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ABSTRACT 

Background: Automated segmentation of the placenta by MRI in early pregnancy may help 

predict normal and aberrant placenta function, which could improve the efficiency of 

placental assessment and the prediction of pregnancy outcomes. An automated segmentation 

method that works at one gestational age may not transfer effectively to other gestational 

ages. 

Purpose: To evaluate a spatial attentive deep learning method (SADL) for automated 

placental segmentation on longitudinal placental MRI scans.  

Study type: Prospective, single-center. 

Subjects: 154 pregnant women who underwent MRI scans at both 14-18 weeks of gestation 

and at 19-24 weeks of gestation, divided into training (N=108), validation (N=15) and 

independent testing datasets (N=31). 

Field Strength/Sequence: 3T, T2-weighted Half Fourier Single-shot Turbo spin-echo (T2-

HASTE) sequence. 

Assessment: The reference standard of placental segmentation was manual delineation on 

T2-HASTE by a 3rd-year neonatology clinical fellow (B.L.) under the supervision of an 

experienced maternal-fetal medicine specialist (C.J. with 20 years of experience) and an 

MRI scientist (K.S. with 19 years of experience). 

Statistical Tests: The 3D Dice Similarity Coefficient (DSC) was used to measure the 

automated segmentation performance compared to the manual placental segmentation. A 

paired t-test was used to compare the DSCs between SADL and U-Net methods. A Bland–



	

Altman plot was used to analyze the agreement between manual and automated placental 

volume measurements. A p value < 0.05 was considered statistically significant. 

Results: In the testing dataset, SADL achieved average DSCs of 0.83 ± 0.06 and 0.84 ± 0.05 

in the first and second MRI, which were significantly higher than those achieved by U-Net 

(0.77 ± 0.08 and 0.76 ± 0.10, respectively). A total of 6 out of 62 MRI scans (9.6%) had 

volume measurement differences between the SADL-based automated and manual volume 

measurements that were out of 95% limits of agreement. 

Data Conclusions: SADL can automatically detect and segment the placenta with high 

performance in MRI at two different gestational ages.  

Level of Evidence: 

4 

Technical Efficacy Stage: 

2 

Keywords: Automated placental segmentation, spatial attentive deep learning, 

convolutional neural network.  



	

INTRODUCTION 

The placenta is an intrauterine organ necessary for the maintenance of pregnancy [1]. 

Abnormal placental development can adversely affect maternal health and interfere with 

nutrient and oxygen transport to the developing fetus. Collectively, aberrant placental 

development contributes toward perinatal morbidity and mortality through the development 

of pre-eclampsia (PE) in the mother with or without fetal growth restriction [1, 2]. MRI has 

been used to detect placental volume and perfusion dysfunction [2, 3]. 

Segmentation of the placenta by MRI is the first step required for the accurate 

detection of volumetric abnormalities that can affect maternal and fetal health [4] [5]. 

Manual segmentation of the placenta involves delineation of multiple 2D MRI placental 

slices that contribute toward the placenta volume. This process is time-consuming and may 

result in large inter-and intra-individual reader variability [6]. Automated segmentation 

would enable rapid tissue segmentation and overcome the subjectivity associated with 

manual segmentation.   

In recent years, machine learning and deep learning (DL) have demonstrated superior 

capabilities in medical image segmentation [1, 7–17]. For placental segmentation in MRI, 

Wang et al. [18]  have developed an online learning-based method  [19]. In addition, 

Alansary et al. [16] have implemented a 3D multi-scale convolutional neural network (CNN) 

with 3D dense conditional random fields. Wang et al. [8, 17] have also developed a DL-

based interactive framework that integrated user interaction with CNN, while Han et al. [9] 

and Shahedi et.al [1] have evaluated U-Net variants.  



	

 These studies were either evaluated in scans at a single and late gestational age (GA) 

or were not fully automated workflows. The placenta is constantly evolving and growing 

throughout pregnancy. Consequently, an automated segmentation model working in late 

gestation pregnancy MRI may not transfer effectively for use during early pregnancy MRI. 

In addition, a single placental MRI scan could comprise multiple image slices that could 

contain or not contain the placenta. Manual operations and interactions such as selecting 

image slices containing the placenta could contribute toward significant subjectivity and 

increase the cognitive workload on experts. Thus, the aim of this study was to evaluate an 

end-to-end, fully automated segmentation workflow, spatial attention deep learning method 

(SADL), for placental segmentation using MRIs obtained at two time-points during early 

pregnancy and to (1) compare the segmentation performance with the state-of-the-art DL-

based method, U-Net; and (2) compare placenta volume measurements obtained by manual 

and automated SADL methods. 

 

MATERIALS AND METHODS 

Subject Population and MRI Dataset 

This study was carried out according to the United States Health Insurance Portability and 

Accountability Act (HIPAA) of 1996 with approval from the institutional review board 

(IRB), and all subjects provided written informed consent. We approached all eligible 

pregnant women entering prenatal care in the first trimester of pregnancy at the local 

antenatal clinic without pre-selection. Inclusion criteria were a gestational age of less than 

14 weeks, age more than 18 years old, pregnancy with a single fetus, the absence of fetal 



	

chromosomal or structural abnormalities, no treatment with aspirin, heparin, or 

antihypertensive drugs before enrollment, the ability to provide consent, a non-smoker, and 

planning to deliver at the same local institution. Exclusion criteria included abortion 

(spontaneous or planned termination), loss of follow-up, withdrawal from the study, and a 

history of diabetes mellitus. Gestational age was confirmed by a dating ultrasound scan in 

the first trimester of pregnancy. 

The longitudinal MRI scans were acquired at 14-18 weeks (first MRI) and 19 to 24 

weeks (second MRI) gestational age. A T2-weighted Half-Fourier Single Shot Turbo Spin 

Echo (T2 HASTE) [20] sequence was used to acquire placental MRI on one of two 3.0 T 

MRI scanners (Prisma and Skyra; Siemens Healthcare, Erlangen, Germany). Detailed 

sequence parameters for T2-HASTE are described in Table 1. The T2 HASTE MR images 

were acquired in three orthogonal imaging planes (axial, sagittal, and coronal). Image 

analysis was performed using the open-source image analysis OsiriX MD software package 

(version 11.0.3, Pixmeo SARL, Geneva, Switzerland). Regions of interest (ROIs) were 

manually drawn around the placenta in each imaging plane as ground truth. A 3rd-year 

neonatology fellow (B.L.) supervised by an MRI scientist (K.S. with 19 years of experience) 

manually defined the ROIs on each of the T2-HASTE MRI slices that included placenta. 

The clinical fellow was also supervised by an obstetrician-gynecologist (C.J. with 20 years 

of experience) who is a specialist in maternal and fetal medicine whenever the placental 

anatomy was considered challenging to segment. Figure 1 shows a representative example 

of manual placental segmentation in the three orthogonal planes. The placenta volumes 



	

measured in the three orthogonal imaging planes were averaged to minimize potential error 

due to low through-plane resolution on T2 HASTE MRI images.  

Proposed Spatial Attentive Deep Learning  

The structure of the proposed SADL is shown in Figure 2. The whole network is comprised 

of a spatial attentive deep residual network (based on the ResNet50) [21] as the encoder, a 

feature pyramid attention (FPA) module [22] to enhance capturing multi-scaled information, 

and a naïve decoder network to recover spatial resolution. Inside the encoder, the 

modifications were twofold: 1) A criss-cross (CC) spatial attention module [23] was added 

at the beginning of the ResNet50, which helped the network emphasize areas with more 

semantic features of the placenta by modeling spatial dependent information via the global 

features. Specifically, each pixel’s response was obtained by considering all the pixels so 

that more importance was adaptively given to pixels with more semantic information; and 

2) MaxPool was removed from the original ResNet50. Several studies [12, 24] have shown 

that the inclusion of MaxPool compromises image segmentation performance. Next, an FPA 

network was added after the encoder, thereby furthering the enhancement of multi-scaled 

feature extraction. Finally, a naïve decoder was connected to the FPA to recover the spatial 

resolution. 

Baseline method - U-Net 

U-Net is a fully convolutional neural network, which was proposed by Ronneberger and 

Olaf et al and popularized for biomedical image segmentation. U-Net includes an encoder 

to extract high-level features and a decoder to recover the spatial resolution compromised in 



	

the encoder. The classic U-Net framework, which can be seen in Figure 3, served as the 

baseline to compare with the proposed method.  

 
Experimental Setups – Training and Testing  

All deep learning models were implemented using Pytorch, and the placental volume was 

calculated using Pyradiomics [25]. We divided the study cohort into training (n=108; 70%), 

validation (n=15; 10%), and testing (n=31; 20%) sets. We used stochastic gradient descent 

(SGD) as an optimizer and a binary cross-entropy as the loss function for the deep learning 

model training. The network was trained for 200 epochs and the model with the lowest 

validation loss was selected as the optimal model for placenta segmentation. Finally, the 

optimal model was evaluated using the testing set of MRIs. The image slices in the three 

views were cropped to a matrix size of 256 × 256 in the central region. The bounding box 

contained all placental structures in the images obtained from each view. In-fly data 

augmentation techniques included random rotations between [−5°, 5°], elastic 

transformations, random contrast adjustment, and random horizontal flip. We also 

performed image normalization to reduce skewing. Each placental MRI scan contained three 

imaging planes (axial, coronal, and sagittal). To make the model capable of segmenting 

placental MRI images in different imaging planes (axial, coronal, and sagittal), we included 

the images from all three views to train the model. All slices, including those with and 

without the placenta, were fed into the models to help the network learn the placenta span. 

The segmentation performance of the SADL model was compared with that of the U-Net 

model in the testing data set. Segmentation performance was assessed for first and second 

MRI scans separately and in combination. Segmentation performance was also assessed for 



	

each image orientation separately and in combination. In addition, volumes from automated 

SADL segmentations were compared to those from manual segmentations. 

Statistical Analysis 

The 3D Dice Similarity Coefficient (DSC) [26] was used to measure the segmentation 

performance in the testing set, formulated as:  

"#$ = 2|(	 ∩ +|
|(	 ∪ +| 																																																																			(1) 

 
where A and B are automated and manual 3D segmentations of the placenta, respectively. 

DSC of each MRI scan was calculated by averaging the DSCs from the three orthogonal 

imaging planes (axial, sagittal, and coronal). The significance of differences in DSC obtained 

using SADL and the baseline U-Net method was investigated using a paired sample t-test at 

the 95% level of confidence. A Bland–Altman plot [27] was used to analyze the agreement 

between manual and automatic placental volume measurements. Linear regression models 

[28] were used to model the relationships between the volume size and age under manual 

and automated placental volume measurements.  

 

RESULTS  

A total of 154 pregnant women who completed two MRI scans during the second trimester 

were recruited between 2016 and 2019. The summary of the study subjects’ characteristics 

is shown in Table 2. Figure 4 shows a representative example of automated placenta 

segmentation by SADL and U-Net. Table 3 shows the DSC comparison between SADL and 

U-Net in the testing dataset. In the first and second MRI scans, SADL achieved average 



	

DSCs of 0.83 ± 0.06 and 0.84 ± 0.05 respectively. These were significantly higher than those 

achieved by U-Net (0.77 +/- 0.08 and 0.76 +/- 0.10, respectively). SADL performed 

similarly between the first and second MRI (0.83 ± 0.06 vs. 0.84 ± 0.05; p=0.47). 

Representative examples of excellent and poor placental segmentation of MRI images using 

SADL and U-Net are shown in Figure 5. 

Table 4 shows the DSC by SADL and U-Net across the three different orthogonal 

planes. At the first MRI, SADL achieved similar DSCs across the three orthogonal imaging 

planes (0.83, 0.83, and 0.82 for axial, coronal, and sagittal planes). However, at the second 

MRI, the SADL achieved a DSC of 0.87 ± 0.03 at the axial plane, which was significantly 

higher than those of other imaging planes (0.82 ± 0.10 and 0.83 ± 0.07 for coronal and 

sagittal planes; both p values are 0.01). In addition, we found SADL significantly 

outperformed U-Net across each imaging plane at both first and second MRIs.  

Figure 6 shows the agreement between manual and SADL-based automated volume 

measurements in a Bland–Altman plot. The mean difference (bias) was 1.04 ml and the 95% 

limits of agreement (average difference ± 1.96 SD) were -52.45 ml to 55.14 ml. It turned out 

that 6 out of 62 MRI scans (9.6%) had the volume measurement differences that were beyond 

the 95% limits of agreement. 

Figure 7 shows the similar linear regression models between the placental volume 

size and the gestational ages for SADL-based automated (Figure 6 (A)) and manual (Figure 

6 (B)) volume calculations. 

Table 6 shows the placental segmentation performance of SADL at different 

positions such as anterior and posterior. Based on the table, posterior placentas exhibited a 



	

slightly higher DSC than anterior ones at the first and second MRI. However, there was no 

significant difference between the anterior and posterior placenta’s segmentation 

performance at both MRIs.  

 

DISCUSSION 

We developed a novel method, SADL, for automated segmentation of the placenta from two 

longitudinal MRI scans, taken at 14-18 and at 19-24 weeks of gestation. Our results 

demonstrated that accurate contouring of the placenta on both MRIs is feasible. The 

proposed method is fully automated; thus, the results are reproducible. Our suggested 

methodology outperformed a U-Net based model which is currently state-of-the-art for 

placenta delineation from MRI [1, 9]. 

Our model is equipped with a CC spatial attentive module [23] that requires less GPU 

memory than the regular spatial attentive module [23].	 In the CC spatial attentive module, 

the response of each pixel only considers the pixels on its criss-cross path rather than all the 

pixels in the image, which reduces the amount of GPU memory required. A CC spatial 

attentive module could provide an alternative to the regular spatial attention module when 

the GPU memory available is limited.  

Compared with Han et al.’s deep learning-based method [9] for placenta MRI 

segmentation, our work differs in the following aspects: 1) We had a larger data set 

containing MRI of 154 subjects, from which 31 images were used as an independent test set; 

2) Our model is fully automated where the whole images are fed to the network for placental 

segmentation while in the method proposed by Han et al., the user first needs to determine 



	

the extent of the placenta on MRI; 3) Our study conducted a patient-wise segmentation 

evaluation compared to the image-wise segmentation evaluation in their study; and 4) 

Dataset used in our study included MRI scans obtained at two gestational ages, which we 

used to explore the performance of the segmentation model across multiple gestational ages;  

We found that the model trained using both MRIs (first and second) achieved better 

segmentation performance than the one trained only using the first or the second MRIs. Since 

the placenta is a temporary human organ that varies substantially during early gestation, 

using the first and second MRI together during the training increased the amount and type 

of training samples of placental MRI, which could have improved the model’s ability to 

recognize different-sized placental regions. The consistent segmentation performance in the 

MRI at two different early GAs also suggests that the model potentially provides robust 

segmentation across differing longitudinal MRI scans during early gestation.  

Our findings indicated that the relationship between volume and gestational age was 

maintained between manual and automated volume calculations. This could benefit future 

studies that require such relationships for the detection of placental volume-related disease 

models. Examples of such diseases include gestational diabetes mellitus or ischemic 

placental disease [29, 30]. 

To investigate SADL’s generalizability to other organs, we also trained and tested a 

SADL model for prostate whole gland segmentation. SADL achieved an average DSC of 

0.92 ± 0.03 in a testing dataset including 31 prostate MRI scans.   

Limitations 



	

Our study still has a few limitations. First, ground truth of manual segmentations was 

performed by a single observer. In the future, we will recruit more observers to annotate the 

placenta and analyze the interobserver variability between among them. Second, the SADL 

model is a 2D-based deep learning model, which does not retain the inter-slice correlation 

information as in 3D placental images. We will explore ways to develop a 3D-based model 

to better capture the inter-slice correlation information in the future. Third, all images were 

obtained from a single medical center, which may introduce population bias. Fourth, the 

same placental MRI protocol with a single vendor was used for acquiring placental MRI 

images for all scans.  In the future, datasets from multiple institutions and vendors will be 

integrated to test the generalizability of our developed automated placenta segmentation 

method.  

Conclusions 

In conclusion, we proposed a spatial attentive deep learning network, SADL, for automated 

segmentation of the placenta during the second trimester. SADL can automatically segment 

the placenta in placenta MRI at different gestational ages during the second trimester. In 

addition, the difference between automated placental volume measurement with the SADL-

based segmentation and manual volume measurement was small.  
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TABLES 

Table 1. Detailed T2-HASTE MRI sequence parameters. 
Parameter Value 

TE/TR (msec) 92 / 3000 

Flip Angle (degree) 150 

Bandwidth (Hz/pixel) 390 

Resolution (mmx×mmy) 0.976 × 0.976 

Slice Thickness (mm) 5 

Echo Train Length 70 

Matrix (Nx×Ny) 272 × 512 

Field of View (mmx×mmy) 265 × 500 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

Table 2. Summary of the characteristics of the subjects with pregnancies. 
 Total Training Validation Testing 

No. of Patients 154 108 15 31 

Age, yr. (IQR) 32.91 

(30-35)2 
33 

(30-35) 
33 

(30-35) 
32 

(30-34) 

Weight, kg. (IQR) 67.2 
(58.5-73.0) 

67.1 
(58.3-72.7) 

67.0 
(58.3-72.1) 

67.5 
(59.1-74.5) 

GA3 at the first MRI, weeks 
(IQR) 

15.7 
(15.0-16.3) 

15.6 
(14.9-16.3) 

15.8 
(15.3-16.5) 

15.8 
(15.1-16.0) 

GA at the second MRI, weeks 
(IQR) 

20.7 
(19.9-21.3) 

20.7 
(19.9-21.3) 

20.6 
(19.9-20.8) 

20.9 
(20.1-21.3) 

MRI scans 

No. of first MRIs 
 
 

154 

 
108 

 
15 

 
31 

No. of second MRIs 
 
 

154 
108 15 31 

No. of MRI slices  
 

42,553 
 

29,896 4,162 8,495 

1Mean; 2Interquartile range; 3Gestational age 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

Table 3. DSC comparisons between SADL and U-Net in the testing dataset (N=31).  
Methods DSC 

SADL 

0.83 ± 0.06 

First MRI Second MRI 

0.83 ± 0.06 0.84 ± 0.05 

p1=0.47 

U-Net 

DSC 

0.76 ± 0.09 
p2<0.05 

First MRI  Second MRI  

0.77 ± 0.08 
p2<0.05 

0.76 ± 0.10 
p2<0.05 

 

p1 value is the comparison between the first and second MRI; p2 values are the comparisons between the 
SADL and the U-Net.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

Table 4. Segmentation Performance of SADL in the three orthogonal views in the testing 
dataset (N=31).  

Methods  Ax Cor Sag 

SADL 
First MRI 0.83 ± 0.06 0.83 ± 0.07 0.82 ± 0.12 

Second MRI 0.87 ± 0.03 0.82 ± 0.10 0.83 ± 0.07 

U-Net 

 
First MRI 

0.79 ± 0.06 
p<0.5 

0.78 ± 0.09 
p<0.5 

0.74± 0.15 
p<0.5 

 
Second MRI 

0.84 ± 0.04 
p<0.5 

0.77 ± 0.10 
p<0.5 

0.67 ± 0.25 
p<0.5 

Cor, Sag and Ax are abbreviated for the coronal, sagittal and Axial planes, respectively. 
P values are the comparisons between the SADL and the U-Net. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

Table 5. Testing of SADL trained with different combinations of MRI 
 Model Trained using the 

first MRI 
Model Trained using the 

second MRI 
Model Trained using both 

MRI 

Testing on the first 
MRI 0.81 ± 0.06 0.77 ± 0.09 0.83 ± 0.06 

Testing on the 
second MRI 0.81 ± 0.06 0.76 ± 0.13 0.84 ± 0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

Table 6. Placental Segmentation Performance of SADL at Different Positions 
 Anterior Posterior 

First MRI 

0.82±0.07 
(n=19) 

0.86±0.02 
(n=13) 

p=0.08 

Second MRI 

0.82±0.05 
(n=18) 

0.84±0.04 
(n=14) 

p=0.42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

  
FIGURE CAPTIONS 

 

 
FIGURE 1. Representative placental MRI images in three imaging planes at the first MRI 
at 15.3 weeks (left; volume = 119cm3) and second MRI at 21.3 weeks (right; volume = 
270cm3). The placenta was manually contoured and shown as the green line. 
 

 

 

 

 



	

 
 
FIGURE 2. An overall structure of the proposed SPDL network. The network consists of 4 
sub-networks: a spatial attention module, an improved attentive ResNet50, a feature pyramid 
attention, and a naïve decoder. The input and output are a 2D placental MRI slice and a 
placental segmentation prediction. Aggregation and affinity processes were defined in [23]. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

FIGURE 3. Structure of the baseline method – U-Net. Each gray box represents a feature 
map.  
 
 
 
 
 
 
 
 
 
 
 
 



	

 
 
FIGURE 4. Representative example of automated segmentation by SADL and U-Net (blue 
lines) compared to the manual segmentation (red lines) at the first MRI (GA = 15 weeks and 
1 day) and the second MRI (GA = 19 weeks and 4 days). DSCs are shown below. 
 
 
 
 
 

 
 
 
 
 
 



	

 
FIGURE 5. Representative examples of excellent and poor automated placental 
segmentation at the first MRI scan (GA between 14-18 weeks) and the second MRI scan 
(GA between 14-18 weeks) by the proposed method. Red and blue lines are manual and 
automated segmentation.  
 
 
 
 
 
 

 
 
 

 



	

 

 
FIGURE 6. A Bland-Altman plot showing the agreement between the automated and 
manual placental volume measurement. Red and green points represent the first and second 
MRIs, respectively.  
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



	

 

 
FIGURE 7. Linear regression models between placental volume and gestational age with 
the manual (A) and automated (B) segmentation. Red and green points are the volume 
measurements for the first and second MRIs. Blue lines represent the linear regression 
models between placental volume and gestational age. 
 

 

   




