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Abstract

Phase Transitions of Random Constraints Satisfaction Problem
by
Yumeng Zhang
Doctor of Philosophy in Statistics
University of California, Berkeley
Professor Allan M. Sly, Chair

Constraints satisfaction problem (CSP) is a family of computation problems that are gener-
ally hard to solve in the worst case, which motivates the study of average cases by looking
at random CSPs. This thesis studies problems related to random constraints satisfaction
problems, in particular its different phase transitions in the large system limit as the level
of constraints increases.

The first part of this thesis studies the number of solutions in a typical problem instance.
It has long been observed that shortly before the satisfiability phase transition where so-
lutions stop to exist, the number of solutions in a typical instance no longer concentrate
around its expectation. Guided by the 1-step replica symmetry breaking heuristics in sta-
tistical physics, we prove the correct formula for the typical number of the solutions up to
the exponent.

The second part focus on the clustering threshold around which algorithms have been
observed to slow down. Different opinions exist for the reason of this algorithmic barrier.
One is the shattering of solution space which is conjectured to happen at the clustering
threshold. The other is the onset of frozen variables happening at a nearby rigidity threshold.
Previous analysis on the clustering threshold was not strong enough to differentiate the two
phase transitions. Using a detailed analysis of certain distributional recursion, we show that
the reconstruction threshold on trees, which is conjectured to coincide with the clustering
threshold, is strictly smaller than the rigidity threshold, laying ground for further studies.

The last part of the thesis studied the Glauber dynamics of graph colorings on d-regular
trees. By comparing the Glauber dynamics to a variant of block dynamics, we show that
the mixing time, and hence the speed of the related MCMC algorithm, undergoes a phase
transition at the reconstruction threshold.
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Chapter 1

Introduction

A constraint satisfaction problem (CSP) consists of n variables, each taking value from
alphabet X, subject to m constraints; a solution to a CSP instance is an assignment of values
to the variables such that all constraints are satisfied. The framework of CSPs captures
many interesting problems, ranging from brain teasers such as crossword and Soduku, to
well-studied research problems such as the Four Coloring problem. These problems can
be extremely challenging—a priori, finding a valid assignment of 100 binary variables by
exhaustive search would require 2! trials. Indeed, many models of CSPs are known to be
“NP-complete” [Kar72], the polynomially-time computability of which has been the central
open problem in theoretical computer science.

The fact that these problems are intractable in the worst case motivates people to study
the average scenario by considering typical properties of random problem instances. The
two most prominent questions are:

1. When does a CSP have solutions and how many solutions there are?
2. When does there exist an algorithm that finds solutions in polynomial times?

Since their introduction in theoretical computer science, random CSPs have also attracted
the interest of physicists and mathematicians, for the rich phenomenon predicted by the
theory of statistical physics and the mathematical challenges to prove them. In this thesis
we address some aspects of this beautiful and complex picture.

1.1 Definition and background

To introduce the problems formally, we first define two types of constraints satisfaction
problem we will be mainly working with in this thesis. Definition to more general models
can be found in Section 5.2.1 or [BCO16].

Definition 1.1.1 (k-coloring). Let G = (V, E) be a graph with vertex set V and edge set
E, and let [k] = {1,...,k} be the set of k colors. We say that a configuration o € [k]" is a
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k-coloring of graph G if for every edge e = (u,v) € E, 0, # 0,. Let SOL(G) € [k]V be the
set of proper colorings on graph G and define Z(G) = |SOL(G)| be the number of solutions,
a.k.a. partition function in physics terms. The Gibbs measure of random colourings on G is
given by the uniform measure

(o) = %1{0 € SOL(G)} — % [T tiow ot

e=(u,v)eR

Definition 1.1.2 (k-NAE-SAT). Let G = (V, F, E) be a factor graph where V' is the set of
variables, F' the set of constraints, E the set of edges joining variables to clauses. For each
ee E, let v(e) € V and a(e) € F be the two ends of edge e respectively. We further equip
each e € E with literal L. € {0,1} and denote the labeled graph by ¢ = (G,L). For each
clause a € F, let da = {e € E : a(e) = a} be the set of edges containing a. We say that
o € {0,1}V is a solution to the not-all-equal-SAT (NAE-SAT) problem on ¢ if

for all a € F', (Le @ 0y(c))eesa is neither identically 0 nor identically 1.

We further say that the problem is a k-NAE-SAT problem, if for each a € F', |da| = k, in which
case m = dn/k. We again denote the set of NAE-SAT solutions of ¢ by SOL(¥¢) < {0,1}"
and define Z(¥¢) = |[SOL(9)|.

As observed in the two examples above, constraints satisfaction problems can be encoded
by graphs or factor graphs. Thus the randomness of CSPs can be translated to the random-
ness of the underlying graph ensemble. Two common choices are the random d-regular
graphs and Erdos-Renyi graphs G(n, m = dn/2), or its factor graph analogue in cases where
each constraint involves more than 2 variables. The aforementioned questions can be trans-
lated into the following: Given the model and the choice of graph ensemble, for what values
of d and k

1. Is Z strictly larger than zero with high probability? Under those values, what is the
typical value of Z7

2. Is there a polynomial-time algorithm that finds elements of SOL with high probability?

The answers to these questions are closely related to the geometric structure of the solu-
tion space SOL, defined by connecting pairs of solutions at Hamming distance one. Indeed,
the complicated structure of the solution space posts major obstacles to mathematical anal-
ysis. On this front, significant advances were achieved by statistical physicists applying the
theory of spin systems. Of particular interest is a systematic theory they developed—the so-
called 1-step Replica Symmetry Breaking (1RSB) framework—that applies to a broad family
of CSP models, including the ones studied in this thesis. The main conjectural picture is
that for those models the solution space SOL < X™ undergoes several phase transitions as
n — oo and the constraints level &« = m/n increases (See Figure 1.1.1) [ZK07; Krz+07;
MRS08]. Here we briefly summarize the phenomenon:
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Unique Extremal Clustered Condensed Unsatisfiable
o . .
. Y 9 . . .,... . -®
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o\ A . @ ,. : -@
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Figure 1.1.1: Phase diagram of random CSPs described by the 1RSB ansatz

For small values of a, SOL consists of a single well-connected cluster with possibly ex-
ponentially small exceptions. Upon the clustering threshold ag,s, SOL shattered into ex-
ponentially many clusters each of which is exponentially small. Both the number and the
size of the clusters decrease as we increase . At the condensation threshold aong, the mass
condense to a bounded number of clusters. Finally, the SOL is with high probability empty
after the satisfiability threshold ayg.

While the 1RSB framework gives precise predictions of the phase diagram and has lead
to significant algorithmic improvement in practice (e.g. [MZ02]), the theory itself is based
on several heuristic assumptions and is hence non-rigorous. Many efforts have been made
to verify these predictions and understand their algorithmic implications. In the next two
sections, we briefly summarize the current status and the contribution of this thesis along
the line.

1.2 Condensed phase and the number of solutions

The paper of Friedgut [Fri99] shows that for many CSP models, the satisfiability of a typical
problem instance undergoes a sharp phase transition: Let P, ,(,) denote the uniform measure
over all problem instances with m = an constraints. There exists a sequence of thresholds
Qgat (1) such that for any € > 0,

lim Pn,asat(n)fE(Z(g) > O) = lim Pmasat(n)JrE(Z(g) = 0) = 1.

—00

n n—o0

Similar results for several models on regular (factor) graphs are proved in [BGT13].

Friedgut’s result does not give the exact location of ag,(n), neither does it rule out the
intuitively unlikely dependence of ag,i(n) on the number of variables n. Until recently, the
exact location of satisfiability threshold has only been established for a few models: random
XOR-SAT [MRTZ03], random 2-SAT [CR92; Goe96], random 1-in-k-SAT [Ach+-01], all of which
have a simpler phase diagram than the one in Figure 1.1.1. In the last couple of years, a
sequence of works determines the exact location of ag, or narrows it down for models that
fall under the 1RSB framework: k-NAE-SAT [CZ12; DSS16], independent set [DSS13], k-SAT
[BC15; DSS15], k-coloring [COEH16].

The time gap between the two groups of results reflects the complex nature of models
following the 1RSB ansatz, which is largely due to the existence of a “condensed” phase
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immediately preceding the satisfiability threshold: in this regime, the solution space SOL is
dominated by a few large clusters and the expected number of solutions EZ is blown up by
“atypically-large” ones that are unlikely to be seen in a typical instance. As a result, the
typical number of solutions Z « EZ with high probability [CZ12] and solving EZ = 0 does
not yield the correct ag,:. Non-trivial arguments are necessary to eliminate those effects, in
which the physics insight again plays a crucial role.

The satisfiability threshold threshold is only one facet of the rich theory physicists have
developed. There are deep conjectures for the behavior of these models inside the satisfiable
regime. In Chapter 2, we continue the quest and determine the total number of solutions
Z = |SOL]| for typical instances, in particular in the condensed regime where 7 « EZ with
high probability. We will work with the random k-NAE-SAT model and show that for & > kg
and aeong < a0 < gy, the typical value of Z is up to a sub-exponential factor given by the
largest cluster exists in SOL. We further give the explicit formula f'**®(a) such that for a
typical random regular k-NAE-SAT problem as n — o0,

1 .
—InZ % %5 ().
n

The appeal of NAE-SAT model is that it has certain symmetries making the analysis par-
ticularly tractable, yet it is expected to share most of the interesting qualitative phenomena
exhibited by other commonly studied problems, including random k-SAT and random graph
colorings.

1.3 Clustering thresholds and sampling solutions

1.3.1 Algorithmic barrier

While solutions exist up to the satisfiability threshold ag,t, as has been observed and partially
verified in many works, the actual barrier for finding and sampling solutions lies around the
clustering threshold a..s: simple greedy algorithms are known to find solutions for k-coloring
and k-SAT instances up to (1 — €)ags, and no algorithm is known to work significantly
better. In fact, the failure of certain families of algorithms has been proved for a > (1 +
€)Qes [RV14], or a slightly smaller region [GS14; COHH16]. This motivate people to study
the clustering threshold and its algorithmic implication. Intuitively, it would be hard for
algorithms to traverse the solution space when it is dominated by exponentially many well-
separated clusters [ACO08; ACORT11].

Unlike the satisfiability threshold, the clustering phase transition are less well-understood.
Take the k-coloring model as an example. It is conjectured that at d..s (here d = 2a) the
solution space SOL shatters into exponentially many small clusters. Meanwhile, a close
but different phase transition, the rigidity phase transition, is conjectured to happen at
diig ~ (1 + o(1))deus, beyond which most of the clusters become “frozen”, i.e. a linear
fraction of variables take the same value throughout the cluster [ZK07].
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The two closeby phase transitions play an important role in understanding the algorith-
mic barrier as different papers disagree on which one of them is more responsible for the
algorithmic slow down [MZ02; ZK07; ZMO08|, if any of them [Bra+16]. However, it is un-
known even at a heuristic level if the gap |deius — drig| is indeed non-vanishing [Sly09; Mol12],
let alone analyzing their impact on algorithms.

One obstacle is that the conjectural clustering threshold d}; . is characterized in physics
literature by the non-trivial fixed points of certain distributional recursion. The high dimen-
sion of the recursion makes it hard to analyze without restricting the domain to distributions
with large atoms—which amount to clusters with frozen variables. Thus it is hard to sepa-
rate the discussion of the clustering threshold with the rigidity threshold. The other obstacle
lies in proving the clustering phenomenon in the unfrozen regime, i.e. proving deus = dj,-
Unlike frozen clusters, which are disconnected components of the solution space, unfrozen
clusters may connect to each other as long as there are “bottlenecks” at the boundary. Thus
unfrozen clusters are much harder to characterize and analyze mathematically.

In Chapter 3 and Chapter 4, we address the first obstacle by analyzing the distributional
recursion used in the definition of d7) ., which coincide with the reconstruction problem on
trees [MMO09, Ch.19]. With the exact definitions postponed to Chapter 3, we show that
for both k-coloring model (Chapter 3) and k-NAE-SAT model (Chapter 4) with k& > ko,
the reconstruction threshold d,c., which is also the conjectural clustering threshold d7), is
strictly smaller than the rigidity threshold, and the gap is an increasing function of k.

Thus given the conjecture that dgus = df,,, our results in Chapter 3 and Chapter 4
strongly suggest a non-vanishing phase where the solution space are clustered but non-frozen.
We believe that analyzing algorithms in this region will be very helpful in understanding the
nature of the algorithmic barrier.

1.3.2 Efficient sampling algorithms before djus

In Chapter 5, we give an example of algorithms that actually slows down at the reconstruction
threshold. We consider the problem of uniformly sampling proper k-colorings on d-regular
trees with n-vertices. A widely-used sampling algorithm is Markov Chain Monte Carlo
(MCMC) based on the Glauber dynamics, which is a Markov chain that at each step updates
the value of an uniformly selected vertex randomly according to its surrounding vertices. The
central question is to bound the mixing time of the Markov chain, i.e. the time until the
Markov chain is “close” to its stationary distribution. More precisely, let P'(c,-) be the
distribution of the Markov chain starting from o after t steps, and 7 be the stationary
distribution, the mixing time is defined as

tmix = min{t > 0 : |P'(0, A) — w(A)| < 1/4, for all initial state o and event A},

If the mixing time grows polynomially in the number of variables, then the corresponding
MCMC algorithm samples solutions efficiently.

In Chapter 5, we show that the mixing time is O(nlnn) for k > ko, d < diee ~ (1 +
o(1))kInk (cf. (3.1.3)), improving the previous results of d < k + 2 [MSWO07; Bha+11]. In
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particular combining our result with [Tet+12] implies a sharp transition of the mixing time
at the exact reconstruction threshold d = d,..

1.4 Note on prior publication and collaboration

The results presented in this dissertation are obtained in collaboration with other researchers
and some have already been published elsewhere. Chapter 2 is based on a joint work with
Allan Sly and Nike Sun [SSZ16]. The remaining chapters are based on joint works with Allan
Sly: Chapter 3 is based on [SZ16], Chapter 4 is based on unpublished note, and Chapter 5
is based on [SZ14]. All three papers mentioned are available on ArXiv. I express my sincere
thanks towards my co-authors for allowing the inclusion of joints works with them in this
dissertation.



Chapter 2

The number of solutions for random
regular NAE-SAT

2.1 Introduction

2.1.1 Main result

In this chapter, we study the number of solutions to a random k-NAE-SAT problem. (The
formal definition is given in Section 2.2.) More specifically, we work on d-regular instances
where each variable appears in exactly d clauses. See [AMO6] for important early work on
the closely related model of random (Erdés-Rényi) NAE-SAT.

Following convention, we fix k and then parametrize the model by its clause-to-variable
ratio, a = d/k. The partition function of the model, denoted Z = Z,,, is simply the number
of valid NAE-SAT assignments for an instance on n variables. It is conjectured that for each
k = 3, the model has an exact satisfiability threshold g, (k): for a < agy it is satisfiable
(Z > 0) with high probability, but for a@ > ag, it is unsatisfiable (Z = 0) with high
probability (as n — oo, with k fixed). This has been proved [DSS16] for all k exceeding an
absolute constant kg, together with an explicit formula for ag,; which matches the physics
prediction. The exact formula is rather intricate so we omit it here, and note only its
approximate value

2 4In2

where €, denotes an error tending to zero as k — co.

We say the model has free energy f(a) if Z'/™ converges to f(a) in probability as n — .
A priori, the limit may not be well-defined. If it exists, however, Markov’s inequality and
Jensen’s inequality imply that it must be upper bounded by the replica symmetric free energy

(o) = (EZ)Y" = 2(1 — 2/2%)~. (2.1.2)

1 1
Qsat = (2’“‘1 — = ) In2 + ¢ (2.1.1)

One of the intriguing predictions from the physics analysis [ZK07; MRS08] is that there
is a critical value aqonq strictly below ag,, such that f(a) and f*(«) agree up to a =
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Ocona and diverge thereafter. Since f*° is analytic, f must be non-analytic at aeonq. This
is the condensation or Kauzmann transition, and will be further described below. For a €
(Qcond; Qsat) it is conjectured that f(a) takes a value f'™"(a) strictly below f**(a). The
function ™" (a) is explicit, although not extremely simple: it is derived via the heuristic of
one-step replica symmetry breaking (1RSB), and is presented below in Definition 2.1.3. Our
main result is to prove this prediction for large k.

Theorem 1. In random reqular k-NAE-SAT with k = ko, for all @ < as(k) the free energy
f(a) exists and equals the predicted value f'™**(a).

Remark 2.1.1. We allow for kg to be adjusted as long as it remains an absolute constant (so
it need not equal the kg from [DSS16]). The result of Theorem 1 is already proved [DSS16]
for a < appq = (2871 —2) In 2, so we restrict our attention to « € (aqpq, eat ), which is a strict
superset of the condensation regime ((iong, @sat). Of course, for a > ag,y, we already know
f(a) = 0. The case a = gy can arise only if dg,(k) = kaga (k) is integer-valued for some
k. We have no reason to believe that this ever occurs; if however it does miraculously occur
then the probability for Z > 0 is bounded away from both zero and one. In this case, our
methods would show that Z/" does not concentrate around a single value but rather on two
values, zero and limgpa,,, f'*°% ().

The condensation transition has been actively studied in recent work. The existence
of a condensation phenomenon was first established for random NAE-SAT [CP12], and has
since been found in random regular NAE-SAT and independent set [DSS16; DSS13]. It
has been demonstrated to occur even at positive temperature in the problem of hypergraph
bicoloring (which is very similar to NAE-SAT) [BCORm16]. However, determining the precise
location of a,epnq is challenging, and was first achieved for the random graph coloring model
[Bap+16] by an impressive and technically challenging analysis. Subsequent work pinpoints
Qcond for random regular k-SAT (which again is very similar to NAE-SAT) [BC15]. The main
contribution of this paper is to determine for the first time the free energy throughout the
condensation regime ((cond, sat )-

2.1.2 Statistical physics predictions

As mentioned in the introduction chapter, the random regular NAE-SAT model has a single
level of replica symmetry breaking (1RSB) and undergoes similar phase transitions as pic-
tured in Figure 1.1.1. We now summarize the key predictions leading to the condensation
phase transition and refer the details to [MMO09, Ch. 19]. While part of the following discus-
sion remains conjectural, much of it is rigorously established by the present paper. For this
discussion we focus on the leading exponential terms and ignore exp{o(n)} corrections.

Fix k£ and set @« = d/k. Recall that for a well above agys (which is true for cconq
when k is large), the solution space breaks up into well-separated clusters. It is predicted
that the number of clusters of size exp{ns} has mean value exp{nX(s;a)}, and further is
concentrated about this mean; ¥ is the “cluster complexity function.” It is common to
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abbreviate ¥(s) = X(s; ). Summing this prediction over cluster sizes s gives that the total
number Z of NAE-SAT solutions has mean

EZ = ) exp{n[s + 5(s)]} = exp{n[s1 + Z(s1)]},

where s; = argmax[s + 3(s)], and we write = to indicate equality up to exp{o(n)} factors.
It is predicted that ¥ is continuous and strictly concave in s, and also that s + ¥(s) has a
unique maximizer s; with 3'(s;) = —1. Note that we have the dependence s; = s1(«), and
Y(s1) = 2(s1(a); a).

Under the 1RSB framework, physicists propose an explicit (conjectural) formula for X.
For NAE-SAT and related models, this explicit calculation reveals another critical value aiong €
(Celuss Qsat ), characterized as

Qlcond = inf{a = Qs - E(Sl(&); Oé) < O}

For o > iona, EZ is dominated by clusters of size exp{ns; }, whose mean number exp{n>(s;)}
is exponentially small, meaning they are highly unlikely to appear in a typical realization.
Instead, a typical realization is dominated by clusters of size s, Where

Smax = Smax(@) = argmax{s + X(s) : X(s) = 0}.
Since X(Smax) = 0, it follows that with high probability

7 = exp{n[Smax + X(Smax)]} = exp{nSmax}-

According to this picture, we will have (with high probability) Z = EZ for a < acona, and
Z <« EZ for a > ieong- Thus, for a > qong, the first moment EZ fails to capture the typical
behavior of Z. This difficulty persists up to and beyond the satisfiability threshold

Qgay = Inf{ar = eong : max 3(s; ) < 0}
S

— indeed, it is well known that there is a non-trivial interval (g, 1) in which EZ » 1
even though Z = 0 with high probability.

2.1.3 The tilted cluster partition function

Once the function 3(s; «) is determined, it becomes straightforward to derive acong, Qisat, and
f(«). However, prior works have not taken the approach of actually computing . Indeed,
Qisat Was determined [DSS16] by an analysis involving only max, 3(s; o), which contains less
information than the full curve X. In related models, the determination of aconq [Bap+16;
BC15] also avoids 3, going instead through the so-called “planted model.” In order to obtain
., consider the A-tilted partition function

Zy=) P (2.1.3)
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where the sum is taken over all clusters . According to the physics heuristic as described
above, EZy = exp{n§(\)} where § is the Legendre dual of —X:

SN = (-X)"(\) = mgx[)\s + X(s)].

The physics approach to computing X is to first compute §, and then set ¥ = —F*. Note
that by differentiating F(\) = n~'InEZ) we find that § is convex in ), so the resulting ¥
will indeed be concave.

The computation of §(\) may seem at first glance quite intractable. Indeed, the reason
for NAE-SAT solutions to occur in clusters is that a typical solution has a positive density of
variables which are free, meaning their value can be changed without violating any clause.
Each cluster (connected component of NAE-SAT solutions) may be a complicated subset of
{0,1}" — changing the value at one free variable may affect whether its neighbors are free,
so a cluster need not be a simple subcube of {0, 1}". We then wish to sum over the cluster
sizes raised to non-integer powers.

However, in the regime of interest a > aj,q (see Remark 2.1.1), the analysis of NAE-SAT
solution clusters is greatly simplified by the fact that in a typical satisfying assignment the
vast majority of variables are frozen rather than free. The result of this, roughly speaking, is
that a cluster can be encoded by a configuration x € {0, 1, £}" (representing its circumscribed
subcube, so x, = f indicates a free variable) with no essential loss of information. We call z
the frozen configuration representing the cluster. It turns out that the frozen configurations
can be regarded as the solutions of a certain CSP lifted from the original NAE-SAT problem
— so the physics heuristics can be applied again to the new CSP. Variations on this idea
appear in several places in the physics literature; in the specific context of random CSPs we
refer to [Par02; BMZ05; MMWOT7].

Analyzing the number of frozen configurations — corresponding to (2.1.3) with A = 0
— leads to the sharp satisfiability threshold for this model [DSS16]. To analyze (2.1.3) for
general \ requires a deeper investigation of the arrangement of free and frozen variables in
the frozen configurations z. In fact, the majority of free variables are simply isolated vertices.
A smaller fraction occur in linked pairs, and a yet smaller fraction occur in components of
size three or more. Each free component T is surrounded by frozen variables, and we let
z(T) count the number of NAE-SAT assignments on T" which are consistent with the frozen
boundary. Then the total size of the cluster represented by x is simply the product of z(T")
over all the free components T of z.

The random NAE-SAT graph has few short cycles, so almost all of the free components
are trees, and so their weights z(T') can be evaluated recursively by the method of belief
propagation (BP). To implement this, we must replace variable spins by “messages,” which
are indexed by the directed edges of the graph and so are more natural for tree recursions.
The message m,_,, from variable v to clause a represents the state of v “in absence of a.”
It is also necessary to introduce a richer alphabet of symbols for these messages, replacing
{0,1, £} with probability measures on {0, 1} (where any non-degenerate measure will project
to £). Thus the message m,_,, represents the distribution at v (within the cluster) in absence
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of clause a. The messages are related to one another via local consistency equations, which
are precisely the BP equations. The configuration m encodes the same cluster as z, with
the key advantage that the cluster size can be readily deduced from m, as a certain product
of local functions. For the cluster size raised to power A, simply raise each local function
to power \. Thus the configurations m with A-tilted weights form a spin system (Markov
random field), whose partition function is the quantity of interest (2.1.3). The new spin
system is sometimes termed the “auxiliary model” [MMO09, Ch. 19].

2.1.4 One-step replica symmetry breaking

Above, we asserted informally that each BP solution m encodes a cluster of NAE-SAT solu-
tions. An important caveat is that this is only rigorous if the free variables in m occur in
trees, separated by frozen regions where we must have messages m,_,, that are degenerate
(supported on either on 0 or on 1). Otherwise, one always has the trivial “replica symmet-
ric” BP solution where every m,_,, is unif({0, 1}), and this is not a “meaningful” solution for
large . One way to understand this is via the physics calculation of f**(«), which we now
describe by way of motivating the more complicated expression for f'***(q).

Given a random regular NAE-SAT instance ¢ on n variables, choose k uniformly random
variables vy, ..., v, and assume for simplicity that no two of these share a clause. Then
(1) remove the k variables along with their kd incident clauses, producing an instance ¥4”,
and (2) add d(k — 1) new clauses to ¢”, producing ¢’. Then ¥’ is distributed as a random
regular NAE-SAT instance on n — k variables. If the free energy exists, then

fla)" = Z = [2(94)/Z(9")]"*. (2.1.4)

Suppose u is a variable in ¢’ of degree d — 1, meaning it was a neighbor of a clause a which
was deleted from 4. The interpretation of m is that in ¢”, the spin at u has law m,_,,, and
the different u’s are independent. If every m,_,, is unif({0, 1}), then

1/k / 1/k
<ZZ((Z/))) =2(1-2/2" (2(;,))) = (1 —2/2%)°0), (2.1.5)

Taking the ratio of these and substituting into (2.1.4) gives the prediction f(a) = f**(«),
which we know to be false for large . Thus the replica symmetric m gives the incorrect
prediction. The reason for this failure is that in reality the u’s are not independent in ¢”,
but rather are significantly correlated even though they are typically far apart in ¢”. This
phenomenon of long-range dependence may be taken as a definition of replica symmetry
breaking, and it is expected to occur precisely for a > qong.

The idea of 1RSB is that, in passing from the original NAE-SAT model to the (seemingly
far more complicated) “auxiliary model” of weighted BP solutions, we in fact return to replica
symmetry, provided

Y(sy) >0 for s, =argmax,{A\s+ X(s)}. (2.1.6)
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That is, for such A, the auxiliary model is predicted to have correlation decay, in contrast
with the long-range correlations of the original model. The implication is that in this context,
the above heuristic ((2.1.4) and (2.1.5)) is expected to yield the correct answer. The replica
symmetric BP solution for the auxiliary model will be a certain measure ¢, over messages m.
Taking ¢, ., = ¢, is the precise analogue, in the auxiliary model, of taking m,_,, = unif ({0, 1})
on every v — a in the original model. Under the assumption that the auxiliary model has
strong correlation decay, (2.1.4) and (2.1.5) give an expression for F(A) in terms of ¢,.

2.1.5 The 1RSB free energy prediction

Having described the heuristic reasoning, we now proceed to formally state the 1RSB free
energy prediction. We first describe ¢, is a certain discrete probability measure over m. Since
m is a probability measure over {0, 1}, we encode it by x = m(1) € [0,1]. A measure ¢ on m
can thus be encoded by an element pu € &2 where & denotes the set of discrete probability
measures on [0, 1]. For measurable B < [0, 1], define

Ap(B) = 9?(#)*1[ <2 - ﬁl - ﬁu - zi)>A1{ -~ Hkll - Hf-l_kai(l Pty B} ﬁu(d:pi),

i=1 i=1 Ti = ] li=1

(2.1.7)

d—1

il B) = 2 ) | (Hy " H(l - y»)Al{H?__E - Tdny Tt 5} [Tutdn),

i=1

where 2°(11) and 2°(i) are the normalizing constants such that %Z\u and Zap are also
probability measures on [0,1]. (In the context of A = 0 we take the convention that 0° = 0.)
Denote Z\ = %,\ o%#. The map Z : ¥ — & represents the BP recursion for the auxiliary
model. The following presents a solution in the regime

(281 —2)In2 = appa < @ < apa = 28 'In 2,
which we recall is a superset of (cond, Xsat)-

Proposition 2.1.2. For any X € [0, 1], let 1, € & be the sequence of probability measures
defined by 150 = %50 + %51 and fixi+1 = Exfiny for alll = 1. Let

S = (supp fin)\(Supp(feao + - - - + firi—1)),

so Sy is a finite subset of [0,1]. Regard jir; as an infinite sequence indezed by the elements
of S1 in increasing order, followed by the elements of Sy in increasing order, and so on. For
k> ko and cgpg < @ < aypg, @0 the limit [ — oo, 1y converges in the ' sequence space to a
limit 1y € & satisfying i\ = Zjin and

n((0,1)) < 7/2%, ju(dz) = in(d(1 — 2)).
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The limit ji) of Proposition 2.1.2 encodes the desired replica symmetric solution ¢, for
the auxiliary model. We can then express () in terms of 1 as follows. Writing jiy = %[,
let wy, Wy, wy € & be defined by

wr(B) = (327" J <leyl + ﬁ(l - yz‘))Al{ ﬁyi + le(l —yi) € B} leﬂA(d?/z‘%
WA(B) = (307" J <1 - ﬁl’z‘ - ﬁ(l - $1)>A1{1 - ﬁ$7 - ﬁ(l — ;) € B} Hﬂx(d%‘)7 (2.1.8)
on(8) = G [ (v (=00 -0) Lo + 00 0) & Bin(@yinian)

with 5 As 3 s 3 the normalizing constants. The analogue of (2.1.5) for this model is

Y N 4

Z\(9") Z\(4")
and substituting into (2.1.4) gives the 1RSB prediction Z) = exp{F()\)} where
FA) =T\ o) =3y +aln 3y — kaln 3. (2.1.9)

Further, the maximizer of (2.1.6) is predicted to be given by

5 = 5() = f In(z)iin (d) + afln(x)wk(dx) ~ka J In(z) iy (de). (2.1.10)
If s = sy for A € [0,1] we define
Y(s) =2(s;a) =F(\; ) — Asy(a).
This yields the predicted thresholds

Olcond
Olsat

sup{a : X(s1; ) > 0},
sup{a : X(so; ) > 0},

and we can now formally state the predicted free energy of the original NAE-SAT model:
Definition 2.1.3. For a € k~'Z, 1RSB free energy prediction f'***(«) is defined as

fRS(Oé) = 2(1 - 2/2k)a O < Qleond,
f1'%(a) = { exp[sup{s : 2(s) = 0}] Qeond < @ < Qgar, (2.1.11)
0 O > Olgat -

(In regular k-NAE-SAT we must have integer d = ka, so we need not consider « ¢ k~1Z.)

Proposition 2.1.4. Consider a € A = [apa, @una] N (K7'Z). For k = ko and a € A, the
function 3(s) = 3(s;«a) is well-defined, continuous, and strictly decreasing in s, so that
f*¥(«) is well-defined.
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Proposition 2.1.5. For k = ky and X € [0,1], X(sy; ) = F(N\) — Asy is strictly decreasing
as a function of a € A. There is a unique ay € A such that ¥(sy; «) is non-negative for all
a < ay, and is negative for all a > aiy. In particular

1
Oleond = Q1 ( ) n24err, Qg = Qg 5 " 1o

) In2 + err.

We remark that the asymptotic expansion of ag,; matches the previously mentioned result
(2.1.1) from [DSS16]. The asymptotic expansion of aenq matches an earlier result of [CZ12],
which was obtained for a slightly different but closely related model.

2.1.6 Proof approach

Since f = f(«) is a priori not well-defined, the statement f < g means formally that for all
e >0,

lim P(Z'/" > g+¢€) =0.
With this notation in mind, we will prove separately the upper bound f(a) < f'***(a) and
the matching lower bound f(a) = f'™"(a). This implies the main result Theorem 1: the free
energy f(a) is indeed well-defined, and equals f'***(q).

The upper bound is proved in Section 2.8 by an interpolation argument. This builds on
similar bounds for spin glasses on Erd6s—Rényi graphs [FL03; PT04], together with ideas from
[BGT13] for interpolation in random regular models. Write Z,,(5) for the partition function
of NAE-SAT at inverse temperature S > 0. The interpolation method yields an upper bound
on Eln Z, () which is expressed as the infimum of a certain function P(u; 3), with p ranging
over probability measures on [0,1]. We then choose p according to Proposition 2.1.2, and
take 3 — o0 to obtain the desired bound f(a) < f'™"(a).

Most of the paper is devoted to establishing the matching lower bound. The proof is
inspired by the physics picture described above, and at a high level proceeds as follows.
Take any A for which the (predicted) value of 3(s)) is non-negative, and let Y\ be the
number of clusters of size = exp{ns,}. The informal statement of what we show is that

Y, = exp{n[Asy + X(s))]}. (2.1.12)

Adjusting ) as indicated by (2.1.11) then proves the desired bound f(a) > f'**(qa).
Proving a formalized version of (2.1.12) occupies a significant part of the present paper.
We introduce a slightly modified version of the messages m which record the topologies of
the free trees T'. We then restrict to free trees with fewer than T variables, which limits
the distance that information can propagate between free variables. We prove a version
of (2.1.12) for every fixed T', and show that this yields the sharp lower bound in the limit
T — 0. The proof of (2.1.12) for fixed 7" is via the moment method for the auxiliary model,
which boils down to a complicated optimization problem over many dimensions. It is known
(see e.g. [DSS16, Lem. 3.6]) that stationary points of the optimization problem correspond
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to “generalized” BP fixed points — these are measures @Q,_4(my_q4, M,y ), rather than the
simpler “one-sided” measures ¢, (m,_,,) considered in the 1RSB heuristic.

The one-sided property is a crucial simplification, but is challenging to prove in general.
One contribution of this work that we wish to highlight is a novel resampling argument which
yields a reduction to one-sided messages, and allows us to solve the moment optimization
problem. (We are helped here by the truncation on the sizes of free trees.) Furthermore,
the approach allows us to bring in methods from large deviations theory. With these we
can show that the objective function has negative-definite Hessian at the optimizer, which
is necessary for the second moment method. This resampling approach is quite general and
should apply in a broad range of models.

2.1.7 Open problems

Beyond the free energy, it remains a challenge to establish the full picture predicted by
statistical physicists for a < ag,¢. Several recent works targeted at a broad class of models in
the regime o < aeong [BCO16; CPS15; CP16b]. In the condensation regime (aond, sat), an
initial step would be to show that most solutions lie within a bounded number of clusters.
A much more refined prediction is that the mass distribution among the largest clusters
forms a Poisson—Dirichlet process. Another question is to show that on a typical problem
instance over n variables, if !, 2? are sampled independently and uniformly at random
from the solutions of that instance, then the normalized overlap Ry, = n v : x! = x?}
concentrates on two values (corresponding roughly to the two cases that ', * come from
the same cluster, or from different clusters). This criterion is sometimes taken as the precise
definition of 1RSB, and so would be interesting to prove for models in the condensation
regime.

Beyond the immediate context of random CSPs, understanding the condensation tran-
sition may deepen our understanding of the stochastic block model, a model for random
networks with underlying community structure. Here again ideas from statistical physics
have played an important role [Dec+11]. A great deal is now known rigorously for the case
of two blocks [Masl4; MNSI15], where there is no condensation regime. For models with
more than two blocks, however, it is predicted that the condensation can occur, and may
define a regime where detection is information-theoretically possible but computationally
intractable. Part of this conjecture is verified in [CO+16].

2.2 Combinatorial model

Here we give the formal definition of the model. A not-all-equal-SAT (NAE-SAT) problem
instance is naturally encoded by a bipartite graph ¥, as follows. The vertex set of ¥ is
divided into a set V' = {vq,...,v,} of variables and a set F' = {ay,...,a;} of clauses. All
vertices are labelled, and the edge set E joins variables to clauses. For each e € E we let v(e)
denote the incident variable, and a(e) the incident clause. The edge e comes with a literal
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L. € {0,1}, indicating that v(e) participates affirmatively (L. = 0) or negatively (L. = 1)
in a(e). We permit ¢4 to have multi-edges; in particular it is possible that a is joined to
v by two edges €,¢” € E, whose literals may or may not agree. We assume the graph is
(d, k)-regular: each variable has d incident edges, and each clause has k incident edges, so
|E| = nd = mk. Formally, we regard the edge set £ as a permutation m of [nd], as follows.
The i-th variable v; has d incident half-edges, labelled

€d(i—1)+1s - -+ Edi-

The i-th clause a; has k incident half-edges, labelled

~

€k(i—1)+1y- -+ Cki-

An edge then consists of a pair of half-edges (¢,¢), and we take E = {(¢&;, ém(;)) : 7 € [nd]}.
For v € V we write dv for the ordered d-tuple of edges incident to v:

0v; = ((€ag—1)+1> Em(di-1)+1))s - - - » (€di> Em(ai)))-

For a € F' we write da for the ordered k-tuple of edges incident to a:

0a; = ((Em—1(k(i=1)+1)> Ch(i—1)+1)s - - - » (Em—1(ki)» ERi))-

Throughout this paper we denote & = (V| F, E) where it is understood that E corresponds
to a permutation m of [nd], and includes the literals L. We also write

¢ =(G,L) (2.2.1)

where GG denotes the graph forgetting the edge labels L. We define all edges to have length

%, so two variables v # v lie at unit distance if and only if they appear in the same clause.

Definition 2.2.1. An NAE-SAT solution for & = (V, F, E) is any x € {0, 1}V such that
forallae F, (L. ® wv(e))eega is neither identically 0 nor identically 1.

Let SOL(¥4) < {0,1}V denote the set of all NAE-SAT solutions of ¢, and define a graph
on SOL(¥) by connecting any pair of solutions at Hamming distance one. The connected
components of this graph are the clusters of NAE-SAT solutions.

2.2.1 Frozen and warning configurations

We begin by reviewing two standard encodings (see [Par02; BMZ05; MMWO07; MMO09;
DSS16]) of NAE-SAT solution clusters, via frozen configurations and warning configurations.

Definition 2.2.2. On¥ = (V, F, E), we say that z € {0,1, £}V is a valid frozen configuration
if (with the convention 1®f =0 f = f)
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1. For all a € F, (Le @ Ty(e) )eesa is neither identically 0 nor identically 1; and

2. Forallve V, z, € {0,1} if and only if there exists some e € Jv such that
(Ler @ Zoy(e))eresae)e 18 identically equal to L, @ x, @ 1. (2.2.2)
If no such e € dv exists then z, = £.

It is well known that on any given problem instance & = (V, F, E), every NAE-SAT solu-
tion & can be mapped to a frozen configuration z = z(x) via a “coarsening” or “whitening”
procedure [Par(2], as follows. Start by setting x = . Then, whenever z, € {0,1} but there
exists no e € dv such that (2.2.2) holds, update x, to f. Iterate until no further updates can
be made; the result is then a valid frozen configuration. Two NAE-SAT solutions x, ' map to
the same frozen configuration z if and only if they lie in the same cluster (Definition 2.2.1).

We say that an NAE-SAT solution  extends a frozen configuration z if @, = x, whenever
x, € {0,1}. Let size(x) count the number of such extensions. The purpose of this section is
to define (under a certain restriction) an alternative combinatorial representation ¢ of x —
which we call a coloring — from which size(z) can be easily calculated. We will explain the
correspondence between z and ¢ in a few stages:

frozen configurations x

< warning configurations y
< message configurations T
< colorings g.

(2.2.3)

The first step z < y is quite standard: y takes values in M* where M = {0,1,f}?. Each
e € E has a pair of warnings y. = (e, ¥.) where 7. represents the variable-to-clause warning
along e, and g, represents the clause-to-variable warning along e. The warnings must satisfy
some local equations, as follows:

Definition 2.2.3. On ¢ = (V,F,E), y € M¥ is a valid warning configuration if for all
ee b, _

ye = Y((g)e’)e'eév(e)\e) and

ge = Le @Y((Le’ @ ye’)e’eéa(e)\E)

where Y : {0,1,£}9 " — {0,1,f,@} and Y: {0,1,£}* ' — {0, 1, £} are defined by

0 0€{g}c{0.f}; 0 {u:}={1};
- e f

& otherwise.

(For y to be valid, we require that no edge e has 3. = &.)
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It is well known that there is a bijection

frozen configurations warning configurations
<> .
ze{0,1,f}V ye M¥

The mapping from z to y is as follows: for any v and any e € jv such that (2.2.2) holds, set
Je = ¥y € {0,1}. In all other cases set g. = £. If any entry of (J¢)eesv(e)e is not £, then it
must equal (), and in this case set . = x,). Otherwise, set y. = f.

2.2.2 Message configurations

We shall now restrict consideration to frozen configurations without “free cycles” (defined
below), and decompose f into a more refined set of “messages.”

Definition 2.2.4. Let x € {0,1,f}" be a valid frozen configuration on ¢ = (V, F, E). We
say that a clause a € F' is separating (with respect to z) if there exist €/, e¢” € da such that

Le ) Tye!) = Ler ) Ly(e) @ 1#f£.
In particular, a forcing clause is also separating. A cycle is a sequence of edges

€1€2...€2¢-1€2¢€1,

where, taking indices modulo 2/, it holds for each integer i that es;_; and ey; are distinct
but share a clause, while ey; and eq;,1 are distinct but share a variable. (In particular, if v
is joined to a by two edges €’ # €”, then e’e” forms a cycle.) We say the cycle is free if all its
variables are free and all its clauses are non-separating.

Definition 2.2.5. Let x be a frozen configuration on ¢4 = (V, F, E). Let H be the subgraph
of ¢ induced by the free variables and non-separating clauses of x. If x has no free cycles,
then H is a disjoint union of tree components ¢, which we term the free trees of x. For
each ¢, let T be the subgraph of ¢ induced by the depth-one neighborhood of ¢, which may
contain cycles. The subgraphs T' will be termed the free pieces of x. Each free variable is
covered by exactly one free piece. In the simplest case, a free piece consists of a single free
variable surrounded by d separating clauses.

In the message configuration 7 € .#%, each edge ¢ € F has a pair of messages 7, = (e, 7e),
where each message is a rooted tree. To motlvate the formal definition, consider the situation
that e belongs to a free piece T" which is a tree. We define one-sided versions T, and T;: delete
from T the edges da(e)\e, and let T, denote the component containing e in what remains.
Likewise, delete from T the edges dv(e)\e, and let T, denote the component containing e in
what remains. We regard T, and T, as being rooted at a(e) and v(e) respectively. Informally,
7. encodes the isomorphism class of T, while 7, encodes the isomorphism class of Te. However
the situation is more subtle if the edge has warning f in one direction but 0/1 in the reverse
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direction; minor complications also arise relating to the edge literals and the presence of
cycles. We now make a formal definition which takes these issues into account.

It will be convenient to let e indicate a directed edge, pointing from tail vertex t(g) to
head vertex h(e). If e is the undirected version of g, then we let

( ) = (Ue, 7e) if t(€) is a variable;
Yo Te) (e, Te) if t() is a clause.

We will make a definition such that either 7z is a bipartite factor tree, or 7= = *. The tree is
unlabelled except that one vertex is distinguished as the root, and some edges are assigned
0 or 1 values as explained below. The root vertex of the tree is required to have degree one,
and should be thought of as corresponding to h(E).

In the context of message configurations 7, we use “0” or “1” to stand for the tree
consisting of a single edge which is labelled 0 or 1 and rooted at one of its endpoints — the
root is the incident clause in the case of 7, the incident variable in the case of 7. We use o
to stand for the tree consisting of a single unlabelled edge, rooted at the incident variable.
Given a collection of rooted trees tq,...,t, whose roots o1,...,0, are all of the same type
(either all variable or all clauses), we define ¢ = join(ty, ..., t,) by identifying all the o; as a
single vertex o, then adding an edge which joins o to a new vertex o’. The vertex o has the
same type as the o;, and o' is given the opposite type, so the resulting tree ¢ is a bipartite
factor graph rooted at a vertex of degree one. Let .# and .# denote the possible values of
T. and 7, respectively. Write

s E%\{O’L*}? Qf E%\{O,l,*}.
In particular, o e (). We will see below what other elements belong to Q¢ and Q.

Definition 2.2.6. On ¥ = (V,F,E), 7 € .#F is a valid message configuration if for all
ee b,

7.—6 ((’/A_ )e 'edv(e)\ e) and
726 @T(( @Te )e e&a(e)\e)
where T: A4 — # and T: 4% — 4 are defined by
. . (0 iy =11}
0 0e{fi} c#\{1} 1 gj _ %o;
R o A I T =S po?
T(E) = Jein{fi} {7} < Qs . T =9 joinfi} {0} # (7} = {0} U O
* *e{n}g{*}uﬁf; or {1} # {7} = {1} U Q¢;
g otherwise; * otherwise.

For 7 to be valid, we require for all e € E that 7. # &, and further if one of 7., 7. equals
then the other must be in {0, 1}.
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Given a frozen configuration x we define the message configuration 7 in a recursive
manner. If yg € {0,1} then set 75 = yg. If

{07 1} S {Le’ @ ye/}e’eéa(e)\e

then set 7, = o. Let r denote the reversal of g, and let de denote the set of directed edges &
pointing towards t(g) (including r). Then, whenever 7¢ is undefined but 7 is defined for all
£ € 0E\F, set

o { T((Fer)eresv(epe) if ¢(g) is a variable;

ETl Le®T((Le ® Ter)eresa(e)\e) if t(E) is a clause;

Repeat until no further updates are possible. At the end of this procedure, if any 7z remains
undefined then set it to .

Lemma 2.2.7. Let z € {0,1, £}V be a valid frozen configuration on 9 = (V, F, E) which has
no free cycles. Then x maps under the above procedure to a valid message configuration 7.

Proof. Suppose 7z = *, and let ¥ denote the reversal of . From the above construction, it
must be that yg = £ and 7z = » for some & € Je\r. Consequently £ must belong to a cycle of
directed edges

E1Eo ... EoLE]

with all the 7z, equal to x. Whenever e points from a separating clause a to free variable
v, we must have 7z = o. As a result, if all the variables along the cycle are free, then none
of the clauses can be separating, contradicting the assumption that x has no free cycles.
Therefore some variable v on the cycle must take value z, € {0,1}, and by relabelling we
may assume v = t(g;). Let r; denote the reversal of g;: since z, # £ but yg, = £, it must be
that yg, = x,. This means that the clause a = h(g;) = t(r;) is forcing to v, so in particular

r, € {0,1}. Continuing in this way we see that yg, € {0, 1} for all ¢, and it follows that 7 is
a valid message configuration. O

Lemma 2.2.8. There is a bijection

frozen configurations x € {0,1, £}V ., ) message configurations
without free cycles TeH” '

Proof. Given z, let y and 7 be the corresponding warning and message configurations. The
mapping from y to 7 is clearly injective. Since x < y, the mapping from z to 7 is also
injective. To see that it is surjective, let 7 be any message configuration. Projecting {x} u
O; — £ and {x}u Qf > £ yields a valid warning configuration y, which in turn maps to a
valid frozen configuration z. It remains then to check that z has no free cycles. Suppose for
the sake of contradiction that there exists a cycle of directed edges

E1E2 .. .E9rEq
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where all the variables are free and all the clauses are non-separating. Writing r; for the
reversal of g;, we see that all the messages 7g,, 77, must lie in {*} U Qf U Qf In fact, none of
the messages can be «, since in that case we require the message in the reverse direction to
be in {0, 1}. Therefore all the messages are in Qf U Qf By definition of T and T, Tg, must be
a proper subtree of 7g,,, for all ¢, with indices modulo 2%. Going around the cycle we find
that 7, is a proper subtree of 7g,, ., = 7g,, which gives the required contradiction. O

2.2.3 Bethe formula
The messages 7., 7. can be used to define probability measures m., m. on {0, 1} where

m,. = m(7.) represents the law of v(e) in absence of a(e);

m. = m(7,.) represents the law of v(e) in absence of dv(e)\e.

If 7. # *, then there will be a normalizing constant Z. such that

H me( for z € {0, 1}.

eee&;e\e

Similarly, let I™"(z) be the indicator that the entries of z are not all equal: if 7, # % then
there will be a normalizing constant Z. such that

1 :
’l’;’Le(l‘) = — Z ]NAE(«T@Lea (£®L>5a(€)\€) 1_[ m(xe') for r € {07 1}
Ze Tsa(e)\e e’eda(e)\e
In what follows we usually represent a probability measure on {0, 1} by the probability
assigned to 1, writing m = m(1) and m = m(1). Explicitly, m(7) and m(7) can be defined
recursively, starting from the base cases

m(1) =m(1) =1, 1(0) = 1m(0) = 0.

If 7 € Qf equals T(7y, ..., 74 1) where none of the 7; are , then set
d—1 d—1 d—1
o 1 " a . R PN
m(7) = 7 [ [(5),  2(7) =] [m) + ] [ - m(z), (2.2.4)
2(7) i=1 i=1 i=1
where we note that (71, ...,74_1) can be recovered from 7 modulo permutation of the indices,
so (1) is well-defined. Slrmlarly, if 7 € Qs equals T(71,...,7%—1) where none of the 7; are *,
then set

k—1

m(7) = 2(% (1 - f[m@-)), 2F)=2— f[m@) — [ = (). (2.2.5)

i=1

Finally, we will see below that for our purposes we can take m(x), m(x) to be any fixed values

n (0,1). We arbitrarily set m(x) = 3 = 7(*).
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Lemma 2.2.9. Suppose on 9 = (V, F, E) that T is a valid message configuration, and let
be the corresponding frozen configuration (which has no free cycles). Suppose T is a free piece
of x, and let t be the free tree inside T'. Let size(x;T') count the number of valid NAE-SAT
assignments which extend x on T'. Then

size(z; T) H O(Tnse) H ¢"((T®L)sa) H @(e) (2.2.6)

vetnV actnF eetnk

where @(7,7) = [m(7)m(7) + (1 — m(7))(1 — m(7))] 1,

k k
P, ) = 1] () - | [ - m(7),
=1 =1
and for any £ = 0 we define
¢ ¢
P(f1,. 7)) = | [m(3) + [ [ = m(#)).
=1 i=1

We take the convention that the empty product equals one, so if £ = 0 then o = 2. The
number of valid NAE-SAT assignments extending x is given by

size(x Hsme (z;T) (2.2.7)

Tex
where the product is taken over all free pieces (Definition 2.2.5) T of x.

Proof. The first claim (2.2.6) is a well-known calculation; see e.g. [MMO09, Ch. 14]. The
product formula (2.2.7) then follows from the fact that different free trees are disjoint. [

Corollary 2.2.10. Suppose on ¢ = (V, F, E) that T is a valid message configuration, and
let x be the corresponding frozen configuration. Then

SIZ€ 1_[%0—5” nght T@L 6(1 1_[ ()07—6

veV aeF ectnE
and this identity holds for any choices of m(x),m(*) € (0,1).

Proof. Let V' denote the set of free variables, and F” the set of non-separating clauses. For
each v € V' let t(v) denote the (unique) free tree containing v. Rearranging the product
formula (2.2.7) gives

size(z) = [ | { Foesn) || @7 } [ [¢"(G@L)sw).

veV’ eet(v)ndv aeF’

If e joins a free variable v to a separating clause a, then m(7.) = 5 = ¢(7.) ", so

Sb(it(v)r\&v) = SO(ZJU)Q‘&)\tl = 90 7-6 H ()0 Te
ecdv\t(v



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 23

Substituting into the above proves that
szels) = [ {250 [T et} T] (2 @) (225)
veV’ e€dv acF’

For v ¢ V' (meaning z, € {0, 1}), partition dv into
dv(r) ={eedv:g. =x,}, dv(b)={eecdv:y.==F}

Say without loss that x, = 1: since m(7.) = 1 for all e € dv(r), we have

P(2s,) = [ [ (i) + [[(1—l7)) = [] mG) = [] e(r)™ (2.2.9)

eedv eedv e€dv(b) e€dv(b)

Some of the messages 7. incoming to v may equal *, but the above identity holds for any
choice of m(x) € (0,1). Likewise, if a is a separating clause which is non-forcing, then some
of the messages 7. incoming to a may equal *, but

" ((7 ®L)sa) = 1 (2.2.10)
for any choice of m(x) € (0,1). Finally, if a is forcing in the direction of edge e, then

m(7e) if Tye) =

oL - et = { 1 e ] (22.11)

including in the case that 7, = . It follows from (2.2.9), (2.2.10), and (2.2.11) that

II{%&HI%@}I]@W@@QM=L

veV\V’ ec€dv aeF\F'

and multiplying with (2.2.8) proves the claim. O

2.2.4 Colorings

We now define the last step of (2.2.3). Recall 7 € .#F, and let Q; < .# denote the subset of
values 7 = (7,7) € . for which 7 € Q¢ and 7 € Q. Then the colorings will be configurations
o € QOF where

Q= {ro,r1,b0,b1} U Q.

We define a mapping s : .# — Q by

A~

ro 7T=0;
ry 7T=1;
s(t) =< by 7#0and 7 =0; (2.2.12)

by 7#1and 7 =1;
7 otherwise.
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Note that if 7 = (7,7) with 7 =

*, then 7 must equal some x € {0,1}, and so we set

o(7) = r,. Likewise if 7 = % then 7 must equal some x € {0, 1} and so we set o(7) = b,.

o =1 € s we write (6,6) = (7,7); otherwise we write (¢,5) = (o,
the possible values of ¢,5. The map s is not one-to-one, and we shall denote

#5(5) = {re.H : (7,7)cs(o,6) for some 7 € M, 5 € Q}
05(5) = {re.d : (#,7) es(d,6) for some 7 € A, 5 € Q},
P5(7) ={6e€Q:(6,6) =s(+,7) for some 7 € M6 € Q}
aPos(T) {6€Q:(6,6) =s(7,7) for some 7 € M, 5 € Q).

The following definition is derived from Definition 2.2.6.

Definition 2.2.11. On ¢ = (V, F, E), o € QF is a valid coloring if for all e € E,

de € s((a'e’)e’eév(e)\e> and
CATe € Le @ S((Le’ @ é-e’)e’eéa(e)\e)

where $: Q41 — 22 and §: QF~1 — 22 are defined by
S(G) = P®oTo7Ps(4) = {5 : 6 € oP%(T(£)) for any 7 with 7; € 7P°%(5;) Vi},
S(g) =6P®0To7P(g) = {6 :6 € 6P%(T(7)) for any 7 with 7; € 7P%(d;) Vi}.

An equivalent characterization is that ¢ is a valid coloring if and only if

[Ties) [ [ (c@L)s) =1

veV aceF

where T : Q4 — {0,1} and I'* : Q% — {0,1} are given by

o). We write Q, Q) for

d—1

I(o) =] [ 1{é1 € 8((65);0)},

=1

[ht

H 1{6: € S(( (7))}

This builds on a related encoding introduced by [CP16a]. More explicitly, we have

1 rge{oi} < {ro,bo},
1 ri€e {Uz} c {I‘i,b1},
1 {oi} < Q¢ and
i = T((65);i) Vi,
0 otherwise;

I(0) =

In the definition of I, we note that if {o;} N {ro,r:} = @, then 7°°(¢;) is a singleton for

flit (g) —

(1 3i:0; =10 and {O'j}j#i = {bl},
1 Ji:0; =1y and {oj}j+ = {bo},
1 {oi} n{ro,r1} =2
di - {o)}j-i = {bo} or {b;1}, and
0 € {boﬂblvT((%pos(dj))j?ﬁi)} Vi,

0 otherwise.

each i. If {0}, is neither {by} nor {b;}, then we have T((7°°5(5;)),.:) € Qs.
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One purpose of this encoding is to take advantage of some of the cancellations seen in
the proof of Corollary 2.2.10. It follows easily from the definition that we have a bijection

message configurations - colorings
TeHMP ageQF (7

The following is a straightforward consequence of Lemma 2.2.9:

Lemma 2.2.12. Suppose g be a valid coloring on 9 = (V, F, E). Let T be the corresponding
message configuration, and x the corresponding frozen configuration. Then size(z) = size(o)
1s given by the formula

size(a) = wi ( H O (ay, H quit((g @ L)sa) H ®(oe)

veV aceF eeE

where ® agrees with ¢ for v, a, e belonging to free trees, and is one otherwise. More precisely,
d: Q1 — Roy is given by

. 0 (o) =0;
Pg) =4 1 I(o) =1 and {o;} contains ro or ry;
o(7)  otherwise, meaning v € V';

note in the last case that each o; can be mapped to a unique 7;, so the value of H(T) is
well-defined. Similarly, ®1 : QF — R- is given by

0 I(g) = 0;
dlt(g) = 1 I:l%t(g) =1 and {0;} contains roy or ry;
- 1 I"*(g) =1 and {by, by} S {0}};
QY(7) otherwise, meaning a € F';

note again in the last case that each o; can be mapped to a unique 7;, so the value of P"(7)
is well-defined. Finally, ® : Q — Rxq is given by

- 1 o € {ry,r1,bo, b1 };
(o) = { o(o) otherwise.

Proof. This is essentially a rewriting of (2.2.8). O

According to the above definitions, if ¢ is not a valid coloring, then wi (o) = 0. For
o € 2 let |o| count the number of free variables encoded by . Thus |o| = 0 if and only if
og¢ Qe OnY = (V,F,E) we say that g is a valid T-coloring if |o.| < T for all e € E. We
write Iy 7(o) for the indicator that ¢ is a valid T-coloring of ¢, and let

wy p(0) = wy' (o) Iy ().
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Recall from Lemma 2.2.12 the product formula for wi(c), and note that an analogous

formula for 'wllt +(0) is obtained by simply replacing ® with the modified factor ®, where

Pr(0) = B(o)1{|o] < T}.
We then define Z, r to be the partition function of A-tilted 7T-colorings,
Zyr = Y. wis(o) (2.2.14)
oeQF

Thus Z, 7 is a function of the NAE-SAT problem instance ¢4 = (V, F, E). Clearly Z,r is
nondecreasing in 7', and we write Z) o, = Z) for the sum over all valid colorings with no size
truncation. The following gives the formal version of (2.1.3) which we will work with in the
proof of the free energy lower bound.

Proposition 2.2.13. On ¥ = (V, F, E) let €(¥) denote the collection of NAE-SAT clusters,
so each v € €(94) is a subset of {0,1}V. Then, for all 0 < T < oo,

Zr< ), b

YEC(Y)

Proof. This is a direct consequence of Lemma 2.2.12. O

2.3 Proof outline

Having formally set up our combinatorial model encoding the clusters of NAE-SAT solutions
(Proposition 2.2.13), we now proceed to outline the proof of Theorem 1. The basic approach
will be to show concentration for Z, r via the second moment method.

2.3.1 Averaging over edge literals
In the setting of NAE-SAT, we can take advantage of the following simplification:

Remark 2.3.1. For any function g : {0, 1} — R, let Elig denote the average value of g(L)
over all L € {0,1}". Recalling from (2.2.1) the notation ¥ = (G,L), if ¢ is any coloring of
the edges of GG, then the average of wht +(a) over all L is given by

]Eht[w;tT( ] = wer(o {HCI) s n@ Osa HCI)T o } : (2.3.1)

veV aeF eeFE

with ®(¢) = (E*[®(c L) ])1/ A. A similar simplification holds in the second moment, where
we consider pairs ¢ = (¢!, ¢®) with weights wy';(0) = wy'r(a")wy'1(a?):

A
E™[wi'+(0)"] = wer(c {H% o5,) | [ ®2(05,) | | raloe) } (2.3.2)

veV acF ecE
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where ®y(g) = ®(a")®(c?), Dry(0) = Op(c!)Pr(0?), and
Ba(o) = ("o @1 0 B L))

Let us emphasize that $ and ®, depend on A, although we suppress it from the notation.
Clearly the weight 'w};tT( ) depends on L, since ¢ need not even be a valid coloring for
all choices of L. However, the following lemma shows that, as long as ¢ remains valid, the

size of its encoded cluster remains the same:

Lemma 2.3.2. Given G, let wg¥(a) denote the mazimum of wy' (o) over all 4 = (G, L).

For any & = (G, L), wy'r(0) is either zero or equal to wE¥(a).

Proof. We claim that for all o,L we have the factorization

(i)ht(QC‘DL) _ flit(g@L)fi)maX(Q)a where
dmx(g) = max{i)lit(g@L) :Le {0,1}"}.

To see this, note that for ¢ € Q41 and £ € Q51 if I(0,¢) = 1 and I"(0, &) = 1, then

@(U, Q(T)T(U) = Z(d) = { i(T) gtger:w?ée;
z

é)ht(O,ﬁ)fi)T(O) _ 2’((7) - { 1<7A') ifo=r,

otherwise.

(2.3.3)

In particular since 2(6) = 2(6@®1), we see that the claim holds with ®™*(¢) = 2(6;)/®r(0;)

for any 1 <7 < k. The lemma then follows: either w}}tT( ) is zero, or it equals

[T (o5 [ [ 87 (05) [ ] #r (o) = wizi(o),

as claimed. n

Lemma 2.3.2 says that, in averaging over the literals, we do not lose any essential infor-
mation on the cluster size. For g € QF, let

(o) = E"[I"(c®L)] (2.3.4)

denote the fraction of L € {0, 1}* which are compatible with . Then Lemma 2.3.2 gives
A max — ~
we,r(0) = wgF () pe(a).  palo) = [ o). (2.3.5)
aeF

We will see below that, thanks to this simplification, we can extract the desired information
from the averaged weights w¢ 7(¢), without referring to the edge literals L.
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Definition 2.3.3. On a bipartite factor graph G (without edge literals), the factor model
with specification ¢ = (g, g, g) is the probability measure vg on configurations ¢ € 2°F

defined by
Hg 551) ng 55(1 Hg fe (236)

UEV aeF eeE

with Z the normalizing constant.

The measure (2.3.1) on T-colorings is a factor model with specification (&, & ,®7)". The
measure (2.3.2) on pairs of T-colorings is a factor model with specification (®y, @5, B7o)>.
To distinguish between the two cases, we sometimes refer to (2.3.1) as the “first-moment” or
“single-copy” model, and refer to (2.3.2) as the “second-moment” or “pair” model. In much
of what follows, we treat these two in a unified manner under the general framework (2.3.6).

2.3.2 Empirical measures and moments
We will decompose colorings ¢ according to their empirical measure H, defined as follows:
Definition 2.3.4. Given a coloring ¢ on ¢4 = (G, L), let

H(Q) =HveV:iags=g|/IV|] for (e,

H() =|{aeF:a5 =¢&l/|F| for e,
H(o) =|{ee E:0.=0}|/|E|] foroeq.

~—

Note that the validity of ¢ on ¢ clearly depends on L, but we can regard H as a function of
(G, o) only. We therefore write

H=H(Y,0)=H(G,0) = (H,ﬁ,H),
and we term this the empirical measure of ¢ on G.

If H is any subset of empirical measures H, we write ¢ € H to indicate that H(G, o) € H,
and let Z, r(H) denote the contribution to Z,r from (valid) colorings ¢ € H. If H is a
singleton {H}, then we write o € H to indicate H(G,o) = H, and let Z, r(H) denote the
contribution from all colorings ¢ € H. Much of the paper concerns the calculation of first
and second moments for Z, r(H).

First note that for any pair (G,o) with H(G,o) = H, the weight wg (o) is the same
and depends only on T, G, and H. In fact, the weight equals wg(o) = we (o) if the
support of H is contained in Qp, and equals zero otherwise. From now on we assume H
is supported within Qr, so we r(o) = we(o) depends only on (G, H), and can be denoted
we(H). Further, we see in (2.3.5) that, as long as supp H < Qr, the weights wg% (o) and
pc(a) also depend only on (G, H), so we can rewrite (2.3.5) as

w(H) = wi™(H) p(H). (2.3.7)
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In what follows, for ease of notation we will often suppress the dependence on A and 7', and
write simply Z = Z, r.

In fact we have a quite explicit expression for EZ(H), as follows. We will use the usual
multi-index notations, in particular, if 7 is a probability measure on a space X, we write

(nnﬁ) = nl / wl;[((mr(:c))!.

It follows straightforwardly from the definition of the random regular NAE-SAT graph that

EZ(H) = {(nz‘q) (mmg) / (nZC[l{) } we(H). (2.3.8)

We write H(7) = —{m,Inm) for the Shannon entropy of 7. Applying Stirling’s formula gives
the following:

Lemma 2.3.5. For any fized H = (H, H, H), we have in the limit of large n that
EZ(H) =n "2 exp{nF(H)}

where for an empirical measure H = (H, ﬁ, H) we define

w(H) = (kYo By = mp(H),

s(H) ={n®, H) + (d/k)In®™> H) + d{ln®, H) = n~ ' Inw™>(H),

S(H) =H(H) + (d/k)H(H) - dH(H) + v(H), (2.3.9)
F(H) =3%(H)+s(H)A, .

p(H) = [supp H| + [supp H| — |supp H| — 1.

2.3.3 Outline of first moment

The function F'(H) is difficult to optimize directly, and we combine a few techniques in order
to analyze it. In view of the result of [DSS16] (see Remark 2.1.1), we restrict consideration
to the regime

(281 —2)In2 = appg < d < agpa =27 In 2. (2.3.10)

In this regime, we use a priori estimates to show that the optimal H must lie in a certain
restricted set N,. We then show that in the restricted set, a certain block optimization
procedure converges to a unique, and explicit, optimizer H,. The convergence of the block
optimization is based on a certain contraction estimate for the belief propagation recursion,
which we describe below.

First, to describe the set N, let us abbreviate H(r) and H(f) for the mass assigned by
H to the sets {r} = {ro,r:} and {f} = Q; and let N, denote the set of H such that

max{H (f), H(r)} < 7/2F. (2.3.11)

The following a priori estimate shows that in the regime (2.3.10), the measures H ¢ N, give
a negligible contribution to the first moment.
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Lemma 2.3.6. Let Z((N,)¢) be the contribution to Z = Zr from empirical measures
H ¢ N,. Fork = ko, a satisfying (2.3.10), and 0 < A < 1, EZ((N,)) is exponentially small
mmn.

Proof. In view of Proposition 2.2.13, for 0 < A < 1 we have
Z((NO)C) < Zfree 4 Zred

where Zf**¢ (resp. Z**?) counts NAE-SAT solutions x € {0, 1}V which map — via coarsening
and the bijection (2.2.3) — to warning configurations y with density of free (resp. red) edges
> 7/2%. For « satisfying (2.3.10), EZ* is exponentially small in n by [DSS16, Propn. 2.2].
As for Z74 let us say that an edge e € E is blocked under x € {0,1}" if

Le @ Zye) = 1 ® Ly @y for all € € dale)\e.

Note that if  maps to y, the only possibility for y. € {ro,ri} is that e was blocked under
. (The converse need not hold.) If we condition on & being a valid NAE-SAT solution, then
each clause contains a blocking edge independently with chance § = 2k/(2% — 2); note also
that a clause can contain at most one blocking edge. It follows that

EZ7 < (EZ)IP’(Bin(m, 0) > 7nd/2k),

which is exponentially small in n by a standard Chernoff bound, in combination with the
trivial bound EZ < 2". O

Lemma 2.3.6 tells us that max{F(H) : H ¢ N,} is negative. On the other hand, we shall
assume that the global maximum of F' is non-negative, since otherwise EZ is exponentially
small in n and there is nothing to prove. From this we conclude that any maximizer H of
F must lie in N,. By a block optimization procedure in N, we prove

Proposition 2.3.7 (proved in Section 2.6). Assuming the global maximum of F is non-
negative, the unique mazximizer of F' is a point H, in the interior of N,. Further, there is
a positive constant € = e(k,\,T) so that for |H — H,| <e¢, F(H) < F(H,) — ¢|H — H,|*.
Ezxplicitly,

O . ML o o B0
5 ]Jq &), H.(&) = A Eq*(fi), H.(0) = =5 —0.(6)d.(5).
(2.3.12)

where ¢, is the fized point of BPyr given by Proposztzon 2.4.2, G, = BP, 7(G), and Z,, Z*,
Z. are the normalizing constants such that H, H, H, are probability measures.

A straightforward consequence of the above is that we can compute the first moment of
Z up to constant factors. More formally, define the neighborhood

N ={H:|H-H,| <n *} < N..
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We say 0 € N if H(G, ) € N, and let Z(N) be the contribution to Z from colorings o € N.
In the following, let § = $(T') count the number of d-tuples ¢ € (Q7)? for which ®(g) > 0.
Let § = 3(T) count the number of k-tuples o € (Q7)* for which ®(¢) > 0. Let § = ||, and
denote p=s+s5—35—1.

Corollary 2.3.8. In the setting of Proposition 2.3.7,
EZ(N) =EZ = exp{F(H.)}.

Proof. In an pair empirical measure H = (H JH H ), the edge marginal H can be determined
from either the variable or the clause measure:

ndH (o) =Y nH(Q)M(0,¢) = Y \mH (&) M (0, &) (2.3.13)
< £
where M € R¥¢ and M € R¥# are defined by
d k
M<O-7£) :Zl{gz :O-}a M(07§> :Zl{fz :0‘},
=1 =1

The ($ + §)-dimensional vector (H, H) gives rise to a valid empirical measure on the graph
G if and only if

(i) (LH) =1;

(ii) (nH,mH) lies in the kernel of the 5 x (§ + §) matrix M = (M —M);
(i) (nH,mH) is integer-valued;
(iv) H,H = 0.

One can verify that the matrix M is of full rank, from which it follows that the space of
(H, H) satisfying (i) and (i) has dimension . In Lemma 2.5.6 we will show that M satisfies
a stronger condition, which implies that the space of (H, H) satisfying (i), (i), and (iii) is
an affine translation of (n~'Z)%, where the coefficients of the transformation are bounded.
It then follows by combining Lemma 2.3.5 and Proposition 2.3.7 that

1

EZ 1
P EET = 2 e @Al

26(n—1Z)#¢

The contribution to EZ from H ¢ N is negligible, so the above estimate holds as well with
EZ(N) in place of EZ. O
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2.3.4 Second moment of correlated pairs

We will show in Section 2.10 that for fixed A € [0,1], the pair (s(H,),%(H,.)) converges
as T — o to a limit (sy,X(sy)), which matches the physics 1RSB prediction. We then
consider the second moment only for colorings in IN, beginning with the following definition
(following [CP16a]) which is intended to address the contribution from pairs of colorings
with large correlation.

Definition 2.3.9. Given a coloring ¢ of G, write z(c) = (z,(a))wey for the corresponding
frozen configuration. For two colorings o, 0’ of G, let

0(a,0') =fveV :x(a) # zo(a)}/V].

Let Iy, = [(1 — k*/27/2) /2, (1 4+ k*/2%/2)/2]. Write ¢’ > ¢ if the number of free variables in
z(a’) upper bounds the number in z(g). We say that a coloring g € N is separable if

{c'e N: o' > o and 6(0,0") ¢ Lep}| < exp{(Inn)*},

where it is understood that both o, ¢’ must be valid colorings.

Proposition 2.3.10 (proved in Section 2.7). If S(N) is the contribution to Z(IN) from
separable colorings, then ES(N) = (1 — o(1))EZ(N).

In the second moment, we continue to write H = (H, H, H) for the empirical measure,
with the understanding that it now refers to pair colorings ¢ = (¢!, 0?). Thus H is in this
context a measure on (Qd) , and so on. If we wish to emphasize that we are in the second
moment setting, we will refer to H as the pair empirical measure. The single-copy marginals
of H are defined as H/ = (H7, Hi, HY) for j = 1,2 where

HI(¢) = ) H(d",0e*)1{o’ = (},

ol,o?

and similarly for H7, H7. To calculate the second moment of Z (N), we must understand all
pair empirical measures H in the set

Ny, ={H:H' H?e N}.

The purpose of Definition 2.3.9 is to allow us to make a further restriction: we compute the
second moment of S(N) rather than of Z(N). Any ¢ = (¢!, ¢?) with pair empirical measure
H will have the same value 6(c', 0?) = §, so we can define §(H) = 4. Let

Nep = {H €Ny : 0(H) € Lep}, Nps = No\Ngep.

Lemma 2.3.11. If S*(N,) is the contribution to S(N)? from pair empirical measures H €
N, then E[S?*(N,)] < exp{ns(H,)\ + o(n)} EZ.
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Proof. Denote ¢ € S(N) if ¢ contributes to S(N), meaning that ¢ is separable and has
empirical measure in N. Then, by symmetry,

S’(Nuw) = > 1{g, ¢ separablelwy's (o) wh'r(c’)*

(g,0')€NRs
<2 ). 1{g separable}1{o’ > g}wy's (o) wy'r(c’)
(g,g/)Gan

< exp{ns(H.)\ + o(n)}S(N),

where the last step is by the definition of separability. The result follows easily by noting
that S(N) < Z. O

Corollary 2.3.12. For any A € [0, 1] with 3(sy) > 0, there exists T(\) large enough such
that for all T = T(X), the ratio
E[5*(Nus)]
2

(EZ(N))
decays exponentially with n.

Proof. By Lemma 2.3.11 and and Proposition 2.3.7,
E[S*(Nu)] _ exp{ns(H.)A + o(n)}

~

= exp{—nX(H,) + o(n)}.

(EZ(N))? EZ(N)
Since for fixed A the pair (s(H.,),3(H,)) converges in the limit 7" — o to (sy, X(sy)), for
T = T(\) the above ratio decays exponentially with n, concluding the proof. ]

2.3.5 Second moment of uncorrelated pairs

The derivation of Lemma 2.3.5 applies equally well to the second moment, giving the expan-
sion
E[Z*(H)] = n~"") exp{nFy(H)}

where H is the empirical measure for pair colorings, and @(H), Fy(H) are defined explicitly
as follows. Recalling (2.3.4), for o € Q% let

@Q(Q) = Eht[flit(gl @L)flit(g2 @L)]

For a pair empirical measure H with single-copy marginals H', H? we have (cf. (2.3.9))

vo(H) = (d/k){In by, H,
so(H) = s(H') + s(H?), )
o (H) =H(H) + (d/k)H(H) — dH(H) + vy(H), (2.3.14)

FQ(H) EEQ(H)“!‘ S2(H>)\, . -
p(H) = |supp H| + |supp H| — [supp H| — 1.
We will show that the maximizer for F5 canAbe described in terms of the maximizer H, of
F. To this end, we will say that a measure K on pairs (§,L) is factorized if
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(i) the marginal K on L is uniform over {0, 1}*, and
(i) for each ¢ the conditional measure K (L|€) is uniform on {L: I'"*(¢ @ L) = 1}.

From (2.3.12) and Lemma 2.3.2, H, is the marginal on £ of the probability measure K, on
pairs (£,L) € QF x {0, 1}* defined by

k

K (&L) = I"(E®L)IE), where §(&) = ™€) [ [ 4.(&).

i=1

We will characterize ¢, in detail below, but for now we note that it has the symmetry
G«(0) = G.(6 ®1), which implies (&) = §(EDL) for any L € {0, 1}*. Tt follows from this that
the measure K, is indeed factorized.

Lemma 2.3.13. Assume we have empirical measures H' = (H’, HI, H7) (j = 1,2), such
that HI s the marginal on & of an L-factorized measure Ki. Suppose H = (H H , H) where
H, H are the product measures H' ® H* and H' ® H?, and

H(g) = EM[K (LR (EL))-
Then Fy(H) = F(H') + F(H?).
Proof. From the definitions we have

(k/d)[Fy(H) — F(H") — F(H?)] = H(H) + (niy, Hy — > [H(H’) + {nd, H)].

§=1,2

From the assumption, H is the marginal on ¢ of the measure K(£,L) = 27" K (€ML) K2 (£2|L).
Note that the marginal of K onLis uniform, and K (L|¢Y, £€2) is uniform on L compatible
with both &', £2. Therefore, letting (€', €2, L) denote a random sample from K,

H(H) + by, Hy = HE,EL) + H(L) - HLIE,E) + (ndy, H) = H(E EL).

Applying conditional independence gives

H(ELEIL) = Y [H(E) + HLE) - HL)] = Y [H(E) +nd, B7)],

j=1,2 j=1,2
which proves Fy(H) = F(H') + F(H?). O

Proposition 2.3.14 (proved in Section 2.6). The unique marimizer of F2 m Ngep 15 the
pair empirical measure Hg = (H®, H®, Hg) given by H® - H,® H,, Hgy = H,® H,, and

Ao = B[R, (L) © K. (1L)].
Further, there is a positive constant € = €(k, A\, T) so that for |H — Hg| < e,

F,(H) < Fy(Hg) — ¢|H — Hg|*.
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Corollary 2.3.15. There exists a constant C' = C'(k,\,T) such that
E[Z*(Nup)] < C(EZ(N))*

Proof. Recall from Corollary 2.3.8 the definition of (s, §,5) for the single-copy model, and
define ($9, $9, 52) analogously for the pair model. Let gy = $9 + §2 — 5o — 1. For any fixed
H',H? € N, the set of pair empirical measures H with single-copy marginals (H', H?)
spans a space of dimension g, — 2. Thus, writing E[Z%(H*', H?)] for the second-moment
contribution from such measures, it follows from Proposition 2.3.14 and Lemma 2.5.6 that

E[Z*(H', H?)] = n~% exp{nFy(Hg)}.
Summing over (H', H?) € N, then gives
E[Z*(Nuep)] = n”" exp{nF>(Hg)},

which in turn is =< (EZ(N))? by Proposition 2.3.7 and Lemma 2.3.13. O

2.3.6 Conclusion of main result

We now explain that the main theorem follows from the preceding assertions.

Corollary 2.3.16. For any X € [0, 1] with X(s)) > 0, there exists T(\) large enough such
that for all T = T(\), and for n sufficiently large,

E[S(N)*] < C(ES(N))?
for a constant C' = C(k,\,T).
Proof. Since S < Z, we can bound
E[S(N)?] < E[Z*(Nuep)] + E[Z%(Nus)].

By Corollaries 2.3.12 and 2.3.15, the above is bounded by a constant times (EZ(N))?, which
in turn is bounded by a constant times (ES(N))? by Proposition 2.3.10. O

Corollary 2.3.16 implies P(S(IN) > JES(N)) > § for some positive constant J. By
adapting methods of [DSS16] we can strengthen this to

Proposition 2.3.17. In the setting of Corollary 2.3.16, S(IN) concentrates around its mean
in the sense that lim o liminf P(e < S(N)/ES(N) < e ') =11

Proof. This is a straightforward consequence of the method described in [DSS16, §6]. O

Corollary 2.3.18. For k > ko, f(a) = f"™"(a) for all apq < @ < Qgny.

'The upper bound follows trivially from Markov’s inequality, so the task is to show the lower bound.



CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 36

Proof. Follows by combining Corollary 2.3.16 and Proposition 2.3.17. [

The proofs of the above propositions occupies Sections 2.4 through 2.7, with the contrac-
tion estimates deferred to Section 2.9. In Section 2.8 we will show

Proposition 2.3.19. For k > ky, it holds for all a < ag that f(a) < f7™"(a).

Proof of Theorem 1. Follows by combining Corollary 2.3.18 and Proposition 2.3.19. O

2.4 Tree recursions

2.4.1 Belief propagation

We now describe the belief propagation (BP) recursions for this model. In the standard
formulation (see e.g. [MMO09, Ch. 14]), this is a pair of relations for two probability measures
q,q over ()

where z, 2 are the normalizing constants ensuring that the outputs are probability measures.
The first equation above is the variable recursion, and the second is the clause recursion. A
standard simplification (see e.g. [MMO09, Ch. 19]) is to assume a one-sided dependence:

(o) = §(6) and (o) = §(5). (2.4.1)

where ¢, § are probability measures on Q, Q, and =~ denotes equivalence up to normalization.
To see that this restriction makes sense, we note the following lemma which confirms that
the restriction is preserved under the BP mapping;:

Lemma 2.4.1. The restriction (2.4.1) is preserved under the BP mapping, that is, if q

depends only on & then E(q) depends only on &; and if q depends only on & then B(q)
depends only on o.

Proof. Suppose q depends only on &, so ¢(c) = ¢(¢), and consider the variable BP mapping
B. If o ¢ Qs then ¢ is uniquely determined by &, so there is nothing to prove. Therefore we
need only consider the case that o € Q. In order for I(o,09,...,04) = 1, we must have

o =T(6,...,64); (2.4.2)
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note that this condition does not depend on . Further, given (o, 63,...,64) satisfying
(2.4.2), there is a unique choice of (¢, ..., d4) for which I(o,09,...,04) = 1; it is determined
by the relation ¢; = T((6;),.:). In this case, applying (2.3.3) gives

(0, 09,...,00)0(0) = (&),

which also does not depend on . It follows that

I
&
S
12
iy
Q
=
g
[t
oy
q-
|
'—]
9
:l&

69,esB i=2

The right-hand side does not depend on &, which proves the claim concerning B.

Similarly, suppose g depends only on ¢, so g(¢) = ¢(¢), and consider the clause mapping
B. Again, if o ¢ ¢ then there is nothing to prove, so suppose o € 2¢. Then, in order for
I"((0,04,...,04) ®L) = 1, we must have

note that this condition does not depend on o. Further, given (0,09,...,0k L) satisfying
(2.4.3), there is a unique choice of (6y,...,6) for which I'*((o, 09, ...,0%) @ L) = 1; it is
determined by the mapping T. In this case, applying (2.3.3) gives

A

O((0,09,...,0,) DL)P(0) = 2(5),

which also does not depend on ¢. It follows that

k
[B(@)](o) =26 ), >, He=Li@T(6:®L)=)} | [d(60).
L 092,...,04 i=2
The right-hand side does not depend on ¢, which proves the claim concerning B. O]

Lemma 2.4.1 verifies that the one-sided dependence is preserved under the BP recursion,
and from now on we always assume (2.4.1). In this setting, B and B reduce to mappings

BP = B'PA,T : @(Q) - gZ(Q),
BP =BP, 1 : Z(Q) — 2(Q).

(Generally we will fix A, 7" and suppress them from the notation.) We also denote
BP = BP 0 BP = BP) 7. (2.4.4)

Note that ¢ is a measure on spins o € Q). In the introduction we discussed probability
measures over messages m; this can be recovered by taking ¢({o : m(c) = m}). As in
Proposition 2.1.2 we consider 2(Q) and 2(Q) as (' sequence spaces.
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In the context of NAE-SAT, a useful observation is that the BP recursion has an averaging
property, as follows. Since in the clause recursion we average over the clause literals L, we
can make the change of variables 7; = L; @ 0; @ L; for ¢ > 2, which yields

B(q) = or(0)* ), Z@waﬁww @L*inan@L@u%

72Tk

k
= or(0) > (o7, m) [ [4E(m) = B(§™®)

T2,y Th 1=2

where ¢*8(c) = 3[q(0) + (o @ 1)]. Therefore, under assumption (2.4.1),

BPj = BP¢™®, and consequently BP¢ = BPG®.
We are primarily interested in fixed points of the mapping BP, in which case we can restrict
attention to measures satisfying ¢ = ¢*'®.

The BP recursions for the pair model are completely analogous to those of the single-copy
model. They can be simplified to a pair of mappings

BP, : 2(02) — 2(02),
— P(2%);
and once again BP, = BP, o BP, satisfies the averaging property BPy(g) = BPy(¢*8) where
@&t 0?) = %q(a1 o) + %q’(dl D1, 57D1).

In what follows we will drop the subscript and write simply BP, BP, BP; it will be clear from
context whether we are in the single-copy or pair setting.

2.4.2 Contraction estimate

A key step in the proof is to (explicitly) define a subset I' € & (Q) on which we have a
contraction estimate of the form |BP¢ — ¢u|1 < ¢[|¢ — ¢.[l1 for a constant ¢ < 1, in both
first- and second-moment settings. We remark that it suffices to prove such an estimate for
measures ¢ = ¢*8, since for general ¢ it implies

IBPG — ¢ulli = [BPG™® — il < ¢[¢™® = Gufr < cllg — ¢l

Thus it will be sufficient to define I' as a subset of measures satisfying ¢ = ¢*®. Let us
abbreviate {r} = {ro,r1} and {b} = {by,b;}. We also abbreviate {f} = Q; in the context of
g, and {f} = Q; in the context of ¢. For the first moment analysis, we define I' to be the set
of measures ¢ supported on €7, satisfying ¢ = ¢*'8, such that

4(x) +2%q(£) = O(1)q(v),
G(0)[1 — O(27)] < ¢(x). (2.4.5)
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For the second moment analysis, we define T' = T'(¢, k) to be the set of ¢ supported on (QT)2,
satisfying ¢ = ¢®'#, such that

(&) Dsgony (275)Ip(6) = O(27%)p(bb),  [p(bobo) — p(boby)| < (k?/2%)p(bb),
(8) p({rf,fr}) = O(27"*")p(bb), p(rr) = O2""*)p(bb),
(€) p(rs6) = [1—0(27%)]p(b,0) and .

p(or,) = [1 — O(27%)]|p(cb,) for all z € {0,1} and & € Q.

(2.4.6)

Proposition 2.4.2. In the first moment, let BP = BPyr for A € [0,1] and 1 < T < 0.
There is a unique ¢. = qrr € I' satisfying ¢. = BPq.. If ¢ is any element of ', then BP¢ € T’
also, with [BP¢ — ¢.]1 = O(k*/2%)]¢ — du|:.

Proposition 2.4.3 (second moment contraction). In the second moment, let BP = BP, 1 for
A€ [0,1] and 1 < T < 0. There is a unique ¢, = g7 € I'(1,1) satisfying ¢. = BPq,. Further,
for c e (0,1] and k = ko(c), there is no other fixed point of BP in T'(¢c,1): if ¢ € T'(c, 1) then
BPG € I'(1,1), with |BPG — ¢u|1 = O(k"/2)q — du1.

We will also make use of the following lemma which says that if ¢ is a BP fixed point,
then showing (2.4.6) with £ = 0 implies the stronger bound with x = 1:

Lemma 2.4.4. In the second moment, if for some ¢ € (0,1] we have ¢ € T'(c,0) and ¢ =
BP(g), then in fact ¢ € T'(c, 1).

The proofs of Proposition 2.4.2 and 2.4.3 and of Lemma 2.4.4 are deferred to Section 2.9.
In the next sections we apply them to compute the first and second moments of Z) r(H).

2.5 Reduction to tree optimization

In this section we prove a key reduction for the proofs of Propositions 2.3.7 and 2.3.14,
concerning the optimization of F' and its second-moment analogue F,. As we have already
commented, direct analysis of these functions is in general quite challenging. Instead, we
first rely on other means to restrict the set of empirical measures — the set N, in the first
moment, and the set Ng, in the second moment. With this restriction, we can successfully
optimize F' and F; through a related, but simpler, optimization problem on trees. In this
section we explain this reduction.

Definition 2.5.1. The tree analogues of X, ¥y (from (2.3.9) and (2.3.14)) are defined as
O(H) = H(H)+dH(H) — dH(H) + v(H)

. A —

©u(H) = H(H) + dH(H) — dH(H) + vs(H)

(where H denotes a single-copy empirical measure in the first line, and a pair empirical
measure in the second). The tree analogues of F', F, are defined as

A(H) =O(H) + A\s(H),
Ax(H) =0Oy(H) + As2(H).
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Given H, let h™*°(H) be the measure on ¢ defined by

[ (H))(6) = (k= 1)7" ) > H(o)1{g; = o).

£eQk j=2
We then let
A (h) = sup{A(H) - B*(H) = by, E(H) = AW (=) — A(H);
AP (h) = sup{Aq(H) : h"™°(H) = h}, Ey(H) = A" (h"(H)) — Ay(H).

Note that E, E, are non-negative functions.
Definition 2.5.2. For ¢ € QF and j € [k] define the rotation
gl = (0, s Ok, 01, ., Tj1).
We let H%™(g) denote the average of H(c@) over j € [k], and write H™ = (H, H™ H).
Theorem 2.5.3. For € small enough, and with H®™ as in Definition 2.5.2,

F(H) <max{F(H): |1 — H|s < (db?"} — - S(H™™),
FQ(H) < max{FQ(H/) . HH/ o HHI < G(dk)QT} — €. 52(Hsym)'

For the sake of exposition, we will give the proof of Theorem 2.5.3 for F only; the assertion
for F; follows from the same argument with essentially no modifications. The interpretation
of A will emerge during the proof, which occupies the remainder of this section. Informally,
while F' refers to a graph optimization problem which need not be concave, A refers to
an entropy maximization problem on colorings of a finite tree, which becomes a tractable
problem. Once we have proved Theorem 2.5.3 it remains to analyze the functions A, Ag,
which will be done in Section 2.6.

2.5.1 Tree updates

We prove Theorem 2.5.3 by analyzing one step of a certain Markov chain. To define the
chain we require a certain update function for colorings on trees, which we now describe.

Definition 2.5.4. A directed tree is a bipartite tree m rooted at an edge e, which has a
single incident vertex z,. All edges e of n are labelled with literals L, € {0,1}. We let £(n)
denote the boundary edges of n other than e,. We call n a variable-to-clause tree if x, is
a variable; otherwise we call it a clause-to-variable tree. We say that g € QF™ is a valid
T-coloring of the tree n if the weight

wis(o)= [] @os) [ 2" (e@®L)s) [] Prlow)

veV(n) acF(n) eeE(n)

is positive.
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l
7 N\
7\, 7 \

Figure 2.5.1: A variable-to-clause tree n (Definition 2.5.4).

We always visualize the tree n as in Figure 2.5.1, with the root edge at the top, so that
paths leaving the root travel downwards. On an edge e = (av), the upward color is 4, if a
lies above v, and 6, if v lies above a. Now suppose ¢ is a valid T-coloring of a directed tree
n with root spin 0., = o, and consider updating to a new root spin ¢ € Q. If o and ( agree
in the upward direction of e,, then there is a unique valid coloring

¢ = update(g, (;n) € QF™

which has root spin (, and agrees with ¢ in all the upward colors. Indeed, the only possibility
for o # ( is that both o, € Q¢. It is then clear that update(o, (;m) is uniquely defined by
recursively applying the mappings T and T, starting from the root and continuing downwards.

Since we assumed that o was a valid T-coloring and ( € )y, it is easy to verify that the
resulting ( is also a valid T-coloring, so the update procedure respects the restriction to (.
From now on we assume all edge colors belong to {27, and for the most part we drop 1" from
the notation.

Lemma 2.5.5. If o is a valid coloring of the directed tree n, and { = update(c, (;n) agrees
with o on the boundary edges L(n), then

lit

n (@) = wy'(C).

Proof. For each vertex z € m, let e(z) denote the parent edge of = (the unique edge of n
which lies above x). We then have

wi@) = [] ®0) [] {#@s)@w)} [] {2 (@OLmP0uw) |-

eel(n) veV (n) aeF(n)

w

For a variable v in n with e(v) = e, it follows from (2.3.3) that
D(a5,)P(0e) = 2(00) = 2(C) = ©(C5)B(C)-
Likewise, at a clause a in n with e(a) = e, it follows from (2.3.3) that
(g ®L)sa) Do) = 2(6¢) = 2(Cc) = D ((CDL)35a) D(C).

lit(g) = whit(() as claimed. O

Recalling that ¢ and ( agree on £(n), we have w, o
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Lemma 2.5.6. Let M, M be as defined in Corollary 2.3.8, and let My, M, be their analogues
in the pair model. For any 0,0’ € S there exists an integer-valued vector (H H) so that

A,HY=0={,H) and MH—-MH=1,—1,,

where 1 denotes the all-ones vector, and 1, denotes the vector which is one in the o coordinate
and zero elsewhere. The analogous statement holds for (M, My).

Proof. We define a graph on € by putting an edge between ¢ and ¢’ if there exist valid
colorings o, ¢’ on some directed tree m which take values o, ¢’ on the root edge e,, but agree
on the boundary edges £(n). If 0,0’ are connected in this way, then taking

H) = ) Yop == D) (@) = ¢

veV(n) veV(n)
HE = > Yo =8 - > (e =&}
acF(n) acF(n)

gives MH — MH = 1, — 1, as required. It therefore suffices to show that the graph we
have defined on € is connected (hence complete).

If 6 = ¢’ it is clear that o and ¢’ can be connected via colorings o, o’ of some variable-to-
clause tree n, with ¢’ = update(g, (;m). Similarly, if 6 = ¢’, then o and ¢’ can be connected
using a clause-to-variable tree. This implies that §2¢ is connected.

Next, it is also easy to see that if 0 = r, and ¢’ = b,, then they can be connected via a
depth-one variable-to-clause tree. Similarly, if ¢ = b, and ¢’ = (7,0) for any 7 € Q, then
they can be connected via a depth-one clause-to-variable tree. It follows that (2 is indeed
connected, which proves the assertion concerning (M, M ). The proof for (Ms, ]\2/2) is very
similar. O

2.5.2 Markov chain

We now define a Markov chain on tuples (¢,0,Y) where ¥4 = (V, F, E) is a (d, k)-regular
NAE-SAT instance, ¢ is a valid T-coloring on ¢, and Y < V is a subset of variables such that

(i) for all v € Y, the neighborhood Byr(v) is a tree, and

(ii) each pair of variables v # v' in Y lies at graph distance at least 47" (2.5.1)

(Recall that each variable-clause edge is defined to have length 1.) For v € Y let A (v)
denote the depth-one neighborhood of v, excluding the variables at unit distance from v.
Let A4 = A (Y) denote the (disjoint) union of the graphs 4 (v), v e Y

AN = (N,Ly)

where N denotes the graph without the edge literals, and L, denotes the vector of |Y|dk
edge literals. Let oy be the restriction of o to the edges incident to vertices of N, and define

wi (oalLy) = wli (ex) = [ | {¢><g5v> [ {<i>“t<<g@g>5a<e>><f><ae>}}.

veY ecdv
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Let V; denote the vertices of G\N (including the variables at unit distance from Y), and let
F, denote the clauses of G\N. Let E, denote the set of all edges incident to V, u Fj, and let
o, denote the restriction of o to Ej. Define

wit(go) = [ | ®es) [ [ 2" (2@ L)s) | | 2(00).

veVp acFy ecEy

Then the overall weight wi(g) of ¢ factorizes as

w{?(ﬁ) = wgt(ga)w%\ift(%\r@w)- (2.5.2)

Let 0N denote the boundary edges of N, and let htree(g(m) be the empirical measure of the
spins (0. )eesn. Given initial state (¢4,0,Y), we take one step of the Markov chain as follows:

1. Sample a new pair (L), (y) from the probability measure

/ [ ree } tree i
P((La, G0 | (Lo o)) = gl{ht (@sn) = B (Con) Jant (Cn|Lov)
where z denotes the normalizing constant, which depends on [N| and 1™ (o).

2. If e = (é,é) then denote
. =0(é)=a(é).
Each edge e € E pairs some ¢; with some éy(;), for some permutation m : [nd] — [nd].

Let B denote the subset of indices i € [nd] such that (é;,én@)) € ON. Now consider the
set M = M(¥,Y, 0, () of permutations m’ : [nd] — [nd] such that

m'(i) = m(2) for all i € [nd]\B, (&) = ((ém()) for all i € B. (2.5.3)

Sample 97 uniformly at random from M. Let ¢’ be the new graph formed from ¥ by
replacing Ly with L}, and replacing m with 91.

3. For each e € 6N, let n(e) denote the depth-27" neighborhood of v(e) in the graph ¥\{a(e)},
including the edge e which we regard as the root of n(e). Let

Cn(e) = update(ay, ), Cei (€));

note that, since g is a valid T-coloring, () and g, must agree at the boundary of
n(e). For any edge €’ which does not appear in N or any of the trees n(e), define (o = 0.

The state of the Markov chain after one step is (¢’,(,Y). See Figure 2.5.2.

Lemma 2.5.7. Suppose we have a measure P(Y|9) such that, whenever the tuples (4,Y,0)
and (¢4',Y, ) belong to the same orbit of the Markov chain, it holds that

P(Y|9) =P(Y|9). (2.5.4)
A reversing measure for the Markov chain is then given by

WS,0,Y) = B@)B(Y 9wl (o)
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(b) (¢, Y, o)

Figure 2.5.2: (¢4,Y,0) to (¢',Y,d’).

Proof. Started from A = (¢,0,Y), let w(a, B) denote the chance to reach state B = (¢/,(,Y)
in one step of the Markov chain:

PA(Le 60| Ly 220 g, )
‘ ,

for M as defined in (2.5.3). The size of M can be expressed as a function of ([Y], /) only, so
|M(a,B)| = |M(B, ). It follows that

lt

7(A,B) =

g (@) (L, &) | (Lo o))
(O p((Lv, 2) | (L Sv))

2'(2o) Wit (g |Ln) wpf (Cx[LA)* _ wit(g0)*
wh 2" (Ca)

i
p(B)m(B, A) th
ht

t

W (el M (an|Ly ) wit ()N

using (2.5.2). It follows from Lemma 2.5.5 that this ratio equals one, which proves re-
versibility. (We remark that since the Markov chain breaks up into many disjoint orbits, the
reversing measure is not unique.) O
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Let A be any subset of the state space, and let B denote the set of states reachable from
A in one step of the chain. Then reversibility implies

A) =3 pla)m(a) = > > u(e)m(B,4) < p(B) max (s, A). (2.5.5)

AcA BeB AcA BeB

2.5.3 From graph to tree optimizations

Given ¢ = (V, F, E), a valid coloring ¢ on ¢, and a nonempty subset of variables Y < V|
we define

samp — ]'_]'saump(g’g7 Y) = Hsamp(ng’ Y) = ([_‘[samp’ f{samp’ Hsamp)

which records the empirical distribution of ¢ near Y, as follows. For v € Y and e € dv, let
1 < j(e) < k denote the index of e in da(e). Let

H=™(Q) = [{veY a5 = /Y], | (e,
mn(€) = [{(v,e) 10 e Vie e 00, (2300 = /(dY]), £e0F,  (256)
H*=2mp(() = |{(v,e):veY,e€dv,o.=0c}|/(d]Y]), o€,

where (05,)V) is the rotation of g4, in which the j-th entry appears first (Definition 2.5.2).
We then define h = h'¢(H®™P) as the empirical measure of & on the edges da(e)\e, for
e € du:

(o) = (k=170 Y HQO Y 1G = 6}, de
CeQk i=2

It is clear that H*™P(¥,0,Y) can be expressed as a function of gy, and from now on we
indicate this relation by
H*™ (4 0,Y) = H(oy).

Let EZx(H®™P) denote the total weight of pairs (L, o) which are consistent with H®™P,
normalized by the number of literal assignments:

EZy(H*™)

1 sam 1
WZHH(UN =H p}Z'wlt ON‘LN
IN

Clearly, this depends on N only through s = |N], so we denote EZ,(H%*™P) = EZy(H%™P).
The following lemma gives an explicit calculation of EZ,(H™P).

Lemma 2.5.8. With ® as in Remark 2.8.1,

( : ssamp> ( Adfamp) . E[samp 3 fysamp = fsamp
]EZS(Hsamp) _ \sH dsH CI))\S q))\ds CI))\ds '

(asfroeme)

This equals s°V) exp{sA(H**™P)} where A is given by Definition 2.5.1, and is concave in H.
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Proof. The first assertion follows by a straightforward combinatorial Calculation (cf. (2.3.8)).
Stirling’s formula yields the asymptotic expansion EZ,(H%™P) = s9) exp{sA(H**™)}. The
function A(H) is the sum of ®(H) and the linear function s(H )\, and we claim that © is
concave. To see this, recall that H = H%™P must satisfy

H(o) = Y, HOL{¢ = o}

CeQk
Let H,(¢) denote the probability of ¢ under H, conditioned on ¢; = . Then

O(H) = H(H) +d > H(o)H(H,) + v(H).

The entropy function H is concave, so this proves that © is indeed concave. O]

Remark 2.5.9. An equivalent characterization of A is as follows. Recall that N consists of
s disjoint trees N(vy), ..., N(vs) where each N(vy) is a copy of the depth-one tree D depicted
in Figure 2.5.3. We use £(D) to denote the set of boundary edges e € da\(av), a € dv, so
|IL(D)| = d(k —1). Both N and D do not include edge literals. The natural weight function
on colorings of D is defined by

ws(2y) = blza) [T {00l

eedv

where @ is as in Remark 2.3.1. If v is a probability measure over colorings o, then we

denote H(v) = (H, H, H) where (cf. (2.5.6))
H(Q:V(Qavzg)7 ) =d” Z U(;ae =§), H(O’)Id_lzy((f =
ecdv ecdv

Let Z4(v) be the contribution to Z;(H**™P) from colorings o, with empirical measure v —
that is, colorings oy satisfying sv(ap) = [{i € [s] : o) = o} for all g5 Using multi-index
notation as before, we have

S
SV

EZ(v) = ( )('wgg) = 590 exp{H(v) + MInwop, v)}.

Summing over all v such that sv is integer-valued and H(v) = H®™ gives

S (H*2P) Z EZ,( O exp{nA(H>™P)}

for the following alternative equivalent of A:
A(H*™P) = sup{H(v) + XInwyp,v) : H(v) = H**"P}.

This representation also explains clearly why A is concave. Lastly, note we can express A°P*
similarly as A°*(h) = sup{H(v) + XInwp,v) : b (H(v)) = H*™P}.
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Figure 2.5.3: The depth-one tree D, rooted at variable v.

Proposition 2.5.10. Let A(H) be the set of tuples (4,0,Y) such that o is a valid T-coloring
on 9 with empirical measure H, and Y is a subset of V' satisfying (2.5.1) as well as

ne < |Y| < 6ne and |H*™(4,0,Y) — H¥| < (Inlnn)~Y2.

Suppose we define an exceptional set of graphs % with P(#) < exp{—n(lnn)"/?}, and a law
P(Y|9) such that for all 9 ¢ % and all ¢ with H(Y,c) = H, we have

P(A(H) |(4.0) = Y B(YI9)1{(¥,0.Y) € A(H)} > L. (25.7)

Then the expected weight of colorings with empirical measure H satisfies
on(1) EZ(H'):|H — H|; < 2T
B « < max(BZ(H) | B H), < k™)
exp{nemin{E(H") : |[H" — H¥™||; < (Inlnn)-1/2}}
Proof. Since Z(H) < 2",
RZ(H) <E[Z(H);9 ¢ B] + exp{—Q(n(lnn)"?)}.

Since we only consider measures H for which F(H) > —oo, the right-hand side above is
dominated by the contribution from ¢ ¢ %. Next recall from Lemma 2.5.7 the reversing
measure (¥,0,Y). Applying assumption (2.5.7),

EZ(H) <2E[Z(H);9 ¢ B] =2 Y P(%) Y wii(a)* < 4u(A(H)).
G¢RB o

We now apply (2.5.5), writing B(H) for the set of states B = (¥4’,¢’,Y”’) reachable from
A(H) in one step of the Markov chain. First note that if B € B(H) then H' = H(¥Y',0',Y’)
must satisfy (crudely) |H' — H|| < e(dk)*", so summing over the e(dk)* -neighborhood of H,

w(B(H)) < s°Vmax{EZ(H') : |H — H| < e(dk)*"}.
Next, writing s = |Y”|, we have
2o
Sy Zu(HOL () = s ()Y
where H” represents H*™P (4’ ¢’ Y"). Applying Lemma 2.5.8 gives
7(8, A(H)) < s°U exp{s[A(H*™) — APt (hiee(H*™P))]}.

Recalling | H*™P — ™| < (Inlnn)~Y? and ne < s < 6ne, the result follows. O

(B, A(H))
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2.5.4 Sampling

We now define the law P(Y'|%) and verify condition (2.5.7). To this end, given ¢ = (V, F, E),
let Vi € V be the subset of variables v € V' such that the ¢-neighborhood B;(v) around v is
a tree. Recall the following form of the Chernoff bound: if X is a binomial random variable
with mean p, then for all ¢ > 1 we have

P(X > tu) < exp{—tuln(t/e)}. (2.5.8)

Lemma 2.5.11. If 9 = (V,F, E) is sampled from the (d,k)-regular configuration model,
then for any fized t it holds for n = n.(t) that

P(|[V\V;| = n(lnlnn)~') < exp{—n(lnn)"/?}.

Proof. Let v count the total number of cycles in & of length at most 2¢t. If v ¢ V; then v
must certainly lie within distance ¢ of one of these cycles, so crudely we have

[V\Vi| < 2t(dk)"y. (2.5.9)

Consider breadth-first search exploration in ¢ started from an arbitrary variable, say v = 1.
At each step of the exploration we reveal one edge, so the exploration takes nd steps total.
Conditioned on everything revealed in the first ¢ steps, the chance that the edge revealed at
step t + 1 will form a new cycle of length < 2¢ is upper bounded by

(dk)2t
nd —t

It follows that the total number of cycles revealed up to time nd(1 — ¢) is stochastically
dominated by a binomial random variable

' (dk)*
v~ Bm(nd(l —9), "y )

The final ndd exploration steps can form at most ndd new cycles, so v < 7'+ ndd. Applying
(2.5.8) with § = (Inlnn)~2,

dé?
P(y = 2ndd) < P(y/ = ndé) < exp{ —ndd In %} < exp{—n(Inn)"/?}

for large enough n. Recalling (2.5.9) gives the claimed bound. O

Recalling Proposition 2.5.10, let Z be the set of graphs ¢ for which [V\V,| = n/2.
For ¢4 ¢ A, take i.i.d. random variables I, ~ Ber(¢’) indexed by v € V; for some € to be
determined, and let

Y, =1{I, =1, and I, = 0 for all u € By(v)\{v}}, €e=3iEY,. (2.5.10)
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We define P(Y'|4) to be the law of the set Y = {v e V; : Y, = 1}, with ¢t = 4T. Given a valid
coloring ¢ on 4 = (V, F, E), define (cf. (2.5.6))

X Q) =g, = ¢, (e,

Xo(€) = Heedv: (gsue) =€}, £e Q¥

X.(0) =|{(a,e):aedv,eeda\(av),o. =c}|, o€l

Lemma 2.5.12. Fiz (4,0) and let n' = |V;| <n/2. Then for all x > 4|n — n'| we have the
concentration bounds

P(\;Vtm—n'e >a) <exp - 8n’gcdk; 3

B(| 3 veko(©) - neli(@)] > o) < exp { - Snfdk 3

P(| ;WYX &) —n'eH(©) 2 ) < e { ~ g )
P()mén)_(v(d)—n'eﬁ(a) > <exp{—le)2m}

Proof. Assume without loss that V; = [n/] = {1,...,7n/}, and for 0 < s < n’ let .%, denote
the sigma-field generated by Y7,...,Y,. Let

S = Z A’UK}? MS = E[S|ﬂs]

v<n/

where we take different values of A, for the various bounds:
Av = 17 Av = XU(Q)’ AU = Xv(§)7 Av = XU(J)-
We emphasize that ¢ and ¢ are fixed, so the only randomness is in the Y’s:

M, = ) AE[Y,[Z.].

v<n/
If v lies at distance greater than 2t from any variable in [s] = {1,..., s}, then
B[V, - E[Y,] - 2

More generally, E[Y,|.%;] is a measurable function of all the Y, values for w € [s] N By (v).
Therefore the only possibility for E[Y,|.%;11] # E[Y,|- %] is that [s + 1] n By(v) differs from
[s] n Bat(v), which implies in particular that v € Bg;(s+ 1). The number of such v is at most

(dk)t, so we conclude
| M1 = M| < (dk)"| Ao
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It follows by the Azuma—Hoeffding martingale inequality that

$2

and the claimed bounds follow from the fact that removing n — n’ < n/2 vertices from a
graph can change the empirical measure by at most 2(n — n’)/n. O

Proof of Theorem 2.5.3. Take ¢ > 0 small enough such that the resulting ¢ defined by
(2.5.10) satisfies 6e(dk)*’ < 1. It then follows from Lemmas 2.5.11 and 2.5.12 that the
conditions of Proposition 2.5.10 are satisfied by taking Z# to be the set of graphs with
(V\V;| = n(lnlnn)~t, and P(Y|¥) to be the law of Y = {v e V; : Y, = 1}, for Y, as given by
(2.5.10). 0

2.6 Tree optimization problem

In this section we give the analysis of Z(H) (Definition 2.5.1 and Theorem 2.5.3). Recall
from (2.3.11) the definition of N, and from (2.3.12) the definition of H,.

Proposition 2.6.1. For 2,2, as defined by (2.3.9) and (2.3.14), we have

(a) On {H € N, : H = HY™}, B is uniquely minimized at H = H,, with 2(H,) = 0.

(b) On {H € Ny, : H = HY™}, By is uniquely minimized at H = Hg, with E5(Hg) = 0.
Proposition 2.6.2. There ezists a positive constant € = €(k) such that

E(H) =¢|H—H,J? forall|H-H,| <e,
Eo(H) =e€|H — Hg|? forall |H — Hg| < e.

2.6.1 Uniqueness of minimizer

We now outline the proof of Proposition 2.6.1. Let v be any probability measure over
colorings of the depth-one D (Figure 2.5.3). Recall from Remark 2.5.9 that

A(H) =sup{H(v) + Xlnwop,v): H(v) = H},
A°PY(h) = sup{H(v) + Mnwp,v) : h'"(H(v)) = h}.

The mappings v — H(v) and v — h™(H(v)) are linear, so we are in the setting of Sec-
tion 2.11. The discussion in that section (see in particular Remark 2.11.7) implies the

following: there is a unique measure v = v°P*(h) achieving the maximum in A°*(h), and
there exists a probability measure ¢ on €2 such that

() = IM0) = 5 { o) T] 180 bles)]

agdv eel

q(oe), (2.6.1)
(D)
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with Z the normalizing constant. Likewise, in the second moment there is a unique measure
v = 15" (h) achieving the maximum in AS™(h), and there exists a probability measure ¢ on
2 such that

va) = IR = Z{ etz [[0alon)baiesal | [T it (262

agdv

In each case, although VOpt(h) is uniquely determined by h, ¢ need not be if the constraints
are rank-deficient. Nevertheless we shall proceed simply from the existence of some q.

Lemma 2.6.3. E(H,) =0 and Ey(Hg) = 0.
Lemma 2.6.4. Zeroes of E,E5 correspond to BP fized points, as follows:

(a) Suppose v = v (h™e(H)) = v4(q), and let p = p°P (H) be the optimizer for A(H). If
H e N, with H= H¥" and E(H) =0, then p = v and BPq = q.

(b) Suppose v = VP (W™ (H)) = v*Y(q), and let p = pSP*(H) be the optimizer for Ay(H).
If H € Ngop with H = HY™ and Eo(H) = 0, then pu = v and BP§ = q.

Lemma 2.6.5. The fixed points of Lemma 2.6.4 correpond to q,:
(a) If He N, and v = v (h™°(H)) = v*4(q) with ¢ = BP§, then ¢ = (.
(b) If H € Ny and v = v5P" (" (H)) = vb4(4) with § = BP, then § = ¢ ® ds.

Proof of Proposition 2.6.1. From Lemma 2.6.3, it suffices to show that if H € N, with
H = HY™ and E(H) = 0, then H = H,. From Lemmas 2.6.4 and 2.6.5, v = v°P*(h"*¢(H))
and p = p°P*(H) are equal, and can be expressed via (2.6.1) in terms of ¢ = ¢,. It follows
that H = H(u) = H, as claimed. O

Proof of Lemma 2.6.3. As we noted above, v°P*(h) can be expressed via (2.6.1) in terms of
¢, but g is not uniquely determined by h if the constraints are rank-deficient. However, if his
a strictly positive measure on €2, then it is straightforward to check that the constraints are
of full rank, so ¢ is unique. Let v, denote the measure given by (2.6.1) with ¢ = ¢,. It is easy
to check, from the proof of Proposition 2.4.2, that g, is fully supported on 27. Therefore
H(v,) = H, and h"*(H(v,)) = h'™*°(H,), and these are strictly positive. It follows that v,

is the (unique) optimizer for both A(H,) and A°P*(h™*°(H,)), which proves E(H,) =0. [

Proof of Lemma 2.6.4. Note that A(H) is an optimum over a subset of the measures v which
are considered for A°Pt(hi**°(H)). Let u = p°P*(H) be the (unique) optimizer for A(H), and
write v = v°P*(h™(H)). Since v is the unique optimizer in A°Pt(h™e(H)), we have E(H) = 0
if and only if g = v. In this case, since H(u) = H with H = H®¥™, the same must hold for
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H(v). Recall H = H%™ means that ]:{ is rotationally symmetric. We can take a marginal
of (2.6.1) to obtain an expression for H: in the first-moment calculation,

k
Hg) = ()" ®(@)((BP0) (1)) | [ a(6s), @&,

The analogous expression holds in the second moment. We now claim that for the above
measure H to be symmetric, we must have BPg = ¢q. Note that if d were fully supported on
%, and both ¢ and BPg were fully supported on Q the claim would be obvious. Since ® is
certamly not fully supported, and we also do not know a priori whether ¢ and BPq are fully
supported, the claim requires some argument, which differs slightly between the first- and
second-moment cases:

1. In the first moment, Lemma 2.3.6 implies that ¢(o) is positive for at least one o € {by, b }.
Assume without loss that ¢(bo) is positive; it follows that (BP¢)(c) is positive for both
0 = bo, by. For any ¢ € €1, there exists ¢ such that

A

®((6,6),bg, .. .,bo) > 0. (2.6.3)

The symmetry of H then gives the relation

so it follows that BP¢ = ¢ in the first moment.

2. In the second moment, since we restrict to H € Ngp, ¢(0) is positive for at least one
0 € {by,b;s}?. Assume without loss that ¢(boby) is positive. For any ¢ ¢ {rori,riro},
there exists ¢ such that the second-moment analogue of (2.6.3) holds. The preceding

argument gives o o
(BPg)(o) _ 4(9)
(BPG)(bobo)  d(bobo)
Since (BPq)(&) is positive for all & € {by, bs}?, it follows that the same holds for ¢, so
(BP¢)(o) _  q(o)

(BPG)(boby) G(boby)

for all o ¢ {rory, r110}.

for all & ¢ {roro,riry}.

Combining these, we have for ¢ € {rory, riro} that

(BPg)(6) _ (BPG)(9) (BPg)(bobs)  4(9)

(BPG)(bobo)  (BP¢)(boby) (BPG)(boby)  ¢(bobo)’

and this proves BP¢ = ¢ in the second moment.
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Altogether, the above proves in both the first- and second-moment settings that ¢ is a BP
fixed point. O

Proof of Lemma 2.6.5. 1t suffices to prove that ¢ € I'. Since by assumption ¢ = BPq, we
must have ¢ = ¢*8. We then argue separately for the first and second moment:

1. For the first moment, we must verify (2.4.5). It follows directly from the relation ¢ = BPq
that ¢(r) = ¢(b). Since H € N, the majority of clauses have all blue edges, so

1/2 < H(b") < (2) 74 (p)k.

Next, for any ¢ € QkAWhiCh has exactly one entry free and the remaining k — 1 entries
blue, we must have ®(a) > 1/2. It follows that

12 2%(H(x) + H(£)) 2 (2) '[d(r) + 2"4(£)]d(p)"".
Comparing the two displays above gives ¢(r) + 28¢(f) < ¢(b), proving ¢ € T.

2. For the second moment, we must verify (2.4.6). Condition (C) is immediate from the
relation ¢ = BPq. From Lemma 2.4.4 it suffices to verify the condition with £ = 0, in
which case condition (B) follows from (A). It therefore remains to verify (A). Denote

B = {bo,bl}Q, B: = {b0b07b1b1} c B7 B: = {bOblablbO} < B.

Since the total density of red and free edges is small, the majority of clauses must have
all colors in B: H(B*) = 1 — O(k/2*). For any o € B, ®(0) = 1 — O(k/2*). Therefore

1 = H(B") = ¢(B)"/2. (2.6.4)

For H € Ny, we have |H(B=) — H(B..)| < k*/2¥2. We can obtain H as a marginal of H:

~

using the rotational symmetry of H, we can express

H(B_) — H(B.) —err(H)

- Y )| Si0kea - ¥ i)

§: (52 ~~~~~ gk)EBk_l 0EB= o—’eB7é

where err(H) is the contribution from the clauses which are not all B, and is bounded by
O(k/2%). Recalling ®(g) = 1 — O(k/2") for g € B¥, the right-hand side above equals

q.(_B)k l0<k,/2k) + Q(B=)._ Q(B?&) ]

z q(B)

Applying (2.6.4) and rearranging gives

B Ji(Bo) — ()|
2 ()




CHAPTER 2. THE NUMBER OF SOLUTIONS FOR RANDOM NAE-SAT 54

It remains to show that Z(.T%B(Q*k)r["’]q'(d) = 0(27%)¢(B). We will deduce this from the
fact that the total fraction of clauses where o; ¢ B for some i € [k] is O(k/2¥). By
rotational symmetry of H, the fraction with oy ¢ B is O(27%). Take o = (¢!, 5?) € Q?\B.

For j = 1,2, let . .
i O"JA ol e {r',b},
(67,0) otherwise.
Denote o = (¢!, 0%). We now consider separately the cases r[d] = 0,1, 2:
(a) If r[¢] = 0, then note that for any £ € B*! we have ®(0,€) = 1. On the other
hand, using the rotational symmetry of H, the total fraction of clauses where the
first incident edge has a color in Q?\B is O(27%). Thus

5¢B (B) Q(B)

~ A

e B Sy 0(0) (6 #B:x[6] = 0)
22 125 3 14elo] = 0} . -

(b) If r[o] = 1, then for any £ € B*~" with at least two indices each in B_ and B.., we
have ®(o,&) = 27%. Thus

9=k = ﬂz ]_{I[U] _ 1}2—kq(0) _ Q(U ¢B: I'[O'] = 1)

P 4(B) 25¢(B)

~

(c) If r[o] = 2, then

2% 2 = 31 1{rfo] = 2}2 - minfq(B-), ()} =

5¢B

g(c ¢B:x[o] =2)
4%(B)

(\3

Combining the above estimates verifies Y}, .5 (27%)*%14(6) = O(27%)4(B).

Altogether this verifies, in both the first and second moment, that ¢ lies in the regime for
BP contraction, and consequently must equal ¢, as claimed. O

2.6.2 Non-degeneracy around minimizer

Proof of Proposition 2.6.2. Consider H near H,, and let v = v°P*(h™°(H)) and p = p°*(H).
It follows from Proposition 2.11.6 that

E(H) = 3(ulv) = |u—v|?,

so it suffices to show that | — v| 2 |H — H,|. To this end, recall v can be expressed via
(2.6.1) in terms of some ¢, while v, can be expressed in terms of ¢,. Thus

lv—vili S |4 — g1
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For H in a small enough neighborhood of H,, the constraints are of full rank, so VOPE(hfree(IT))
is expressible in terms of ¢ for ¢ uniquely determined by h'™*(H), hereafter denoted ¢ =
¢°P*(H). In fact, we see further from (2.11.6) that ¢°P* is differentiable in a neighborhood of
H,. Then, since ¢°**(H,) = ¢, which lies in the interior of T, we must have ¢°**(H) € T' for
H in some neighborhood of H,. It then follows by Proposition 2.4.2 in the first moment,
and by Proposition 2.4.3 in the second moment, that
(1= )l = dells < 4~ -l — [BPd — duly < i — BPl.

To compare ¢ with BPg, consider

sup{H(?) + Xn®, ) : 0(6; = &) = H(6; = &) for each 4}.
There is a unique optimizer ¥ = 5°P*(H) which can be expressed as

k

v(0) = &(0)’ n%(di)-

i=1

In a neighborhood of H,, the vector 7 = (%;); is uniquely determined as a smooth function of
H, which we denote °P'(H). Consequently, if we denote H™(¢g) = H(0y, ..., 0k, 01), then

g = BPql < [[(BPq. g, ) = (4,BPG, 4, )]l = 3P (H () = 3 (H @) )
< |Hw) = Hw)™| < |H(v) = H@w)| + |H(p) — Hp)™|
=2|H(v) — H(W)| < |u—vl.

where in the last line we used that H(u) = H(u)™". Combining the above inequalities gives
|H — H,| < |p—v| as claimed. O

Proof of Propositions 2.5.7 and 2.5.1/. Follows from Proposition 2.6.1 and 2.6.2. n

2.7 Conclusion of lower bound

In this section we prove Propositions 2.3.10 and 2.3.17.

2.7.1 Intermediate overlap

We first show that configurations with “intermediate” overlap are negligible. This can be
done with quite crude estimates, working with NAE-SAT solutions rather than colorings.

Lemma 2.7.1. Consider random regular NAE-SAT at clause density o = 2*"1In2 — O(1).
On 9 = (V,F,E), let Z*[p] count the number of pairs x, € {0,1}V of valid NAE-SAT
solutions which agree on p fraction of variables. Then

EZ[p] < (BZ) exp {n| H(p) ~ (n2)(p) + O(1/2") |},
form(p) =1—p*—(1—p)*.
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Proof. For u € {0,1}V, let I5**(u) be the indicator that u is a valid NAE-SAT solution on ¥.
Fix any pair of vectors z, £ € {0,1}" which agree on p fraction of variables:

EZ%[p] = 2"( !

np

Jel @@ - E2)(

np

VL@ 5w - 1)

Given z, z, let M = M (z,£) count the number of clauses a € F' where

|{€ S 5@ . xv(e) = Cﬁv(e)H ¢ {O,k}

In each of these clauses, there are 2% — 2 literal assignments Ly, which are valid for z. Out
of these, exactly 2¥ — 4 are valid also for #. If we define i.i.d. binomial random variables
D, ~ Bin(k, p), indexed by a € F, then

P(M = mv) = P(E 1{Da ¢ {O7k}}

aeF

YD, = mk:p).

acF

The (D,)qer sum to mkp with probability which is polynomial in n, so
P(M = my) < n°YP(Bin(m, 1) = m~)

with 7 = 7(p) as in the statement of the lemma. Therefore

B[4 () | () ]<”O(1)E[<§:_§>X]

for X ~ Bin(m, p). It is easily seen that the above is < exp{—mm/2F71}, and the claimed
bound follows, using the lower bound on oo = m/n. O

Corollary 2.7.2. Let ¢(p) = H(p) — (In2)7(p). Then ¥(p) < —2k/2* for all p in

fexp{—k/(tn )}, (1 — /292)] O [3(1+ k/272), 1~ exp{—k/(tn )}
Assuming o = m/n = 2*"11n2 — O(1), EZ%(p] < exp{—nk/2*} for all such p.
Proof. Note that H(+£€) <In2 —¢2/2. If (kInk)/2" < e < 1/k, then

Y(9) < —2/2 + O(ke/2F) < —€%/3.

2
Both H (1) and 7(1£<) are symmetric about € = 0, and decreasing on the interval 0 < e < 1.
It follows that for any 0 <a <b <1

max ¢(1£¢) < H(12) — (In2)m(LEL).

a<e<b 2 2

With this in mind, if 1/k < e <1—5(Ink)/k,
v(*

)< —(2k) 7+ O(k™%?) < —(4k) !
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If 1—5(nk)/k <e<1-—(Ink)3/k?,

V() < O(1)(Ink)?/k — Q1) (Ink)®/k < —Q(1)(Ink)? /k.

2

Finally, if 1 — (Ink)3/k? < e <1 — exp{—2k/(Ink)}, then

() < O(1)ek/(Ink) — Q(1)ek < —Q(1)ek.

2

Combining these estimates proves the claimed bound on (p). The assertion for E[Z?(p)]
then follows by substituting into Lemma 2.7.1, and noting that EZ < exp{O(n/2*)}. O

2.7.2 Large overlap

In what follows, we restrict consideration to a small neighborhood N of H,. We abbreviate
ce Hit HY,0) = H,and 0 e N if H(¥4,0) € N. Recall that we write ¢’ > ¢ if the number
of free variables in z(¢’) upper bounds the number in z(g). We also write H > H if ¢/ > o
for any (all) c € H and ¢’ € H'. Let Z™(H, H'") count the colorings ¢ € H such that

{o e H':6(0.) < exp{=H/(n W)} | > win)

for w(n) = exp{(Inn)*}. (Although we will not write it explicitly, it should be understood
that Z™(H, H') depends on ¢, since both g, ¢’ are required to be valid colorings of ¢.) Let
Z"(N) denote the sum of Z"(H; H') over all pairs H, H' € N with H > H. Let Z(N)
denote the sum of Z(H) over all H € N.

Proposition 2.7.3. There exists a small enough positive constant €max(k) such that, if N
is the e-neighborhood of H, for any € < €nay, then

EZ"(N) < EZ(N)exp{—(Inn)?}.
Proof. By definition,

Z"(N)= > Z7(H), Z”(H)= ). 1{H' > H}Z"(H H').

HeN H’eN

It suffices to show that for every H € N, EZ”(H) < EZ(H) exp{—2(Inn)?}. Note that the
total number of empirical measures H' is at most n¢ for some constant c(k,T). Let E denote
the set of pairs (¢, ) for which

Hg’ eN:¢' >0 and §(g,0') < exp{—Fk/(In k:)}}‘ > w(n).

(Again, it is understood that both ¢, ¢’ must be valid colorings of ¢.) Then

Z7(H)<n® ) 1{(¥,0) € E}.

oceH
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Consequently, in order to show the required bound on EZ*(H), it suffices to show
P?(E) < n “exp{—2(Inn)?}, (2.7.1)

where P is a “planted” measure on pairs (¢,c): to sample from P#, we start with a set
V' of n isolated variables each with d incident half-edges, and a set F' of m isolated clauses
each with k incident half-edges. Assign colorings of the half-edges,

05 = (asv,0s5r) Where a5y = (05,)vev, Tsr = (Ts0)ack

which are uniformly random subject to the empirical measure H. Then o, is the “planted”
coloring: conditioned on it, we sample uniformly at random a graph ¢ such that o5 becomes
a valid coloring o on ¢4. The resulting pair (¢, ¢) is a sample from PH.

Suppose (¢,0) € E. The total number of configurations ¢’ with d(o,c’) < 4 is at most
(en)™, which is « w(n) if 6 < n~!(Inn)?. This implies that there must exist ¢’ € N such
that o’ > g and n~*(Inn)? < 6(g,0’) < exp{—k/(Ink)}. It follows that

={veV :x,(0)€{0,1} and z,(¢’) # x,(0)}

has size |S| = ns for s € [(2n) ! (Inn)?, exp{—k/(Ink)}]. The set S is internally forced in o:
for every v € S, any clause forcing to v must have another edge connecting to S. Formally,
let Ry (resp. Byy) count the number of red (resp. blue) edges incident to a subset of vertices
U. Let Is be the indicator that all variables in .S are forced. For any fixed S € V,

B
P (S internally forced) < Epn [ 1 Sk%%

(BF)RS

] < Epn[Is(4ks)™].

In the first inequality, the factor k*s accounts for the choice, for each S-incident red edge e,
of another edge €’ sharing the same clause. The factor (Bs)z,/(Br)rs then accounts for the
chance that the chosen edge ¢’ (which must be blue) will also be S-incident. The second
inequality follows by noting that we certainly have Bg < nsd, and for H near H, we also
clearly have By = nd/4.

To bound the above, we can work with a slightly different measure Q¥: instead of
sampling o4 subject to H, we can simply sample variable-incident colorings oy, i.i.d. from
H, and clause-incident colorings o, i.i.d. from H. On the event MARG that the resulting o)
has empirical measure H, we sample the graph ¢ according to P (¥|c;), and otherwise we
set 4 = @. Then, since Q¥ (MARG) > n~¢ (adjusting ¢ as needed), we have

P ((4,0)) = Q"((¢.c) |MARG) < n° Q" (¥, 0); MARG).

Let us abbreviate H (¢) for the probability under H that ¢ has ¢ red entries: then

Epu[Is(4ks)* | < n® Egqu[Is(4ks)*; MARG] (ZH )(4ks) )n (2.7.2)

=1
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For H sufficiently close to H,, we will have
5 <d> Gu(r1) Ga(by) "
() [Gx(r1) + Gu(b1)]? — Gu(b1)“

It follows that the right-hand side of (2.7.2) is (for some absolute constant ¢)

~ ) ~ d_ 4 d\ ns
< ncans ( [q*(fi) dks :i_ 4« (bili)] _ dx (1;1) ) < ncsn52—5kns’
[Ge(r1) + Gu(P1)]? — Ga(D1)

H(0) < 2H,(0)

VAN

where the last inequality uses that s < exp{—k/(Ink)}. Summing over S gives

PY(E) < max  n°2 %2 < exp{—Q(1)k(Inn)?}.

s=(2n)~1(lnn)2
This implies (2.7.1); and the claimed result follows as previously explained. H

Proof of Proposition 2.3.10. Follows by combining Corollary 2.7.2 and Proposition 2.7.3. [

2.8 Upper bound

In this section we prove the upper bound, Proposition 2.3.19.

2.8.1 Interpolation bound for regular graphs

For a certain family of spin systems that includes NAE-SAT, an interpolative calculation
gives an upper bound for the free energy on Erdds-Rényi graphs ([FL03; PT04], cf. [Gue03]).
These bounds build on earlier work [GT03] concerning the subadditivity of the free energy in
the Sherrington—Kirkpatrick model, which was later generalized to a broad class of models
[BGT13; Gaml14]. (Although these results are closely related, we remark that interpolation
gives quantitative bounds whereas subadditivity does not.) To prove our main result, we
establish the analogue of [FL03; PT04] for random regular graphs. Although the main
concern of this paper is the NAE-SAT model, we give the bound for a more general class of
models, which may be of independent interest.

Recall G = (V, F, F) denotes a (d, k)-regular bipartite graph (without edge literals). We
consider measures defined on vectors z € XV where X is some fixed alphabet of finite size.
Fix also a finite index set S. Suppose we have (random) vectors b € R® and f € F(X)°,
where F(X) denotes the space of functions X — Rg. Independently of b, let fi,..., fx be
i.i.d. copies of f, and define the random function

seS  j=1
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Let h be another (random) element of F(X). Assume there is a constant € > 0 so that
e <{h,1 -0} <1/e almost surely. (2.8.2)

Note we do not require the b, to be non-negative; however, we assume that

p
= ]Eu—[bw] >0 foranyp=>1,s=(s1,...,sy) € 5" (2.8.3)
-1

Let ¢4 denote the graph G labelled by a vector ((hy)vey, (04)acr) of independent functions,
where the h, are i.i.d. copies of h and the 6, are i.i.d. copies of 8. For a € F' we abbreviate

Zso = (Ty(e))ecsa € XF, and we consider the (random) Gibbs measure

Hyg Hh Ly H = Oa(250)] (2.8.4)

where Z(¥) is the normalizing constant. Now let ¢ be the random (d, k)-regular graph on
n variables, together with the random function labels. We write [E,, for expectation over the
law of ¢, and define the (logarithmic) free energy of the model to be

F,=n"E,InZ(%).

Example 2.8.1 (positive temperature NAE-SAT). Let X = {0, 1}, and let L = (L;);<x be a
sequence of i.i.d. Bernoulli(1/2) random variables. The positive-temperature NAE-SAT model
corresponds to taking h =1 and

k k
o(z) = 1_6 <HL1@$1+1—[1@L;@$¢)

i=1 i=1

where § € (0,00) is the inverse temperature. In this model, each violated clause incurs a
multiplicative penalty e~”.

Example 2.8.2 (positive-temperature coloring). Let X = [¢]. The positive-temperature
coloring (anti-ferromagnetic Potts) model on a k-uniform hypergraph corresponds to h = 1

and
q

0(@)5(1—6’@21{1‘1=--~=xk=5}

s=1

where (3 € (0, 0) is the inverse temperature. In this model, each monochromatic (hyper)edge
incurs a multiplicative penalty e~”.

The following bound is a random regular graph analog of [PT04, Thm. 3]. (We have
stated our result for a more general class of models than considered in [PT04]; however the
main result of [PT04] extends to these models with minor modifications.)
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Theorem 2.8.3. Consider a (random) Gibbs measure (2.8.4) satisfying assumptions (2.8.1)-
(2.8.3), and let F,, =n"'E,In Z(¥4). Let

My = space of probability measures over X,
My = space of probability measures over My,
My = space of probability measures over M.

For ¢ € My, let n = (4,j)az0j>0 be an array of i.i.d. samples from (. For each index (a, j)
let paj be a conditionally independent sample from n,;, and denote p = (pa;)as0j=0- Let
(hp)aj (@) = hqj(2)paj(x), define random variables

uy(x) = Z 1{z; = x}[1 H hp)a;(z;),

xeXk
k
o= S0 0N [ [t
xeXk Jj=1

For any X\ € (0,1) and any ¢ € M,

F, <\ 'Eln E’[( Z h(x ﬁua(aj)Y] — (k= DaX'EInE [(ug)*] + O (n~?)

where E' denotes the expectation over p conditioned on all else, and E denotes the overall
expectation.

Remark 2.8.4. In the statistical physics framework, elements p € My correspond to belief
propagation messages for the underlying model, which has state space X. Elements n € M,
correspond to belief propagation messages for the 1RSB model (termed “auxiliary model” in
[MMO09, Ch. 19]), which has state space My. The informal picture is that the n associated
to variable x is determined by the geometry of the local neighborhood of x — that is to
say, the randomness of ( reflects the randomness in the geometry of the R-neighborhood of
a uniformly randomly variable in the graph. In random regular graphs this randomness is
degenerate — the R-neighborhood of (almost) every vertex is simply a regular tree. It is
therefore expected that the best upper bound in Theorem 2.8.3 can be achieved with ( a
point mass.

2.8.2 Replica symmetric bound

Along the lines of [PT04], we first prove a weaker “replica symmetric” version of Theo-
rem 2.8.3. Afterwards we will apply it to obtain the full result.

Theorem 2.8.5. In the setting of Theorem 2.8.3, define

d
oy =Eln ( 3 h(x) Hua(x)>, Op = (k —1)aE In(up).

zeX
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Then F, < &y — ®p — O (n~3).

Inspired by the proof of [BGT13], we prove Theorem 2.8.5 by a combinatorial interpo-
lation between two graphs, ¥ ; and ¥,,4.1. The initial graph ¢ ; will have free energy ®y,
and the final graph ¢,4,, will have free energy F, + ®». We will show that, up to O.(n'/?)
error, the free energy of ¢ ; will be larger than that of %,,,1, from which the bound of
Theorem 2.8.5 follows.

To begin, we take ¥ 1 to be a factor graph consisting of n disjoint trees (Figure 2.8.1a).
Each tree is rooted at a variable v which joins to d clauses. Each of these clauses then joins
to k — 1 more variables, which form the leaves of the tree. We write V for the root variables,
A for the clauses, and U for the leaf variables. Note |V| = n, |A| = nd, and |U| = nd(k —1).

Independently of all else, take a vector of i.i.d. samples (1, pu)ucy Where 7, is a sample
from ¢, and p, is a sample from 7,.? As before, the variables and clauses in ¥_; are labelled
independently with functions h, and 6,. We now additionally assign to each u € U the label
(Nu, pu). Let (hp)y(x) = hy(z)pu(x). We consider the factor model on ¢_; defined by

pos(@) = s L1 [T = e T T

— weV acA uelU

We now define the interpolating sequence of graphs ¥_1,%, ..., %wq1. Fix m' = 2n?/3. The
construction proceeds by adding and removing clauses. Whenever we remove a clause a, the
edges da are left behind as & unmatched edges in the remaining graph. Whenever we add a
new clause b, we label it with a fresh sample 6, of §. The graph ¢, has clauses F, which can
be partitioned into Ay, (clauses involving U only), Ay, (clauses involving V only), and A,
(clauses involving both U and V'). We will define below a certain sequence of events COUP,..
Let COUP, be the event that COUP, occurs for all 0 < s < r. The event COUP<_; occurs
vacuously, so P(COUP<_;) = 1. With this notation in mind, the construction goes as follows:

1. Starting from %¢_;, choose a uniformly random subset of m’ clauses from F_; = A_; = A,
and remove them to form the new graph %,.

2. For 0 < r <nd—m'—1, we start from ¢, and form ¥, as follows.

a. If COUP.,_; succeeds, choose a uniformly random clause a from A,, and remove it to
form the new graph ¢, .. Let 6'U,, and 0’V , denote the unmatched half-edges incident
to U and V respectively in %, ., and define the event

COUP, = {min{d'U, ., 8'V; .} = k}.

If instead COUP,_; fails, then COUP, fails by definition.

b. If COUP, fails, let ¥,,1 = ¥,. If COUP, succeeds, then with probability 1/k take k
half-edges from §'V;. , and join them into a new clause c. With the remaining probability
(k —1)/k take k half-edges from 0'U,, and join them into a new clause c.

For the proof of Theorem 2.8.5 it is equivalent to sample p from n*'& = {7 dC.
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3. For nd —m' <r <nd-—11let 9,1 = %,.. Starting from ¥,4, remove all the clauses
in A,4. Then connect (uniformly at random) all remaining unmatched V-incident edges
into clauses. Likewise, connect all remaining unmatched U-incident edges into clauses.
Denote the resulting graph 4,4, 1.

By construction, ¢,,,,1 consists of two disjoint subgraphs, which are the induced subgraphs
“,%, of U,V respectively. Note that 4, is distributed as the random graph ¢ of interest,
while ¢, consists of a collection of nd(k — 1)/k = na(k — 1) disjoint trees.

i

Ay,

U ] ]
N W

(b) 4. withm’ =1,r =3

Ay E 5 \Q'/ ?

U

W OSSO
(C) gnd-&-l

Figure 2.8.1: Interpolation with d =2,k =3, n = 6.

<

Lemma 2.8.6. Under the construction above,
ElnZ(%) = Eln Z(%,.q) — O(n'?), (2.8.5)
where the expectation E is over the sequence of random graphs (9,) _1<r<nd+1-

Proof. Let %, . be the o-field generated by ¥, ., and write E, , for expectation conditioned
on .#,,. One can rewrite (2.8.5) as

nd—1
- Z(%,) Z(%,11)
Z EA, A =Kl 7 Eroln— @) (2.8.6)
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In particular, A, = 0 if the coupling fails. Therefore it suffices to show that A, is positive
conditioned on COUP,.* First we compare ¢, and ¥, .. Conditioned on .%,,, we know
%,. From ¥, , we can obtain ¥, by adding a single clause a = a,, together with a random
label 6, which is a fresh copy of §. To choose the unmatched edges da = (ey, ..., e) which
are combined into the clause a, we take e; uniformly at random from §'V, ., then take
{ea,...,er} a uniformly random subset of 0'U,.. Let p,. be the Gibbs measure on ¥,
(ignoring unmatched half-edges). Let z = (z,z',2% ...) be an infinite sequence of i.i.d.
samples from i, ., and write (-), . for the expectation with respect to their joint law. Then

p
]E’mo In Z(g:o) = Ero (1 _<0 xéa 7’0 2 d % ETO[<EH(E§Q)>T,O]'

p>1

We have E, , = E,Eg where E, is expectation over the choice of da, and [y is expectation
over the choice of §. Under E,, the edges (es,...,ex) are weakly dependent, since they
are required to be distinct elements of 6'U,.,. We can consider instead sampling es, ..., ex
uniformly with replacement from 0'U, ., so that e,...,e; are independent conditional on
Fro; let Eg g denote expectation with respect to this choice of da. Under E, ;nq the chance
of a collision e; = ¢; (i < j) is O(k?/|0'U, o|). Recalling 1 — 6 > € almost surely, we have

p k2
pind = Eq inaFg [< 1_[ 9(£§Q)>TO] =, + O(1)(1 — €)” min {m, 1}
=1 ’ 750

Recall from (2.8.1) the product form of 6, and let E; denote expectation over the law of
f = (fs)ses- Then, with b°(s) as defined in (2.8.3), we have

LAYEDY bp(§><Ea,ind{ ﬁEflﬁf” <1‘§j>] }>

seSP

= > () Ivs(@)Ius(@)* e,

seSP

where, for W = U or W =V, we define

o) = iy 3 B [Tt

o]
"ol eed' Wy o

Summing over p > 1 gives that, on the event COUP,,

Z Z bp Ero<]Vs( )IUS( )k 1>r,o+err,«,1,

p=1 p seSP

2
where |err, 1| < O((1) min {Wk]—rcﬂ7 1}-

E,oln

3The event COUP, is measurable with respect to Fr.o, since 'V, 5,0'U, o would remain less than k if
the coupling fails at an earlier iteration.
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A similar comparison between ¥,., and ¥, , gives

E,.In ZZ(EZ“B) -yl TO[Z V(s < @+ ;IM ) >] + ety

p=1 p SESP

k2
1z
min{‘élUr,oya ‘6/‘/1”,0’}’ }

lerr,. 2| < O(1) min {

We now argue that the sum of the error terms err, ;,err,.o, over 0 < r < nd — 1, is small in
expectation. First note that for a constant C' = C(k;,¢),

nd—1
Z Elerr,; + err.a] < Cn [n_2/3 + P(min{\é"/}ph 6'V,.o|} < n*? for some r < nd)]

r=0

The process (|6'V;.o|)r=0 is an unbiased random walk started from m’ + 1 = 2n?3 + 1. In
each step it goes up by 1 with chance (k — 1)/k, and down by k& — 1 with chance 1/k; it
is absorbed if it hits k& before time nd — m’. Similarly, (|0’'U|,.),>0 is an unbiased random
walk started from (m’+ 1)(k — 1) with an absorbing barrier at k. By the Azuma—Hoeffding
bound, there is a constant ¢ = ¢(k) such that

P(|6'V;o| < |6Voo| = n%3) + P(|6'Uy| < |0'Up0| — n*?) < exp{—cn'/?}

Taking a union bound over r shows that with very high probability, neither of the walks
10'V,.o|,|0'Uso| is absorbed before time nd — m/, and (adjusting the constant C' as needed)

Elerr,1 +err.o] < Cn'/3,

S
gt
obdL

Altogether this gives

Z(%) 13
Eln 7o) — O.(n'?)
= 2 3 S B~ g @)

Using the fact that 2% — kay* ! + (k—1)y* > 0 for all z,y e R and even k > 2, or 2,y = 0
and odd k > 3 finishes the proof. m

Corollary 2.8.7. In the setting of Lemma 2.8.6,
ElnZ(4-1) = Eln Z(%ag41) — Oc(n*?),

where the expectation E is over the sequence of random graphs (9,) _1<r<nd+1-
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Proof. Adding or removing a clause can change the partition function by at most a multi-
plicative constant (depending on €). On the event that the coupling succeeds for all r,

Z<g0) Z<gnd+1)

2(9) Ty | = Om) = 0w*").

‘ln

+'ln

On the event that the coupling fails, the difference is crudely O.(n). We saw in the proof of
Lemma 2.8.6 that the coupling fails with probability exponentially small in n, so altogether

we conclude
Z(%) Z(Ynds1)
Z(9-1) Z(%a)

Combining with the result of Lemma 2.8.6 proves the claim. O

E‘ In = 0.(n*?).

+E'ln

Proof of Theorem 2.8.5. In the interpolation, the initial graph ¢, consists of n disjoint trees
T,, each rooted at a variable v € V. Thus

d
n'ElnZ(4_,) =En Z(T,) = Eln ( D) ] ] 'u,a(x)> .
zeX a=1
The final graph ¥,4,1 is comprised of two disjoint subgraphs — one subgraph %, has the
same law as the graph ¢ of interest, while the other subgraph ¢, = (U, Fy, Ey) consists of
na(k — 1) disjoint trees S,, each rooted at a clause ¢ € Ay. Thus

n'EInZ(%1) = a(k —1DEInZ(S.) + n 'Eln Z(¥4) = a(k — 1)Elnug + F,.

The theorem follows by substituting these into the bound of Corollary 2.8.7. m

2.8.3 1RSB bound

For the proof of Theorem 2.8.3, we take ¢4 ; as before and modify it as follows. Where
previously each u € U had spin value z, € X, it now has the augmented spin (z,,v,) where
v goes over the positive integers. Let v = (7,).. Next, instead of labeling u with (hy, 4, pu)
as before, we now label it with (hy, 74, (p])>1) where (p)),>1 is an infinite sequence of i.i.d.
samples from 7,. Lastly, we join all variables in U to a new clause a, (Figure 2.8.2), which
is labelled with the function

Pay (Y1) = Z Ry H v =17}

=1 uelU

for some sequence of (random) weights (2,),>1. Let 77, denote the resulting graph.

Given S 1, let s, be the associated Gibbs measure on configurations (v, z). Due to
the definition of ¢,,, the support of p , contains only those configurations where all the
7. share a common value v, in which case we denote (v, z) = (v, z). Explicitly,

pora(1:2) = g [ nle) [0 = utzsl [ (7o)

veV aceA uelU
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FEVOVLNIVANG!

Qs ]

Figure 2.8.2: 7 4

We can then define an interpolating sequence ¢ 1, ..., 5,41 precisely as in the proof of
Theorem 2.8.5, leaving a, untouched. Let ¥, denote the graph .77, without the clause a,
and let Z,(%,) denote the partition function on %, restricted to configurations where ~, = v
for all u. Then, for each 0 < r < nd + 1,

Z(H) =Y 2,2,(%,).

~

The proofs of Lemma 2.8.6 and Corollary 2.8.7 carry over to this setting with essentially no
changes, giving

Corollary 2.8.8. Under the assumptions above,
Eln Z(A.1) = Eln Z(Hjpger) — O(n?),

where the expectation B is over the sequence of random graphs (J;) _1<r<nd+1-

The result of Corollary 2.8.8 applies for any choice of (z,),>1. Let us now take (z,),>1
to be a Poisson-Dirichlet process with parameter A € (0,1).* The process has the following
invariance property (see e.g. [Pan13, Ch. 2]):

Proposition 2.8.9. Let (z,),>1 be a Poisson-Dirichlet process with parameter A € (0,1).
Independently, let (§,),=1 be a sequence of i.i.d. positive random variables with finite second
moment. Then the two sequences (2,&,)y=1 and (z,(E&)YA), 51 have the same distribution,
and consequently

1
meagzxmmN

v=1

Proof of Theorem 2.8.3. Consider

Z(y) = (Zv(gr))flgsmﬂr

“That is to say, let (w.),>1 be a Poisson point process on R-( with intensity measure w~ N dw. Let
W denote their sum, which is finite almost surely. Assume the points of w., are arranged in decreasing order,
and write z, = w,/W. Then (zy)>1 is distributed as a Poisson-Dirichlet process with parameter A.
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If we condition on everything else except for the p’s, then (Z(7)),>1 is an ii.d. sequence
indexed by v. Let E, , denote expectation over the z’s and p’s, conditioned on all else: then
applying Proposition 2.8.9 gives

n'EIn Z(,) = (n\)'EInE. [Z(41)}] = A 'Eln EZ,,)KZ h(z H )A]

zeX a=1

n'ElnZ(Hai1) = Fo + A 'EE, [ (u)].

Combining with Corollary 2.8.8 proves the result. O]

2.8.4 Conclusion of upper bound

We now apply Theorem 2.8.3 to prove the upper bound for the NAE-SAT model, Proposi-
tion 2.3.19. Following Example 2.8.1, let F},(3) = n 'Eln Z,(3) be the expected free energy
for NAE-SAT at inverse temperature 5. (The expectation is with respect to the law of the
random (d, k)-regular graph.)

Let f1) be the fixed point specified by Proposition 2.1.2, and let (py;)q,;=0 be an array of
i.i.d. samples from fi,. For each p = p,; we can define a (random) measure on X = {0, 1}
by giving mass p to 1, and giving the remaining mass 1 — p to 0. Let n = 7, be the law
of this measure, and let ( = (, denote the Dirac mass at n (cf. Remark 2.8.4). Recall
from Proposition 2.1.2 that p has the same distribution as 1 — p. Using this symmetry, the
quantities ug and wu,(z) in Theorem 2.8.3 are equidistributed with vy and v, (z) where

vo=1—(1—e" {]_[p0]+]_[1—poj}
('va(O),'va(l))E< (1—¢? Hpoj, (1—e” ]_[11—,)0])

J=

In the following calculation we will accumulate some error terms of size O(e?), which we
will eventually take care of by sending B — oo. It is useful to recall that for any a,b > 0 and
A€ [0,1] we have (a + b)* < a* + b*. Tt follows that for any z > 0 and any € € [—x, 20),

[(x + ) — 2 < Je]. (2.8.7)
(Note this bound is not useful for A = 0, but in that case (x + €)* = 1 = 2*.)

Lemma 2.8.10. Let i, be the fized point of Proposition 2.1.2. With 35 and 3 as in (2.1.8),

E[(uo)'] = 31 + O(e™),

l( 2 Hua )] (3,/30)" 35 + O(e ™).

ze{0,1}k a=1
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Proof. We assume A € (0, 1], since for A = 0 there is nothing to prove. It follows straightfor-
wardly from the above definitions that

E[(u0)*] = E[(v0)"] = 31 + O(e™),
where the O(e=*?) error is by an application of (2.8.7). Next, let
2o = 0,(0) + v,(1), 7T,=1v,(1)/z,.

Recall from (2.1.7) the definition of the distributional recursion %, : fix — [, and the
associated normalizing constant 2°(j1y). For any continuous bounded function f : [0,1]? —
R,

Jf(frl, . ,frd)(]i[za)A li[ { k_i m(d,oaj)}

a=1 a=1 \ j=

A

= g(lh)dff(ﬁla .oy Pa) Hﬂ,\(dﬁa) +0(e).

a=1

It follows from this that
d

A
E[( >, [Tua) ] +0(e™)
x€{0,1}k a=1
X d d A d R _
= 20 [ (TTo+ 110 - 50)) TTintan) = 2G5
a=1 a=1 a=1
Finally, it is straightforward to check that for the fixed point [, we have
Z(j12)3x = 3. (2.8.8)
so the lemma follows. O

Proof of Proposition 2.3.19. Applying Lemma 2.8.10 to the bound of Theorem 2.8.3, we have
oy« (I om0 ~ (301 - 060)

A standard argument gives that for any finite 3, n='In Z,(f3) is well-concentrated around its
expected value F,(3).> Thus, for any fixed A € (0,1] and € > 0, we can choose 3 = B(),¢)
sufficiently large so that

lim supIP)((Zn(B))l/n > exp{(1 + G)AIS(A)}) =0.
n—00
Since Z,, < Z,(f) for any finite 5, we conclude

f(a) <inf{A7'F(\) : A e (0,1]}.
For o < une, if A = A, € (0,1) then A7'§(\) < s, = f'%%(a). If instead A = A, = 1 then
again A7'F(\) = s, + X(s,) = f1™%(a). In any case this proves f(a) < f"™"(a). O

STake the Doob martingale of In Z,, () with respect to the clause-revealing filtration for the random
NAE-SAT instance, then apply the Azuma—Hoeffding concentration bound.
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2.9 Contraction estimates

In this section we prove Propositions 2.4.2 and 2.4.3, as well as Lemma 2.4.4.

2.9.1 Single-copy coloring recursions

We first analyze the BP recursions for the single-copy coloring model, and prove Proposi-
tion 2.4.2. We first consider the BP recursion with fixed parameters A € [0, 1] and 1 < T' < .
Recall that we have restricted our attention to measures 7, () such that

for some probability measures ¢, ¢ defined on Qr, Qr. Recall further that we can assume
q = q¢™® and ¢ = ¢*&. For measures of this type we can give a fairly explicit description of
the BP recursion. In what follows it will be convenient to take the convention

For x € {0, 1} we abbreviate
g=buf, g, =b,uf, y=ruvf, p,=b, ur,.

The variable recursion BP = BP AT 18 given by

qA(Pi)dfl ée {ro,r1},
wrg)(e) = { 1P AT , e tond
i) A 2 1{6 = T((67)i=2)} Hg(&i) &e Qe nQp,

where =~ indicates the normalization which makes BP§ a probability measure on Q.
For the clause BP recursion, by symmetry it suffices to consider a clause a with all incident

edge literals L,; = 0. We write ¢ ~ & if ¢ = (&4, ...,0%) € (Qr)*! is compatible with &, in
the sense that there is a valid coloring ¢ of da with
g = ((076)’(02762)7(0ka&k)) € (QT)k (292)

The clause recursion BP = BP AT is given by

G(bo )" k beiron
26)* ) 1o = T((61)iz2 i(6;) 6€8n Qr,
i) = 20 LMo =1Een [ Jdo)

Z (1 — ﬁm((n)) Hd(di) & € {bo, b1},
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where the last line uses the convention (2.9.1). Recall that BP = BP o BP = BP, ;. We will
show the following contraction result.

Proposition 2.9.1. Suppose ¢, ¢a belong to T', as defined by (2.4.5). Let BP = BPyr for
AE [0, 1] and 1 < T < . Then Bqu,BPQQ eI and HBqu — BPq2H1 = O(k2/2k)Hq1 — QQHl.

Before the proof of Proposition 2.9.1 we deduce the following consequences:

Proof of Proposmon 2.4.2. Let ¢(© be the uniform measure on {by, by, T, 1o}, and recur-
sively define ¢) = BP(¢U~1). It is clear that ¢(*) € T', so Proposition 2.9.1 implies ¢ € T
for all [ > 1, and furthermore that (¢);>; forms an ¢' Cauchy sequence. By completeness
of ¢* we conclude that there exists ¢(*) = ¢, € I satisfying

lim Hq(l) - Q*Hl = 07 BPQ* = qw

l—00
Applying Proposition 2.9.1 again gives |BP¢ — ¢, |1 = O(k?/2%)||¢ — ¢.|1 for any ¢ € T', from
which it follows that ¢, is the unique fixed point of BP in T. m

Corollary 2.9.2. For Ae [0,1] and 1 < T < o0, let g1 be the fized point of BPy 1 given by
Proposition 2.4.2. Then ||gx7 — ¢rw|1 — 0 in the limit T — 0.

Proof. Foreach 1 < T < o0, let (¢xr)? (I = 0) be defined in the same way as ¢\!) in the proof
of Proposition 2.9.1. It follows from the definition that (q',\,T)(l) = (qm)@ for all I < I,
where Ir = InT/In(dk). By the triangle inequality and Proposition 2.4.2,

lanr = dreolt < ldnr = (@)1 + [(dr,0) T = daoof1 < (C/28)'7
for some absolute constant k. The result follows assuming k > k. O]

We now turn to the proof of Proposition 2.9.1. We work with the non-normalized BP
recursions NBP = NBP,\T and NBP = NBP,\ 7, defined by substltutlng “~” with “=" in the
definitions of BP and BP respectively. One can then recover BP,BP from NBP, NBP via

oy (WBPR)() sy _ _ (NBPP)(0)
S S T N SN T
Let p be the reweighted measure defined by
) = [5(c) () = q(o)
6) = @)(0) = 2o (293)

In the above we have assumed that the inputs to BP, BP, NBP, NBP are probability measures:
we now extend them in the obvious manner to non-negative measures with strictly positive
total mass.
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Given two measures 1,7y defined on any space X, we denote Ar(z) = |ri(z) — ro(x)].
We regard Ar as a non-negative measure on X: for any subset S < X,

= Y Iri(x) = ra(x)] = [ra(S) = r2(S)),

zeS

where the inequality may be strict. For any non-negative measure 7 on (), we abbreviate

WM(G) = (6 M(6),
(I—=m)*(6) = (1—m(5))*(5)

In what follows we will begin with two measures in I'; and show that they contract under one
step of the BP recursion. Let NBP and NBP be the non-normalized single-copy BP recursions
at parameters A\, 7. Starting from ¢; € I" (i = 1,2), denote

pi = p(¢) (as defined by (2.9.3)),
Pi = NBP(p;) and p; o = NBP) ,0(p:),
pY = NBP(p;) and §; = BPp; = BP¢;.

With this notation in mind, the proof of Proposition 2.9.1 is divided into four lemmas.

Lemma 2.9.3 (effect of reweighting). Assuming ¢1,q2 € T, [|Ap|1 = O(1)|¢1 — ¢2|1, where
O(1) indicates a constant depending on the constant appearing in (2.4.5).

Lemma 2.9.4 (clause BP). Assuming ¢1,q2 € T,

m () =1—4/2% + O(k/4%),

mpi(£) = m pi(0) + O(k/4%),
i pilbs) = L+ O(k/2"), (294)
mApi(ry) = (2/2°)[1 + O(k/2%)].

Further, writing A p(-) = m*()[p1() — p2(-)],

[AmApy = O(k?/2%) | Ap]s.

(Recall that p(6 ® 1) = p(6) and m(6 @ 1) =1 —m(d), so (1 — ))‘ﬁ( )
a result, the bounds for Am>p imply analogous bounds for A(1 — 1m)*p.)

Lemma 2.9.5 (variable BP, non-normalized). Assuming ¢1,q, € T,
| ] 2p(e)] [ Ok
u(f o2+ . : s .u
O] = | Conl | e (20w | = | otz | 1 ma o). 200
' Ap(x) O(k2") ’

Lemma 2.9.6 (variable BP, normalized). Assuming ¢1,Ge € T', we have ¢1,¢2 € T' as well,
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Proof of Proposition 2.9.1. Follows by combining the four preceding lemmas 2.9.3-2.9.6. [
We now prove the four lemmas.
Proof of Lemma 2.9.3. This follows from the elementary identity

a Qo 1 by — by

B p et

together with (2.4.5). O

as. (2.9.7)

In the proof of the next two lemmas, the following elementary fact will be used repeatedly:
suppose for 1 <! < m that we have non-negative measures a', b over a finite set X'. Then,
denoting X = X! x --- x X™, we have

;C ﬂal(xl)_ﬁbl 2! i;c{lglbj(ﬂ }{kl:[maj (29) }‘ (21) — B ()
<l =¥ ] (1 + o =) 293

If all the (X!, !, b!) are the same (X, a,b), this reduces to the bound

[ Toter) ] [

=1 i=1

m—1
<mla ol (Jal +Ja—o:)" . (2.9.9)

In what follows we will abbreviate (for « € {0, 1})
a, = {& eQr:ce (g.)F ! for all & ~ &}. (2.9.10)
Proof of Lemma 2.9.4. From the definition, if p = p(¢) then

i) i)
1—q(r)  q(g)
It follows that for any ¢, ¢ € I' we have

Ap(b) < Ap(£) < pi(E) + pa(f) = O(27").

Another consequence of the definition of T is that |Ap|; = O(1). We now control Am*p(5),
distinguishing a few cases:

plo) = — 1 ().

1. We first consider ¢ € Q\{b, o}. For such & we have

[(5)2(6) Z(Fhwa aar <QL

o~0 j=2

Ain*p(6) =
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and it is easy to check that

k
m(6)z(o) ||maJ 01
j=

Note moreover that any such ¢ must belong to ap or a;. By summing over 6 € a, and
applying (2.9.9) we have

N p(ao) < (k — 1) (eo) (1 (o) + 20(5))

Recalling that pi, p, € T, in the above we have pi(go) + Ap(f) < [1 + O(27%)]/2, as well
as Ap(go) = O(1)Ap(£). Combining these gives

A plao) = O(k/2)Ap(8),
and the same bound holds for Am*p(ay).

2. Next consider ¢ = o, for which we have m(d) = 1/2 and 2(¢) = 2. Thus

mp(e) =1 —plge)* ! — plgd)* ™t +p(£)* " (2.9.11)
Arguing as above gives Am*p(o) = O(k/2F)Ap(f), proving the first half of (2.9.5).

3. Lastly consider 6 € {by,b;}. Recalling (2.9.1) we have Am*p(by) = 0, so let us take

= by, and consider ¢ ~ b;. Note that if ¢ ~ b; has no red spm then there must

ex1st some & € ) such that & ~ & as well. Conversely, if 6 € Qs N Qp and & ~ &, then

0 ~ by, unless ¢ has exactly one spin ¢; € {bo, £} with the remaining k£ — 2 spins equal to

b;.5 Again making use of (2.9.1), this ¢ gives the same contribution to m*p,(6”) as to
m*p(by). It follows that

A p(by) < A pos(y) + k|p1(xo)p1(be) ™2 — palro)pa(bs)* >

The first term on the right-hand side captures the contribution from those ¢ with no red
spin, and by the preceding arguments it is O(k/2%)Ap(f). It is easy to check that the
second term is O(k%/2%)| Ap|,, which finishes the second part of (2.9.5).

Combining the above estimates proves (2.9.5). We next prove (2.9.4). Denote 5, = {f}\{o}.
Since ¢; € T', we must have from (2.4.5) that

pilf=1) 22( )pl )i (bo) ¥ < 243 (bo)* ]:Zl(kp(’éos) = O(k/4").
- (2.9.12)

5The converse is not needed for the final bound, but we mention it for the sake of concreteness.
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On the other hand, we see from (2.9.11) that
m pi() = 1 — 4/2F + O(k/4%).
It follows that
i (B1) = fi(B1) = 10 Pico(£) + (k= 1) pr(xo) — (o) [por) (2:0.13)
< 1 Pio(£) + (k= 1)pi(ro)pi(b)* ™ = 1+ O(k/2").

For a lower bound it suffices to consider the contribution from clauses with all & incident
edges colored blue:

i pi(bs) = pi(bs) = pi(b)"'[1 — O(k/2")] = 1 — O(k/2%). (2.9.14)
Lastly, note by symmetry that
M pi(r1) = pi(r1) = Pibo)* ™ = (2/2%)pi(b)" .
Combining these estimates proves (2.9.4). O

Proof of Lemma 2.9.5. We control p* and Ap" in two cases.

1. First consider & € Q. Up to permutation there is a unique 6 € (€)%~ such that & = T(6).
Let comb(a) denote the number of distinct tuples ¢’ that can be obtained by permuting
the coordinates of . For this ¢ we have

d d d
]‘_[m(&j)A <o) < ]A_[m(&j)A + H(1 —m(6,)), (2.9.15)

where the rightmost inequality uses that (a + b)* < a* + b for a,b > 0 and X € [0,1]. Tt
follows that for i = 1,2 we have

comb(o

Wpi(65) < pi(o) < comb(d){ Hmkﬁi(&j) + H(l — m)kpi(&j)}.

:]&

It follows by symmetry that m*p;(£) = (1 — ) p;(£), so

[ pi(0)] < pi(8) < [ ()] + [(1— i) pi(£)]"F = 2[m pi(£)]1 (2.9.16)

Making use of the symmetry together with (2.9.15) gives

d—1 d—1
Ap"(£) <2 Z Hm)\ﬁl(&y) - mAm(&ﬂ )
cfe(flf)d*1 j=2 7j=2
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and applying (2.9.9) gives
d—2
AR(2) < d| A ply (P (£) + A (£))
Combining (2.9.4) with the lower bound from (2.9.15) then gives

A (£) < d] A pl max {52(2)}.

2. Next consider ¢ € {red,blue}: note that p¥(r,) = p;(p,)¢ !, and
! ) ) bx Ai b:c -1 Ai T 1
D; (I' )u pz( ) _ ZA) ( )d_l _ (1 o Zf (r )) _ O<2_k), (2917)
pi(rs) pi(pa) pi(pa)

where the last estimate uses (2.9.4) and d/k = 28"11n2 + O(1). Applying (2.9.9) gives
d—2
AP (pr) < dsi’pls (miny {15 (p) | + Arinp(py))

Suppose without loss that m*p;(b;) < m pa(by): then
mp1(p1) + A p(py) = m pa(bs) + M pi(r1) + A p(ry)
< 1 pa(p1) + 281 p(xy),
and substituting into the above gives

. L d—2
Ap'(py) < de Pl (ma>2< {m pi(pl)} + A p(r1)) )

From (2.9.5) and the definition (2.4.5) of T' we have Am*j(r,) = O(k/2%)Ap(f) =
O(k/4%). Tt follows from (2.9.17) that

AR (p1) < dlAii*pls mas {2 (1) . (29.18)

It remains to show p*(£)/p"(b) = O(27%). From (2.9.13),

and from the definition of T' the right-hand side is O(k/4%)p;(b)*~1. Now recall from (2.9.14)
that m*p;(by) = p;(b)*~. Combining these gives

M pi(£) < [1+ O(k/4")]im i (by). (2.9.19)
Recalling (2.9.15), it follows that
prE) _ <m*ﬁz~<f> )d‘l _ (W@(bﬁ)"‘l I
pi (1) = \m*pi(ps) = \pi(py) T

where the last step uses (2.9.4). This concludes the proof. O
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Proof of Lemma 2.9.6. Denote ¢; = BPg; and AG = |q1 — Go|. We first check that §; lies in T:
the first condition of (2.4.5) follows from (2.9.6), and the second is automatically satisfied
from the definition of BP. Next we bound Ag. With some abuse of notation, we shall write

AG(R) = |(Gi(x) = 1 (b)) — (G2(r) — G2(b))].
Let p'(R) and Ap"(R) be similarly defined. Arguing similarly as in the derivation of (2.9.18),

AP (R) = 2[p1 (b)) — Pa(b1)"] < k[ Arin*plly max 5} (b) (2.9.20)
1=1,2

Recalling | ;|1 = 1, we have
2G;(r) = [1—a(f)]
2Gi(b) = [1—a(f)] - [a
[Ad)y < Ag(E) + Ag(R).
If we take a € {1,2} and b = 2 — a, and write Z; = |p?[;, then
AP'(£) + AP'(R) | |Za = 2| [B4(E) + b (x) — B ()]
L Ly Ly

If we take a € arg max; p}'(b), then, by (2.9.6) and (2.9.20), the first term on the right-hand
side is

Aq(f) + AGR) <

E|Am?p|ip(b
< H mZPHIPa( ) SkHAm)\ﬁHb

where the rightmost inequality uses Z; = p?(b). As for the second term, (2.9.6) gives

Zy— 7 W(E) + pi(r) — pi(b
a b

Combining these estimates yields the claimed bound. O

2.9.2 Pair coloring recursions

In this section we analyze the BP recursions for the pair coloring model and prove Proposi-
tion 2.4.3 and Lemma 2.4.4. Recall that we have restricted our attention to measures @, ()
such that

Qo',0%) = (d",6*)1{|o"],|0?

Q(o',0%) =q(6',6%)1{|c"],|0?|
for probability measures ¢, § defined on (Q7)2, (Qr)2. Recall further that we assume ¢ = ¢*"
and ¢ = ¢™&. For any measure p(z) defined on z = (2!, 2?) in (Qr)? or (1), define

Ty,

<
< T}

(Fp)(x) = p(Fx) where Fz =2 ® (0,1) = (21,22 @ 1).
Recall the definition (2.4.6) of I'(¢, k). We will prove that
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Proposition 2.9.7. For any constant ¢ € (0, 1] and probability measures ¢1, s € T'(c, 1), we
have BPg,,BPg, € T'(1,1) and

|BPG: — BPGa |1 = O(K*/2%) g1 — dolls + O(K*/2%) > lldi — Fdil1. (2.9.21)
i=1,2
Assuming this result, it is straightforward to deduce Proposition 2.4.3:

Proof of Proposition 2.4.3. Let ¢® be the uniform probability measure on {by,by,ry, ro}?,
and define recursively ¢() = BP(¢¢~1) for [ > 1. It is clear that ¢(® e T'(1,1) and ¢© = Fg(®.
Since ¢ = F¢® for all [ > 1, it follows from (2.9.21) that (¢);>; forms an ¢! Cauchy
sequence. It follows by completeness of ¢! that ¢) converges to a limit ¢(*) = ¢, e T'(1,1),
satisfying ¢, = Fq. = BPq,.. This implies that for any probability measure g,

l¢ —=Fqlr < ¢ = gull + e = Fill = 2llg — ¢u]1-
Applying (2.9.21) again gives
[BPG — ¢ = O(K*/2) 4 — ¢l + O(K*/2) ¢ — Fdl s = O(K*/2)]d — du1,

proving the claimed contraction estimate. Uniqueness of ¢, can be deduced from this con-
traction. O

We now turn to the proof of Proposition 2.9.7. The proof of Lemma 2.4.4 is given after
the proof of Proposition 2.9.7. Let NBP,NBP now denote the non-normalized BP recursions
for the pair model. Let p = p(¢) be the reweighted measure

6) = 70

=t (2.9.22)

Recalling convention (2.9.1), we will denote

(5, 6) = (e i(3)] 76" ).

Let NBP and NBP be the non-normalized pair BP recursions at parameters A\, T'. Starting from
g € T'(c, k) (i =1,2), we denote

pi = p(q;) (as defined by (2.9.22)),

pi = NBP(p;) and p; o = NBP) oo (p),

p; = NBP(p;) and ; = BPp; = BPq;.
With this notation in mind, the proof of Proposition 2.9.7 is divided into the following
lemmas.

Lemma 2.9.8 (effect of reweighting). Suppose ¢1,qs € I'(c, k) for c € (0,1] and k € [0,1]:
then . . .
[Ap[1 =022~ Ad]s,

Ip: = Fpills = O2"%)]¢; — Fdil 1.
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Lemma 2.9.9 (clause BP contraction). Suppose ¢, ¢z € I'(c, k) for c € (0,1] and € [0, 1]:
then

A p(yy) = O(k*/2%)Ap(gg) = O(K>/21+F),
Am)‘ﬁ({br,ble}) = O(k2/2k)[AP(gg) + Z_kAp(QQ\{rr})] _ O(k3/2(1+c)k), (2‘9‘23)
1AM = O(k3/28) | Ap|, = O(k320-290k)

and the same estimates hold with Fp in place of p. For both 1 = 1,2,
[ p; — i Fpill = O(K /20 9%) |p; — Fpally = O(K/2°*) [ 4s — Fej. (2.9.24)

Lemma 2.9.10 (clause BP output values). Suppose ¢i, ¢z € I'(c,k) for c € (0,1] and x €
[0,1]. For s,t < let st =s x t. Then it holds for all s,t € {ry,by, £, 0} that

m pi(s,t) )1+ O(K?/2%)  r[s] +r[t] <1, (2.0.25)
(2/2F)xls]+=lt] 1+ O(k?/2%)  r[s] +r[t] = 2. o
Furthermore we have the bounds
mkﬁi(f%t) + m)\ﬁz(tf>1> < O(l{?/4k) for allt e {r17b1,f, E’}, (2 9 26)
D ({£} x Q) — M pi({by} x Q) < O(k/4%). o

The same estimates hold with Fp; in place of p;.

Lemma 2.9.11 (variable BP). Suppose 1, ¢z € T'(c, k) for c € (0,1] and € [0,1]. Then we
have BPqy,BPgy € T'(¢/, 1) with ¢ = max{0,2x — 1}, and

IBPG; — BPga; = O(k) (| Arm*p + A Fply) + O(k2) Z 1M p; — 1.
i=1,2

Proof of Proposition 2.9.7. Follows by combining the preceding lemmas 2.9.8-2.9.11. m

Proof of Lemma 2.4.4. 1f ¢ € T'(c, 0) is a fixed point of BP, then it follows from the preceeding
lemmas 2.9.9-2.9.11 that ¢ € T'(¢,0) n T'(0,1) = T'(c, 1). O

We now prove the three lemmas leading to Proposition 2.9.7.

Proof of Lemma 2.9.8. Applying (2.9.7) we have

01(0) — da(9)]  ldr(eg) — da(ge)l &)
¢1(gg) G1(gg)d2(g8) ’

p1(0) — p2(0)] <

and summing over o € Q2 gives

- ldr — do|r  ldi(gg) — Go(g8)l _ 2[d1 — dollx
H Hl < — + — - SO - .
q1(gg) q1(gg)q2(gg) q1(gg)d2(gg)
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Since ¢; € I', we have

Bi(\frr})

and p;(rr)

(1) by part (A) of (2.4.6),

=0(1
— 0(20-9%) by part (B) of (2.4.6). (2:9.27)
Consequently ¢;(gg) ™' < O(1)207%*% and the claimed bound on |Ap|; follows. The bound

on |p; — Fp;||; follows by noting that if ¢go = F¢, then ¢;(gg) = ¢2(gg). O

Proof of Lemma 2.9.9. We will prove (2.9.23) for p;; the proof for Fp; is entirely similar. It
follows from the symmetry p; = (p;)*'® that for any z,y € {0, 1},
—2

pi(bb) — 4p;(b,b,) =2

pi (bxby@l) - pz(bxby) pz(bobo) - pz (bObl)

from which we obtain that

Ap(bb) = |p1(bb) — pa(bb)| + O(1) max

Pi(bobo) — Pi(boby)

Recall g = {b,f} and p;(gg) = 1. Combining the above with (2.4.6) gives
Ap(gg) < Ap(bb) + Ap(gf) + Ap(fg)

<2 { + pi(gf) +P(fg)} =0(27). (2.9.28)

i=1,2

Pi(bobo) — Ps(boby)

Step I. We first control Am*p(5). As before, by symmetry it suffices to analyze the BP
recursion at a clause with all literals L; = 0. We distinguish the following cases of 6 € Q%

1. Recall y =r u £, and note {y}\{o} € ay U a; (as defined by (2.9.10)). Thus

Ap({yy\foo}) < ), [Am p(asy) + Amtp(yas)]. (2.9.29)

z€{0,1}

Consider 6 € {a,y}: in order for & € (Q2)*~! to be compatible with &, it is necessary that
0; € {g.g} for all 2 < j < k. Combining with (2.9.9) gives

k

[ [p1(65) =] [ p(5)

Jj=2 Jj=2

Aitplay) <)) < kAp(gg) (1’71 (g28) + Ap(gg)>“~

oe{gag}h1

It follows from (2.4.6) that pi(A) + Ap(gg) = 5 + O(27), so we conclude

Arin*p({yy}\{eo}) = O(k/2°) Ap(gg). (2.9.30)
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2. Now take 6 = on: forg € (QQ)’“*1 to be compatible with &, it is necessary that & € {gg}*~!.
On the other hand, it is sufficient that o € {gg}*~! does not belong to any of the sets
{g.8}* 1 {gg.}* 1, 2 € {0,1}. Therefore

A p(oa) < Y >

ze{0,1} se{gag}r L U{gg. ot

= O(k/2")Ap(gs),

[ [5:1(65) = [ $2(6)

Jj=2 j=2

where the last estimate follows by the same argument that led to (2.9.30). This concludes
the proof of the first line of (2.9.23).

3. Now consider & with exactly one coordinate in {b}, meaning the other must be in {y}.
Recalling convention (2.9.1), we assume without loss that & € {byy} and proceed to bound
Am*p(6). Let ¢ € (22)k! be compatible with 6. There are two cases:

a. If ¢ contains no red spin, it must also be compatible with some ¢’ € {yy}, as long
as we permit the possibility that |(67)!| > T. Such & gives the same contribution to
M p(6) as to M pe (yy). It follows from the preceding estimates that the contribution
to Am*p(byy) from all such ¢ is upper bounded by

A pos (yy) = O(k/2°) Ap(gg) (2.9.31)

b. The only remaining possibility is that some permutation of & belongs to A x B*~2 for
A = {rog} and B = {byg}: the contribution to Am p(b,y) from all such ¢ is

<(k-1 > |\[[pley) =] [l

geAx Bk—2 ! j=2 Jj=2

= O(K*/2%)| Ap|., (2.9.32)

where the last estimate follows using (2.9.8) and (2.9.27).
Combining the above estimates (and using the symmetry between byy and yb,) gives
A p(bry) + A p(yby) = O(K*/2%)| Ap);. (2.9.33)

If we further assume & € {b;} x {r,f>,}, then, arguing as above, ¢ either contributes to
AP py(y x {r,f1}), or else belongs to A, x B¥2 for A, = {rog.}, B, = {big.} and
xz € {0,1}. The contribution from first case is bounded by (2.9.30). The contribution
from the second case, using (2.9.8) and (2.9.27), is

< RAP(O?\{rr}) ( max ju(B,) + Ap<gg>)“ — O(k2/48) Ap(O?\ frr)).

z€{0,1}
The second claim of (2.9.23) follows by combining these estimates and recalling (2.9.28).

4. Lastly we consider ¢ € {bb}. Without loss of generality, we take & = byb; and proceed to
bound Am*p(byby). Let o € (Q2)*~! be compatible with 6. We distinguish three cases:
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a. For at least one i € {1,2}, &° contains no red spin. In this case ¢ is also compatible
with some ¢’ € {byy} U {yb;}, as long as we permit the possibility that |(6")"] > T.
The contribution of all such ¢ to Am*p(bsby) is therefore upper bounded by

A P (byy) + A py (yby) = O(K?/25) | Ap|1, (2.9.34)

where the last step is by the same argument as for (2.9.33).

b. The next case is that ¢ is a permutation of (roro, (bsby)*2). The contribution to
Am*p(bsby) from this case is at most

(k? - 1) pl (roro)P1 (b1b1>k_2 - Pz(roro)p2(b1b1)k_2

Using (2.9.8) and (2.4.6), this is at most

O(k*/4%) (Ap(roro) + p(roro) - Aﬁ<b1b1)>
= O(K*/4")|pll | Aplr = Ok 20 F9%) | Ap] ;. (2.9.35)

c. The last case is that ¢ is a permutation of (reby, biTo, (byby)¥~3). The contribution to
Am*p(bsby) from this case is at most

k? P1(rob1)p1(biro)pr (b1b1)k_3 - P2(rob1)PQ(b1ro)ﬁ2(b1b1)k_3 .

This is at most O(k%/4%)|Ap||; by another application of (2.9.8) and (2.4.6).

The above estimates together give
A p(biby) = O(K*/2%)|Ap|s, (2.9.36)

where the main contribution comes from (2.9.34). Combining with the previous bound
(2.9.33) yields the last part of (2.9.23).

Step II. Next we prove (2.9.24) by improving the preceding bounds in the special case that
p1 = p and py = Fp. Recall p; = NBP(p;); it follows that p, = Fp;. Thus, for any & € 02
with 62 = o, we have & = F&, so p2(6) = p1(F6) = p1(6). For 6 € Q2 with 6! = o, we
have 6 = (F&o) ® 1, so po(d) = p1(Fo) = p1(0), where the last step uses that p; = (p;)*'8. It
follows that instead of (2.9.29) and (2.9.31) we have the improved bound

APy (yy) = A po (fyy\({oy} U {ye})) < D Ao (asay)

z€{0,1}

—omlash Y () + Aileg) = O/~ Fil

z,y€{0,1}
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Similarly, instead of (2.9.32) we would only have a contribution from ¢ belonging to either
Ao x (Bo)¥2 or Ay x (By)k2, where A, = {rog,} and B, = {b;g,}. It follows that instead
of (2.9.33) and (2.9.34) we have the improved bound

Arii*pos (bay) + Arin*pos (ybs) = O(k*/4%)| Apls.

Previously the main contribution in (2.9.36) came from (2.9.34), but now it comes instead
from (2.9.35). This gives the improved bound Am*p(bsbs) = O(k?/20+9%)  which proves
the first part of (2.9.24). The second part follows by applying Lemma 2.9.8. O]

Proof of Lemma 2.9.10. We first prove (2.9.25). Assume s,t € {bs,f,0}, and write st =
s x t € Q2. Then for a lower bound we have

m*pi(st) = [1 — O(k/2)]ps(bb) = 1 — O(k/2%).
for an upper bound we have

m*pi(st) < pi(gg)" " + kpi(rog)pi(b18)" > + kpi(gro)pi(gby)*
+ kpi(roro)pi(blbl)k_Q + kai(robl)pi<b1r0>pi(b1b1)k_3 = 1 + O<k2/2k)

Writing ryt = ry x t for ¢t € {by, f, 0}, a similar argument gives

mApi(rit) = [1— O(k/2%)]pi(bob) 1 = [1 — O(k/2%)] - (2/2%),
mApi(rit) < pi(bog)* ! + kpi(boro)pi(bobs)* % = [1 + O(k/2%)] - (2/2).

Lastly, it is easily seen that
mp;(r1r1) = pi(bobo)* ' = [1 — O(k/2%)] - (2/2°)%.

This concludes the proof of (2.9.25), and we turn next to the proof of (2.9.26). Arguing
similarly as for (2.9.12) gives

Py ({££1\{o0}) < i 'pi(£211) + 1 pi(£E21) = O(k/4").

Next, suppose ¢ is compatible with 6 € b;f~;: if ¢ has no red spin, then it is also compatible
with some 6’ € £, provided we allow |(6”)!| > T. Therefore

m/\f)i(b1f>1) - m’\ﬁ@oo(fle)

< ) [kpi(rof)pi(blgy)’“"‘)+kai(roby>pz-(blf)pi(blgy)’“*],
ye{0,1}

and applying (2.4.6) this is O(k/4%). Finally,

mApi(rifz1) < ) kpi(bof)pi(bogy)** = O(k/8%),

ye{0,1}
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which proves the first part of (2.9.26). For the second part, arguing similarly as for (2.9.19),
we have for any ¢ € () that

k
Api(£€) = pi(01€) < (k — 1) Y [Pi(god2) — pi(roda)] | [ Bilbr6y).
P j=3

Note that ¢ has at most one red spin. If ¢ = ro, then o; = by for all j > 3. Since ¢; € I'(c, k)
(which means also that ¢; = (¢;)*8), we have

k . .
. . . pi(biby)F2 < O@47F) if ¢ = 1o,
;f{@ “ Ol < { Pibig)t = < 0(27%) if e O\{xo).

On the other hand, ¢; € I'(¢, k) also implies

PigoC) = PilroC) < O(27")pi(boC) + pil£C) < { gg)ﬂ ffZ?z\{ro}.

Combining these estimates and summing over ¢ proves the second part of (2.9.26). [

An immediate application of (2.9.25), which will be useful in the next proof, is that

WD > [1+ 02 - (272, (29.37)

for all t € {bo, by, f,0}.

Proof of Lemma 2.9.11. We divide the proof in two parts.
Step I. Non-normalized messages.

1. First consider ¢ € {ff}. Recalling (a + b)* < a* + b for a,b > 0 and X € [0,1],

Z Z Hm 71(6;) Hm To(0

re{pFp} se{tt}h—1 1 j=2

where the 7 = Fp term arises from the fact that
(ML —m(6*)]p(6) = m(6') (6 ® 1) (Fp)(F&) = 1 Fp(F5).
Applying (2.9.9) gives
d—2
Ap'(££) = O(d) Y A i(£s) (m*fl(ff) + Amwff)) .
Pe{p,Fp}
We have from (2.9.23) and (2.9.25) that m p; (££) = 1 and Am p(££) = O(k3/2049F) 5o
Ap*(££) = O(d)|Am*p + A Fply - pY(££). (2.9.38)
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2. Next consider ¢ € {p1f}. Let 7pax(0) = max;—1 2 7;(6) — in this notation,

Frmax(€) = Y max #;(6) > max Y #(6) = max ()
4 =1,2 §=1,2 4=d i=1,2
e e

where the inequality may be strict. Then

Ap'(pst) = O(d) Y A F(pyt) [ s (p1£)]

Pe{p,Fp}
Let a € arg max; 7;(bs0), so that
0 < 11 i (prE) — 1100 (prf) < ARMF(11E) + A f(byf51) = O(270F),

where the last estimate is by (2.9.23) and (2.9.26). On the other hand, we have from
(2.9.25) that m*p(p:f) = m*p(bsf) = 1, and it follows that

(11 e (p1£)]%72 = [ (pr )] (2.9.39)
Applying (2.9.25) and (2.9.26) again, we have (for i = 1,2)
[ 7i(paf)] "™ = [ 7i(pao) 7.
On the other hand, assuming T" > 1, we have
By (ra2) = [1075(p1o) " — [10275(byo) | = [ i(pyo) ]

where the last step follows by (2.9.37). Similarly,

py(raf) = pi(oaf) = O(1) Y, mfi(bsf)® = 027%) > ii(paf)!
7e{p.Fp} Fe{p.Fp}
= O(27")pi(r1£) = O(27F)p! (s £), (2.9.40)

where the last step follows by rearranging the terms. Combining the above gives

Ap"(psf) < O(d)| Ari*p + Ari*Fp|ly max pj (b ). (2.9.41)

Clearly, similar bounds hold if we replace p;f with any of pof, fp;, or £po.

3. Lastly we bound Ap"(p,py). As in the single-copy recursion, for x,y € {0, 1} we denote

7(Ryo) =7(rz0) —7(by0),
7(0R;) =7(0ry) —7(0b,),
r(RyRy) = 7(x,r,) — 7(rsby) — 7(bry) + 7(byby).
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Applying (2.9.37) gives

pi(ReTy) = [ﬁi<bxpy)]d_1 = O(z_k)[ﬁi(Pxpy)]d_l = O(Q_k)j)f(rxry),
P (ReRy) = [Bi(baby)]" = O(27")p} (rory).

Combining the above estimates gives
p; (raty) — pi'(baby) = Py (ReTy) + P (roRy) — pi (RuRy) = O(Q_k)pﬂrxry)‘
Further, it follows from the BP equations that

max{py(ery%?j?(bey)ap;‘l(ery)apz‘u(Rxby» < f#(rmry) - py(bxby% (2.9.42)
so pi(st) = [1 4+ O(27%)|pi(b,b,) for all s € {r,,b,}, t € {r,,b,}. h

Similarly, we can upper bound

< A[Ap“(r,ry) + Ap*(Ryry) + Ap*(r.Ry) + Ap"(RLRy)].
<O(d) Y, > AWM [ e (st)] 4 (2.9.43)

7e{p,Fp} s€{pa;ba}
te{py,by}

Ap" (pxpy>

For i € {p,Fp}, let a = argmax,_, , M’ 7;(byby): then, for any s € {ps,b,}, t € {p,, by},

0<m?

Frmax (St) — max A7 (5t) < 1M Prax (51) — 17y (51)
< O(1)Am i ({pp}\{bb}) < O(1/20+9%),
where the last estimate is by (2.9.23). Combining with (2.9.4) and (2.9.42) gives
d—1
> [ Fmax(s)]% = O(1)| maxi(pap,) | = O(1) max p(bb).

5€{px,ba}
te{py,by}

Substituting into (2.9.43) gives
Ap*(papy) < O(d)| AP + Ari*Fp| max p (bb). (2.9.44)
Further, for any st € {r,R,,R,ry,R,R,}, we have
Ap'(st) < O(k)|Amm’p + Arin’Fp|y max py (bb). (2.9.45)

Lastly, in the special case py = Fpy, (2.9.44) reduces to

|9} (bobo) — Pl (bobs)| < O(d) [ py — 7 Fpu |19} (bb)

< k52(1—2n)k”pi _ szHl (2946)

where the last estimate is by (2.9.24).
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Step II. Normalized messages. Recall ¢; = BPg;. It remains to verify that ¢; € T'(¢/, 1) with
¢ = max{0, 2k — 1}: recalling (2.4.6), this means

(A) Dsgpon) (27 Ip(5) = O(27")p(bb),  |p(bobo) — p(bobs)| < (K*/27%)p(bb),
(B) p(fr) = 027 ")p(bb), p(rr) = O(1)p(bb), '
(¢) p(ryo) =[1—027%)]p(b,0) for all z € {0,1} and & € (.
(2.9.47)
Condition (C) is automatically satisfied due to the BP equations. The second part of (B)
follows from (2.9.42). The second part of (A) holds trivially in the case ¢ = 0, and otherwise
follows from (2.9.46). We claim that

Gi({rf, fr,££}) = O(27%)G;(bb). (2.9.48)

This immediately implies the first part of (B). Further, the BP equations give ;(bf) < ¢;(rf)
and ¢;(fb) < ¢;(fr), so the first part of (A) also follows. To see that (2.9.48) holds, note that
the second part of (2.9.26) gives

PrEE) <O(1) ) [ih(£H)]" < O(1) > [m i(byby)]* 7,

7e{p,Fp} Fe{p,Fp}
pi(rif) < O(1) Z [ 7 (pa£)]* ! < O(1) Z 1727 (pab1) ]
re{p,Fp} re{p,Fp}

Combining with (2.9.37) gives pi({r:f, ££}) = O(27%)p¥(r,r;). Recalling (2.9.42) (and mak-
ing use of symmetry) gives (2.9.48). Finally, we conclude the proof of the lemma by bounding
the difference Ag = |G1 — ¢o|- Recalling the definition of R,, we have

“Ag(pp) < O(1)Ag({bb, rR,Rr,RR}),
AG(Q*\{pp}) < O(1)Aq({ptf,fb, ff, fR,RE}).
We next bound Ag(bb), which is the sum of Ag(b,b,) over z,y € {0,1}. By symmetry let
us take z = y = 0. Since ¢ = (G;)™%, Gi(bobo) = $G;(bb) + 3[;(bobo) — Gi(bobs)], s0

Aq(bobo) < [1(bb) — ga(bb)| + Z |Gi(Pobo) — Gi(boby )]
i=1,2

Since the ¢; are normalized to be probability measures,
1 — 4(9°\{pp}) = Gi(pp) = 2s(rR) + 2G;(Rr) — 3G;(RR) + 4Gi(bb),
from which it follows that
G1(bb) — G2(bb)| < |61 (2*\{pP}) — G(2*\{pp})| + AG({rR,Rr,RR}).
Combining the above estimates gives

HAq~”1 < AQ(A) + Z |q~l(b0b0) - QZ(b0b1)|7 A= {bf7 fb7 ff7 fRa Rfa rRa Rr? RR}
i—1.2
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Write Z; = p?];. Taking a € {1,2} and b = 2 — q,

_ . Ap"(4) 2, — Zo| | AP
Agly <ejp +eses+ey withey = ————=, es = : < —,
|| (1H1 1 2€3 4 1 . 2 7. 2
(A ¥ (bobg) — P (bob
egzpb'( )7 4 = Z |p;! (bobo) : pi(bo 1)"
Zb i=1,2 Zi

It follows from (2.9.38), (2.9.41), (2.9.45) and (2.9.48), and taking a = arg max; p}'(bb), that

e1 < | AP + A Fpli (d/2") max pil(bb)/ Zo < K[| Arinp + A Epr.

Further, recalling (2.9.44) gives
ey S k28| A p + A Fp;.
Combining (2.9.40), (2.9.42), and (2.9.48) gives e3 = O(27%). Finally, (2.9.46) gives
eq < k2|t p; — i Fpi1.

Combining the pieces together finishes the proof. O

2.10 The 1RSB free energy

2.10.1 Equivalence of recursions

In this section, we relate the coloring recursion (2.4.4) to the distributional recursion (2.1.7).
The main task of this section is to show the following

Proposition 2.10.1. Let g\ be the ﬁazedipoz'nt given by Proposition 2.4.2 for parameters
A€ [0,1] and T = co. Let Hy = (Hy, Hy, Hy) be the associated triple of measures defined by
Proposition 2.3.7. Then (s(Hy),X2(H)), F(Hy)) = (sx, 2(52), F(A)).

In the course of proving Proposition 2.10.1, we will obtain Proposition 2.1.2 as a corollary.
Throughout the section we take T" = oo unless explicitly indicated otherwise. We begin
with some notations. Recall that 2(X) is the space of probability measures on X. Given
Gge 2(9Q), we define two associated measures m*q, (1 —m)*¢ on €2 by

(*q)(6) = m(6)*q(5), (1 —1m)*q)(&) = (1 —11(6))*q(5),
We let 7 = 7(g) be the probability measure on .#\{*} given by

) = (Dol e o
[1—q(r)] '4(b,) if 7=ze€{0,1}.
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Recalling the definition (2 2.4) of the mapping m :  — [0,1], we denote the pushforward
measure u = u(q) = wom ™', so that @ belongs to the space & of discrete probablhty measures

n [0,1]. Analogously, given § € (1), we define two associated measures m*q, (1 — 1m)*g
on Q We let 7 = 7(g) be the probability measure on .Z\{*} given by

#(7) = {[ —q(d)]q(7) if 7 e Oy,
[1—q(b)]tg(r,) if 7=xze€{0,1}.

Recalling the definition (2.2.5) of the mapping m : QO — [0,1], we denote the pushforward
measure @ = 4(§) = 7 o', so that & € & also. The next two lemmas follow straightfor-
wardly from the above definitions, and we omit their proofs:

Lemma 2.10.2. Suppose ¢ € ,@(Q) satisfies ¢ = ¢*¥¢ and
m*(£) = 4(r1) — (1) = g(ro) — G(bo) = (1 —112)*¢(%) (2.10.1)
Then § = BPj € ,@(Q) must satisfy ¢ = ¢**% and
mAq(£) = (bs) = G(bo) = (1 —10)*q(£), (2.10.2)

Let 2 = (NBPG)/(BPq) be the normalizing constant. Then i = 1(q) and @ = u(q) satisfy

W= dy(0), F(i) - % (2.10.3)

Lemma 2.10.3. Suppose ¢ € P(Q) satisfies q = q™* and (2.10.2). Then ¢ = BPG € 2(0)
must satisfy ¢ = ¢*® and (2.10.1). Let z = (NBPG)/(BPq) be the normalizing constant: then

B 2o 2(1—q(r))
=% Z = 2.10.4
u >\<u)7 )\(’U,) (1 _ (j(b))d_l ( )
Proof of Proposition 2.1.2. This is simply a rephrasing of the proof of Proposition 2.4.2,
using Lemma 2.10.2 and Lemma 2.10.3. [

We next prove Proposition 2.10.1. In the remainder of this section, fix A € [0,1] and
T = oo. Let ¢ = ¢, be the fixed point of BP = BP, ., given by Proposition 2.4.2. Let ¢ = ¢\
denote the image of ¢ under the mapping BP = BAP,\yoC. Denote the associated normalizing
constants
5= 2, = (VBPG)/(BPG), %= £, = (NBR()/(EPq).
Let H) = (HA, ]:IA, ]:b\) be the triple of associated measures defined as in Proposition 2.3.7,

with normalizing constants (Z)\, ZA, Z). Recall from (2.1.9) that F(A\) = N3y +aln3y, —
dIn3,. We now show that it coincides with F(H)):
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Lemma 2.10.4. Under the above notations, F(H)) = In 2y +alnZy — dIn Z, and
Z)\ . Z)\
. - , A=
(1= aa(r))(1 = 4a(b))
Consequently F(\) = F(H)).
Proof. Tt follows from (2.3.9) (and recalling (2.3.5) that ®(c)* = ®™*(g)*0(g)) that

A 5,
TN A (SN

3= (2.10.5)

F(H)y) = (n(®*/H), Hy) + oln(®*/Hy), Hy) + d{In(®*H,), H)).
Substituting in (2.3.12) and rearranging gives
F(H,) — (mzA talng, — danQ
d . k ~ —
- —< N Inga(55). HA> - a< M nga(6s), HA> + ddIn[gr(6)dr(6)], H.
i=1 i=1
This equals zero by (2.3.13). The proof of (2.10.5) is straightforward from the preceding

definitions, and is omitted. O

Proof of Proposition 2.10.1. By similar calculations as above, it is straightforward to verify
that sy = s(H,). Since by definition §(\) = sy + X(sy) and F(H)) = As(H)) + X(H,), it
follows that X(sy) = X(H,), concluding the proof. O

2.10.2 Large-k asymptotics

We now evaluate the large-k asymptotics of the free energy, beginning with (2.1.9). Let /)
be as given by Proposition 2.1.2, and write iy = Z\(f). In what follows it will be useful
to denote

Ur = J e (0,1} in(de), py= j P iy € (0, )\ in(dy).

Proposition 2.10.5. For k > kg, apg < a = (21 —¢)In2 < apg, and X € [0,1],

3y =In2— (1—2>1/2% £ dIn (2*[“(%) + (1) + p>\> +err, (2.10.6)
—dIn3 = —dIn (2*%(%) + fx(1) + p)\> — (kI 2)[—pa(£) + 2¢5] + err, (2.10.7)
aln3 = aln(l —2/2%) + (kIn2)(—fi(£) + 2) + err, (2.10.8)

where err denotes any error bounded by kO /4% Altogether this yields
FO) =) — (1 =212 +err = [(2c — 1) In2 — (1 — 22" 1)]/2" + err.

On the other hand \sy = \(In2)2*~1/2% + err.
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Proof of Proposition 2.1.5. Apply Proposition 2.10.5: setting §(A) = As, gives

1 1-2"'(1-An2)
= (2" —¢))In2 ==
ay = ( cex)In2 +err; ¢y 5 + 3

Substituting the special values A = 1 and A = 0 gives

1 1
Ccondzclzla Csat200:§+41n27

as claimed. O

Proof of Proposition 2.10.5. Throughout the proof we abbreviate ¢, for a small error term
which may change from one occurrence to the next, but is bounded throughout by k¢ /4* for
a sufficiently large absolute constant C'. Note that

1-X 217/\

s tee (1) =m(0) = =+, (0, D\3h) =,

from which it follows that p) = €. Meanwhile, ¥, is upper bounded by i, (f) = 112((0, 1)),
and we will show below that

fn(z) =1-2-

2A—1
ok
Estimate of 3. Recall from the definition (2.1.8) that

3A=j(ﬁyi+ d1<1—yi>)kﬁm<dyi>.

=1 7

in(f) = = + e (2.10.9)

Let 35(f) denote the contribution to 3, from free variables, meaning y; € (0,1) for all 7.
This can be decomposed further into the contribution 35(f) from isolated free variables
(meaning y; = 1/2 for all ) and the remainder 3,(f-5). We then calculate

) d
3a(8) = 2(27) -
This dominates the contribution from non-isolated free variables:

Balfx2) =Z (f) (fzﬁl{y € (0, 1)\{%}}m<dy>)j(z—wa)d’j

< O (0. VN (27(8)) < 3a(20)KO0)24

Next let 3(1) denote the contribution from variables frozen to 1:
. d d
530 = ([ i) = ([ rive 0.0}

= ( a(3) + an(l) + PA)d —2723,(£1) + 1.
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The ratio of free to frozen variables is given by
3a(£) 2} in(3) ‘
- : ==\ T A + € = .
2[3,(1) +2723,(£)] 2 \in(g) + 22 n(1) 2

Combining these yields (2.10.6). The proof of (2.10.9) is very similar.
Estimate of 3. Recall from the definition (2.1.8) that

2A—1

+ €.

A
3= [ a0+ (0= 00 =) inld)in ().
The contribution to 3 from = = 1 is given by
3z =1)= ﬂx(l)(Z_’\ﬂ,\(%) + (1) + PA)-

There is an equal contribution from the case x = 0. Next, the contribution from x € (0,1)
and y = 1/2 is given by

3z e (0,1),y = 1/2) = i (£)27 i (5)-
Lastly, the contribution from x € (0,1) and y = 1 is given by
3)\(55 € (07 1)an = 1) = ﬂA(l)w)\7

and there is an equal contribution from the case z € (0,1) and y = 0. The contribution from
the case that both z,y € (0,1) is < k°V)/8%. Combining these estimates gives

dln3y = dln (Q‘A[M(é) + 2/ (1) fx (1) + 2£x(1)pa + 2[”(1)%) +

(D) [—fix(£) + 2105 ]
ORI

— dln (27 (3) + in(1) + pa ) + dln (1+

Recalling i) = Q?,u,\ gives

(D[ (f) + 2%])

2 in(D) + (1) ) din(0) 7 [=fa(£) + 2U] + e,

dIn (1+

and (2.10.7) follows.
Estimate of 3. Recall from the definition (2.1.8) that

k k k
i=1 i=1 ;
The contribution to 3 from separating clauses is

L —200(0,£)" + fun(£)" = 1 — (2/2")(1 + kfu(£)) + kO /8",
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The contribution from clauses which are forcing to some variable that is not forced by any
other clause is 2k, (0)* 4. The contribution from all other clause types is < k9 /8% and
(2.10.8) follows.

FEstimate of s). Recall from (2.1.10) the definition of s). By similar considerations as
above, it is straightforward to check that the total contribution from frozen variables, edges
incident to frozen variables, and separating or forcing clauses is zero. The dominant term is
the contribution of isolated free variables, and the estimate follows. n

2.10.3 Properties of the complexity function

We conclude by deducing some properties of the complexity function X(s).

Lemma 2.10.6. For fivzed 1 <T < o0, the fized point g1 is continuously differentiable as
a function of X\ € [0, 1].

Proof. Fix T' < oo and define fr[¢, \] = BP, r[¢] — ¢ as the mapping from P2(Qr) x [0,1]
to the set of signed measures on Qr. Since function 2(¢) (2(d), respectively) can take only
finitely many values on Qr (QT, respectively) and therefore must be uniformly bounded away
from 0. It is straightforward to check that for any A € [0, 1],

frle(\T),M](6) =0, V&eQr,

and is uniformly differentiable in a neighborhood of {(¢.(A,T), A) : A € [0, 1]}.

For any other ¢ in the contraction region (2.4.5), Proposition 2.9.1 guarantees that

| frld, Al = frld (A, T), Ml = 1lg = ¢«(A) [+ — [BPAz[¢] — BPyz[¢u (A, T)]|1

>
> (1= 027 — ¢\, 1)

Therefore the Jacobian matrix

(afT(di)>

04(cj) /axa

is invertible at each (¢.(\,T),A). By implicit function theorem, ¢,(\, T), as the solution of
frlg, A\] = 0, is uniformly differentiable in A. O

Let us first fix T < o and consider the clusters encoded by T-colorings. We have
explicitly defined 3(H) and s(H). Let

8(s) =sup{%(H) : s(H) = s},

with the convention that a supremum over an empty set is —co. Thus 8(s) is a well-defined
function which captures the spirit of the function ¥(s) discussed in the introduction. (Note
S implicitly depends on T since the maximum is taken over empirical measures H which
are supported on T-colorings.) Recall that the physics approach [Krz+07] takes 8(s) as a
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conceptual starting point. However, for purposes of explicit calculation the actual starting
point is the Legendre dual
T = (=8)"(\) = sup {As + 8(s) } = sup Fy(H),
seR H
where F)\(H) = As(H) + X(H). The replica symmetry breaking heuristic gives an explicit
conjecture for §. One then makes the assumption that 8(s) is concave in s: this means it is
the same as
R(s) = =8"(s) = =(=8)"(s),
so if 8 is concave then it can be recovered from §.

We do not have a proof that 8(s) is concave for all s, but we will argue that this holds on
the interval of s corresponding to A € [0, 1]. Formally, for A € [0, 1], we proved that F\(H)
has a unique maximizer H, = H),. This implies that there is a unique s, which maximizes
As + 8(s), given by

Sy =S (H >\).
Recall that H) and s, both depend implicitly on 7. We also have from Lemma 2.10.6 that
for any fixed T' < o0, s, is continuous in A, so it maps A € [0, 1] onto some compact interval
J=[s_,sy|. Define the modified function

5 E{ 8(s) sed,

—o0  otherwise.

Lemma 2.10.7. For all s € R, 8(s) = —(—8)**(s). Consequently the function 8 is concave,
and sy is nondecreasing in .

Proof. The function —8(s) has Legendre dual

F(\) = sup {)\s + §<s)} — sup {As + 3(3)} <30,

seR sed

For A € [0,1] it is clear that F(\) = F(A). It is straightforward to check that if A < 0 then
T\ < max As + max 8(8) = ASmin + S(50),
SE. s€e
so if s < Sy, then

(=8)™(s) = (3)*(s) = sup {As - §(/\)} > sup {)\(5 ~ Sin) — 5(50)} _——
A<0 A<0

A symmetric argument shows that (—8)**(s) = +0 also for s > sy If s € J, we must have

s = s, for some A\, € [0,1], and so

(—=8)™(s) = Aos — F(Ao) = —8(s).
This proves (—8)**(s) = —8(s) for all s € R. On the other hand, it holds for any function f

that f** < f, so we conclude (—8)**(s) = —8(s) for all s € R. This implies that 8 is concave,
concluding the proof. O]
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Proof of Proposition 2.1.4. We can obtain Y(s) as the limit of 8(s) in the limit 7" — oo.
It follows from Lemma 2.10.7 together with Corollary 2.9.2 that it is strictly decreasing in
s. [l

2.11 Constrained entropy maximization

In this section we review some general theory for entropy maximization problems under
affine constraints.

2.11.1 Constraints and continuity

We will optimize a functional over non-negative measures v on a finite space X (with | X| =
s), subject to some affine constraints Mv = b. We begin by discussing basic continuity
properties. Denote

H(b) = {v = 0} n {Mv = b} < R".

Let A ={v >0} n{{(1,v) = 1}, and let B denote the space of b € R" for which
@ # H(b) < A.
Then B is contained in the image of A under M, so B is a compact subset of R".

Proposition 2.11.1. If F' is any continuous function on A and
F(b) = max{F(v) : v € H(b)}, (2.11.1)
then F' is (uniformly) continuous over b € B.

Proposition 2.11.1 is a straightforward consequence of the following two lemmas.

Lemma 2.11.2. For be B and any vector u in the unit sphere S™!, let
d(b,u) =inf{t > 0:b+ tu ¢ B}.
There exists § = 0(b) > 0 such that
d(b,u) € {0} U [5,50) for allbe B.

Proof. B is a polytope, so it can be expressed as the intersection of finitely many closed
half-spaces Hy, ..., Hx, where H; = {z € R" : {a;,x) < ¢;}. Consequently there is at least
one index 1 <4 < k such that

d(b,u) =inf{t = 0: 0+ tu ¢ H;}.
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It follows that {a;,u) > 0 and

C; — <(1,Z', b> Ci — <ai, b>
= > = H;
d(b, u) T . d(b, 0H;)

where d(b, 0H;) is the distance between b and the boundary of H;. In particular, d(b,u) > 0
if and only if {a;,b) < ¢;, which in turn holds if and only if d(b, 0H;) > 0. It follows that for
all uw e S™™1 we have d(b,u) € {0} U [§, 0) with

d = 0(b) = min{d(b, 0H;) : d(b,0H;) > 0};
0 is a minimum over finitely many positive numbers so it is also positive. m

Lemma 2.11.3. The set-valued function H is continuous on B with respect to the Hausdorff
metric dg, that is to say, if b, € B with lim,_, b, = b then
lim dgc(H(b,), H(b)) = 0.

n—ao0

Proof. Recall that the Hausdorff distance between two subsets X and Y of a metric space is
dye(X,Y)=inf{e>0: X c Y and Y < X},

where X€ Y¢ are the e-thickenings of X and Y. Any sequence v, € H(b,) converges along
subsequences to limits v € H(b), so for all € > 0 there exists ng(€) large enough that

In the other direction, we now argue that if v € H(b) and & = b+ tu for u € S*! and ¢
a small positive number, then we can find v/ € H(¥) which is close to v. For v € S"1 let
d(b,u) be as in Lemma 2.11.2; and take v(b,u) to be any fixed element of H(b + d(b, u)u)
(which by definition is nonempty). Since we consider b’ = b + tu for ¢ > 0, we can assume
that d(b,u) is positive, hence > 6(b) by Lemma 2.11.2. We can express b’ = b + tu as the
convex combination

, t b =0 |V =10

= = < .
V=(1—€eb+elb+dbu)ul, € dw) ~ db) 5
Then v/ = (1 — €)v + ev(b,u) € H(V), so

(diam A)|b — V|
5

This implies H(b) < (H (b,))¢ for large enough n, and the result follows. O

|V —v| = elv(bu) —v| <
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Proof of Proposition 2.11.1. Take v € H(b) so that F(b) = F(v). If ¥ = b+ tu € B for
uw € S"7!, then Lemma 2.11.3 implies that we can find v/ € H(Y) with |v/ — v| = 0,(1),
where o0;(1) indicates a function tending to zero in the limit ¢ | 0, uniformly over u € S"~!. Tt
follows that F'(v) = F(v')+0.(1), since F' is uniformly continuous on A by the Heine-Cantor
theorem. Therefore

F(b)=F(v)=F)+0o/(1) < F(V') + o,(1).
By the same argument F'(I') < F(b) + 04(1), concluding the proof. O

When solving (2.11.1) for a fized value of b € B, it will be convenient to make the
following reduction:

Remark 2.11.4. Suppose M is an r x s matrix where s = | X|. We can assume without loss
that M has full rank r, since otherwise we can eliminate redundant constraints. We consider
only b € B, meaning & # H(b) < A. The affine space {Mv = b} has dimension s — r; we
assume this is positive since otherwise H(b) would be a single point. Then, if H(b) does not
contain an interior point of {v > 0}, it must be that

={re X :Jve{r=0}n{Mv=>b}sothat v(z) > 0}

is a nonempty subset of X. In this case, it is equivalent to solve the optimization problem
over measures v, on the reduced alphabet X, subject to constraints M’v, = b where M’
is the submatrix of M formed by the columns indexed by X,. Then, by construction, the
space
H,(b) = {vo = 0} n {M'v, = b}

contains an interior point of {v, = 0}. The matrix M’ is r x s, where s, = |X,|; and if
M’ is not of rank r then we can again remove redundant constraints, replacing M’ with
an r, x S, submatrix M, which has full rank r,. We emphasize that the final matrix M,
depends on b. In conclusion, when solving (2.11.1) for a fixed b € B, we may assume with
no essential loss of generality that the original matrix M is r x s with full rank r, and that

H(b) = {v = 0} n {Mv = b} contains an interior point of {v > 0}. It follows that this space
has dimension s — r > 0, and its boundary is contained in the boundary of {v > 0}.

2.11.2 Entropy maximization

We now restrict (2.11.1) to the case of functionals F' which are concave on the domain
{v = 0}. It is straightforward to verify from definitions that the optimal value F(b) is
(weakly) concave in b. Recall that the convex conjugate of a function f on domain C' is the
function f* defined by

fr(@*) = sup{Ca”, x) — f(z) :w € C}.
Denote G(y) = (—F)*(M"y), and consider the Lagrangian functional

L(7;b) = sup{F(v) + (v, Mv —b) : v = 0} = —{7,b) + G(7).
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It holds for any v € R” that L£(~;b) = F(b), so

F(b) < inf{L(v;0) : vy e R"} = —G"(b). (2.11.2)
Now assume 1) is a positive function on X, and consider (2.11.1) for the special case
F(v) = 5(0) + oy = 3 w(a)n 2D (2.11.3)
reX V(LC)

We remark that the supremum in (—H)*(v*) = sup{(v*,v) + H(v) : v = 0} is uniquely
attained by v°P*(z) = exp{—1 + v*(x)}, yielding

(=30 (V") = WP ("), 1) = Y exp{~1 +v*(2)}.

This gives the explicit expression

G(y) = (=F)"(M") = (=30)"(In¢ + M'y) = Y w(x)exp{-1 + (M'y)(z)}.  (2.114)

Lemma 2.11.5. Assume 1 is a strictly positive function on a set X of size s and that M
is v x s with rank r. Then the function G(v) of (2.11.4) is strictly convex in 7.

Proof. Let v = v(v) denote the measure on X defined by

v(r) = d(x) exp{—1 + (M"y)()},
and write (f(z)), = (f,v). The Hessian matrix H = Hess G(7) has entries
_ PL(3h)

i»j -

= v Mz :vM‘,:JJ = Mi,xM‘,x v-

Let M, denote the vector-valued function (M, ;)i<,, SO
o' Ha = {(a'M,)?),.

This is zero if and only if v({x € X : oM, = 0}) = 1. Since v is a positive measure, this
can only happen if oM, = 0 for all x € X, but this contradicts the assumption that M has
rank r. This proves that H is positive-definite, so G is strictly convex in . O

Proposition 2.11.6. Let b € B such that H(b) = {v = 0} n {Mv = b} contains an interior
point of {v = 0}, and consider the optimization problem (2.11.1) for F' as in (2.11.3). For
this problem, the inequality (2.11.2) becomes an equality,

F(b) =inf{L(v;b) : v e R"} = =G*(b).

Further, L(~;b) is strictly convez in ~y, and its infimum is achieved by a unique v = ~(b).
The optimum value of (2.11.1) is uniquely attained by the measure v = v°P*(b) defined by

v(z) = Y(z)exp{—1+ (M'y)(z)}. (2.11.5)

For any pn € H(b), F(v) — F(p) = H(plv) = |v — p|?. Finally, in a neighborhood of b in B,
v (b) is defined and F(b) is strictly concave in b.
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Proof. Under the assumptions, the boundary of the set H(b) is contained in the boundary of
{v = 0}. The entropy H has unbounded gradient at this boundary, so for F' as in (2.11.3),
the optimization problem (2.11.1) must be solved by a strictly positive measure v > 0. Since
v > 0, we can differentiate in the direction of any vector § with M¢d = 0 to find

=, —1—Inv+1Iny).

t=0

0= %[J{(u +t5) + (nvy,v + t5>]

Recalling Remark 2.11.4, we assume without loss that M is r x s with rank r, since otherwise
we can eliminate redundant constraints. Then, since M = 0, for any v € R" we have

0={5¢ wheree=—1—1Inv+Int+ M.
We can then solve for v so that Me = 0:7
v=(MM)"*M(Inv—Iny + 1).

Setting § = ¢ in the above gives 0 = ||¢|?, therefore we must have ¢ = 0. This proves the
existence of 7 = v(b) € R” such that (2.11.1) is optimized by v = v°P*(b), as given by (2.11.5).
The optimal value of (2.11.1) is then

F(b) = (1,07 (b)) — (M'~(b), v (b))

= Nh@) exp{~1+ (M) (@)} - (b = L((b),b).

7=7(b)
In view of (2.11.2), this proves that in fact
Gr(b) = infL(7,) s 7 € R} = min{£(3,b) : 7 € R} = £(3(b),) = F(b)

as claimed. Now recall from Lemma 2.11.5 that G(v) is strictly convex, which implies that
L(7;b) is strictly convex in 7. Thus v = 7(b) is the unique stationary point of £(v;b).
These conclusions are valid under the assumption that H(b) contains an interior point of
{v = 0}, which is valid in a neighborhood of b in B. Throughout this neighborhood, ~(b) is
defined by the stationarity condition b = G’(vy). Differentiating again with respect to 7 gives

V(vy) = HessG(7), +/(b) = [HessG(v(b))] " (2.11.6)
We also find (in this neighborhood) that
F'(b) = —y(b), F"(b) = —(b) = —[Hess G(v(b))] ",

so F' is strictly concave.

"The matrix MM?! is invertible: if MM?z = 0 then M'z € ker M = (im M*)L. On the other hand
clearly Mtz € im M, so Mtz € (im M?) n (im M*)L = {0}. Therefore = € ker M*, but M* is injective by
assumption.
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It remains to prove that F(v) — F(u) = H(plv). (The estimate H(u|v) = [|p — v|* is
well known and straightforward to verify.) For any measure p,

~FH(pulv) = H () + (p, In(y exp{~1 + M'y})).

Applying this with u = v gives

0=—-H(v|v) = H(v) + {v,In(¢ exp{—1 + M*y})).

Subtracting these two equations gives

—H(plv) = H(p) — H) + {u—v,In ) + (= v, In(exp{—1 + M'})).
If Mv = Mv = b then the last term vanishes, giving —H(u|v) = F(u) — F(v). O

Remark 2.11.7. Our main application of Proposition 2.11.6 is for the depth-one tree D
as shown in Figure 2.5.3. In the notation of the current section, X is the space of valid
T-colorings o of D, and ¢ : X — (0, 0) is defined by

¥(0) = wp(o)* = {‘b(g(sv) H[&)(Utw)i)(géaﬂ})\'

agdv

We then wish to solve the optimization problem (2.11.1) for F'(v) as in (2.11.3), under the
constraint that v has marginals h***(5) on the boundary edges £(D). This can be expressed

as Mv = h where M has rows indexed by the spins ¢ € (), columns indexed by wvalid
T-colorings ¢ of D: the (¢, () entry of M is given by

M(6,¢) = [£(D)[" Y, 1 =6}

eeL(D)

Recall Remark 2.11.4, let Q, = {6 € Q : h™°(¢) > 0}, and X, = {C € X : M(o,{) =0Vo ¢
Q}. Let M, be the Q+ x X, submatrix of M, and set ¢(¢) = 0 for all 6 ¢ Q. Next, in
the matrix M,, if the ¢ row is a linear combination of other rows, then set q(C) = 1 and
remove this row. Repeat until we arrive at an Q x X, matrix M, of full rank r, = |Q,|. The
original problem reduces to an optimization over {ve = 0} n {M,v, = b,} where b, denotes
the entries of b indexed by €),. It follows from Proposition 2.11.6 that the unique maximizer
of (2.11.1) is the measure v = v°P*(b) given by

o) = Jn(e)! = e, [[en)blesl | [ it

agdv eeL(D

Note however that if M, is not of full rank then ¢ need not be unique.
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Chapter 3

Reconstruction threshold of graph
coloring

In this chapter we study the reconstruction threshold for k-coloring model on d-regular trees,
the main result is Theorem 2. We first give a formal definition of reconstruction threshold
using the broadcasting models on trees.

3.1 Introduction

The broadcast model on a tree is the process where information is sent from the root down-
ward, along edges acting as noisy channels, to the leaves of the tree. Given a tree T' = (V, E),
a finite set [k] = {1,...,k} of k values and a [k] x [k] probability matrix M as the noisy
channel, the broadcast model on tree T is the probability measure on the space of configura-
tions [k]" defined as follows: The spin o, at the root p is chosen according to the stationary
distribution of M, denoted by m. Then for each vertex v € T' with parent u, the spin o, is
chosen according to the conditional distribution P(o, =i | 0, = j) = M(i, ). For example,
the coloring model has alphabet [k] and probability matrix M(i,j) = 51{i # j}. One
can check that the measure defined by the broadcasting process is the same as the Gibbs
measure defined in Definition 1.1.1 with G = T.

For technical convenience and independent interest, we allow randomness in the under-
lying trees. For any probability distribution £ on the set of non-negative integers Z . , we let
JT¢ denote the distribution of Galton-Watson tree with offspring distribution §. Two special
cases of interest are the d-ary tree Ty and the Galton-Watson tree Tpqisq) with Poisson off-
spring distribution of average degree d, which are the local weak limit of random d-regular
graphs and Erdés-Rényi random graphs respectively. The definition of broadcast model can
be easily generalized to the (first finite levels of) Galton-Watson trees.

Given a (possibly random) infinite tree, the reconstruction problem asks if the distribution
of the state of the root is affected by the configuration on the n’th level as n goes to infinity.
More precisely, let T;, be the first n levels of tree T" and L,, be its set of vertices at level n.
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Write T,, = T, L,, = @ if T has fewer than n levels.

Definition 3.1.1 (Reconstruction). Given a family of Galton-Watson trees T¢, we say that
the broadcast model with alphabet [k] is reconstructible for T¢ if there exist , j € [k] such
that,

limsup Ep.g,drv(P(og, = - | T,0, =14),P(o, =-|T,0,=17)) >0,

n—0o0

where drvy is the total-variation distance. Otherwise, we say that it is non-reconstructible.

Non-reconstruction implies that on average the spins on the distant levels have a vanishing
effect on the root. Equivalently, it corresponds to the mutual information between the
root and the leaves going to 0 (see e.g. [Mos04] for more equivalent definitions). Apart
from the study of random CSPs, reconstruction of broadcast models also emerge in many
other settings, for example in biology it determines a phase transition for the information
requirements for phylogenetic reconstruction [DMR11].

Locating the exact reconstruction threshold has only been achieved in a small number
of spin systems, the symmetric [Eva+00] and near-symmetric binary channels [Bor+06] and
the three state symmetric channel with large degrees [Slyl1]. For the k-coloring model
only bounds are known which match in the first and second order asymptotic term. In one
direction, the model is non-reconstructible whenever [Bha+11; Sly09; Eft15]

d<k(lnk+Inlnk+1—1In2+ og(1)). (3.1.1)

In the other direction, one need to find algorithms that reconstruct the root better than
random guess. One simple algorithm is to reconstruct the root only when it is uniquely
determined by the leaves. Calling the root in such case frozen. We define the freezing
threshold as follows.

Definition 3.1.2 (Freezing). Given a family of Galton-Watson tree T, we say that the
broadcast model with alphabet [k] is frozen for Tg if

limsup Pr.g, (0, is uniquely determined by oz,,) > 0.
n—0o0
The exact location of the freezing threshold for Poisson tree Tpyisq) has been calculated in
[Mol12]. Following a similar calculation for Ty, one can show that for k > k¢, the k-coloring
model is frozen if and only if (see also [MP03; Sem08])

inf,~ozIn™? (1 — w) T
d>d = o = C —k(nk+nlnk+1+o0k(1). (3.1.2)
infCC>O (f_;_iz)k TPois(d)

Moreover, [Mol12] proves that the freezing threshold for k-colorings on Tpeis(q) corresponds
to the rigidity threshold on Erdos-Rényi graph.

It is easy to see that the k-coloring problem is reconstructible on Ty if it is frozen. Indeed,
the freezing threshold gives the best known upper bound for reconstruction threshold with
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the only exception of d = 5 and k = 14, in which case reconstruction is proved in [MMOG]
using a variational principle. The main result of this chapter is the following theorem showing
that the reverse statement is not true for large k. Throughout we will assume that k£ exceeds
a large enough absolute constant kg, where the exact value may vary from place to place.

Theorem 2. There exists a constant 5* < 1 such that for any k = ko the k-coloring model
is reconstructible for both Tq and Tpeisa) for d satisfying

d=Fk(lnk+Inlnk + 5%). (3.1.3)

Remark 3.1.3. The numerical result in [ZK07] suggests that the actual reconstruction
threshold has a constant term roughly in the middle of 1 —1In2 and 1, for technical reasons
we only show reconstruction for f, close to the freezing threshold 1.

We hope that the result of this chapter can contribute to the study of clustering phase
transition of random CSPs in two directions. First, we show for the first time that the gap
between reconstruction threshold and freezing threshold on trees is linear in k. This combined
with the conjecture that reconstruction coincides with clustering strongly suggests a distinct
phase where the solution space are clustered but non-frozen. It will be of great interest
to analyze algorithms in this region. Secondly, the distributional recursion involved in the
reconstruction problem (known as the averaged 1RSB equation in physics jargon [MMO09])
is closely related to the BP recursion, thus in bounding the fixed point of the reconstruction
recursion, we hope to provide additional information on the fixed point of the BP recursion,
and shed light on the structure of the clusters.

3.1.1 Outline of the proof

Theorem 2 follows from a detailed analysis of the distributional tree recursion. We begin
by specifying the distribution of the reconstruction probability P(c, = - | 01,) on n-level
trees as a function of the distribution on (n — 1)-level trees P(o, = - | oy, _,). This defines
a distributional recursion on the set of probability measures on the k£ dimensional simplex
AF. For the purpose of proving reconstruction, it is enough to show that the recursion
has a non-trivial fixed point, which is done in two steps: First we show that there exists
a non-trivial measure 1 on AF such that after one step of the recursion the new measure
stochastically dominates the original one. This step is done in Section 3.3. Given the result
of stochastic dominance, we provide a randomized algorithm such that the distribution of
the reconstruction probability equals p on trees of any depth, which is done in Section 3.2.

3.2 Reconstruction algorithm

We begin by introducing the notations we will be using throughout the proof. In general, we
will use U, V' ... for random variables and p, v for measures. To avoid complicated subscripts,



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 104

we will use both U and puy for the distribution of U and use f; for its density (using delta
functions for atoms). For any function ¢, we write ¢ o u for the distribution of ¢(X), where
X is a random sample of i, denoted as X ~ u. We will use B@® C' to denote the (measure
of) the sum of two independent copies of B and C, and a ® B to denote the sum of a i.i.d.
copies of B. One should distinguish these two operators with + and -, the usual addition
and scaler multiplication of measures. By definition, we have

HBeC = UB * KC; ua@B:HB*MB*"'*M€~

"

a times

For any space 2, we will use M(Q2) to denote the space of probability measures on Q. A
substantial portion of our proof will be comparing different measures. For that sake, we
define the following partial order on M(R), where R = R U {—c0, 0} is the extended real
numbers.

Definition 3.2.1 (Stochastic dominance). For u,v € M(R), we say that v stochastically
dominates p, denoted by p < v, if for any z € R, p([—o0,z]) = v([~ow,2]). Moreover, for
any € > 0, we say that v stochastically dominates pu by €, denoted by u <. v, if for any = € R,
we have either p([—o0,z]) =1 or v([—00,z]) = 0 or p([—w0,z]) — € = v([—0, z]).

The following proposition gives two sufficient conditions of stochastic dominance that
will be used throughout the proof. The proof of proposition should be trivial.

Proposition 3.2.2. Let XY be two arbitrary independent random variables

1. If px, py are absolutely continuous and fx(y) < fy(y) for all y satisfying P(Y = y) >
0, then X > Y.

2. If X stochastically dominates Y by €, then for any random variable X' such that P(X #
XY <eand {2/ : P(X' <2') =0} < {y : P(Y < y) = 0}, X' also stochastically
dominates y.

3.2.1 k-coloring model and the tree recursion

In this section we give the distributional recursion involved in the reconstruction problem.
Recall that [k] = {1,...,k} denotes the set of k-colors and let T" = (V. E) ~ T¢ be an
instance of the Galton-Watson tree of offspring distribution ¢ with root p. For each n > 1,
let T,, = (V,,, E,,) denote the restriction of T" to its first n levels and let L, be the leaves of
T,. For each n, the k-coloring model restricted on T}, is the uniform measure on the set of
proper colorings

O, :={oelk]" :0,#0,, forale=(u,v)e E,}.

And we will use €2(L,) to denote the set of possible configurations on L,,.
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For any n € Q(L,,) and [ € [k], let f,, be the (deterministic) function defined as follows:
fn(lanaT> = P(gp = Z|Tn70-Ln = 77)

Given tree T,, and the observed configuration 1 € Q(L,,), the maximum likelihood estimator
of 0, is the color [ that achieves the maximum of f,(l,7;7"), and this estimation is correct
with probability max; f,(I,n;T). Let d, be the degree of the root p of T', and uy, ..., uq, be
the d, offspring of the root p. For each 1 < ¢ < d,,, let T; be the subtree rooted at u; and
L} = L, n'T; be the subset of L,, restricted to T;. Given the color of u;, the configuration on
T; is independent of the configuration on T\T;. A standard recursive calculation gives that,
for each n € Q(L,,) and [ € [k],

1200~ fullnsT)
an:l H;'iil(l — fulm,mi: T3))

To study one step of the recursion from a vertex, one first samples the number of offspring
from ¢ then decides the color of each offspring accordingly. Let =' = Z!(n;¢) denote the
distribution of (7,07, ) given o, = [ and let (7,,,n') be a sample from Z. Then the vector
of posterior probability X, := (fu(l,nYT), ..., fu(k,n';T)) is a random vector in the k-
dimensional simplex AF := {(zy,...,2,) 1 7; = 0,Y , x; = 1}. Let (T}, n}) be the restriction
of (Tp,,n') onto T;. By the symmetry between branches of Galton-Watson trees and the
symmetry between colors, we have that

fara(l,m; T) = (3.2.1)

(fa(m, ' T))E ) & (X 0)k

m=1>

where we uses the notation ¥ to denote the I-th entry of vector Z, modulo k when neces-
sary. Furthermore, conditioned on the value of )Z}(Ll), ()?7(12), . ,)Z',(lk)) are exchangeable. In
particular XL XD for all 1 # 1.

The distribution of )Z'n can be solved recursively using the following A*-valued function
I' that takes an indefinite number of variables: Let

k b _(m—l+1
_ Hl=2 Hil=1(1 - xg,l ' )>
Tk k b S(—1+1
2w [ TLL (1 - ':Cz(,l ! ))

Tz, 0=1,.. ki=1,...b): CVmelk], (3.2.2)

where we adopt the convention of [[,.,a; = 1. Here b; represent the number of u;’s with
color [. Given d, and o, = 1, the joint distribution of (bs,...,b;) follows the multinomial
distribution with sum d, and probability (X5, ..., ) and by = 0. Let D,, (B, ..., By) be

an i.i.d. copy of d,, (b1, ..., b;) and X’i’l be i.i.d. samples of X,,, (3.2.1) implies that

n+l —

- (m—1
X ( [Ta T2 (1= X
)

k
= _ —T(X;,l=1,.. ki=1,..B). (3.23)
k k B m/—I1+1 i ) ) )
oo LI I (1= X5 >>>m1
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Let = be the distribution of (7, o1, ) without conditioning on the value of o, and define the
unconditional posterior probability X, := (f.(1,7;T),..., fu(k,7,T)) similarly, where 7} is
sampled from =. The distribution of X,, and X,, satisfies that at each point z € A*,

P()Zn € dx) = kP (Up =1, (P(Tp =j|Th, 7, = JLn))j:I € dx)

= kP(X,, € dz)P(o, = 1| (P(r, = | Ty, 71, = O'Ln))le € dx)

— kaWP(X,, € dx). (3.2.4)

Equation (3.2.3) and (3.2.4) are all we need to describe the distributional recursion. To
be more concrete, we introduce some further notations. Let M (AF) = M(A*) be the subset
of measures in M(AF) that are invariant under permutations of the coordinates. With some
abuse of notation, we will also use I" for the transformation it induces on M(AF), i.e. for any
v € M(AF), we define I'v as the distribution of F()?“,l =1,...,k,i=1,... B;) where )?“
are i.i.d. copies with distribution v and B, are defined as before. For each v € M,(A*), let
II;v be defined as (I;v)(dz) := kx®v(dz) and define

1 k
= EZ (T o II;)v (3.2.5)

Under these notations, if X, ~ v, then )?n ~ Iy, )Z'nﬂ ~T'ollv and )N(nﬂ ~ v
It is easy to check that o1 1) is a trivial fixed point of I's, which corresponds to no

kkkkkkk
information about the root. To show reconstruction, it is enough to prove for Xy ~ g :=
%[5(170 ..... o)+ +00,.01)] that I'! 119 is weakly bounded away from d(1 . 1y. One of the main
difficulties for analyzing graph colorings is that the dimension of the recursion grows linearly
in k. Luckily, as it will become clear in the proof, it is sufficient to consider only the largest
coordinate of X,,. All the other entries are w.h.p. negligible as k — 0. Since we are not
aiming at the tightest possible bound, we shall discard this extra information reducing the
recursion to R.

Define A(%) = (AO, XY (F) := (|#]», argmax ) and A : A¥ — AF to be

(3.2.6)

17 7 .
7w otherwise

Az = {Haﬂoo m = argmax |7,
k—1

We are mostly interested in the transformation A and A induces on spaces of probability
measures. With some abuse of notation, we allow extra randomness to be used to break
ties in the argmax of A and A independently and uniformly randomly. For example if
X = (3,1,0,...,0) with probability 1, then A\(X) equals (3,1) or (3,2) with probability
5. Let A* = A(A*) < AF be the “star-shaped” image of A, A(Z) gives a bijection between

., +) and (g, 1] x [k]. Hence there is a bijection between M([+, 1]) and M, (A*) :=
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M, (A*) A M(AF) given by:
1

A0 M (AF) — Mz 1D, p— A0 = |0
1 1
)\_1 M([E’l]) HMS(Ak), ILL—>>\_10 (ﬂ@z(él‘i“"ék)) .

Thus Aol', induces a transformation on My (A*F) and A® o AoT o A™! = |[[,0A™! | induces a
transformation on M([+, 1]). With another abuse of notation, we will use the same notation
for both € M([1,1]) and its unique correspondence in M,(Ay) and use A o Ty for both
transformations. Also for p, v € M (Ag), we say p < v iff g < v as elements of M([1, 1]).

The main technical result of this chapter is the following theorem, which will be proved
in Section 3.3.

Theorem 3.2.3. There exist 3° < 1,¢ > 0 such that for any k > ko, d > k(In k+Inln k+ ),
and T~ Tpois(a), one can constructs fi, € M([%,l]) such that (A o Ts)uy. stochastically
dominates puy, by ¢/Ink.

Using the fact that |A(Z)|x = ||7]le, Theorem 3.2.3 is equivalent to the statement that
ITspix]loo stochastically dominates gy by ¢/Ink. It follows that if at some level we can
reconstruct the root with success probability | X[, for some X, ~ up € My(A¥), then
in the level above we can do strictly better with success probability |Xnii1lw > [ Xl
However this does not directly imply reconstruction due to two reasons. First, the proof
of Theorem 3.2.3 depends heavily on the low-dimensional structure of i, € M (A*), but in
general after one step I'sux no longer belongs to M,(Ag). Secondly, due to the non-linearity
of A oT,, it is not clear whether (A o I'y)ug > pp would imply (A o Ty)%us > (A o T'y)up.
We address both problems in next subsection by intentionally manipulating the observed
configuration and thus manually maintaining a nontrivial fixed point for the “manipulated
recursion”.

3.2.2 Manipulating the tree recursions

In this section we provide a reconstruction algorithm such that its estimator of o, satisfies a
modified recursion with the fixed point puy defined in Theorem 3.2.3. Let Sy be the symmetric
group of degree k. For any m € Sy, n € Q(L,) and X € A* define 7 on € Q(L,) to
be the configuration specified by (7 on), = m(n,) and 7 o X € Ay to be the vector with
(o X)W = X)) We first illustrate the main idea with an example:

Suppose that two people, Alice and Bob, are trying to reconstruct o,, the color of the
root, from oy,. Observing T" and o7, = n € Q(L,), Bob knows that root p has color [
with probability f,(l,7;T). Then Alice tells Bob that the 1 he observed was not the actual
or,, but the oy after a randomly selected permutation 7. Namely, n = m o oy where 7
is sampled from some distribution v € M(S;). Let F(n) := (fu(¢,n;T))F_, € A* be the
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original estimator of the root with 7" omitted for brevity. Bob’s estimation of o, after Alice’s
permutation becomes

Fv) = (Bew(oy = U moos, =) = Y v@FEon) = Y vim)(xo F)n)

=1 7T€S;C ﬂ‘ESk

Thus if Alice chooses the distribution v carefully, she can manipulate Bob’s estimation to
any vector in the convex hull of {(w o F)(n) : 7 € S;}. And that’s essentially what we will
do in this section. In particular, we consider the following two families of v € M(Sy):

1. For each [ € [k], let v1(I) be the uniform distribution on Sy := {7 € S : m = [}. For
any n € Q(L,) and m € [k],

falm,n) m=1_ {fn<m n) m =1

0N (- 1 (1))
) {k—ilxm#fnm,n) mal e (L= fulmm) m

. (3.2.7)
2. For each p € [0,1], let va(p) := pramir + (1 — p)diq where vy is the uniform distribution
on Sy and dyq is the point mass at the identity permutation id. For any n € Q(L,,),

F(n;va(p)) = (1—p) Z (7o F)( (1—p)F(n) +p- (%%) (3.2.8)

' 7T€Sk

In the proof, we will use v4(l) to simulate the transformation A defined in (3.2.6) and v,(p)
to reduce the distribution (A o I'y)ug to py. For the later purpose, we show the following
lemma.

Lemma 3.2.4. For any pu,pe € M([3,1]) such that py > po, there exist function q :
[, 1]%x[0,1] — [£,1], such that q(y,w) <y forally € [1,1],u € [0,1] and for any independent
random variables Y ~ py and U ~ Unif[0,1], ¢(Y,U) ~ us. We say that such function q
reduces j1y to fio.

Proof. Let G1, Gy be the c.d.f. of py, o, and Gy(z — 0) be the left limit of G; at z. For
Yy = %, define

1
k

Note that py > po implies that Ga(y) = Gi(y) for all y > +. Hence q(y,u) € [+,y]. Let

Yo = sup{y : G1(y — 0) < Ga(x)}. A direct calculation shows that for z > 7,

q(y,u) := inf {x > —:Go(x) =2 Gi(y —0) + u(Gy(y) — G1(y — 0))}

Plq(Y,U) < z) = P(Ga(z) = G1(Y = 0) + U(G1(Y) — G1(Y = 0)))

= Ga(x).
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Recalling the 1-to-1 correspondence between M(A*) and M([+, 1]), we define gy to be the
function that reduces py = %(5(1,0,“_0) + -+ 6(0,..01)) to pix and ¢, to be the function that
reduces (A o I'y)uy to ug, where the later one exists because (A o I'g)up > pxr. We further
define for each e € {0, x} that

- ky —qo(y,u - - 1
Q'(y7u) = ﬁ € [07 1] such that (1_q.(y7u))y+q°(y7u)E = q'(yvu) (329)
Let us introduce further notations for the algorithm: Let U := (U,),er be an array of

independent Unif[0, 1] random variables indexed by the vertices of T" and let U, := (U )wer,
be the sub-array indexed over T, the subtree rooted at v. For each v € T and w € T}, we
will encode Alice’s action on T, and Bob’s information at w after Alice’s actions on T, as

dy = (p’mll)’ﬂ—v) € [07 ]'] X [k] X Sk and b'w,'U = (pw,tw”w,v) € [0’ ]'] X [k]

Let A, and B, be arrays of a,, and b,,,, indexed over w € T, respectively. Letting L] denote
the set of offspring of v, we define By := (by,u)ueLy,wer, as the concatenation of (By)uery for
each v ¢ L, and define Brv := (0,) otherwise. With the meaning of a, and b, , to be given
in a moment, we formally define

(P(o, =1|0,)f, wvelL,. 5

P, :=Py(By) = {(P(% 1B, vé Ly P, :=Py(By) = (P(oy = 1 | By))is,

as Bob’s belief on o, before and after Alice’s actions on T, (if he is given B v or B, respec-
tively).

We now define the actions of Alice, namely what a,, b, means and how she recursively
constructs them from the leaves up to the root as a function of 7}, o, ~, and U,:

1. For each leaf vertex v € L,,, T, = {v}. Bob’s belief before Alice’s action is simply

P = (P(oy =1 | o))y = (1o, = 1},

v

Alice then sets I, = 0y, p, = Go(1,U,) and 7, = 72 o 7}, where 7 is a sample of v(l,)

and 72 is an independent sample of v5(p,). Finally, she permute o, by 7, (which has
the same effect as using 72) and prepares Bob’s share of information as B, = (b,,),
where

by = (Qv,vanv,v) = (pvaﬂ'?;(lv)) = (pmﬂ'?)(Uv))'

2. Suppose that for each w € L,,,1, Alice has recorded her actions on T, as A, and
prepared the information for Bob as B,,, where A, is a function of (T, 07,1, Uw)
and B, is a function of A,. We now describe Alice’s actions on T, namely how she
constructs A, and B, for each v € L,, as a function of (By)uczy and U,.
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a) First, for each u € L}, Alice calculates P,, namely Bob’s belief of o, given infor-
mation B,. Given (Py)ucry, Alice calculates Bob’s belief of o, before her actions
on T,. Following a similar recursion of (3.2.1),

k
PO_( ey (1= P) )
L \E ey (1P

b) Let U!,i = 1,2,3 be three independent Unif[0, 1] random variables constructed
from U,. Let I, = [,(P%,U}) be uniformly picked from {I : (P3)® = |P2|.,},
the set of largest coordinates of P?, using the randomness of U! and let p, =
G+ (|P2]ls, U2). Alice then uses the randomness U2 to sample 7} from v (l,) and
72 from vy(p,) independently and sets 7, = 72 o wt. This gives a, = (Dy, Ly, Ty)
and completes the construction of A,.

=1

c¢) Finally, Alice “permutes” Bob’s current observation of T, n L,, and all the pre-
vious information she prepares for Bob by m,. This, in the language of A, and
B,, corresponds to setting g, ., = py, Mvy = 72(l,) and setting for each w € T,\{v}
that ¢, = pw and

Nww = 7711(77w,w1> = 7Tw0(71'w1<' ’ ‘ﬂ—wrfl(ﬂ—’?v(lw)) T ) T )7

where wg = v,w, € LY, ..., w,_1,w, = w is the unique path connecting v to w.
This completes the definition of B, = (by.y)wer, -

3. As a final step, Alice tells Bob the array B, as partial information of her actions, which
in particular includes Bob’s final observation as (1,,,)ver,. We emphasis that B, is the
only piece of information given to Bob. All the intermediate B,’s exist only in Alice’s
deduction and remain unknown to Bob.

The main result of the section is the following theorem.

Theorem 3.2.5. For any n > 1, let T be a n-level tree sampled from Tpys and oy, be
generated by the coloring model on T. Let U be a T-indexed array of independent Unif[0, 1]
random variables. If Alice performs her actions as described above, then Bob’s final belief of
o, after all Alice’s actions, represented as

P, =P,(By) = (P(o, =1 Bp))le e A",
follows the distribution of .

Proof. For each permutation 7 € Sy and T-indexed array B = (b,).er € ([0,1] x [k])T, let
mob, = (py,, (1)) and mo B := (7 o by)er. We induct on the number of levels in tree T
to prove the claim of Theorem 3.2.5 together with the result that

k
P,(roB,) = (P(gp —l|ro Bp)>H — 7L oP,(B,). (3.2.10)
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For n = 0, T = {p} is the singleton tree and P = (1{o, = I})/_,, Bob’s belief before
Alice’s action, follows distribution fi9. Given b,, = (p,,,,,), Bob’s posterior estimation of
o, satisfies

Plo, =7 ') | bpp) = 12(p,)(7), V7 e€S.
Therefore, applying (3.2.8), Bob’s belief of o, after Alice’s action at p becomes

k
P, = (P(Up =1|m(0p) = 77,04))) = (L=p,)P, +pp- (%7 R %)
Observe that by definition p, = Go(1,U,) = Go(|P}]ew,U,). Lemma 3.2.4 and (3.2.9) then
imply that P, follows the distribution of py. It is not hard to check that (3.2.10) also holds.
Suppose we have proved Theorem 3.2.5 and (3.2.10) for trees no greater than n — 1
levels, we now proceed to trees of n levels. By the induction hypothesis, for each u € Ly,
P. = P.(B.), Bob’s belief of o, after Alice’s actions on T, follows the distribution p.
Following a similar calculation of (3.2.4), we can show that conditioning on o, = I but not T
and o7y}, (Pu)uer, has the same joint distribution as Pois(d) independent samples of IT;i.

Therefore .
!
S AL THR R
A\ Ter, (1= PY™)

Now we turn to P, = P,(B,). For each u € Ly, let B,, = (bw,)wer,, Bpr, =
(buw,p)wer,\(pp be sub-arrays of B,. Using the induction hypothesis on (3.2.10), for each
m €S, we have

=1

=1

k

_ ( [T, (1 =P (B )
LA i TLaer, 1= PEV(BY)

[Toer, (1= P (r0B,)) )k

PO(WOBLl) = ( m
’ S Taer, (1= P (x 0 B,))
= 7T_1 ¢) PZ(BLl)'

=1

Hence set {l : (P(7om}oBy,))? = |PS(BL,)|«} has the same size for all 7 € Sy and contains
l, if © € suppry(l,). Furthermore, by the symmetry of oy, each element of {7 o B,},es, is
equally likely to happen. Therefore by (3.2.7), the belief of Bob after the first action of Alice
on T, satisfies that

k
P = Pl mpoBr,) i= (Blo, = 1|1, my0BL)
= Y n(l,)(#P (7t omh o BL,) = A(PY),

ﬂESk

where the same randomness U, is used in breaking ties of A. It follows that P} ~ (AoT')uy.

Next we note that for any @ € Sy, [P (7oBr, )[w = [P;(Br,)|w. Therefore p,, as a function
of |PS(BL,)| and U7, is invariant under permutations of Bz,. Given b, , = (p,,7,,,), Bob’s
posterior estimation of [, and 7r[1) o By, satisfies that
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P(l, = 75 ' (npp), mp 0 B, = ' 0B, | By) = va(p,) (7).
Applying (3.2.8), we have that

- o 1 1
Po(B,) = 3 va0) (7P (s (). Bosa) = (L= 2P Bosa) + 25 (07 )

ﬁzesk

Recall that p, = G.(|IP)]w, U?) = G(|P)]lo, U7) where g, is the function that reduces (A o
Is)pe to pg and G, is defined in (3.2.9). Lemma 3.2.4 then implies that P, follows the
distribution of pu.

Finally we finish the induction hypothesis of (3.2.10). Observe that for 7 ~ v4(l), To7 o
71 follows the distribution v (7 (1)). For each 7 € Sy, we have

Po(r(l,), w(my 0 Byy)) = Y va(w(l,))(@)Py (7" om0 By,)

ﬁESk

= > nl)@Py(roitoromoBy,)
ﬁESk

= > n(l,)(®)Py(moi T oByL,) =7 0PI, 1) 0 By,).
%eSk

It follows that

1 1 _
Py(moB,) = (1 _pp>P})(7T(77p,p)>7T 0 Byr,) + 1, <E7 R E) =m ' oP,(B,).

And that finishes the proof the induction hypothesis. O
Theorem 3.2.3 and Theorem 3.2.5 immediately imply the following result.

Corollary 3.2.6. For any d, k such that Theorem 3.2.3 holds, there exist independent ran-
dom array U and measurable function B,(T, o, ,U) such that

1
liminf Esup [P (o, =1 | B,(Ty,01,,U)) — ik 0.

n—ow le[k]

3.2.3 Regular trees

The result of Theorem 3.2.5 and Corollary 3.2.6 can be modified to regular trees by, roughly
speaking, truncating 7' ~ T, into a smaller tree: Let tPois(d’,d) be the truncated Poisson
distribution defined as the distribution of D’ - 1{D’ < d} where D' ~ Pois(d') and let
Tipois(ra) be the Galton-Watson tree of offspring distribution tPois(d’,d). There exists a
natural coupling between T ~ Tipois(aa), T2 ~ Tpois) and T ~ Ty such that T} is a subtree
of T, and T" with probability 1.
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Recall that M(A*)-operator " defined in (3.2.3) depends implicitly on the offspring dis-
tribution . We differentiate the two operators under { = Tpoigay and § = Tipois(ar,ay as I'?
and I'* respectively. Fix 8* € (8°,1). For any d, k satisfying (3.1.3), let d' := |d— (8* — 3°)k].
For k = ko(5*, ),

drv(A o TP, A o T py) < P(Pois(d') > d) < c(klnk)™'. (3.2.11)

Therefore if (d', k) further satisfies Theorem 3.2.3, then (A o I'"),uy, stochastically dominates
i Thus we can find function ¢; that reduces (A o I') uy, to g and define §; similarly.

Let T ~ T4 be the n-level d-ary tree and D := (D, ),er be a T-indexed array of indepen-
dent tPois(d’, d) random variables. We now describe the necessary modification such that

A,, By, Py, ISv can be constructed in a similar fashion as A,,B,, P;, P,. The construction
remains the same for each v € L,,. For each v ¢ L,,, we proceed with the following changes:

1. In step 2(a), instead of considering all u € LY, Alice now only uses the first D, vertices
and discards the rest. Namely, letting uq, ..., uq be the d offspring of v, she calculates

~ k
ﬁo o HzDzvl(l - Pi(le))
AL TP )
m=1 i=1 Uq =1

and sets Ew,v = (x,*) for each w € T},,,i > D,. She then continues to set a, and the
rest of B, using P; and U,,.

2. In step 2(b), instead of setting p, = Gu (P3|, U2), Alice sets py = Go(|PS] o, U2).

In short, Bob now has to reconstruct o, based only on the information §p of a truncated
tree of T sampled from Tipeis(@,4), as the information on the rest of the vertices are erased
and set to (*, x).

Corollary 3.2.7. Fiz 3* € (8°,1). For any d, k such that (d' := |d— (8* — 8°)k|, k) satisfies
Theorem 3.2.3 and (3.2.11), there exist independent random arrays U,D and measurable
function B,(or,,,U,D) such that

lim inf [E sup > 0.

n—00 le[k]

P (5, =1]B,(01,.U.D)) —%

Proof. By an essentially parallel argument of Theorem 3.2.5, we can inductively show that
P?, as a function of (T, 07,1, , Uy, Dy), follows the distribution of Iy, and hence P, ~ pu

v S

for each v € T'. Corollary 3.2.7 then follows immediately. O

Proof of Theorem 2. Let 3°, ¢ be the constant in Theorem 3.2.3 and 8* be selected in Corol-
lary 3.2.7. For any k > ko and d, k satisfying (3.1.3), they also satisfy the conditions of
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Theorem 3.2.3 and Corollary 3.2.6. Therefore if the k-coloring model on T' ~ Tpys(g) is not
reconstructible for some d, k in the same region, then we must have
limsup Erq,,.. ., [Var(o, | B,(Ty, 01,,D))] < limsup Eroy, . [Var(o, | Ty, 01,)] = 0,
n—0o0 n—a0

where the first step follows from the fact that B, = B,(7},, 01, U) is independent of o, given

or,. But that conflicts with the result of Corollary 3.2.6. The same confliction exists with

T ~ T4, B, =B,(01,,U,D) and Corollary 3.2.7. Therefore both models are reconstructible.
O

3.3 Proof of Theorem 3.2.3

In this section we prove the stochastic dominance result of Theorem 3.2.3. In Section 3.3.1,
we first analyse the transformation I' induced on M(A¥) by (3.2.3) and give a parameterized
candidate of u;. In the remaining sections, we verify that the candidate does indeed satisfy
Theorem 3.2.3.

3.3.1 Reformulating the recursion

Recall the notations in the definition of 'y in (3.2.3), where p = II, 1, for some i, € M, (AF).
For each I € [k],1 <i < By, let m;; := m(X;;,1) := arg max,,epy XZ-(T_ZH) be the coordinate
of Xnﬂ that contains the largest entry of )ZM and draw m;,; from [k] uniformly at random
if X;; = (%,...,7). Since p is tilted from some symmetric measure j, similar to (3.2.4),

m =1

—T m#I’

£

o

P(mig = m | [ Xt = 2) = {

Let = (dz) := zp(de) and p*(dz) == (1 — x)u(dz). The joint distribution of (|| X;, ], miy)
satisfies

=

:(d? b=m oy el0.1], me[k].

P(|X; ‘ il = =
(H z,lHoCdeam,l m) {ﬁﬂ (dm) [ #m

For each m € [k], define
Coi={(G,m):mim=m}, CI :={(,1):l#mm;y=m} and C,:=C, uC.

Let ¢, ¢, be the cardinality of C}, and C7, respectively and set p. := p7([1,1]) = 1 —
1~ ([£,1]) to be the probability of {(,1) ¢ C;}. Note that no offspring of the root has color
1. Given d, = Y | By, (¢T,¢5,...,¢0,¢F,¢5, ..., ¢f) follows multinomial distribution of
sum d, and probability

1 k—2 k—2
e 1-— T — . 3.1
E—1 (07 D, ) p#ap?&?k_lp#v 7k_1psﬁ) (33 )
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We now use the new notations to rewrite (3.2.3). For each Xi,l # (%,---, 1), the entries
of X, take only two values: | X and (1| Xiiw)/(k—1). And X}V = | X, if and
only if m = m;;. Let ¢(z) := In[(1 - +=%)/(1 — )], which is an increasing function mapping

[0,1] to [—20, o0]. By taking out the common factor of [, (1 — I_Hkall”OO), we rewrite (3.2.3)
as

= 1—1X; 1o e
o o Hneo, (1= 1%ulo)/(0 = 52485)  Tlape, 0%
n+l — = —|1X;
S Tnee, (1= Kilo)/(1 = 25y S50 T e, e 0%
(3.3.2)
Note that the exact value of m,,; when X;, = (1,--.,7) does not matter since ¢(3) = 0. We
further rewrite (3.3.2) as
- #
) (IT2, exp(=o (Vo) T2 exp(—(Y75)))
X L R N CEE)

_. )
St (T exp(=o (V) T, exp(—o <Y:7>>) X1 €XB(—7m)

where Y;7 and Yﬁ are i.i.d. samples of iu: and i;ﬁ respectively and

gu

Zm:: zm +2¢

T
—

We conclude our calculation so far in the following claim.

Proposition 3.3.1. For any d, k, if there exists vy, € M([,1]) (with its unique correspon-
dence in M(A¥)) and ¢ > 0, such that ju, = I (¢7" o I/k) e M, (A*®) and for the (Z,,)F
defined as above using s,

m=1

k—2 1
k—l 2 _,exp(Zy — Zp,)

W :=In [ ] V0 >c/ink Vi, (3.34)

then s satisfies the requirement of Theorem 3.2.35.
Proof. Maximizing (3.3.3) over m € [k], we have that

max{l,exp(Z; — Z,),m =2,...,k} - 1

. 1
X, = > VAR
[Xntle 1+ 3¢ exp(Zy — Zo) 1+ 3¢ Jexp(Z) — Zp) K

Composing ¢ to both side yields that &(| Xns1]l0) > W. Theorem 3.2.3 then follows from
the fact that [A(Xpi1)]e = | Xnii]w. O



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 116

We now propose a parameterized candidate of vy: Let d,k € (0,1), M » 0,0 < 7, g, 0, € €

1 be parameters to be determined in the order of (6, k, ag, M, 0,7, €) and write a = qb(% —

ap) = In2 — O(ap) + 0x(1). Let v, be an infinite-volume measure defined as (recalling that
¢(3) = 0)

vi(dy) := Kdo(dy) + (1 — k)da(dy) + %e‘syl{y > M}dy, (3.3.5)

where 6, is the Dirac measure at z, and write v,.(dy) := y—7265y1{y > M }dy for the right tail
of v,. We will use v, as a “scaling limit” of v} and show that the assumption of Prop. 3.3.1
is satisfied with

Vi (dy) llk: (dy)1{0 < y < az),

for some choice of (6, K, ag, M,0,v,€) and k > ko = ko(9, k, g, M, 0,7, €), where ay, is the
constant such that vy is a probability measure.

For convenience of notation, we will write k& > kg where ky depends on all six parameters.
We will use 1¢,, or 15, to cut (part of) a measure above or below such that the total mass is
1. The exact value of a; and ¢; can be derived implicitly and may vary from line to line. Let

v (dy) = ¢ o p~(dr) = ¢ o wp(dr) = ¢~ (y)va(dy), where ¢~ (y) = 1 — (¢¥ + (k= 1)71)"
and define v7, v, v7,vi,v{ similarly. We define the tail weights

vy ([M,0)) = JM mdy <
pi = uf ([1/k, 1)) = v7 ([0, 0))

< [ 700+ (5 annr e = - o) 2

3.3.2 Distribution of 7,

In this section we bound the distribution of Z,, in terms of v,. Let D := d/(k — 1) =
Ink+1Inlnk + 5. For T ~ ‘J'pms(d (3.3.1) implies that (c, m, c7)’s are independent Poisson

random variables with rate (0, p] D) for m = 1 and ((1 — p})D, £=2p} D) for m > 2. Hence,
for m > 2,

1 k—2 1
Zmi P 1_7&D L= P ;ﬁD L F
( ois((1 — pf) >®1—p,fyk)®( 01S<k_1pk )@p:Vk)
. = | k=2 # #
: Dy Vk+k1’/k : Pk 2
— Pois( (1 - D)® ~—k1k  pois( (1 - D)® G 7yl
IR &= RS -

where the last line follows from that (v, + £2207)(dy) < v4(dy). Namely, Z,, stochastically

dominates the sum of points in a Poisson pomt process with intensity Dyklgag, where a

satisfies 14([0,a)]) = 1 — 5p;. We expand the summation according to the three parts
of vy as in (3.3.5). Firstly, &y does not contribute to the summation. For the second term,
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we define Sy := Pois(k) ® d,, and note that xk < %. Finally for k > ko, the total intensity
coming from the right tail of v, satisfies

Du([M,a?]) = D(wi([0,al]) —In"'k) =D —1—-O(k'Ink) =D —1—1.

and (1 — ﬁpf)_lyk(dy) < Dl_tv_wyr(dy). Therefore defining

. 1+~
So := Pois (D —-1- ")/) &® D——l—f}/yrlgalw

it follows that Z,, > Sy + S1. We first show the following bound for 5.
Lemma 3.3.2. For any M > M(ag) v 2, there exists constant Cyy > 0 such that

67""1_[3
klnk
where a}, satisfies 1 + (1 + Cyy)v,([M, al]) = kln ke~ 0F1=5),

So > (50 + (1 + CM’V)VTléa}C% (336)

froof. Let By ~ Pois (D — 1 —+) and Y; be i.i.d. samples of distribution lelzvyrlgak. We
ave

1
- 0) = —0) = p—(D-1=7) < 1+v—8

Since v, is supported on [M, ) and is absolutely continuous, for z > M,

fou(2) = —IP(ZY EM P(By = n jZHZyigz (%)nyr(dyl)...yT(dyn)]

_ 61+7—ﬂ [Z/Mjli J\ (1 _|_,y)n,.yn
nldz| J,

= kink 2

s 66(y1+-~~+yn)dy1 . -dyn]
i=M,Y | yi<z Yiys Y,

eltr—>8 L2/M] (1 + ’}/)n’)/n 5z f 1
n—1
klnk = n! =M yi<z—M y1 Z/Z—l(z - Zizl Yi)?

Applying Fact 3.3.3 below for n > 2, we have that for z > M,

1+v-58 © (1 + C
fsy(2)dz < ‘ < + )y Z ) 7 m) )22 e?%dz

dyy - dyjn—1.

klnk o
el+7=58 Y s, el+7=58
S Tk (1—1—0]’\47) e%dy = Tk (1+ Cyy)ve(dz).

The desired result follows from the last equation and the fact that P(Sy € (0, M)) =0. O
Fact 3.3.3. There exist constant Cy; such that for n = 2 and z = nM,

1 Cy
dyr - dyyy < .

n—1

JyzzMZ T yi<a—M Yi-yp (2 — Zi:l yi)?
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The proof of Fact 3.3.3 is postponed to Section 3.4. Next consider the independent sum
of So + Sl.

Lemma 3.3.4. For any M > M(«ap) v % and constant Cyy specified in Lemma 3.5.2,

Zm>So+Sl> ok

[vs, + (1 + o) (1 + Cury) exp (k(e™® — 1)) 1,1, . (3.3.7)

Proof. Letting vg, = vrle,: where a;, is defined in (3.3.6), we have

el+7—58 elt7—58
VSo+S1 = m(éo*uSl (1+CM7) *V51> = Elnk (VSI (1+OM'7) *Vsl) (338)

It is left to verify that vg g = vg *vs, > (1 + ag)exp (/-i(e“"S - 1))yr1<ak where a;, is

chosen such that RHS of (3.3.8) has total mass 1. Recall that S; Ly Pois(k). vg g is
absolutely continuous and supported on [M, o). For z > M we have

o] —

O n,—k d(z—na)
K'e™" e
< E 1{z — > M
= na) = nl (z—na)? tz—na }

f50+5'1

To control the (z — na)™2 term, we first choose for any a > 0 a N = N(ap) such that
Y ni1 o < 3=o and then choose M (ap) such that for M > M(ag), n < N and z > M,

(1—na/2)2< (1 —na/z)"? <1+ a2 (3.3.9)
Observe that Ze’* is monotone increasing for z € (2, 0). For all M > M(ap) v 2 and z > M,
oz N PPl n(a6) 0z © n,—kK
+ L e K"e
d
Soves: (2)d nZ n! (1-— na/z) P2 an_t,_l n!
< (14 ap) exp[r(e™®® — )]y, (dz).

The proof finishes by cutting v, at the place such that (3.3.8) has the total mass 1. [

Finally, for m = 1 and k > ko such that 2. < (1+7) v (1 + o), we have

71 £ Pois(pfD) ® iy,f (Pois (%n) @50,) ® (Pois(vpif) ® Wlﬁé v ) , (33.10)

pk

where the second term is 0 with probability exp(—vyp7).
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3.3.3 Distribution of an:2 exp(—Zn)

In this section we analysis the distribution of 3* exp(—Z,,) = (k — 1) ® exp(—Z,). Let
(x) := e~ . An easy calculation gives that

Yo (dr) = (1— k)0, (dz) + Ky (dz) + ﬁ%uo <z < $(M)}dz.

Define
Cy = Cz(8, K, a0, M, ) = (1 + ) (1 + Cary) exp (r(e™* — 1)), (3.3.11)
Now (3.3.7) can be rewritten as

1 1
¢(Zm) < me'ﬁ'l_ﬁ[w o Vg, + CZ(IHL.Z'le{Ck <r < QZJ(M)}] (3312)

As k grows, the density of ¢(Z,,) diverges quickly around 0 and the probability of seeing
Zy = x for more than one m € [k] is o(3) for any fixed 2 > 0. Hence intuitively,

Vk@u(Zim) N Vimaxepp) ©(Zm) X K - Vip(Z,)-

Lemma 3.3.5. Fiz 6 = 5. For any M > M(ag) v 3 such that (5.5.8) holds and o,¢ > 0,
k= ko,
67"”175

Ink

¥ 1 €

4025, 0 O s acan | e+

(k—1)®vY(Zy) <

where (P 4+ o)(x) := Y (x) + 0 and Cy is defined in (3.3.11).

Proof. We recall the RHS of (3.3.12) and treat its discrete part and continuous part sepa-

rately. Let p; := %, py = 1vouvs, and uz(dz) := llemx*(”‘s)lckqgw@@dm. Among
the (k—1) i.i.d. samples from the RHS of (3.3.12), b ~ Binom(k—1, p;) of them comes from p},
and the rest comes from p%. Choose C, > 0 such that for any k > ko, P(b > 2) < CyIn"?k.

It follows that

(k= 1) ®¥(Zy) < (Binom(k, pr) ® ) @ (k@ pi2)
Cy

< [(1 —kpy) k@ i+ kpy - (1 @ (k@ 1)) ]12% by 0e (3313)

We will show in Lemma 3.3.8 that for any € > 0 and k > ko,

2 2 €
k@®puz < L+ k- pzlom + 57— 0. (3.3.14)
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Therefore for any o > 0, there exists C, > 0 such that for k& > ko, P(k®@u% = 0) < C,In" 'k
and

kp,C, C
RHS of (3.3.13) < [(1 —kp1) - k®puy + kpr - (uy = 6,) + ﬁk : 5@0]12% + ﬁéw
€
< [(1 + k(1 —kpy) - pyloe + kpy - (g 50)]12% 0

e t1=58

Ink

! log, + 0
(Inz)2 21+ | 2% " Ink ™

where in the last step, we observe that removing the 1> after p2 will only make the measure
inside the square bracket stochastically larger after cutting from below. O

[(@b +0o)ovs, +(1+€)Cy

In the remaining of the section, we check that (3.3.14) is true. We will henceforth omit
the O(1) factor (kInk) - £- by absorbing it into v and let

R
klnk (Inx)?

Measure uy resembles distributions that converge to stable law. However, we can not directly
apply the usual proof of convergence for stable laws (cf. Section 3.7 of [Durl10], or the reference
there) to k ® U, since the expression of uy also depends on k. With some modification, we
show the following result.

U~y = py = e~ 11, < & < p(M)}de. (3.3.15)

Lemma 3.3.6. For any 6,7 € (0,1), M > 2, let t; := inf{t : py([t,)) < 1/k}, then

k® (t,;lU ) converges weakly to the stable law with index & and characteristic function
exp{—b,|t|°(1 + isgn(t) tan(ms/2))},
where sgn is the sign function and b, = 6§ (cosz — 1)z~ dz = — cos(Z8)I'(1 — 4).

In the proof we use the following calculus result, the proof of which is deferred to Section
3.4.

Fact 3.3.7. Let t;, be defined as in Lemma 3.5.6, we have
1.t =1+ ok(l))(m)w and therefore

%t;‘; In" 2t = (1 + 0x(1)) Ink.

2. For any constant ¢ > 0,

limk]P(U>ct)—1imt1JOO Ly L e
k—00 Z R T Sk o, Kk In?z a0 7

lim KE(t; Ulyew,) = lim ¢k Tl B g
k—o0 k Usety k—o0 k 0 klnkanx:B1+5

0

=k
2 5

2-0

cty 1 T
Y dI _ 0275

. 2772 1 -2
Al RE( U lusen,) = lim 67 L FInkIn g o1



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 121

Proof of Lemma 3.53.6. Let U;,i = 1,2,...,k be i.i.d. copies of U and let S; := Zle Us.
Given w € (0,1), let mg, = E(U{U < wity}), Sy = Zle Ul{U; > wty} and T :=
Zle U;1{U; < wty} — kme,. We have

Sg =S +T¢ +k-mg,.

For the first term S¢, let F¥ and % be the c.d.f. and characteristic function of ¢, 'U;
conditioned on {t;'U; > w}. By Fact 3.3.7(2), for any w > 0 and any = > w,

1—F(x) = (1 +op(1)(z/w)™° — (w/x)°, as k — 0.

Hence for any t € R, ¢¥¢(t) — ¢“(t) := Sf et . 5w+ dy. Meanwhile by Fact 3.3.7(2),
the distribution of the number of i € [k] such that U; > wt;, converges weakly to Pois(w™?),
hence

klim E exp(itSY /ty) = exp[—w (1 — ¢“(t))] = exp <J®(em - 1)5x(5+1)da:> :

w

For the second term T}, observe that K7} = 0. By Fact 3.3.7,

)
P E(TE)? = t.2 Var(Ty) < kt, *EUP{U; < wty} < (1 + ok(1))me.

For each t € R, exp(itx) is a Lipschitz function with Lipschitz constant ¢. By Jensen’s
inequality,

E exp(it(t,;lSk)) — ]Eexp(it(t,jlslj)ﬂ <t (E|t,§1T,;”| + tzlk‘mgw) < O(wl_m),

Let w — 0. By dominated convergence theorem, we have

0
klim E(exp(itSk/ty)) = exp <f (e — 1)5x_(5+1)dx) :
—00 0

The rest of the proof follows from complex analysis: Let I' denote the gamma function (not
to be confused with the recursion I'y defined before). For ¢ > 0, (the case of ¢t < 0 is parallel)

J (e — 1)dax= O+ Dy = t‘sf (e —1)dx~ 1)y
0 0 | . |
= itéf 70" dy = i‘st‘sf (iz) °e™d(ix)
0 0
=T(1 - 6)i°° = cos(w6/2)(1 — §)t°(1 + i tan(md/2)),

where the second equality follows by integration by part and the last equality follows by doing
contour integral on region {re” :w <r < R,0 € [0,%]} and letting w — 0, R — o0. O
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Let U denote the limiting stable law specified in Lemma 3.3.6. When § = %, U follows
the Levy distribution with parameter 7. Since this is the only value of ¢ for which we have a
closed formula for f, here and henceforth we will take 6 = 1/2. The result, however, should
hold for all § < % as long as (3.3.16) holds. Plugging in the formula of Levy distribution and
comparing with Fact 3.3.7, we have

~ 2 ([ 2 2 1
- = — —7/2¢ 1/2 —7/2¢c
P(U < ¢) \/EL 7r/Ce dté\/Ez\/76 <c e
<2 = (1 + 0, (1))kP(U < cty). (3.3.16)

Thus we can upper-bound gy (dz) by (1 + 0x(1))k - py(dz) for small z ~ O(tx). In the

next lemma, we bound larger values of £ ® U using the intuition of £ ® U ~ max;_y,._j U;.
Lemma 3.3.8. Fiz § = 1/2. For any M > %, v,e€(0,1), and k = ko,
k®puy < (1+ )k - purlae, + —0u. (3.3.17)

Ink ~

Proof. Let Uy, ..., Uy be iid. copies of U and define Uy := max;—1 1 U;, Ug := ZZ Ui —
Uqyy. Let ¢ = 0(5 M,~,€) > 0 be some small constant to be determined. We write

k (1—c)z
]P’(Z U > z> <PUny = (1-0¢)z) + fo fug, (@)P(Ur = z — 2 | Uyy = x)dz, (3.3.18)
i=1

where fy, (2) = kfu(2)(Fu(2)*! < kfu(z). Fix 0 = (3, M,v,¢) € (0, 1) such that

P(U = (1—0)p(M)) < L Lx 14 dy < :

€

We will split the proof into three cases: z € [c, Ntx]|, © € [Ntg, (1 — o)p(M)] and = >
(1 —0)yp(M) where N = N(d§, M,~,¢€,0,c) is a large constant to be determined.

1. x € [Nty, (1 —o)yp(M)]: To bound the first term of (3.3.18), we observe that fy is a
decreasing function and for z < (1 — o) (M), (1 + o)z < (M) € supp U. Therefore

PUy el —0)z2]) _ czfu((L=0)x)F*H(z) _ ¢ fulz/2)
P(Uygy € [2, (1 +0)2]) ~ ozfu((1+0)2)FF1(z2) ~ o fu((1+0)z)

for all c < 1/2 and z < (1 — 0)(M). It follows that

< OO',M - G,

PUxy = (1—-c)z) <1+ Con-c)P(Uny = 2) < (14 Conr - )kP(U = 2). (3.3.19)
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For the second term of (3.3.18), a similar calculation of Fact 3.3.7 gives that for any
z < P(M),
1 1

Elnk (* 2l

klnk v 1 1
EInkE(U? | U < J dz < 2279,
nEE(UT|U <o) = fu(R)dz < 5 S Fy(2)In’z

Recall the expression of t; from Fact 3.3.7. For any ¢ > 0 we choose N = N(M,~,¢,c)
such that for k > kg and z > Nt,,
1+o0,(1) v «(Ntp)™® 5

= (1 1N <
mk 1-0 Py, GHalDNTIr < s

EE(U | U <x) <

Given Upyy = x, Ug is distributed as the sum of (k — 1) i.i.d. copies of U conditioned
on U < z. By Chebyshev inequality, for any z € [2Nt, ¢(M)] and = < (1 — ¢)z,

k-E(U?|U < x) _4 1y 1 i
(z—2—kE(U |U <1)?  222lnk2 -6 Fy(z) In®2’

PUrzz2z—2|Uy =) <

where in the second step, we use the fact that E(U | U < z) is monotone decreasing
in z. Plugging the estimation into the RHS of (3.3.18), for z < ¢)(M), we have that

(1-c)
J kfu (@) Fo(2)* " P(Us > 2 — 2| Uy = 2)da

0
<J(1_0)Z Ly s 21 0 20

X ke 222lnk2—-5In’z
C.., 1 (=9 1 C,
< e — gy < =M (3321
k2% J,, In? z v In%k-220In 2 ( )
Meanwhile, for z < (1 — o)y(M),
Cho
KP(U = 2) = k- ozfy((1+0)z) = —22% (3.3.22)

Ink-25In*2
Comparing (3.3.21) and (3.3.22) and using Fact 3.3.7(1), we have for all z = Nt that

(1—0)z n
f fU(l) (Z =z | U(l) = IL‘) dx < CQ%U’MN_JI{?P(U = Z) (3323)
0 =1

Combine (3.3.19) and (3.3.23). For each ¢ > 0, we can first pick ¢ < ¢/2C, p; and
then choose N = N(M,~,¢€,0,c) such that (3.3.20) is true and for all k& > kg, z €

[Nty, (1 = o) (M)],

k
Ceryo
P(ZU@- > z> < KkPU = z2) (1 + Copr -+ X}(;M) < (14 ¢)kP(U = 2). (3.3.24)
i=1
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2. z € [eg, Nt]: Lemma 3.3.6 implies that for 2’ € (1, V], P(Zfzo U; = 2'ty) converges
uniformly to 1 A ]P’(U > 2') as k — o0 and U follows the Levy distribution with
parameter 5. Comparing the ¢, in the RHS of (3.3.17) to the definition of ¢ yields that
cx =t for any € > 0. Therefore for k > ko and z € [¢, Nti]| with 2/ = z/t;, € (1, N],

(Z U; > > (1+¢/2P(U > 2) < (1 +kP(U = 2'ty), (3.3.25)

where the last step uses (3.3.16).

3. Finally using (3.3.24) and recall the definition of o, we have for all z = (1 — o)y(M)
that

IP’(ZZZUiZz) (i (1-o0) (M))<(1+e)k]P>(U2(1—a)@/)(M))<ﬁ.

(3.3.26)
Combining (3.3.24), (3.3.25) and (3.3.26) completes the proof. O
3.3.4 Distribution of In(>* , exp(Z; — Z,,))
In this section we bound the distribution of Wy := —In(3* _,e?=%m). First we rewrite
(3.3.10) as
. (1 L 1 ~
Zy < | Pois | =k | ®d, | @ ( Pois(yp?) ® =: Ry + R, =: 7,
2 wif
and let 7_y be the distribution of —Z;. Then we define V := —lm(zslz2 e~?m). The
conclusion of Lemma 3.3.5 can be rewritten as
e”’Jrl g €
vy > [w_ (Y +o)ovg, + (1 + €>Czl/r] l<g, + mcs_go
=Dy + Uy + DY = Dy (3.3.27)

Let V be sampled from 7y,. Note that Z; is independent of anzQ Zm. We finally define
Wo:=V =21 <V—2 =W, (3.3.28)

Lemma 3.3.9. Assume that (6, k, ag, M, 0,7, €) satisfies the conditions of Lemma 3.3.4 and
3.8.5.

1. If § < %, then there exists constant Csp > 0 such that for each y = M,

(v * 7-z,)(dy) < (1 + Coary) exp(r(e —1)/2)v,(dy).
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2. There exists constant C5 , \y > 0 such that (v, « V_z,)((—o0, M]) <7 - C5 -

3. For any fized k,aq and y1,ys = M,

VT e
liminf (7 = 7_z,) ([y1, 12]) = P(Pois(k) - v € (y1,42)).

7,70 2Ink

Proof. Part 1: By definition, for any y > M

765(?;—2) _

oy
f)/e

_7.(dz) <
(y—Z)V21( Z)

y2

0 0 ~
Vp# Uz (dy) = J dy - f e %i_5 (dz) = v.(dy)Ee’# . (3.3.29)
—w —a0

Hence it is enough to bound Eexp(6Z;) = E exp(6Ro)E exp(dR,). For the first term,

Eexp(6Ry) = Eexp (da - Pois(r/2)) = exp (k(e* —1)/2). (3.3.30)
For the second term, R, has the same distribution as the sum of points from the Poisson
point process with intensity v7(dy). Recall that

vE(dy) = (¢/ + (k= 1)7Y) " i (dy) < 2e Dy
Yy

and p7 = %yf([M, o)) depends only on §, M. By Campbell’s Theorem, for any § < - and

v <1,

1
2

aj 0
Eexp(dR,) = exp (J (e —1)v7 (dz)> < exp (’yJ y_26(26_1)ydy) <1+ vCsum,

M M
(3.3.31)
where in the last step we use the inequality e < 1 + ze®, Vo > 0. Plugging (3.3.30) and
(3.3.31) back into (3.3.29) yields the desired result.
Part 2: Expanding the convolution of v, = I_y, yields that

. o rz+M Y s - ’765M o0 5o 765M e
Uy * V—Z1<<_007M]) < J[; JM Pe Y. VZl(dZ)dy < SM?2 J;) € ZVZ1(dZ) = SM?2 Ee™™.

Applying (3.3.30) and (3.3.31) to Ee’Zt gives one possible C ot
Part 3: Noting that ¥ "(¢(y) + o) = —In(e™¥ — ), we have that

1 et : _ _
o x -z ([yr, y2]) = ok P(Z, =0) -]P)(POIS(/i) ca€[ln(e™ —o),In(e™ — 0)])
1
= me_%“_“’pfﬂ]’ (Pois(k) - v € (In(—e ™ —5), —In(e™* — 7)) .
n

Pois(k) -  takes values from the discrete set aZ,. For any fixed yi,ys, there exists o =
o(a, y1,y2) such that there is no points of aZ, between —In(e™¥% — o) and y;, i = 1,2. Hence
in the last line we can substitute the probability by P(Pois(k) - o € (y1,¥2)). Letting v — 0
finishes the proof. n
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maps to 0

maps to «

Figure 3.3.1: vy, and vy,

3.3.5 Final step

Finally we are ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. By Proposition 3.3.1, it suffices to show that under certain choice
of parameters (0, k, g, M, 0,7, ¢€), the random variable W defined in (3.3.4) stochastically
dominates v; by ¢/Ink for some fixed ¢ > 0. For any ap > 0 and o = ¢(3 — ), we first
choose o < o1 (ap) such that In(1 +e7) > (1 — ap). Thus for k > ko we can write

o Wo Wo=M
W > In (m + eXp(WO)> v0z=<{a M>Wy>-0. (3.3.32)
0 —0 > Wo
Comparing the RHS of last equation with the definition of 14, it is suffices show that
~ 1 c
—0)< —(1—K) — — 3.
P(Wy < —0) lnk:(l K) Ik and (3.3.33)
P(Wo < z) < vi([0,2]) — ﬁ for all z = 0 such that v([0,z]) < 1. (3.3.34)
n

Recall the three parts of 7y, in (3.3.27) and define oy, (dx) := oy, = U_z, (dz) for e € {1,r,o0}.
Figure 3.3.1 gives an illustration of vy, and vy, where bars represent the discrete parts,
curves represent the continuous parts and the left two dotted boxes corresponds to last two
cases of (3.3.32). Fix 6 = 1. To show (3.3.33) is to show that the weight in the first dotted
box is strictly smaller than v4({0}) = x. We set x = 3 such that

P(Pois(k/2) = 0) = e V4 > Z > — =K.

N | —
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Recall the definition of Cy = Cyz(6, k, a9, M, ) in (3.3.11). By Lemma 3.3.9(2), for each
fixed 0, k, ag, M, we can choose €, Yy, 5y such that for all € < ey,v < v, Bo < S < 1 and

_ 1
CO_Ea

— Y+1-5 ~
B(Wo < —0) < |P(Z1 # 0) + (1 + )C7 - Copr + €]
e’y+176 I .
< lnk |:]. — € 2 TP + QCZC(;’(LM’Y + €:|

T Ink 4 sk \2 ) Ik

The proof of (3.3.34) is roughly done in three parts. We first show that the asymptotically,
Uiy, 18 smaller than vy by a multiplicative constant factor. Then we show that the underflow
of 7y, below M (the vertical stripped area in Figure 3.3.1) can be compensated by the
overflow of i, above M (the gz box in Figure 3.3.1). Finally we make sure that the
compensation is can be absorbed into the gap of 7 and v} (the wide stripped area in
Figure 3.3.1).

We first look at sufficiently large values of x. By Lemma 3.3.9(1),

6’7+1_6

E (1 + a)(1 + Cspr(y + €)) exp(k(e® + 27 — 3)/2)v,(dx), Vo= M.

(3.3.35)
Let ap be a small constant such that (note that ¢(3) = In2 — 0,(1) and exp(v2 — 3/2) ~
0.92 < 33)

Dy, (dx) <

12
(1 + ag) exp(h(e® +2e7 —3)/2) = (1 + 04y (1)) exp(vV/2 — 3/2) < < 1,
and let M > M (ag) v % such that Lemma 3.3.4 is satisfied. Recall the definition of constant
Csar from the constants in Lemma 3.3.2 and Lemma 3.3.9. Given our choice of 9, k, ag, M
so far, we can choose 7y, €1, 51 such that for all vy <v,e <e, 1 - <1—p; and all x > M,
12 1 14 1

e ke””’ﬁl/r(dx) < ——v,(dx). (3.3.36)
n

RHS of (3.3.35) < T

Next we consider the values of  near M. We first choose M = M((S, a,M) > M v 2«
such that

1 ~ 1 (M
(M, M]) = 15J D ety > enti- P(Chons +26" + 1)y, (3.3.37)

where Cf , ,; is the constant in Lemma 3.3.9(2). Let g3 := 3P(Pois(k) - a € (M,2M)). g+

is strictly positive since M > 2a. By Lemma 3.3.9(3), we can choose o3, y2 such that for all

g < 09,7 <79, o~
L (INL,200)) = o+ i, ([T, 200]) > g7 > 0. (3.3.38)



CHAPTER 3. RECONSTRUCTION THRESHOLD OF GRAPH COLORING 128

We further choose 73, €3, 82 such that for all v < 73, e < e <1, 1 - < 1— [y and some

C1 € (07 QM)v
(1= qy) +1C5am el <1—c < 1. (3.3.39)

(3.3.36), (3.3.38) and (3.3.39) together implies for # < M, (note that ([0, M]) = 1/Ink)

oy ([—00, 2]) == (Byy, + Py, + Ty, ) ([—00, 2])
eYt1-p 14 1

< Ink ((1_(]1\”}1’)""}/0;(1’]\4—{—6) +1—5mVr([M,CL’VM])
l—¢ 14 1 o

S = < -
it e (Mo M) < w((0,0]) -

Finally, for z > M such that vk([0,2]) < 1, we can choose ¢y, 33 such that for v =
(Yo AY1 A Y2 Aq3) and 1 — B <1 — B3, we have 77177 4 ¢y < 1+ 2ve. Using (3.3.37), we
have

T 1 M1 5T 1
nk (1+vC5an +€) + EEVT([ , M]) + Em%(( , ])
1 1 1 ~ 1
< —+ —(e8 1 x —1— —v,([M,M — v, ([M
In k + lnk(e ( +fYC§,a,M+€) 15y7’([ ) ])) + h’lkyr(l: ’x])

1— Co 1 Co
< N = _
+ 1nky7'([M7x]) Vk([(]?‘r]) klnkj

ﬂWo([_oQ I]) <

Ink
Combining all pieces together, we have the desired result with d, x, ag, M, 7 set as specified
before, 0 =0y A 09, e =€y neg Aeg,and B0 =By v Biv Bav Bs, c=co AL ACy . O

3.4 Remaining Calculations

Proof of Fact 3.5.3. First fix n = 2 and t' = 2M. For each x1 > M, either x; or t' — x is
larger than ¢'/2, hence

t—M o
1 2 1 8
At € — | —Sdri = ——. 3.4.1
J e < @, e G4y
Recursively apply (3.4.1) with ¢’ =t — ZZ:{ 2,7 =2,...,n—1, we have

1

_ 2 2 n—1 2
LiZMZ?_f z<t—M X7 'xn—l(t - Zi:1 xZ)

1 tfz;l;f x;—M 1
= J -5 — f 5 — qu;n,l dzy - - dxy_o
wi=M YR ai<t—2M V1 T2 \Jm Ty (8= D g i)

8 1 8
~ n—2 1 n—2 ~
M 2> MY i<t—M af o wh (- D1 Ti)® M

d[El tet dIn—l
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Proof of Fact 3.3.7. Let s = (W)W, it is easy to check that

%3;5 In~2s; = (1+ op(1)) Ink.

For any € > 0, let ¢ be large enough such that (1 — €)° — 2¢7° > 1. It follows that

e v ., s
f klnk - py(d) = f —gx_(lﬂs)dx > —f 2~ (9 gy
( (Inz) (

1*€)Sk (176)Sk 1n2(1 - E)Sk 176)5k
Y -5 -6 -6 -6
= 1—€6) =) >(1+c?+o0,(1) Ink.
(51H2(1—€)3k k (( ) ) ( k( ))

Therefore t;, > (1 — €)s for k > ko. In the other direction, let s}, = (c'Ink)~ for some
large constant ¢ > 0, In(s},) = (1 + 0x(1))5 InInk = (1 4 04(1)) In si, we have

© Y(M) 1
J klnk - g (de) = J L A
(

1+€)sk (1+¢€)sg (11’1 ZE)2 z1+o

Q0 o0
< +J 2~ gy 4 27 - f 2~ () gy
In® (M) st In“(s},) (1+€)sk

g /—0 -5
< 55—~ Ink+ (1 +o0k(1))(1 + In k.
5ln2w(M)C n ( Ok( ))( 6) n

Let ¢ be large enough such that md—‘s +(1+6)%<1- 1 <1, we have for k > ky

that ¢, < (1 + €)sg. This completes the Part 1. Part 2 can be derived similarly. O
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Chapter 4

Reconstruction threshold of
NAE-SAT problems

4.1 Introduction

In this chapter we show that the reconstruction threshold of the NAE-SAT problem on trees
is strictly smaller than the freezing threshold. One immediate difference between k-coloring
model and k-NAE-SAT is that the later is described by factor graph. Thus to describe the local
weak limit of random d-regular k-factor graphs and random Erdds-Rényi k-factor graph, we
define the k-factor tree as the tree with vertices on even levels being variables, the vertices
on odd levels clauses and each clause having k children (i.e. degree k + 1).

Since we will be working on factor trees throughout the chapter, up to recursively flipping
all labels on some of the subtrees, we can ignore the literals and stay with the easier definition
that every clause is adjacent to at least one 0 and one 1 (which is also known as hyper-graph
2-coloring in literature). The broadcast process on a k-factor tree that generates a uniform
NAE-SAT solution can be defined as follows:

1. Choose the root uniformly randomly from {0, 1}.

2. For each clause, if we have set the value of the parent variable to be z € {0,1} in
previous round, we then choose the value of the rest k variables together according to
the uniform distribution on {0, 1}*\{z}*.

We will focus on the (k4 1)-NAE-SAT problem on infinite d-ary k-factor trees T, ,—k-factor
trees such that every vertex on even levels has d children. As in the case of Chapter 3, we
also consider the Galton Watson tree Tpgisa),r where the number of offspring of each variable
follows the Poisson distribution with parameter d. The definition of reconstruction and
freezing (Definition 3.1.1 and Definition 3.1.2) can be generalized to factor trees in natural
way.

The main result of this chapter is the following theorem. (The exact value of kg and S*
may be different than the ky and 5* in Theorem 2)
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Theorem 3. There exists a constant 5* € (1 —1n2,1) such that for any k = kg, the (k+1)-
NAE-SAT problem on both T4y, and Tpeisay,k ts reconstructible for

d= (2" —1)(Ink +Inlnk + 8% + 0x(1)). (4.1.1)
As comparison, we will show

Theorem 4.1.1. For (k + 1)-NAE-SAT problem on both Tqj and Tpeisa) k, there exist con-
stants d£ (depending on the model) such that the root is frozen with high probability if d > d£
and unfrozen for d < di. More specifically,

g inf,oozlnt(1— (1;:::)k) Tak
k= (2F—1)z

' = (2" —1)(Ink +Inlnk + 1 + ox(1)).
inf,~o (1—e-=2)k TPois(d),k

For a complete picture, it can be shown following a similar argument of [Sly09] that the
NAE-SAT problem is non-reconstructible for

d< (2" =1)(Ink+Inlnk+1—1n2—o4(1)). (4.1.2)

We does not go into its proof here due to the limitation of space.

4.1.1 QOutline of proof

The proof of Theorem 3 follows a similar argument of Chapter 3. In Section 4.2 we give the
distributional recursion of reconstruction probability on trees and give the reconstruction
algorithm assuming certain stochastic dominance result. We then prove the stochastic dom-
inance result in Section 4.3. For completeness, we prove the freezing threshold in Section 4.4.

4.2 Reconstruction algorithm

4.2.1 Tree recursions

We begin by specifying the distributional recursion of the posterior probabilities. Let 7' =
(V,F,E) ~ T ¢ be sampled from the Galton-Watson k-factor tree with offspring distribution
¢, T, = (Vi, Fy, E,) its restriction onto the first 2n levels, and L,, the set of variables on
level 2n (the nth level of variables). Denote the set of solutions on 7,, as

Q, := {o€{0,1}"" : for each a € F, Ju,v € da, such that o, # 0,}

and its restriction onto L, as Q(L,). Define deterministic functions f, such that for each
ne QL)
falz,m;T) := P(o, = z|T, 01, = 1),z € {0,1}.
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Function f,(-,n;T) gives the distribution of the root given boundary condition 7 and tree
structure 7. By symmetry, f,(1,7) = f,(0,1@®n), where 1@ n is the configuration obtained
from n by flipping the value of every variable. Let d, denote the degree of the root and
u;j,t=1,...,d,,7 =1,...,k be the jth variable in L, attached to the i’th clause. Let T; ;
denote the subtree rooted at u;; and let Ll’-fj = L, nT;; be the subset of L, in T; ;. Given
vertex u; ;, the configuration on T; ; is independent of T\T; ;. Standard recursive calculation
gives that, for each n e Q(L,) and n;; = nr,; € Q(Ln-1),

n+ y Iy - .
120 (0 =TTy fa (L migs Tig)) + T120 (1 =TTy fa(0, 15 T )

For s € {0,1}, let =° = =°(n;¢) denote the joint distribution of (7,,0y,) given o, = s

(4.2.1)

and let (75,,7°) be sampled from =*. Write n}; = n};(n) for the restriction of n* onto
L. Let A = {(2°%a') : 2° + 2* = 1,2° 2! > 0}. We consider the posterior distribution
Xns1 = (X3 1)sefo1 1= (fas1(5,m5 Thg1))sefo,13 € A, which is a deterministic function of

n'. By the conditional independence of Gibbs measure and the symmetry between the two
states, we have

0
LN 4 yi@ser do ) Xn s#t
Ja(8m5 55 Tig) loqu == X, = {1 Txooso¢ for all s,t € {0, 1}. (4.2.2)
Further more, (n},,...,mi)1<i<d, are i.i.d. with respect to ¢ and for each i, (1;;)i1<j<r are

exchangeable with respect to j. And hence are (X;;)i1<i<d, 1<j<k-
To describe the one step recursion of the law of X, let I'*,s € {0, 1} be the following
functions that take an indefinite number of variables:

k=1 b ! k
s 2\ . l,s 1,1®s
A(b,x)—ll 1_||371;,j||95”
1=0 i=1 j=1  j=i+1

In the formula above, b, represents the number of clauses adjacent to the root such that

[ of its variable children have value s, namely b, := |{i : |{j : o(u;;) = s}| = {}|. Thus
by the property of “not all equal”, by = 0 and we omit it from the definition. Given the
degree of the root d,, (b, . . ., bx—1) follows multinomial distribution of sum d, and probability

- (-1
o) l . .

Let D, be sampled from &, B = (By, ..., By_1) be sampled from the conditional distri-
bution, and X = (X! )ii=01<j<k be ii.d. samples of X,,, (4.2.1) and (4.2.2) implies that

4,J

X1 £T(B, X) := (I°(B, X),I'(B, X)). (4.2.3)
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Let X, (s) := fu(s,7),s € {0,1} be the posterior probability where 7] is the restriction of an
unconditional sample (7', o) onto L,,. The distributions of X,, and X, satisfies that for each
x = (2%2') € A,

P(X, € dx) = 2P(0, = 1,P(1, = 0 | 71, = 0p,) € d2°)
=2P(X,, e dz)P(o, =1 |P(1, =0 | 11, = 01,) € dz°)
= 2(1 — 2°)P(X? € dx) = 22'P(X? € dx). (4.2.4)

Let Ms(A) < M(A) be the subset of probability measures on M(A) that are invariant
under flip of the two coordinates. As in the definition leading to (3.2.5) in Chapter 3, we
again use I' to denote the transformation it induces on M(A) and for each v € M(A),
define (II°v)(dx) := ka*v(dx) for all 2 € A. Following (4.2.1) and (4.2.3), the distributional
recursion of X,, can then be written as

Fu e %[(r oI + (Do w5 < 0.1}, (4.2.5)
In particular, if X,, ~ v, then X,, ~ II*v, X,.1 ~ [ o II'v and X,, ~ T'v.

Observe that for every v € M(A), there is a nature correspondence in M([1,1]) by
mapping x = (2° z') to max, z,. With some abuse of notations, for any u,r € M(A), we
say that v stochastically dominate v (by €) if the statement is true with respect to their
correspondence in M([3,1]). We prove the following result in Section 4.2.

Theorem 4.2.1. There exist 3° < 1,¢ > 0 such that for any k > ko, d = (28 — 1)(Ink +
Inlnk+ B, and T ~ Tpoisay,k, one can constructs puy, € M(A) such that when both translated
into M([%, 1]), Ty stochastically dominates py by ¢/Ink.

From there, repeating the arguments in Section 3.2.2 and Section 3.2.3 with k£ = 2 and
modifying to factor trees when necessary, one can show the following two results.

Theorem 4.2.2. For any d, k such that Theorem 4.2.1 holds, there exist independent random
array U and measurable function B,(T, oy, ,U) such that

1
liminf E ’]P’(ap =0|B,(T,,01,,U)) — 5‘ > 0.

n—00
Corollary 4.2.3. Fiz * € (8°,1). For any d, k such that (d' := |d—(8*—3°)2*|, k) satisfies
Theorem 4.2.1 and (3.2.11), there exist independent random arrays U,D and measurable
function B,(or,,,U,D) such that

1

liminfE‘IP’ <o—p —0|B,(0p,,U, D)) i )

n—0 2

Proof of Theorem 3 (Reconstruction). The reconstruction part of Theorem 3 follows from
Theorem 4.2.1, Theorem 4.2.2 and Corollary 4.2.3. [
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4.3 Proof of Theorem 4.2.1

In this section we prove Theorem 4.2.1. We first rewrite the transformation I' on M(A)
defined in (4.2.3) in a way easier for analyze and a give a parameterized candidate of p. We
then verify Theorem 4.2.1 using the candidate in the remaining sections.

4.3.1 Reformulating the recursion

To analyze (4.2.3), it is easier to work the symmetrized log-version of X?. Define for each
x = (2% 2') € A that

¢(x) = In(z"/2%), ¢~ (y) = (1/(1 +¢"),e”/(1 +€")).
¢(x) is a function mapping A to R = [—00,0]. Recall that ¢ o p is the distribution of ¢(X)
where X is sampled from u. Let M,(R) denote the space of probability distributions on R
that are symmetric about 0. We can rewrite (4.2.3) as

We now split the construction of ¢ o Fo(é X ) into steps.

1. For each v € My(R), let v* := ¢poII* 0 ¢~. By (4.2.4), if ¢~ () is the distribution of
X2, then ¢~!(v*) is the distribution of X?. A straightforward calculation gives that
dvt 2¢Y
i _ 2 -1 1 _ ]
oW =27l =1

2. Observe that on the RHS of (4.3.1), the summand for each fixed [ is i.i.d. with respect
to index 7. For each [ = 0,...,k — 1, Define

Y, = (Y2, V}}) := ( In (1 —HX’O ]_[ Xjfl) —In (1 —HX“ H le."’)),
Jj=l+1 j=l+1
(4.3.2)

where {X!}’s are i.i.d. samples of ¢~ o v*. Vector ¥; evaluates the contribution from
a clause with [ children being 1 to the posterior distribution.

3. Foreach ! =0,...,k—1,let B, ~ Pois((§)D) and (Y%,Y;}) be i.i.d. copies of (V,°, ¥;!).
Define

ZZO7 (Z 11723/;l> (4'3'3)

to be the total contribution of clauses with [ children equaling to 1.
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4. Finally we define W := Y"1 (Z2° — Z}).

Claim 4.3.1. If for some measure v, € M(R), the random variable W constructed following
the steps above satisfies that

vi([—t,t]) = min{1, vy ((—o0,t]) + ¢/kInk}, for all t = 0,
then py, = ¢! o v, satisfies the condition of Theorem 4.2.1.
Proof. This is just a rewriting of (4.2.5) and (4.3.1). O

We now propose a parameterized candidate of vy: Let 6, M » 0,0 < ~,0,¢ « 1 be
parameters to be determined in the order of (§, M, o,v,¢). Let v, be an infinite-volume
measure defined as (recalling that ¢(3) = 0)

vi(dx) := do(dz) + %65‘$|1{|x| > M}dx, (4.3.4)

where d, is the Dirac measure at x, and write v, (dz) := %e**1{x > M}dx for the right tail
of v,. We will use v, as a “scaling limit” of v, and show that the assumption of Claim 4.3.1
is satisfied with

1
v(dx) = klnky*(dm)l{O <z < agf,

for some choice of (6, M,~,€) and k = kg = ko(0, M,~, €), where ay, is the constant such that
Vi, is a probability measure.

Let X, X; ~ ¢ov} through out the section. The idea is to view the recursion (4.3.1) as sum
of points from some Poisson point process where the main contribution comes from Z§ while
Z9 and Z}_; add a symmetric noise of O(1) order. All other terms and the dependence
between Z! and Z? are negligible. To taken into account of the “approximation error”
between v, and v,, we will also introduce extra error terms « and € in later sections. As it
will be clear in the proof, we will decide these parameters in the order of §, a, M, v, €, k.

Recall the notations from the beginning of Section 3.2 and further define B®a to be the
product of a i.i.d. of B. We will use 1¢,, or 1., to truncate (part of) a measure above or
below such that the total mass is 1. The specific value of a5 and ¢, may be different from
line to line. We assume M > 2/§ so that 272¢%1?! is an increasing function in |z|. Let
%e‘sxl

ve(dx) = %€§|I|1M<|z\dx; ve(z) = x=M

1 vt similarly. As x goes to —oo,
vi(dr) ~ 2yx~2e~(1=9%dy is integrable, hence we denote the normalized weight of left tail as

Po = po(0, M) = v*((—o0, —M])/2y

Finally define two more functions, both of which are monotone decreasing:

denote the continuous part of v and its right tail. Define v}, v

Y1 : R — [0,00],In((1 — 2)/2) — —In(1 — ),y — In(1 + e7Y) (4.3.5)
g : [0,00] — [0,0],y — —In(1 —e™¥),—In(1 — z) — —In(z).
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4.3.2 The distribution of Y’

Recall that X, X;’s are i.i.d. samples of pov. Let U := —In(1 — X) ~ ¢); ovi. By definition
YY g _ In(1 — (1 — X)®*) hence 15 (YY) L k®U. A direct calculation gives that

2’7(61 . 1)71758gn(1/1171(m))

kInk - vy(dz) = ome(de) + 2(er 1) Az - 1yre iyt (2)) <an (4.3.7)
127 = Hde -0
- ReOVrdy x>0

When £k is large, vy is highly concentrated around 0 and the density as z ™\, 0 is asymp-
totically equal to the density in 3.3.15. Thus following a similar argument of Lemma 3.3.6,
we can show the following result.

Lemma 4.3.2. For any 6,7 € (0,1), M > 2, let t;, := inf{t : vy([t,0)) < 1/k}, then
k® (t;'U) converges weakly to stable law with index § and characteristic function

emﬂ—bﬂpﬂ—%mgﬂﬂtmﬂgéﬂ,

where b =6 " (cosz — 1)2= 1 dz = — cos(Z8)['(1 — ).

The proof to Lemma 4.3.2 follows exactly the same as the proof of Lemma 3.3.6 and we
omit the proof from here.

Let U the denote limiting stable law specified in Lemma 4.3.2. For § = %, U follows Levy
distribution with parameter ¢ = 7. We henceforth set § = 1/2. In particular, this implies

PlU<d) = — [ a2 [Terie < e
- AT 1\ Jaje S Ur2

22 = (14 0, (W)KP(U < cty).

This implies that vxgy (dx) is upper-bounded by (1+ 0k (1))k - vy (dzx) for small x ~ O(ty).
On the other end of the spectrum, for any fix x > 0, kInk - vy([z,0)) — U1 (v)([z,0)).
Hence among k i.i.d. copies of U, the probability of seeing more than one of them larger
than x is O(ﬁ), and we would expect

1
Vv (dT) ~ Vninv, iz, k(d2) ~ kvy(dr) ~ —k(wl ovt')(dx).
And indeed, that’s the motivation of the following lemma.

Lemma 4.3.3. Fiz 6 = 1/2, for any M > %, v, 6, a€ (0,1), and k = kg

1
by (YO)—k®U<ﬂ( —i—e)[wlou + Oy (—a) T 27P00cs ]12%
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Proof. For each a € (0,1), let M’ be the chosen such that
Ui (M) +91(0) = 1 (M') +In2 < by (a). (4.3.8)

Recall the definition of v in 4.3.7. The probability that a sample of U is bigger than 1, (M’)
is O(1/kInk). Therefore out of k i.i.d. samples of U, the probability that more than one
sample come is larger than ¢ (M) is o(1/In k). Namely,

p w 1
k@ UUU > (M) < (1= 1 )80 + = [Y1 0 i Loy + dus(0) + (2700 + )0,

where wy, is chosen such that the RHS has weight 1.
For the rest of the mass, a similar argument of Lemma 3.3.8 shows that the contribution
from samples smaller than ¢ (M’) can be bounded as

1
k@ (Ul{U < 1/11<M/)}) < m(l + 6)[¢1 O V7}1<’¢1(M') + 6(500].

Taking convolution of the last two equations and using (4.3.8) finishes the proof. [

Now we recover Yy from 1, *(Y;). Observe that v is a decreasing function with

Yooi(y) =In(l+e¥) >y, Yrothi(—a)=Imn2—-0(a), (x0)=0.

By passing a different o/, ¢’ € (0,1) into Lemma 4.3.3 when necessary, we have for k > ko,

1 ~
Yy > m(l + €)[12 0 Y1 0V} + Ona—a + 29P000]1<a, =1 Yy - (4.3.9)

4.3.3 The distribution of Y%, > 1
In this section, we bound the effect of Y;° for I = 1,...,k — 1. By definition
VOLyr, L (1 - (1-Xx)®*FDx®) <« n(1 - X&) = Y],

where the second last step corresponds to ignoring the contribution of variables with the
same value as the parent variable. In particular setting [ = 1, we have

VL —In(l - X)

Yrovtls,,.

1
~ klnk
The next lemma gives a crude bound of ¥; using Y; and shows that it is negligible for [ > 2.
Lemma 4.3.4. There exist constant C' = C(0,7, M) such that for alll =1,... k

B lel
(V) =@ (—InX) > m% oy 0 vtl<q,,

Y 1 ([ C N\i-1 1
and hence Y; < 107 (7)1 ovtls,,.
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Proof. For each [, we truncate 1, o ¢, o v! at different places and apply different scalings.
For convenience of notation, write oy := 15 0 1)y o ! (resp. fv) for the untruncated measure
(resp. density) and let V := —In X ~ =Dy 1<, . Recall that ¢ 0 ¢ (x) = z +In(1 + 7).
A direct calculation gives

Dy (dz) = Oma(dz) + %%w%(%sxdﬁ + %10@@20%(—%%
< Omaldz) + 2—7e5~’01¢20¢1 <ol + %10@@20%“\@@. (4.3.10)
We will prove by induction that for any ¢ > 0,
1 C -1
P(s(Y") < 1) = v ([0.4]) < = (=) (0.2, (43.11)

which together with proper truncation will imply the desired result.
The base case of [ = 1 is trivial. Let C' be a constant to be determined. Suppose (4.3.11)
is true for [ — 1 and all t > 0. Let M = 1, 0 ¢y (M) and Cy = iy ([0,2M]). For t < 2M,

PRV <t) = JtIP’((l—l)(@Vét—s)yv(ds) <]P’((l—1)®V<t)J2MVV(ds)
- killkP((l — )V <)< %ﬂ([o,t]).

For ¢t > 2M, by induction hypothesis,

PI®V <t) = L P(I-1)®V <t—s)r(ds) < (k:c;nlj:)l L v ([0,t — s])oy (ds).

Again, we have

M

J ﬁv([o, t— 8])5\/(6[8) < Clyv([O, t])
0

By integrating by part, it is enough to show that

ﬁ i ([0, — ])iy (ds) J Nt — s))in (ds) < C ([0, 1)).

M

Since fy(t) is well-defined for # > M, differentiating the last two steps of the last equation
with respect to t yields

Jt fv<t — S)ﬁv(dS) < Cfv(t)

0
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To prove the last inequality. Recall the upperbound (4.3.10) and note that 2y ((0,9 o
P1(=M)]) = v*((—0, —M]) = 27ypo. For t > 2M,

Lt Jo(t = s)iv(ds) =2 Lt/Z vt — s)Dy (ds)

R t/2 ~ pooth1 (=M) -
=2fy(t—1In2) —|—2J~ fv(t—s)fv(s)ds—l—QJ fv(t—s)fv(s)ds
v} 0
2’)/66t (t—M) 8’}/266t 276&
<(2+4 +2 _ETE s < (2 + dypo + 4 Cp) e
( ’ypO) 2 J;\}[ (t _ 8)282 S ( YPo Y M) 2
where in the last step constant Cj is finite because { 1/t%dt < 0. O

In particular, for Yy L YP & o(k® V) , a crude application of Lemma (4.3.4) yields
P(Y) > k%) <k (4.3.12)
We will use this to give a bound for Y — Y regardless of their dependency.

Corollary 4.3.5. For fized § = %,M,v > 0 and any a,e > 0, for k > k(0,a, M,~,€),
YQ — Yy satisfies that
1

1 -
Yy — Y > m[(l + ) (1 + 2vPodo) + Oma—a)ll<a, + ﬁé_oo =: Y. (4.3.13)

Proof. By (4.3.9) and (4.3.12), for all y > 0 and k > ko,

P(Yy - Yy <y) <P(Yy <y +a)+PYy > a)

. 1 1
<1+ PG <)+ - Lyeinz-2am2-a) + 13-

Hence passing a different ¢, a onto Lemma 4.3.3 if necessary, it is enough to show that
P(YY — Yy < 0) < 75, which is equivalent to P(k ® In((1 — X)/X) < 0) < 75. Recall by
definition In(1 — X)/X = ¢(X) ~ v}, there exist constant C, 5; such that

1 TR |
E —sIn((1-X)/X) < J —ss.1 ds) = )
¢’ rnk ) ¢ V) = g G

Applying Markov inequality yields

K
P(k®n <0) < Re—3*@n((1-X)/X) (@—M) < i

kElnk
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4.3.4 The distribution of 7§ — Z}

Let D:=d/(2¥ —1) =Ink + Inlnk + 3. Recall from definitions (4.3.3) and (4.3.13) that
78 — 7t & Pois(D) @ (Y? — Yi!) > Pois(D) ® Yy,

where Yj is a mixture of Dirac measure 0p,9-q, 90, 0—oo and a continuous part (1 + €)v} 1<,

with mass ﬁ,%, & and 1 — mﬁfﬁ#. Define p_ := (1 + €)2ypo + 1 and
_ 1
Sy 1= Pois(1) ® da-a, So := Pois ((1 - 1p_k) D) ® i;pe)ygl@w S 1= Pois(k ™) @0
n ~ ik

By Poisson thinning and the fact that Ink < D < k, Sy, Sy and S, give lower-bounds to
the contribution of Y samples supported on d,2_o, v} and §_o, and

Pois(D) ® Yy > Sy + So + S_op. (4.3.14)
In particular, S_., take two values 0 and —oo with
P(S_ # 0) = O(k™?). (4.3.15)

The next two lemmas follows from a similar argument to Lemma 3.3.2 and Lemma 3.3.4,
the proofs of which are omitted to avoid redundancy. Note that the key term o271 i
Lemma 3.3.4 comes from shifting v, by Pois(1) number of (In2 — «a)’s.

Lemma 4.3.6. There exists constant Cyy such that for any parameter (8, o, M,~y,€) and
k = ko satisfying the condition of Corollary 4.3.5 holds, we have

So > PP So + (1 + Corr(y + €))20p1<q - (4.3.16)

klnk

Lemma 4.3.7. For any a > 0, there exist constant M(«) such that for all M > M(«) v 4
and (8, a, M, ~y, €) satisfying Lemma 4.5.6, we have

eP—+7—58

So+ S > —m——[vs + (1 + a)(1 + Culy + ))e® 120,14, . (4.3.17)

Corollary 4.3.5, (4.3.14) and (4.3.17) together complete the picture of Z§ — Z{.

Corollary 4.3.8. Fiz § = 1, for any a,7v,e € (0,1), and all M > M(c) v 4, there eist
constant Cyy such that for large enough k,

eP-+t1—8 1

Zg — Zg > m(ysl + VévOJrSl) + E(S_OO (4318)

where v g = (1+a)(1+ Ca(y+ €))e ) =12, )1, is the continuous part of So+ Si.
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4.3.5 The effect of R = Z ( — 7Z})

Recall from definition that W = (23 — Z&) + 30 (Z° — Z}). Define R := Y"1 (Z2° — Z}).
R acts as a symmetric perturbation on the leading term (Z3 — Z;). From Corollary 4.3.8,

eP—+71=58 ) 1
ok (VSl * VR + Vgy1g, * I/R) + ﬁé—w- (4319)

Let DSV I= Vs, * VR, Uy 1= Vg . g, * Vr Where vg o is defined in Corollary 4.3.8.

W > (So+S1)+ R+ S_ >

Lemma 4.3.9. For any 0 € (0,3], M > M,(8), (0,, M, €) satisfying the conditions of
Corollary 4.3.8 and Lemma 4.3.4, and k > kg,

1. There exists some constant Csar such that for v = M,
Uiy (dt) < (14 Csary) exp(2° +27° = 2)v§ g, (db).
2. There is constant C5 , \y such that iy, ((—o0, M]) < - C5, -
3. For every integer m =1 and M = (m + 1/2) - (In2 — a), we have
70 ([M,0)) = v, ([M,2M)) = P(Pois(1) € [m + 1,2m + 1]).

The M, (9) in the proof comes from the following calculus fact, the proof of which is
postponed,which will be proved in Secion 4.5.

Fact 4.3.10. There exist M,(5) such that for M > M,(§) andt >t —s > M

1 —ds 1 ds 1

+ <

t—s2° T+t g

Proof of Lemma 4.5.9. Part 1: Let f,. denote the density of v,.. Since vg is symmetric about
0, using Fact 4.3.10 we have

t—M Y
(2) = vi(dt) < J 2f,(t — s)d(t — s)vr(ds) < J i

—o —o0 (t - )

< 24" (J:_M ( i _1$>26—58 o :8)2658) val(ds) + fOM i jS)QeésyR(ds))

) ot 0
< ar. f e % vg(ds) = v*(dt)Ee R

—00

(e7% 4 ). (4.3.20)

vr(ds)dt

It is enough to show that Ee =% < (14+0(y)) exp(2° +272—2) for large k. Since {(Z}, Z?)}%_,
are independent random variables with respect to [, by Campbell theorem,

_ klo 1 0 1
E€6 — Re~ 8 (Zp-2}) HEe (Z0-2})

_ k=l
st (5 (o 1)
=1 =1
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For arbitrary a,b > 0, we have ¢* 1 < e*(e ®—1)+e*—1 < (e ®—1)+(e*—1). Applying
this inequality to Y}, §Y;° and exchanging the order of summation, the last equation satisfies

Ee 0k < exp (Z (?)D[E(e—élflo 1)+ E(e‘syzl — 1)])

=1

— exp (2 (?)D[E(e‘sylo — 1) + Bt — 1)]) . (4.3.21)

=1

Note that by definition ¥;' £ Y2 ,. Since e + ¢ — 2 is increasing in s for s > 0, by
properties of stochastic dominance and Lemma 4.3.4, we have

E(e™ — 1) + E(e™t — 1) = E(e™ + ™ — 2) < E(e 7 + % — 2)

< (/gT_/i;)l Loo(eés + €% — 2)(¢y o vY)(ds). (4.3.22)

Recall the density of ¢ o v* calculated in (4.3.7), we have

ee} 0
J (7% 4+ €% — 2)apy o vt (ds) = (27° +2° — 2) + f (e7%% 4 €% — 2)apy o v} (ds)
0 0
Since y~!v! is independent of v, for § < %, we define
L (* —0ds ds 1
Comi=—| (677 +¢€”=2)1h ov,(ds) < .

7 Jo

Plugging the last two equations back into (4.3.22) and then (4.3.21), we have

SR ( 5 | o6 kz_ll k c!
Ee ™% < exp [ (270 +2° — 2) + 29Csr) - ( )D—
~\l) (klnk)

_ (1 +0() +0 <hllik)) exp(270 4+ 20 —2). (4.3.23)

Part 2: Again, writing out the integration form of (2v,.) xvg and applying (4.3.23), we have

s+M 2
f leétdt) vr(ds)

mo P

@) vl M) < [ vntas)- nian < [

0

2’}/66M 0 )
< WJ;) 65 I/R(dS) = P)/O(/S,M

Therefore by the definition of vg , ¢ in Corollary 4.3.8, there exists C7 5.0 depending on the
choice of a,§ and M such that i, ((—o0, M]) < yC 5 -
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Part 3: Finally we bound 7}, = vg, *vg and show that P(S) + R > M) = P(S, € [M,2M]).

Write o = (In2 — ) so that M = (m + 1/2)a’. Note that S; only takes values in o/Z, .
P(Sy +R>M,S, <M)=P(S;+R>M,S, <M —d/2)

m

= > P(S; = la)P(R > M — o)
1=0
Since P(Pois(1) = m) is decreasing in m > 1 and R is symmetric about 0, it follows that

YIP(S =1 )P(R>M — 1) >

=0

P(S; = 2M — 1o/)P(R < —M + o)

N agk

pac

Sle [M,QM],S1+R<M)

Comparing the last two equations yields the proof. n

4.3.6 Final step

Now we have all the ingredients to nail down the parameters and prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Recall from Claim 4.3.1 that it is enough to show that
vw((—o0,t]) < vk([—t,t]) — ¢/kInk, whenever vi([—t,t]) < 1. (4.3.24)

for some choice of parameter (9, o, M,~,€), constant ¢ > 0 and all k > ky. Recall (4.3.19),
on the right hand side we can absorb the k%&oo term into ¢/kInk. Thus it is enough to
consider the rest two terms:

0 eP—+7=58 0 ebP—+1=58 eP-+t71=8 ~, eP-+7=58

klnk W T Tklnk S PR PWST T W T Tk CSers VR

We first consider the right tail of vj;,. Combining Lemma 4.3.9 Part 1 and Corollary 4.3.8
and recalling that [p_ — 1| = (1 + €)7ypo, for all t = M we have

1-p

(L Q)P HRRZ3 0 4 Oy (y + €) (2wy) (d). (4.3.25)

vy (dt) <

Fix 6 = 1/2 and « small enough such that (note exp(2v/2 — 3) ~ 0.8423)

17
(14 a)exp((2e7)° +2° +27% —3) = (1 + O(a)) exp(2\/§ —-3) < 20 <1.
Let M = (m+1/2)(In2 — «) where m is the smallest integer such that the condition in Fact

4.3.10 and Lemma 4.3.7 is satisfied. Finally for constant Cjsj; depending on pg = po(6, M)
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and the constants in Corollary 4.3.8 and Lemma 4.3.9, let v < 13 < 1l,e < ¢ < 1 and
0<1—p<1-—p such that for all t > M,
9 e’ 19 1
2v,)(dt) £ ———(2v,.)(dt). 4.3.2

Next we prove (4.3.24) for ¢ around M. The key idea is to show that the mass of v},
escaping [—M, M] is smalle than the mass of v, dropping below M, and those mass can
be absorbed by the mulipilicative improvement of v, in (4.3.26). Let M = M (6, a, M) =
(m +1/2)(In2 — «) such that for the C5, ), in Lemma 4.3.9 Part 2,

RHS of (4.3.25) <

1 1 2y .
20(2%)([]\/[ M]) = % JM = edt = e (Chonr + 1)7. (4.3.27)

Write ¢, := P((In2—a)Pois(1) € [M,2M]) > 0. Given v and M, let v < v and 1— < 1—f3,
such that for some ¢; € (0, qM),

(1= qp) +vChan) S1—ca < 1. (4.3.28)
) =

Note for any t < M, v,([~t,t]) = vx({0}) = 1/kInk. By Lemma 4.3.9 Part 3, P(S; + R >
M) > qy. By (4326) and (4.3.28), we have for t < M

vw (=0, 8]) < vy (=00, M) + viy ((—o0, M]) + vy (M, t v M])
el=B
klnk« ~ i)+ 1Char) + o (2w )([M 1 v M])
< 1Oy D ) (Mt v M) < [, 1) —

Elnk’

Finally we prove (4.3.24) for t > M and v,([—t,t]) < 1. Choose ¢, > 0 such that for
Y=y Ayand 1 — B <1—f3 eP +cy <1+7. By (4.3.27), we have

18 .
(=0, 1]) € o (14 Char) + o () (I WT]) 20 (90, (O, 1)

<L L ) + — e+ )y — (), 1)
S Tkink | koW iink|© T A S
Co [ Co

1
T Ik m@%)([ t]) = ([t t]) — Ik

Combine all pieces together, we have the desired result with g, = 51 v B2 v 03, ¢ = ¢1 A ¢
and k > k. O

<

4.4 Freezing threshold

Proof of Theorem 4.1.1. Let p, denote the probability that the root is uniquely fixed by the
configuration on L,. This will happen if and only if there is at least one clause 7 attached
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to p such that {um-}é-:l has the same value under o and each of them is fixed by the sub-
configuration L;;. Hence py = 1 and

1 G
pn=1—P(nosuchi)=1-— ]E<1 - —pﬁ_1>

2k~ 1
_ {1 SOk )t T

1— 67(2’€71)‘11>ﬁ—1“l U'Pois(d),k

Recall the definition of di in Theorem 4.1.1, we first prove the correctness of di . For
T ~ Tpois(ay,k and d > dk, let x4 be the largest solution of -

1 e—w =d. f(p) is an increasing
function of p and pg := 1 — e " is a fix point of f. Hence by induction we have p, =
f(pn-1) = f(pa) = pa and liminfp, = pg > 0, i.e. the model freezes on infinite tree with
positive probability.

For each d < d£ , the definition of d£ ensures the existence of 9 > 0 such that for every
x>0, k>d(1+6) For every p=1—e"" <1,

1= f(p) = @0 5 /149 _ (1 p)cieo)

Note that 1—p; = 1—f(1) = (g’;j)d > 0. By induction we have 1 —p,, > (1—p;)Y+9" — 1,
i.e. with high probability the model will not freeze as the size of the tree tends to infinity.
The proof for T' ~ T4, is exactly parallel.

To determine the asymptotic of d s we first work with Tpois(g)x- Split the infimum over
x > 0 into three cases: x € (0,In2], z € [In2,Ink] and =z > Ink. For z > Ink, let
y=klnk-e e (0,Ink]|. Using the fact that (1 —a)™ = (1 + a)* > 1 + ka, we have

z(l1—e )% =(nk+Inlnk —Iny)(1 - kl—yk) > (Ink+Inlnk —Iny)(1+ %)

>Ink+Inlhhk+y—Iny>Ink+Inlnk+1,

where in the last step equality is achieved by y = 1. Plugging y = 1 back to the LHS
yields that indeed inf =1, x(1 — €)™ = Ink +Inlnk + 1 + o0,(1). For x € [In2,Ink], let
z = ke " € [1, 3k]. Inequality e™® > (1 — a) implies that (1 — 2)™* > ¢* and

inf 2(1—e®)" = inf (Ink—1Inz)(1 - E)_k > inf (Ink—1Inz)e®* =elnk.
we[ln 2,In k] 2e[1,14] k z€[1, 3]

where the last step uses that £((Ink — Inz)e*) = (Ink —Inz — L)e* > 0, for all z < 1k.

Finally for z € (0,1n 2],

inf z(1—e ) %> inf 2'%=(In2)'"*
2€(0,ln 2] z€(0,In 2]

1
2

Combining all pieces together we have dl =Ink+Inlnk+1+ 0 (1) for Tpois(a) k-

For regular trees, we note that since zln™! (1 — (1;::1)k> = ((122 lz -, the df of T4 can

not be smaller than that of Tpeisq) k. Plugging in z = Tik gives the same asymptotic
order. O
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4.5 Remaining calculation

Proof of Fact 4.3.10. Let h(s) = U=s) 2ol 2=s . (4970 yWe have h(0) = 1 and K'(s) is

T 1-(1+s)72 2+s  (1-s)?
uniformly bounded on [0, 1]. Let m = SUD4efo, 1] R'(s) v 1. Rearranging the terms, (4.3.20) is
equivalent to

05 (1—%)72—1 s

Both sides of equation (4.5.1) equals to 1 at s = 0. Differentiate both sides with respect to
s and let M > M; :=m/2§, we have for all t > M and 0 < s < t/2,

d 1 s m d
HS of (4.5.1)) = =K(2) < — < 2§ < 20e** = —(LHS of (4.5.1)).
(RHS of (45.1)) = <1(7) oL < 20 < 20 _~(LHS of (45.1))

ds
Hence (4.5.1) is true for all t > M and 0 < s < ¢/2. For any s,t¢ such that t — s > M and
s > t/2, we must have t > 2M,s > M. Therefore for M > M, := 2 v 5-In(36/5) = 2

1 1 1 1 5
LHS-RHS) of (4.3.20) < ——e % )% < eI 2 p20(t/2)
( S S) Y ( ) 7‘[26 +((3/2)2 )t2€ (?\{2 9252e )
1 5 1 5
—ds 20 M —ds 20 M
<Gp Tsampt )¢ Tapto g ) =0

Letting M,(0) = M; v M, finishes the proof. O
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Chapter 5

Rapid mixing of graph colorings on
trees

In this chapter we show that the mixing time of the Glauber dynamics of graph colorings
(defined in Section 5.2.1) on trees undergoes a phase transition at d = dye.. The main result
is following.

Theorem 4. There exists absolute constant ko such that for k = ko, 8 <1 and
d<k[lnk+Inlnk + 3],

if the k-coloring model is non-reconstructible on d-reqular trees, then the mixing time of the
Glauber dynamics of the k-coloring model on n-vertex d-ary tree is O(nlnn).

Theorem 4 and Theorem 2 together implies that for sufficiently large k& (the exact value
of ko in the two theorems might be different), the Glauber dynamics has O(nlnn) mixing
time whenever the model is non-reconstructible. The other direction is shown in [Tet+12].

5.1 Introduction

There have been intensive studies on the mixing times of Markov chains for sampling spin
systems in both theoretical computer science and statistical physics. Many results have
shown that the mixing time of the Glauber dynamics, both for the k-coloring model and
general spin systems, are related to the spatial properties of the Gibbs measure. Two prop-
erties of primary interest are the uniqueness of the infintie-volume Gibbs measure and the
reconstructability as defined in Definition 3.1.1.

In a sequence of results by Martinelli, Sinclair and Weitz [MSWO04; MSWO07; Wei04], it
was shown under quite general settings that the Glauber dynamics exhibits rapid mixing on
d-regular trees regardless of the boundary condition, when the corresponding spin system
admits an unique infinite-volume Gibbs measure. Their method uses the decay of correlation
between the root and the leaves to bound the log-Soblev constant of the block dynamics.



CHAPTER 5. RAPID MIXING OF GRAPH COLORINGS ON TREES 148

Less general results are known beyond the uniqueness threshold. The main obstacle, as in
the case of graph colorings, is that the chain might be reducible under certain boundary
conditions. Thus one can not hope to get a meaningful bound for all boundary conditions.

Notwithstanding this, it is still interesting to consider the mixing time under the free
boundary condition. The correlation between the roots and leaves in the absence of bound-
ary conditions is closely related to the problem of reconstructions on trees, as both prop-
erties concerns about to influences of an average boundary configurations on the root. It
is natural to hope that the rapid mixing of the Glauber dynamics holds throughout the
non-reconstruction regime.

Restrict our attention to the k-coloring problem on d-ary trees for the moment. The
uniqueness of the Gibbs measure is shown to hold for k > d + 2 by Jonasson [Jon(02] and
the results of [MSWO04; MSWO07] imply an O(nInn) mixing time in the same region. Recall
the reconstruction threshold di... = (1 + O(1))kInk from Section 3.1. Bhatnagar et al.
[Bha+11] show that the block dynamics for k-coloring model mixes in O(nInn) time in the
same region using non-reconstruction and following the methods of [MSWO04]. However their
result can not be easily extended to the Glauber dynamics due to the failure of Markov chain
comparison between the two dynamics. Namely, one step in the block dynamics might not
be replaced by bounded number of steps in the Glauber dynamics.

For more results in the non-uniqueness regime, Berger et.al. [Ber+-05] showed for general
models that the mixing time on trees is at most polynomial whenever the dynamics is ergodic,
which in the case of coloring corresponds to k > 3 and d > 2. Goldberg et.al. [GJK10]
proved an upper bound of n?@ ™4 for the complete tree with branching factor d. Lucier
et.al. [LMP09] showed n®+#/knd) mixing time for all d and k > 3. [Tet+12] proved that the
mixing time undergoes a phase transition at the reconstruction threshold k = (140(1))d/Ind,
where their upper bound for the mixing time when & > (1+o(1))d/Ind is O(n'*°M). They
also showed that the mixing time is Q(n®*md=o()) for k < (1—0(1))d/Ind, i.e. rapid mixing
does not hold in the reconstruction regime.

The main purpose of this chapter is to reduce the mixing time in the non-reconstruction
regime from the polynomial upper-bound of n!*°(") to the sharp bound of O(nlnn). Our
proof is based on a modification of the techniques used in [MSWO04]. The main obstacle, as
hinted above, is the reducibility of the Glauber dynamics on subtrees under fixed bound-
ary condition. Heuristically, in the non-uniqueness regime, vertices may be “freezed” by
their neighbors. While the block dynamics can update “frozen” vertices together with their
neighbors in one single move, extra efforts are needed for the Glauber dynamics to pass
around the barrier and “defreeze” the vertices, leading to the failure of the standard Markov
chain comparison result between the two dynamics. With that in mind, we introduce a new
variant of the block dynamics that focuses on the connected component on the state space
of the usual block dynamics induced by valid moves of the Glauber dynamics. By carefully
examining the portion of “frozen” vertices and their influences on nearby sites, we will show
rapid mixing of our new version of the block dynamics which implies the final result.

We conclude this section by discribing the literature on the mixing times on general
graphs. For k-colorings on graphs with n vertices and maximal degree d, the Glauber
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dynamics is not in general irreducible if & < d + 1. A long-standing conjectured is that
the chain exhibits rapid mixing whenever k£ > d + 2. So far the best result on general graphs
is given by Vigoda in [Vig00], where he showed O(n?Inn) mixing time for k > %d. A series
of improvements on the constant % for rapid mixing have been made with extra conditions
on the degree or the girth. See the survey [F'V07] for more results toward this direction.

5.1.1 General spin system

The correspondence between rapid mixing and spatial correlation decay is not restricted to
the coloring model alone, but is a common phenomenon that extends to general spin systems.
For instance, Weitz conjectured in [Wei04] that for any k-state spin system on regular trees,
the system mixes in O(nlnn) time whenever it admits an unique Gibbs measure and the
Glauber dynamics is connected under given boundary condition. He proved the statement
for k£ = 2 and for the ferromagnetic Potts model and colorings as two special cases of k > 2.
He also provided a sufficient condition that applies to a wide range of other models.

As suggested by the case of the coloring model, the mixing time under free boundary
condition is more closely related to the reconstruction threshold. In fact, Berger et al.
[Ber+05] showed that for general spin systems on trees, O(n) relaxation time under free-
boundary condition implies non-reconstruction. Our methods for the coloring model can also
be extended to general k-state spin systems provided that the spin system satisfies certain
mild connectivity conditions. Therefore as an intermediate result, we provide a sufficient
condition for spin systems to exhibit rapid mixing in the non-reconstruction region.

In Section 5.2.1, we specify a spin system by its Markov chain kernel M, where M (c, ) =
w(o, = o, = ¢) for any (z,y) € E, and restrict our discussion to kernels that are ergodic
and reversible (see also [Geoll] for more details). Let A be the second largest eigenvalue of
M. We show that the Glauber dynamics is rapidly mixing for spin systems M assuming a
certain connectivity condition C that will be specified in Section 5.2.3.

Theorem 5.1.1. Let M be a k-state spin system on the n-vertex d-ary tree T with second
eigenvalue \. If M satisfies the connectivity condition C, is non-reconstructible on T, and
d)\? < 1 then the mizing time of Glauber dynamics on T under free boundary condition is
O(nlnn).

In the statement of Theorem 5.1.1, the connectivity condition C' mainly concerns about
the hard constraints. Roughly speaking, it requires the root to be able to “change freely”
between all k states with high probability as the size of the tree grows. In particular, it
includes all models without hard constraints or models with a permissive state, a state that
can occur next to all other states (e.g. the hardcore model).

The requirement of d\*> < 1 comes from the Kesten-Stigum bound dA\* = 1 in recon-
struction problems: Whenever dA\? > 1, the system is reconstructible by simply counting
the number of leaves in each state [Mos04]. Hence non-reconstruction implies d\? < 1. The
Kestin-Stigum bound is known to be tight for models including the Ising model (symmetric
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binary channel) and near-symmetric binary channels [Bor+06]. For other models such as
hardcore model and graph colorings, it is strictly larger than the true threshold. Nonetheless
it has been suggested that the speed of decay of correlation undergoes a phase transition at
the critical value d\? = 1 with different scalings for d\? = 1 and d)\? < 1. Indeed, a recent
work of Ding, Lubetzky and Peres [DLP10] showed that the mixing time for the Ising model
is at least of order nIn® n when d\? = 1. Therefore we can only hope to prove Theorem 5.1.1
for d\? strictly smaller than 1.

5.2 Preliminaries

5.2.1 Definition of model

General spin systems: Throughout the chapter, we will write 7' = (V, ) for the d-ary
tree with root p and |V| = n vertices. Denote the [-th level of T' by L; starting with Ly = {p}.
Given vertex x € T, we will use T}, to represent the subtree rooted at x and let B, Ly,
denote the first [ levels and the [-th level of T, respectively.

Let [k] = {1,...,k} denote the set of possible spin values. We are interested in general
k-state spin systems specified by potentials U and W, where U is a symmetric function from
[k] x [k] = Ru{w} and W is a function from [k] — R. Given U and W, the (free-boundary)
Gibbs measure on 7' is the probability measure on configurations o € [k]"" defined as

(o) — %exp [ (3 Vo) Y W(ax))],

(z,y)eE zeV

where Z, also known as the partition function, is the normalizing constant such that

>, o) =1.

oe[k]V

We say that a configuration o is proper if u(o) > 0 and denote the set of proper configurations
on T by Qr = {0 : u(o) > 0}. For each pair of states (i,7) € [k]?, we say that (i,j) is a
hard constraint if U(i,j) = oo, otherwise we say that ¢ and j are compatible. For each
subset of vertices A < T', we will write o4 for the restriction of o to A and use superscript
for boundary conditions. In particular, Q% = {¢ : ¢ € Qp,omna = npa} is the set of
configurations compatible with boundary condition 7 and we denote the conditional law on
Q1(A) as (o) = plo | o € Q).

For the reconstruction problem, it is easy to work with the Markov chain construction
of the Gibbs measure on trees, which is just the broadcast model on trees. Recall from Sec-
tion 3.1. For each probability kernel M with stationary 7, the law of a random configuration
generated by the broadcast model on 7T is given by

(o) = m(o,) H M(oy,0y).

(z,y)eE
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It is easy to check that for any reversible M, the aformentioned probablity measure
corresponds to the spin system with potentials U, W given by

M(Cl, CQ)

m(ca)

Ulcr,c2) = —In ( > ,W(c)=—Inn(c). (5.2.1)
Note that not all potential pairs U, W can be expressed this way. A necessary condition for
(5.2.1) is that

Y exp[=(Ule,d) + W(d)]=C, Veelk]

celk]
for some constant C. We will henceforth restrict our attention to spin systems that can
be expressed as (5.2.1) and refer such systems by their probability kernel M. We will also
assume that M is ergodic and reversible.

The principal example of spin systems for this chapter is the graph coloring model, where

for each ¢,c € [k] W(c) = 0,U(c,d) = - 1(c = ) , or equivalently M(c,d) = =51(c =

d),m(c) = %

Uniqueness and reconstruction: Two key notions of spatial decay of correlation for spin
systems on trees are the uniqueness and reconstruction thresholds. Recall the definition of
reconstruction from Section 3.1.

Definition (Reconstruction). For k > 2, we say that a k-state system M is reconstructible
on tree T if there exist two states ¢, ¢ € [k] such that

limsup dry(p(or, = - | 0, = ¢),pulor, = - | 0, =')) > 0.
[—0o0

Otherwise we say that the system has non-reconstruction on 7.

Non-reconstruction corresponds to the vanishing influence of an average boundary con-
dition. A strictly stronger condition is the uniqueness property, which corresponds to the
vanishing influence of the worst boundary condition.

Definition (Uniqueness). For k > 2, we say that a k-state system M has uniqueness on
tree T if

limsup sup dpy(p(o, = - | op, = n),w(o, =-|or, = n')) >0,

Il nn'eQy,
where (17, is the set of configurations restricted to level .
Glauber dynamics and mixing time: The Glauber dynamics of a k-state spin system

M is a Markov chain X; on state space {r. A step of the Markov chain from X; to X;,; is
defined as follows:

1. Pick a vertex x uniformly at random from T
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2. Pick a state ¢ € [k] according to the conditional distribution of the spin value of x
given the rest of configuration, i.e. state ¢ is picked with probability ,u‘{’x}(c) = u(ol, =
c| o, =0y, Vy # x);

3. Set Xy1(z) = c and Xy11(y) = Xi(y), for all y # .

In the case of graph coloring, the second step corresponds to picking uniformly at random
colors that do not appear in the neighborhood of x.

To justify our study of the Glauber dynamics under free boundary condition, we first show
that the Markov chain is irreducible and hence ergodic on the set of all proper configurations.
For the sake of recursive analysis on subtrees later, we also prove irreducibility in a related
case where the root of T' is connected to one more vertex, namely its “parent”, and the value
of its parent is fixed. For each ¢ € [k], let 2% denote the set of configurations with the parent
of root p fixed to state c and let uS. be the corresponding conditional Gibbs measure.

Lemma 5.2.1. For any k-state system M on d-ary tree T, if M is reversible and ergodic,
then Qr is irreducible under the Glauber dynamics and so is Q5. for each c € [k].

Proof. We first prove the irreducibility of 2. by induction on the number of levels [ in 7.
For | = 0, it is trivially true since €27 is simply the set of states compatible of c. Suppose
that the Glauber dynamics is irreducible on the (I — 1)-level tree. For the [-level tree T, we
need to show that for any two configurations o, o’ € 2%, there exists a path of valid moves of
the dynamics connecting o to ¢’. To construct such a path, one can first change every vertex
x € Ly to state ¢ by a sequence of moves in the tree T,. This is possible since alternating
layers of states c and o, is a proper configuration in Q;’; and any two configurations in QJTZ
are connected by the inductive hypothesis. One may then change the spin of the root from
o, to g, since both states are compatible with c. Finally we may change the configuration
of every subtree T}, to o7, using the inductive hypothesis, ending in the configuration o”.
To show the irreducibility of Q7, we choose o, ¢’ € Qr. By the ergodicity of M, there exists
a sequence of states ¢y, ..., cop € [K] such that ¢ = 0, cam = 07, and for each 0 < i < 2m—1,
¢; is compatible with ¢;;1. For each 0 < i < m, let 7; € Qr be the configuration with
alternating layers of cy; and cgiy1(let capm i1 be an arbitrary state compatible with cap, = 7).
One can first change o to 7y using the irreducibility of the Glauber dynamics on Q;Z for each
x € Ly, then for each 1 < ¢ < m change from 7;,_; to 7; by first changing all vertices on even
levels to cy; then vertices on odd levels to cg;41, and finally change each (7.,)z, to oy, . O

Lemma 5.2.1 implies that the Glauber dynamics with free boundary conditions will always
converges to the Gibbs measure p. The mizing time of the Glauber dynamics is defined as

tmix = maxmin{t : dpy(P'(o,-), u) < 1/4},

UEQT

where P is the probability kernel of X; and drv(n, i) = 3> |n(o) — p(o)| is the total
variance distance. To bound the mixing time we will make use of the log-Sobolev constant.



CHAPTER 5. RAPID MIXING OF GRAPH COLORINGS ON TREES 153

For a non-negative function f : Qp — R, let u(f) = >, p(o)f(o) be the expectation of f
and Ent(f) = u(fIn f) — p(f) Inu(f) be its entropy. The Dirichlet form of f is defined as

1
D) =5 Y, wa)P(o,0")(f(o) - f(a").
o,0’'eQp
And the log-Sobolev constant is defined as v = inf > %. Applying results in functional

analysis to the Glauber dynamics yields the following bound (see e.g. [SC97, Thm 2.2.5]):

Theorem. For k-state system M on n-vertex d-ary tree T', there exists a constant C' > 0
such that tyix < % -Cnlnn.

Therefore to show rapid mixing it is enough to show that v is uniformly bounded away
from zero as n — 0.

5.2.2 Component Dynamics

Next we define a new variant of block dynamics on 7', which we call the “component dynam-
ics”. Each step of the new dynamics updates a block of vertices each step, but only chooses
configurations within the connected component of the Glauber dynamic. In this way we can
utilize the techniques in [MSWO04] while bypassing the problem that one step of the block
dynamics may not be connected in the Glauber dynamics when k < d + 1. To give a formal
definition, for A < T, we say that ¢’ ~4 o if 0'pa = opa and 0/, 04 are connected by
valid moves of the Glauber dynamics on A with fixed boundary condition op 4. We will
omit the A in ¢ ~4 ¢’ when it is clear from context. Let Q737 = {0’ € Q%, 0’ ~4 o} denote
the connected component of o in Q%, and 57 (0’) = u(o’|Q%7) be the Gibbs distribution
conditioned on both configuration outside A and the connected component within A.

For [ > 1, recall B, is the block of [ levels rooted at x and L, ; be the I-th level of B, .
If = is within distance [ of the leaves, let B,; = T,. We define the component dynamics to
be the Markov chain on Qr with the following update rule: In each step,

1. Pick a vertex z uniformly randomly from 7',
2. Replace o by ¢’ drawn from conditional distribution ugzl.

The dynamics is reversible with respect to the Gibbs distribution. For test functions f :
Qr > R, let 7 (f) = Dlgreqte f(o")7 (") be the conditional expectation of f on Q%7 and
for f >0, let

Ent’”(f) = Ent(f [ 057) = (/I ) = 5" () I ()

be the conditional entropy of f. We write the sum of local entropies of block size [ as €] =
Ywer e (Ent3” (). With minor modification, the comparison result of block dynamics
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also works for component dynamics: (see e.g. Prop 3.4 of [Mar99], in the proof substitute
Ep(f, f) by & and note 3., pfp(0") ] (o) = pifp(0).)

*

—

> — - inf —1
727 ey R

where VZ’U is the log-Soblev constant of the Glauber dynamics on Q*’UZ with the boundary

condition on 0B, given by o. From our definition of Q37 , it is easy to see that min, 'yB ,
is a constant only depending on the branching number d block size | and M itself and is
strictly greater than 0 independent of T'. Thus to show O(nInn) mixing time for the Glauber
dynamics, it is enough to show € > const x Ent(f) for all f > 0 and some choice of block
size | independent of tree size |T'| = n.

5.2.3 Connectivity condition

In this section we specify the connectivity condition € mentioned in Theorem 5.1.1. First
we will define the notion of free vertices. Let T" be a tree of [ levels. Given configuration
o € Qp with 0, = ¢, o, = 1, we say that the root can change (from c) to state ¢ in one
step if and only if there exists a path o = 0%, 0!,...,0" € Q7 such that

1. o7, =nfor each 0 <i<n. o) =c, foreach 0 <i<n—1ando) =c.

2. For each 0 < i < n — 1, configuration o’ differs from o*™! at exactly one vertex.

Put another way, the path is a valid trajectory of the Glauber dynamics with fixed boundary
condition which changes the state of p only once in the final step. For x € T, we say x is
free (in o) if, considered as the root of T,, x can change to all the other (k — 1)-states in
one step. We are interested in the probability that the root of an [-level tree is free and we
denote it by pfe® = u(o : p is free in o).

Definition. We say that a k-state system M on the d-ary tree satisfies the connectivity
condition C if M is ergodic, reversible and satisfies the following conditions:

1. If k = 3, then for any ¢y, co, c3 € [k], there exists ¢ € [k] such that ¢ is compatible with
C1, C2, C3.

2. The probability of being free tends to 1 as [ tends to infinity, i.e. lim ., pi™® = 1.

Roughly speaking, the connectivity condition controls the behavior of “frozen” vertices
in a typical configuration. As will be shown in Section 5.4, under the connectivity condition
the probability that a vertex is “frozen” by the boundary condition is extremely small and
the extra restriction of the component dynamics is negligible for vertices faraway from the
bottom (see the remark after Claim 5.4.2 for more discussions).
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5.2.4 QOutline of Proof

A key ingredient in [MSWO04] is that a certain strong concentration property implies “entropy
mixing” in space which in turn implies the fast mixing of the block dynamics. The following
Theorem 5.2.2 can be seen as the combination of Theorems 3.4 and 5.3 of [MSW04] adapted
to the component dynamics (the notation here is closer to Theorem 5.1 of [Bha+11]). For
completeness, we include an outline of the proof in Section 5.5, highlighting the differences

from [MSWO04].

Theorem 5.2.2. There exists some constant a > 0 such that for every 6 > 0 and [ > 1
the following statement holds: If for all x € T that is at least | levels from the leaves and all
compatible pairs of states c,c’ € [k], the conditional measure p° = pg,  satisfies

wa(

then for every function f = 0, Ent(f) < %82“.

plog=clo~p,, 7) (1=0)" ) _ —2a0+1-072/0-57 (5.2.2)
pe(ox = c) T all+1-6)2) ’ o

To prove Theorem 5.1.1, it suffices to verify (5.2.2) for some choice of [ and 6. We first
show a weaker inequality (5.2.3) in the following theorem. Note that the same inequality is
proved in Theorem 5.3 of [MSWO04] or Theorem 5.1 of [Bha+11] for specific models such as
the coloring model. Here we provide a different proof that works for general models using
only non-reconstruction.

Theorem 5.2.3. For a k-state system M, if M is non-reconstructible and d\*> < 1, then for
any o > 0,0 < < 1, there exist g = 1 such that for all | = ly, every x € T that is at least [
levels from the leaves, and any pair of compatible states c,c’ € [k], u° = g, satisfies

th<

The difference between (5.2.2) and (5.2.3) is that in equation (5.2.2), the inner measure
p¢ conditions not only on the boundary condition o7, = 77,,, but also the connected
component of 7. We will show that under connectivity condition C, the difference between
is negligible in the upper half of a large block, hence (5.2.2) holds.

O =0t =Ten) | (020 N _ o segri-otia-o (523
pe(o, = ¢) afl +1-0)7

o~p,, T and OL,, = TL,,

Lemma 5.2.4. Let M be a k-state system satisfying C such that (5.2.3) holds for | = ly and
0 = &g. Then there exist constants Iy = 2ly and 61 = &g such that for all Il = li, equation
(5.2.2) holds with § = 6;.

Theorems 5.2.2 and 5.2.3 and Lemma 5.2.4 together imply Theorem 5.1.1. The rest of
the chapter is structured as follows: We will prove Theorem 5.2.3 in Section 5.3 and Lemma
5.2.4 in Section 5.4, and we will include a sketch of Theorem 5.2.2 in Section 5.5. After that
we will apply the result to the k-coloring model and prove Theorem 4 in Section 5.6.
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5.3 Proof of Theorem 5.2.3

In this section we prove Theorem 5.2.3. The result for the k-coloring model was proved in
[Bha+11], which used the specific structure of coloring model. Here we will give a different
proof for general systems M using only non-reconstruction and d\?> < 1. We first introduce
some notations. Recall that the stationary distribution of M is w. For z € T, let

~ 1
Ry (7)(¢) = —=pr.(00 = ¢l on,, =70,,)

m(c)

denote the ratio of conditional and unconditional distribution at x and write R, ;(7) =
| Roy(7) — 1o = maxeeps] | Rey(7) () — 1. We will omit 7 when it is clear from context. In
the proof we will work with the unconditional Gibbs measure y = uz, and 7 instead of uf,
and pf, (0, = ) and show the following stronger inequality.

Theorem 5.3.1. Under the assumptions of Theorem 5.2.3, there exists constant € > 0 and
lo > 0, such that for alll = ly, every x € T' that is at least | levels from the leaves, p = pr,
satisfies

Pry (Rey(7) = %) < exp(—e). (5.3.1)

Proof of Theorem 5.2.3. To see that (5.3.1) implies (5.2.3), consider the Markov chain con-
struction of 0. Let E, be the edge set of T}, we have

w(o) = (o) H M(oy,0.), p(o) = M(c,0,) n M(oy,0.,).
(y,2)€E (y,2)€Ex

Hence for any event A < Q|

M(c, 1)

Prpe(A) = ) 1(r) = ) pUT) < Ty 1(A) = T Pr(A),

TEA TEA (Tm)

where 7Ty, = mineepy m(c) > 0. Note that

IUC<O—CC = CI ’ ULx,l = TLx,l)

pé(op =)

_1‘_

< R%l(T).

/‘L(O-x = C/ ULz,l = TLCD,Z) - ]'

It follows that

Theorem 5.2.3 then follows by taking [y large enough such that exp(—£¢lp) < (1 —48)?/a(ly —
1+4)2% O

plon = or,, =71,

pe(on = )

|
=
WV

egl) < moh exp(—eth).

In the rest of the section we assume that M satisfies the assumptions of Theorem 5.3.1.
The following lemma gives the recursive relation of R, (c).
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Lemma 5.3.2. Fix 7€ Qr and z € T and let x1,...,x4 denote the d children of x. RIJ can
be written as a rational function of Ry, 1—1:

HL Méxi,l—l H?:l Zcie[k] M(e, Cl)R il— 1<Ci)

) MR Do e s Do M) )
Proof. Let I, and E,, denote the edge set of T}, and T, they satisfy that
Ey = vi (Ey, v {(z,m3)}).
Let Q.(c) = {0 : 0, = ¢,01,, = 71,,} and Qu,(c) = {0 : 0p; = ¢, OLy 11 = TLW%} be

the set of configurations on 7, and 7, with boundary condition 7. By the Markov chain
construction, we have

:U’(Qw(c)) = ,u(O';B =60L,, = TLz,l)

= > 7o) || Moo= D, wo][Me,a) )] Moy, 0%)

0€Qy(c) (y,2)eE c1,,cq€lk] i=1 o'e€Q;(c;) (y,2)eE;
M(c, c;) d M(c,c;)
- > w]] (Qile)) =70 ] | 1(€2i(cs))
. T, T,
c1,,cq€lk] i=1 t =1 c;e[k] t

Therefore by Bayes formula,

N _L o —clo _ _ 1 U(Qx(c»
Rx,l(c) - W(C)M< z | Lat Lw’l) 7T<C) Zc’e[k] N(Q(C/»

[T S (2 (e))
e 7O T X ()
_ Hi=1 Zcie[k:] M(c, Ci)Rzi,l—l (¢)
St T Ty Seg M ) R ()

where the last step followed by dividing [}, ey H(82(c;)) from the numerator and the
denominator. ' ]

Observe that in the recursive relationship of (5.3.2), R,;(c) is a rational function of
in’l,l,i =1,...,d, where RM takes values from the k& dimensional simplex Ay = {R € R* :
TR =1,R;, > 0,i=1,...,k}. The next lemma establishes a contraction property of R, ,
using the continuity of (5.3.2) and the ergodicity of M.

Lemma 5.3.3. There exist an integer m = 1 and constant € > 0 such that for all d™ vertices
Yi, -, Yam € Ly, if at most one y; has Ry, ;. > € then

1 &
Ry < igRyi,,m. (5.3.3)
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Proof. Let f : A‘[ik] — Ay be the function on the RHS of (5.3.2) such that Ra;,l =
F(Ray i, e Ry i) Observe from (5.3.2) that f is a rational function with f(1,...,1) =

1. When R, ;-1 = -+ = R;,;-1 = 1, f can be simplified as
r r MRw -1 -
Ry.i=f(Ry, 1-1,1,...,1) = ——=—"— = MR, ;1.
1= f(Reyia ) M -1
Iterating the function m times, we can write RIJ = f(m)(Ryhl_m, . ,Rydml_@) where f™ :

Af,:]L — Ay is another rational function. A similar calculation shows when Ry, ,, = -+ =

Ryde*m = 1a - - ~
Ry = f" Ry, s, 1, 1) = M™Ry i .

Since f™ is a smooth function in any regions without poles, there exists constant C; =
Cy(d,m, M) such that in the local neighborhood of (1,...,1)

[Rog = 1= Y (M™ Ry = 1) < C1 )| Ryt = 1P < Crk Y [ Ry — 12

By the ergodicity of M, for sufficiently large m and all R € Ap we have || M "R — 1|, <
;11\|R — 1||so. Therefore there exists €; = €;(C1, k) such that if R, ;_,,, < € for all vertices
Yi € Ly, then

R 1 dam ~ 1 dam
[Bet = oo < (5 + Crker) )[Ryt = oo < 5 D Rytm. (5.3.4)
i=1 i=1

This suffices provided that there are no large Ry, ;.

We now consider the case when there is one large R,, ;—,, which we can without loss of
generality assume is i = 1. Again since f(™ is smooth, there exists Cs, €5 > 0 such that for
all Ryl,l,m > ey, if sup;~y Ry, 1—m < € then

dm
|Ray = M™ Ry 1l < Co Y | Ryt — 1.

=2

Let € = ey A (4Cod™k) ey, if we moreover have sup,-, Ry, ;—m < €, then

~ 1, ~ 1 1 1
||Rw7l - ]-HOO < ZHRyl»l—m - 1”00 + ngmke < ZRle_m + ZEl < ERylvl_m' (535)
Combining equations (5.3.4) and (5.3.5) and noting that € < ¢; completes the proof. O

So far we have not used the assumption of non-reconstruction and dA\* < 1. In [JM04],
Janson and Mossel introduced the notion of “robust reconstruction” and showed the following
result: (rephrased to the notations here)
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Theorem 5.3.4 (Lemma 2.7 and Lemma 2.8 of [JMO04]). If M is ergodic and d\* < 1,
then there exist constants C; = C1(d) > 0 and § = §(d) > 0 such that for any | > 1 if
drv(pg,, pr,) < 6 for all c € [k], then

drov(pg,, > tiey,) < € Cdoy(pg,, pr,),  for all ¢ € [k].

Theorem 5.3.4 combined with non-reconstruction implies the following weaker concen-
tration inequality.

Corollary 5.3.5. Under the assumptions of Theorem 5.5.1, there exists constant Cy, Cy > 0
such that

C
Prop(Rey > 2) < —2e~ 1L, (5.3.6)
z

Proof. By the definition of non-reconstruction, lim .., dpv(ug,, pz,) = 0. Hence for suffi-
ciently large I, dpv(ug,, puz,) < 6 and by induction there exists constant Cy > 0 that

dov (g, pr,) < Coe™ .
A duality argument then shows that
ILLC(O-Lz,l = TL(L‘,Z)
/’L(ULI,Z = TLz,l)

=Y |u(or,, = 11,,) — wlow,, = 71,,)| = 2drv(ps,, p1r,) < 226~

-1

B Ros(c) — 1] = B,y

@lu(o—x =cC ’ O—Lac,l = TLx,l) - ]“ = ]ETNN

Maximizing over c € [k] we get E,_,R,; < Coe” ! for some (different) constant Cy,Cy > 0
and (5.3.6) follows by Markov’s inequality. O

Finally we improve the concentration bound of (5.3.6) using Lemma 5.3.3.

Proof of Theorem 5.3.1. By Lemma 5.3.3, the event R,; > z implies that either there exist
two. i € [d™] such that Ry, ,, > € or X% R, m > 2z. In the second case if the event
Zle Ry, 1—m > 2z holds and for every y;, Ry, ;—m < gz, then there must exist at least two
i such that R, ; ,, > 532, otherwise Zf:l Ry i—m < %z + 4°=1

S g2 < 2z. Therefore we can
write

3
Proy(Ryy > 2) <Pro,(3two y; € Ly, Ry i—m > €) + Proy(3yi € Ly, Ry, 1—m > 57;)

1
+ ]P).,-N'u(ﬂ two y; € Lfl?,m’ Ryi,lfm > Qd_mz)
Let g(z,1) = Prep(Ryy > 2) and C' = max{2d™, ——}, note g(z,1) is a decreasing function
in z, the equation above become

3 1
g(z,1) < d*"g*(e,1 —m) + dmg(éz,l —m)+ d2m92(2d—m2,l —m)

1
< dmg(gz,l —m) + 2d2mg2(5z,l —m).
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[terating this estimation h times, we have

h 3,1
Z 2d2m 2h=i(144) th i ((5)@'(5)’11'27[ _ hm) ) (5.3.7)

where the coefficient can be shown by induction on A using inequality (a + b)? < 2(a? + b?).
Since for all z > 7! we have g(z,1) = 0, the summand on the RHS of (5.3.7) is

min

zero for large i. Fix k = In3C/In3C < 1, for h > In(— )/ln( ) and i > kh, we have

(%) (C)h iz > 71 . Therefore

2(1—r)h

Kh

—i . —q : 1 .

g(Z, l) < Z(Qde)Qh (1+Z)g2h ((g)z(a)h—zz’l N hm) < kh [(2d2m)hg (C_hz,l _ hm)]
1=0

Now apply (5.3.6) and let h = ri/m for small r > 0 such that (1 —7)Cy —r - £ In(2Cd*™) >

%C’l > (. For large enough [ such that Inl < 2%1, we have

C Ch 9(1—r)h
9(z,1) < Kh <(242’”)’1—2 e—CIU—’””))
2
2(1::)?“1 2(1::)”
< ﬂl <%(20d2m>;le—01(1—r)l> < kT (2_026—;Clz>
m \ z m o\ z
Let C5 = ,04 L Cs = 909 For | > Cy(1 + In2C, — Inz), we have g(z,1) <

Cyexp{— exp(C5l)}
Finally define ¢ = {min{C5", Cs}, plug in 2z = exp(—&l). When [ is large enough, we
have C3(1 + In2C5 — ln z) < C5(1 +In2C5) + 31 < 1 and exp(exp(3Csl)) > Cy, therefore
P, (RN(T) > eifl) = g(z,1) < Cyexp(—e®') < exp(—ef),

completing the proof. O

5.4 Proof of Lemma 5.2.4

The proof of Lemma 5. 2 4 contains two steps. First for block B, ; with sufficiently large [,
we study the measure u B , induced on the upper half of block B, (here and throughout

the section, we choose [ to be even) and consider the following subset of QF
={oe€ ng :Va € Lyyjoye, o is free wrt. o}.

A, can be considered as the set of “good” conﬁgurations with boundary condition 7. As we
will show later, under connectivity condition €, 3 B. (A ) is close to 1 with high probability.
And as the following lemma claims, conditioning on A, and the configuration on Ly /2, the
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boundary of B, ;/, the marginal of x induced by ,uj;;l equals to the marginal induced by p°.
Therefore, as a second step we can apply the result of Theorem 5.2.3 to B, /. Let € Ly be
the set of configuration on L, ;. Throughout the section, we assume that M satisfies the
connectivity condition C.

Lemma 5.4.1. For arbitrary 7 € Qf, , n€ Qr_,, and state ¢’ € [k] that is compatible with c,

/2
H*B’;Z(Uz = | OLyyp =10 € A) = oy = | OlLyyy = n). (5.4.1)

Proof. For convenience of notation, abbreviate o1y = 0p,,, ,, 0@2) = 0B, \B, .+ SO every
configuration o € Qp,, can be written as a three tuple (o(1),7,0(2)). We of course have that
0(1), 0(2) are conditionally independent given oy_,, = 1. By the definition of A, {oce A}
only depends on o(z). Therefore to show (5.4.1), it is enough to show that conditioned on
0Ly and 0 € A;, 0 ~ 7 is independent of 0(;y. From there we have

,u*B’;l(az =c|op,,,=n0eA)=p(o,=Cop,,,=n0~T0€A;)
= p(o, = | 0L,y =10 € Ar) = (0, = c | OLyy = 1)

13 2
~

Since is a transitive relation, the conditional independence of o ~ 7 and o) follows
from the following claim. O

Claim 5.4.2. For each 7€ Qf, , ne

Q if e A h / and for all o = (0-(1)’?770-(2))’ o' = (O-El)a , 0(2)) €
EZJIJJO-E T7ten0-"\-‘0"

/2

Proof. For each x € T, let p(x) denote the parent of x. By Lemma 5.2.1, there exists a
path I' connecting oy to 021) in QCBM/Q via valid moves of the Glauber dynamics on B,/
with 0,;) = ¢ and free boundary condition on L, ;. We will construct a path I" in QTBEJ
connecting o to ¢’ by adding steps between steps of I which only changes the configuration
on Bx’l\Bm’l/Q, such that vertices in L, /241 won’t block the moves in I' and after finishing I",
we can change the configuration on B, ;\ B, /2 back to the original o(3). The construction of
I is specified below:

(1) Before starting I'. For each y € L, /9,2, 0 € A; implies that there exists a path I,
in T}, changing y from o, to oup(y)) = Mpp(y)) in one step. To see I'y is also a connected path
in B,;, we have to show that the parent of y won’t block I'y. The only neighbor of p(y) in
T, is y and the only move involving y in Iy is the last step changing y from o, to o,(y))-
The value of p(y) won’t block this last step because oy, is compatible with both o, and
Op(p(y)) (they are states of neighboring vertices in o). Now we will concatenate the I')’s for
each y € L,i/212 and change o, to oy (y))- After that, for each w € Ly 0, all vertices in Ly, o
are in state o, = 1,. The configuration on and below L, /42 will henceforth remain fixed
until we finish T'.

(2) Performing I'. For each step in I', the existence of B,;_1\B;;» might block this
move only if it changes the state of some vertex w € L, ;. Suppose it changes w from ¢; to
c2. Remember in the construction above, all vertices in L,, » have states 7,,. By part 1 of €,
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we can find c3 € [k] which is compatible with ¢, ¢; and 7,,. Now in order to change w from
c1 to ¢y, it suffices to first change the state of every vertex z € Ly, ; to c3, and then change w
from ¢; to c;. This construction keeps the configuration on and below L, ;242 unchanged.
(3) After I'. After the moves in I', the configuration in B, s is (07;),n). We can change
every vertex z € L, /511 back to 0, = 0, because at this moment its parent p(z) € L,/ and
all children of z in L ; have state n,) = op(,), which is compatible with ¢,. From there,
we can reverse the path I'y for each y € Ly /542 and change the configuration on and below
Ly /212 back to the original configuration o). This completes the construction achieving
o 22) =0 (2)- ]

Lemma 5.4.3. There exist constants C; > 1, Cy > 0 such that for alll > 1,
1 — pire < Cyexp(—C1). (5.4.2)

Proof. Fix x € T and o € Qp,. First if for all 1 <i < d, 2; € L, is free, then z is also free.
To see that, for any ¢ € [k], by connectivity condition there exists ¢ € [k] such that ¢ is
compatible with both ¢ and o,, we can first change all z; to ¢ in one step and then change
x from o, to c as the final step.

Now consider the set of y;;’s where y;; € L., 1 < Lo for 1 < i,j < d. If at most one of
the y;;’s is not free, say yi1 € L, 1, then for each i # 1, 2; is free and 2; can change in one
step to all states compatible with o,,,. Again by C, for all ¢ € [k] there exists ¢ € [k] such
that ¢’ is compatible with ¢, o, and o0,,,. By the construction above, we can change z from
0, to ¢ in one step, hence z is also free.

This implies if = is not free, then there exist at least two y;; € L, o that are not free. By
part 2 of €, there exists [y > 0, such that for all [ > [ we have 1 — pi"® < 1/d® and hence

ree d2 ree ree ree
Lo () (- <t pf < (-l

By induction, 1 — pfr*e < (1 — pfgee)(l"r’)(l*lom which completes the proof. O

Remark 5.4.4. Claim 5.4.2 and Lemma 5.4.3 are the two main places where connectivity
conditions are used: The first part of condition € is used in the construction of I'V. It might be
possible circumvented the assumption by using more carefully constructed paths. However
this would be purely technical and not the main interest of this chapter. The second part of
condition € is used to show that A, happens with high probability.

Note that Claim 5.4.2 implies that when restricted to A,, the fixed boundary Glauber
dynamics on By, is irreducible as a subgraph of the Glauber dynamic on the larger block
B,,;. It is possible to replace the current connectivity condition by general assumptions
bounding the probability of the later events directly.

Now we can finish the proof of Lemma 5.2.4, from which Theorem 5.1.1 follows immedi-
ately.
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Proof of Lemma 5.2.4. Let C = a(l/2+1—0)?/[(1—§)*u’(0, = )] be the quantity on the
left hand side of (5.2.3). It is enough to show that there exist constants l; > 2[5, K > 1 such
that for all [ > [}

K _
Proe (02 = ¢ [0~ 1) = o, = ) > ) < 8

To see the sufficiency, note that this is just equation (5.2.2) with 0, satisfying 1 — §; =
121 —=19).
Recall A, = {o € Op ,:Vze Lx 1242, % is free in o}. Lemma 5.4.3 implies that for some
constant C7 > 1, Cy > O and l >

E‘r~u (MB Z(AC)) = E‘r~uc<:uc(0 ¢ AT ‘ g~ T))
= Pypc(3y € Lyy240,y is not free )

< dl/2+2(1 pf;ge 2) 02d1/2+2 exp( Cl/z 2)

By Markov inequality,

*,T c ]' c
P, <MB:M(AT) > %> < 20K, (1] (A9) < Cd**2Chexp(—C{* %) -0, (54.3)

as | — o0. On the event {7 : u}; (AC) 561

*,T ,
KB <0z = C) 1
*,T / z,1 7 ,
np. (0p=c|oe )< W ) < pg, (00 =)+ Yok

1
Wy (0 =c|oeA) =g (0. =Cc,0eA) = pp (0. =C) — ok (5.4.4)

Combining the two results together we have

(0w ={) - ,uB (o= o€ A;) <6. (5.4.5)

Now splitting 3’ (0, = ¢ | 0 € A;) according to oz, .» and applying Lemma 5.4.1, we
have 7

NB;(% =d|oeA,)= u*B’;( = |oeA, op, e = U)NE’ZJ(UL,M/Q =n|oeA,)
= ZIU’C(U:E = | OLgue = 7])”2’;(011,1/2 =7 ‘ o€ AT) (546)
We would like to estimate the set of 7 such that p°(o, = ¢ [ or,,, = 1) has a large bias. Let

c c 1
B = {77 : ’ﬂ (O-x = | OLyijp = 77) —H (Ux = C/)‘ = 5}
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Theorem 5.2.3 implies that for [/2 > [y and some § > 0, we have P, ., (B) < =2, where
n ~ pu¢ denotes the measure p¢ induced on L, ;. Again by Markov’s inequality,

*,T ]- *,T C -
Prope(pp,, (0, ,, € B) > 5) < CErpepiy) (01, € B) = Cu’(B) < Ce 0 (54.7)

On the event {7 : u3" (o1, € B) < &} 0 {7 : pj ,(AS) < 56}, from (5.4.6) we have

pil (0w =d |oe Ar) — (o = &) < ) (0w = ¢ | op,, = 1) = p(00w = )| ] (0L, =1 | 0 € Ar)

]' T T
< Z 6,U*BVIJ(UL1/2 =1 ‘ o€ A‘f‘) + Mgz,l(ULl/z €B ‘ o€ A‘f‘)
neB¢

11 3
C 1+5 c=C (5.4.8)

where the last inequality follows from similar argument to (5.4.4).
Combining the result of equations (5.4.5) and (5.4.8), on the event {7 : uj’ (or,, € B) <

Shodr oy (A7) < 56} we have

T c 3 3 ()
/’L*B,zﬁl<0-x = C/) — U (Ux = Cl) < 5 + 6 — E

Therefore using the bounds from (5.4.3) and (5.4.7), for all I > 2,

/ c / 6 *,T 1 c 1
Proe (002 = ¢ 10~ 1) = s = ) > ) < PR, 0 € B) < ) + PO, (49) < 50)

< Cd?H2 exp(—Ci/%Q) + Ce 20 < 19

where the last step is true for large enough constant [ depending on d, Cy, Cy and C”. This
means that the strong concentration inequality (5.2.2) holds for K =6, §; = 1 — ;=(1 —0)
and [y = max{2ly, l~} Moreover, by taking [ large enough and changing the constant C' to
6C in (5.4.5) and (5.4.8), we can make K arbitrarily close to 1. O

5.5 Component dynamics version of fast mixing
results

In this section we prove Theorem 5.2.2. The theorem was originally proved for block dynam-
ics in [MSWO04]. Here we give a modification of their theorem adapted to the component
dynamics by roughly “adding stars” at all occurrence of B, ;. We will only state the key steps
and refer the details to [MSWO04]. For the remainder of this section, we let © = p5, Q@ = QF.
Recall that T, = T,\{z}. First we define the entropy mixing condition for Gibbs measure to
be the following:
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Definition (Entropy Mixing). We say that p satisfies EM* (I, €) if for every z € T, n € Q
and any f > 0 that does not depend on the connected component of B,,, i.e. f(o) =
pg (f),Vo € Q, we have Enty, [ug, (f)] < € Ent], (f) where Ent7, means the entropy w.r.t
pr, -

Let puin = minggepp{M(c,c’) : M(c,c’) > 0}. By the Markov chain construction of
configurations, it satisfies that puin = ming .o {ug (0, = ) : ¢, are compatible}. The
following theorem relates the entropy mixing condition to the log-Soblev constant.

Theorem 5.5.1. For any [ and § > 0, if p satisfies EM*(I, [(1 — 6)pmin/(l + 1 — 6)]?) then
Ent(f) <3 - & (f)-

To prove Theorem 5.5.1, we need the following modification of Lemma 3.5 (ii) of [MSWO04].
The proof follows from its analog in [MSWO04] immediately once we replace v4, Ent 4, vg, Entg
there with vy , Enty ,vp | Ent*B“ respectively.

Lemma 5.5.2. For any € < p2.., if u satisfies EM*(, €) then for every x € T, any n €
and any f = 0 we have Ent]. [uz ()] < % - p) [Enth (f)] + < - [Enty (f)] with
€ = \/g/pmin-

Now plugging € = [(1 — §)pmin/(I + 1 — §)]* into Lemma 5.5.2 verifies the hypothesis of
the following claim, which then implies Theorem 5.5.1:

Claim 5.5.3. If forevery x €T, ne Q) and any f >0

Bt [z, ()] < e Bty (/)] + + 12 - i [En, ()], (5:5.)

then Ent(f) < §- &/ (f) forall f >0

Proof. First we decompose Ent(f) as a sum of Ent}, [us (f)]. Suppose T have m levels,
consider @ = Fy « Fy < --- < F.1 = T, where F, is the lowest i levels of T. By basic
properties of conditional entropy (equation (3), (4), (5) of [MSWO04]) and Markov property
of Gibbs measure, we have

m—+1 m—+1

Ent(f) == > plEntp(up_, ()< DY) Do plEnty, (ur_, ()] < ) ulEnty, (ug, ()]

i=1 i=1 zeF;\F;_1 zeT

(5.5.2)

Denote the final sum by PEnt(f). For each term in the sum of PEnt(f), apply (5.5.1) to
9 = U1,\B, ,u08,,(f) and perform the decomposition trick of (5.5.2) again, we have for every
xeT and n e

Enth g, (/)] = Bnt, g, (9)] < e [Bntiy (0)] + 2 -, [Bntr, (9)]
<o lEnty (D + 10N i [But g, (1))

yeBz,luaBz,lv?;Hém
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Now sum over x € T" and take expectation w.r.t. pu for n € (2. Note that the first term of the
last line sums up to & = >, u(Enty (f)) and each y in second term appears in at most
[ blocks, we have

PEnt(f) < c- & Z >, wlEntr, (ug ()]
2€T yeB, V0B, |, y#x
<o €+ 17‘5 1Y Bt (g, (P)] = ¢~ €8(/) + (1 — 6) - PEue(f),
and hence Ent(f) < PEnt(f) < §- &} O

Given the result of Theorem 5.5.1, it is enough to show that for some constant «, con-
centration inequality of (5.2.2) implies EM* (I, [(1 — 6)pmin/(l + 1 — §)]?). For convenience of
notation, we define the two following functions for each ¢ € [k]:

plalo, = ) 1 N )
ge (o) = = UHop =} g0 =g, (90).
u(o) plo,=¢) 7 P
Letting &' = (1 — §)?*/a(l + 1 — §)?, we can rewrite (5.2.2) as
i ( g:,(l) — 1‘ > 5') <e (5.5.3)

Theorem 5.5.4. There exists a constant C' such that if (5.5.3) holds for some ' = 0 and
all pairs of states c¢,c’ € [k], we have Ent[us(f)] < CO'Ent(f) for any f = 0 satisfying
flo) = M*B’:l(f),Va € ¢, i.e. EM*(1,C0") holds.

Proof. Since for any f’ > 0, Ent(f’) < Var(f')/u(f), we can write

(] _ 1
N~ A

Entlje ()] < 2oL &

(i

_ L COV(gc’a f)2 o COV(Q:’(l)v f)2

~ulf) Z p = Covlge S < mas = T S W TGy
(5.5.4)

where covariance is taken w.r.t. p and the last step is because f(o) = ,u*B’:l( f). Now using
Lemma 5.4 of [MSWO04] (cited below) with

(1)
fr= gdc/l)H L - ﬁ

and noting that g:,(l)HoO < |9¢ ]y < Pmin, We have Cov(gj,(l),f)2 < Co'u(f)Ent(f) for some

constant C' = C'/p2,,,. Plug it into (5.5.4), we get Ent[uz(f)] < C&Ent(f). O
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Lemma 5.5.5 (Lemma 5.4 of [MSWO04]). Let {Q,F,v} be a probability space and let f, be
a mean-zero random variable such that | f|l, < 1 and v[|fi| > 6] < e for some § € (0,1).
Let fo be a probability density w.r.t v, i.e. fo = 0 and v(fy) = 1. Then there exists a
numerical constant C' > 0 independent of v, f1, fo and 0, such that v(fifs) < C'dEnt,(f2).

Proof of Theorem 5.2.2. Fix a = C/p2;, where C is the constant in Theorem 5.5.4. The
desired result follows the combination of Theorem 5.5.1 and 5.5.4. OJ

5.6 Results for k-coloring

In this section we prove Theorem 4, for which it is enough to verify the connectivity condition
€, in particular to show that pf*® — 1, as [ — o0. In fact for the coloring model, as we will
show in a moment, a vertex can change to all k£ states in one step if all its children can
change to 2 or 3 states in one step. We will first formalize this idea by defining the “types”
of vertices and then analyze the recursion of this new definition.

Recall the definition that for given configuration o € () with o, = ¢, we say that the root
can change to color ¢ in one step if and only if there exists a path o = ¢%,0!,... 0" € QF

such that for each i, 0%, 0**! differs by only one vertex and

i c 0<i1<n—1
o, = ;o .
1=n

Let C(p) denote the set of colors the root can change to in one step (including its original
color). We define the type of root to be rigid (type 2, type 3, resp.) if |C(p)| =1 (= 2, = 3,
resp.). For general vertex x € T, not necessarily the root, we can similarly define C'(x) and
rigid, type 2, type 3 by treating x as the root of subtree T, and considering o|r,. Set C(x)
is a function of o7, and is independent of the rest of the tree.

Let p] = p(the root is rigid), where y; is the Gibbs measure on I-level tree with free
boundary condition. Define pl(Q),pl(?’) similarly, we have p] + pl(Q) + pl(?’) = 1. For tree T
with [’ > [ levels and vertex x € T that is [ levels above the bottom boundary, noting that

wy|r, =, we also have

p (@ is rigid/type 2/type 3) = pp |z, (« is rigid/type 2/type 3) = pj /pi” /p}”.

The definition above is independent of the parent of x. In order to analyze these probabilities
recursively, we introduce one further definition describing how the type of one vertex affects
the type of its parent. Recall that p(z) denotes the parent of z. Fix a configuration o € Q7.
For any z € T = T\{p}, we say x is bad if C()\{0p@} = {0.} and good other wise. Observe
that o, is always an element of C'(x). If z is good, then |C(x)\{opw)}| = 2, i.e. x has at
least one more choice other than o). Note that the event that x is bad depends only on
O"Tp(z) and given o,, for z; € L, 1, events {z; is bad} are conditionally i.i.d. and independent
of the configurations outside T,. Hence, by similar argument, we can define p? = 1 — p{ =
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py(x is bad). The relation between the type of a vertex and its goodness/badness is given
in the following lemma.

Lemma 5.6.1. For !’ > 1> 0 and x € T [ levels above the bottom boundary,

1
p(x is bad | x is rigid)=1, py(x is bad | z is type 2):m,ul/(a: is bad | z is type 3)=0,

(5.6.1)
(2) 3, k2 (2)

Hence p} = p} + 21, 0] =" + 1=2p,”.
Proof. The first and third equation of (5.6.1) is obvious as |C'(z)| and |C(2)\{opw) }| differs
at most by one, and the equality about p! and p{ follows immediately from (5.6.1). Hence
it lefts to show the second equation. Given |C(z)| = 2, x is bad if and only if 0,0, € C(x).
Therefore the conditional probability on the left hand side of the second equation equals to
P(C(z) = {op@), 02} | |C(2)| = 2).

Note that C(x) is a function of oy, , in particular it is conditionally independent of oy,
given o,. By symmetry, the distribution of C(x)\{c,} given |C'(z)| and o, is the uniformly
distribution on the (| Clgjx_)|171) ways of choosing |C'(x)| — 1 elements from [k]\{o,}. Hence

P(C(2) = {0p), 0z} | [C(2)] = 2)

]

The next lemma follows a similar argument to Claim 5.4.2 and Lemma 5.4.3, and shows
that in order to bound the probability of a vertex being free, it is enough to bound the
probability of being bad.

Lemma 5.6.2. Suppose k = 4. For any o € Qr and x € T, if every child of x is good, then
x s free.

Proof. Fix ¢ € [k]. Since all children of x are god, for each child y; there exists ¢; €
C(yi)\{c, 0.}. Therefore to change x from o, to ¢ in one step, we can first change the color
of every y; to ¢; in one step and then in the final step change = from o, to ¢. Since this is
true for all ¢ € [I], we conclude that z is free. O

Now we will show that for large enough k, in the region of non-reconstruction, the
probability of seeing a bad vertex [ levels above bottom decays double exponentially fast in (.
In fact we will prove the result for a region slightly larger than the known non-reconstruction
region , which is d < k[Ink + Inlnk + ], for any 5 <1 —1In2 (see [Sly09]).

Theorem 5.6.3. Suppose 8 < 1, For sufficiently large k and d < k[lnk + Inlnk + 5], there
exists a constant ly depending only on k and d, such that for |l = ly,

b < exp(—(k/2)! 7). (5.6.2)
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We first finish the proof of Theorem 4 using Lemma 5.6.2 and Theorem 5.6.3.

Proof of Theorem 4. Tt has been shown in [Sly09] that for any 5 < 1 — In2, there exist
ko = ko(B) such that for any & > ky and d < k(Ink + Inlnk + (), the k-coloring model is
non-reconstructible on d-ary trees. Therefore by Theorem 5.1.1, it is enough to show that
the connectivity condition holds. The first part of the condition is obviously true for k£ > 4.
For the second condition,

1
1 —pfre =P, (root is not free) < P(3x € L1,z is bad) < dp}_, < dexp(—(ék)l_lo).
The last term in the equation above tends to 0 as [ tends to infinity, which completes the
proof. ]

The proof of Theorem 5.6.3 is split into two phases: when p{ is close to 1 and when p? is

smaller than id.
€

Lemma 5.6.4. Under the assumption of Theorem 5.6.3, there exist a constant ly depending
only on k and d such that p;’o <L

Proof. This proof is similar to Lemma 2 and Lemma 4 of [Sly09]. We recursively analyze the
probabilities as a function of the dePth of the tree [. For [ = 0, T consist only the bottom
boundary and hence pj = 1 Po 0,p% = ph + k—lp(()) =1

For [ > 1, suppose without loss of generality that the color of the root is 1 and its
children are zy,...,7q4 € L;. Let F denote the sigma-field generated by (o,,)% , and let
d. = |{i,0., = c}| be the number of children with color ¢ for 2 < ¢ < k. By definition,
the sizes of C'(z;)’s and hence the types of z;’s are independent of JF and i.i.d. distributed.
Conditioning on F and (|C(z;)|)E_,, set C(x;)\{o,} is uniformly randomly chosen among all
subsets of [k]\{o.,} with (|C(x;)] — 1) elements. Therefore the number of bad vertices of
color ¢ given F is follows the binomial distribution with parameter Bin(d., p? ;).

Following similar argument of Lemma 5.6.2, the root can change to color ¢ in one step if
and only if none of the z;’s with color ¢ is bad, which happens with probability (1 — p? ;)%
Therefore we have

k

1 k
= pf—l—mpl@) = HE [1—(1—py) 2 l (1-p)_y) H (1-Q=pl)™)

c=2 /=2 c#c!

Viewing the right hand side as a function of (da, ..., dy), increasing d. means adding more
vertices of color ¢, which increases the probability of blocking the move of the root. Therefore
p? is an increasing function w.r.t every d.. By symmetry, (d, . . ., d) follows a multi-nominal
distribution. Fix g < f* < 1 and let JC be ii.d. Poisson(D) random variables where
D =Ilnk+Inlnk + g*. We can couple (ds, ..., d;) and (d~2, o ,d’k) such that (ds,...,dy) <
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(dy, ..., d) whenever Z > d. Letting p = P(Poisson((k — 1)D) < d), the recursion
relatlonshlp satisfies
&
Pl =p + —pl HE (L=l )]+ 17— > E[(l —pp )% [T =@ =p %) ]
=2

a
)
Q

y
Il

N}
5]

+
ﬁ\

-1 k—1 k—2
= (L=exp(—=pj D))" + — exp(=py D) (1 = exp(=p|_, D))"~ +p

= (1 —exp(—py D))" " + p < exp (—(k — 2) exp(—p}_, D)) +p

where the last step follows from the fact that (1 —r)* <e ™ for 0 <r < 1.

The rest of the proof resembles the argument of Lemma 3 of [Sly09]. Let f(z) =
exp (—(k — 2) exp(—xD)) + p, yo = p} = 1 and recursively define y; = f(y;_1). Since f(z) is
an increasing function of z, we have that p? < y; for any [ > 0. Hence it is enough to show
the existence of [ such that y;, < é.

Note that £ exp(—z) |,—o= —1. For any sufficiently small ¢ > 0, there exists § > 0
such that for any 0 < =z < 6, e® < 1 — (1 — €)z. Let k be large enough such that

(k—2)exp(—D) = 151 le’ﬂ < §. We have

w1 <1-(1-ok

Recall our choice of 8 < f* < 1 and (k—1)D —d > (* — )k + o(k), by Hoeffding’s
inequality, the error term p satisfies that p = exp(— Q(\%)) = 0o(k™?) = o(d™'). Therefore,
for large enough k, |
2elnk
Repeating the arguments above shows that y; is decreasing in [ as long as (k—2) exp(—y, D) <
. Pick e small enough such that (1 —e)e ™ > e~! and choose ' > r > 0 such that
(1—€)e ™ >e (1 +7'). Tt follows that

y<1— +o(k <1 =y

l—y=21—(p+1—(1—¢€)(k—2)exp(—yD))

_ 9)—F*
(1-— e)% exp((1 —y) Ink) —
> %ﬂ —e)e (L) —p

>+ 1 —y)—p=Q+7)(1—y)

where the second last inequality follows from inequality e* > ex, and the last inequality
follows from that 1 —y, = 1 —y, = O(53) while p = o(k™?). Therefore after a constant
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number of steps, there must exist some [ such that (k — 2) exp(—y;D) = §. Now choose «, o/
such that e™® < o/ < a < 1. When £ is large enough, 4,1 < p+ €% < o’ < 1. Then again
for k large enough, exp(—y;41D) = exp(—a/D) = exp(—alnk) = k~*. Therefore for k large

enough
R 1
Yro < p+exp(—(k—2)exp(—y D)) <p+ GXP(*ﬁk‘l ) < —.

]

After first [y levels, we cannot use the same method because the error of Poisson coupling
becomes non-negligible; but meanwhile, p} is small enough such that bounding the total
number of bad children is enough to finish the proof.

Proof of Theorem 5.6.3. In order for a vertex to be bad, there must be at least & — 2 of its
children which are bad. Therefore,

d _ _
e (1) 0h < @t

Let [y be the constant in Lemma 5.6.4. We complete the proof by inducting on [ for [ > lj:
If | = o, then p) < & < L. If for | > Iy, p} satisfies (5.6.2), then for k large enough such
that In(2kInk) < ¢k and k — 2 > 3k,
Py < (dp))F2 < (2knkexp (—(k/2)"0))" ™ = exp(k — 2) (= (k/2)' " + In(2k In k))
2
< exp <_é§lk : g(k/Q)l_lo) = exp (—(k/2)""7"0).

Therefore (5.6.2) holds for all [ = . O
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