Each SN is injected into the innermost cell (unless otherwise specified by a feed-

back model), and then the cells are evolved using an approximately Lagrangian HLLC

solver (Toro et al. 1994, with the specific implementation by Duffell 2016). Optically-

thin, metallicity-dependent radiative cooling is included using the GRACKLE cooling li-

136



brary (Smith et al. 2017) assuming equilibrium chemistry and a Haardt & Madau (2012)

extragalactic UV background.

We also made some modifications since the version described by Gentry et al.

(2017). The biggest is that we changed the initial ISM temperature so that it matches

the equilibrium temperature of the initial density and metallicity. For ρ = 1.33mH

cm−3, Z = 0.02, and a fixed γ = 5/3, this corresponds to a specific internal energy of

3.50×1010 erg g−1 (about 340 K as calculated by GRACKLE). Although this choice has no

significant effect on the simulation outcome, which is the same as long as the ambient

temperature is much smaller than the temperature of the hot gas in the SNR interior,

starting the gas in thermal equilibrium simplifies the analysis. The second change is

that, unlike in Gentry et al. (2017), we do not include pre-SN stellar winds; now the

only mass that is injected is from the SN itself. We disable winds because they are

generally not included in the feedback prescriptions we are testing.

For each feedback model we do simulations with 1 SN and 11 SNe, ensuring

that the same SNe properties are drawn for all 1 and 11 SNe simulations respectively.

The 1 SN simulations are run until a cluster age of 20 Myr (roughly 10 Myr after the only

SN); the 11 SNe simulations are run until a cluster age of 100 Myr (roughly 97 Myr after

the first SN). For each model and cluster size we also carry out both a high resolution

run (∆r0 = 0.3 for 1 SN; ∆r0 = 0.6 for 11 SNe to match the reference run in Gentry

et al. 2017) and a low resolution run (∆r0 = 20 pc). The particular resolution of our

low resolution run is chosen so that the region in the inner “ghost” cell (the innermost

20 pc, which we do not hydrodynamically evolve) contains ∼ 103M� of material, which
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would be expected to produce ∼ 11 SNe if it were completely converted to stars. This

mass and spatial resolution is also comparable to the typical highest values achieved in

modern zoom-in cosmological simulations of spiral galaxies.

4.3.1 Delayed cooling implementation

As described in subsection 4.2.1, the key idea behind the delayed cooling model

is that there should be a spatial scale around the location of a SN into which the SNR can

expand before losing a significant amount of energy to radiative cooling; associated with

this expansion should also be a characteristic time scale. The approach of the delayed

cooling model is to temporarily disable radiative cooling for any resolution elements

initially within this spatial scale, RE for an appropriate time scale tE, explicitly delaying

cooling.

These key scales are given as analytic expressions by Stinson et al. (2006, their

Equations 9 and 10) that depend on the local ISM density, ρ0, and pressure, P0 as well

as the blast energy, Eblast:

RE(ρ0, P0) =101.74

(
Eblast

1051erg

)0.32( ρ0

µmH cm−3

)−0.16

×
(

P0

104kB K cm−3

)−0.20

pc (4.1)
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tE(ρ0, P0) =105.92

(
Eblast

1051erg

)0.31( ρ0

µmH cm−3

)0.27

×
(

P0

104kB K cm−3

)−0.64

yr (4.2)

where µ is the mean molecular weight, mH is the mass of the hydrogen atom, kB is the

Boltzmann constant. (Note: Stinson et al. (2006) end up adopting a slightly different,

slightly longer timescale for their final model, but in their Section 5.3.1 they ultimately

conclude it should not make a significant difference.)

It is easy to evaluate these expressions for the first SN when there is a single,

clear value for ρ0 and P0 due to our initially-homogeneous ISM; for subsequent SNe it

becomes more ambiguous due to the non-uniform bubble that has formed. To handle

this, we solve for RE iteratively, starting from the centre of the simulation and stepping

outwards until the volume-weighted average density and pressure result in an RE that

matched the current radius. Fortunately, preliminary tests (using the results from an

11 SNe reference run) found that there should typically be a single, unique RE for each

SN; in practice we take the first valid RE (i.e. RE(ρ0(< r), P0(< r)) < r). Within this

radius, all cells have their cooling disabled for a time tE, even if they later move beyond

this radius. Cells that have already had their cooling disabled from a previous SNe

have their cooling turned off for the longer of: the current SN’s tE and the remaining

duration from the previous SNe’s shutoff periods (tE,i − tSN,i).

Since the cooling rate of a SNR does not truly go to 0 at high resolution, Stinson

et al. (2006) leave Eblast as a free parameter that can be decreased to compensate,
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suggesting a typical value of Eblast = 1050 based off their initial experiments. For each

cluster we simulate, we will run two variants in order to explore the effect of this free

parameter: one using Eblast = 1050 and another using Eblast = 1051.

In addition to RE and tE, we must compute where to deposit the SN energy

and mass. Following Stinson et al. (2006), we assume a fixed kernel mass (Mkernel =

3 × 105M�), and solve for the corresponding radius, Rkernel, that encloses that mass.

Within this radius, we inject mass and energy using a Gaussian kernel with 1D dispersion

σ = 0.1Rkernel, weighted by the cell masses and truncated at Rkernel. This kernel mass

was chosen so that Rkernel is always larger than RE; this means some energy will be

injected outside the cooling-disabled region and will be lost rapidly, but the amount so

affected is minimal due to the sharp drop off in the Gaussian profile.

Finally, we point out that it is important that when the first SN occurs, the

ISM is near its equilibrium temperature rather than significantly above it (which was

originally the default of the clustered SNe code; Gentry et al. 2017). If the ISM is

far from equilibrium with a short cooling time, then an artificial discontinuity would

rapidly develop near RE after the first SN. Within RE the gas would stay hot and over-

pressured, while just beyond RE the gas would cool and drop in pressure, leading to an

outward-propagating shock.

4.3.2 Momentum-energy feedback implementation

Momentum-energy models are characterised by a common thread: at high

resolution their key active component is the injected energy, while at low resolution the
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active component is injected radial momentum, with a continuous transition between

these regimes. For this work, we base our implementation off the FIRE-2 algorithm

(Hopkins et al. 2018a), but make a few necessary alterations to match the different

geometry of our cells. Unlike Hopkins et al. (2018a) we neglect stellar winds in this

work.

First, we define the total SN yields. The SN-ejected mass and metallicity will

be consistent with our reference simulations, along with the times at which these SNe

occur; this is in contrast to the SN mass yields and delay times suggested by Hopkins

et al. (2018a) although we expect this makes relatively little difference. Next, we keep

the SN blast energy at the fiducial Eblast = 1051 erg. The biggest difference between this

model and our reference simulations is that this model also injects momentum. At high

resolution, this momentum is determined by assuming the blast energy is fully kinetic:

pejecta =
√

2mejectaEejecta (4.3)

but this momentum will be increased at lower resolution, depending on the properties

of the cells into which the blast is injected.

The injection kernel is probably the most significant departure from the al-

gorithm described by Hopkins et al. (2018a) owing to the different geometry of our

simulation (we use rigidly structured 1D, nested shells, whereas the FIRE-2 simulations

use unstructured 3D moving particles). We identify the injection kernel to comprise the

innermost Nngb = 3 cells (≈ 321/3, as opposed to their 32 nearest neighbours). Next, we
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weight all cells equally, wi = N−1
ngb (using index i for the ith cell); this is in contrast to

their solid angle-based weighting (Hopkins et al. 2018a, Eq. 2) which would only ever

inject into 1 cell given our enforced spherical symmetry.

We now can specify the amount of mass, metals, momentum and energy added

to each individual cell. Mass and metals are easy; they follow the weights:

∆mi = wimejecta (4.4)

and

∆mZ,i = wimZ,ejecta. (4.5)

The injected momentum is slightly more complicated. As mentioned above, we start

with a base amount of total momentum, pejecta, but as the resolution decreases the

amount of momentum is increased to mimic the SNR evolution below the resolved scales.

At arbitrarily low resolution, all stages of the SNR evolution will be unresolved, so the

momentum should approach the expected terminal momentum. This expected terminal

momentum is calculated for each cell based on the cell’s gas density and metallicity:

pt,i

M� km s−1 =4.8× 105

(
Eblast

1051erg

)13/14

×
(

ρi
µimH cm−3

)−1/7

f(Zi)
3/2 (4.6)
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where

f(Z) =


2 Z/Z� < 0.01

(Z/Z�)−0.14 otherwise

(4.7)

and Z� = 0.02. The two extremes—arbitrarily high resolution for which ∆pi = wipejecta

and arbitrarily low resolution for which ∆p = wipt,i—are tied together by:

∆pi = wipejecta min

(√
1 +

mi

∆mi
,
pt,i

pejecta

)
(4.8)

The injected energy similarly starts with a high resolution proposal: ∆Ei =

wiEblast which is then corrected at low resolutions. The motivation for this correction

is to avoid adding energy at unphysical large distances from the SN. While a SNR will

not be able to directly add energy beyond the cooling radius of the SNR, at very low

resolution, some of the Nngb neighbours in which we deposit energy might be beyond

this cooling radius. Therefore, for each cell we first compute the expected SNR cooling

radius:

Rcool,i = 28.4

(
ρi

µimH cm−3

)−3/7( Eblast

1051erg

)2/7

f(Zi) pc. (4.9)

If the cell’s distance from the SN, ri, is larger than Rcool,i, we then calculate the proposed

change in the cell’s internal energy, ∆Ui, and decrease it by a factor (ri/Rcool,i)
−6.5.

4.3.3 Simultaneous energy injection implementation

As introduced above in subsection 4.2.3, the simultaneous injection model

attempts to explicitly harness the clustering of SNe by forcing every SNe from a cluster
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to occur simultaneously. This loss of time-resolution changes the dynamics, hopefully in

a positive way. Rather than each SN failing to heat the nearby material past the peak

of the cooling curve (and quickly overcooling as a result), injecting all SN energy at the

same time makes it more likely that the affected material will be heated beyond the peak

of the cooling curve. Dalla Vecchia & Schaye (2012) go one step further, introducing a

stochastic component that guarantees material is heated past the peak of the cooling

curve; it is this particular algorithm that we will try to follow as closely as possible.

The first part, defining the SN yields and delay time distribution and yields, is

easy. The yields are the same as in our reference model, in particular Eblast = 1051 erg.

For the delay time distribution, if there are multiple SNe we modify the explosion times

to all occur at t = 30 Myr, matching Dalla Vecchia & Schaye (2012); if there is only 1

SN, we do not modify the explosion time (typically t ≈ 10 Myr), since that corresponds

to an arbitrary shift of when we define t = 0 and does not affect the results in any way.

The injection kernel comprises the innermost Nngb = 3 cells3, into which mass

and metals are injected deterministically, while energy is injected stochastically. The

mass and metals are distributed evenly between each cell:

∆mi = N−1
ngbmejecta (4.10)

and

∆mZ,i = N−1
ngbmejecta,Z . (4.11)

3Conveniently, in our low resolution 11 SNe simulations, our ghost cell mass matches the cluster
mass, mstar, and the nearest 3 cells enclose mkernel ≈ 70mstar, the closest we can get at this resolution
to the value mkernel = 48m? used by Dalla Vecchia & Schaye (2012).
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The stochastic energy injection within this kernel is more complicated. First,

the mass within the kernel, mkernel is computed, after adding the SN ejecta material.

Then, given a value of ∆ε, the desired increase in specific thermal energy, we can

calculate the probability of any cell within the kernel receiving energy:

p =
EblastNSNe

∆ε

1

mkernel
(4.12)

At high resolution, the restriction p < 1 becomes a problem given the small

mass within the kernel (coming predominantly from the ejecta mass: ∼ 14M� for 1 SN

and 130M� for 11 SNe). So at high resolution, we adopt a value ∆ε corresponding to

a ∆T = 109 K.

At low resolution, this constraint is not a problem. For 11 SNe, since the

kernel mass to cluster stellar mass roughly matches the ratio expected by Dalla Vecchia

& Schaye (2012) we can use the ∆ε corresponding to the recommended ∆T = 107.5

K. For 1 SN at low resolution, the kernel mass is not as well matched. In order to

have a reasonable probability of injecting any energy we have to reduce ∆ε to the value

corresponding to ∆T = 106 K. (Even with a ∆T as low as 106 K, there is still an ≈ 70%

chance that no cell receives energy for our 1 SN, low resolution simulations.) This value

of ∆T is low enough to begin to become uncomfortable, but should allow us to avoid

the worst overcooling; also, the main focus of this paper is on the low resolution 11 SNe

simulations, not the 1 SN simulations.

Although in a galactic simulation we would select cells independently and
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stochastically with probability p, in this controlled test we will simply run all 8 possible

realisations deterministically (enumerating the 23 possibilities of selecting or not select-

ing 3 cells). Each of these realisations will be weighted with their respective Bernoulli

probability: pN (1− p)3−N for a total of N cells being selected for energy injection.

4.4 Results of Feedback Models
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In this section we give the results and discuss each model in turn. In the

next section (section 4.5), we compare the results between models. A summary of the

simulation results is given in Table 4.1.

4.4.1 Direct injection results

We start with the simplest simulations which directly inject thermal energy

and no momentum to the innermost cell. The evolution of the momentum with respect

to time for these 4 simulations is shown in Figure 4.1. These will provide the “reference”

results, against which we will compare the 3 competing models.

Looking first at the 1 SN results, we see the standard picture: at high reso-

lution, we recover the standard terminal momentum (∼ 3000 M� km s−1), but at low

resolution, overcooling becomes a problem, leading to far too little momentum (in this

case, an order of magnitude too little momentum).

This result is mirrored in the 11 SNe simulations, but there it is slightly mit-

igated. As subsequent SNe occur, the density near the location of the blast drops,

causing cooling to become less efficient and the resolution requirements to be loosened.

This is not a perfect solution; it takes multiple SNe before a well-defined superbubble

is inflated at low resolution, and even then each SN blast eventually propagates out

to the dense shell where overcooling can occur. Still, the low resolution 11 SNe run

only contains 3-4 times less momentum than the high resolution simulation, whereas

the 1 SN simulations exhibit a factor of 10 deficit in momentum when the resolution is

worsened.
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Figure 4.1: Comparison of the momentum as a function of time for our direct injection
simulations, which we later use as the reference results. The top shows a comparison
between different resolution 1 SN simulations; the bottom shows the different resolution
11 SNe simulations. Note the difference in both horizontal and vertical scale between
the two panels, both here and in subsequent similar plots.
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4.4.2 Delayed cooling results

Similar to the reference case, we ran simulations of 1 and 11 SNe at high and

low resolution. Since the blast energy is a free parameter within the Stinson et al. (2006)

algorithm, we carry out this experiment for two different blast energies: Eblast = 1050

erg and 1051 erg. The resulting momentum evolution of each simulation can be seen in

Figure 4.2.

Starting with the 1 SN simulations, we see the expected behaviour. When

injecting the recommended blast energy (1050 erg), both the high resolution and the

low resolution simulations do a good job reproducing the terminal momentum of the

high resolution reference simulation. This is what the method was designed to do.

Conversely, when we inject a blast of 1051 erg and also shut off cooling, we observe

a terminal momentum that is too large by a factor of ∼ 10. This is unsurprising for

the high resolution case; if we add the same amount of energy, but delay the onset of

cooling, the result will be too much momentum. It is slightly more interesting that

the low resolution simulation also results in too much momentum. However, Stinson

et al. (2006) were aware of this potential problem, and this is what motivated them to

recommend decreasing the blast energy.

The situation for the 11 SNe simulations is very different. In this case using

Eblast = 1050 erg results in far too little momentum—at high resolution it even does

worse than our low resolution reference simulation (which used Eblast = 1051 erg). This

is because for the later SNe, the superbubble approaches near-adiabatic behaviour.
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Figure 4.2: Same as Figure 4.1, except now also overplotting the delayed cooling
simulations, with the different resolutions and Eblast parameters denoted in the legends.
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Since the cooling radius is within the bubble where cooling is already relatively low, the

cooling shut off switch in the delayed cooling prescription has little effect. However, the

reduction in injection energy that Stinson et al. (2006) recommend in order to fix the

single-SN case then results in an under-powered superbubble and too little momentum

even at high resolution.

When we use stronger blasts (Eblast = 1051 erg), we find better results for the

11 SNe case. For the first few SNe, the momentum starts too high (as expected from our

1 SN simulation results), but as the superbubble becomes more adiabatic, the delayed

cooling approach starts to approach our direct injection behaviour. It is remarkable

just how well the delayed cooling approach does with Eblast = 1051 erg for 11 SNe.

Despite starting with more momentum at early times, and still shutting off cooling for

each subsequent SNe, the high resolution 11 SNe simulation with Eblast = 1051 differs

in terminal momentum from the high resolution reference simulation by less than 1%.

The lower resolution delayed cooling simulation (Eblast = 1051) does not do quite as

well, but still is relatively close (differing by only about 25%).

Thus this method is successful at being less resolution-dependent than the

reference, direct injection method. Whether this resolution-robust method produces

accurate momenta is a more complicated question. We have found that a fixed Eblast

is unable to handle both 1 SN and 11 SNe clusters; an energy of Eblast = 1050 erg

as recommended by Stinson et al. (2006) gives a good fit to the single SN case, but

fails for 11 SNe, while injecting the full SN energy Eblast = 1051 erg succeeds for 11

SNe but fails for 1. The fundamental reason for this is easy to understand: the mean
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amount of radiative loss per SN is not a single number, but instead depends on the

SN environment, and in particular on whether a SN is going off inside an already low-

density, hot cavity carved by a previous SN. Both the ad hoc reduction from Eblast = 1051

erg to 1050 erg and the density- and pressure-dependence built into Equation 4.1 and

Equation 4.2 for RE and tE attempt to capture the complex dependence of radiative

loss on environment, but they do not do so with sufficient accuracy to reproduce the

results of the high resolution simulation across a factor of 10 in cluster size. That said,

this analysis suggests that it might be possible to find a prescription for Eblast(NSNe),

or to choose a value of 〈Eblast〉 averaged over the cluster mass function, that performs

better than the current approximation of picking a single Eblast. This would require a

campaign of simulations similar to ours, to quantity the amount of radiative loss as a

function of cluster size.

This is a clear indication, and a reminder, that these subgrid models can behave

differently at different cluster sizes. This both means that it is useful to check how well

each method is able to handle clustered SNe, but also provides a warning that our

conclusions likely depend on the cluster sizes we test here (1 SN and 11 SNe). Dekel

et al. (2019) identify as many as seven possible SN-driven superbubble regimes, of which

we have tested only two.

4.4.3 Momentum-energy feedback results

We tested the momentum-energy injection prescription with high and low res-

olution simulations of 1 and 11 SNe clusters. The momentum evolution is compared to
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Figure 4.3: Same as Figure 4.1, except now overplotting the simulations using the
momentum-energy feedback model. While it is difficult to see, the high resolution
momentum-energy run is plotted starting at the first SN with the others; it simply
matches the fiducial model so well that it is difficult to visually distinguish until t > 10
Myr.
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our reference simulations in Figure 4.3.

The clearest discrepancy between the results of this scheme and our high res-

olution fiducial results is for the 1 SN, low-resolution simulation, which has a terminal

momentum which is too high (by ∼ 30%). However, this is relatively easy to diagnose;

Hopkins et al. (2018b) prescribe ∼ 5 × 105 M� NSNe km s−1 of momentum per SN

(at ρ = 1.33mH cm−3), so it is not surprising at that low resolution this assumption

yields more than the 3 × 105 M� NSNe km s−1 recovered at high resolution. Hopkins

et al. adopt this value from the earlier 1D simulations of Cioffi et al. (1988), and to

be consistent with the earlier FIRE-1 simulations that used this value. Our 1D sim-

ulations improve on those of Cioffi et al. (1988) in many ways – for example by use

of modern cooling tables and by adoption of a pseudo-Lagrangian high-order hydrody-

namics method – and thus our somewhat lower value is likely more reliable. However,

for our purposes here the offset between our high resolution results and the results of

the momentum-energy feedback method at low resolution are not particularly signifi-

cant, since they result from a particular numerical parameter choice, which can easily

be changed.

At 11 SNe, we find that adoption of the momentum-energy injection method

helps mitigate the effects of low resolution, yielding a terminal momentum that is a

factor of ≈ 1.5 higher than a naive low resolution direct injection method, though still

a factor of ≈ 2.5 too small compared to the high resolution results. Although the

momentum-energy injection results do not match as well as the best delayed cooling

results using a value of Eblast tuned to match the 11 SNe case, the momentum-energy
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prescription does significantly better than the delayed cooling model using the lower

Eblast recommend by Stinson et al. (2006).

4.4.4 Simultaneous energy injection results

Finally, we compare the simultaneous energy injection approach to our refer-

ence simulations, with the momentum evolution shown in Figure 4.4. Since there are so

many realisations (8 high resolution and 8 low resolution), we simplify these figures by

only showing the probability-weighted mean, along with mean ±1 standard deviation

at each point in time. The full distribution of final momenta can be seen in Figures 4.5

and 4.6 for the 1 SN simulations and 11 SNe simulations respectively. No substantial

difference was observed in the shape of the time evolution of the momentum of each

realisation besides the overall normalisation.

First, for 1 SN at high resolution, we see in Table 4.1 and Figure 4.4 that the

mean momentum corresponds well to the results from our reference simulations. There

is some scatter (see Figure 4.5), as some realisations inject > 1051 of energy and others

inject < 1051, but the probability-weighted mean result is close to the standard expected

value. This is unsurprising, because for 1 SN most theoretical studies predict a roughly

linear scaling between momentum and energy at high resolution (e.g., Cioffi et al. 1988,

Draine 2011), and the expected energy is unbiased by construction (〈∆E〉 = Eblast). At

low resolution for 1 SN, we see the simultaneous energy injection model does not do

significantly better than the direct injection model, suggesting that it is still susceptible

to overcooling. This is not very surprising. Our reference method is to inject 1051 erg
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Figure 4.4: Same as Figure 4.1, except now overplotting the simultaneous energy
injection simulations. For each simulation, we ran all eight possible realisations of the
stochastic injection process. In this figure for each timestep we show the probability-
weighted mean with a central green line and shade ±1 [probability-weighted] standard
deviation around the mean—the high resolution run uses a solid shading, while the low
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into the innermost cell; the closest analogue is a realisation which injects 0.95×1051 erg

into the innermost cell (and no energy elsewhere). In that case the only other difference

between the two methods is that the reference approach adds all the ejecta mass into

the innermost cell, whereas the simultaneous energy injection model spreads it equally

among the 3 innermost cells, but this mass contribution is negligible at ∆r0 = 20 pc

resolution. Thus the final outcome largely reduces to a question of the amount of added

energy; the realisation that adds 0.95×1051 erg results in less final momentum than the

low resolution reference simulation, whereas realisations that add > 1051 erg result in

more momentum. When properly weighted, the average added energy is 1051 erg, so the

average resulting momentum is consistent with the low resolution reference simulation.

Ultimately this suggests that it is not enough to only prevent overcooling at the initial

time of injection (by ensuring a fixed ∆T ); overcooling in the subsequent shock front is

also an important consideration.

Moving to 11 SNe we find somewhat worse results. At high resolution, we find

the average momentum per SN for 11 SNe is roughly consistent with our results for 1

SN; this is bad because even our low resolution reference simulation showed a substantial

momentum efficiency boost. Even when we look at the high resolution realisation which

adds the most energy (≈ 1.6×1052 erg, i.e. ≈ 50% above the mean value), it still results

in less momentum than the 11 SNe low resolution reference simulation.

At low resolution, while we do see a momentum efficiency boost for the 11

SNe simultaneous injection realisations relative to their 1 SN simultaneous injection

counterparts, it still has not clearly improved beyond the momentum efficiency of high
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resolution single SN simulations. This general situation is especially concerning since

the cluster mass (≈ 103M�) is actually well paired to the kernel mass at low resolution

(70× 103M�), as this implementation intended.

So in conclusion, the simultaneous energy injection model does not appear to

be very effective at producing the correct final momentum. For the 1 SN cluster its

performance is comparable to the direct injection model, but for the 11 SNe cluster it

does worse than the direct injection model.

4.5 Discussion

4.5.1 Comparison of injection methods

In this section we focus on our primary question: which subgrid models produce

a momentum efficiency for 11 SNe at low resolution that is at least a factor of 2 greater

than the fiducial momentum efficiency of an isolated SN (i.e., pend/(100M�NSNe km

s−1) > 5500)? This is a necessary but not sufficient test; we predict the true momentum

efficiency boost for this cluster is roughly a factor of 2, but these 1D simulations might

overpredict the momentum that application of the same subgrid model in 3D would

yield due to artificially suppressing asymmetries from hydrodynamic instabilities that

drive mixing. Therefore, a subgrid model that cannot produce a factor of 2 boost in

momentum efficiency in 1D would also necessarily underproduce momentum in 3D.

However, we cannot assume the converse: if a model produces greater than a factor of 2

enhancement in momentum efficiency in 1D, it still might produce too little momentum
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in 3D.

Looking at Table 4.1, we can easily answer this question for the three sub-

grid models. The delayed cooling model clears this threshold for Eblast = 1051 but not

Eblast = 1050, the momentum-energy model clears this threshold, and the simultane-

ous injection model does not clear this threshold on average (although an individual

realisation has a ∼ 10% probability that it will clear this threshold; see Figure 4.6).

As noted in Sections 4.1 and 4.4.2, this is not a perfect test. First, we do not

precisely know the true momentum efficiency for this cluster; we can only extrapolate

existing 3D simulations. Second, here we have only tested two cluster sizes (NSNe = 1

and 11), whereas we have shown that a particular choice of model parameters might per-

form well at one cluster scale and poorly at another (in particular, see subsection 4.4.2).

Therefore we cannot be sure how these models might perform across a realistic distri-

bution of cluster sizes without a more methodical study, although by choosing an ap-

proximately maximal enhancement cluster (NSNe = 11), we hope to bound the problem.

Third, by using 1D simulations we are artificially suppressing asymmetries produced by

hydrodynamic instabilities that increase mixing and can decrease the final momentum.

For instance, our reference model at low resolution clears our factor of 2 enhancement

threshold, even though it almost certainly would result in too little momentum in 3D.

This illustrates that our threshold could be too lenient, but to raise it higher would

require a prediction about how additional mixing would affect each subgrid model. We

cannot measure that directly from these simulations for each subgrid model, but we can

make qualitative predictions.
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4.5.2 Predicted effects of mixing

Although the low resolution (20 pc), 11 SNe simulation using our reference

model shows a factor of ∼ 3 increase in momentum efficiency relative to the fiducial iso-

lated SN momentum efficiency, some 3D simulations of the same cluster (Gentry et al.

2019) showed an apparent decrease in momentum efficiency relative to the fiducial iso-

lated value, even at much higher resolutions (e.g., 2 pc) due to the presence of increased

mixing in 3D. This mixing is entirely numerical: the same simulation run at higher res-

olution shows a momentum increase, with the momentum continuing to increase even

at the finest resolution available. Thus, while we do not have corresponding 3D simu-

lations of this cluster for the subgrid models tested here, it is nonetheless important to

consider what impact mixing might have in 3D at the resolutions likely to be typical of

the simulations in which these recipes are deployed.

Delayed Cooling For the 11 SNe, delayed cooling simulations with Eblast = 1051 erg,

no cooling can occur until the shock moves beyond RE ≈ 100 pc or tE ≈ 7 Myr pass.

In our low resolution simulation, the radius restriction passes first, after about 1 Myr

has elapsed, at which point we can observe noticeable radiative cooling. Unfortunately

the momentum efficiency at this time only reached about p(t)/(102NSNeM� km s−1) ∼

1500; it has not yet achieved the isolated SN momentum efficiency let alone the desired

factor of 2 enhancement. Most of the energy is still contained within radiative cooling-

disabled cells, so our 1D simulation is still able to gain significant amounts of momentum

beyond this time, but the same might not hold in 3D, especially if hydrodynamic in-
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stabilities are able to mix mass and energy across the interface of resolution elements

with enabled and disabled radiative cooling. Therefore it is possible that although this

model performs well in 1D, it could result in too little momentum in 3D.

Momentum-energy feedback The momentum-energy model has a useful safeguard:

at low resolution, even if all the thermal energy is radiated immediately after each

SN, the deposited momentum is prescribed to approximately match the isolated SN

terminal momentum. This means that it is unlikely that the momentum-energy model

would result in a lower momentum efficiency than the fiducial isolated SN efficiency,

even in the presence of strong mixing in 3D. Furthermore, this model already prescribes

slightly too much momentum (see subsection 4.4.3), and if the deposited momentum is

enough to open a low density bubble, then the momentum deposited with subsequent

SNe can increase as the local ISM density decreases (Equation 4.6). Using our low

resolution single SN simulation with this model model as a lower limit on the efficiency

(p/(102NSNeM� km s−1) ≈ 4400), we feel confident that this model would exhibit some

enhancement relative to the fiducial momentum efficiency, but cannot be sure that it

would achieve the desired factor of 2 enhancement. While it might be possible to tune

this model by increasing the deposited momentum per SN for larger clusters, it is unclear

how to best do this for a distribution of cluster sizes and across a range of resolutions

for which a bubble might or might not be opened.

Simultaneous energy injection The simultaneous energy injection model provides

no direct means to prevent enhanced cooling due to mixing, but it does provide an
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indirect benefit: there is no time between SNe for the shock to weaken, which is when

3D instabilities like those seen by Gentry et al. (2019) are especially likely to develop

and strengthen. Still, it is unlikely that this model will produce more momentum in

3D, and given that in 1D it already produces too little momentum ∼ 90% of the time,

we do not expect this model would be able to capture the effect of clustering in 3D.

4.6 Conclusions

We set out to answer a primary question: which of the subgrid models commonly-

used to model SN feedback in galactic and cosmological-scale simulations can reproduce

the factor of > 2 increase in the terminal radial momentum delivered per SN when SNe

occur in a cluster of ≈ 10 SNe rather than as single, isolated event. This question is

crucial because both observations and simulations suggest that superbubbles driven by

multiple SNe play an important role in regulating the formation of galactic winds and

ejecting mass and metals from galaxies. Our study therefore illuminates which subgrid

models can at least potentially capture this phenomenon.

The three methods we tested meet this goal with varying degrees of success.

A delayed cooling model (similar to that used in the GASOLINE-2 code) can mimic

the increase in terminal momentum of superbubbles, but only when we increase the

deposited energy per SN from Eblast = 1050 erg (as recommended) to 1051 erg; the price

of this choice is that it overestimates the terminal efficiency produced by a single SN.

A momentum-energy model (similar to that used in the FIRE-2 simulations) achieves

164



this as well, without requiring any changes. A simultaneous energy injection model

(similar to that used in the EAGLE simulations) fails with ∼ 90% probability in any

given stochastic realisation, as well as in the mean of the stochastic results. While there

are other ways these model could be tested, this test provides a useful window into how

these subgrid models behave in realistic situations where SNe are clustered, unlike the

isolated SN configuration for which many of these models were explicitly designed.

Our results show the value of performing these tests on common SNR / super-

bubble regimes, but this also hints at the limitations of exploring only two possible SNR

regimes, as we have here. For example, under the delayed cooling model Eblast = 1050

erg is strongly favoured over Eblast = 1051 erg for 1 SN, but for 11 SNe the oppostive is

true. Unfortunately, having tested only two cluster sizes, we cannot directly prescribe a

solution. It is unclear if a simple switch between these two energy values, depending on

whether SN are overlapping, would be sufficient to capture the main effects of cluster-

ing, or if we need a complex formula for Eblast(NSNe, ρ, Z, ...). As another example, with

the momentum-energy model, we saw that for 1 SN at low resolution, we can directly

prescribe the terminal momentum, but at 11 SNe we ended with a different, higher

momentum efficiency. If this model needs to be tuned stronger or weaker to properly

account for clustering, it is unclear how to do so precisely; for a single SN, we could just

turn a knob, but for a superbubble more complex behaviour dynamically emerges.

In order to understand subgrid models better we would at least need to run

similar tests in 3D, which is how these models are most commonly applied and where

these simulations would experience stronger mixing leading to stronger cooling and
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lower momenta. In subsection 4.5.2 we made qualitative predictions on how each model

might be affected by mixing in 3D, but it is hard to know a quantitative value without

running the experiment directly. However, even if we ran these models in 3D (and in

an ISM representative of those present in low resolution galactic simulations) our test

would only be as powerful as our knowledge of the true momentum efficiency.

With regard to this last point, we remind the reader that the true momentum

efficiency of clustered SN feedback is currently unknown, inherently limiting any test like

this. While we are making progress towards understanding the effects of clustering on

SN feedback, discrepancies as large as a factor of 5 still exist within current literature.

These discrepancies are primarily because we do not know the true level of physical

mixing present in a superbubble expanding into a realistic ISM. Solving this problem

likely requires converged simulations that include thermal conduction and a 3D, multi-

phase, turbulent, magnetised ISM. While various simulations of clustered SNe have

touched on each of these in turn, none have done so simultaneously, let alone across a

range of superbubble regimes. Until that point, our ability to test, diagnose problems

within and improve subgrid models of SN feedback will remain fundamentally limited.
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Chapter 5

Conclusion

Where does this leave us?

First, it is unclear what the actual, quantified effect of clustering is on the

efficiency of SN momentum feedback. Our 1D simulations (chapter 2) suggest that the

effect could be up to a factor of ∼ 10 in the momentum efficiency (comparing NSNe = 1

and NSNe = 11 for ρ = 1.33mH cm−1 and Z = 0.02). When we try to repeat the

same NSNe = 11 cluster simulation in 3D, we also find there is an increase in efficiency,

but can only directly measure an increase of about 1%; if we extrapolate to higher

resolutions we can predict a factor of ∼ 2 increased efficiency.

For our 1D simulations, we can go beyond the efficiency for a single cluster,

and explicitly average the efficiency across a typical cluster mass distribution and find

that on average clustering might increase efficiency by a factor of ∼ 4. Since we only

ran 1 cluster size in 3D, we cannot directly average across scales, but given that going

from 1D to 3D reduced the momentum of our 11 SNe cluster, it is possible that the
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average momentum is also decreased in 3D (although Keller et al. 2014 do find higher

efficiencies in 3D in line with our 1D results for more massive but less common clusters).

In order to be able to quantify the impact more precisely we need a combi-

nation of better numerical methods (or computational resources) and a better model

for the background ISM. We want to get to the point where the artificial diffusivity of

our simulations is less significant than that of physical mixing processes such as ther-

mal conduction and hydrodynamic instabilities. This will likely not be solved just by

improving numerical methods or computational resources in the near future; in order

to achieve a resolution similar to the Field length1 estimated in chapter 3, we would

need to increase our linear spatial resolution by a factor of & 30 above what we have

currently achieved (i.e., we would need to go from 1 pc to 0.03 pc). Assuming a näıve

scaling, this would increase the required CPU time by (30)4 ≈ 106; given that our high

resolution simulations already take ∼ 105 CPU hours (not including the cost of actually

solving for conduction at that resolution), an increase of 106 goes way beyond what we

can expect to access. It is therefore unlikely that we will be able to directly quantify

the effect of clustering on SN momentum yields in a homogeneous ISM; fortunately, the

true ISM is not homogeneous.

To truly solve this problem, we will need the results to hold in a realistic ISM,

not just a homogeneous ISM. In chapter 3 we took baby steps in that direction by

including magnetic fields, which helped prevent the onset of hydrodynamic instabilities,

1Note that the Field length can vary over time and space, and the spatial resolution of our Lagrangian
methods vary over time and space. Here I simply use the initial [spatially-constant] spatial resolution
and the Field length at the shell estimated in chapter 3 for simplicity.
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increasing the momentum injection (depending on how you measure momentum). On

the other hand, Kim et al. (2017) use a slightly more complex, static 2-phase ISM in

their study of clustered SNe, and find that when the SNR collides with cold clouds in

this ISM it leads to increased mixing and lower final momenta. Perhaps this provides

hope; if physical mixing is much higher in a realistic ISM than a homogeneous ISM,

then we would not need significantly improved resolution or methods. However, we

should point out that Keller et al. (2014) also tested a static, clumpy ISM and found

a significant increase in final momentum, in conflict with the clumpy ISM simulations

of Kim et al. (2017). Therefore, it is safe to say we do not yet understand what role

a clumpy ISM plays in stabilizing or enhancing mixing, and if we do not understand a

static clumpy ISM, we certainly do not understand the effects a realistic ISM has on

superbubble evolution.

No one has completed a study of clustered SNe in a truly realistic ISM. Per-

haps Martizzi et al. (2015) get closest, but even their simulations are lacking. First,

their periodic boundary conditions mean that their simulation corresponds to a cluster

of indeterminate mass. Second, they leave out magnetic fields for simplicity, acknowl-

edging: “Future work incorporating magnetic fields and anisotropic thermal conduction

into simulations analogous to those presented [by Martizzi et al. (2015)] would be very

valuable.” Ideally, in order to solve this problem (even at fixed initial average den-

sity and metallicity), one would need simulations that are 3D, include a turbulent,

multiphase ISM, and include magnetic fields (or at least would ideally show that the

neglected elements are not crucial). Realistically, that costs a lot of time and computa-
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tional resources, and I would not be able to confidently predict the required resolution

for convergence. It is easy to write down this “wishlist” of items here, but harder to

achieve in practice.

What should galactic simulations do in the meantime? Since we do not have

a specific number for the average momentum yield from clustered SNe, we cannot give

a definite, straightforward prescription.

One approach, if your simulation uses a momentum-based subgrid model for

feedback, would be to “bracket” the possible range; run a simulation with the fiducial

p/NSNe ≈ 3 × 105M� km s−1, one with a lower yield (representing the Kim et al.

2017 results) and one with a higher yield (representing our results). This, by itself,

will not be terribly useful for determining which is correct, but does help reflect the

uncertainty in the momentum yield if you are trying to be careful. (Kim et al. (2017)

suggest that higher momentum yields might lead to galaxy properties which do not

match observations, but this does not show that the problem is in the momentum yield

as opposed to the other prescriptions.)

Another approach, whether or not you use momentum-based subgrid models is

to ensure that the SNe locations are clustered in space and time. For example, Fielding

et al. (2018) do this, followed by a significant amount of analysis about how clustering

would affect a real simulation. More generally, many approaches already achieve this

with “star” particles which help keep track of where core collapse SNe “should” occur.

Nonetheless, remember that clustering the locations is not necessarily enough; chapter 4
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was an entire project devoted to exploring the ways that existing subgrid models might

differ from high resolution simulations, even when every model assumed all SNe go off

in the exact same location with a realistic delay time distribution. The details of the

subgrid model can make a significant difference in whether the physical effect of SNe

clustering is captured properly.
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Part II

Machine Learning with Galaxy

Images
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Chapter 6

Introduction

Feedback (such as SN feedback discussed in Part I) can have a significant

impact on the mass distribution of galaxy and its halo; for example Pontzen & Governato

(2014) show that bursty SN feedback can change the shape of the dark matter density

profile at the centers of galaxies. This is crucial, as it is one way to possibly solve the

“core-cusp” problem within cosmology: in Cold Dark Matter (CDM) only simulations,

the central density slope (dρ/dr at r . 1 kpc) is too steep compared to observations

(for a more comprehensive review, see de Blok 2010). While it is reassuring that strong,

bursty star formation feedback is one way to solve this problem, it is not the only

proposed solution; it might instead be an indication that our standard model of CDM

is incorrect and needs to be changed (see, for example, Schive et al. 2014 for how

“fuzzy” dark matter might relieve the tension between dark matter-only simulations

and observations). Since many of these proposals have been crafted to reproduce the

inner density slope, we need a different measurement which can help test these various
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models. One measurement that could help break the degeneracy is the total halo mass,

measured out to scales > 100 kpc (Leauthaud et al. 2019)—much beyond the 1 kpc

scales at which the density slope is measured.

Weak lensing provides one pathway to measuring the total halo mass, and re-

cent forecasts suggest it will be able to measure the average halo mass of the lowest

mass galaxies to date (galaxies with stellar masses as low as 108 − 109M�; Leauthaud

et al. 2019), and this is likely possible with currently-running surveys such as the Hy-

per Suprime Cam survey (HSC; Aihara et al. 2018a,b). Since the weak lensing signal

depends on mass of the target object, and we are trying to study the lowest mass target

objects ever, we will need to “stack” our analysis of these galaxies, and we will need to

stack many galaxies to get a usable signal. HSC is expected to identify ∼ 109 galaxies,

and roughly 106 of them will be nearby dwarf galaxies (z < 0.15; 108 < M?/M� < 109)—

but how will we find these diamonds in the rough?

In chapter 7 we start with the basic test: how well can we identify these

dwarf galaxies using only data from the HSC collaboration and relatively “off-the-shelf”

machine learning tools? Since that initial test will leave something to be desired, in

chapter 8 we implement a cutting-edge machine learning tool to help artificially augment

our training sample size. chapter 9 takes a more typical astronomy approach; in that

chapter we discuss plans to create a potential narrowband Hα survey crafted to identify

these galaxies. In that survey, we expect some contamination from higher redshift

galaxies with different emission lines that happen to fall within the same observed

wavelength window, so we test how well machine learning methods can distinguish the
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target population from the contaminant population. In chapter 10 we give some advice

to researchers seeking to use machine learning, to researchers interested in some ideas

of creating original machine learning designs, and for students seeking to get machine

learning jobs in industry.
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Chapter 7

Initial Test

7.1 Introduction

In order to identify dwarf galaxies within the HSC survey, we need some model

of what these dwarf galaxies should “look” like (at least in reduced photometric quan-

tities, but ideally also in their morphology on the sky). One possibility is building a

galaxy formation and evolution model from first principles. Unfortunately that takes

a significant amount of time—more time that I was able to fit around Part I of this

thesis. So instead we turned to machine learning models which could be “trained” us-

ing data from known, labelled galaxies and then applied to the rest of the HSC survey.

This known, labelled data will come from galaxies in the COSMOS field, where we can

match HSC objects to the nearest labelled galaxy from previous studies (if any exist

within 1 arcsec of the HSC object). Fortunately, this labelling is pretty complete within

the COSMOS field; almost every HSC galaxy in this field can be matched to a relatively
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precise stellar mass and redshift1.

The size of the HSC survey complicates things. Although we can download

images for every galaxy within the COSMOS field, that will not be feasible for the entire

survey which is expected to be > 100 TB in disk storage. Instead, we can download

and store all the reduced photometry for every object (mostly just the magnitudes of

the 5 broad bands, grizy). Then, we can develop a 2-stage classifier that makes an

initial pass using just the reduced photometric data, and then downloads the top ∼ 1%

of images and constructs a “second-opinion” using a Convolutional Neural Network

(CNN) applied to the images, ideally gleaning additional information not captured by

the overall object magnitudes.

At this point, it is good to point out we do not know that the images will

provide significant useful information beyond what is already contained in the overall

magnitudes. The targets we are trying to infer—redshift and stellar mass—are not

something that a human could accurately estimate by-eye just from 5 broad band im-

ages, but the neural networks we plan to use were developed to emulate classifications

made visually by humans. This has been a problem in past works; for example Hoyle

(2016) find that while deep neural networks using SDSS galaxies images can predict

the galaxy redshift, a Random Forest model using no morphological information can

do just as well. Still, there is a possibility of hope: the HSC survey is able to reach

unprecedented surface brightness limits for a survey of its size, showing much more faint

1These stellar mass and redshift estimates are technically only photometric estimates, not full spectral
measurements. However, the estimates were made using images through ∼ 30 filters of which ∼ 15 were
narrowband filters. Even though this is not a true spectrum, it is a relatively high resolution spectral
energy distribution, which leaves us confident in the accuracy of these estimates.
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structures in galaxies than previous surveys. Therefore, there might be more informa-

tion in HSC images than images from previous surveys which were found to not add

valuable morphological information.

7.2 Data; Features and Targets

We are using data primary from two sources:

1. The HSC survey, outlined by Aihara et al. (2018a,b). The publicly released data

for this survey includes both images as well as “reduced” quantities (such as object

magnitudes and photometric redshift estimates (Tanaka et al. 2018)). There are

multiple subsets of the HSC survey; we in particular are looking at the “wide”

layer; this layer gives us access to the most number of galaxies, but means we will

not always have access to useful information like narrow band fluxes.

2. The COSMOS2015 catalog from Laigle et al. (2016). This will be treated as

our “truth” table. For this work we are only interested in reduced physical pa-

rameters, in particular the inferred redshift and stellar mass (along with the sky

coordinates of each object for matching against the HSC survey catalog) and not

the underlying photometric flux measurements.

Typically our features (denoted X) are going to be from the HSC survey. This

is because we want to be able to apply our model across the entire HSC survey, which

means incorporating no outside data.

Typically our targets (denoted t) are from the COSMOS2015 dataset. This is
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because we want to add something of value to the HSC data; it (generally) would not

be worthwhile to be trying to predict something that the HSC survey can extract, since

they would have extracted it in whatever fields were possible.

To be more specific, unless stated otherwise, our features are:

• i mag (cmodel – a composite of exponential and de Vaucouleurs model fits)

• g − r, r − i, i− z, z − y colors (cmodel as well)

• FRANKENZ photoz best (best-guess photometric redshift, photo-z) and photoz risk best

(the statistical risk that photoz best is outside the range ztrue ± 0.15(1 + ztrue))

• g, r, i, z, y images. We download a 20′′ × 20′′ image from the deep layer2 with

preprocessing that will be described in subsection 7.2.1.

Our specific target is the following binary target:

• t = (8 < log10M?/M� < 9) AND (z < .15)

7.2.1 Image preprocessing

Before even opening the images, we remove any objects with COSMOS2015-

estimated photo-zs outside the range (0, 8), any objects missing the reduced cmodel

magnitude for any of its grizy photometric bands, and any objects which raised flags

during the reduction of those photometric fluxes. When training and testing the CNN,

2For this test we use images from the HSC deep layer, even though we are primarily interested in
applying this technique to the wide layer. The reason is simple: wide-layer images were not yet ready
for the COSMOS field, although they will be released in future HSC public data releases.
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we remove any objects for which we were unable to download all 5 bands (which can

happen even if all 5 bands of reduced magnitudes are in the database).

The first preprocessing step for the images is to apply a pixel-wise arcsinh

scaling (Lupton et al. 1999) using the HSC survey-recommended parameters3. This

helps the CNN deal with the large dynamic range of intensities in astronomical images.

We generally do not apply any additional re-normalization, although this could also be

accomplished within the CNN by adding an initial batch normalization layer as the first

layer.

Next, if this image is being used for training, we perform data augmentation

that will be described in subsection 7.3.2. In general, this typically means random affine

transforms (such as rotations, reflections and translations to the image).

Then, we crop the image down to about half its original size (i.e., to (10′′ )2 =

(75px)2 unless otherwise noted). It is helpful to do this after the data augmentation;

if you crop before data augmentation, then apply an affine transform, you typically

will need to prescribe how to “fill” the values that now appear at the edges of your

transformed image which did not exist in the original, cropped form. By performing

the transform on a large enough image, and then cropping the image to the desired size,

none of the remaining pixels will have been affected by the artificial “fill” prescription.

3https://hsc-gitlab.mtk.nao.ac.jp/snippets/26; unfortunately there appears to be no version-
controlled permalink
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7.3 Methods

We take a two step approach:

1. A Random Forest classifier (RF ; Breiman 2001) applied to expert-extracted fea-

tures. This allows us to cut out most of the clearly-unwanted galaxies.

2. A convolutional neural network (CNN ; e.g., LeCun et al. 1989) on the best can-

didates identified by the Random Forest to provide a second opinion, hopefully

strengthening our discriminative power

7.3.1 Random Forest (RF)

This effectively provides a non-parametric classifier. It is an ensemble of many

(in our case 1000) decision trees which are each constructed with a random subset of the

training data. Each decision tree then partitions the feature space (with each branching

allowed to come from a different random subsample of features) until only one training

example remains at each leaf of the tree. When applied to new data, each new example

follows the tree, and the tree predicts with the class of the training example at the leaf;

the ensembled prediction is then simply the average of the individual tree predictions.

In practice we used 10-fold cross validation to measure the performance of our

network and maximize the possible training set size for the neural network. To do this,

we partitioned the entire dataset into 10 equal sized partitions, and then trained 10 RFs

each of which used 9 partitions for its training data and 1 partition for its validation

data. This ensured that every galaxy had a RF predicted probability and that the
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galaxy was not in the training set of the RF which made the prediction. In production

we plan to apply all 10 RFs to each new galaxy, and average the probabilities predicted

by each forest, effectively creating 1 RF of 10,000 trees.

The final step is to “soften” the predictions of the RF. The standard RF

algorithm allows for predicted probabilities of exactly 0 or 1 (if all trees agree on the

classification), but there is always some chance that its predictions are incorrect. To

avoid these overly-confident predictions, we add pseudo-trees (analogous to the pseudo-

observations from a Bayesian conjugate pair like the Beta-Binomial pair), effectively

creating 1 additional tree that always predicts p = 0 and 1 additional tree that always

predicts p = 1:

pRF,softened =
pRF ×Ntrees + 1

Ntrees + 2
. (7.1)

When applied to a new set of galaxies in production, we apply 2 possible

outcomes depending on the reported probability for a given galaxy within the production

set:

1. If the galaxy is one of the best 1000 per sq. deg. candidates, we download its

image and feed it through a deep neural network to get a second-opinion on the

data, in hopes of increasing the final purity of the sample

2. If it is not within the top 1000 per sq. deg. of candidates, label the galaxy to be

the undesired class.

The exact cutoff, i.e. the best 1000 per sq. deg., is somewhat arbitrary. We

choose it since it is a relatively round number, gave reasonably high completeness values,

182



and does not require downloading an unreasonably large number of galaxy images.

7.3.1.1 Possible Improvements

The results will show that our RF probabilities are pretty accurate; if you ap-

plied the Random Forest to a held-out training set and bin by predicted class probability,

bins of higher predicted probability also have higher purity (and predicted probability

≈ actual purity). Therefore if you wanted to optimize for the best completeness and

could tolerate a certain level of impurity, you could automatically accept galaxies above

a certain predicted probability, and then have the RF focus on the most uncertain

candidates (not the most likely) candidates.

In practice we chose not to do this, since it is not clear what this auto-accept

purity threshold should be. Even if you had a desired, final purity, it is not a priori

clear how much the neural network will affect purity, so it’s possible the auto-acceptance

threshold would have to be treated as an unknown hyperparameter, and for each differ-

ent value the neural network would have to be retrained.

7.3.1.2 Alternatives?

We tested two alternative (non-deep learning) methods, which did worse than

the Random Forest classifier; we will briefly mention them here.

The first was a simple i magnitude cut. This effectively assumes that the rank

ordering of our galaxies i band magnitude matches the rank order of their probability

of matching our target classification. This might make sense if our target was just a
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redshift cut or just a mass cut; unfortunately looking for nearby and low mass galaxies

with this approach is not likely to be optimal.

A generalization of the 1-dimensional cut is logistic regression. Instead of just

1 feature dimension, we also included the 4 colors and the 2 photo-z related features.

Then logistic regression constructs a linear model predicting the log odds of a new

example being the target class (βX = log p/(1 − p) for features X, parameters β and

predicted probability p). Just like the 1-dimensional cut, this assumes there exists a

direction along which the rank ordering of examples matches the rank ordering of their

probabilities (and now with an additional assumption that distance along that direction

is meaningfully connected to the probability).

Note that both of these models make a parametric assumption about our

model. This linear parameterization is certainly not exactly true, given that we are

trying to create an inverse model of photometry to galaxy redshift and mass. Further-

more, it is not clear that it will be a good approximate description of that mapping.

7.3.2 Convolutional Neural Network

We created a fairly simple deep convolutional neural network (CNN), based

off a prior architecture by Huertas-Company et al. (2015). It has 3 convolutional blocks

each consisting of:

• a convolutional layer (with each kernel twice the size of the previous block in each

spatial dimension, but always 16 filters)
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• RELU activation

• max pooling (2x2)

• dropout (only for training; typically using a dropout fraction of .5)

It then finishes off with 3 fully-connected layers; there is RELU activation

after the first two, and a logistic sigmoid activation applied to the output of the final

fully-connected layer, transforming the output from a log odds to a probability.

We then train the network using the Adam optimizer (Kingma & Ba 2014),

which tries to decrease the binary cross entropy over the training set.

7.3.3 Combining Models

Hopefully our RF model and our CNN will provide complementary information

about whether a given object is the desired galaxy type or not. This means we ideally

want to combine the outputs from both models when making our final selection; if we

only use the CNN-reported probability, we lose any marginal information contained in

the RF-reported probability. In order to combine these models, we will assume the

reported probabilities are independent of each other, conditional on the true class of the

object; in other words we will assume that what has been “learned” by each model is

independent. The rest of this subsection discusses how we did this in depth.

First, we have mentioned our assumption that the RF features, XRF, and the
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CNN features, XCNN, are independent conditional on t, i.e.:

p(XRF,XCNN|t) = p(XRF|t)p(XCNN|t). (7.2)

This is driven by convenience, not principle. While we could try to enforce aspects of

this, for example by normalizing the CNN input images so that they do not contain

direct information on the overall i magnitude, that still does not rule out implicit cor-

relations. And trying to model the dependence between the two types of inputs goes

well beyond the scope of this project. There are empirical ways to calibrate the effect of

this unhandled dependence (such as bagging and boosting), but they typically require

an additional layer of held out, CNN-worthy validation data, of which we are already

in extremely short supply (or significantly larger computational costs). So we will sim-

ply assume that the reduced photometric features are independent of the pixel-level

information.

Given conditional independence (Equation 7.2), we can construct a likelihood

ratio that is simply the product of each model’s likelihood ratio:

p(XRF,XCNN|t = 1)

p(XRF,XCNN|t = 0)
=
p(XRF|t = 1)

p(XRF|t = 0)

p(XCNN|t = 1)

p(XCNN|t = 0)
. (7.3)

But neither of our models directly reports the log likelihood ratio; instead we

must infer it using Bayesian methods. For a generic discriminative model, under Bayes
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rule the output posterior class probability is:

p(t|X) =
p(t)p(X|t)
p(X)

(7.4)

so the log likelihood ratio is:

p(X|t = 1)

p(X|t = 0)
=

(
p(t = 1)

p(t = 0)

)−1 p(t = 1|X)

p(t = 0|X)
(7.5)

We do not necessarily know how to decompose the prior from the posterior, but it is fairly

common to assume p(t = 1) = N−1
∑

i ti. This is not truly Bayesian since it depends

on the observed class balance, but we could construct a hierarchical model where we

assume the number of target galaxies within a field of fixed number of total galaxies

is binomial distributed and use a Beta prior for the class balance. That effectively

takes the p(t = 1) estimator for our discriminative model, and shrinks it towards a

prescribed value (typical 1/2 for a weakly informative prior). But if the prior is truly

weakly informative it should have little-to-no impact when our sample sets are in the

thousands (for the CNN) or hundreds of thousands (for the RF). So we will simply

assume p(t = 1) = N−1
∑

i ti throughout.

That is all the theoretical justification we need. We are not doing anything

special beyond this point; we are simply assuming conditional independence in our

models’ input features, and we are assuming we can decompose our model class priors

from the output posterior by using the sample mean class balance of our training sets.
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Now explicitly show how this combining process is done, given the assumptions

above. First it is useful to define the logistic transform:

logit(p) = log

(
p

1− p

)
(7.6)

i.e. the log odds, and its inverse:

expit(x) =
ex

1 + ex
=

1

1 + e−x
. (7.7)

Using these definitions, along with the decomposition of Equation 7.5, we can see:

log
p(X|t = 1)

p(X|t = 0)
= logit(pposterior)− logit(pprior) (7.8)

and if we want to combine the information from multiple models using independent

features:

log
p(X1,X2|t = 1)

p(X1,X2|t = 0)
= [logit(pposterior,1)− logit(pprior,1)]

+ [logit(pposterior,2)− logit(pprior,2)] (7.9)

One can see that this has a desirable quality: if one model does not update the

posterior for a given object (e.g., a galaxy is not passed through the CNN) then that

model’s logistic terms cancel and we recover the single model form (Equation 7.8).

Finally, to get back to an overall posterior probability, we then use our assumed
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class prior:

pcombined ≡ p(t = 1|X1,X2) (7.10)

= expit

(
log

p(t = 1|X1,X2)

1− p(t = 1|X1,X2)

)
(7.11)

= expit

(
log

p(t = 1|X1,X2)

p(t = 0|X1,X2)

)
(7.12)

= expit

(
log

p(t = 1)

p(t = 0)

p(X1,X2|t = 1)

p(X1,X2|t = 0)

)
(7.13)

pcombined = expit

logit(pprior,overall) +
∑

i∈{1,2}

logit(pposterior,i)− logit(pprior,i)

 (7.14)

7.3.4 Loss Functions and Metrics

In order to compare results between models, we need some kind of loss function,

which we would like to minimize.

Binary Cross-Entropy The first measure we will use is binary cross-entropy, a com-

mon metric from information theory:

H(t, p) = −Et[− log p] (7.15)

= − 1

N

N∑
i

ti log pi + (1− ti) log(1− pi) (7.16)

for predicted probabilities, p and true binary target labels t. This is a convenient

measure for a few reasons:

1. maximizing the binary cross entropy is equivalent to maximizing the likelihood of
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a model’s ability to predict categorical labels

2. this measure rewards models which can both make accurate predictions, as well

as predictions with accurate uncertainties

3. binary cross entropy is differentiable with respect to the predicted probability

(whereas thresholded metrics such as accuracy are not), allowing the possibility

for gradient-informed optimization techniques.

Completeness / Recall Completeness (also called recall within data science and

machine learning circles) is pretty simple. Given a probability threshold, pthreshold com-

pleteness is then:

completeness =

∑
i 1ti=1 × 1pi>pthreshold∑

i 1ti=1
(7.17)

where 1 is an indicator function (1 if the subscripted condition is true, 0 otherwise),

and the subscript i refers to different samples which your model was not trained on.

Purity / Precision Similarly purity (more commonly called precision within data

science and machine learning fields) just changes the denominator:

purity =

∑
i 1ti=1 × 1pi>pthreshold∑

i
1pi>pthreshold

. (7.18)

The expressions above are defined for a single threshold, but we could imagine

incrementally increasing that threshold, and keeping track of how precision and recall

(or purity and completeness) evolve. This results in a parametric curve, called the
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Precision-Recall curve.

True Positive Rate / False Positive Rate Related are the true and false positive

rates. The true positive rate is actually just the completeness/recall:

True Positive Rate = completeness =

∑
i 1ti=1 × 1pi>pthreshold∑

i 1ti=1
(7.19)

while the false positive rate is new:

False Positive Rate =

∑
i 1ti=0 × 1pi>pthreshold∑

i 1ti=0
(7.20)

Just as above, we can create a curve of true positive rates and false positive

rates, parameterized by pthreshold. This results in a receiver operating characteristic

curve (typically just abbreviated as a ROC curve)4.

By defining these two curves (the Precision-Recall curve and the ROC curve),

we can explore the results of a particular model by only training it once, but then

considering a whole range of possible thresholds.

Areas under the curve (AUCs) When comparing multiple models, having access

to a full curve (either Precision-Recall or ROC) is often too much information; we want

a single value that defines the “power” of the classifying model. One category of metrics

that attempt this is areas under the curve (AUCs). This is simply the integral under

the Precision-Recall curve (the PR-AUC) or the area under the ROC curve (the ROC-

4For a good introduction to ROC curves and their many properties, see Fawcett (2006).
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model cross entropy PR AUC ROC AUC

RF 0.0068 0.47 0.972
i-mag ordering 0.0119 0.03 0.952

LR 0.0099 0.11 0.950

Table 7.1: A summary of our metrics for the traditional machine learning approaches
which only used reduced photometric data (not images themselves). The probability
for each galaxy comes from the cross-validation iteration in which that galaxy was in
the held-out validation set; this gives us a held-out probability for every galaxy, and
we compute these metrics using all of the galaxies. Although the i magnitude ordering
simply creates a rank ordering, we can estimate probabilities with a 1-feature logistic
regression model which preserves rank ordering.

AUC). For both, a higher AUC corresponds to a generally more powerful model. We

will show the AUCs in a few plots as a diagnostic, but we will not use it for our ultimate

model selection and evaluation. This is because these AUCs are not as useful as our

other options. Binary cross-entropy tests if probabilities are well calibrated while AUCs

only care about the rank ordering of the probabilities. Also AUCs are designed for

situations where you do not have a way to choose a specific threshold ; in cases where we

can, it is better to just look at the specific completeness and purity at that threshold.

7.4 Initial results

7.4.1 Random Forest Results

We begin by comparing the performance of the Random Forest model against

the alternatives (a logistic regression model using the same features, as well as a simple i-

band magnitude threshold as a classifier) in Figures 7.1 and Figure 7.2, with a summary

of the metrics given in Table 7.1. Clearly the Random Forest outperforms the competing

alternatives; for that reason, we will only focus on the Random Forest model from now
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Figure 7.1: A comparison of the traditional classifiers which use only reduced photo-
metric information. The Random Forest model clearly dominates the others at basically
any fixed completeness or purity level. (This plot is equivalent to a precision-recall plot
that is more common outside of astronomy.)
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Figure 7.2: Same as Figure 7.1, except now showing the ROC curve.

194



on.

While that purity-completeness curve is a convenient way to compare models,

it is not the best way to explore the results from a single model. That is because we

do not plan to use a fixed purity or completeness goal for choosing the threshold that

defines whether a galaxy is “selected” or not by the Random Forest. Instead, we are

driven by more practical limitations: we can only follow up (with a CNN or otherwise)

a certain number of objects.

Since a purity-completeness curve is simply a sequence of increasing more strin-

gent selection thresholds, the number of “selected” objects changes monotonically along

the purity-completeness curve. This means purity and completeness can be separately

parameterized as a function of the number of selected objects. Figure 7.3 shows this

visually.

Splitting the purity-completeness curve into two plots is very useful. Now if

we are considering a new follow up method capable of following a certain density of

objects, we can quickly look up how pure and complete the Random Forest selection

would be, without having to retrain anything.

In practice we choose to set a threshold corresponding to 103 selected objects

per sq. deg. This is large enough to theoretically allow every true dwarf to be selected (if

somehow our Random Forest could be improved to be optimal), while still being small

enough to be reasonable to process with the deep learning classifier5. This threshold is

denoted in Figure 7.3 with the vertical dashed line.

5This would correspond to roughly 106 selected galaxies across the entire HSC Wide layer, which
would take ∼ 1 TB to store.
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Figure 7.3: The purity-completeness curve of the Random Forest classifier, now pa-
rameterized by the number of selected objects at each threshold. This was trained over
a 2 sq. deg. area.
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Figure 7.4: A visualization of how well calibrated the Random Forest model’s pre-
dictions are. A perfectly calibrated model would follow the “ideal” range on the lower
panel; a perfect model would also separate the distribution in the top panel into two
delta functions at 0 and 1. The mean binary cross entropy is a measure of how well a
model has done both.
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Finally, it will be useful for us to consider a few other diagnostic plots. In

particular, I will look at how accurately the predicted probabilities reflect the uncer-

tainty of the model. In Figure 7.4, I first bin validation galaxies by their predicted

probabilities, then look at the purity within that bin (i.e., the actual probability that

any member matches our target).

Overall the probabilities look reasonably well calibrated, which is good. This

means that even if our model is not able to definitively classify an object, it can at least

indicate its uncertainty. This also leaves open the possibility that we might be able to

take the objects with the highest predicted probabilities and accept them as-is, without

any follow-up. So far we have chosen to follow up all objects above a simple probability

threshold (even the most-confident matches), but we note that this is a possible way to

improve the efficiency of the follow-up process.

When we measure the binary cross entropy of our cross-validated Random

Forest model, we find a value of 0.006868.

7.4.2 Convolutional Neural Network Results

We will look at the CNN results in two passes: first we will look at its perfor-

mance by itself (only look at objects which were selected for follow up), then we will

look at how it does in combination with the Random Forest.

In order to understand how the CNN is performing, the first diagnostic to look

at is the learning curve, shown in Figure 7.5. There we see the typical behavior: the

training loss is almost always lower than the validation loss, and although the training
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Figure 7.5: The learning curve of the CNN’s performance, comparing the loss over
the training set and the loss of the held-out validation set. (Both curves have been
smoothed using a 5-element box-car kernel to help see the underlying trend.) The
horizontal “initial bias” line shows how well we would do if we only knew what fraction
of the labeled training set was the desired galaxy type, and used that fraction as the
predicted probability for every galaxy in the held out testing set; this is what we would
expect if the CNN was not able to learn anything from the images.
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Figure 7.6: The ROC curve for the trained CNN, evaluated for just the validation
samples in our RF-selected subsample.

loss continues to decrease, the validation loss either plateaus or starts to rise again at

late times (indicating some level of overfitting). For the rest of the results, we will use

the state of the neural network after 200 epochs of training.

The training curve is the first indication that this model is learning useful,

discriminative features within the images, but still it is not quite as powerful as we

would like.

7.4.3 Combined Results

Here we combine the results from Sections 7.4.1 and 7.4.2 using the method

described in subsection 7.3.3 (i.e. Equation 7.14).
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Figure 7.7: The completeness-purity curve for the trained CNN, evaluated for just the
validation samples in our RF-selected subsample.

model cross entropy PR AUC ROC AUC

RF 0.00702 0.4822 0.97277
RF + CNN 0.00704 0.4816 0.97274

Table 7.2: A comparison of the metrics for the RF-only model and the model which
combines RF and CNN predicted probabilities. Note that the RF-only values do not
exactly match those in Table 7.1. This is because we did not create a cross-validated
version of the CNN, and therefore we do not have held-out CNN-predicted probabilities
for all of the best candidates—those only exist for about 20% (randomly selected) of the
best candidate population. These galaxies were upweighted by a factor of 5 (compared
to the non-best candidate population) to account for this, causing a minor difference
between these values and those in Table 7.1 which used equally-weighted probabilities.
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Figure 7.8: Same as Figure 7.2 and Figure 7.6, except now showing the ROC curve for
the “combined” (CNN and RF) prediction versus the purely RF prediction. The curves
are so close they are basically identical.
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Figure 7.9: Same as Figure 7.1 and Figure 7.7 except now showing the ROC curve
for the “combined” (CNN and RF) prediction versus the purely RF prediction. The
“random guessing” line has been omitted, as it would be down at purity=0.003.
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Figure 7.10: Same as Figure 7.4 except now comparing the probability calibration for
the “combined” (CNN and RF) prediction along with the purely RF prediction.
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When we do this, we can run through the same metrics as before. (Note: for

this step, since we do not have cross-validated CNN probabilities, we will not include

the 80% of the randomly selected training set. To compensate for this, we will up-weight

the CNN validation set by a factor of 5). These metrics are shown in Table 7.2.

The results are shown in Figure 7.8 for the ROC curve, Figure 7.9 for the

completeness-purity curve and Figure 7.10 for the probability calibration diagnostic

plot. The ROC curve shows basically no substantial difference, which is unsurprising

for such a class-imbalanced problem. The completeness-purity curve on the other hand

does show improvement for some thresholds. Unfortunately this improvement is at

relatively low completenesses, while we really would have preferred to see the largest

gains at high completenesses (& 80%). If we were to accept a final classification with

very low completenesses, it might be that we were choosing a relatively biased set of

galaxies; at high completeness, we can virtually ensure that we have as representative

of a sample as possible.

7.5 Conclusions

1. In every standard metric (ROC AUC, PR AUC, cross entropy), the CNN does

not add appreciably compared to just using the RF. Part of this is expected,

since by design, most objects are never passed through the CNN, so some of the

metrics will be dominated by galaxies which only have an RF score (and are thus

unchanged by adding the CNN). Still, for some metrics (especially the binary cross
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entropy), the contribution from RF-only objects is identical, so any difference must

be driven galaxies which have been passed through the CNN. Unfortunately, we

see a net decrease in performance as measured by the cross entropy. That means

that worsening would be even more clear if we only looked at the galaxies which

had been passed through the CNN (in particular, we would see a difference in the

cross entropy of ≈ 0.02 rather than 10−5 as reported in Table 7.2).

2. Still, many of the metrics above (specifically the AUCs) are for a range of final

probability thresholds. In reality, we will ultimately just care about a single thresh-

old. So even though on average the combined model might be worse, there are

certain regions where the combined model is better (see the purity-completeness

curve comparison in Figure 7.9). Unfortunately, the only locations that show sig-

nificant lift tend to be at very low completeness and very high purity. This region

is not great for our science, as it leaves open the possibility that the final selection

is strongly biased, but the general uninterpretability of neural networks means

we cannot easily understand the shape of the selection function. For example,

a hypothetical neural network that could perfectly identify cuspy dwarf galaxies

(but not cored galaxies) would have a region of 100% purity, but the network

would be worthless for a stacked lensing analysis, because it would not represent

the true dwarf population and we would not know how to re-weight or correct for

this biased selection.

So it appears that the combination of our data, our CNN architecture and our
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training method is too limited to add any useful predictive power. Where do we go from

here? There are a few (non-exhaustive) paths which we will explore in later chapters:

1. Artificially expand our training set using Generative Adversarial Networks (GANs;

chapter 8)

2. Truly expand our training set by designing a new narrowband survey to get more

labels for galaxies outside the COSMOS field. The main effort of this will be

continued by others in Alexie Leauthaud’s group, but in chapter 9 I will explore

two approaches of how machine learning can help clean up the sample identified

by a hypothetical narrowband survey (comparing the results from an RF and a

CNN).

3. Improve our CNN architecture. There are more powerful architectures in the

literature, and many of them come with publicly released pre-trained weights.

We can use transfer learning to start with an existing architecture and state, and

then adapt it for our use, rather than re-inventing basic architectures and starting

from randomly-initialized weights. This pre-trained approach will be introduced

in chapter 9 for use with the narrowband survey.
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Chapter 8

Data Augmentation GAN

This is primarily taken from my final project for UCSC’s CMPS290C: Ad-

vanced Topics in Machine Learning. We had hopes of turning this into a Research Note

of the AAS, but we never got a chance to tune it as much as would have been necessary,

since that was when the referee report for (Gentry et al. 2019) started taking more time

than hoped.

8.1 Introduction

Neural networks can be effective, efficient prediction models, but they generally

require a relatively large amount of training before they sufficiently converge.

The simplest approach to address this is to use multiple epochs through a

training set, allowing the optimizer to see each training example multiple times. Unfor-

tunately this can lead to overfitting: the optimizer might think it has found a correlation

between input data and output label that holds across multiple training examples, but
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in fact it has just seen the noise pattern from a single example multiple times. Fortu-

nately, this suggests a possible solution: at each epoch, change the training examples

so that their noise is less correlated between epochs.

These approaches to increase the effective size of your training data are termed

“data augmentation” transformations (Krizhevsky et al. 2012). Common examples

include affine/geometric transformations, and noise “whitening” (Krizhevsky & Hinton

2009), but care must be taken to ensure that these transformations do not change

the true label of the image. For example, when classifying handwritten characters,

applying a horizontal reflection to the letter “p” would require changing the label to

“q”—the label is not invariant to horizontal reflections. On the other hand, astronomical

images tend to have arbitrary axes, so the label should remain invariant to a horizontal

reflection. But the brightness of the main astronomical object relative to the noise might

be physically meaningful—this means the label might not be invariant to whitening

transformations, which would have been valid for handwritten characters.

So rather than rely on domain experts to define and implement the appropriate

transformations, it would be interesting to see whether neural networks could learn to

indefinitely generate new examples given a label, based off a finite training set size.

Using Generative Adversarial Networks (GANs) to generate these new exam-

ples is one method that has shown promise recently, but it is still unclear how generally

applicable this approach is. Shrivastava et al. (2016) had success when their GAN was

conditioned on a synthetic image, and the generated need only to learn to apply a noise

model to the image. Antoniou et al. (2017) relax the need to condition on an entire
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image, and instead only condition their GAN on a lower dimensional representation

extracted from an image. Both sets of researchers find that training their target neural

network on GAN-generated data can often improve results, but a key question remains:

Will this still work if we only condition on the target labels, rather than condition on

synthetic images or low dimensional representations of real images?

8.2 Data

We use images from the Hyper Suprime-Cam (HSC) survey (Aihara et al.

2018a), and labels from a galaxy catalog of the COSMOS survey (Laigle et al. 2016).

In particular we are interested in two labels for each galaxy:

1. redshift

2. stellar mass

From these, we create a derived label: is a galaxy closer than a threshold

redshift and within a certain low mass interval. Ultimately, we want a classifier that

can predict this derived label for new galaxy images.

The training dataset we have is relatively small. It consists of roughly 2000

images, each of which has 3 bands (gri), and is (50px)2. These images are each centered

on a specific galaxy, but there may be other background or foreground objects within

the field-of-view.

These galaxies are not an unbiased sample of the galaxies within the available

survey field—instead they have already been preselected as the galaxies most likely to
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be the targeted nearby and low-mass galaxies (see section 7.4). Most of the details of

this pre-selection are unimportant, but it is good to remember that it already took into

bulk features like the total brightness and the average color of each galaxy. This makes

our classification task more difficult, because the most useful discriminating information

has already been used. This does not complicate our validation, as we validate using

images with the same pre-selection function.

When training the GAN we will use all of the images, but when training the

classifiers we will hold out 20% of the data as a validation set. We ensure that the same

data is held out for the classifier trained on real images and the classifier trained on

GAN-generated images.

8.3 Architecture

8.3.1 GAN

The main focus of our project is on the GAN. In particular, we build a con-

ditional GAN that is conditioned on the two continuous labels: distance and mass

(transformed as redshift and log stellar mass, both standardized to have mean=0 and

standard deviation=1).

In this section we will broadly describe the GAN architecture and methods,

but more details and the code can be found on github1.

1https://github.com/egentry/galaxyCGAN/blob/master/gan.py

211

https://github.com/egentry/galaxyCGAN/blob/master/gan.py


y

z

Dense
Layers

Resize-
Conv

Layers 

xfake 

Figure 8.1: Overview of the GAN’s generator architecture, producing a fake image,
xfake

212



Generator The generator2 is a relatively standard conditional GAN. We concatenate

the conditional labels with a noise vector (representing a latent set of features that

should be add diversity even if the conditional labels are fixed). We then feed this input

through two fully connected (“dense”) layers, and then through two resize-convolution

layers. After each layer except the final layer we apply batch normalization and RELU

activation. We apply no activation to the final output layer. A visual summary of this

network is shown in Figure 8.1.

While deconvolutional layers might be slightly more common, we choose to

avoid them due to strong checkerboard artifacts in our GAN output. Following the

advice of Odena et al. (2016), we instead used a resize layer (using bilinear interpolation)

followed by unstrided convolutions.

Discriminator/Predictor The discriminator component of our GAN was much less

standard. In particular, it was both a “predictor” as well as a discriminator3.

The predictor component is uncommon but fairly straightforward. We feed

in an image (real or generated), and it outputs a prediction for the distance and mass

labels. It does this by first applying two convolutional layers (with batch normalization

and LRELU activation after each), and then applying two fully connected (“dense”)

layers (with batch normalization and LRELU activation between the layers, but not

after the final layer). A visual summary of this network is shown in Figure 8.2.

2https://github.com/egentry/galaxyCGAN/blob/9dbd59dad518a3454080a136d3ba4abdbc48b7fc/

gan.py#L168
3https://github.com/egentry/galaxyCGAN/blob/9dbd59dad518a3454080a136d3ba4abdbc48b7fc/

gan.py#L223
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Figure 8.2: Overview of the GAN’s discriminator/predictor architecture on an example
batch of 2 images.
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The motivation for this predictor component comes from Ravanbakhsh et al.

(2016), who were a mix of computer scientists and domain experts in galaxy imaging .

They found that the traditional conditional GAN architecture (Mirza & Osindero 2014),

which feeds the conditional label into the discriminator, performed well on categorical

conditional labels but not continuous conditional labels. When Ravanbakhsh et al.

(2016) switched to a predictor they claim they found better results. Anecdotally we

observed the same thing, but we are unaware of any rigorous study documenting this

or any theoretical justification for the predictor.

But we cannot completely get rid of the discriminator. Ravanbakhsh et al.

(2016) found that constructing a GAN with just a predictor and no discriminator often

leads to mode collapse, which we confirmed in our early testing. So we followed their

advice, and implemented minibatch discrimination (Salimans et al. 2016), which effec-

tively looks for correlations between images in a given batch. As input features for the

minibatch discrimination, we fed in the outputs from the final convolutional layer in

the predictor for an entire batch. The minibatch discriminator then creates a new set

of features for each image. The new features for each image are concatenated with the

features for each image that were input into the minibatch discriminator. Finally, for

each image, these combined features are passed through a single fully connected layer,

with a sigmoid activation, representing the probability that a particular image is real

or fake.
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Loss functions We used two primary types of losses: an `2-based loss for ŷ and a

cross entropy-based loss for p.4 In particular for the generator we minimize:

`2 (y − ŷ(xfake(y)))− λ log(p(xfake(y))) (8.1)

where x are features (in this case images), y are targets (mass and redshift), xfake(y)

is our generator conditioned on y, ŷ(x) is our predictor, and λ is a hyperparameter

weighting the two flavors of loss.

Similarly, for the discriminator/predictor we minimize:

max
[
0, `2 (y − ŷ(xreal))

]
− λ log(1− p(xfake(y)))− λ log p(xreal) (8.2)

Ravanbakhsh et al. (2016) recommended5 and briefly discuss this hinged-difference for-

mulation, but do not clearly show why this is necessary.

Finally, we minimized this system using Adam (Kingma & Ba 2014). We used

separate learning rates for the discriminator/predictor and the generator: .0001 and

.0004 respectively. We used parameters β1 = 0.5 and β2 = 0.999.
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Figure 8.3: Overview of the classifier architecture, predicting the probability p that
the image is of the target class.

8.3.2 Classifier

Fortunately the classifier is pretty standard. We used 3 convolutional layers,

with RELU activation, max pooling and dropout after each layer. Then we used 3 fully

connected layers, with RELU activation between each and a sigmoid activation after

the final layer. A visual summary of this network is shown in Figure 8.3.

The loss function for the classifier was the standard binary cross-entropy loss,

where a label=1 corresponds to “is a nearby, low mass galaxy” and label=0 otherwise.

We optimized the classifier using a learning rate of 0.001, β1 = 0.9 and β2 =

0.999.

4https://github.com/egentry/galaxyCGAN/blob/9dbd59dad518a3454080a136d3ba4abdbc48b7fc/

gan.py#L323
5Actually they recommend a slightly different version in the text (where they change the max operator

into a min and flip the “real” and “fake” terms), but we believe there to be an error in their text. The
loss function they wrote doesn’t match the behavior seen in their figures. We used the form written in
this report, which would better mesh with their figures, and which gave us much better results.
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Figure 8.4: Comparison of real images and GAN-generated images for z = 0.14,
M? = 108.51M�.

8.4 Results

8.4.1 GAN

Once trained (for 400-500 epochs) the GAN can make some galaxy images that

look believable (see Figure 8.4), but it does not show clear evidence of capturing the

correct trends with respect to the conditional labels (see Figure 8.5).

The failure of our GAN to properly capture the correlation between images

and the conditional labels suggests that our loss function is non-ideal. In particular,

it might be that we need separate weighting terms for each label getting combined by

the `2 loss. It could also be that we need a more complex loss function less susceptible

to outliers (which we know exist in our data, leading to strong non-gaussianities in the

label distributions). Finally, maybe it is simply a limitation of our small, pre-selected
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Figure 8.5: Comparison of how GAN-generated images scale with input conditional
labels. Note: this image uses a slightly different stretch function from Figure 8.4, but
that does not change the conclusions. Both rows show z ≈ 0.115 galaxies.
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Figure 8.6: Learning curve of our classifier trained on real images using traditional
data augmentation techniques.

dataset.

8.4.2 Classifier

In Figure 8.6 we show the learning curve of our classifier trained on real data

with traditional data augmentation. It exhibits the standard behavior: the validation

loss initially decreases, but then starts to flatten out. Near the end of the training, the

training loss continues to decline by the validation loss is starting to rise, indicating

over-training. We are not surprised that there can be overtraining, given the relatively

small training set size.

The more surprising behavior is seen in Figure 8.7, the learning curve of the
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Figure 8.7: Learning curve of our classifier trained only on GAN-generated images and
validated against only real images. Notice that the training loss is lower here, but the
validation loss is much better in Figure 8.6.
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classifier trained purely on GAN-generated images. In that case, the validation loss

basically never decreases; the network parameters are “optimized” to become worse

than their random initializations. The training loss typically thinks that it is doing

better than in Figure 8.6, but that is not useful for us.

Ultimately, training on fake images and validating on real images leads to

overtraining almost immediately.

8.5 Conclusions

Things we would try in the future:

• Training the GAN on a larger training set (even though it will not be balanced

the same as our validation set)

• More tuning to balance the different components of the loss function

Answer to our main question (from section 8.1):

• Training only on our GAN images led to clearly worse results than using traditional

data augmentation

Ultimately, using a conditional GAN for data augmentation worsened the per-

formance of the classifier. This is not too surprising. Although Figure 8.4 shows that the

GAN can sometimes make believable images, Figure 8.5 shows that it does not reliably

capture the expected dependence on the conditional labels. While we might be able

to improve this performance with more work, the key result is that it led to decreased

classification performance relative to traditional data augmentation methods.
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For this reason, our recommendation is to avoid using GANs for data aug-

mentation when you cannot condition the GAN on an input image or at least a lower

dimensional encoding on an image. Trying to condition just on a continuous label

did not provide enough information to allow the GAN to outperform using existing,

non-generated images.
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Chapter 9

De-confusing narrowband survey results

This chapter will move a little faster, now that we have covered the basics in

chapter 7.

9.1 Introduction

One question raised by our initial project was whether our CNN training set

(2000 galaxies from the COSMOS field) was too limited. We hope to gain some per-

spective on that question in two ways. First, it would be useful to do a classification

project which included a larger training set, in hopes of building intuition for how a

larger training set might change the “trainability” and behavior of the network. Second,

this will provide a useful step in the direction of gathering more dwarf galaxies through

a narrow band survey.

So first, a brief background on the survey concept. We want to identify a

sample of low redshift, low mass galaxies in the HSC fields. HSC has multiple photo-z
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estimators, but in the wide layer these estimators are limited by a lack of any narrow

band photometry. As shown in Figure 7.3, only having broad band photometry can go

a long way towards starting to select a sample, but it is not enough; broad bands can

only be coarsely sensitive to how much of a redshift has been applied to the galaxy’s

light and which spectral lines are now within a given observing band.

One possible way to improve this situation is by designing a custom narrow

band filter, and performing a survey across the sky using that filter. The idea is that any

galaxy which appears bright in this band (relative to its continuum flux, estimated using

the HSC broad bands) must have a strong emission line with an observed wavelength

within the band. Rather than having to take object-by-object spectra (or deal with the

complications of highly multiplexed spectrometry), we need only to take an image of a

field, and look for which objects are bright.

This method is not fool-proof though. In particular, if we construct a filter

targeting the Hα line for galaxies at z = 0.05− 0.15, we will also be sensitive to shorter

rest wavelength lines being emitted by higher redshift galaxies (e.g. OIII at λrest = 500.7

nm from galaxies at z = 0.38− 0.51). So how can we tell which situation is more likely

for a given galaxy?

We will attempt 2 approaches to leverage existing HSC data to classify narrow-

band selected galaxies as “target” or “contaminant” objects:

1. Training a RF using only reduced photometry and FRANKEN-Z photometric redshift

estimates
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2. Training a CNN using broad band images (and concatenating in the reduced pho-

tometric features and redshift estimates after the convolutional layers but before

the fully connected layers).

9.2 Data

For more details, see section 7.2.

9.2.1 Features

Random Forest The input features for the RF will be the same as in section 7.2:

i band magnitude; g − r, r − i, i − z, z − y colors; FRANKEN-Z photometric redshift

estimates.

CNN There will be 2 major differences between the features used by this CNN and the

one described in chapter 7. First, we will only use 3 imaging bands: g, i and y (giving

the broadest and most evenly-spaced wavelength coverage of the 3-band options). This

will allow us to use the convolutional blocks of a pretrained network (reducing the

number of training examples needed to constrain good weights in the network) which

are typically trained on 3-band (RGB) images; by using a pretrained network, we can

also use a significantly more complicated CNN architectures which would otherwise

greatly increase the number of free parameters we would need to constrain. The second

major difference in the data fed into the CNN is that after we pass the image through

the convolutional layers, we then concatenate in the 7 photometric features (i mag, the
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Figure 9.1: A visual representation of the “target” and “contaminant” populations.
Although there are galaxies which do not fall within either redshift range, we assume
they will not be selected by the narrowband survey, and thus would not be passed to
our classifiers and thus we filter them out of our dataset.

4 colors, and the 2 FRANKEN-Z photo-z features), and pass all the features to the fully

connected layers. This means that even though the images only contain 3 bands, the

network will still have some knowledge of all 5 bands.

9.2.2 Targets

The targets will be the same for both classifiers. In particular we will be

looking at the COSMOS field and will define a galaxy as being a “target” type if its
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Laigle et al. (2016)-estimated redshift is within z = .10 ± 0.05. In order to define a

“contaminant” population, I assumed the “target” population was identified using an

Hα sensitive filter (λrest = 656 nm) and that contamination would come from the OIII

line (λrest = 501 nm) and computed the relevant redshift range: z ∈ [0.38, 0.51].

Therefore, our dataset only consists of COSMOS galaxies with z ∈ [0.05, 0.15]∪

[0.38, 0.51], and the target-type population (z ∈ [0.05, 0.15]) are given the target value

t = 1 and the contaminant-type population (z ∈ [0.38, 0.51]) are given the target value

t = 0.

For a visual representation of these two populations, see Figure 9.1. That

figure makes it clear that unlike in section 7.2, stellar mass does not directly affect the

target definition for this project.

The precise filter width and central wavelength might change before the survey

is conducted (along with target redshift, “contaminant” population definition, etc.).

That is fine. The point of this project is to lay the groundwork for the future researchers

designing that survey.

9.3 Methods

Unlike in chapter 7, we will apply both classifiers to all objects for which we

could obtain both images and reduced photometry. There will be no “pre-filtering” by

the RF.
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9.3.1 Random Forest (RF)

Very little is different between the RF used in this project compared to the

one described in subsection 7.3.1. The biggest change is that we do not use a 10-fold

cross-validation approach here. The reason is that here since we are not using a 2-staged

approach (RF and then CNN), but rather are pitting the two models against each other,

we want to use same training set and testing set for both classifiers. While in theory

we could do the same cross-validation approach to get predicted probabilities for all

galaxies in our dataset, in practice we do not want to spend the computational time

training 10 different neural networks.

So as before we use an RF with 1000 trees, and then “soften” the predicted

probabilities by adding 1 pseudo tree which always predicts “true” and another which

also predicts false (in order to ensure the probability is never exactly 0 or 1).

9.3.2 CNN

This will have some significant differences from the CNN approach used in

subsection 7.3.2.

First, rather than defining our own architecture, we start with VGG-19, the

19 layer architecture produced by Oxford’s Visual Geometry Group (Simonyan & Zis-

serman 2014). There are 2 major sets of changes we make though. First, we change

the size of the 3 fully connected layers: we use fully connected layers of 128, 64 and

1 units respectively rather than their 4096, 4096, 1000 units (respectively). The last

layer must be different since we are doing binary classification while they were doing
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1000-class multi-class classification; the other two fully connected layers were chosen

fairly arbitrarily to match the fully connected layers used in section 7.3 (and to keep

the number of free parameters relatively small).

By using more convolutional layers (16 in VGG-19 as opposed to the 3 used in

section 7.3) we have greatly increased the number of free parameters (on the order of 107

convolutional kernel weights for VGG-19 compared to 104 for our previous architecture).

Rather than trying to re-learn all these weights from our limited dataset, we will take

advantage of their publicly released pre-trained network, trained on the ILSVRC-2012

dataset created by ImageNet (Russakovsky et al. 2015).

For this project we will keep all these convolutional weights fixed; we could

have instead used these pre-trained weights as initial conditions and then allowed our

optimizer to try to find better values. There are 2 reasons why we chose not to do

this: 1) initial tests hinted that trying keep these weights trainable led to initially

worse results and would require many more training epochs (and each epoch would take

significantly longer) than using fixed weights, and 2) by keeping the convolutional layers

fixed, we would only need to run each image through them once and we could cache

those VGG-19-extracted features for future training epochs (greatly speeding up training

time which was crucial as I neared the end of my time in graduate school).

The only downside to using the pre-trained convolutional layers of VGG-19 is

that they were designed to handle 3-band images, whereas we have access to 5-band

images. For this project, we will simply drop two of the bands (r and z, allowing us to

keep the biggest span in wavelength between g, i and y), but to partially compensate
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for this, we can concatenate in reduced photometric information for all bands after the

convolutional layers and before the fully connected layers.

The second major change is that after the convolutional layers but before the

fully connected layers we concatenate in the features used for the RF (i mag; g − r,

r − i, i − z, z − y colors; FRANKEN-Z best-estimated redshift and the associated risk

measure of that estimate). This only adds 7 features to the 2048 features extracted by

the VGG-19 convolutional layers (a 2x2 image in 512 filters, flattened to a length 2048

feature vector), but subsection 9.5.2 will show that concatenating in these additional

features dramatically increased the predictive power of the network. This extension

serves two purposes:

1. It demonstrates that it is possible to take non-pixel-based information into ac-

count when using a CNN-based classifier. In particular, this means that even if

you apply batch normalization to your images (a common preprocessing step in

machine learning) you can still make sure the neural networks is able to take the

overall magnitude into account when making its prediction. Similarly, you could

also rescale galaxies of different effective radii, but still explicitly give size-based

information to the network.

2. It ensures that the network has at least some information about all 5 bands, even

if it does not have pixel-level information for all bands.

So in summary, we use the pretrained, non-trainable convolution layers of

VGG-19 as a feature extractor. On top of those 2048 features, we add our 7 additional
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model cross entropy PR AUC ROC AUC

RF 0.40 0.68 0.82
CNN 0.43 0.64 0.80

Table 9.1: A summary of the results from our primary RF and CNN model.

features that were used for the RF training. Then we pass all the features to 3 sequential,

trainable, fully connected layers. The final result is converted into a probability using a

logistic sigmoid, and the network is trained using the Adam optimizer (Kingma & Ba

2014) which tries to decrease the binary cross entropy across the training set.

(For consistency with previous sections, I will continue to call this a “CNN”,

even though we are not training any convolutional layers.)

9.4 Results

We trained the RF classifier and the CNN classifier; the CNN-specific learning

curve is shown in Figure 9.2. We saved the CNN state at the 50th epoch (before

overtraining sets in), and used that state for the remainder of this chapter. We show

the purity-completeness curve in Figure 9.3, the ROC curve in Figure 9.4, and the

diagnostic probability calibration plot in Figure 9.5. In Table 9.1, we compare the

quantitative metrics of the two primary models (along with the models to be discussed

in section 9.5.

Overall we can see that both methods show a substantial ability to learn and

extract useful information from the training data. The RF outperforms the CNN, but

only slightly, and the CNN shows a substantial improvement in its ability to learn
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Figure 9.2: The learning curve of the CNN’s performance, comparing the loss over
the training set and the loss of the held-out validation set. (Both curves have been
smoothed using a 5-element box-car kernel to help see the underlying trend.) The
horizontal “initial bias” line shows how well we would do if we only knew what fraction
of the labeled training set was the desired galaxy type, and used that fraction as the
predicted probability for every galaxy in the held out testing set; this is what we would
expect if the CNN was not able to learn anything from the images. The model was
saved at the 50th epoch, and that state was used for the rest of the results.
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Figure 9.3: The purity-completeness curve for our two classifiers, trained and tested
on the same sets of galaxies selected by a hypothetical narrowband survey. The RF
classifier only uses the 7 features based on reduced photometry; the CNN classifier only
uses the 2048 features extracted by VGG-19.
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Figure 9.4: Same as Figure 9.3, except now showing the purity-completeness curve.
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Figure 9.5: Same as Figure 9.3, except now showing the probability calibration of each
classifier.
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model cross entropy PR AUC ROC AUC

RF 0.40 0.68 0.82
CNN 0.43 0.64 0.80

RF: no photo-z 0.42 0.65 0.80
LR: only photo-z 0.56 0.29 0.57

CNN without photometric features 0.53 0.40 0.64

RF with VGG (nsplit features = 1024) 0.43 0.64 0.79
RF with VGG (nsplit features =

√
nfeatures) 0.50 0.55 0.72

Table 9.2: An expanded version of Table 9.1 now including the results from our various
exploratory models

compared to the results in chapter 7. Whether that is due to the larger training sets,

the use of pretrained layers, or simply the more separated populations (we do not have

to separate z = z0 + ε galaxies from z = z0− ε galaxies for arbitrarily small ε) is difficult

to disentangle.

9.5 Additional Explorations

For the rest of this section, we will explore a few aspects of how these results

are affected by the choice of model architecture and input data. A quantitative summary

of results is given in Table 9.2.

9.5.1 The role of FRANKEN-Z redshifts in the RF

One question we frequently receive is why we need to construct our own

redshift-related estimators if HSC releases its own general purpose photo-z estimators.

In the problem explored in chapter 7, part of the answer is that our target also required

stellar mass information, but in this chapter we are only interested in redshift. Further-
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Figure 9.6: The purity-completeness curve for standard RF classifier along with the
two additional models described in subsection 9.5.1: RF without FRANKEN-Z photo-z
features, and logistic regression (LR) with only FRANKEN-Z photo-z features.
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Figure 9.7: Same as Figure 9.6, except now showing the ROC curve.
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Figure 9.8: Same as Figure 9.6, except now showing the probability calibration of the
classifiers. The photo-z only curve does not extend across the entire plot since that
classifier only predicts probabilities within the range 17-33% on the testing set.
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more, we only need to learn a single threshold in redshift, and the two population of

candidate galaxies are pretty clearly seperated in redshift.

This appears to be a time when we need only use the HSC photo-zs (specif-

ically the FRANKEN-Z estimator), but in practice we will find there is still great value

in constructing and training our own model that is targeted to our specific application,

rather than just relying on general purpose broad-band photo-z estimators. Nonethe-

less, as we will show in this section, including those general purpose photo-z estimators

as a feature to our model can provide additional predictive power compared to just

using the photometric colors and magnitudes.

To illustrate this, we ran 2 additional models:

1. We construct a logistic regression (LR) model using only the FRANKEN-Z features.

This effectively asks whether using the general purpose photometric redshifts alone

would be sufficiently powerful. We could have constructed a model that only looks

for a threshold in the estimated photo-z, but using a LR model lets us associate

probabilities with each prediction without significantly changing the interpreta-

tion.

2. We also construct a RF classifier with just the magnitude and color features (not

including the 2 FRANKEN-Z features used by the reference RF). This provides an

ablation test, so that we can isolate how much the photo-z features contributed

to the overall performance of the RF.

In Figure 9.6 we show the purity-completeness curve for these classifiers along
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with the standard RF classifier, and in Figure 9.7 we show the ROC curve. Clearly just

using the photo-z features by themselves provides very poor results for this particular

application. However these these features do provide value, since when we remove them

from the RF, we see a small but clear decrease in performance.

This shows the value of preprocessing features, even for machine learning meth-

ods. This might not be expected for two reasons: 1) the FRANKEN-Z uses the same input

photometry as our ablated RF; therefore, it does not provide any “new” information,

it just transforms it, and 2) a RF (given infinite training data and computational re-

sources!) should be able to learn any transformation of the data (as opposed to methods

like logistic regression that can only learn linear decision boundaries). But for finite re-

sources, RFs still have their limitations; in particular they only branch along the axis

directions of the feature space. So in practice, having additional features which are

pre-transformed to be more readily useful can still add predictive power, even if those

features do not add any truly new information.

9.5.2 Concatenating photometric features into CNN

As mentioned in subsection 9.3.2 we are taking the slightly unusual approach

of inputting multiple types of data into our CNN: we first pass in a 3-band image into

the convolutional layers, but then also concatenate reduced photometric features after

the convolutional layers but before the fully connected layers. Even though this only

adds 7 features to the 2048 extracted by VGG-19, it leads to a significant improvement in

performance, as seen in Figures 9.9-9.11 and in Table 9.2. Similar to the results in the
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Figure 9.9: The purity-completeness curve for standard RF classifier and the standard
CNN classifier, along with a CNN classifier without the photometric features concate-
nated in before the fully connected layers.
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Figure 9.10: Same as Figure 9.9, except now showing the ROC curve.
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Figure 9.11: Same as Figure 9.9, except now showing the probability calibration of the
classifiers.
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Figure 9.12: The purity-completeness curve for standard RF classifier (which only
had access to our 7 reduced photometric features) as well as two feature-augmented
RFs which also had access to the VGG-19-extracted features, and our CNN. (The blue
curve represents an RF that used the standard feature selection scheme, which selected
b
√

2055c = 45 candidate features for each split, and the orange curve represents an RF
that selects 1024 candidate features for each split.)

previous experiment, subsection 9.5.1, we find that adding in expert-designed and pre-

transformed features can help make it easier for a model to make powerful predictions,

even if those features do not actually include any new information.
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Figure 9.13: Same as Figure 9.12, except now showing the ROC curve.
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Figure 9.14: Same as Figure 9.12, except now showing the probability calibration
diagnostic. The blue curve representing an RF with VGG-19 features and the standard
number of features at each split (b

√
2055c) cuts off early because it does not predict a

probability greater than 73% for any object.
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9.5.3 RF augmented by CNN-extracted features

Thus far, it appears that adding more features to models is always better, and

a RF is more powerful than the CNN. From these observations we generate a hypothesis:

the best performance would come from combining the 2048 VGG-extracted features with

the 7 photometric features, and passing all of them into a new RF classifier. The

results are shown in Figures 9.12-9.14. (For reasons about to be discussed, we actually

created 2 RFs, one which followed the default hyperparameter of randomly selecting

nsplit features =
√
nfeatures features of the total possible nfeatures at each branch of each

decision tree (the features are selected independently at each split; they are not the

same chosen features), and another RF which considered nsplit features = 1024 randomly

selected features.

The first thing that we can see is that the RF using the default hyperparameter,

nsplit features =
√
nfeatures, suffers a significant decrease in performance, even though

it has access to strictly more information. One major reason why adding additional

features might decrease RF performance is due to the randomness purposefully added

to the process of constructing branches. Each branch randomly selects a subsample of

candidate features and from those candidates, chooses the feature that allows for the

most informative split. Typically, the number of features randomly considered for a

given branch is the square root of the total number of features. This means that if we

start with a set of low noise, high value features and start adding additional high noise,

low value features, the first few added features will not significantly change things. We
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will still randomly select roughly the same number of “good” features, and when a

“low value” feature is chosen, it should not have the most informative split, so it will

not become the actual branch in the tree. But as the number of low value features

increases (for a fixed number of “good” features), it will become more likely that all of

the candidate features will be low-value features (since the number of candidate features

scales sublinearly with the total number of features), resulting in less informative splits.

So by adding 2048 features that each included a low but non-zero amount of information,

they swamped the 7 higher value features, resulting in worse performance.

Fortunately, this should not be too difficult to solve: if the problem is just

that the number of candidate features scales sublinearly with number of features, we

could just choose a different scaling. When we just manually tell the RF to consider

1024 features at each split (leading an average of 3.5 of the non-VGG-19 features be-

ing considered in each split, compared to the 2 non-VGG-19 features considered by our

non-VGG-19 classifier), we find better results than the model using the default hyper-

parameter, but still worse than the RF with no VGG-19 features (see Figures 9.12-9.14

and Table 9.2).

So there is still some degradation of performance due to the additional fea-

tures. Whether this is “overfitting” or not depends on how you define overfitting. For

instance when we look at Figure 9.14, we can see that the problem is not that the

model is over-confident; particularly at high probabilities the model is actually under-

confident. On the otherhand it is not simply a matter of our probabilities needing to

be scaled or stretched monotonically (without changing the rank ordering); the ROC
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and purity-completeness curves and their respective AUCs are invariant to monotonic

transformations of probability, yet still they all indicate that adding the VGG-19 features

hurt performance.

In practice, overfitting with RFs can be difficult to deal with. One approach

would be to use the out-of-bag samples (not chosen by the initial bootstrap for a given

tree) to estimate how well the tree performs, and “boost” (i.e. weight) the tree according

to its performance. Another approach is to perform something like permutation feature

importance. In that case, you would randomly permute the rows of a given feature in a

training set (enforcing that the value of that feature is independent of the label), retrain

the model, and see how well it performs on held-out data. Features are then only kept

if the performance noticeably decreases when that feature is permuted. Unfortunately,

both of these options go beyond the scope of this mini-experiment.

No matter what, this is an indication that our current methods could be im-

proved upon. When we add additional information, we see a decrease in performance.

9.6 Future work: allowing greater-than-3 band images

In subsection 9.3.2 we explained that in order to use many of the most-common

pre-trained CNN architectures, we can only pass in 3-band images, which is probably

suboptimal given that we have access to 5 bands of imaging data. In order to make

use of all those bands, we have outlined two main possibilities, but did not have time

to explore them in depth within this thesis. Therefore, we will simply point out these
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options, and leave precise tests for future work.

9.6.1 Run pretrained feature extractors on multiple permutations of

bands

In our standard CNN, we use the convolutional layers of a pretrained, fixed net-

work to extract features from an image made of a particular choice of 3 bands. Typically

we only concatenate these features with the features extracted by the HSC photomet-

ric pipeline, but there is no reason why we could not concatenate other convolution-

extracted features from different choices of 3-bands (e.g., concatenate the features ex-

tracted from a gri image with features extracted from a izy image).

This approach has the benefit of clearly giving the final classifier (an RF, a

set of fully connected layers, etc.) access to all wavelengths. Furthermore, this method

retains the ability to extract features once per image per combination of bands, and

cache the convolution-extracted features to speed up subsequent training epochs.

The main downside of this approach is that it greatly increases the number

of (potentially correlated, low-information) features, and in subsection 9.5.3 we showed

that that can decrease the performance of a classifier (in that case an RF). Therefore, we

need to keep in mind that by adding more wavelength information, we might actually get

worse results if the classifier cannot properly deal with an increased number of low-value

features (through feature selection, regularization, boosting or some other method).
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9.6.2 1x1 convolutions

This idea is active before passing any images into the pretrained layers. The

idea is that we need, for each pixel, to go from Nbands (in this case 5) to 3 bands;

in other words, we need to perform a version of pixel-wise dimensionality reduction.

In other areas of convolutional neural network architectures this is often accomplished

using “1× 1” convolutions. In some sense, “1× 1” and “convolution” are contradictory,

but it shows how it is an extension of true convolutions. True convolutions take a

Npix×Npix×Nbands, in patch, perform a tensor multiplication with a size Npix×Npix×

Nbands, out learned weight matrix, producing a length Nbands, out output spaxel. A “1×1”

convolution follows this approach, but simply using a 1 pixel × 1 pixel receptive field.

Said another way, we simply perform a pixelwise matrix multiplication:


Rout

Gout

Bout

 = W



gin

rin

iin

zin

yin


+ b (9.1)

where we have passed in a 5-band pixel (grizy surface brightnesses) and are converting

it into an RGB-like pixel using the learned weightsW and b (and optionally a non-linear

activation function).

This model has many benefits. First, is that it includes the approach we took
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of just choosing the yig bands and setting them as RGB respectively. If that truly is the

best approach, then this model should be able to find the b = 0 and a suitable projection

matrix for W . (In fact, we recommend using this as a well-motivated initial condition.)

But completely throwing away 2 bands of information is probably not optimal, so this

model can also learn more complex combinations, while only increasing the number of

free weights by 5× (3+1). Since the number of weights is relatively small, we could also

probably afford to chain together multiple 1× 1 convolutions, in order to give access to

more non-linear transformations of our 5-band pixel.

Unfortunately there are a few downsides to this model. The largest is that this

increases the computational costs significantly. By choosing a fixed (rather than learned)

transformation (i.e. a projection) and by fixing the convolutional layers, we only need

to run each image through the convolutional layers once. We can cache these results,

greatly speeding up the run-time of future training epochs. By adding a learnable layer

before the fixed convolutional layers, we still need to pass every image through the full

CNN during every epoch. (It also means we need to propagate derivatives through the

entire pretrained network in order to reach the early 1×1 convolutional transformation,

even if the pretrained network is being held fixed). In practice this means using 1 × 1

convolutions are probably not practical for very training data-starved regimes, but might

still be useful in more intermediary regimes where we do not have enough data to fully

train a VGG-19-like architecture from scratch (and thus want to start with pretrained

weights) but do have enough data so that we already plan to leave the VGG-19 trainable

(in order to best adapt to our astronomical images, which likely look different from the
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ImageNet images). In that case, the cost to add a 1 × 1 convolutional layer is trivial

compared to the potential gain by not throwing out 40% of our data. Finally, this is

not a contrived example; in order to infer metallicity from SDSS images, Wu & Boada

(2019) chose to start with a pretrained CNN and allowed it to be trainable, but had to

throw out 2 of the SDSS imaging bands since the pretrained network would only accept

3 input bands.

While we do not present an in depth study here, we have run some initial tests

on a different problem1, and can share some intuition of our finds. In that test, we tried

to extend the analysis of Wu & Boada (2019); they simply dropped 2 SDSS image bands

and passed in the remaining 3-band image to a CNN trained to predict galaxy metallic-

ity. When we instead prepend a 1× 1 convolutional layer and pass a 5-band image into

that layer, we found a slight but significant improvement in performance. The reason

why we never published this result is because even our improved result never actually

matched the performance claimed by Wu & Boada (2019). The biggest difference I can

think of is that my method use a more standard, less complex optimization approach,

whereas theirs appears much more hand-tuned (allowing certain layers to only be train-

able during training epochs, using complicated functions for changing learning rate as

training progresses, etc.). This seems to suggest that while 1× 1 convolutions might be

an easy way to get some improvements, focusing instead on optimization schemes might

lead to better final results (even if it potentially takes more time / experimentation).

1https://github.com/egentry/one_by_one
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Chapter 10

Conclusion

Ultimately using CNNs has been less successful than we would have hoped. In

almost every application, just using a Random Forest trained on reduced photometry

was more powerful, easier to set up, and easier to get the relevant features (querying

and downloading a single table, rather than downloading millions of fits files). When we

started we did not know that a CNN would be significantly helpful (since there was no

guarantee that a 5 band, broad band image contains much information about redshift

or stellar mass of a galaxy), but we had at least hoped it would provide some benefit

above using simple photometric features.

General suggestions for applying machine learning in astronomy Overall,

if the goal is to get good results, I would definitely recommend first starting with

non-deep machine learning techniques. As I have shown, Random Forests can be one

powerful method, but there are plenty others that might work just as well. It helps
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being able to have some non-linearity in the decision boundaries (as opposed to, e.g.,

logistic regression), but there are plenty of other approaches not explored in this part

such as support vector machines.

However, if you are going to use a deep-learning model, before spending a lot

of time setting up a deep learning model, I would recommend testing if you would be

able to make the desired inference/prediction by eye. It does not have to be perfect;

but deep learning will often do best when it is a task that a human eye/brain could

do, but would take too long (e.g. Huertas-Company et al. 2015 predicting visual-like

morphologies for galaxy images). There are certainly times when a CNN might be able

to learn something your eye would not, but if your eye cannot do it, it might be a

warning that training a CNN will be a challenge.

Relatedly, people often ask “how many training images do I need in order

to use a CNN?”. If the desired target is strongly imprinted on the morphology of the

target, just a few example images might be enough (using a pretrained, fixed network as

a feature extractor, and then passing those features to a traditional, non-deep machine

learning model). In more typical cases, it appears that ∼ 103 images is not enough to

learn a significant amount (subsection 7.4.2, but by ∼ 103 we do start to see much more

noticeable amounts of “learning” (subsection 9.3.2).

Since some astronomy training sets are relatively limited in size, it might be

valuable to have a broader set of CNNs trained on large astronomical datasets and

publicly released for use as pretrained networks. This would not be perfect; astronomical

data can be pretty heterogeneous, especially when it comes from different observational
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facilities and is intended for different scientific applications. Still, many astronomical

studies using deep learning release neither source code nor trained network weights

(for example, in this thesis we have mentioned the works of Huertas-Company et al.

2015, Hoyle 2016 and Wu & Boada 2019, and none of them release either source code

or final networks). Rather than always having to start from scratch or always trying

to “transfer” learning from networks trained on ImageNet, it would be useful if the

community did a better job of being open with source code and results.

However, that is not yet the case; at the moment, one of the best options for

training a CNN on astronomical images is still to download a large number of astronom-

ical images (> 105). In my experience, some surveys do a much better job of making

this possible. For example, SDSS, even though it is a relatively older survey, makes it

relatively fast and reliable to download large amounts of data via Globus. (I do not

remember exactly how long it took, but within a few days I could download 5-band fits

images for ∼ 2 × 105 galaxies.) On the other hand, that can take weeks for the HSC

survey which requires that you download each band of each image individually using

HTTP requests. Compared to datasets like ImageNet, it is not unreasonable to want to

gather half a million training images, but the data engineers for current surveys have

not all caught up to these modern needs.

Project-specific recommendations Here are some more complicated machine learn-

ing techniques that I would have been interested in trying if I had more time:

1. Improving the GAN approach of chapter 8. In particular, others have had more
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success when you also condition on/feed in a lower-dimensional representation of

the image such as the latent state from an image auto-encoder (e.g., Antoniou

et al. 2017). In chapter 9 we showed how to use VGG-19 as a morphological

feature extractor—perhaps conditioning on something like those features, thus

provide a lower-dimensional representation of the image, would prevent the GAN

from learning the incorrect scalings that we observed?

2. Replacing the RF pre-filter of chapter 7 with a fully-connected neural network.

Train both simultaneous, so that an example galaxy always starts with the fully-

connected network with access just to the photometric features. If the network

is too uncertain, pass in the image data to a CNN, but add a penalty to the

overall loss function (so that the network does not try to ask for images from

every galaxy). Perhaps by training both at the same time, the first “pre-”network

will learn when it is or is not useful for the convolutional network to see the full

image, unlike our RF which has no knowledge of the “post-”filtering network.

More generally, I think it would be useful to try to pretrain the convolutional

layers of our network on a large astronomical dataset, even if this pretraining was

done with a different target and slightly different population of galaxies compared to

the “real” application we have in mind. The motivation for this is twofold. First,

it is a direct example of “transfer learning” but now starting with a network trained

specifically on astronomical images, rather than pictures of cats and dogs. Secondly,

it is partially inspired by the ImageNet dataset and the results of networks trained on
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that dataset. In particular, although that dataset contains millions of images, there

are thousands of categories, meaning that an average category can only have roughly

a thousand training examples, yet still CNNs are able to learn remarkably well. If our

goal was to only predict between 2 categories, we would expect the ∼ 2000 training

images would be far too few to train a useful CNN, but by adding ∼ 1000 classes

to the training process (which might seem like nuisance, uninteresting classes), the

network tends to become better at differentiating between the 2 original, “interesting”

classes. So in subsection 7.3.2, by only training on the pre-filtered images we might

be limiting the network’s possible performance. If we instead tried to first train our

convolutional layers on general astronomical relationships (such as photo-z estimation

or morphology classification), or trained our classifier on the full COSMOS field (even

though we would only apply it to a pre-filtered population in production), maybe our

network would be able to learn more about the differences between galaxy images, even

though the additional images or training are not directly relevant to our primary task.

Recommendations for students interested in data science and machine learn-

ing jobs in industry And finally, even if our deep learning models were not as pow-

erful as we would have liked, it was still extremely useful for my own career development

to have gained this deep neural network experience.

In order to get my first internship, I needed

• A basic understanding of common (non-deep) machine learing models and metrics.

Basically you should be able to have someone give you a dataset (structure as a
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table with the features as columns and the observations as rows) and you should

be able to do something “interesting” with it (e.g., use a few columns to predict

another, and give a quantitative metric of how good your model was). For this,

learning to use scikit-learn is a good start; taking CMPS 242 will help you

understand the models better, but was not strictly necessary.

• A basic understanding of statistics. Being able to code with scikit-learn learn

is not enough if you do not understand how probability works. For example, one

interview question simply asked “If I give you the result of N coin flips, how

would you predict the result of the next flip?” and wanted to see if you could

reason about it in a structured way. Just coming up with “intuitive” heuristics

(like using the mean) is an okay start, but they often want to see if you have a

good enough understanding to then figure out how to estimate uncertainties on

your prediction. For this, I found AMS 206 very useful; it will teach you how to

approach the problem the way a statistician does. I think further classes could be

useful in being able to come up with statistically-motivated extensions to existing

machine learning models, but is probably not necessary for passing the inverviews

• Connections. I cannot stress this enough: connections at these companies are

incredibly useful for getting your first job. Most recruiters have never met an

astronomer, and some do not know UC Santa Cruz exists. This means that you

will often look like a very risky hire, unless you have someone on the inside willing

to recommend you. Reach out to the network of UCSC alumni and do not be
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shy about asking for those alumni to put you in touch with other people in their

network.

After you get your first job or internship in industry things become much

easier. It is pretty common to recieve a job offer from the company of your internship.

The biggest question then shifts to what kind of a job you want. There are so many

different paths (non-deep data scientist, data engineer, machine learning engineer, data

analyst, etc.); I will not get into a comparison of them here. Instead, I will add a few

thoughts on how to get the best-possible deep learning scientist job given my experience

so far.

In order to really stand out as a machine learning scientist, I would suggest:

1. Get experience using both deep learning and traditional machine learning. Very

few places want someone who can only do deep learning; on the other hand, very

few “cutting edge” jobs avoid deep learning currently.

2. Do something creative with deep learning. Taking CMPS 290C is a good way to

get started with this. For example, come up with some statistical extension to

existing deep learning technique and apply it to some astronomical data. (Ideally

you would get a scientifically interesting result, but if not, the practice experience

is the most directly useful component anyway.) Make a well-designed github repo

highlighting your work; maybe even a simple webpage as part of your portfolio.

Get down a 5 minute pitch, aimed at computer scientists; the goal is for you to

be able to go into an interview and have the interviewer feel like they came out
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having learned something new.

3. Publish a conference paper at a machine learning conference. Example confer-

ences: Neural Information Processing [NeurIPS], Computer Vision and Pattern

Recognition [CVPR], or Knowledge Discovery in Databases [KDD]). Preferably do

this before you go on the full-time job. While it is still good if (2) gets published

in an astronomical journal (even as a Research Note) it can be far more valuable

to publish at a machine learning-specific venue for at least 2 reasons. First, some

job postings now use this as a criterion to help filter/sort for “promising” candi-

dates; only publishing in ApJ might not cut it. Second, these conferences can be

valuable for networking, both with recruiters and prospective coworkers.

As a reminder, you can still get a good job without doing these things, so do

not worry too much if you have not done these things. (I certainty did not do all of them

and still feel that I got a good job.) I simply offer these ideas as retrospective advice if

anyone is thinking about this pathway early in their grad career and wants to optimize

their prospects for getting into big name labs or cutting edge research positions (for

which I was not ideally positioned).

And finally, of course, talk to others and get their advice too; I only have a lim-

ited amount of experience so far. Others might be able to provide different experiences

and different angles.
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Appendix A

Clustered SNe I appendix

A.1 Code Verification

A.1.1 Sedov Verification

The mass and energy of each supernova is injected into the innermost zone,

with all the energy injected as thermal energy. This is not a realistic configuration; at no

stage do we expect a uniformly mixed sphere, on the order of 0.1 parsecs in radius, which

is over-pressured but not yet expanding. Given these convenient but unphysical initial

conditions, we need to verify that our system will evolve into a realistic configuration.

We can look at an early time snapshot of a single SN simulation to verify that

the system accurately relaxes into a physical configuration. At early times, cooling losses

should still be negligible, so we expect our system to be in the Sedov phase. Figure A.1

shows a snapshot of our numerical results, compared with the analytic Sedov prediction.

There is a noticeable overdensity at inner radii, but this is to be expected: the analytic
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Figure A.1: Comparison of our numeric results (solid line) against the analytic Sedov
solution (dashed line) for a ρ = 1.33 × 10−3 mH cm−3, Z = Z�, Mcluster = 102 M�
(NSNe = 1) cluster, at t = .17 Myr.

Sedov solution assumes no ejecta mass, whereas our simulation includes ejecta mass.

The extra ejecta mass appears as an overdensity at inner radii. Excepting that, our

simulation is in good agreement with the Sedov prediction so we consider our injection

scheme valid.

A.1.2 Thornton et al. Verification

We also verified our code against the results of Thornton et al. (1998), who

measured the total energy from single SNe. We ran single SN simulations at the same

background conditions as Thornton et al., fixing the SN ejecta mass to be 3 M� with

265



an ejecta metallicity equal to the background metallicity, and extracting results at the

same time as Thornton et al.. We compare our simulations to the model provided by

Thornton et al. in Figure A.2 and Figure A.3.

We judge that our residuals are comparable to the residuals present in the

data of Thornton et al., and we are not surprised that there are discrepancies. We

use different initial conditions: our simulation injects all of the SNe energy into the

innermost zone as thermal energy, while Thornton et al. spreads the energy across

150 zones, and adds some of it as kinetic energy. We were able to use different initial

conditions because we used different hydrodynamic solvers: Thornton et al. uses a

finite-difference method which cannot handle the strong shock that occurs by injecting

all the energy into one zone, while our finite-volume method is much more robust to

these strong shock conditions. Finally, we use a cooling package that differs from the

cooling function used by Thornton et al.. All these differences lead us to expect the

minor discrepancies between our results and the results of Thornton et al..
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Figure A.2: Verification that our code can reproduce the results of Thornton et al.
(1998), for total energy contained within the SNR (ER,tot) at the completion time defined
by Thornton et al. (1998).
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Figure A.3: Same as Figure A.2, but now with total energy as a function of metallicity.
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Appendix B

Clustered SNe II appendices

B.1 Sensitivity to Initial Perturbations

In the fiducial 3D simulations presented in the main text, we set up the initial

GIZMO particle positions by placing them in a uniform grid and then randomly perturbing

each particle position using a Gaussian kernel with a dispersion of 10−3 times the initial

spatial resolution. This results in an uncorrelated artificial density perturbation with

a standard deviation of about 2 × 10−4 times the mean density as inferred by GIZMO’s

density solver, regardless of resolution.

In order to understand the effect of this perturbation, and how our results

depend on its magnitude and whether that magnitude scales with resolution, we rerun

a subset of our simulations with an additional perturbation. In addition to the artificial

coordinate-based perturbation, we apply a “physical-like” perturbation field directly to

the particle masses and densities. To realize this, we generate a white (uncorrelated)
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Gaussian perturbation field with a magnitude of 5% of the mean density sampled on the

grid of our highest resolution completed simulation (3D 10 HD). For our lower resolution

runs, we average the perturbation over appropriately larger apertures, matching what

should happen if this were a physical perturbation. This averaging results in a decreas-

ing perturbation magnitude at worsening resolution, but the magnitude is always at

least a factor of 25 larger than the standard coordinate-based perturbation, and the

power spectral density of the perturbation is the same at all resolved scales in all sim-

ulations. This resolution-dependence is a key difference from the artificial perturbation

in our primary runs which has a magnitude that does not change with resolution. This

process also introduces minor spatial correlations, as some higher resolution particles are

equidistant between lower resolution particles, and their perturbation must be shared

between multiple lower resolution particles.

In Figure B.1, we show the results of rerunning our three completed 3D HD sim-

ulations (3D 10 HD, 3D 20 HD, and 3D 40 HD) with these alternative initial conditions.1

We find that the details of the initial perturbation has very little effect compared to

changing the resolution; increasing the perturbation magnitude by a factor of more than

25 has a smaller effect than increasing the spatial resolution by a factor of 2.

1The variant of 3D 10 HD with the additional perturbation has only been run for about 15 Myr due to
its computational cost, but we do not expect our conclusions would change if it were run to completion.
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Figure B.1: Comparison of the momentum evolution of our completed 3D simulations
(3D 10 HD, 3D 20 HD, 3D 40 HD), and similar simulations with an additional, stronger
perturbation with magnitudes that correctly scale with resolution.
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B.2 Simulation 3D 40 HD as an outlier at early times

In the resolution study (e.g. Figure 3.2) we see that the momenta of our sim-

ulations are well-ordered with respect to resolution at late times but that between the

second and third SNe our lowest resolution simulation (3D 40 HD) has more momentum

than our highest resolution simulation (3D 07 HD). We conjecture that this anomalous

behaviour of 3D 40 HD is related to our SN injection method. As noted in subsec-

tion 3.3.1, a typical SN is added using only ∼ 5 new particles in 3D 40 HD, leading to

an undersampled injection kernel. While it is not clear precisely why undersampling

would lead to a systematic increase in momentum, it is strongly suggestive that our

simulations start behaving differently right as we hit the resolution limit of one of our

methods.

Fortunately, this does not appear to affect our late-time results or our major

conclusions. At early times, we recommend treating 3D 40 HD as an outlier, in which

case the momentum will be monotonic with respect to resolution at effectively all times.
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Appendix C

Clustered SNe III appendix

C.1 Convergence in the simultaneous energy injection method

As seen in Figures 4.5 and 4.6, even at high resolution the simultaneous energy

injection method does not necessarily converge towards a deterministic result. In this

section we will discuss the source of this behaviour, which touches on the limiting

properties of the model with respect to several key parameters: mkernel, Nngb, ∆ε. And

while there are many ways we could look at the convergence of this method, we will

focus on the distribution of the injected energy.

First, let’s look at the mean of the distribution. By design, if mkernel∆ε ≥

NSNeEblast, then the method will be unbiased. (If that condition is not true, then the

method becomes deterministic and will always inject too little energy, so we will assume

an appropriate value of ∆ε has been chosen for the remainder of this section.)

The more interesting quantity is the variance of the injected energy. For this
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method, the fractional variance is:

var

(
∆E

NSNeEblast

)
=

(
mkernel∆ε

NSNeEblast
− 1

)∑
i

(
m2
i

m2
kernel

)
(C.1)

var

(
∆E

NSNeEblast

)
≈
(
mkernel∆ε

NSNeEblast
− 1

)
N−1

ngb (C.2)

where the second form holds for resolution elements of similar mass.

This shows that so long as mkernel∆ε > NSNeEblast, the method remains

stochastic. The only way to ensure true determinism while remaining unbiased is to

chose a ∆ε such that mkernel∆ε = NSNeEblast. While this might work for some methods

(those with a fixed kernel mass and with an identical NSNe per cluster) it does not work

for all (such as those with varying mkernel, stochastic number of SNe per clusters, or

those with mkernel so large that ∆ε does not correspond to heating the gas beyond the

peak of the cooling curve).

But there are still some cases in which this method converges towards a de-

terministic result. In particular, for fixed mkernel, as Nngb increases, the variance will

approach 0. But in practice, it is typically mkernel that is improved, while Nngb is held

fixed. We can see that that will also lead to a decrease in variance, but will eventually

hit the limit mkernel∆ε = NSNeEblast if ∆ε is not raised (which increases the variance).

When designing this method to apply across a large range of scales, the best

we can do is prescribe how the variance should depend on resolution and total blast

energy. For instance, if we set a minimum variance at high resolution (i.e. fixed the

ratio of mkernel∆ε/NSNeEblast) then the injected energy would converge to a distribution
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and always remain non-trivially stochastic (e.g. the right panel of Figure 4.5 shows

how energy is distributed as a scaled binomial for our implementation). If instead

we adopted a different function for ∆ε(mkernel, NSNe), we could force the variance to

shrink to 0 as resolution increases, resulting in a delta function for the distribution of

injected energy. Dalla Vecchia & Schaye (2012) do not specify a recommended form

for ∆ε(mkernel, NSNe) at high resolution, so the the exact behaviour will depend on the

particular implementation.
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