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ABSTRACT OF THE DISSERTATION

Aspects of Many-Body Physics and Machine Learning

by

Steven Matthew Durr

Doctor of Philosophy in Physics

University of California, Los Angeles, 2022

Professor Sudip Chakravarty, Chair

After an introduction which gives a brief overview of the relevant machine learning topics,

we begin chapter 1 by introducing the phenomenon of many-body localization (MBL). We

emphasize its significance by contrasting many-body localized states with thermal states,

and describe efforts to distinguish the two phases. We then move on to describe the phe-

nomenological picture of MBL which makes use of local integrals of motion (LIOMs). This

enlightening picture explains many of the features of MBL, and has inspired various renor-

malization group approaches to understanding the phase. We illustrate the intuition for this

picture using one such numerical RG scheme known as the Spectrum Bifurcation Renormal-

ization Group, which allows one to construct iterative diagonalizing unitaries and obtain a

LIOM representation of a given Hamiltonian.

After introducing the topic of many-body localization, we describe an application of un-

supervised learning to the problem of distinguishing distinct phases within the MBL regime.

This begins with a discussion of many-body localized phases, and the difficulty of identifying

them. We then give an approach to this problem using a form of unsupervised learning, in

which eigenstates are classified by clustering them according to their entanglement spectra.

This is compared to the state of the art approach, which uses supervised learning. Despite

the comparable results of the two methods, the unsupervised technique introduced relies

on no labeled data. Potential applications as well as limitations of the method are then
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described.

In chapter 2, we recount recent research which applies a physics-based approach in or-

der to understand the training dynamics of a class of machine learning models known as

generative adversarial networks (GANs). This begins with an introduction to GANs, and a

description of GAN training. Emphasizing the difficulty of training GANs, we then outline

a very common problematic phenomenon within GAN training, known as mode collapse, in

which outputs fail to become sufficiently diverse.

We then distill the key features necessary to observe this phenomenon of GAN failure,

and construct a toy model for GAN training in which we can study it with more clarity.

Finally, within this toy model, we are able to identify a phase transition, separating the

regime of successful training from the regime of mode collapse. Additionally, we diagnose

the source of this transition. We conclude by remarking on potential applications of such a

result to a more realistic GAN setting.
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Introduction

The power of machine learning (ML) applications over the past decades has brought the

field to prominence [LBD89, KSH12, MSC13, GPM14, MKS15, HZR16, VSP17, BMR20].

Broadly, the purpose of machine learning is to extract patterns present in data, and through

advancements in both ML tools and computing power, this has been performed with great

success. ML tools are now used regularly to analyze extremely large and convoluted data-sets,

far too complex for humans to parse. State-of-the-art ML approaches, such as deep learning

[LBH15], have achieved near (or beyond) human-level performance on many tasks previously

assumed to be inaccessible to computer algorithms, including translation [VSP17, BCB15],

automatic driving [KST21], and strategic games such as Go [SHM16].

The success of machine learning has also encouraged diverse interdisciplinary directions

of research. In particular, ML has found relevance within the physical sciences [CCC19,

MBW18], where researchers regularly encounter profoundly large and complex data-sets,

and are tasked with understanding the structure present within them.

Quantum mechanics, for example, is naturally accompanied by data which might live in

an extremely large vector space of exponentially growing dimension. In the past, faced with

the problem of understanding the underlying physics from these impossibly complicated data-

sets, physicists have turned to techniques such as random matrix theory [Wig55, Wig57].

By applying tools from random matrix theory to the spectra of many-body Hamiltonians,

physicists have been able to draw important conclusions concerning, for example, ergodicity.

In recent years, The strength of machine learning when applied to large data-sets has

motivated its use by physicist to analyze forms of quantum data. In pursuing this ap-

proach, physicists have encountered remarkable success. By using a simple form of neu-

ral network called a restricted Boltzmann machine, it was demonstrated that neural net-

works could efficiently represent many-body ground states using relatively few parameters

[CT17, MCC19]. From this starting point, other types of neural networks have been suc-
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cessfully applied to versions of this problem, with later researchers studying neural network

wavefunctions built from models typically used for modeling language, or for image recogni-

tion [HGH20, LSC19, LDH21, GD17].

Beyond ground state ansatze, machine learning has been applied to the problem of pre-

dicting phases of matter [Wet17, Wan16, WS17]. This is particularly useful in cases where

distinct order parameters are not present. In this work, we will describe a technique for

predicting out-of-equilibrium phases of matter, and an application which yields impressive

results compared to the best available alternative.

As we will observe, the strength of machine learning comes at a cost. Although analyses

and predictions provided by ML models can be extremely useful, the outputs of these models

are often difficult or impossible to rigorously explain. Indeed, the profound success of certain

ML tools such as deep learning has preceded by far the understanding of how these tools

work[RYH22]. Therefore, machine learning has become not only a tool for researchers,

but a topic of study in its own right. In recent years, physicists in particular have applied

techniques from their field to study the training dynamics of machine learning models, explain

the predictive tendencies of neural networks, and lay the mathematical foundations for the

theory behind deep learning [RYH22, MS14, HMS21, FT21].

The application of physics to understand new technologies is not novel. The progress

of deep learning in the 21st century has been fueled by technological advances in comput-

ing, rather than theoretical foundations. This fact has been compared to the progress of

steam engines in the 19th century, fueled by industrial advances [RYH22]. Physicists, with

the motivation of understanding these engines [CTC], developed thermodynamics and later

statistical mechanics.

Along with researchers from other fields, modern day physicists have found themselves in

an analogous position: tasked with applying theoretical tools to explain the success of neural

networks and deep learning. Consequently, concepts from high-energy theory [HMS21],

condensed matter theory [MS14], spin glasses [She93], and statistical physics [FT21, Yai19]

have found applications within the study of neural networks and deep learning. In this

2



vein, we will also describe an approach to understanding the training of GANs using the

perspective of dynamical systems.

Generally, machine learning refers to the class of algorithms which are able to improve

their own performance through exposure to data [Bis96, HTF01]. Such a broad definition

can apply to approaches as simple as linear regression, or as complex as deep learning. We

therefore provide a brief overview of the topics in ML which are here relevant.

Supervised Learning

In supervised learning, a function fW with parameters W is trained to produce a desired

output, given a corresponding input.

fW : RN → Rn

Training is done by constructing a loss function, L, (which defines the error of the model)

based on a set of training data, {(xi, yi)}, comprising inputs, xi, and corresponding labels

yi.

When inputs (in RN) are mapped to continuous labels (in Rn), this procedure is known

as regression. Here, such a loss function might be given by the mean squared error (MSE):

L = MSE =
1

D

D∑
i

(yi − fW (xi))
2

Where D is the size of the dataset. During training, parameters, W , are updated to minimize

this loss. Once the minimizing parameters, W ′, are found, we may then use the trained

function fW ′ as a predictor.

In the case of discrete categorical labels, this problem is called classification. In classi-

fication, the training labels take the form of integers indexing the correct category of their

corresponding input: xi ∈ RN , yi ∈ {1, 2, ..., n}. Functions used for classification have

n-dimensional outputs, where n corresponds to the number of categories. We would like to
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interpret the output of fW (xi)j to obtain a probability for a data point, xi ∈ RN , belonging

to category j. To do this, we normalize fW in such a way that its outputs are mapped to

positive numbers which sum to 1. Typically this is done using the softmax function:

softmax(⃗l)i =
exp(li)∑
j exp(lj)

=
exp(li)

Z

which we write above using Z, noting the similarity to probabilities within a canonical

ensemble. Indeed, the form of this ratio can be justified in both machine learning and

physics through maximum entropy arguments (in fact, the concept of a ‘partition function’

is used throughout the field of ML [GBC16, HTF01]). The inputs to softmax, li ∈ R, are

referred to as logits.

We may then interpret the output of our function as follows:

P (xi ∈ Categoryj) = softmax(fW (xi))j

Using a training data set, we find optimal parameters, W ′, such that softmax(fW ′(xi))yi

is maximized, while for j ̸= yi, softmax(fW ′(xi))j is minimized. This is achieved through

the minimization of some loss function which characterizes the error of the prediction. The

cross-entropy loss function is often used for this purpose:

L = − 1

D

D∑
i

log(softmax(fW (xi))yi)

If training is successful, then softmax ◦ fW ′ can be used as a function which probabilistically

categorizes our data into n sets.

Unsupervised Learning

In unsupervised learning, the training data is unlabeled, instead of (data, label) pairs,

{(xi, yi)}, we use a data-set {xi}, and extremize some objective in order to identify structure

within the data.
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An extremely simple example of such a problem that of identifying the mean of a dataset,

{xi}. We define a function: L(y) = 1
D

∑
i (y − xi)2. When this is extremized, we reveal the

structure of the data, and find that y takes on the value of the mean of {xi}.

In physics, the variational method can be interpreted as a form of unsupervised learning,

as it applies this same approach of extremizing an objective to extract features [SN17]. A

variational ansatz (trial wavefunction), |ψθ⟩ is introduced with parameters θ. The energy

of this state, E(θ) = ⟨ψθ|H|ψθ⟩ is then minimized. The minimum energy found, E(θ′),

represents an upper bound of the ground state energy, while |ψθ′⟩ can often be used to

approximate the ground state.

Another common application of unsupervised learning is clustering, in which data is

separated into groups based on some measure of similarity. Different clustering algorithms

exist, with a wide variety of distinct approaches.

With such an open criteria, unsupervised learning comprises an extremely broad range

of algorithms.

Neural Networks

Neural networks (also referred to as artificial neural networks) are a class of functions modeled

after the structure of biological neurons and their connections within brains.

Roughly, biological neurons function by combining impulses from other neurons. If the

combined signal passes a certain threshold, the neuron fires, sending signals to other neurons.

This can be abstracted using the following functional form:

z = ϕ

(∑
j

wjxj + b

)

Where ϕ : R → R, referred to as an activation function, is some nonlinearity which gives

the activation of the neuron as a function of inputs. Typically, an activation function is
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some monotonically increasing function1 with common choices including2 ReLU: max(0, x),

sigmoid: 1/(1 + e−x), and hyperbolic tangent [GBC16].

The parameters, wj, scale the signals of the inputs, and are learned during training. The

parameter b represents an overall bias, and is also learned during training. To describe a

layer of neurons, with each neuron having an index j, we may write

zi = ϕ

(∑
j

wi,jxj + bi

)

In a feed-forward neural network, a layer of neurons is used as the input to a subsequent

layer. This can be repeated to add depth to the neural network. The output of such a

fully-connected neural network with parameters θ = {wl
i,j, b

l
i} and depth d, fθ(x), can then

be expressed

z
(1)
i = ϕ(w

(1)
i,j xj + b

(1)
i )

z
(l+1)
i = ϕ(w

(l+1)
i,j z

(l)
j + b

(l+1)
i )

f i
θ(x) = z

(d)
i

The practice of using many layers is known as deep learning [LBH15, GBC16].

Different architectures for neural networks exist, but all share the common feature of a

nonlinearity applied to a linear combination of inputs, typically done in an iterative way.

Stochastic Gradient Descent

Neural networks (as well as other parametrized models), fθ, with parameters θ, are trained

to minimize a loss function, L(θ), which characterizes the cost associated with the model.

For instance, L might correspond to the mean squared prediction error of a neural network

1Note that non-monotonic activation functions have been used successfully in practice.

2ReLU is short for Rectified Linear Unit
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on a data-set [HTF01]:

L(θ) =
1

D

D∑
i

(yi − fθ(xi))2

During training, we wish to find parameters which minimize the value of this loss function.

This could be done through gradient descent, iteratively updating the parameters according

to

θt+1 = θt − η
dL(θ)

dθ
|θ=θt

using some step size η.

In practice, however, computing the error over an entire data-set can be computationally

infeasible. An alternate approach is to, at each step of training, sample a smaller mini-batch

of data of size d. The resulting gradient of this loss is now a function of both the parameters,

θ, as well as the set of specific data-points selected, which are effectively sampled randomly.

Therefore the gradients obtained are stochastic, and the method is known as stochastic

gradient descent.

Stochastic gradient descent (SGD) has been referred to as the “workhorse of machine

learning” [RYH22]. Aside from making training computationally easier, SGD has in fact

been shown to actually improve the quality of the loss minima discovered by neural networks

compared to those found through gradient descent, aiding in generalization [FT21]. Various

modifications of simple SGD exist. Some of which incorporate momentum, some which

modify the training rate over the course of training [GBC16]. In general, however, these

work through the same basic mechanism.
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CHAPTER 1

Unsupervised Learning for Probing Many-Body

Localized Phases

This chapter is adapted from the publication:

Durr, S., Chakravarty, S. Unsupervised learning eigenstate phases of matter., Phys. Rev. B.

100(7):075102, Aug 2019

1.1 Introduction

Thermalization within a closed quantum system can be expressed in terms of the long time

expectation of a local observable. In thermalizing systems – even those which are isolated –

these expectation values are observed to reach their corresponding thermal value. This phe-

nomenon prompted an explanation in terms of the Hamiltonian eigenstates[Deu91, Sre94],

referred to as the eigenstate thermalization hypothesis (ETH). The ETH states that local ob-

servables of eigenstates will have an expectation which matches the microcanonical ensemble

at that energy:

⟨E|O|E⟩ =
1

N (E,∆E)

∑
|E−Eα|<∆E

Oα,α

This rather profound statement implies that thermalization occurs within a single eigenstate.

When the ETH is true, local observables are guaranteed to reach their thermal values.

Eigenstates obeying the ETH are highly distributed. Under time evolution, sums of these

8



thermal eigenstates dephase, and local information quickly becomes inaccessible as it is

distributed throughout the system [ODR08]. The full system is able to act as a bath to its

subsystems.

The ETH is believed to apply to all non-integrable systems, with the only robust ex-

ception being those which display many body localization (MBL). Many-body localiza-

tion (MBL) is the generalization of Anderson localization to interacting systems [BAA06,

AAB19]. Given sufficiently strong disorder, transport drops to zero, and the system fails

to thermalize. Such a system will preserve the initial conditions even after infinite time

has passed. With the enticing possibility of preserving quantum information, and encour-

aged by the development of experimental advancements [MIQ22, AC17], MBL has become

a prominent area of research.

The area-law entanglement and localization properties of MBL systems has motivated a

phenomenological picture of the phase. Using the existence of an extensive number of local

conserved operators, τ zi (called LIOMs), the description expresses MBL Hamiltonians in the

form [CKV15, AAB19, KCA14]

H =
∑
i

hiτ
z
i +

∑
i,j

Ji,jτ
z
i τ

z
j +

∑
i,j,k

Ji,j,kτ
z
i τ

z
j τ

z
j + · · ·

where the interactions decay exponentially with distance. Here, the operators, τ zi , can be

mapped to a Pauli through a sequence of local unitary rotations: τ zi = UσzU † [CKV15,

Imb16]. This perspective has inspired the use of approximate methods to study properties

of MBL [YQX16, SBY17].

One such method which gives considerable insight is the Spectrum Bifurcation Renor-

malization Group (SBRG) [YQX16]. Using SBRG, it is possible to approximately map a

strongly disordered Hamiltonian in the MBL phase to its LIOM representation. An example

of such a transformation is shown in Figure 1.1

Although conceptually useful, methods which rely on the properties of MBL may fail

near the thermal phase, when resonances arise.
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Figure 1.1: Above we depict a strongly disordered Hamiltonian (described in more detailed
in the first chapter’s appendix (1.6.1.2)). To the left is shown the original Hamiltonian, with
darkness indicating the strength of the terms. On the right is shown the version of this
Hamiltonian expressed using LIOMs. Note that the weakest (faintest) terms in the LIOM
picture are those which are the longest-ranged. This mapping was obtained through the
SBRG algorithm [YQX16], which provides a clear connection to the phenomenological MBL
Hamiltonian from a strongly disordered starting point.

Another useful vein of research applies exact diagonalization to Hamiltonians in order to

understand the features of MBL systems and probe the relevant phase transitions [OH07,

PH10a]. In this chapter, with the additional use of tools from machine learning, we will use

this approach to study eigenstate phases.

1.2 Unsupervised Learning for Identifying Phases

Recently, machine learning has been applied to the task of identifying phases of matter –

particularly in scenarios in which local order parameters are not available [VKK18, Jö18,

CM17, SRN17, Wet17, AMH19, RS18, CVN19, JAM18, Wan16, WS17, BAT17, BCM17,

ZK17, CT17, LN18, ZMK17, OO17, NLH17, HSS17, HDW18]. Approaches have largely

focused on the application of supervised learning. Using this technique, data is sampled

from points in parameter space known to belong to a certain phase. Some function (often a

neural network) is then trained to predict the phase given input data. If the function is able

to effectively generalize, it is then possible to apply it to data coming from points across
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the parameter space. This allows one to produce a phase diagram, and gain insight into the

underlying physics.

Techniques from unsupervised learning have also been shown to be effective at identifying

phases [Wet17, RS18, JAM18, Wan16, WS17, BAT17, CVN19, HSS17, HDW18]. When

applied to the 2D Ising model, for instance, tools such as autoencoders have been able to

extract a local order parameter [Wan16, HSS17]. In addition, clustering techniques have

been used to accurately distinguish spin data known to correspond to distinct topological

sectors [RS18].

Here, we expand on work applying unsupervised learning towards identifying phases.

Using readily available clustering algorithms, we explore the parameter space of a system

known to display many-body localization and eigenstate phase transitions. In particular,

the problem we study has been effectively treated using supervised learning [VKK18, Jö18],

which, when compared to conventional techniques, was able to predict the sharpest phase

boundary to date [VKK18].

We therefore use this supervised approach as a starting point from which to compare our

unsupervised method, and find that we are able to produce highly similar results. Notably,

our method relies on no separate training data, no prior knowledge of the phase space, and

even no explicit assumption of the number of phases present.

We conclude with a discussion of what can be learned from this success, as well as the

role and usefulness of machine learning algorithms for the task of identifying phases.

1.3 Clustering Many-Body Localized Phases

Generally, an isolated interacting quantum system is said to display many-body localization

(MBL) if it fails to thermalize under its own unitary time evolution. On the other hand,

a quantum system is said to be thermal if it is able to serve as its own heat bath. In

addition, many-body localized phases exhibit area law entanglement entropy scaling, while

in the thermal phase entanglement entropy is extensive and obeys a volume law. Different
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MBL phases exist, displaying different symmetries and topological order. These phases are

difficult to realize, as they require isolation from a thermal environment. However, MBL

phases have been produced in experiment in, for instance, the context of one-dimensional

strings of ultracold atoms [SHB15]. The transition of a state among thermal and MBL

phases represents a dynamic eigenstate phase transition – for which an extensive theoretical

description does not currently exist.

Here we use clustering algorithms to analyze eigenstate phase transitions within the

transverse-field Ising model in the presence of interactions and disorder:

H = −
L∑
i=1

(
Jiσ

z
i σ

z
i+1 + hiσ

x
i + λ(h̄σx

i σ
x
i+1 + J̄σz

i σ
z
i+2)
)

Above, σα
i are the Pauli matrices and {Ji} and {hi} are log-normal distributions with re-

spective means J̄ and h̄, and the standard deviations of their logarithms equal to 1. We use

a length 12 spin chain with open ends. Note that our Hamiltonian has a global Z2 symmetry

given by P =
∏L

i=1 σ
x
i .

We use this model largely because its limits have been previously studied, and are known

to exhibit distinct eigenstate phases [HNO13, PRA14a, KBP14, Fis95a]. In particular, for

h ≫ L, λ, the eigenstates are expected to asymptotically correspond to product states in

the σx basis (e.g. | ←←→← · · ·⟩). In this limit, the system is said to exhibit a many-

body localized paramagnetic phase (MBL PM). In the opposite limit of J ≫ h, λ, the states

resemble global superpositions of spins in the σz basis with frozen domain walls. These are

so-called Schrodinger ‘cat’ states, and are of the form 1√
2
(| ↑↓↑↑ · · ·⟩ ± | ↓↑↓↓ · · ·⟩). This is

the many-body localized spin-glass phase (MBL SG). Finally, in the limit of λ≫ J = h the

system is expected to be in a thermal phase, with the entanglement entropy of the states

showing volume law scaling, rather than area law scaling.

In addition, the model is self dual about Log(J) = Log(h). Therefore, up to the effects of

finite size, we expect to observe symmetry about Log(J)−Log(h) = 0 in the phase diagram.

A further reason we use this model is that its phases have been previously analyzed
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using supervised learning [VKK18, Jö18]. In [VKK18], the authors use a neural network to

extract eigenstate phases given the entanglement spectrum. They compare their results to

those of the standard approach, in which the standard deviation of the entanglement entropy

is calculated across parameter space. The authors find that the supervised method is able

to identify phase boundaries with far greater precision than the conventional alternative.

Because supervised learning has been shown to provide an unmatched degree of clarity,

this highest-precision approach is our natural point of reference. Therefore, to evaluate the

success of our unsupervised analysis, we will compare our results to those found through the

use of supervised learning following the procedure of [VKK18].

1.3.1 Producing Data

We vary two parameters: λ and ∆Jh := Log(J) − Log(h), and obtain data for a grid of

points in parameter space where λ ∈ [0, 2] and ∆Jh ∈ [−3, 3] [VKK18]. At each point, we

obtain the Hamiltonian and find its eigenvectors using exact diagonalization 1. For each

eigenvector, ψ, we can calculate the reduced density matrix as follows:

We consider the system to be split into two parts: region A containing the middle 4

spins, and region B containing the outer 8. We then trace over the states of B to obtain the

reduced density matrix:

ρA = TrH\HA

(
|ψ⟩⟨ψ|

)
To calculate this in practice, we used Schmidt decomposition.

The −Log of the eigenvalues of ρA would give us the entanglement spectrum – known to

carry information concerning many body localization [GNR16, PH10a, BN13]. The eigen-

values of ρA themselves are probabilities, giving us a vector in 24 = 16 dimensions with

elements summing to 1.

There exist established distance metrics motivated by information theory for expressing

1We exclude the highest and lowest 10% of the eigenvectors to reduce potential deviation from the trend
of a given phase
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the similarity of two probability distributions. For this reason, combined with the additional

benefit of having the data live in a compact region, we use the probability vectors correspond-

ing to the eigenvalues of the reduced density matrix as our data for clustering. We take our

distance metric between two probability vectors to be the Jensen-Shannon distance [ES03],

which is a bounded metric expressing similarity between probability distributions.

Therefore, for each disorder realization and each point in parameter space, we calculate

an array of lists containing reduced density matrix eigenvalues (one list of eigenvalues for

each eigenvector). Here we generate 100 disorder realizations and evaluate Hamiltonians at

1200 points in parameter space.

1.3.2 Clustering Data

We collect N = 1000 samples of our data, each with n = 5 elements taken at each of the

1200 positions in parameter space (= 6000 elements per sampling).

As a first step, we apply the HDBSCAN clustering algorithm [MHA17] (Hierarchical

Density-Based Spatial Clustering of Applications with Noise) to run an exploratory analysis

and identify structure within the data set. HDBSCAN is ideal for exploratory clustering due

to its lack of hard assumptions about the data. In particular, it does not assume clusters

to be convex, nor does it assume a set number of clusters to search for. A more complete

discussion of HDBSCAN can be found in the appendix.

We next set HDBSCAN’s two main parameters. We set the minimum cluster size

(min_cluster_size) by using a rough prior concerning the size of the smallest cluster we

expect to see. This clearly varies based on application. Here we specify that we are inter-

ested in finding clusters which comprise at least 1/10 of the total data set. This gives us a

minimum cluster size of 6000/10 = 600 elements.

A suitable value for the min_samples parameter can be set by evaluating the density-

based validation score [MJC] across a range. The value of min_samples, however, is observed

to have little effect on the clustering. By identifying cluster labels with their phase space
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positions, we may then obtain a corresponding phase diagram (Fig. 1.2).

Figure 1.2: A phase diagram found by applying the HDBSCAN clustering algorithm to a
single sampling of data from across parameter space. Two clusters are identified, one to the
left (red) and one to the right (blue). A darker region in the center corresponds to data
classified as low-density noise.

Figure 1.3: A phase diagram obtained by averaging 1000 samples of data from across param-
eter space, each clustered using HDBSCAN clustering. Clusters from each sample of data
were identified with one another using their relative ∆Jh position – the cluster with lower
mean value was colored red, and the cluster with the higher value colored blue. Averaging
over all diagrams gives us the above result.

By examination, we can see that there are two observed clusters which may be ordered

by their average ∆Jh value. We then apply HDBSCAN to all 1000 samples, and note that

in over 98% of samples, two such clusters were formed – the remaining < 2% forming only a

single cluster. We discard these, identify clusters by their weighted ∆Jh order, and average

over samples to obtain a phase diagram (Fig. 1.3).

By inspection, we can identify three regions of the phase diagram: two to the left and

right identified as clusters, and a third in the center considered noise.
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HDBSCAN does not attempt to allocate every element into a cluster. Rather, it assumes

that data sets may contain sparse noise not belonging to any particular cluster. Here, we can

see that the data HDBSCAN considers noise may instead form a third, more sparse cluster.

To investigate this, we apply an algorithm known as spectral clustering [PVG11] (dis-

cussed in more detail in the appendix). While still not assuming convexity of clusters,

spectral clustering allows us to include assumptions about the number of clusters to form

within the data. We repeat the above procedure, taking the number of clusters to form to

be 3, and again using Jensen-Shannon distance. Averaging over 1000 samples, we obtain a

total phase diagram (Fig. 1.4).

1.4 Analysis of Results

Figure 1.4: Unsupervised Phase Diagram: The phase diagram found by applying spec-
tral clustering to data from across parameter space using a total of 100 disorder realizations,
and clustering 1000 subsets of data sampled from these realizations. During clustering, we
use reduced density matrix eigenvalues as data, and the Jensen-Shannon distance as our
metric.

We see that the sparse data considered noise by HDBSCAN was successfully identified as a

third cluster. Physically, we do expect three phases to be present: two clusters corresponding

to a many-body localized paramagnetic phase and a many-body localized spin-glass phase

(referred to as MBL PM and MBL SG, respectively), and one cluster corresponding to a

thermal phase which conforms to the eigenstate thermalization hypothesis.
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Figure 1.5: Supervised Phase Diagram: The phase diagram found by applying a trained
neural network to the entanglement spectra from across parameter space using 100 disorder
realizations.

Up to the effects of finite system size, we expect our phase diagram to be symmetric

under ∆Jh → −∆Jh, and for the phases to exist in the general regions identified within the

phase diagram. Therefore, we appear to have formed clusters corresponding to each of these

predicted phases.

1.4.1 Comparison to Supervised Learning

Following the procedure outlined in [VKK18] and using the framework of TensorFlow [AAB15],

we produce a phase diagram for the system by applying a trained neural network to our data.

We can then compare this to the phase diagram found through unsupervised learning.

We train a neural network on a set of simulated data emanating from three points in

∆Jh, λ space:

(0.8, 0.2), (−0.8, 0.2), (0.0, 1.0)

These correspond to the MBL SG, MBL PM, and Thermal phases, respectively. After

training, we apply the neural network to data from across the parameter space and use the

resulting phase predictions to produce a phase diagram (Fig. 1.5).

To measure uncertainty in a phase assignment, in [VKK18] the authors define a quantity

C. If each point on the final phase diagram has a corresponding probability vector, p⃗ =

17



(p1, p2, p3), then C is defined as C = 1 − dmin. Here dmin = min|p⃗− v⃗| : v⃗ ∈ Q, and Q is

the set of points of extremal phase uncertainty: (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2), and

(1/3, 1/3, 1/3). dmin is then the value of dmin normalized by its maximum possible value.

We calculate this measure for both the unsupervised (Fig. 1.6) and the supervised (Fig.

1.7) approaches, and compare the two.

Figure 1.6: Unsupervised C Diagram: The measure of confusion, C, plotted across pa-
rameter space obtained through spectral clustering.

Figure 1.7: Supervised C Diagram: C plotted across parameter space obtained using a
trained neural network.

Qualitatively, the two diagrams are similar. We examine this agreement by taking slices

of C at constant λ. Again, we find agreement at both λ = 1 and λ = 2 (Fig. 1.8). Note,

however, that the supervised method produces consistently lower values of C away from phase

transitions. We can plot slices of the phases detected at λ = 1 and λ = 2 for the supervised

(Fig. 1.11) and unsupervised (Fig. 1.10) approaches to again see that these predictions

largely match. Slicing along ∆Jh = 0 (Fig. 1.9) also shows similarity between predictions,
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however with slightly more symmetric predictions resulting from the supervised approach.

We also observe agreement at λ = 0, where both methods observe the same asymmetry

at ∆Jh = 3, present potentially due to finite-size effects (Fig. 1.12).

.

Figure 1.8: Slices of the C diagrams taken at λ = 1 and λ = 2 showing both the supervised
and unsupervised results.

1.5 Discussion

Here, we have outlined an unsupervised method to study the phase space of a system demon-

strating MBL transitions. Our method applies readily available clustering algorithms to

segment phase space into three regions. Specifically, we apply HDBSCAN and spectral clus-

tering to the eigenvalues of reduced density matrices, using Jensen-Shannon distance as a

metric for clustering.

When compared to the corresponding result obtained through supervised learning, we

find remarkable agreement between the phase boundaries that both methods predict. Both

techniques are able to produce these meaningful results using small data sets. Here we
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Figure 1.9: Slices of the phase diagrams found using both unsupervised (top) and supervised
(bottom) methods, and taken along Log(J)−Log(h) = 0. The y-axis indicates the probability
of classification into a given phase. Note that both methods predict the similar presence of
a thermal phase as λ increases,

relied on a set of only 100 disorder realizations. Our method, however, requires no strict

assumptions about the number of clusters present, no labeled training data, and no prior

knowledge of the phase diagram.

In the case of supervised learning applied to eigenstate phases, it is not readily apparent

which features are being extracted from the data that would indicate the presence of a par-

ticular phase. Therefore, this is a black box method – an issue present in many applications

of machine learning. In our use of clustering, the same problem exists.

Currently, however, our analysis requires use of this unsupervised clustering step. This

is due to two main reasons: First, manual separation of data into ‘obvious’ clusters would
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Figure 1.10: Slices of the unsupervised phase diagram taken at λ = 1 (top) and λ = 2
(bottom) showing the probability of classification into one of three phases.

require projection into a low dimensional space (two dimensions, for instance). Simple

projection using, for example, principal component analysis, would throw away too much

information to produce an accurate phase diagram. Second, in problems such as this, we

often choose to use a metric other than euclidean distance to express the difference between

data points. Therefore, if we did wish to separate data manually, finding an embedding

in a low-dimensional flat space which approximately preserved our desired metric would be

another machine learning problem of its own.

When applying a clustering algorithm, data is segmented into groups according to each

algorithm’s implicit conception of what a cluster comprises. Moreover, there does not exist

– and cannot exist [Kle03] – a satisfying universal axiomatic approach to define the goals

of clustering. Rather, trade-offs between different clustering criteria are intrinsic. These

21



Figure 1.11: Slices of the supervised phase diagram taken at λ = 1 (top) and λ = 2 (bottom)
showing the predicted probabilities of each phase.

trade-offs can be seen in practice. Clustering algorithms often fail to perform when the ideal

clusters are of very different sizes, different densities, and different shapes. Algorithms which

perform well in one of these situations may fail in another.

Choosing a function to express the similarity between two elements (i.e. a distance

function) also often relies on heuristics. Distance functions can be chosen based on the

nature of the data at hand and the goal of the clustering. Other tools from unsupervised

learning can be effective here. Autoencoders, for instance, map elements from an original

space to a latent space. Spatial separation of two data points in the latent space then

corresponds to some meaningful difference between the two initial elements. A set of words,

for example, can be mapped to vectors in a latent space. Spatial similarity between vectors in

this latent space (e.g. cosine similarity) corresponds to similarity in meanings of the words.
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Figure 1.12: Slices of the unsupervised (top) and supervised (bottom) phase diagrams along
λ = 0. Note the asymmetry near Log(J)− Log(h) = 3 is found in both procedures.

Forming clusters in this latent space can then yield meaningful groupings.

From the perspective of clustering, there does not necessarily exist an a priori ‘correct’

partitioning of the data. The optimal clustering of data is instead dependent on the appli-

cation. HDBSCAN uses a quantified heuristic expressing hierarchical depth within the data

to determine the number of clusters to form. Other methods to determine the optimal num-

ber of clusters are also available, but all rely on optimizing some conception (either stated

explicitly or implied) of what a cluster should be.

With these concerns in mind, when using a clustering algorithm whose optimization

criteria is without a direct mapping to physics, one cannot be immediately sure that the

resulting partitioning of physical data must usefully correspond to distinct physical cate-

gories. Nonetheless, we have demonstrated that the clustering procedure applied here has
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yielded useful results. Our goal, however, is not to show that clustering techniques accu-

rately and reliably extract MBL phase boundaries. Rather, it is to show that meaningful

relationships within physical data can be quickly and cheaply explored by using reasonably

applied clustering techniques.
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1.6 Appendix

1.6.1 Spectrum Bifurcation Renormalization Group

Many probes of MBL rely on analyzing the eigenvalues and eigenstates. To this end, many

studies have used exact diagonalization ([LLA15], [ScA15], [PH10b], [OH07]). However, due

to the exponential dimension of the Hilbert space, this approach–incorporating no assump-

tions about the states under analysis–is limited to small lattices of at most ∼ 22 sites.

Due to the properties of many-body localization, MBL eigenstates are not arbitrary. In

many ways (e.g. area law entanglement) they are similar to ground states, and for this reason

can be described using techniques which rely on low-entanglement, such as tensor network

approaches.

The Spectrum Bifurcation Renormalization Group (SBRG) [YQX16] is a technique based

on real-space strong-disorder renormalization ([DM80], [BL82], [Fis92], [Fis94], [Fis95b],

[PRA14b]), which diagonalizes the Hamiltonian iteratively. SBRG starts at the leading

energy term, applies a unitary Clifford rotation2 to diagonalize this term, Schrieffer-Wolff

rotates away off-diagonal terms, and continues on to the next leading-term. The spectrum

is therefore bifurcated at each step, hence the name ‘Spectrum Bifurcation’. The unitaries

are then extracted to construct a Clifford circuit3 which approximately diagonalizes the

Hamiltonian. We are therefore able to produce a tensor network which can be used to effi-

ciently [Got98] express approximate eigenstates of the Hamiltonian, and compute important

quantities of the system.

SBRG is uniquely poised to study strongly disordered MBL systems, and in fact naturally

reveals the emergent conserved quantities–interpreted as LIOM’s [KCA14] in the context of

MBL. Using this perspective, SBRG also allows us to directly interpret the obtained Clifford

2A Clifford rotation is an element of the Clifford group – the subgroup of unitaries which maps individual
elements of the Pauli group to other individual elements of the Pauli group.

3A Clifford circuit is a set of sequential Clifford rotations. Since each Clifford rotation maps one Pauli-
group element to another Pauli-group element, the complexity of an entire Clifford circuit is sufficiently low
to simulate its effect on a product state using a classical computer.
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circuit to investigate the localization properties of MBL systems. For completeness, we

describe the SBRG routine below (a full treatment can be found within [YQX16]).

1.6.1.1 SBRG Algorithm

SBRG operates on Hamiltonians of the form

H =
∑
µ

hµσ
µ

Here, H acts on N spin sites, µ indicates an vector of N integers (µi ∈ {0, 1, 2, 3}). For

instance, σ[3,0,0] = σ3 ⊗ 1⊗ 1. In this way, we can express spin-1/2 Hamiltonians generally.

As mentioned, SBRG works by iteratively diagonalizing the Hamiltonian, starting at the

highest magnitude term and proceeding on. The ith step of the procedure proceeds as follows:

1. First, identify the leading order term which has not yet been diagonalized using the

algorithm. Take this term to be equal to

H0 = h0σ
µ

If H0 satisfies that µi = 3, and for j ̸= i, µj = 0 (that is σµ = 1i⊗ . . . 1i−1⊗σ3
i ⊗1i+1⊗

. . .⊗ 1N), move on to the next step.

Otherwise, apply a Clifford rotation to H0 in order to put it into this form. Note

that Clifford rotations map products of Pauli operators to products of Pauli operators

(rather than sums of Paulis). That is, a Clifford rotation R enacts

R†

(⊗
i

σµi

i

)
R =

⊗
i

σνi
i

In this way, Clifford rotations do not grow the size of the Hamiltonian.

2. Next, we enact a Schrieffer-Wolff rotation [SW66] at site i in order to rotate away

off-diagonals.
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For clarity, take i = 0 below. Then we write

H0 = h0σ
(3,0,0,...)

All other elements either commute or anticommute with this term. Take Σ to be those

terms which anticommute (having σ1 or σ2 at position i), and ∆ to be those terms

which do commute (having σ0 or σ3 at position i). We then wish to construct a rotation

which rotates away Σ below:

H = H0 + Σ + ∆

Writing

H ′ = eS(H0 + Σ + ∆)e−S

We may expand this in orders of Σ/H0, where the leading order term is expected to

be much greater than the typical off-diagonal terms. To second order in perturbation

theory this is accomplished by

S =
1

2h20
H0Σ

Applying this yields (to second order in perturbation theory)

eS(H0 + Σ + ∆)e−S = H0 + ∆ +
1

2h20
H0Σ

2

Where each of the above terms contains only commuting terms at position i, and so

we have block-diagonalized successfully.

By repeating this procedure for all terms, it is possible to obtain an approximate di-

agonalization of the Hamiltonian. Crucially, however, this approximation is reliant on the

assumption that the strongest term at each step, H0, is much greater in magnitude than the

typical off-diagonal coupling, Σ. Additionally, much of the strength of this technique comes

from the ability to drop SW transformations, valid in the strong disorder limit, which we

will explain below.
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At the end of the procedure, we have constructed the following unitary which approxi-

mately diagonalizes the Hamiltonian:

URG =
N∏
i=1

SiRi

Computing quantities with this, however, is still extremely computationally expensive, as

the SW transformations produce large numbers of Pauli operators at each step, leading to

an exponential number of terms to work with.

By dropping these SW rotations from the procedure, we dramatically reduce the compu-

tational cost. What’s more, in the strong disorder limit, with the largest N terms dominating

the scale of those remaining, this approximation is asymptotically valid, and useful for ap-

proximating eigenstates to lowest order [YQX16].

We are then left with a Clifford circuit, with which we are able to compute the entangle-

ment entropy and the localization length of the emergent conserved quantities, among other

quantities.

1.6.1.2 Visualization

Using tools to visualize the Hamiltonian, we can see how the algorithm currently functions.

Here we use a very small 1-d lattice size (with length 8) with strong disorder. The Hamilto-

nians we consider are of the form

H = −
∑
i

Jiσ
1
i σ

1
i+1 +Kiσ

3
i σ

3
i+1 + hiσ

3
i

Where coefficients are drawn from:

P (J)dJ =
1

ΓJ

(
J

J0

)1/Γ

P (K)dK =
1

ΓK

(
K

K0

)1/Γ
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P (h)dh =
1

Γh

(
h

h0

)1/Γ

Note here γ controls the level of randomness, with γ = 0 corresponding to uniform distribu-

tions (far from the strong-disorder limit).

In Figure 1.1, the Hamiltonian took J0 = K0 = h0 = 1, and Γ = 5.

After performing a full diagonalization using SBRG, we are left with a diagonalized,

exponentially localized Hamiltonian (see below) in terms of the LIOMs. By comparing the

eigenvalues, we can see that such a procedure produces a spectrum closely matching exact

diagonalization. Unfortunately, such a method is restricted in its applicability, as it requires

Hamiltonians to be strongly disordered, and deep within the MBL regime.

Figure 1.13: A spectrum obtained through SBRG compared to exact diagonalization. The
parameters used here are J0 = K0 = h0 = 1, and Γ = 5.
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1.6.2 Clustering Algorithms

In unsupervised learning, we do not require data to be labeled. Rather, we follow a procedure

to extremize some quantity in order to identify structure present in the data. Clustering is a

form of unsupervised learning whose goal is to separate data into groups such that elements

within a group are in some sense similar, and elements between groups are different.

Different clustering algorithms use different approaches to group data. Below, we describe

some meaningful differences in approaches that clustering algorithms can take.

Parametric vs Density-Based

Parametric clustering algorithms assume (either implicitly or explicitly) that the data

takes a certain form. This could be that the clusters are convex (as assumed by algorithms

such as k-means) or that the probability density function (pdf) from which the data points

are drawn are sums of Gaussians (as assumed by a Gaussian mixture model). Furthermore,

these models generally assume knowledge of the number of clusters present in advance.

On the other hand, density-based clustering assumes that the data is generated according

to a probability distribution and seeks to identify connected components of level sets of the

pdf. In practice, these algorithms separate high density regions of the data from low density

regions. Connected components of these high density regions are then considered clusters.

Flat vs Hierarchical

Flat clustering algorithms require us to set a parameter identifying the ‘granularity’ of the

clusters we would like to form. For parametric algorithms, this could correspond to specifying

the number of clusters to separate the data into (i.e. the resolution of clustering). For

density-based clustering algorithms, this might correspond to choosing which level set of the

pdf to use in clustering. Different level sets may then yield different connected components.

Hierarchical clustering algorithms avoid setting a granularity parameter. Rather, they
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construct a hierarchy of groupings, with similar clusters merging into one another as we

decrease the resolution.

HDBSCAN

HDBSCAN is a density-based clustering algorithm which also uses tools from hierarchical

clustering. It builds upon DBSCAN, a flat density-based algorithm, and can be ideal for

exploratory clustering.

In exploring an unknown data set, we would like our clustering algorithm to make as few

unwarranted assumptions about the data as possible. These include assumptions about the

number of clusters present, as well as the shape of those clusters.

As the HDBSCAN algorithm is density-based, it does not assume that clusters must

be of a specific form. In addition, instead of assuming a specific number of clusters to

find, HDBSCAN uses a hierarchical analysis of the data to quantify the ‘depth’ of potential

clusters. Its hierarchical technique allows HDBSCAN to predict which clusters to form, based

on how resilient their presence is under variation of the clustering resolution. Furthermore,

HDBSCAN does not attempt to segment each point into a cluster. Rather, it assumes that

clusters may be surrounded by lower density noise.

HDBSCAN has two parameters: min_cluster_size, and min_samples. The min_cluster_size

parameter simply puts a lower bound on the size of clusters to form. min_samples is less

intuitive. It expresses how conservative or aggressive a given clustering of the data should

be. A greater value corresponds to a more conservative clustering and more points being de-

clared as noise. Its value generally does not radically affect the final partitioning. However,

some quantitative reference for a suitable value of min_samples can be found by applying

the density-based validation score to resulting clusters.

Spectral Clustering

Spectral clustering is a density-based clustering algorithm related to manifold learning
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and the DBSCAN algorithm. It allows the user to include specific assumptions concerning

the number of clusters to form. Spectral clustering approaches separating and grouping

data as a graph partitioning problem. Given a distance metric, d, the algorithm generates a

similarity matrix. Typically this is done using a Gaussian kernel similarity function:

Si,j = e−d2i,j/(2σ
2)

Where σ corresponds to the size of neighborhoods expected to form within the data.

The algorithm then computes the Laplacian matrix of the resulting graph and collects

the first k eigenvectors. Data is then projected to the k dimensional vector space spanned

by these eigenvectors and clustered in this space using a more simple algorithm (such as

k-means). This process corresponds to moving to a vector space in which position expresses

connectivity, and clustering in this space.
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CHAPTER 2

A Phase Transition in Model GAN Dynamics

2.1 Introduction

Generative modeling is an application of machine learning in which a probability distribution,

pmodel, (defined implicitly or explicitly) is trained to become ‘close’ to a target distribution,

pdata [GBC16]. Typically, pdata is taken to represent the implicit distribution of elements from

a data-set (which could be, for instance, 28 × 28 pixel images of hand-written digits). A

successfully trained generative model would then produce samples which in some sense ‘look

like’ they could have come from the data-set. One promising framework for constructing

generative models is known as a generative adversarial network, or GAN [GPM14].

Generative adversarial networks are an approach to building generative model using

two neural networks: one called the generator and the other called the discriminator (also

referred to as a critic). The end goal of the GAN framework is to train the generator to

produce samples which are similar to samples taken from a training data-set. Here, we will

denote the parameters of the generator, G, by θ, and those of the discriminator, D, by

ϕ. The generator is a function which maps points in the latent space, known as seeds, to

points in what we refer to as data-space. the discriminator is a function which determines

the similarity between generated samples and samples from the data-set. Here, we take the

latent-space dimension to be n, and the dimension of the data-points to be d.

Generator: Gθ : Rn → Rd (2.1)

Discriminator: Dϕ : Rd → R (2.2)
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During training, the generator takes in randomly selected seeds and returns outputs,

effectively sampling from an implicit probability distribution, pmodel. Meanwhile, the dis-

criminator evaluates these generated samples alongside samples selected from a data-set.

The task of the discriminator is to assign high scores to samples from the data-set while

assigning low scores to generated samples – distinguishing real data from simulated data.

The task of the generator is to increase the score assigned to it by the discriminator. At

each training step, the parameters of both functions are incrementally updated in according

to their individual goals [GPM14, GBC16, AL18, LCC17].

A useful analogy is to the dynamic between a counterfeiter and a detective [GPM14]. The

counterfeiter produces fake bills, which the detective studies. The task of the detective is to

detect fake currency, and the task of the counterfeiter is to fool the detective. Eventually, the

detective may identify some flaw – a difference between real currency and the fake currency.

The counterfeiter then must get back to work improving the faked currency to fix this flaw.

Eventually, the two reach an equilibrium in which the detective is unable to distinguish

between the fake and real bills.

As in the counterfeiter analogy, the task of the generator is to ‘fool’ the discriminator; to

increase the score assigned to its outputs. Ideally, the combined dynamics of the generator

and discriminator find a Nash equilibrium in which the discriminator gives equal scores to

both the generated and real samples. At this point, the discriminator can be discarded, and

the generator used as a generative model in its own right.

2.1.1 Training

In GANs, the generator is some differentiable function (usually a neural network), Gθ, which

is fed random inputs, z ∈ Rn, selected from some distribution q(z). Typically, z ∼ N n(0, 1),

or z is sampled uniformly from an n-dimensional sphere. Samples Gθ(z) ∈ Rd are then

produced according to the pushforward measure, implicitly forming the distribution, pmodel.

Different GAN implementations exist, many with distinct loss functions [NCT16]. Here we
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consider loss functions of the form [LSZ15, LCC17, AL18, NCT16]:

L ≡ ⟨Dϕ(x)⟩x∼p(x) − ⟨Dϕ(Gθ(z))⟩z∼q(z) − λR(Dϕ) (2.3)

Above, p(x) is the probability distribution of samples in the data-set, while q(z) is the

probability distribution from which seeds in the latent space are sampled. Finally, R(Dϕ)

represents a regularizer on the discriminator, limiting its magnitude under a norm of interest

1. λ ≥ 0 controls the magnitude of the regularizer.

Conceptually, the discriminator parameters, ϕ, evolve to maximize this quantity, while

the discriminator parameters evolve to minimize it.

ϕ̇ = αD
dL
dϕ

(2.4)

θ̇ = −αG
dL
dθ

(2.5)

The discriminator and generator evolution each occur at individual learning rates αD and

αG.

Practically, in neural networks a loss function is defined at each training step using mini-

batches of N samples of real data and generated data, both of which are re-sampled for each

training step:

LN ≡
1

N

N∑
i=1

Dϕ(xi)−
1

N

N∑
i=1

Dϕ(Gθ(zi))− λR(Dϕ) (2.6)

Training is performed in iterations. First, for ndisc. steps, the discriminator is updated using

stochastic gradient ascent:

ϕ←− ϕ+ αD∇ϕLN (2.7)

Then, for ngen. steps the generator is updated analogously:

θ ←− θ − αG∇ϕLN (2.8)

1Note, for example, that if R(fϕ) = ||f ||2H this becomes an MMD GAN, while if R(fϕ) = ||f ||2K , we have
a Wasserstein GAN [AL18, BSA18]
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The resulting stochastic gradient ascent and descent are repeated until convergence, or until

training has been halted. In this work we take ngen. = 1.

Note that the generator is never exposed to the data directly. Instead, it modifies its

weights to maximize the average value that the discriminator assigns to its outputs. Intu-

itively, this feature means that the generator can learn about only what discriminator has

learned already, providing motivation for ndisc. > ngen..

Algorithm 1 The GAN training algorithm

for iteration number do
for ndisc. do
• Sample N data-points, {xi}
• Sample N seed points, {zi} from the latent space according to q(z)
• Compute

LN =
1

N

N∑
i=1

Dϕ(xi)−
1

N

N∑
i=1

Dϕ(Gθ(zi))− λR(Dϕ)

and update discriminator parameters by ascending its stochastic gradient

ϕ← ϕ+ αD∇ϕLN

end for
• Sample N seed points, {zi} from the latent space according to q(z)
• Compute

Lgen.
N = − 1

N

N∑
i=1

Dϕ(Gθ(zi))

and update generator parameters by descending its stochastic gradient

θ ← θ − αG∇θLgen.
N

end for

2.1.2 GAN Failure and Mode Collapse

When GANs train successfully, their results can be extremely impressive. By leveraging the

expressive and representational power of neural networks, GANs have been used to produce

simulated data which appears real even under intense scrutiny [AMB21, KLA21, TXY20,
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KGE20].

GANs are, however, notoriously hard to train. The adversarial nature of the dynamics

distinguishes a GAN’s ‘loss’, L, from a true loss function – one that is bounded from below

and which the training algorithm seeks to minimize. Rather than living at the minimum,

the ideal parameter settings here are at the saddle-points of the loss landscape [GPM14]:

θ∗ = arg min
θ

max
ϕ
L(ϕ, θ) (2.9)

Convergence to such a fixed-point is difficult to attain, as it requires the careful balancing

of the two competing networks during training.

Indeed, convergence can often not even be guaranteed in the most simple GAN models.

A canonical example of such a system is given by the following loss [MGN18, GBC16]:

L = ϕ · θ (2.10)

Here, under simultaneous gradient dynamics, ϕ̇ = αDθ, θ̇ = −αGϕ, which has the solutions

ϕ(t) = A

√
αD

αG

sin(
√
αDαG(t− t0))

θ(t) = A cos(
√
αDαG(t− t0))

(2.11)

In this case, it is guaranteed that unless we start from precisely ϕ(0) = θ(0) = 0, gradient

ascent/descent will not converge.

One important form of nonconvergence commonly encountered during GAN training is

known as mode collapse [SVR17, CLJ17]. Mode collapse occurs when samples from the

generator fail to capture the full diversity of the samples in the data-set. For instance, this

could take the form of a generator creating images of faces which all look alike. The name

“mode collapse” refers to the distinct modes which individual elements from a data-set may

exhibit. For instance, an image might depict cars, airplanes, or dogs. During mode collapse,

the generator’s output ‘collapses’ and it produces samples from relatively few of the available
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Figure 2.1: A streamplot corresponding to the dynamics of (2.11) for αG = 1, αD = 2. The
only stable point lives precisely at ϕ = θ = 0.

modes. In other words, the generator’s implicit probability distribution, pmodel, only covers

a subset of the data distribution’s full support (a simple example of which is shown in figure

2.2).

6 4 2 0 2 4 6

Data Distribution
Generator Distribution

Figure 2.2: Above we depict a toy example of mode collapse. Here, the data distribution is
given by 6 Gaussians placed at even increments. The generator has succeeded in replicating
the leftmost two modes, however it can produce virtually no samples which would correspond
to the modes on the right.

If mode collapse occurs, then during training the generator will focus its distribution on

a small subset of the total data-distribution. Eventually, the discriminator learns to identify

the concentrated output of the generator, at which point the generator will switch from its

current specialization to another [SVR17, CLJ17]. The generator switching from mode to

mode, rather than converging on the distribution as a whole is a key symptom of this type
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of GAN failure.

Relatively little is known about GAN training, however some analytical progress has been

made [HRU17, MGN18]. In 2018, [HRU17] proved that GANs could be driven to converge

to a local Nash equilibrium when trained using a so-called two time-scale update rule. In

the proof, the training rate of the discriminator is generally kept higher than that of the

generator. A higher discriminator learning rate makes sense if one recalls that the generator

only learns about the data-distribution through feedback provided by the discriminator.

Therefore the generator’s progress in replicating the data distribution is limited by the

progress of the discriminator. Indeed, approaches with faster discriminators have found

improved convergence in practice.

2.1.3 The Organization of this Chapter

Here, we attempt to better understand the training dynamics of GANs, with a particular

focus on understanding mode collapse.

In section 2.2, we start by experimenting with an extremely simple model for GAN

dynamics, and introduce structure until we start to observe the symptoms indicative of

mode collapse in true GANs. This leads us to introduce the topic of neural tangent kernels

(NTKs) in subsection 2.2.2. We then use this concept in subsection 2.2.3 to enhance mode

collapse in our toy model.

We move to a more complex model for GAN training dynamics in section 2.3 – one which

still uses the simplifying assumptions of section 2.2, but which comes closer to simulating an

actual GAN. We test two limiting cases of this model, one which exhibits fast convergence,

and one in which we observe mode collapse.

In section 2.4, we then run experiments in order to probe the boundary between these

two ‘phases’ of GAN training. We are able to characterize the phase-boundary between the

two types of dynamics.

This leads to section 2.5, in which we describe the causal mechanism which explain the
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form of the observed boundary.

Finally, we conclude with a discussion of the relationship between our toy-model GANs,

and true GANs.

2.2 Constructing a Minimal GAN Model

To better understand nonconvergence, and specifically mode collapse, we incrementally con-

struct a toy model for a GAN. We begin by studying a variant of the Dirac-GAN in which the

data distribution contains multiple modes, and where behavior reminiscent of mode collapse

is possible. Drawing lessons from this model, we then proceed to a more realistic toy GAN.

We study the parameter settings for this toy model which we lead to convergence, and those

which lead to nonconvergence.

2.2.1 Minimal Toy Model

In [MGN18], the authors introduced a toy model for studying GAN training dynamics called

a Dirac-GAN. Typically in GANs, the distribution of generated data, pmodel, is defined

implicitly. pmodel is only accessed by passing random seed inputs to the generator function.

Here, however, the distribution2 is defined explicitly using a single parameter, θ:

pθ(x) = δ(x− θ) (2.12)

Note that θ is treated as a parameter of the generator, while it at once describes the one-

dimensional output of the generator in data-space 3. This approach of treating output points

as parameters will later be applied more extensively.

2Here, we write pθ instead of pmodel to reflect the explicit parametrization of the generator’s data-
distribution

3Explicitly, one could take Gθ(z) = z + θ, where z is trivially selected from the set, {0}.
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The discriminator is taken to be a linear function:

Dϕ(x) = ϕ · x (2.13)

The data distribution is a Dirac-delta centered at zero, pdata(x) = δ(x).

The authors used this model to study the convergence properties of different forms of

GAN loss functions in the presence of different regularizers. We are interested in using such

a model to reproduce the phenomenon of mode collapse.

In order for a toy model to be capable of demonstrating mode collapse, its data distri-

bution, pdata, must contain multiple modes – distinct forms the data may take – and require

the generator’s distribution to become sufficiently diverse to match it. Incorporating this

feature into the Dirac-GAN setup, we define the double Dirac-GAN below.

2.2.1.1 Double Dirac-GAN

In the spirit of the Dirac-GAN, we define the generator for our toy model to have a distri-

bution distribution in a data space (its pushforward measure) of:

pθ1,θ2(x) = (δ(x− θ1) + δ(x− θ2))/2 (2.14)

Corresponding to the one-dimensional distribution of two Dirac delta functions parameter-

ized by θ1 and θ2. Note θ1 and θ2 also give the two possible values of the generator’s outputs4.

Meanwhile, take the data distribution to be:

pdata(x) = (δ(x− 1) + δ(x+ 1))/2 (2.15)

4As will be discussed further, this can be taken to correspond to Gθ(z) = θ1 + z · (θ2 − θ1), where z is
selected from {0, 1} with equal probability.
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The double Dirac-GAN discriminator is defined as follows:

D(x) = b · x+ c · x2 (2.16)

Note the additional quadratic term compared to the Dirac-GAN.

Intuitively, during training the discriminator ‘tries’ to detect the difference between

pθ1,θ2(x) and pdata(x), and its parameters, b and c, evolve to increase the difference be-

tween D evaluated at ±1 and D evaluated at θ1, θ2. Simultaneously, the generator evolves

to reduce this difference, adjusting θ1 and θ2 to increase the discriminator’s value at these

points.

Define our loss function as follows 5:

L = ⟨D(x)⟩x − ⟨D(Gθ(z))⟩z −
λ

2
||D||2 (2.17)

= c−
(
b(θ1 + θ2)/2 + c(θ21 + θ22)/2

)
− λ(b2 + c2)/2 (2.18)

Under simultaneous gradient descent/ascent, the dynamics of the generator and discrim-

inator are

θ̇t = −dL
dθt

=
d

dθt
⟨Dϕ(Gθ(z))⟩z∼q(z) (2.19)

ϕ̇t = η
dL
dϕt

(2.20)

Where η is the relative training rate of the discriminator. Here, dropping the time subscript,

5Here we take the discriminator to be an element in the reproducing kernel Hilbert space with feature
map Φ(x) = (x, x2). The discriminator is then D(x) = µ ·Φ(x), and we define its regularizer using the RKHS
norm: || · ||H. Therefore ||D||2H = ||µ||2 = b2 + c2.
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this corresponds to

θ̇i = −dL
dθi

(2.21)

ḃ = η
dL
db

(2.22)

ċ = η
dL
dc

(2.23)

yielding

− dL
dθi

=
d

dθi

(
b(θ1 + θ2)/2 + c(θ21 + θ22)/2

)
= b/2 + cθi (2.24)

meanwhile

dL
db

= −(θ1 + θ2)/2− λb (2.25)

dL
dc

= 1− (θ21 + θ22)/2− λc (2.26)

2.2.1.2 Initial Experiments

As a first attempt to probe this system, stability analysis can be applied to study the

dynamics close to equilibrium: (b, c, θ1, θ2) = (0, 0,±1,∓1). Define x1 = θ1 + 1, x2 = θ2 − 1,

and scale the speed of the discriminator evolution by η. Then the linearized system is

descibed by: 
ḃ

ċ

ẋ1

ẋ2

 =


−ηλ 0 −η/2 −η/2

0 −ηλ −η η

1/2 1 0 0

1/2 −1 0 0




b

c

x1

x2


With the above matrix having eigenvalues

−ηλ
2
±

√(
ηλ

2

)2

− 2η
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−ηλ
2
±

√(
ηλ

2

)2

− η/2

Since the discriminator’s learning rate, η is always positive, the real part of these eigenval-

ues will always be negative, implying that near equilibrium the linearized dynamics always

implies local convergence. We can also see that for slow discriminators (small η), we expect

the dominant behavior to be oscillatory, and convergence to be impeded. This fact is in line

with known results on the convergence of GANs, since these typically encourage the use of

a discriminator which is trained ‘faster’ than the generator [HRU17].

We would like to use this double Dirac-GAN to simulate the phenomenon mode collapse:

the situation in which the output distribution of a generator replicates only a subset of the

full distribution of the data. Within a double Dirac-GAN, this would take the form of both

Dirac deltas of pθ1,θ2 concentrating around one of the modes of the data distribution: either 1

or -1. During GAN training, mode collapse results in the generator changing its output from

one mode to another, while failing to distribute its outputs to cover the entire distribution.

In our toy model, this would mean that θ1 and θ2 stay close to one another while both

oscillate between 1 and −1.

The presence of mode collapse would necessarily place our system far from equilibrium6,

and out of the scope of a simple linear stability analysis. We therefore run simulations of

the nonlinear dynamics; priming our system to demonstrate mode collapse, and studying

the features of mode collapse which present themselves.

In particular, we experiment by placing both θ1 and θ2 near the +1 mode (setting θ1 = 1

and θ2 = .99). The parameters b and c are initially set to zero, and the regularization

parameter, λ, is set to 1. To quantify mode collapse for our toy model, we will compare the

characteristic time of θ1 and θ2 splitting, τsplit., to the characteristic time of their oscillation7,

6Note that if θ1 is near θ2, then we cannot be in the situation of both being close to equilibrium

7τsplit. is computed by fitting the function

1 + tanh ((t− τsplit.) · b)

to the curve produced by |θ1−θ2|. τosc. is given by the inverse of the dominant Fourier frequency of (θ1+θ2)/2.
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τosc.. Roughly, we will say that mode collapse corresponds to τsplit. ≫ τosc., since this would

mean the outputs oscillate between ±1 much faster than they split apart to cover both.

We then run experiments, allowing the generator and discriminator to undergo their

simultaneous gradient dynamics. Sweeping over a broad range of discriminator learning

rates, η, we find that even for very slow discriminators, the system is able to converge

rapidly to its equilibrium value of θ1 = ±1, θ2 = ∓1, and b = c = 0. This can be seen

in Figure 2.3, in which a very slow discriminator is used used (η = 0.05). Despite this,

equilibrium is quickly reached.
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Double Dirac-GAN Dynamics: = 0.05
( t = 0
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Figure 2.3: Above is shown the dynamics of θ1 and θ2 when they are initialized at θ1, θ2 =
1, .99. The discriminator learning rate is taken to be extremely small, with η = 0.05. Even
in this case – primed to display mode collapse – we observe fast splitting of the two modes,
which quickly converge to equilibrium at ±1.

Indeed, the discriminator learning rate must be set to an extremely small value to see

any significant signatures of mode collapse. This is shown in Figure 2.4, where a metric for

mode collapse, log(τsplit./τosc.), is computed for each η value. In order for this value to be

large, η must be extremely small.
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Figure 2.4: Above, our metric for mode collapse, log(τsplit./τosc.), is plotted as a function
of the discriminator learning rate. Note that only for extremely (and impractically) small
discriminator learning rates do we find an indication of mode collapse.

Therefore, even when both outputs are initialized near one of the two modes, we fail to

see strong signatures of mode collapse, and only obtain τsplit. ≫ τosc. for impractically small

values of η. This raises the question of which realistic additional feature might be added to

our model in order to both make it both a more accurate proxy for neural network dynamics,

and allow it to display mode collapse.

2.2.2 The Neural Tangent Kernel

Previously, the generator’s outputs evolved independently. In neural networks, however, this

is not how points in data-space evolve.

Generically, within a neural network G with parameters θ, Gθ : Rdin → Rdout , the neural

tangent kernel (NTK) is defined by [JGH18]

Γθ : Rdin × Rdin → Rdout×dout (2.27)

Γi,j
θ (z, z′) =

dGi(z)

dθk

dGj(z)

dθk
(2.28)

As we will show below, this quantity arises naturally when considering the dynamics of points
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in data-space.

Taking the parameters to be time dependent, θt, we can denote a point in data-space

which is mapped to by the seed z at time t by

Xt = Gθt(z)

We can then see that updates in parameter space, dθt, are related to updates in data-space,

dXt, by

dXt =
dGθ(z)

dθ

T

|θ=θt

dθt
dt
dt (2.29)

Under simultaneous gradient dynamics the generator parameters evolve according to (2.19),

and so

dθt
dt

=
d

dθ

(∫
dz′q(z′)D(Gθ(z

′))

)
|θ=θt =

∫
dz′q(z′)D′(Gθt(z

′))
dGθ(z

′)

dθ
|θ=θt (2.30)

To see the corresponding data-space dynamics, we plug this in to (2.29) find

dX = dt

∫
dz′q(z′)D′(Gθt(z

′))

(
dGθ(z)

dθ

T dGθ(z
′)

dθ

)
|θ=θt (2.31)

dX = dt

∫
dz′ Γθt(z, z

′)D′(Gθt(z
′))q(z′) (2.32)

In this way the NTK, Γθ, tells us the degree to which the gradients of the loss at other

points X ′ = Gθ(z
′) influence the dynamics of the the point X = Gθ(z). For example, if we

take a diagonal NTK, Γ(z, z′) = δ(z − z′) I, then we regain

dX ∝ dtD′(X) (2.33)

corresponding to the original uncorrelated dynamics, in which the velocity of points in data-

space is completely determined by the local gradient of the discriminator. As we introduce

off-diagonal terms to the NTK, the velocity in data-space becomes correlated, as it is now

influenced by the gradient of D evaluated at different points.
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NTKs are random at initialization, and in general evolve during training. As we in-

crease the width of the network, however, the degree to which the NTK changes throughout

training drops [JGH18, RYH22]. In the full infinite-width limit, the NTK becomes fixed at

initialization: Γθt = Γθ0 .

The infinite-width regime is of particular interest, as the performance of neural networks

has been observed to improve as their width is increased. Additionally, in this limit it be-

comes possible to derive analytical results, as certain theoretical aspects of neural networks

simplify in the large-width regime. Working from this limit as a starting point has conse-

quently proved fruitful for drawing conclusions about more realistic finite-width networks

[RYH22, HN20, HMS21].

For certain architectures, the exact form of the infinite-width NTK can be worked out

analytically. Such an exact NTK can be found, for instance, in the case of an infinite width

2-layer ReLU network. Here, ReLU refers to the activation function used within the network,

which is defined by

σ(x) = max(0, x)

and is among the most popular activation functions used in practice.

For example, a single hidden-layer ReLU network of width N without biases, and with

wj
i , ai ∼ N (0, 1):

fθ : Rd → R

fθ(z) = aiσ(wj
i z

j)

has an infinite width NTK is given by [BM19]

ΓReLU(z, z′) · 2

N
= |z||z′|κ(

z · z′

|z||z′|
) (2.34)
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Figure 2.5: Above we compare the theoretical NTK prediction of (2.34) to numerically
obtained NTK values on a sample of 500 points selected from a 2-dimensional standard
normal. Note that as the width of the neural network is increased, the experimental values
approach the theoretically predicted results with high accuracy.

where 2/N provides a normalization as N →∞, and

κ(x) ≡ xκ0(x) + κ1(x)

κ0(x) ≡ 1

π
(π − arccos(x)) κ1(x) ≡ 1

π
(x · (π − arccos(x)) +

√
1− x2)

This becomes exact in the large N limit, as can be seen in figure 2.5.

In generative adversarial networks, random seeds are provided to the generator by sam-

pling from a distribution, q(z). As mentioned, z is often selected fromN d(0, 1) or is uniformly

selected from the unit sphere in d dimensions, where d is taken to be sufficiently large to

encompass variation of the data-set. Since points from N d(0, 1) are approximately on the

unit sphere8 in d dimensions of radius
√
d, for our purposes it will be sufficient to sample

seed points z uniformly from a d-dimensional unit sphere.

If inputs have equal length, as the above q(z) ensures, then ΓReLU(z, z′) becomes a func-

8Note that a d-dimensional vector with elements selected from N (0, σ2) will have an average squared

length of dσ2, and the relative standard deviation of this estimate will drop as
√

2
d .
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tion only of the dot product9: z · z′. As the value of d grows, the distribution of this inner

product can be estimated10 by

cos(φ) ∼ N (0, σ2 =
1

d
)

where φ is the angle between z and z′. With this in mind, given a dot product NTK, and a

sample of inputs, the distribution of NTK values can be estimated as well. In particular, for

distinct points z, z′, Γ(z, z′) will, with high probability, be close to Γ(z, z⊥). In other words,

if we express Γ in terms of the angle φ, most values will fall close to Γ(φ = π/2), while for

all z in the sample, Γ(z, z) = Γ(φ = 0).

The above observation is reflected in experiments, as almost all distinct points have an

NTK value centered near the theoretically predicted value for Γ(φ = 0). Moreover, since all

sampled points are approximately orthogonal (and equidistant), any correlation observed in

data-space at initialization between the positions of X = Gθ0(z) and X ′ = Gθ0(z
′) will fail

to be reflected in the corresponding value of Γθ0(z, z
′) as can be seen in Figure 2.6.

Although we have focused on a ReLU NTK, such a discussion applies more generally. For

instance the Erf activation function can also be shown analytically to give an NTK which is

a function of dot product[LXS20], and has a form similar to that of Tanh, another extremely

9This statement still applies if we include biases sampled according to N (0, σ2
b ) in our network, or if we

choose different variances for ai and wj
i

10Take z, z′ to be selected from a normal distribution in d dimensions. Without loss of generality, rotate
such that

z = (|z|, 0, 0, · · · 0, 0)

Then
z · z′

|z||z′|
=

z′1
|z′|

Here, |z′| ≈
√
dσ, and z′1 ∼ N (0, σ2). Therefore in high dimensions

cos(ϕ) ∼ N (0, σ2 =
1

d
)

And so almost all pairs of points will have
cos(ϕ) ≈ 0
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Figure 2.6: Above we show the distribution of NTK values. Two hundred inputs, {zi}
are sampled from a unit sphere in 100 dimensions. A ReLU network with width 2048
and one hidden layer is then used to compute NTK values for each unique pair of inputs:
fθ(z) = aiσ(wj

i z
j + bi), taking ai, w

j
i , bi ∼ N (0, 1). To the left is shown a histogram of

NTK values, reflecting the fact that the vast majority are centered around Γ(φ = π/2),
corresponding to orthogonal inputs. Meanwhile, far fewer values make up another peak,
corresponding to Γ(z, z) = Γ(φ = 0). To the right we show the relationship between the NTK
value and data-space distance. This is done using a scatter plot comparing |fθ(z) − fθ(z′)|
to Γ(z, z′). At initialization, there is no correlation is present for distinct inputs z ̸= z′,
motivating the approximation of (2.35)
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popular activation function.

With the above facts about the NTK in mind, in the next sections we will introduce

NTKs of the form:

Γi,j(z, z′) = δi,j (g1δz,z′ + g2(1− δz,z′)) (2.35)

This NTK is static throughout training, corresponding to an infinite-width generator. It

also has a single constant value for diagonals, and another constant value for off-diagonals,

roughly corresponding to g1 ≈ Γ(φ = 0) and g2 ≈ Γ(φ = π/2). The δi,j out front can

be understood as implying a lack of correlation between the gradients of output degrees of

freedom of an infinite width neural network11.

Physically, we will see how adding an NTK such as (2.35) correlates velocities of points

in data-space.

2.2.3 Breaking the Toy Model

Our goal is to create a toy model for GAN training dynamics in which the phenomenon of

mode collapse is apparent. As an additional feature of our model, we will now add a static

NTK (with the form of (2.35)), effectively pretending that the generator outputs come from

an infinite-width neural network.

Within the double-Dirac GAN, θi were at once taken to be generator parameters, as well

as the outputs of the generator (as the distribution (2.14) implies). As noted, we previously

11This can be seen by considering a random large-width neural network with two outputs. Writing this as

fθ(z) = (f
(1)
θ (z), f

(2)
θ (z)) = (Φi

ϑ(z) a
(1)
i + b1,Φ

i
ϑ(z) a

(2)
i + b2)

Where

a
(j)
i ∼ N (µ = 0, σ2 =

σ2
w

nw
)

and Φi
ϑ(z) represents all but the final layers of the network. We can see that

Γ1,2(z1, z2)) =
df (1)(z1)

dθa

df (2)(z2)

dθa
=

dΦi
ϑ(z)

dϑk

dΦj
ϑ(z)

dϑk
a
(1)
i a

(2)
j

which has mean zero and a variance that decays with 1/nw.
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allowed these generator outputs, θ1 and θ2, to independently evolve during training. Each

took on a velocity which was a function of the local derivative of the discriminator. Mean-

while, in true neural networks, outputs evolve according to a weighted sum of discriminator

gradients across data-space. We will therefore attempt to incorporate this feature of neural

networks by modifying the generator parameters by hand, explicitly inserting an NTK into

the differential equations which determine the dynamics of θi.

For our one-dimensional model, a static NTK can be incorporated as follows: Define

q(z = 0) = 1/2 q(z = 1) = 1/2 (2.36)

and

Gθ(0) = θ1 (2.37)

Gθ(1) = θ2 (2.38)

Then the addition of an NTK, Γ, modifies the dynamics as follows:

dθ = dt
1

2
(Γ(z, 0)D′(Gθ(0)) + Γ(z, 1)D′(Gθ(1)))

Using

Γα(1, 1) = Γα(0, 0) ≡ 1− α (2.39)

Γα(0, 1) = Γα(1, 0) ≡ α (2.40)

we can therefore write

dθ1 = dt
1

2
((1− α)D′(θ1) + αD′(θ2))

dθ2 = dt
1

2
((1− α)D′(θ2) + αD′(θ1))

Note that for α = 0, this produces dynamics proportional to those observed without an

NTK. On its face, the NTK here can be seen as correlating the velocities of the outputs.
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Indeed, in the trivial limit of α = 1/2, dθ1
dt

= dθ2
dt

, and the two points can never split apart.

Now, when we initialize θ1 and θ2 close to one another, and increase α, we fail to see fast

convergence. Instead of splitting off to their respective ideal values, the two parameters stay

together and travel from one mode to another, displaying τsplit. ≫ τosc..

2

0
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Double Dirac-GAN Dynamics: = 0.05

Time

Figure 2.7: Above is shown the dynamics of θ1 and θ2 when initialized at θ1, θ2 = 1, .99 and
with the discriminator learning rate set to η = 0.05. We compare the dynamics resulting
from the NTK’s off-diagonal value, α being set to α = 0, with the dynamics for α = 1/3.
Without an NTK, the system quickly converges to equilibrium (shown in the upper plot).
When an NTK is present (shown in the lower plot) we observe strong signatures of mode
collapse, with τsplit. ≫ τosc.

We can examine this behavior by varying η, the training rate of the discriminator, along

with α, the NTK’s off-diagonal parameter. Sweeping across parameter space, we can com-

pute a metric indicating mode collapse, log(τsplit./τosc.), at each combination. The resulting

diagram is shown in Figure 2.8. As the contour lines indicate, as we increase α, mode col-

lapse increases (note the positive slope of the contour lines). This hints at a link between

the effect of the generator’s NTK and the presence of mode collapse during GAN training.

Using the lessons learned, we will now proceed to a more complex and realistic setting.

Again, we will introduce a static NTK to couple the velocities of generator outputs (treated

as parameters), and run experiments to more clearly understand the transition to mode

collapse.
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Figure 2.8: The mode collapse (indicated by the value of log(τsplit./τosc.)) exhibited by the
double-Dirac GAN as a function of discriminator learning rate, η, and the NTK parameter
α. Whereas before, we were only able to observe τsplit. ≫ τosc. for unrealistically small values
of η, with the introduction of the NTK, we can now see mode collapse for much larger and
realistic values of η. Note the positive slope of the contours, indicating that α serves to
increase the mode collapse metric, log(τsplit./τosc.).

2.3 8-Gaussian Toy Model

Here we investigate an analogous toy model in a more complicated setting. We consider

a canonical problem of training a GAN on the distribution of 8 Gaussians arranged in a

circle of radius 2, each Gaussian having a standard deviation 0.02. This data distribution

is used throughout GAN literature as a toy data-set for observing mode collapse [SVR17,

CLJ17, MN21], since each Gaussian can be naturally taken to represent a distinct mode.

Mode collapse in this context would correspond to a generator whose outputs are focused

on one, or a subset, of the eight Gaussians. During training, mode collapse would cause

these outputs to oscillate from mode to mode, rather than splitting up to cover the entire

distribution.

We replace the double-Dirac GAN generator (composed of two parameterized points, θ1

and θ2) with 2000 parameterized points in the plane, initialized as a Gaussian distribution
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Figure 2.9: A depiction of the distribution of 8 Gaussians arranged in a circle of radius 2
(in black), and the initial distribution of the generator distribution (focused at (

√
2,
√

2), in
blue). The presence of multiple modes within the data distribution (each distinct Gaussian)
allows for the possibility of mode collapse during training.

with σ = 0.5. Whereas previously, the generator distribution was taken to be

pθ1,θ2(x) =
1

2
(δ(x− θ1) + δ(x− θ2))

we now write its distribution as

pX(x) =
1

N

N∑
i

δ(x−Xi) (2.41)

Such a ‘cloud of points’ represents a proxy for the full distribution in data-space of a generator

neural network12. Note that by working with the cloud itself, and applying the dynamics

given by equation (2.32), we can ignore the details of the generator neural network while

still learning about its properties13.

Here, instead of writing the NTK as a function of imagined inputs from a latent space,

z, we will now express Γ as a matrix with indices corresponding to points Xi in data-space.

12Meaning the pushforward of the distribution q(z) through a generator G.

13A similar point-cloud model was previously applied in [MSR19], where it was studied using a diagonal
NTK.
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Following the notation of (2.35), this takes the form

Γk,l(Xi, Xj) = δk,l(g1δi,j + g2(1− δi,j)) (2.42)

By plugging equations (2.41), (2.42) into the generator dynamics given by equation (2.32),

we find that Xi evolve according to

dXi

dt
∝ 1

N

N∑
j

Γi,j∇xD(Xj) (2.43)

with the constant of proportionality dependent on the learning rate of the generator.

The discriminator is a neural network with 4 hidden layers of width 512. During training,

it is updated according to gradient ascent, while the generator points, Xi, are updated using

gradient descent. The algorithm for this training routine is described in algorithm 2.

Algorithm 2 The model-GAN training algorithm, with a cloud of parameterized points as
our simulated generator distribution.

for iteration number do
for ndisc. do
• Sample N data-points, {xi}, from the 8-Gaussian distribution.
• Compute

LN =
1

N

N∑
i=1

Dϕ(xi)−
1

N

N∑
i=1

Dϕ(Xi)−
λ

2

∑
j

ϕ2
j

and update discriminator parameters by ascending its stochastic gradient

ϕ← ϕ+ αD∇ϕLN

end for
• update Xl according to equation (2.32)

Xl ← Xl + αG
1

N

N∑
l

Γk,l∇xD(Xl)

end for

First, we evolve the points using a trivial diagonal NTK, before introducing an NTK
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with non-trivial off-diagonals and observing the dynamics. The presence of mode collapse

will be probed by examination of the distribution of generator points closest to each mode. A

uniform distribution of 250 points closest to each mode would be a sign indicating symmetry,

and that mode collapse has not occurred. Meanwhile, we can also examine the average mini-

mum distance to the closest mode to characterize how close the distributions have converged

to any of the 8 Gaussians.

2.3.1 Trivial NTK

In the first case, the NTK is set to be diagonal, and outputs are allowed to evolve indepen-

dently. Each data-point, X, evolves according to

dX ∝ ∇xD(X)

To increase the chance of mode collapse, we initialize the generator points using a normal

distribution of σ = 0.5, and with µ = (
√

2,
√

2) – centered directly on top of one of the eight

modes. Time slices of the dynamics14 can be found in Figure 2.10.

Here, regardless of how the points are initialized, they quickly converge to the ideal

distribution. In the above case, the number of points closest to each mode is almost perfectly

uniform, with the modes having 243, 255, 250, 249, 249, 251, 251, and 252 nearest points

each.

Furthermore, each point is extremely close to its nearest mode, with an average distance

of 0.02.

14We use a generator learning rate of 0.05, and a discriminator learning rate of 0.1. Following algorithm
1, we set ndisc. = 5 and ngen. = 1. Furthermote, an L2 regularizer of λ = 103 was used (see algorithm 2 for
its role).
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(a) Training Step 0 (b) Training Step 580

(c) Training Step 1140 (d) Training Step 1700

Figure 2.10: Here, we display the generator point dynamics over time using a diagonal
NTK. Generator points, displayed in white over a color-plot of the discriminator’s outputs,
are able to converge to cover the eight modes. During training, the discriminator seeks to
assign high values (brighter colors) to real data-points (the eight Gaussians), and low values
(darker colors) to the generator points. Noting the dynamics described in equation (2.32),
we normalize the generator’s dynamics by the particle number, setting g1 = 2000, g2 = 0 so
that 1

N

∑N
j,k Γ(Xj, Xk)D′(Xk) = D′(Xk).
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Figure 2.11: The average distance to the nearest mode during training for g2/g1 = 0. This
system quickly converges.

2.3.2 Nontrivial NTK

Now we add in an NTK with a significant off-diagonal component, taking the ratio of the

off-diagonal to diagonal constants in equation (2.42) to be15

g2/g1 = 1/5

As is clear from Figure 2.12, this places us deep into the mode collapse regime of training.

Now, rather than converging directly to the 8 Gaussians, the generator points oscillate

together from mode to mode. As in the simple toy-model, this oscillation strongly resembles

the behavior typical during mode collapse, in which generator outputs fail to become diverse,

instead staying together and switching from mode to mode. This behavior can also be seen

clearly by examining the average distance to the nearest mode during training (shown in

Figure 2.13).

15Specifically, noting the form of equation (2.32), we scale these values according to the number of generator
points, N . Here we take g1 = N and g2 = N/5.
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(a) Training Step 0 (b) Training Step 1660

(c) Training Step 3000 (d) Training Step 4980

Figure 2.12: Point dynamics over time with an NTK such that g2/g1 = 1/5. The generator points,
displayed in white over a color-plot of the discriminator’s values, now fail to converge. Instead,
the switch from mode to mode, a behavior indicative of mode collapse. The discriminator seeks to
assign high values (brighter colors) to real datapoints, and low values (darker colors) to generated
points, and is unable to ‘split’ apart the generator points. This indicates that we are deep within
the mode-collapse phase
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Figure 2.13: The average distance to the nearest mode during training using g2/g1 = 1/5.
Note this system fails to converge, instead switching from mode to mode.

2.3.2.1 Physical Intuition

The physical reason for the onset of mode collapse understood by considering the g1 = g2 = g

limit. Here, equation (2.43) tells us that

dXi

dt
=

1

N

∑
j

Γ(Xi, Xj)D
′(Xj) = γ⟨D′(X)⟩

Therefore dXi

dt
is the same for all i, and the points are forced to remain together during

training, producing mode collapse.

For g1 ̸= g2, the velocity of Xi can be decomposed into two components:

dXi

dt
=

1

N

∑
j

Γ(Xi, Xj)D
′(Xj) =

(
g1 − g2
N

)
D′(Xi) + g2⟨D′(X)⟩ (2.44)

The first,
(
g1−g2
N

)
D′(Xi), contributes a velocity proportional to the local derivative of the

discriminator at Xi. The second, g2⟨D′(X)⟩, contributes a velocity proportional to the

average derivative of the discriminator over the entire generator distribution.

In the presence of a diagonal NTK (g2 = 0), two points X, X ′ might diverge as long as

D′(X) opposed D′(X ′). This could happen whenever the discriminator found a minimum

somewhere between X and X ′. With g2 > 0, however, the velocity of X and X ′ would also

be influenced by ⟨D′(X)⟩.
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Although initially, the relative velocity between X and X ′ would be unaffected by this

total velocity contribution, it would cause the generator distribution to be shifted away from

the minimum formed by the discriminator. Quickly removing the minimum which existed

between X and X ′, and halting divergence.

In this way, there is competition between the speed with which the discriminator can

minimize its value on the generator points, and the speed with which the generator distri-

bution ‘slips away’ due to the effect of the NTK’s off-diagonal components. The necessity

for increased discriminator speed is hinted at by the positive slopes of the contours shown

in Figure 2.8 – if α was increased, η had to be increased as well to avoid intensifying mode

collapse.

To clarify this relationship, we will next perform experiments in which we explore the

transition between convergence and mode collapse. We will be able to interpret this boundary

to better understand the physical mechanism relating to the transition.

2.4 Phase Transition Experiments

The experiments of section 2.3 exemplified the phenomena of convergence and mode collapse,

respectively. The first, with a diagonal NTK, showed rapid convergence to the desired data-

distribution. The second, incorporating an NTK with a strong off-diagonal part, completely

failed to converge, and instead displayed total mode collapse.

Here we wish to study the transition between these two phases. In order to do this, we

use a generator NTK following the form of equation (2.42).

Toy models seemed to indicate that for greater generator off-diagonal NTK values (larger

g2/g1), discriminators must be trained at a faster relative rate in order for the generator to

reach convergence (as is indicated by the contours of Figure 2.8). We will therefore vary the

rate at which the discriminator learns, as well as the NTK off-diagonal to diagonal ratio,

g2/g1.
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2.4.1 Experiment Setup

Sweeping Parameters

As we vary g2/g1, we must take care to control for the overall effect that the NTK has on

total velocity. For example, if all points were initialized at the same location, X, then their

velocity would obey

dXi

dt
= αG

1

N

∑
j

Γ(Xi, Xj)D
′(Xj) = αG

D′(X)

N
(g1 + g2(N − 1))

To control for the above effect, we vary g2/g1 while insisting that g1 + g2(N − 1) = const.

We take g1 + g2(N − 1) = N , so that g2/g1 = 0 =⇒ g2 = 0, g1 = N , and g2/g1 = 1 =⇒

g2 = g1 = 1.

We vary the learning rate of the discriminator by modifying the value of ndisc. used in

algorithm 2.

Measuring Mode Collapse

After a number of training steps (here we took 2,000 steps), we evaluate the entropy of the

distribution of generator points. Defining P to be the distribution of modes nearest to the

generator points16, we record the quantity

Mode Collapse Metric = log(8) +
∑
i

Pi log(Pi) (2.45)

Zero here corresponds to even convergence to all the modes, while any higher value reveals

some lack of convergence.

GAN Setup

To probe this, we train a model GAN with the following specifications:

16e.g. Pi = 1/8, i = 1, 2, · · · 8 would be total coverage, while P1 = 1, Pi>1 = 0 would correspond to all
generator points having the zeroth mode nearest to them
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• Generator: A collection of 200 two-dimensional points initialized as a gaussian centered

at (
√

2,
√

2), with standard deviation .1.

• Discriminator: a single hidden layer neural network of width 2048.

D(x) = aiσ(wj
ix

j + bi) (2.46)

We will apply both ReLU and Tanh activation functions. At initialization we take

wj
i ∼ N (0, σ2 = 1) ai ∼ N (0, σ2 =

2

width
) bi ∼ N (0, σ2 = 9)

The target data distribution is taken to be the 8 Gaussians used previously (shown in Figure

2.9), with modes set a distance 2 from the center, standard deviation = 0.02.

The loss function is then defined as

L = ⟨D(x)⟩target − ⟨D(x)⟩gen. −
1

width

(∑
i,j

(wj
i )

2 +
∑
i

a2i +
∑
i

b2i

)

Where ⟨D(x)⟩gen. is the expectation of the discriminator on the generator distribution, while

⟨D(x)⟩target is its expectation on the data distribution (the eight Gaussians). The remaining

terms represent an L2 regularizer on the discriminator weights, placing an overall restriction

on the discriminator.

An NTK following the form of (2.42) is introduced by hand into the dynamics of the

generator by defining the point velocities as:

dXi

dt
= αGΓi,jD

′(Xj) = αG

(
g1

1

N
D′(Xi) + g2

1

N

∑
j ̸=i

D′(Xj)

)

And the entire system is trained using algorithm 2.

Results

Collecting the mode collapse values (using equation (2.45)) after a number of steps, we
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plot the values below. Each point corresponds to the mode collapse measured after training

the GAN for 2000 steps. Mode collapse values range from 0 (indicating convergence), to

log 8 ≈ 2.08 (indicating total mode collapse).

On the x axis, 25 values of g2/g1 are swept over, from 0.01 to 1. For reasons that will

become clear, for the ReLU discriminator these are taken to be values equidistant on a log

scale. For a Tanh discriminator, these are spaced linearly in the same range. On the y-axis,

we sweep over ndisc., the number of discriminator training steps per generator training step.

This assumes values from ndisc. = 1 to ndisc. = 20.

ReLU Activation

We first plot the mode collapse observed using a ReLU activation function in the dis-

criminator. This is shown in Figure 2.14. Using a log-log plot, we note a linear transition –

corresponding to a power law.
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Figure 2.14: Here we use a ReLU discriminator to probe convergence, and train for 3000
steps. Brighter points indicate more mode-collapse, while darker points indicate convergence.
The slope of the transition line is approximately 0.92 (see Figure 2.15 for a clearer plot of
the transition).
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Figure 2.15: Here we obtain a transition by fitting the data using a sigmoid for each ndisc.

slice, and obtaining a linear fit of the for the halfway points of these sigmoids. This shows
a power-law transition on our log-log plot.

Tanh Activation

In Figure 2.16 we plot the same experiment, replacing the activation function of the

discriminator with Tanh. Again we can see a clear linear threshold distinguishing the two

phases, this time apparent when plotted on a log-linear plot. This corresponds to an expo-

nential transition.
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Figure 2.16: Here we show a scatter plot depicting the transition for a Tanh discriminator
after 2000 steps. As in Figure 2.14, brighter points indicate mode collapse, and darker points
indicate convergence. On this log-linear plot, an exponential transition is found (for details
see Figure 2.17).
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Figure 2.17: Above, a contour plot for the Tanh discriminator transition is obtained by
fitting each ndisc. slice to a sigmoid. The halfway points of these sigmoids are then used to
find a linear fit for the transition. On this log-linear plot, this corresponds to an exponential
boundary.

In both cases we see the same relationship we’ve observed before: the greater the off

diagonal component of the generator NTK is, the greater the rate the discriminator needs

in order to converge. As we will see, the exponential and power-law transitions are telling,

as they help reveal the mechanism of this transition.
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2.5 Interpretation and Analysis

In section 2.4, we identified a phase boundary separating GAN convergence from mode

collapse using ReLU and Tanh networks. In ReLU networks, this boundary obeyed a power-

law, while in Tanh networks, it followed an exponential. This suggestive result can be

interpreted using a separate principle observed within neural networks.

2.5.1 The F-Principle

In practice, neural networks tend to learn ‘simple’ patterns before learning more complex

ones. This feature is useful as it allows practitioners to train neural networks on data

containing noise. The network will learn the salient, basic structure of the data, before

it overfits, and begins to memorize the complex specifics of the noise. By employing a

regularization technique known as early stopping [GBC16], we can halt training before this

occurs, improving the network’s ability to generalize.

How one should quantify the concept of complexity, however, is not immediately obvi-

ous. One tool for characterizing spatial complexity which is ubiquitous in physics is the

Fourier transform. Applying this approach, researchers have studied the rates at which neu-

ral networks learn data as a function of spatial frequency [XZX19, BJK19, ZLM21]. This

direction of research has proved fruitful, as neural networks have been shown to learn Fourier

components from lowest to highest, sometimes in analytically predicable ways. This can be

characterized by identifying γ(k), the rate at which a neural network learns a feature of

spatial frequency k. 17

In particular, for wide neural networks containing a single hidden-layer, if the activation

is ReLU, γ(k) is expected to obey a power-law in |k|. For Tanh activations, γ(k) decays

exponentially with |k| [ZLM21]. The notable correspondence between the behavior of γ(k)

predicted by the F-Principle, and the phase boundaries observed in Figures 2.15 and 2.17, is

17By this I mean that the error of fitting the kth spatial mode of some target function: f(x) =
∑

kck sin(k·x)

decays according to exp(−γ(k)t
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Figure 2.18: Here, a neural network is trained to fit a data-set which is sampled from a sine
curve with noise then added: {x, sin(x)+N (0, 1/9)}. The neural network first learns the more
simple, coarse-grained structure of data, at which point it generalizes well. Later, it moves
on to memorizing the fine-grained structure of the noise. In figure (a) the mean squared
error on the training-data is shown in blue, and the error on noise-less data (corresponding
to a sine-curve prediction) is depicted in orange. These decrease together until around step
150, at which point the network begins memorizing the noise. Ideally, training would be
halted at this point. Figure (b) shows the neural network at the early stopping point, when
the network generalizes well and replicates coarse-grained sinusoidal behavior. Later, the
network is shown to fit to the peculiarities of the noise, corresponding to poor generalization.
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Figure 2.19: A neural network is trained to learn the function f(x) = sin(x)+sin(3·x)+sin(5·
x). By evaluating the inner product of the neural network’s output with each component
(shown in (a)), we can see the learning rate slows as the frequency increases. On the right,
in (b), we see the network learns less detailed features first, before eventually learning the
full higher-frequency function.

no accident. As we will see, γ(k) can be related directly to the form of the phase boundaries

we have obtained.

2.5.2 Frequency-Based Mechanism

For the generator to cover all modes of the data distribution, the discriminator must be able

to ‘break apart’ the generator’s distribution of points. We would therefore like to understand,

given a collection of N generator points with an NTK of

Γi,1 = g1 Γi ̸=j = g2

when a discriminator D can break these apart?

To probe the physics of this, consider an extremely simplified 1d model in which a

collection of N points are uniformly distributed within a region of length l, and define
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extremely simplified discriminator to have the form

D(x) = c|x|

(depicted in Figure 2.20).

Figure 2.20: The generator’s uniform distribution of length l, depicted shifted a distance pl/2,
p ∈ [0, 1], to the right of the origin. The discriminator of the form c|x| is superimposed.

From this starting point, we would like to answer the following question: For what

values of p do the generator points ‘break apart’? – move in opposite directions

on x < 0 and x > 0

To answer this question, we consider a point xL < 0, xL ∈ [−pl, 0), and a point xR > 0,

xR ∈ (0, (1− p)l]. Suppose m of the N particles are to the left (p = m/N). Then, using the

form of equation (2.44), the velocities of the points to the left and right will be

vL = c ·
(
−(g1 − g2)

N
+ g2(1− 2p)

)

vR = c ·
(

(g1 − g2)
N

+ g2(1− 2p)

)
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These velocities satisfy

vL < 0 =⇒ p >
1

2
− g1 − g2

2g2N

vR > 0 =⇒ p <
1

2
+
g1 − g2
2g2N

Therefore in order to ‘split’ the points, we require

(
1

2
− g1

2Ng2
+

1

2N

)
< p <

(
1

2
+

g1
2Ng2

− 1

2N

)

This range of p tells us that for the discriminator to be able to split apart the distribution,

we require the discriminator’s minimum to be near the center of the generator distribution,

with a spatial precision of order

l

(
g1
Ng2

−N−1

)
Here if we take g1/g2 to be large, then the relevant frequency corresponding to this spacial

precision is

k ∼ Ng2
lg1

(2.47)

This implies that to break apart such a distribution, we require the discriminator to

learn a spatial frequency proportional to g2/g1. Assuming the discriminator has a frequency

learning rate of γ(k), then the time required by the discriminator to learn such a feature

scales like

T ∼ γ(k)−1

Plugging in an exponential learning rate, and using (2.47) gives us

T ∼ exp(βg2/g1)

Implying that the number of discriminator steps (ndisc.) necessary to split this distribution

should scale like

ndisc. ∼ exp(βg2/g1)

75



for some constant β, matching the relationship observed in Figure 2.17.

The same line of argument using a power-law learning rate produces a prediction of

ndisc. ∼ (g2/g1)
β

matching the threshold shown in Figure 2.15.

We therefore seem to be able to explain physically the phase transitions observed in

experiment.

2.6 Discussion

In this Chapter, we have constructed toy models for simulating the training of GANs, allow-

ing us to understand the convergence of GANs through the dynamics of correlated particles.

We applied concepts from high dimensional probability, and facts concerning the form

of NTKs in real neural networks in order to define a simplified NTK for our toy model.

By evolving points in data-space using a this NTK (using equation 2.32), we were able to

model the learning dynamics of an infinite-width generator neural network while ignoring

the specifics of the network itself.

Our model GAN allowed us to explore the relationship between discriminator training

rate and the generator’s NTK on the presence of mode collapse within model-GAN sys-

tems. We identified a boundary separating mode collapse from GAN convergence, and used

physically motivated reasoning to explain the shape of this boundary.

Mode collapse is among the most common problems faced during GAN training [SVR17,

CLJ17]. Understanding the source of this phenomenon, and finding ways to avoid it, is

therefore of utmost importance to ML practitioners. Our model-GAN provides a playground

in which to experiment with mode collapse, and study methods to improve convergence.

Beyond this, we have identified a connection between the discriminator used, and the

shape of the phase boundary. Knowledge of this phase boundary could be used in practice,
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for instance, to infer the learning rate of a discriminator necessary to guarantee convergence.

Overall, we consider this analysis to be a promising starting point from which to study

more realistic GAN models, including those with time-evolving generator NTKs, and more

complex discriminators.

2.7 Appendix

2.7.1 The Effective Generator NTK

The generator neural network maps randomly selected seed points from the latent space to

the data space, implicitly defining a probability distribution. During training, this distribu-

tion evolves.

To simplify this setup, we have used a sample of N points in data-space, {Xi}, as a proxy

for the generator’s implied distribution. Writing

Xi ≡ Gθ(zi)

these points evolve according to

Ẋi =
1

N

N∑
j=1

dGθ(zi)

dθ

dGθ(zj)

dθ
D′(Gθ(zj))

Where here, we have computed expectations using the sample of N points.

If, instead of using the previous sample of points to compute this, one uses an average

over the distribution in latent space, q(z), an output Xi ≡ Gθ(zi) evolves according to

Ẋi = N−1
d

∫
Sd−1

dz
dGθ(zi)

dθ

dGθ(z)

dθ
D′(Gθ(z)) (2.48)

Here we taken the distribution q(z) to be a uniform sample over the unit sphere in d dimen-

sions, and Nd to be the surface area of this sphere.
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Note that if we take the NTK of the generator to be proportional to δzi,zj , then these

two velocities are proportional:

1

N

dGθ(z)

dθ

dGθ(z)

dθ
D′(Gθ(z)) ∝ 1

Nd

dGθ(z)

dθ

dGθ(z)

dθ
D′(Gθ(z))

However, if the NTK is not proportional, then proportionality is not guaranteed.

For example, take the NTK to be of the form

Γ(z, z′) = Γ(φ)

where φ is the angle between the two seed vectors z and z′. Further, take γ(φ) to be

monotonically decreasing for ϕ ∈ [0, π/2].

For our sample of N particles, 1/N of the sample satisfied Γ(zi, zj) = Γ(φ = 0) (namely,

this is satisfied for all i = j). Meanwhile, using a sample over the entire latent space (equation

(2.48)), this is not the case. As the dimension of the latent space, d, grows, a vanishingly

small faction of the points z′ on the unit sphere will satisfy φ < ϵ.

Therefore by taking a sample of N points as a proxy for the full distribution of the GAN

output, we will be overweighting the effect of the diagonal elements of the NTK. If N is

taken to infinity, however, this problem disappears since the sample becomes asymptotically

equal to the integral.

The above discussion implies some procedure to ‘renormalize’ the parameters of a net-

work’s NTK as we reduce the number of points, N , we take to represent its distribution.

Such a renormalization will be the subject of future work.

2.7.2 Supporting the F-Principle Mechanism

Our physically motivated mechanism for the transition (described in section 2.5) makes

use of the so-called frequency principle within neural networks to explain the shape of the

phase boundary. In light of the stark contrast between the shapes of the ReLU and Tanh
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boundaries, which match the differences in their respective frequency learning rates, this

connection appears very plausible.

We would like, however, to ensure that such a frequency relationship is sufficient on its

own to create such power-law and exponential phase boundaries, since it is conceivable that

some other property of the networks is responsible.

We note that our discriminators are very wide networks with a single hidden layer. In

this large-width limit, it is expected to be approximately linear in parameters during training

[LXS20]. Additionally, they are known to obey a given frequency principle. We therefore

define a new discriminator which has these precise properties alone, and rerun the same

experiment to observe the resulting phase boundary. If the same power-law and exponential

phase boundaries are found, we can be much more confident in our analysis.

Define

D(x) =
∑
k

Dk(x) (2.49)

Dk(x) = w
(1)
k sin(k · x) + w

(1)
k cos(k · x) (2.50)

Where k = (k1, k2) and ki are taken from 25 values of equal logarithmic spacing from [.01,

20], as well as the negatives of these values. w
(i)
k are the weights of the model.

During training, we follow the routine of algorithm 3, a modification of algorithm 2, in

which each w
(i)
k is updated with a rate proportional to the value of a function, γ(k). We then

plug in power-law and exponential γ(k) functions by hand, and run the same experiments

performed in section 2.4. The power-law and exponential γ(k) functions are defined below18:

γpow.(k) = min(103, |k|−3) (2.51)

γexp.(k) = 668.8 · exp(−2.05 · |k|) (2.52)

18These functions were obtained by experimenting with the γ(k) functions corresponding to real neural
networks
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Algorithm 3 The model-GAN training algorithm, with a Fourier-Discriminator and a
frequency-dependent learning rate. A cloud of parameterized points is used as our simu-
lated generator distribution.

for iteration number do
for ndisc. do
• Sample N data-points, {xi}, from the 8-Gaussian distribution.
• Compute

LN =
1

N

N∑
i=1

D(xi)−
1

N

N∑
i=1

D(Xi)−
λ

2

∑
k

(
(w

(1)
k )2 + (w

(2)
k )2

)
and update discriminator parameters by ascending its stochastic gradient

w
(i)
k ← w

(i)
k + αD γ(k) ∇

w
(i)
k
LN

end for
• update Xl according to equation (2.32)

Xl ← Xl + αG
1

N

N∑
l

Γk,l∇xD(Xl)

end for
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Note that our new routine essentializes the properties of the ReLU and Tanh discrimi-

nators by being linear in the parameters and explicitly learning frequency k features with a

rate γ(k).

The results of Figures 2.21 and 2.22 show an extremely clear phase boundary giving

precisely the power-law and exponential behavior we had expected. This tells us that a

frequency dependant learning rate is sufficient to produce the type of phase boundary we

previously observed, and lends credence to the connection drawn between the onset of mode

collapse, and the frequency principle of the discriminator network.

Figure 2.21: Here we show a scatter plot depicting the transition for a power-law γ(k) after
3000 steps. Brighter points indicate mode collapse, and darker points indicate convergence.
An extremely clear power-law boundary is found here, with a slope of ≈ 4.90.
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Figure 2.22: This scatter plot shows the transition for an exponential γ(k) after 2000 steps.
Brighter points indicate mode collapse, and darker points indicate convergence. Again a
clear exponential boundary is found here, having a slope of ≈ 1.86.

2.7.3 Generator Distributions across the Transition

To visualize the behavior of the generator points through the transition, here we plot the

generator distributions for different g2/g1 values given a fixed ndisc.. This uses a ReLU

discriminator, and the outputs of the experiment performed in section 2.4.

Taking ndisc. = 6, the transition here occurred roughly at g1/g2 = 0.06. We therefore

show plots from below and above this value.
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(a) g2/g1 = 0.0001354 (b) g2/g1 = 0.02610 (c) g2/g1 = 0.03831

(d) g2/g1 = 0.06813

(e) g2/g1 = 0.08254
(f) g2/g1 = 0.4642

Figure 2.23: Generator outputs after 3000 steps. Note the full convergence for small g2/g1,
while for g2/g1 > 0.06 the generator fails to converge.
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[ScA15] Maksym Serbyn, Z. Papić, and Dmitry A. Abanin. “Criterion for Many-Body
Localization-Delocalization Phase Transition.” Phys. Rev. X, 5:041047, Dec 2015.

[SHB15] Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. Lüschen, Mark H.
Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider, and Immanuel Bloch. “Ob-
servation of many-body localization of interacting fermions in a quasirandom op-
tical lattice.” Science, 349(6250):842–845, 2015.

[She93] David Sherrington. “Neural networks: the spin glass approach.” volume 51 of
North-Holland Mathematical Library, pp. 261–291. Elsevier, 1993.

[SHM16] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre,
George Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. “Mastering the game of Go with deep neural
networks and tree search.” Nature, 529:484–489, 01 2016.

[SN17] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge
University Press, 2 edition, 2017.

[Sre94] Mark Srednicki. “Chaos and quantum thermalization.” Phys. Rev. E, 50:888–901,
Aug 1994.

[SRN17] Frank Schindler, Nicolas Regnault, and Titus Neupert. “Probing many-body
localization with neural networks.” Phys. Rev. B, 95:245134, Jun 2017.

[SVR17] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and Charles
Sutton. “VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational
Learning.” In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc., 2017.

92

https://deeplearningtheory.com


[SW66] J. R. Schrieffer and P. A. Wolff. “Relation between the Anderson and Kondo
Hamiltonians.” Phys. Rev., 149:491–492, Sep 1966.

[TXY20] Hao Tang, Dan Xu, Yan Yan, Philip H.S. Torr, and Nicu Sebe. “Local Class-
Specific and Global Image-Level Generative Adversarial Networks for Semantic-
Guided Scene Generation.” In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

[VKK18] Jordan Venderley, Vedika Khemani, and Eun-Ah Kim. “Machine Learning Out-
of-Equilibrium Phases of Matter.” Physical review letters, 120 25:257204, 2018.

[VSP17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  L ukasz Kaiser, and Illia Polosukhin. “Attention is All you
Need.” In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[Wan16] Lei Wang. “Discovering phase transitions with unsupervised learning.” Phys.
Rev. B, 94:195105, Nov 2016.

[Wet17] Sebastian J. Wetzel. “Unsupervised learning of phase transitions: From principal
component analysis to variational autoencoders.” Phys. Rev. E, 96:022140, Aug
2017.

[Wig55] Eugene P. Wigner. “Characteristic Vectors of Bordered Matrices With Infinite
Dimensions.” Annals of Mathematics, 62(3):548–564, 1955.

[Wig57] Eugene P. Wigner. “Characteristics Vectors of Bordered Matrices with Infinite
Dimensions II.” Annals of Mathematics, 65(2):203–207, 1957.

[WS17] Sebastian J. Wetzel and Manuel Scherzer. “Machine learning of explicit order
parameters: From the Ising model to SU(2) lattice gauge theory.” Phys. Rev. B,
96:184410, Nov 2017.

[XZX19] Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. “Training Behavior of Deep
Neural Network in Frequency Domain.” In Tom Gedeon, Kok Wai Wong, and
Minho Lee, editors, Neural Information Processing, pp. 264–274, Cham, 2019.
Springer International Publishing.

[Yai19] Sho Yaida. “Fluctuation-dissipation relations for stochastic gradient descent.”
ArXiv, abs/1810.00004, 2019.

[YQX16] Yi-Zhuang You, Xiao-Liang Qi, and Cenke Xu. “Entanglement holographic map-
ping of many-body localized system by spectrum bifurcation renormalization
group.” Phys. Rev. B, 93:104205, Mar 2016.

[ZK17] Yi Zhang and Eun-Ah Kim. “Quantum Loop Topography for Machine Learning.”
Phys. Rev. Lett., 118:216401, May 2017.

93



[ZLM21] Yaoyu Zhang, Tao Luo, Zheng Ma, and Zhi-Qin John Xu. “A Linear Frequency
Principle Model to Understand the Absence of Overfitting in Neural Networks.”
Chinese Physics Letters, 38(3):038701, mar 2021.

[ZMK17] Yi Zhang, Roger G. Melko, and Eun-Ah Kim. “Machine learning Z2 quantum
spin liquids with quasiparticle statistics.” Phys. Rev. B, 96:245119, Dec 2017.

94


	Title Page
	Abstract
	Committee
	Dedication
	TABLE OF CONTENTS
	List of Figures
	Acknowledgments
	Vita
	Unsupervised Learning for Probing Many-Body Localized Phases
	Introduction
	Unsupervised Learning for Identifying Phases
	Clustering Many-Body Localized Phases
	Producing Data
	Clustering Data

	Analysis of Results
	Comparison to Supervised Learning

	Discussion
	Appendix
	Spectrum Bifurcation Renormalization Group
	Clustering Algorithms


	A Phase Transition in Model GAN Dynamics
	Introduction
	Training
	GAN Failure and Mode Collapse
	The Organization of this Chapter

	Constructing a Minimal GAN Model
	Minimal Toy Model
	The Neural Tangent Kernel
	Breaking the Toy Model

	8-Gaussian Toy Model
	Trivial NTK
	Nontrivial NTK

	Phase Transition Experiments
	Experiment Setup

	Interpretation and Analysis
	The F-Principle
	Frequency-Based Mechanism

	Discussion
	Appendix
	The Effective Generator NTK
	Supporting the F-Principle Mechanism
	Generator Distributions across the Transition


	References



