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Abstract

Game Theory (GT), both in its non-cooperative (NCGT) and coopera-
tive (CGT) forms, has been pivotal in its contribution to the analysis of
important aspects related to water resources. The 1942 seminal work of
Ransmeier on The Tennessee Valley Authority is still considered essen-
tial; it continues to inspire many applications related to water alloca-
tion decisions. Since Ransmeier, GT models were developed and have
been applied to various aspects of water management, such as deci-
sions on cost and benefit allocation in multi-objective multi-use water
projects, conflicts and joint management of irrigation projects, manage-
ment of groundwater aquifers, hydropower facilities, urban water sup-
plies, wastewater treatment plants, and transboundary water disputes.

World water resources face new challenges that suggest a renewed
role for GT in water management. Scarcity, growing populations, and
massive development have led to increased competition over water
resources and subsequent elevated pollution levels. Climate change is
expected to unevenly affect the hydrological cycle, leading to increased
variability in water supplies across time and space and uncertainty
in water allocation decisions. Future investments in water resource
projects will be astronomical, needing much more stable rules for cost
allocations among participating entities and over time. Levels of water
disputes may vary from local to regional, state, and international levels.
All of these suggest that while GT models and applications to water
resources have advanced over the years, much more is expected.

This monograph will review the main contributions of GT in water
resources over the past 70 years. It will compare the set of issues faced
by water resources and those which the sector is most likely to face in
the coming future. Based on this comparison, a future research agenda
and priorities will be proposed. Following the literature’s time line with
a focus on various methodologies, sectoral applications (such as irri-
gation, hydropower, environmental water uses, navigation, etc.), and
regional issues, we will also identify physical and behavioral features
in the water sector that might be conducive to GT (such as scarcity,
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externality, uncertainty, and competition-conflict) and some features
of intervention (such as the important role for policy, regulation, and
incentives), which all affect the likelihood of GT solutions in terms of
acceptability and stability.

A. Dinar and M. Hogarth. Game Theory and Water Resources: Critical Review of
its Contributions, Progress and Remaining Challenges. Foundations and TrendsR©

in Microeconomics, vol. 11, nos. 1–2, pp. 1–139, 2015.
DOI: 10.1561/0700000066.



1
Introduction

The use of Game Theory (GT) to address water resource manage-
ment issues has been ever increasing since the 1942 seminal applica-
tion by Ransmeier [1942] to the Tennessee Valley Authority invest-
ment project.1 As is described in Guillermo Owen [1982], the seeds for
the development of today’s GT were planted in the work by Zermelo
[1913] and were advanced to the understanding that economic situ-
ations can be modeled as games by Von Neumann and Morgenstern
[1944]. GT applications were further developed for logistical purposes
during World War II. GT has become one of the basic analytical tools
for addressing strategic issues in many fields, including water resources.
Following the various applications of GT in water resources over the
past half century suggests that it traced a path similar to the state-of-
water and water development in the world. This path will be described
and analyzed in Section 2 of this monograph. Initially we want to dis-
tinguish water resources from other applications of GT.

What makes water an appropriate medium for the application of
GT? We will suggest several aspects embedded in water and its inter-
action with society that make it perfect for GT analysis. First, water

1Fisheries will not be included in this review.
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4 Introduction

is a scarce resource that creates tension between competing users and
uses. Conflicts between sectors that need water at different periods dur-
ing the year, such as irrigation and hydropower are common [Moller,
2005]. In many situations water is characterized as a common pool
resource (CPR), opening the door for strategic behavior of the users.
Secondly and mostly related, water resources are subject to various
types of externalities. One type of externality, the congestion external-
ity, is associated with the CPR nature of water (e.g., groundwater).
Another type of externality of water is associated with pollution and is
most prominent when upstream–downstream relations prevail. Third,
water is associated to a greater extent with uncertainty and asymmetry
of information, thus reflecting on the strategic behavior of the agents
involved.

Some other reasons for the strategic nature of water can be
explained by the fact that not all players ‘behave’ strictly as profit
maximizers. Water is seen by various individuals not only as a pro-
duction resource but also as a source for spiritual needs with existence
value. Therefore, ‘optimal’ prescriptions for social arrangements may
not be acceptable for various groups in the society. For that reason,
most water conflicts involve multi-party multi-objective solutions, and
thus the incorporation of strategic behavior considerations, as GT can
offer, is essential for socially acceptable arrangements. Such reasons
provided the motivation for our work.

The use of GT in water resources by different disciplinary profes-
sions such as engineers, international relations experts, economists, and
geographers, to name a few, is indeed impressive. The objective of this
monograph is to collect the vast literature, catalogue it, and provide
present and future practitioners of Game Theory in water resources
with a source of information that can be useful for their research. For
the sake of conserving space we kept the text explaining GT concepts
to a minimum. We assume that readers of this monograph have the
basic skills in GT. In places, we provide references to conceptual works
for readers who might need help in understanding the relevant GT
concepts.
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Several databases and Google Scholar were iteratively used to
gather literature for this review. Search terms were adjusted according
to the vocabularies of each database and the results were analyzed
and categorized. An attempt to analyze text using an automated text
analyzer failed. For further details, please see Annex 1.

The monograph will be developed as follows. In Section 2, we
report the historical trends observed in the accumulation of the GT
publications on water between 1942 and 2013. Such trends indicate
dynamics of relative importance of sectors and topics over time.
They may be connected to global events or crises that took place
in the world. Detecting such trends may be useful in explaining
the relevance of GT to issues in water around the world. Section 3
describes the developments in Cooperative GT-methodologies to
water issues. Cooperative Game Theory (CGT) applications ruled
the GT applications during the period 1950–1990. Section 4 reviews
the development of Non-Cooperative GT (NCGT) methodologies to
various water issues. Then NCGT became more prominent in dealing
with water-related issues that involve third parties. Section 5 provides
a comprehensive review of GT surveys that have been published in the
literature. Section 6 reviews Game Theory applications by sub-sector.
We identified 11 sub-sectors and reviewed the applications of GT
approaches to each of them. In total, this monograph reviews 289
publications that are directly or indirectly applied to water related
issues. We end the monograph in Section 7 with a conclusion and
identification of remaining problems to be addressed in the future.



2
Historical Trends

Water-related investments and development projects enjoyed a signifi-
cant boom after World War II, when the damaged and outdated infras-
tructure for water supply systems was replaced and expanded, new
water supply and irrigation projects had been initiated, and new dams
were designed and impounded. GT has played an important role in
supporting decisions related to development of water supplies, water
treatment, water storage, and water delivery systems. The big infras-
tructure investment in water projects during the 1940s–1980s has given
rise to CGT applications. Once water development projects have been
completed, management issues have arisen and had to be addressed,
using both NCGT and CGT frameworks (1980s–1990s). The next dis-
tinguished period in water resources followed the Rio Declaration in
1992 [United Nations Environment Programme, 1972], which included
both the recognition of environmental externalities and that water is
an economic good. The Rio platform created the needed setting for the
introduction of many applications of GT that addressed water qual-
ity aspects, environmental services provided by water, equity issues,
and analyses (1990s–2000s). A parallel track that has been extended
until 2013 emerged alongside the appearance of global issues such as

6
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global public goods, international water conflicts, the impact of climate
change on water resources, and the stability of international treaties.

We identified a total of 623 Game Theory publications in water
resources.1 Using the results of Figure 2.1, we were able to identify and
classify 294 publications that were found to be relevant for this review.
The total trend of these publications indicates a very low trajectory
until 1970 and then an exponential growth of 30–80 publications per
year. Looking at the 11 categories2 is even more interesting. We can
see a clear and significant increase in several of these categories, while
others increased more steadily.

GT work applied to issues in allocation (of water or of joint costs)
has increased steadily since the 1950s but then jumped at the begin-
ning of the 1990s as the world recognized the increased scarcity of
its water resources, and the needs to better allocate that resource,
to build infrastructure to manage it, and then allocate water among
the users. Another category of GT work that has shown a significant
increase over time is in groundwater. Groundwater (GW) has been for
years the orphan resource that frequently escapes public consideration.
It is only relatively recently when surface water increased in scarcity
that GW got the attention of the world, and of the GT profession.
We can see that since the 1980s, groundwater work is increasing. The
most fascinating increase in GT applications is detected in the category
of international water. New publications in this category were almost
unchanged until the 1990s when the numbers sky rocket. In addition
to the increased awareness of international and global conflicts, we find
(not reported) that the category of international water benefits from
GT applications increased by the highest number of disciplines. We
found work by economists, international relations experts, political sci-
entists, engineers, and several other disciplines. The category is unique
in this respect and different from other categories that employ more
than one discipline. The cumulative number of works by year and cat-
egory is presented in Figure 2.1.

1A reference list of GT application works that were not included in our review
can be found in Annex 2.

2Of the 294 publications, 5 are bankruptcy applications and are not included in
separate discussion.
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Figure 2.1: Cumulative trends of GT publications by 11 categories, N = 294,
including five bankruptcy publications.

2.1 Early applications

The work by Ransmeier [1942] was the first to apply CGT principles
along with several other methods to allocate the costs of multipur-
pose water projects among users and uses by the Tennessee Valley
Authority (TVA). In a following paper, Parker [1943] focuses on the var-
ious theories applicable to the allocation of costs of a multiple-purpose
water control project, and presents the procedure followed by the TVA
in allocating the cost of its first three dams to navigation, flood control
and power. It is shown that a large difference in the allocation of the
common costs of a project affects, to a much lesser degree, the propor-
tion of the total cost charged to the individual purposes. Consequently,
the final allocations are approximately correct, within reasonable limits,
regardless of the exact methods adopted.

We report only the main methods because they capture implicit
GT principles. (To remind ourselves, the analysis is about the cost
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allocation for the first three dams built for navigation, flood control,
and electric power production.)

The analysis of the TVA cost allocation [Ransmeier, 1942]
distinguished between direct costs (due to a particular sector of the
multipurpose project) and the remaining joint costs. Although no cost
sharing rule was specifically chosen, the Egalitarian, the Alternate Cost
Avoided (ACA) method, and the Alternative Justifiable Expenditure
method most influenced the final allocation. A modification of the
ACA method, called the Separable Cost Remaining Benefits (SCRB)
method gained acceptance during the 1940s and the US Corps of
Engineers [1950] recommended its utilization for the allocation of costs
in a joint water facility project.

The rules used indicate that “Expenditures made solely for a single
purpose are to be charged directly to that purpose. The following meth-
ods of allocation were considered by the committee” [Parker, 1943]:

• Vendibility theory — acknowledging the fact that a market does
not exist where the facilities dealt with can be sold.

• Benefit theory — acknowledging the difficulty of estimating the
benefits derived from the projects.

• Use of facilities theory — a method allocating costs upon the
basis of comparative use of the common facilities, but it is too
difficult to estimate comparative use due to lack of data.

• Equal apportionment — “common-sense rule of equity to be used
when it is felt that no truly scientific basis of apportionment can
be found. However, such a rule does not seem practicable where
the respective uses for each function are not equal.”

• Special costs-apportionment of the costs proportional to the spe-
cial expenditures for each use, but it can also be used for the joint
costs.

• Alternative justifiable expenditure — the joint costs can be
divided in proportion to the alternative justifiable expenditure
minus the direct cost for each function, where, for direct cost, we
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mean the marginal contribution to the joint cost of a project and
the alternative justifiable expenditure is the lowest cost, justified
by the benefits obtainable, realizing the project outside the joint
facility will get the same benefits.

The author concludes that, “There is no real justification for basing
the allocation . . . upon any one mathematical formula.” In the mean-
time, the evolution of CGT provided many new tools for the analysis
of that kind of problem, from the Imputation Set and the Core Con-
cepts, anticipated by some TVA criteria in Ransmeier [1942], to more
“sophisticated” solution concepts.

Straffin and Heaney [1981] made the first relevant contribution to
this literature. They outlined some basic CGT principles embedded in
the TVA analysis and “translated into GT language” the main cost-
apportioning methods. Driessen [1988] applies several CGT cost allo-
cation methods to the case of the TVA, comparing the τ -value, the
Nucleolus, and the Shapley value, and similarly to Tijs and Driessen
[1986], demonstrates, using some theorems, that, for certain subclasses
of games, the τ -value coincides with the Egalitarian Non-Sepearable
Cost (ENSC) and with the Seperable Cost Remaining Benefit (SCRB)
methods. In a similar way, Young [1994a,b] additionally proposes the
TVA as a rich example for a range of issues and cost allocation meth-
ods. Straffin and Heaney [1981] applied solution concepts, including
the Core, a special case of the Nucleolus, and the Imputation, which
minimizes the maximum propensity to disrupt. A method equivalent to
the latter, but with a different rationale, is now in standard use among
water resource professionals. The authors describe the TVA multipur-
pose problem in a CGT model, as follows. N is the set of n purposes
among which costs have to be allocated, C(S) is the cost function for
each subset S of N (S ⊂ N), and thus C(N) is the total cost and C(i)
is the cost of a single project.
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Cooperative Game Theory Developments in

Water Resources

Game Theory (GT) can be useful in situations when the market mech-
anism fails. Market mechanisms do not consider strategic interaction
among economic agents. Including the strategic interactions among
agents could bring more relevant solutions to economic problems of
allocation, because it considers the behavioral responses of players and
their consequences. GT could be used in these contexts because of its
ability to address the economic and social problems of pollution, con-
sumption of resources, and sustainable development.

GT is the study of mathematical modeling of the strategic behavior
of decision makers (players), in situations where one player’s decisions
may affect the other players [Parrachino et al., 2006a]. GT consists
of a modeling part and a solution part. Mathematical models of con-
flicts and of cooperation provide strategic behavioral patterns, and the
resulting payoffs to the players are determined according to certain
solution concepts. The main types of GT that we consider here are
Non-Cooperative Game Theory (NCGT) and Cooperative Game The-
ory (CGT). The main distinction between the two is that NCGTmodels
situations where players see only their own strategic objectives and thus
binding agreements among the players are hard to obtain, while CGT

11



12 Cooperative Game Theory Developments in Water Resources

actually is based mainly on agreements to allocate cooperative gains
(using Solution Concepts as will be discussed later). Therefore, while
NCGT models describe and take into account the strategic interaction
among the players, CGT ignores the strategic stages leading to coali-
tion building and focuses on the possible results of the cooperation.
In particular, CGT favors solutions that include all possible players
(Grand Coalition), and thus most CGT solution concepts refer to the
Grand Coalition. An important aspect associated with the solution con-
cepts of CGT is the equitable and fair sharing of the cooperation gains.
Young [1994b] notices that equity is something dealt with in everyday
life. One can refer to equity in a comprehensive framework, that is,
social justice: a proper distribution of resources, welfare, rights, duties,
opportunities, or in the narrow framework, for example, how to solve
everyday distributive problems. This second case is the one more fre-
quently addressed by GT, which provides the tools to examine equity
in a rigorous way, and the problem turns out to be a choice between
rules under an axiomatic perspective.

But, as Young underlines, the axiomatic approach has two weak-
nesses: first, the axioms, reasonable by themselves, may lead to “impos-
sibility theorems”; second, the axiomatic method may result in a
solution that is too far from the practical problem which is dealt with:
the perceived equity always depends on the particulars of the case. Fur-
thermore, the empirical rules of equity, that one can see applied in real
situations, are usually more complex than a single normative principle,
and often represent a balance or compromise between competing princi-
ples. The term fairness in the literature is sometimes used as a synonym
for equity, but some authors often mean something different: their idea
of fairness coincides with the acceptability and stability of the cost or
benefit apportionment among the players. As was indicated above, the
following background is not intended to provide a comprehensive tech-
nical basis in GT. Readers who wish to widen their familiarity with
the field of GT could refer to Owen [1995], Myerson [1991], Osborne
and Rubinstein [1994], Driessen [1988], Peters and Peters [1997], and
Aumann and Hart [1992, 1994, 2002].

Due to the nature of water projects (irrigation, wastewater treat-
ment, dams, etc., the cost (or profit) functions of the project (called
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the joint costs or profits) exhibit strong convexity (sub additively) and
thus there is an incentive for joining the grand coalition and enjoying
higher cost savings (or profits). In the next section, we provide a menu
of several allocation schemes used in the literature related to water.
The reader is invited to learn more about the theory behind each of
these allocation schemes by visiting the sources provided for each allo-
cation scheme below. While we use cost allocation schemes, the reader
can convert them very easily to benefit/profit allocation schemes as
well. The examples are taken from Dinar and Howitt (1997).

3.1 Non-GT cost allocation schemes used in GT studies

There are a wide variety of cost allocation schemes for joint operation
of facilities proposed in the accounting and engineering literature. Bid-
dle and Steinberg [1985] provide a comprehensive review, from which
we use three main types: an engineering approach where the cost allo-
cation is proportional to the physical use of the facility; marginal cost
analysis based on economic efficiency principles; and the separable cost
remaining benefit (SCRB) principle, where the allocation of the fixed
investment is based on an equitable division of the cost. In the following
section, the terms “player” and “user” are used interchangeably.

3.1.1 Allocation based on pollution generation

This allocation scheme simply suggests that each user of the joint facil-
ity will be charged in proportion to the services the facility provides
for this player (e.g., volume of pollution it generates that is treated in
the joint facility).

Thus, the cost to user j is:

pj = fN · qj∑
j∈N qj

,

where pj is the cost allocated to user j, fN is cost of the joint facility
and qj is the quantity of pollution generated by user j. This scheme
allocates all of the joint cost among all N users.
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3.1.2 Allocation based on marginal cost

Allocation on the basis of the marginal cost of the joint facility takes
into account the marginal quantities generated by each potential user.
Since economies of scale in the joint cost function exist, the revenues
generated by this allocation scheme will not cover the total cost. There-
fore, an additional procedure is necessary to account for the remaining
uncovered costs. Usually this can be done using any proportional rule
(such as pollution volume, or volume of production). The formula for
this scheme is:

bj = ∂fN

∂qj
· qj∑

j∈N qj
+

fN −

∑
j∈N

∂fN

∂qj
· fN

 · qj∑
j∈N qj

where bj is the allocation of the joint cost to user j; ∂fN/∂qj is the
marginal cost associated with the use of user j; and fN − [

∑
j∈N

∂fN

∂qj
·

fN ] is the remaining uncovered cost, which is now included in the
allocation scheme.

3.1.3 Separable cost remaining benefit (SCRB)

The separable cost of user jεN is the incremental cost mj = fN −
fN−{j}. The alternate cost for j is the cost f{j} it bears while acting
alone, and the remaining benefit to j (after deducting the separable
cost) is rj = f{j} −mj . The SCRB assigns the joint cost according to
the following formula [Young, 1985]:

kj = mj + rj∑
j∈N rj

fN −
∑
j∈N

mj


In other words, each user pays their separable cost, and the “non-
separable costs” fN −

∑
j∈N mj are then allocated in proportion to the

remaining benefits, assuming that all remaining benefits rj are non-
negative for each player.

3.2 Game theory cost allocation solutions

Given the initial conditions of voluntary collective action, and the prior
establishment of independent resource management institutions among
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the users (a region, river basin, etc.), the problem of allocating the
joint costs of a joint water facility (joint well, treatment facility, reser-
voirs, hydropower generation) is modeled as a game among the players.
Based on the empirical situation, it can be assumed that institutional
regulations facing the players are already in place and that the play-
ers agree to consider them. If a player chooses not to cooperate (not
to participate in the investment and the operation of a joint facility),
it faces a certain outcome resulting from the operation of a private
facility or alternative measures needed to meet the regulations. If the
players choose to cooperate, they may benefit from economies of scale
embodied in the larger capacity of the joint facility with lower average
treatment costs compared to the cost in private actions. Some players
may cooperate while others may choose not to cooperate, depending
on the degree to which they can reduce their cost under cooperation.
As a result, the larger the economies of scale, the bigger the incentive
for cooperation.

The following is based on Shubik [1982], Shapley [1953], and Young
[1985]. Let N be the set of all players in the region, S(S ⊆ N), the set
of all feasible coalitions in the game, and s(s ∈ S) a feasible coalition
in the game. The non-cooperative coalitions are {j}, j = 1, 2, . . . , n,
and the grand coalition is {N}.

Assuming that the players’ objective is to minimize their cost, let
fs be the cost of coalition s, and f{j} be the cost of the Jth member
in non-cooperation. A necessary condition for regional cooperation is
that the joint cost will be less than the sum of the individual costs:

fs ≤
∑
j∈s

f{j}, ∀ s ∈ S ⊆ N.

The joint savings that are allocated among the players are
∑

j∈s f
{j}−

fs ≥ 0, ∀ s ∈ S ⊆ N . The above inequality can be interpreted as a
cooperative game, with side payments, and can be described in terms
of a characteristic function. The value of a characteristic function for
any coalition expresses the coalition expenses (or profit, in the case of
a benefit game):

v(s) = fs, ∀ s ∈ S ⊆ N (see Owen, 1982 for more details).
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We will consider four GT allocation schemes that have been widely
used in water resources: the Core, the Shapley Value, the Nucleolus,
and the Nash–Harsanyi Allocation.

3.2.1 The core

The Core of an n player-cooperative game in the characteristic function
form is a set of game allocation gains that is not dominated by any
other allocation set. The Core provides a locus for the maximum (or
minimum in terms of cost) allocation each player may request. In this
respect, it is an overall solution for several allocation schemes that are
contained within the Core. The Core fulfills requirements for individual
and group rationality, and for joint efficiency [Shubik, 1982].

CGT is conducted under the assumption that the players in the
game are economically rational. This means that the decision of each
player to join a given coalition is voluntary, and is based on the minimal
cost they bear by joining that coalition (in a benefit game it is the
incremental benefit they gain). Let ωj be player j’s Core allocation of
the cost from the game. The Core equations (for the case of a cost
allocation game) are:

ωj ≤ v({j}), ∀ j ∈ N,∑
j∈s

ωj ≤ v(s), ∀ s ∈ S,

∑
j∈N

ωj = v(N).

The first inequality in the Core fulfills the conditions for individ-
ual rationality — that is the cooperative solution for each player is
preferred to the non-cooperation case. The second inequality fulfills
the group rationality conditions — that the cooperative allocation to
any combination of players is preferred to any allocation in any sub-
coalition they can establish. And the third inequality fulfills the effi-
ciency condition — that the joint cost will be fully covered by the
grand coalition participants. The system of these three inequalities
has more than one allocation solution. A method of calculating the
extreme points of the Core [Shapley, 1971] provides the incremental
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contributions of each player when joining any existing coalition, and
assigns these contributions to that player. Thus, having a non-empty
Core for a cooperative game provides the necessary condition for a
solution that will be acceptable to the players.

3.2.2 The nucleolus

The Nucleolus [Schmeidler, 1969] is a single point solution that always
exists (if the Core is non-empty) and minimizes the dissatisfaction of
the most dissatisfied coalition. To obtain the Nucleolus, we define the
ε-core of the game v to be the set of allocations that would be in the
Core if each coalition were given a subsidy at the level of ε. By varying
ε one finds the smallest non-empty ε-core (called the least Core). The
least Core is the intersection of all ε-cores. The least Core for a cost
allocation game satisfies:

Min ε

subject to∑
j∈s

ωj ≤ v(s) + ε, ∀ s ⊆ S,

∑
j∈N

ωj = v(N),

ε Q 0.

The solution to the minimization problem above may provide the
Nucleolus (as a single solution) but it may also provide several individ-
ual cost allocations ωj for the same value of ε for each coalition s. In
this case, we define the excess function e(ε, s) for each s (that measures
how much less it costs a coalition to act alone) and in a lexicographical
process [Schmeidler, 1969] obtain the Nucleolus, for which the value of
the smallest excess e(ε, s) is as large as possible.

The interpretation of ε is interesting. It can be used as a tax or
a subsidy to change the size of the Core. If the Core is empty, then
ε (ε < 0) is an “organizational fee” for the players in sub-coalitions,
causing them to prefer the grand coalition. If the Core is too big, ε
might reduce it (ε > 0) by subsidizing sub-coalitions. The Nucleolus is
always in the Core if it exists.
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3.2.3 The Shapley Value

The Shapley Value [Shapley, 1953] scheme allocates θj to each player
based on the weighted average of their contributions to all possible
coalitions and sequences. In the calculation of the Shapley Value, an
equal probability is assigned to the formation of any coalition of the
same size, assuming all possible sequences of formation.

The Shapley value is calculated as:

θj =
∑

s⊆S j∈s

(n− |s|)!(|s| − 1)!
n! [v(s)− v(s− {j})], ∀ j ∈ N,

where n is the number of players in the game, and |s| is the number of
members in coalition s.

3.2.4 The Nash–Harsanyi (N–H) solution

The N–H Solution [Harsanyi, 1959] to an n-person bargaining game is
a modification to the 2-player Nash Solution [Nash, 1953]. This solu-
tion concept maximizes the product of the grand coalition members’
additional utilities (income, or savings) from cooperation compared to
the non-cooperation case, subject to Core conditions, by equating the
utility gains of all players. The N–H Solution satisfies the Nash axioms
[Nash, 1953]; it is unique and it is contained in the Core (if it exists).
The solution might provide unfair allocations if there are big utility
differences between the players (e.g., very rich player and very poor
player).

The N–H, hj , is calculated as:

max
∏
j∈N

(f (j) − hj)

subject to the Core conditions:

hj ≤ f j , ∀ j ∈ N,∑
j∈s

hj ≤ fs, ∀ s ⊆ S,

∑
j∈N

hj = fN ,
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where hj is the N–H allocation that satisfies efficiency and individual
rationality conditions.

The fulfillment of the Core conditions for an allocation scheme is a
necessary condition for its acceptability by the players. Thus, solutions
not included in the Core are also not stable. Although an allocation
scheme may fulfill the Core requirements for the regional game, it still
may not be accepted by some players that might view it as relatively
unfair compared to another allocation. Allocations which are viewed
as unfair by some players are less stable. Some players might threaten
to leave the grand coalition and form sub-coalitions because of their
critical position in the grand coalition. The stability of any solution is
important given the existence of fixed investments, and a more stable
solution might be preferred even if it is harder to implement.

We do not discuss coalitional stability here. The reader is referred
for more reading to Shapley and Shubik [1954] and Loehman et al.
[1979] who used a measure of power in voting games. This power index
is also used in Williams [1988]. Another measure of stability was intro-
duced by Gately [1974] as the “propensity to disrupt” the grand coali-
tion and was modified and applied (for N > 3) by Straffin and Heaney
[1981] to the case of the Tennessee Valley.

3.3 Developments in cooperative game theory solutions

Several developments were reported in the literature, which have impli-
cations for the application of CGT to water. Loehman and Whinston
[1971] introduced the Generalized Shapley Value, which is a very rele-
vant modification to the Shapley Value.

3.3.1 The generalized Shapley Value

The Shapley Value assumes equal probability for the formation of any
coalition of the same size, which is theoretically possible, and also con-
siders all the possible sequences of formation. Loehman and Whinston
[1976] criticized this assumption on the basis of the Shapley Value and
they proposed the Generalized Shapley Value. The Generalized Shap-
ley Value differs from the Shapley Value in two aspects: (1) it refers
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only to coalitions that are practically possible, rather than possible
from a theoretical combinatorial point of view, and (2) the probability
of a coalition occurrence depends on the logical sequence of its forma-
tion. The Generalized Shapley Value assigns, in a similar manner, to
each player the weighted average of its contributions to all realistically
formed coalitions:

ϑj =
∑
s⊆S
j∈S

P (s, s− {j})[v(s)− v(s− {j})], ∀ j ∈ N

where P (s, s− {j}) = P (s|s− {j}) · P (s− {j}).
and P (s) =

∑
j∈s

P (s, s− {j}).

P (·) is a conditional probability, which is interpreted as the proba-
bility of a certain player, j, joining a certain coalition, s−{j}, given the
structure of the coalition that existed without that player. Conditional
probabilities are determined from “decision trees,” which result from
the coalition formation process. An example can be found in Loehman
et al. [1979]. Calculating the Generalized Shapley Value is straightfor-
ward, and follows a similar procedure as the Shapley Value.

3.3.2 Set solution concepts

To conclude this section, we will briefly mention several set solution
concepts in addition to the Core. These solution concepts were applied
to water resource allocation issues. Such solutions include the Bargain-
ing Set [Aumann and Maschler, 1964], the Stable Set von Neumann–
Morgenstern Solution [1944], the Kernel [Davis and Maschler, 1965],
and the Least Core. More on these can be found in Aumann and Dreze
[1974] and in Parrachino et al. [2006a].

3.3.3 Dealing with externalities: the γ-core

Management of water resources is at times associated with negative
externalities, such as congestion in the use of Common Pool Resources
(groundwater), or such as pollution in the upstream–downstream geog-
raphy of transboundary water bodies (such as international water).
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Several concepts have been developed to deal with such externalities
within the framework of cooperative games. We will mention one that
has been used in the work cited in this paper.

The γ-Core developed by Chander and Tulkens (1992, 1997, 2006
and the references there in). was applied in many works that deal with
international environmental agreements on pollution (mainly global cli-
mate change agreements). In our paper, the γ-Core was used in the
work by Fernandez [2002, 2005, 2009], where she applied it to the trans-
boundary water pollution problem in the Tijuana River, shared by the
United States (US) and Mexico.

The γ-Core for pollution games consists of allocations (treaties in
the transboundary context) that specify a profile of allowed emissions
for each player, that are Pareto efficient at the global scale, and trans-
fers (positive or negative) amongst the parties, that cover the total cost
of abatement for each of them, and are financed by contributions from
each based on their relative (marginal) environmental damage costs.
The γ-Core is based on the assumption that in the case of defection
by some subset S of parties, the other parties will abandon any form
of cooperation and act to the best of their interest as singletons in the
face of S.

The γ-Core is basically the result of transfers of compensations
received and paid by the various members of the grand coalition in the
game, and can be formalized by the following equation [Chander and
Tulkens, 2006]:

Ti = −[gi(p∗i )− gi(p̄i)] + π
′∗
i∑

j∈N π
′∗
i

∑
j∈N

gj(p∗j )−
∑
j∈N

gj(p̄j)

,
where pi is pollution of player i; gi is GDP and πi is total damage
caused to player i by the aggregate emission (externality)

∑
pi.



4
Non-Cooperative Game Theory and Other
Related Developments in Water Resources

Non-Cooperative Game Theory (NCGT) concepts have been applied
to various water resources issues. Non-Cooperation Games include sit-
uations where interdependencies exist among players, which affect each
other. Players maximize their own utility irrespective of the utility of
other players, either taking into account their opponents’ decisions or
ignoring their opponents’ decisions (the Prisoner Dilemma Games).
Non-Cooperative Games can be presented in extensive or strategic
forms. Games in extensive form provide a detailed documentation of a
player’s moves and the ultimate payoff and the end of the game. Games
in strategic forms are a ‘folded’ version of the moves into a matrix form
where each cell represents the outcome payoff to each player from each
particular strategy [Shubik, 1982, Owen, 1995].

4.1 Games in strategic form

Situations where individual players do not consider the overall benefits
of the riparians to a river basin, or users of the same aquifer, or neigh-
bors to the same lake, are quite common in the field of water resources.
The geography of the location of the players along the water body is

22
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also important in such cases (the case of unidirectional externality) and
affects whether or not cooperative or non-cooperative arrangements are
likely. This ‘structure of the problem’ affects the nature of the game
and will dictate the type of strategic form of the game.

Dombrowsky [2007] provides quite a large set of examples of 2× 2
games from various international river basins that are characterized
by different problem structures and demonstrate how various types of
games (Pure Coordination; Assurance; Prisoner’s Dilemma; Chicken,
Battle of the Sexes; Deadlock; Constant Sum, and Rambo) apply. We
should also mention that in addition to the problem structure men-
tioned earlier, one has to consider whether the game is a one-shot game
or a repeated game. We will review only a subset of the examples pro-
vided by Dombrowsky [2007].

The first example is of the Mountain Aquifer that is shared by
the Israelis and Palestinians. The Israelis use the most water resources
at present, and the Palestinians request to have their water rights as
well. In a Chicken game structure each player prefers not to yield to
the other, and the worst possible outcome occurs when both players
do not yield. At present it seems that the Israelis have moved first
and allocated most water resources to their needs. They discount the
Palestinians’ requests to allocate to them more water resources and
do not suggest they joint manage the water in the aquifer. The author
argues that since the asymmetry between the two parties at present is so
significant, the game structure of Prisoner’s Dilemma is not appropriate
and rather a Chicken game structure prevails.

The second example is from a game of wastewater treatment in
order to reduce pollution by two different players (the situation could
also be relevant for pollution reduction in general). The strategies faced
by each player are to pollute or to abate. Abatement is done jointly
because it is more cost effective. Abatement is associated with major
economies of scale. Because of the economies of scale this is an Assur-
ance Game, in which the two players are aware of the significant gains
they may realize from working together. Such situations exist in the
management of the Great Lakes between Canada and the US, several
lakes in Europe, Lake Victoria, and many other lakes.
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The last example deals with provision of retention areas for flood
control at border rivers that are shared by two countries. This is an
example of a reciprocal externality that affects mainly the downstream
country. Strategies by each player could be to provide or not to provide
a retention area on their territory to benefit both players, but mainly
the lower riparian state. This is a Prisoner’s Dilemma game that is
observed in Europe in the Oder Basin that is shared by the Czech
Republic and Poland, or by Poland and Germany.

4.2 Bankruptcy games

Bankruptcy Games are games that are similar to a situation where
a group of creditors face a total debt that exceeds the total financial
assets to be credited among the creditors. In water resources, this is
characterized by a situation in which a resource is available at a level
below the demands of all users. This is very common in cases where
water had common pool resource characters with multiple users lead-
ing to overuse, congestion, pollution, destruction, and behavior based
on individual rationality rather than group rationality. Bankruptcy
arrangements can either be achieved via cooperation among the users,
or via external interventions by the regulator, or an agreed-upon medi-
ator. General characteristics of bankruptcy games are included in Gura
and Maschler [2008].

In cases where total resources are below the aggregate demand the
expected exploitation of each user should be reduced by some amount,
which can be calculated using different bankruptcy methods available
in the literature [Curiel et al., 1987, Dagan and Volij, 1993, Kampas
and White, 2003, Madani and Dinar, 2013].

One possible allocation is by using the proportional rule, by which
the regulator may reduce each user’s expected exploitation of the
resource by a given share. The entire reduction would then meet
the level of resource bankruptcy. Another approach could be to use the
constrained equal award (CEA) rule, which intends to enforce justice
by satisfying the poor users, who may lose more from share reduction,
before satisfying the rich beneficiaries, who may not bear significant
losses from share reduction due to their relatively high wealth level.



5
Reviews/Surveys

Several reviews have been published in the past 30 years, many of
which focus on practical applications of GT. To acknowledge the review
nature of these publications they will be surveyed here. The earliest
review that we were able to identify is by Bogardi and Szidarovszky
[1976]. The authors survey the possible application of Oligopoly Game
Theory to water issues such as water quality management, multipur-
pose water management, environmental protection, and irrigation sys-
tem management. While the principles for Oligopoly Games suggest
that players do not have dominant or dominated strategies, in the four
areas of application it is not always easy to identify those that follow
such requirements. This is especially true given the geographical nature
of the water system leading to water polluters and victims, or power
embedded in the position of the players.

Sheehan and Kogiku [1981] further review the CGT literature in
water resources available by the late 1970s. They use simplified but
realistic scenarios to illustrate the concepts of fair allocation of joint
costs and benefits along with some of the pitfalls such as the Prisoner
Dilemma Situation in the case of no cooperation. They suggest and
demonstrate the use of 5 rules for allocation of joint costs or benefits in
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various situations, using the available literature: (1) Egalitarian divi-
sion of incremental gains among the participants (Nash Allocation);
(2) division by the ratio of costs each player would have paid under the
status quo (noncooperation); (3) distribution of benefits which is most
likely to result from a stable coalition, meaning a distribution which
equalizes the “propensity to disrupt” of all the participants; (4) Shapley
Value; and (5) distribution based on the “power” of the participants,
based on the “kernel” solution of the game (See Section 3.2).

Game theory applied to transboundary pollution of various
resources, including water, has been reviewed by Missfeldt [1999]. The
paper reviews the various issues facing transboundary polluters and
how different types of transboundary pollution have been approached,
using static and dynamic game theoretic solution concepts. One conclu-
sion reached is that while full cooperation among the polluter countries
leads to economically optimal outcomes, it is difficult to achieve, mainly
due to differences in abatement costs across the countries and incen-
tives to free-ride. Mechanisms such as side payment, coordination and
information sharing, sanctioning, and self-enforcement are reviewed.

Parrachino et al. [2006b] review applications of CGT to water
resources in multi-objective water projects, irrigation, groundwater,
hydropower, urban water supply, wastewater, and transboundary water
disputes. While providing the rationale to, and demonstrating the dif-
ficulties of the application of CGT models, the review also talks about
the stability of the cooperative solutions. Among several stability mea-
sures of the cooperative solutions, the authors describe the Shubik–
Shapley Power Index [Shapley and Shubik, 1954], a discussion of which
can be found also in Section 3.2. A review of the work on application
of CGT to natural and environmental resources other than water can
be found in [Zara et al., 2006]. While not focusing on water, the CGT
solution concepts reviewed are applicable to various water resources,
as they are reviewed in this monograph.

A review and comparison of various CGT allocation schemes that
have been discussed above for urban water supply and sanitation
projects, is presented in Loehman [1995].

An illustration of various NCRG games (Prisoner’s Dilemma,
Chicken, Assurance, and Dynamic Games) is reviewed in Madani
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[2010] with focus on water resources conflicts. Using a simple 2-person
game, the author demonstrates the relevance of the various games to
issues associated with transboundary water allocation, water pollution,
water resource development, and groundwater management. While the
NCGT principles are explained with a very simple 2 × 2 matrix, the
consequences of Nash Equilibrium and the potential for cooperation
are well demonstrated.

Finally, for this section, we introduce the review by Madani and
Hipel [2011]. They review several stability definitions that are asso-
ciated with NCGT and applied to water resources. The stability def-
initions reflect the nature of agents involved in the game (planning
horizon, risk aversion, and level of asymmetry of information). The
combination between the characteristics of the agents and the problem
of the water resources’ management guides the selection of the stability
measure of the game solutions: nash stability, general metarationality,
symmetric metarationality, sequential stability, limited move stability,
and non-myopic stability (all are illustrated in Section 3.2).



6
Sectoral Applications

Over the years, GT applications have been developed for several water
sectors. We were able to identify 11 sector typologies that mark an
important contribution to the literature. They include: urban water
supply and sanitation, irrigation, hydro-electric power, water pollution
control, groundwater, allocation issues, international/transboundary
water, water conflict and negotiations, water and ecological systems,
watershed management and regulation/river basin planning, and mul-
tipurpose water projects. Each of these sub-sectors may have some
unique features that are reflected in the particular way the GT
approaches were applied to them. The reader may find that some of
the material included in one sector typology could have been placed in
another sector typology. In that respect, our decision for inclusion of
material in a given sector typology reflects our best assessment, but we
indicate the synergy where relevant.

6.1 Urban water supply and sanitation

This subsection represents a major contribution to the literature in the
early stages of application of CGT approaches to water supply and
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Figure 6.1: Annual GT publications, urban, N = 13.

sanitation projects, starting in early 1970s. Most of the works in this
section address the cost and/or benefit allocations of joint projects in
the urban sector. Some works also address fairness considerations and
the stability of the allocation arrangements.

The majority of the studies reviewed deal with the acceptability and
stability of joint water projects, either wastewater treatment facilities,
or water supply projects. Given the economy of scale nature of water
supply and sanitation projects, the players involved are usually cities
that consider whether or not to cooperate in building a water supply
or treatment facility. The usual question is what should be the pricing
scheme that will allocate the costs and/or benefits among the players
involved? Some works also involve a government for possible subsidies
and regulations, and the environment as a possible victim of externali-
ties (pollution) that may be the result of the project, or avoided if the
project will be initiated. The annual number of published works in this
category is presented in Figure 6.1.

Giglio and Wrightington [1971] address a very relevant issue even
for today’s water project situations: the question of regional vs. sub-
regional facilities to treat water. The regional setting means economies
of scale and the possibility of reducing the costs of treating wastewater
(for example) for each urban center. If this is correct then the grand
coalition is preferable. However, it might be possible that the treat-
ment cost function has convexity properties such that it will attract a
given urban center to join a sub-group (sub-coalition) instead of the
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grand coalition. The paper demonstrates, using n-person CGT and
linear programing, how such a situation can be addressed. In a sub-
sequent paper, Giglio and Wrightington [1972] examine three methods
in use for allocation of costs of joint wastewater treatment facilities
among users: (1) cost sharing based on the measure of pollution; (2)
cost sharing based on single plant costs with a rebate proportional to
the measure of pollution; and (3) cost sharing based on the Separable
Costs Remaining Benefit (SCRB) method. Main findings are that often
these three methods do not provide allocations that satisfy all the play-
ers, leading to decisions to not join the grand coalition (regional plan),
ending in a less-than-optimal regional setting. In comparison to the
above three methods, the authors introduce two cooperative n-person,
non-zero sum games possessing a Core, with two nuances: (4) where
the authority is not a player, and (5) when the authority is a player
with interests of maximizing taxes. The CGT models show higher sat-
isfaction on the part of the various players.

In a similar manner, Dickinson and Heaney [1982] compare several
ad hoc methods that are used in the empirical literature to allocate the
costs of a water resource project among participants and/or purposes.
As was found in Giglio and Wrightington (1971, 1972), these meth-
ods lead to unfair allocation of the joint costs. The paper compares
criteria used for fairness measurement to those used in cooperative
n-person game theory approaches. Findings suggest that the minimum
costs remaining savings (MCRS) method is proposed as an improved
method of financial analysis. The MCRS method can be viewed as a
generalization of the presently used SCRB method that was discussed
in Section 3.1. Similar ideas are expressed in Heaney and Burke III
[1976]; and in Lippai and Heaney [2000] who present an efficient and
equitable method for determination of fees for urban water systems in
a fair manner. Based on n-person CGT they introduce mechanisms for
cost allocation by urban zones, user classes, and/or demand types in a
small urban water system.

More work on similar applications of cost allocations using CGT
approaches can be found in Holler and Li [1996], and Lejano and Davos
[1995], who introduce the Normalized Nucleolus and compare allocation
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results with those obtained by the Nucleolus and the Shapley Value,
and Lejano and Davos [1999].

A classical work on investment in water supply system and allo-
cation of its joint costs in Sweden is provided in Young et al. [1980,
1982]. The importance of these two works is that they estimate the
joint cost function of the project from real world available data [see also
Dinar and Howitt, 1997, in Section 6.9] and incorporate this informa-
tion into the characteristic function of the possible coalitions involved.
They compare several allocation mechanisms of the joint costs on the
basis of certain commonsense principles of equity (the Separable Costs
Remaining Benefits — SCRB, the Shapley Value, and Variants of the
Core). Advantages and disadvantages of the methods in practice are
examined on the basis of practical project implementation considera-
tions. While the authors do not provide recommendations regarding
prioritization among the allocation schemes, they conclude that the
SCRB may be one of the worst.

Another application focusing on the Shapley Value and the Gen-
eralized Shapley Value (see Section 3.2) is reported in Loehman et al.
[1979]. An n-person Cooperative Game is developed for a region with
eight polluters of the Meramec River Basin in Missouri that have
to meet pollution standards and reduce their emissions via a joint
treatment facility. The contribution of this work is not only in the
introduction of the Generalized Shapley Value, but also in an unusual
involvement of the ‘real’ players in the evaluation process — after the
suggested cost allocations of the joint facility have been calculated they
were shared with the players for feedback. The main feedback was that
the different players in the Meramec River Basin in Missouri felt that
the Shapley and the Generalized Shapley Values are too complicated to
understand, and that the concept of income transfer among the players
was hard to accept [for a broader discussion and comparison to other
allocation schemes see Loehman, 1995].

Dinar et al. [1986] address the somewhat new approach, at that
time, of reuse of treated municipal wastewater for irrigation (a wastew-
ater market), rather than its disposal to the dry streams or ocean, in
a regional context. Optimization of the size of the treatment facility,
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level of treatment, and location constitute the basis for the regional
characteristic function. Allocation of the joint costs and benefits were
calculated, using both marginal cost pricing methods and CGT meth-
ods (Core, Nucleolus, Shapley Value, and Generalized Shapley Value).
In addition to calculating the various allocations by each method to
each player (the city that produces the wastes, and the three farms
that are the potential users of the treated wastewater), the authors
compare the fairness, reasonableness, and acceptability to the players,
which is the basis for the stability of the proposed allocation solution.

To conclude the review of the urban and sanitation applications,
Amit and Ramachandran [2010] introduce an NCGT principal–agent
contract approach in a two-period game to reach a stable and accept-
able demand management plan that will escape the market failure
problem while achieving fair charges for users. In public utilities, under
supply constraints, fairness considerations lead to a market failure. The
contract between the principal and the agents is designed as an exten-
sive form mechanism using Subgame Perfect Nash Equilibrium (SPNE)
as the solution concept. The contract is fair and economically efficient:
in case of deviation by the agent, the gain to the agent and the loss to
the principal are small.

6.2 Irrigation

The irrigation sector represents a common pool resource management
situation. The common pool could be an aquifer or a reservoir shared
by several irrigators. Most applications of GT to the irrigation sector
address issues in cost sharing of a joint irrigation water system. As such
there are CGT applications.

Works in this category can be divided into two groups. The first
group of works includes studies that analyze the interaction between
irrigators in the irrigation project. Questions addressed include: pricing
of the water and services provided by the project to the different irriga-
tors, and contributions of the individual irrigators to the public good
nature of the water infrastructure. The second group of works includes
studies that look at the irrigation sector as a player that competes with
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Figure 6.2: Annual GT publications, irrigation, N = 10.

other sectors over scarce water. In this group of works, the opportunity
costs or benefits from using scarce water by the irrigation sector are
incorporated into the analysis. The annual number of published works
in this category is presented in Figure 6.2.

A relatively early application by Sawaragi et al. [1978] attempted
to analyze how Japanese irrigators govern their common pool resource
(CPR) irrigation facilities. Opposite to early beliefs, the results suggest
that State and market approaches ignore the endogenous institutions
that CPR users develop and prefer external regulations, such as gov-
ernment coercion to help rational, self-interested users maximize their
group benefits or privatize their resources. The irrigators are farsight-
edly rational in collective action situations and the government does
not need to apply coercion to make the rational, self-interested irriga-
tors achieve their common interests. The results of this early study are
similar to those of Madani and Dinar [2012a,b]. Similar findings were
also suggested, based on the series of studies on various CPRs that
were summarized in Ostrom et al. [1994] finding that self-governance
of CPR does not lead to the tragedy of the commons.

In a series of papers Aadland and Kolpin [1998, 2004a,b] exam-
ine various aspects of irrigation project cost sharing arrangements.
In their 1998 paper, Aadland and Koplin show that the variations
of serial and average cost-sharing mechanisms can be characterized
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as unique solutions to equity-constrained welfare maximization prob-
lems. In their 2004a,b papers they find that the shared irrigation costs
that are adopted reflect the extent to which the structural environ-
ment affects the costs and the benefits of the irrigators along the canal.
The innovation in the model suggested by Aadland and Kolpin [1998,
2004a] is the use of the variable “Center of Gravity” which measures
the impact of the degree of heterogeneity between head and tail farm-
ers’ demands for water on a given ditch. These differences will affect
the selection of the allocation rule:

CoG0
j =

∑mj

i=1((dij −mini(dij))acreij)
(maxi(dij)−mini(dij))

∑mj

i=1 acreij

where dij is the linear distance from the headgate to the ith private
point of diversion, acreij is the number of irrigated acres associated
with the ith private point of diversion, and mj is the total number
of fields. CoG0

j is bounded between 0 and 1, with values close to 0
indicating a concentration of irrigated acres near the head. A CoG0

j

closer to 1 indicates that tail-end users are closer to the average in
a relative sense, leading to consideration of excess demand protection
to be less important in the allocation rule. This type of consideration,
based on distribution of the irrigators, has equity and stability.

A different approach to the same water management problem has
been applied by Bardhan [1993] in order to understand the success and
failure of local cooperative institutions, using evidence from fieldwork
and CGT applied to evolutionary biology and economics. Some of the
most interesting findings from Bardhan’s study is that the variation
of some parameters across the participants have a high impact on the
stability of the group rules of operation. For example, a low variance of
the average annual farm income level is associated with a high level of
rule conformance and good maintenance. Also, the smaller the variation
in farm size among the farmers, the more likely they are to establish
water-user organizations.

A different approach is undertaken in two separate studies by Geti-
rana et al. [2008] and Getirana and de Fatima Malta [2010]. Both
studies apply GT approaches to conflict among irrigators among the
Coqueiros Canal water users, located in the Campos dos Goytacazes
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municipality, in the northern region of the State of Rio de Janeiro, and
a canal in Rio de Janeiro State in southeastern Brazil. A graph model
of a NCG was developed for conflict resolution. The authors devel-
oped six scenarios pertaining to the decision makers, and their options
and strategies. Then they identified two possible roles for the managing
institution: first, that the conflict resolution managing institution takes
into account that it has no explicit preferences for any of the outcomes,
and the second one is such that the managing institution shows explicit
preferences for the scenarios which provide more income taxes. In both
the cases, the results suggest a solution to the conflict among the irri-
gators, with the demand for irrigation water affecting the priorities in
the solution.

6.3 Hydropower generation and reservoir operation

GT applications in the hydropower sector can address a range of
issues, including market allocation among operators of different types
of dam technologies, operation of multipurpose dams, reservoir opera-
tion in deficit water storage periods due to drought and high scarcity,
and negotiations in the process of institutional reforms of the regula-
tory framework of hydropower generation. GT applications can also
include market simulation (quantities and prices) in the case of a
static (Cournot) model and a dynamic (Cournot–Nash) model, and
cooperation and its stability in the case of multi-agent investment in
hydropower generation. Several works also address the negative exter-
nalities between hydropower production and the environment. The
annual number of published works in this category is presented in
Figure 6.3.

Dakhlaoui [2008] analyzes infinite discrete-time games between
hydraulic and thermal power operators in the wholesale electricity
market, using the Cournot Closed-Loop game and the Stackelberg
Closed-Loop game. There are two energy sources: hydropower and ther-
mal. Decisions by the hydraulic operator are subject to the stochastic
dynamic constraint on the water stored in the dam. In contrast, the
thermal plant is operated with quadratic cost function, with respect
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Figure 6.3: Annual GT publications, hydropower, N = 9.

to the capacity production constraint, assuming that oil or gas are
available at a given level over time. The findings suggest that under
different market structure and with the two game natures (Cournot
and Stackelberg), each operator (hydraulic and thermal) may have rel-
ative advantage over the other. Similar work applying a Cournot–Nash
model can be found in Villar and Rudnick [2003, 2004].

Fronza et al. [1977] analyze the optimal operation of the two-
purpose water reservoir. Having two operators, each responsible for
a certain purpose (e.g., irrigation and urban supply), and each with
different and maybe opposed objective functions, suggests that a solu-
tion has to take into account the tradeoff between these two purposes.
The authors demonstrate the application under both a non-cooperative
solution where each purpose’s operator maximizes its own objective,
and a cooperative solution where the objective function is the sum of
the benefits of the two operators. Under the non-cooperative scenario
it is possible to find a solution such that the distribution of benefits is
Nash-Equilibrium and Pareto-Optimal. Under the cooperative solution
the joint benefits have to be distributed in one way or another, which
is not addressed by the authors. The cooperative situation is shown to
produce incremental benefits over the non-cooperative situation, sug-
gesting preference for the cooperative situation.

The issue of reservoir operation under conflicting demands and
under stochastic water supply is analyzed by Ganji et al. [2007].
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A stochastic dynamic Nash game (PSDNG) model with perfect infor-
mation about the stochastic nature of the water supply is developed
and applied to the Zayandeh-Rud River basin in Iran. The results are
compared with alternative reservoir operation models, i.e., Bayesian
Stochastic Dynamic Programming (BSDP), Sequential Genetic Algo-
rithm (SGA), and classical Dynamic Programming Regression (DPR).
Results show that the proposed model has the ability to generate reser-
voir operating policies with regard to the operators’ and the users’
preferences.

An application of CGT to regulatory management of the electricity
market is a unique contribution of Madani [2011]. The author demon-
strates how CGT solutions can provide useful insights into how parties
may use water and environmental resources and share any benefits of
their cooperation. The work applies Nash and Nash–Harsanyi bargain-
ing solutions to the Federal Energy Regulatory Commission (FERC)
relicensing process in the US. The relicensing process allows owners of
non-federal hydropower projects to negotiate their allowable operations
with other interest groups (mainly environmental advocates). Linked
games to expand the feasible solution range, and mitigate the ‘strate-
gic losses’ are discussed and an FERC relicensing bargaining model
is developed. The author extends the model to account for poten-
tial effects of climate change on the FERC relicensing process. One
important finding is that the inclusion of climate change considera-
tions, namely, increase in variability of water supply to the reservoirs,
makes cooperation more attractive.

We conclude this section with the work by Gately [1974]. The focus
of the work is regional cooperation in planning investment in electric
power, with reference to the four states of the Southern Electricity
Region of India (Andhra Pradesh, Kerala, Mysore, and Tamil Nadu).
However, this work became known for its coined measure of stabil-
ity of the cooperative arrangement — “Propensity to Disrupt” the
grand coalition, which became a very popular index of stability for
coalitional arrangements in various fields. The objective is to obtain a
mutually acceptable basis for agreement, such that it is in each state’s
own interest to cooperate. The author estimates electricity production
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cost under various levels of cooperation in the four-state region, and
engages the four states in various arrangements for sharing the joint
costs, which may or may not be acceptable to the individual states.
A player’s propensity to disrupt is defined as the ratio between how
much would the other players lose if that player refuses to cooperate,
to how much that player would lose for refusing to cooperate. As was
mentioned earlier, Straffin and Heaney [1981] modified the propensity
to disrupt index to N > 3 players (in the case of Gately [1974] there
are three states and the equations are specifically for three states). The
modified propensity to disrupt a grand coalition by player j, SHj , is:

SHj =
∑

i 6=j xj − v(N − j)
xj − v({j}) = V (N)− v(N − j)

xj
− 1, j ∈ N

where xj is the allocation to player j in the grand coalition. Negative
values of SHj reflect enthusiasm for the allocation xj . Large and positive
values of SHj indicate that player j can threaten the members of the
coalition, thus showing a high propensity to disrupt on player j’s part.

6.4 Water pollution control

Water pollution is a transboundary phenomenon. Therefore, analytical
frameworks applied to water pollution control can include international
as well as domestic agents. Domestic and international water pollution
control will be included in this section and not in the section on inter-
national water. While not necessarily related only to water, we would
mention here the review by Finus [2003] that reviews the literature on
forming coalitions in international environmental agreements, most of
which deal with various types of pollution control.

Works in this category include interactions between the regulatory
agency and the polluters that could be either individuals (irrigators,
manufacturers) or cities, or even states or countries in cases of cross-
border pollution. The works in this category have a strong component
of external damages imposed by one or several polluters on the rest.
In most works the objectives of the games are to find an optimal level
of pollution or a scheme that achieves the socially-desirable level of
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Figure 6.4: Annual GT publications, pollution, N = 21.

pollution, and the compensation to the victims. The annual number of
published works in this category is presented in Figure 6.4.

We would start with the study by Kilgour et al. [1988], applying a
CGT approach to control the load of chemical oxygen demand (COD)
(as opposed to the conventional approach to regulate the concentration
of the pollutant) is described and applied to a two-pollutant game.
The work highlights the importance and difficulty to obtain fairness
in the allocation of water pollution load control costs under certain
closed water systems and the role of CGT in providing stable allocation
solutions. One important observation from this work is that while all
participants in the load control game benefit from cooperation, the
most efficiently-abated player benefits the most and, in some cases,
also un-proportionally. This is a major concern for instability in the
cooperative game and needs to be addressed.

A couple of papers address the issue of agricultural pollution from
pesticides and fertilizers. Alexander and Bhat [1998] develop a Stack-
elberg game-theoretic model of public policy formation with regulator
and polluters that simultaneously determines endogenous price sup-
ports and pollutant quotas, as well as the optimal permissible water
contamination. Their analysis distinguishes between the private and
social opportunity costs of producing agricultural crops and using water
as a repository for contaminants from agricultural sources. The contri-
bution of this paper is in its ability to quantify the solution, including
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private and social benefits. Additionally, optimal production and pol-
lution solutions will vary as the relative weights, which policy makers
attach to different social constituents, change.

Another paper by Wetzstein and Centner [1992] addresses the issue
of reducing the liability stringency level of chemical users in irrigated
agriculture and replacing them with negligence standards. The work
focuses on the allocation of the contamination costs and the protection
level between agricultural producers and victims, using a dynamic game
theoretic framework with moral hazards. Based on this analysis, a new
institutional response is recommended to assign cost and protection
levels.

An interesting application to pollution control when information
about emissions and their impact is associated with uncertainty is pre-
sented in Abed-Elmdoust and Kerachian [2012]. The model addresses
a situation known to be relevant in many countries, namely, lack of
monitoring stations along the river. The river receives pollution loads
from several dischargers and dischargers are penalized for any water
quality violation as measured in the monitoring station. The suggested
framework models the process of bargaining among load dischargers,
subject to the assimilative capacity of a river (which is known). Signal-
ing games can be utilized for modeling the bargaining among discharg-
ers and developing Perfect Bayesian Equilibrium (PBE) strategies for
pollution control. The authors develop an n-person iterated signaling
game, which provides the stable PBE waste load allocation strategies
among the polluters. The framework is applied to the Zarjub River in
Iran, using seven pollution load dischargers.

An interesting application to a simplified case of the Aral Sea region
is provided by Akhmedjonov and Suyundikov [2011] in the sense that it
connects the allocation of the joint river basin water among upstream
and downstream riparian areas to the salinity pollution (in the form
of salt dust storms) in the region. While simplified to a two-country
situation, still, the context of the model provides a clear application
to the Aral Sea region. The paper examines if a partially coopera-
tive water-allocation scheme, where a central authority chooses the two
countries’ respective abatement levels (of salt dust) after the countries
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individually choose per-unit taxes on water withdrawal, inducing the
countries to withdraw water at the socially-efficient level. The authors
find that the partial scheme managed by the central authority induces
both countries to optimally choose to withdraw water at the socially-
efficient level. While the relationship between water use and salinity
pollution is much more complicated than the mechanism used in this
paper, we still see in this paper a very unique application that should
be further developed.

Fernandez [2002, 2009] develops differential games to examine
wastewater pollution in basins (Rio Grande in the 2002 paper and
Tijuana in the 2009 paper) along the Mexico–US border. The first
paper [Fernandez, 2002] examines in a noncooperative and cooperative
setting whether or not trade liberalization (affecting levels of industrial
activities on the two sides of the border) affects emission levels. Using
actual data, the analysis suggests that trade liberalization leads Mexico
to reduce pollution in both cooperative and non-cooperative games. A
more significant result is that, under cooperation and trade liberaliza-
tion, emissions from both countries are reduced. The second paper (Fer-
nandez, 2009) also develops a differential game that compares various
incentives for wastewater pollution abatement control for the upstream
and downstream countries under cooperation and noncooperation sce-
narios in the Tijuana Basin that is shared between Mexico and the US.
Given the asymmetry between the two countries in terms of abatement
costs, damages, and levels of emissions it is expected that different
incentives will attract each of the countries. Game sharing rules with
income transfer, such as the Shapley Value, Chander–Tulkens Rule, the
Helsinki Rule [Salman, 2007], and the Egalitarian Rule are compared.
In most cases of cooperation, there is a positive transfer of income from
the victim (US) to the polluter (Mexico), mainly for reductions in flow
and stock of pollution.

An interesting application of a cost-sharing problem of pollution
control in the context of international water is presented in Wang and
Ni [2007] and in an exact setting in Dong et al. [2012]. They refer to
a river network in need of cleaning and the question of cost-sharing
among the polluters. The contribution of this paper is in translating
two international law rules, namely the Absolute Territorial Sovereignty
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and the Unlimited Territorial Integrity (UTI) into GT context. Three
cost-sharing schemes are employed: (1) local responsibility sharing
(LRS), (2) upstream equal sharing (UES), and (3) downstream equal
sharing (DES). The DES is based on a new interpretation of the UTI.
The authors show that the proposed three allocation schemes coincide
with the Shapley Values allocation solution.

Another application of river pollution control in a context of inter-
national water is presented in Gengenbach et al. [2010]. The paper
explores the role of voluntary agreements and the stability of coalitions
when optimal treatment levels cannot be enforced by a central agency
on all polluters. A transboundary pollution game with a unidirectional
pollutant flow is modeled, where polluters are identical except for their
location along the river. Partial coalitions are allowed. Findings sug-
gest that the location of the coalition members does not affect the
coalition stability, but it does affect overall basin welfare. The more
upstream the members of the coalition are, the higher the overall wel-
fare is because the positive externalities of cleaning accrue to a larger
number of downstream water users (unintentional free riding).

In his work, Hurwicz [1998] addresses the design of mechanisms
for solving pollution externalities as a game. While acknowledging the
tragedy of the commons issues embedded in common pool resource
games, Hurwicz points out that extending the game across space and
time (super games, with infinite repetition of the Prisoners’ Dilemma
game) may lead to improved equilibrium compared with the tragedy
of the common outcome.

A different approach to handle pollution control is suggested by
Krawczak and Mizukami [1984] and Krawczak and Zioskowski [1985].
Assuming a non-cooperation arrangement in the region subject to pol-
lution (a river in Krawczak and Mizukami [1984] and a lake in Krawczak
and Zioskowski [1985]), the authors develop differential games where
the polluters have to agree on the level of pollution in Nash and
Stackelberg Structures in the 1984 paper and optimal treatment costs
via the Nash Equilibrium in the 1985 paper.

Niksohan et al. [2009] develop and apply a cooperative trading dis-
charge permit system that is equitable and efficient in the treatment
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costs for a set of polluters of a water body. The system consists of two
main steps: (a) initial treatment cost allocation and (b) equitable treat-
ment cost reallocation. A Pareto Front among objectives is developed
in (a) with the objectives being the average treatment level of dis-
chargers and a fuzzy risk of violating the water quality standards. The
fuzzy risk is evaluated using the Monte Carlo analysis. The best non-
dominated solution on the Pareto Front, which provides the initial cost
allocation to dischargers, is selected using the Young Bargaining The-
ory [Young, 1993]. Then, in (b), several cooperative game theoretic
approaches are utilized to investigate how the maximum saving cost of
participating dischargers in a coalition can be fairly allocated to them.
The final treatment cost allocation provides the optimal trading dis-
charge permit policies. The approach is applied to the Zarjub River in
the northern Iran.

Several works examine variations of games that aim at establishing
markets for pollution permits. Poorsepahy-Samian et al. [2012] present
a game for water and discharge permit allocation to agricultural zones
in rivers that are shared by different agricultural polluters. The ini-
tial setting is a given (administrative) allocation of water rights and
pollutant discharge permits. Then, trade in both water rights and pol-
lution permits allows the forming of possible coalitions and optimal
water and discharge permit reallocation among the coalition members
to maximize coalitional characteristic function value. At that stage
CGT solution concepts such as the Shapley Value and the Nucleolus
are introduced to consider possible changes to the market-based allo-
cations and increase the satisfaction of the individual polluters. The
recommended water rights and pollution permits system is selected by
minimizing the maximum regret in the system. The model was applied
to the Karoon-Dez River system in Iran. Two new aspects have been
introduced in this work: (1) a crop water production function accounts
for water use and pollution emitted from the fields, and (2) the inclu-
sion in the same model of both water rights and pollution permits.

Suzuki and Iwasa [2009] develop a model for integrated dynamics
of human socio-economic choice and lake water pollution. Players can
choose between a costly but cooperative option and a selfish option.
Cooperation results in a reduced phosphorus discharge into a lake.
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Each player’s choice is affected by an economic cost and social pres-
sure. Social pressure promotes cooperation. It is stronger when more
players in the society are cooperative (conformist tendency) and when
the problem at hand is a greater concern to society. The model allows
for cooperation levels to differ between groups that have different social
factors. Enhancement of the cross-group conformist tendency was found
to be the most effective way to minimize differences in cooperation lev-
els and to mitigate conflict between groups.

Tamura and Suzuki [1982] develop a simple CGT model with hierar-
chical structure of the polluters along a river. The model aims at regu-
lating the basin-wide pollution discharge (calculated based on observed
assimilative capacity of the water body) from all polluters. The CGT
allocates the total allowed pollution among all polluters so that the
social basin benefits will be maximized, and that each polluter in the
set of cooperating polluters is satisfied.

And finally, Bhat et al. [1998] develop a Stackelberg [Von Stack-
elberg, 2011] Game between policy makers and agriculturalists that
use chemicals in the production process to model public policy forma-
tion that simultaneously determines endogenous price supports and the
nitrogen-use quota, as well as the optimal permissible water contam-
ination in a water body. The authors are able to distinguish between
private and social opportunity costs and are able to show that, with
differences in the value of the private and social benefits attached to the
pollutant, the weights assigned by the policy maker to social groups and
situations will dictate the optimal production and pollution solutions.

6.5 Groundwater

Groundwater received the attention of GT modelers because of its
common-pool resource nature and the congestion externality impacts
among users. Works also address the possible conjunctive use of ground-
water and surface water as well as the links between groundwater and
ecosystems that depend on this source. In addition, several studies
address the quantity as well as the quality of the available groundwater.
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Figure 6.5: Annual GT publications, groundwater, N = 22.

Almost all works in this category address the externality nature of
the public good nature of groundwater (congestion externality), and
some address also the water quality externality associated with a pub-
lic good management of groundwater aquifers. In most cases, the focus
is on the individual users acting as strategic players and imposing neg-
ative externalities on all users. The annual number of published works
in this category is presented in Figure 6.5.

Dinar [2001] develops a Nash Bargaining Model to an investment
project in groundwater extraction, which determines both the optimal
capacity of the well and the allocation of the costs and benefits among
the cooperating users. Using two models that differ in their imple-
mentation complexity, the author shows that the models lead to the
same result and thus open the gate for the use of the simpler model.
The two procedures are illustrated for situations with and without side
payments.

Dixon [1991] develops a GT model for an aquifer affected by
lateral drainage externalities from a neighboring aquifer. This physical
situation mimics the lateral drainage flows affecting regions in the
west side of the San Joaquin Valley of California. The example uses an
NCGT framework in which the author models behavior of irrigators
that operate over two aquifers with unidirectional flow of saline
drainage from one region to the other. Several behavioral patterns
are modeled, including an open loop (with no interaction between
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decision makers) that leads to a Nash Equilibrium Prisoner Dilemma
Solution; closed-loop (where agents take into account the decision of
other agents); and collusive (cooperation) behavior that maximizes
the two regions’ total benefits and then splits the incremental benefits
among the players evenly, using a Nash Bargaining Solution [Nash,
1953]. A dynamic model was applied to the Kern County region in
California and the simulation was run for 60 years suggesting that
collusion � closed-loop � open loop.

A similar approach was used by Negri [1989] who developed a
common resource groundwater model to assess open-loop and feedback
solutions in a dynamic GT setting. The author identified two types of
inefficiencies in the management of the aquifer that were identified as
the “dynamic externality”: pumping cost externality and a strategic
externality. The former one is the typical congestion externality that
affects the pumping cost due to a lower water table; the latter one is
the result of the competition among users to exploit the groundwater
reserves. While the open-loop solution captures only the pumping
cost externality, the feedback solution captures both externalities, and
thus reflects the over exploitation of the common pool resource. As
anticipated, the severity of the externality is higher as the number of
users increases.

A similar idea is modeled in Provencher and Burt [1993]. They
develop a common property groundwater dynamic game with feedback
strategies by n players. One important finding in this work is the role
of risk externality in addition to the stock externality and the pumping
cost externality. Risk externality becomes an important factor that
affects the efficiency of the groundwater extraction when the players
are risk averse. The model is tested for deterministic and stochastic
surface water supply to show the difference in the game solution under
these two states of nature.

A model of group interaction and self-enforcement is presented in
Georgakopoulos et al. [2006]. The authors refer to a situation that is
common in many developing countries. Several water lords that own
wells and have the capacity to pump water do provide water to other
farmers for a fee. Well owners are rewarded for water sales. However, in
some communities, water pumping is monitored by the well owners to
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prevent depletion and the subsequent increase in pumping costs to the
owners. A fine is established and imposed on anyone pumping above
the social pumping value that was established. A solution is achieved
that reaches an equilibrium and prefers cooperation.

Levy et al. [1995] model the optimal strategy of a groundwater
polluting agent facing regulations and possible levels of compliance
that are associated with private and social costs. The model allows
that regulatory agencies can carry out their mandate without incurring
extra costs. The enforcement problem is modeled as a non-cooperative
game. Several sub-game perfect Nash Equilibria are found for each
level of compliance. One of these sub-game’s perfect Nash Solution is
the socially-preferred solution; the authors identify the conditions for
its existence. The model is applied to the case of the pharmaceutical
producer Ciba-Geigy’s pollution of 126 groundwater wells in the Grand
River watershed in Ontario, Canada.

Loaiciga [2004] compares cooperative and non-cooperative behav-
iors in aquifer management, using the quadratic programming model
of aquifer water management. Using a stylized example, the author
explains what cooperative aquifer management means and what the
conditions are (mainly effective enforcement) for making it sustainable.
Non-cooperative behavior is characterized by at least one user that does
not internalize the pumping externalities on other users, violating water
level constraints in a relatively short period of time, and leading to a
collapse of the cooperative arrangement of the set of users. It is also
shown that the total benefits from water use in non-cooperation are
lower compared to the cooperative arrangement.

In a series of works, Madani and Dinar [2012a,b] demonstrated the
performance of cooperative [2012a] and non-cooperative [2012b] institu-
tions for sustainable groundwater common pool resource management.
They introduce the concept of non-homogenous users. As is the situa-
tion in the real world, users of common pool resources may select avail-
able non-cooperative and regulatory exogenous institutions for man-
aging the resource, as well as cooperative management institutions.
All these institutions may increase long-term gains, prolong the life of
the resource, and help to escape the tragedy of the commons trap. The
2012a paper formulates and applies several commonly-used cooperative
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game theoretic solution concepts, namely, the Core, Nash–Harsanyi,
Shapley, and Nucleolus. Using a numerical example, the authors show
how CPR (common pool resource) users can share the gains obtained
from cooperation in a fair and efficient manner based on these coop-
erative solution concepts (management institutions). The 2012a paper
discusses how different methods, such as application of the plurality rule
and power index, stability index, and propensity to disrupt concepts,
can help identify the most stable and likely solutions for enforcing coop-
eration among the CPR beneficiaries. In the 2012b paper the authors
focus on non-cooperative management institutions that are associated
with basic assumptions about the nature of behavior and decision mak-
ing of the users in the short- and long run. Ignorant myopic manage-
ment behavior is the worst type of management, which results in a
rapid exhaustion of the resource and is the least profit to users, as sug-
gested by “tragedy of the commons” literature. The most important
conclusion from this work indicates that even within a non-cooperative
framework, parties can obtain less tragic outcomes and improve their
gains by acting smartly and considering the externalities; and by acting
non-myopically and developing long-term exploitation plans.

A case study of groundwater management on the US–Mexico border
with the players being the cities of El Paso and Ciudad Juarez is pre-
sented in Nakao et al. [2002]. The cities on the two sides of the border
use the Hueco Bolson aquifer. Given their geographical and political
positioning, there is no a-priori reason for cooperation, which leads to
the Prisoner Dilemma solution. The authors develop a dynamic model
of groundwater extraction and water table movement and compare four
scenarios of cooperation and non-cooperation scenarios, including the
non-cooperation status quo scenario, a Nash non-cooperative game sce-
nario, a Nash cooperative bargaining scenario, and a social planner sce-
nario that involves maximizing the sum of net benefits in both cities,
that, in a second stage, has to be allocated among them. The dif-
ference between the status quo and the non-cooperative scenarios is
that, in the status quo scenario, none of the players includes informa-
tion about decisions by the other in its pumping strategy, while in the
non-cooperative scenario such considerations are included. The results
allow ranking of the scenarios with regards to the net present value of
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net benefits (over the 25 year horizon) such that social planner maxi-
mization � Nash Bargaining � Nash Non-Cooperative � status quo,
with Nash Bargaining Solution being very close to the social planner
maximization. In addition, under the status quo the aquifer will be
depleted after 18 years.

While most works reviewed in this monograph assume homogeneous
conditions, Msangi [2004] develops a model for managing groundwater
resources when there are asymmetries imposed by physical relation-
ships in the hydrology or in the nature of the groundwater users them-
selves. With such characteristics of the users, the author derives the
impact of the theoretical properties of non-cooperative and strategic
groundwater pumping behavior in the presence of asymmetry and uses
the insights from that model to address two specific empirical settings in
Butte County in Northern California and in Hebei Province in Northern
China. The model provides a better understanding of how asymmetric
hydrological relationships could affect the performance of alternative
policy instruments in the case of Butte County, and the effectiveness of
alternative village-level institutions for managing groundwater and how
they perform in the presence of transaction costs in the Hebei Province.

In Salazar et al. [2007] the economic benefit from use of ground-
water for irrigation is the payoff of the farmers. The reduction of the
potential environmental risk from agricultural pollution of the aquifer
is the payoff of the community. The authors develop a regional model
for the Alto Rio Lerma Irrigation District, located in the state of Gua-
najuato in Mexico and apply several solution concepts for a coopera-
tive solution among these two players, including the Nash Bargaining
Solution and the Kalai–Smorodinski Solution [Kalai and Smorodinsky,
1975] to suggest optimal and sustainable water and pollution loads to
the aquifer.

Saak and Peterson [2007] develop a simple two-cell [similar to the
setup in Dixon, 1991] and a two-period game to allow them to focus on
the impact of incomplete information about aquifer transmissivity in
shaping the common property equilibrium and its welfare distribution
consequences. The Nash solution under incomplete information is com-
pared to the socially efficient solution and to the Nash outcome under
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complete information. The interesting findings are that better informa-
tion may either increase or decrease the equilibrium withdrawal rate,
and also may either increase or decrease equilibrium welfare depending
on a specific curvature property of users’ net-benefit functions.

The work of Saak and Peterson [2007] is extended and generalized
in Saleh et al. [2011]. They consider two groundwater management
schemes — centralized and decentralized — with N users, in a dynamic
game-theoretic structure. Several extensions make this work more rele-
vant. First, including non-identical rather than identical users; second,
they consider two different geometric configurations of the users over-
lying the aquifer — the strip and the ring configurations. The authors
find different Nash equilibrium values, depending on the combination
of the management schemes and the overlying configurations, which is
very important for policy purposes.

Zadeh et al. [2009] apply a non-cooperative static and dynamic
game model to a case where two municipalities and one agricultural
operator pump groundwater. The model is applied under three sce-
narios: non-cooperative static, non-cooperative dynamic, and coopera-
tive games. The results suggest that cooperation yields higher benefits
compared with the non-cooperation scenarios, and that the dynamic
game led to higher extraction compared to the results of the static
game. These findings have important implications regarding the way
we should model groundwater games.

Zagonari [2010] develops a model that evaluates economically,
socially, environmentally, and institutionally sustainable groundwater
management strategies that could cope with the impacts of climate
change on aquifers in Brazil. Applying the Nash–Harsanyi Solution
[Harsanyi, 1963] allows the author to evaluate negotiations regard-
ing groundwater quantity and quality among the government, the
economic sector and the social sector in Brazil. The author uses
constant elasticity of substitution values to represent government
preferences of assigning weights for various uses of water in Brazil by
different sectors (economic and social), as they are reflected in the
local legislation. Such an approach is very useful in deriving policy
implications from various groundwater management arrangements in
different watersheds in Brazil.
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Recent works are concerned with the impact of groundwater level
on adjacent and dependent ecosystems. Esteban and Dinar [2013] apply
the concept of groundwater-dependent ecosystems in a cooperative
game framework in the Eastern La Mancha aquifer in the Jucar Basin
in Spain. The aquifer under consideration is divided into three sub-
aquifers that are being overly exploited. Two types of externalities are
modeled: (1) water extractions in each sub-aquifer impact water levels
in neighboring sub-aquifers (extraction externality) and (2) the three
sub-aquifers are also connected to an ecosystem and thus decisions
in each sub-aquifer affect the health of the ecosystem (environmen-
tal externality). The model empirically shows how the uncontrolled
extractions in each sub-aquifer affects neighboring groundwater users
and also causes severe impacts to the linked ecosystem. The work esti-
mates the value of cooperation and its stability with and without the
environmental externality.

The reader is also referred to the work by Ostrom et al. [1994] for
additional insights for this section. The authors include various com-
mon pool resources (fisheries, irrigation systems, forests, and ground-
water basins) and do not necessarily focus on groundwater. Still, the
use of both experimental and field data to test models of behavior in
common-pool resource situations that are based on the theory of n-
person, finitely-repeated games, is very useful for groundwater as well.

6.6 Allocations in water resources

The works that are reviewed in this section demonstrate the use of
GT for allocation of joint costs and the resource itself among potential
collaborators. Players in this group of works can be individual users,
sectors, and states. Allocations are analyzed under both cooperative
and non-cooperative settings. We review works that are based on game
theory principles and on engineering principles. The annual number of
published works in this category is presented in Figure 6.6.

We start with the works by Dufournaud and Harrington [1990,
1991]. The first work [Dufournaud and Harrington, 1990] develops a
model of a joint water project in a river basin that involves three ripar-
ian areas and two time periods, using a linear programming framework
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Figure 6.6: Annual GT publications, allocation, N = 53.

and a cooperative game concept. The costs and benefits of the joint
water development project are evaluated for their relevance by using
the propensity to disrupt concept [Gately, 1974]. In the second work,
which applies a similar setting [Dufournaud and Harrington, 1991], the
allocation of the joint costs and benefits is performed, using modifica-
tions to the model that satisfy the Shapley Value Allocation Scheme.1

An application of a simple Non-Cooperative GT model to assess
the consequences of water market reforms and distribution of welfare
among big farmers (corporations) and small farmers, resulting from
implementation of water markets, is demonstrated by Galaz [2004].
The results provide interesting policy implications for countries that
are in the process of modifying their water regimes. Policy makers
should be aware that the institutional arrangements in the state affects
the characteristics of the ‘game’, thus negatively affecting weak/small
users, leading to their deprivation from access to water trade and even
disruption ability.

An application of GT in the context of a water market is provided in
Kong and Xu [2009]. The model follows a two-step dynamic game where
the first step mimics the original allocation of the water rights by either
a central agency or by a negotiation process among the players involved,
and the second stage allows trade among the players to reach an efficient

1Additional reading on the Shapley Value, on the Core, and on Stable Sets can
be found in Shapley [1953, 1967, 1971]; some of which is discussed in Section 4.2.
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equilibrium. The first stage employs the Selten Equilibrium [Selten,
1975] and the second stage employs the Nash Bargaining Solution.

Krawczyk and Tidball [2006] present a method for the derivation of
feedback Nash Equilibria in discrete-time finite-horizon non-stationary
dynamic games. A particular motivation for such games stems from
environmental economics, where problems of seasonal competition for
water levels occur frequently among heterogeneous economic agents.
These agents are coupled with a state variable, which is the water
level. Actions are strategically chosen to maximize the agents’ individ-
ual season-dependent utility functions. We observe that, although a
Feedback Nash Equilibrium exists, it does not satisfy the (exogenous)
environmental watchdog expectations. We devise an incentive scheme
to help meet those expectations and calculate a feedback Nash Equi-
librium for the new game that uses the scheme. This solution is more
environmentally friendly than the previous one. The water allocation
game solutions help us to draw some conclusions regarding the agents’
behavior and also about the existence of Feedback Nash Equilibrium
in dynamic games.

A method, the Generalized Allocation Scheme, for the allocation
of joint costs among players who share the same service facility, is
presented in Loehman and Whinston [1976]. This allocation scheme
departs from the Shapley Value [Shapley, 1953] by considering that not
all coalitional arrangements are possible. The Generalized Allocation
method was already discussed in Section 3.3.

Okada et al. [1985] apply a hypergame (game with incomplete infor-
mation) framework to the Lake Biwa conflict in Japan. This dispute
constitutes a typical example of a water allocation conflict where down-
stream users would like more water from the upstream who control the
major source of the water. The incomplete information is modeled by
having each player with misperceptions about the other players’ pref-
erences. The game is conducted in two stages. First, a set of allocations
reflecting the preferences of the players is provided, with some a-priori
ranking of the various outcomes. Then, in the second stage, the stabil-
ity of the proposed allocations is evaluated based on Fraser and Hipel
[1979, 1984].
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In a somewhat similar line of work, Pande and McKee [2007] assess
how uncertainty in a policy variable affects the “allocation solution”
in consensus-based decision-making processes. In consensus-based bar-
gaining games a player in his turn makes a proposal that yields payoffs
to all participants that are no less than the expected payoffs that each
can obtain from the previous proposal. If this condition will not be ful-
filled some of the non-proposing players will object the proposal and the
negotiations will collapse. Using the Rausser–Simon Bargaining Model
[Rausser and Simon, 1991, Carraro et al., 2005, 2007] the authors model
two relevant consensus-based negotiation processes, one of which is the
California negotiation regarding the transferability of water rights for
environmental protection and the degree of supporting infrastructure.
The most important finding is that, in both case studies, the bargaining
solution under uncertainty deviates from the solution under certainty
and the level of deviation increases as uncertainty increases.

Otten [1993] revisits the alternate cost avoided (ACA) method used
in the Tennessee Valley Authority studies and provides an axiomatic
characterization of the ACA-method on a certain class of cost games
with a fixed player set, as well as on a class of cost games with a variable
player set, using a reduced game property. The equation used for the
ACA is:

ACAi(c) = SCi(c) + c({i})− SCi(c)∑
j∈N (c({j})− SCj(c))NSC(c), ∀ i ∈ N

where c({i})−SCi(c) represents the alternate cost avoided by including
player i in the joint project, c({i}) is cost to player i, SC are separa-
ble costs, NSC are non-separable costs. The author shows that under
certain conditions the ACA method coincides with game theoretical
methods such as Shapley.

Analysis of various Non-Zero-Sum-Games to social dilemmas,
including bargaining over water allocation, is presented in Rabow
[1988], where a general strategy of Cooperation with Minimum Sanc-
tions (CMS) is developed and applied to Prisoner’s Dilemma (PD) sit-
uations. The author shows that in many cases of a one-shot game the
Prisoner’s Dilemma is the only outcome. The most important finding
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is that a generalized cooperative PD strategy Tit-for-Extended Tat
is developed, which, for the special case of iterated PD, reduces to
the Tit-for-Tat strategy (Developed by Anatol Rapoport: explained in
Davis, 1983) that has been found to be so effective for that case. The
mechanism that makes such a strategy effective in the real world is
a reputation for cooperation, which a player can establish through a
record of cooperation. The result, that cooperation is much more ratio-
nal than previously believed, might encourage cooperation in the real
world. An example of allocation of a fixed source of water between high
value recreation and low value (but essential) irrigation suggests that
an interpersonal utility comparison is necessary, which eliminates the
Nash Bargaining Solution from being considered.

An analysis of possible cooperation among individual farms in a
water district that faces the possibility of water transfer to an urban
water district is analyzed in Rosen and Sexton [1993]. The model is
applied to a water trade project between the Imperial Irrigation District
and the MetropolitanWater District of Southern California. The results
suggest that substantial intra-organizational conflict (among the farms)
can emerge in response to certain transfer proposals, and this conflict
may derail the transfers, even if the overall payoff to all parties is non-
negligible.

An application of several modifications of CGT solution concepts to
the allocation of water resources in a river basin is presented in Sadegh
et al. [2010], and applied to the Karoon River Basin in Iran. The authors
develop a new methodology based on crisp and fuzzy Shapley games
for optimal allocation of inter-basin water resources. (In a crisp game
the agents are either fully involved or not involved at all in coopera-
tion with some other agents, while in a fuzzy game players are allowed
to cooperate with infinitely different participation levels, varying from
non-cooperation to full cooperation.) In the proposed methodology,
initial water allocations are obtained using an optimization model con-
sidering an equity criterion. In the second step, the stakeholders form
crisp coalitions to increase the total net benefit of the system as well as
their own benefits. A crisp Shapley Value game is used to reallocate the
benefits produced in the crisp coalitions. Lastly, to provide maximum
total net benefit, fuzzy coalitions are constituted and the participation
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rates of water users to fuzzy coalitions are optimized. Then, the total
net benefit is reallocated to water users in a rational and equitable way
using the Fuzzy Shapley Value game. Given fuzzy game ν and fuzzy
coalition s, the fuzzy Shapley Value of player i with participation rate
si is presented as:

ϕi(v) =
∑

i∈T⊆N

(N − |s|)!(|s| − 1)!
N !
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j
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In a similar study, Sadegh and Kerachian [2011] add two new solution
concepts for fuzzy cooperative games, the Fuzzy Least Core and Fuzzy
Weak Least Core, apply them to the same site, and compare the results
to those of some traditional fuzzy and crisp games in Sadegh et al.
[2010]. They show that the proposed fuzzy solution concepts are more
efficient than the crisp solutions.

An application of the Nash Bargaining Solution to a real water
allocation problem in the Mexican Valley in Mexico, one of the most
critically water-scarce regions in the state, is presented in Salazar et al.
[2010]. The author develops a three-player Non-Symmetric Nash Bar-
gaining model, which solves an optimization problem with nonlinear
objective function and linear constraints. It was found that for all water
availability scenarios there is no water distribution strategy that satis-
fies the domestic demand. This calls for investment in additional system
upgrades along with improved efficient uses.

Sechi et al. [2013] criticizes the existing cost recovery system of
water projects in Europe, and especially cost recovery of complex sys-
tems that face multipurpose demands. This work presents a method-
ology to allocate water service costs in a water resource system among
different users that attempts to fulfill the requirements of the Water
Framework Directive (WFD) of the EU. Using a CGT framework with
a mathematical optimization model, the water system cost allocation is
valued as a game in which it is necessary to determine the appropriate
payoff for each player (user). As in previous works, the characteristic
function of the various coalitions is evaluated using an optimization
model that yields the core of a cooperative game. The methodology
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was applied to a multi-reservoir and multi-demand water system in
Sardinia, Italy.

Applications that deal with acute allocation issues can be found
in several works: Serghini [2002], who addresses the fairness issues in
multipurpose projects in Morocco by comparing 10 allocation methods
used, and concluding that the CGT ones are the most credible; and
Souza Filho et al. [2008] addresses the very acute problem of water allo-
cation along a water course and non-availability of water to tail-users
on an irrigation system in developing countries, due to unregulated
upstream diversions. This suggests a game to take into account the
free riding of certain users taking advantage of the ability of the reg-
ulatory agency. Suzuki and Nakayama [1976] also refer to the fairness
in allocation of costs and benefits of water projects aimed at building
a dam to provide water to irrigation and to several urban centers from
two rivers, using the Nucleolus Scheme. Tijs and Driessen [1986] review
various cost allocation methods that are based on the Nucleolus and
the Shapley Value, and introduce the Cost Gap Allocation method,
which is based on the τ -value. They show, using the TVA case, that
the CGA coincides with the SCRB method and with several of the pro-
posed methods used by the TVA in the 1940s. More examples can be
found in Tisdell and Harrison [1992], Wang et al. [2003, 2008], Wang
[2011] and Young et al. [1980, 1982].

6.7 International/transboundary water

International water is among the fields to which game theory was
applied the most during the past 25 years. Most applications dealt
with the cooperative nature of sharing water and how cooperation is
likely to provide stability to the basins under conflict. Some works
apply Non-Cooperative Game Theory frameworks and demonstrate
how under such behavior solutions are possible for water conflicts. Play-
ers in the works reviewed in this category include states and the games
that may introduce externalities, depending on the geography of the
shared rivers. Some of the works, especially in recent years, introduce
issues related to climate change such as the stochastic supply of water
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Figure 6.7: Annual GT publications, international, N = 63.

in the river. The annual number of published works in this category is
presented in Figure 6.7.

We will start with the earliest application known to us. Rogers
[1969] develops a CGT framework and applies it to the conflict in the
Ganges River Basin at that time. This is the first known work to us of
application of GT to international water. The author identifies issues
which are of mutual interest to India and Bangladesh, such as naviga-
tion, flood control, and irrigation, and builds an optimization mathe-
matical programming model linked with CGT solution concepts that
allow us to realize the cooperation potential between the two riparian
nations. This will result in significant benefits to each. The author is
not dealing with the allocation of the cooperation gains in this work.
The model in Rogers [1969] was refined and expanded in Rogers [1993]
and Rogers [1994] to include both unidirectional externalities (mainly
floods and pollution originating in India and affecting Bangladesh) and
allocation schemes such as the Nucleolus and the Shapley Value.

Following on the Ganges conflict, Anandalingam and Apprey [1991]
develop a Non-Cooperative framework to address the conflict resolution
options in an international river basin. They use a Stackelberg Game
Structure with an external arbitrator that initiates the moves in the
negotiation.

In a series of works, Becker and Easter [1991, 1995, 1997, 1999]
model Great Lakes Basin management issues among Canada and
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various states in the US. In their 1991 work they consider alterna-
tive diversion restrictions and their impact on the basin and players’
(states in the US and provinces in Canada) benefits. In the 1995 work
they compare the results of two game structures: 2 players (US and
Canada) and 8 players (6 US states and 2 Canada provinces) to the
Social Planner Solution. The results suggest that states do not divert
water necessarily because they stand to gain but because they may
lose more if they do not. The 1997 work considers the economically
desirable diversions and how the gains from such diversions should be
distributed among the players. The work shows that in most cases,
new institutional arrangements will be needed before agreements can
be reached. A similar approach is used in the 1999 work, but here the
approach addresses different configurations of the lakes that are being
regulated (starting from one lake and ending up with all lakes.)

A series of works develop and apply the concept of interlinked games
to international water. This concept is very useful in the case that deals
with conflicting issues that lead to gridlock. The existence of issues that
have asymmetric interest on the part of the parties involved may lead
to an acceptable set of solutions.

Folmer et al. [1993] introduce the concept of interconnected games
and show its relevance for addressing international environmental prob-
lems, especially in replacing the need for side payments to maintain
cooperation. They introduce two types of interconnected games: Direct
Sum Games and Tensor Games. In the former, all the constituting iso-
lated games are games in strategic form and in the latter they are
repeated games. In both cases the interconnected game can be inter-
preted as a multiple objective game, but only in the setting where a
trade-off is made for the vector-payoffs. Using a simple example of inter-
national water pollution they demonstrate the potential advantages of
allowing countries to ‘trade’ concessions across issues (e.g., pollution
certificates and trade of goods) under negotiation and describe what
circumstances best lend themselves to such a trade. The advantage of
the interconnected game framework is that countries can now condition
their choice of actions in the environmental area to outcomes previously
observed in the trade arena, and vice versa. This capability enriches the
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set of Nash Equilibria and maximizes the sum across countries of the
obtainable payoff values.

Bennett et al. [1997, 1998] apply the idea of interconnected/linked
games to the problem of international water quantity and quality
externalities. The authors argue that in the presence of unidirectional
externalities the traditional game theory approach produces unsatisfac-
tory solutions leaving the victim to pay and unable to transfer payments
to incentivize the upstream country to change its practices. Instead,
the authors suggest that nations in weak negotiating positions try to
improve their leverage by linking issues. If the linked issues are selected
carefully, it can generate outcomes that cannot be obtained when games
over issues are modeled separately. The authors recommend using the
Interconnected Game Modeling approach for international rivers. They
demonstrate the Interlinked Game Model for the case of the Aral Sea
in Central Asia and in the cases of the Euphrates and Orontes River
Basins in the Middle East.

A similar approach has been implemented by Pham Do et al. [2012]
to the case of the Mekong River Basin. They analyze whether issue
linkages can be used as a form of negotiation on sharing benefits and
mitigating conflicts in the presence of unidirectional externalities, such
as in the case of the Mekong. In particular, if the linked games are
convex, the grand coalition is the only optimal level of social welfare. An
extension of their work to include multi-level linked issues is provided
in Pham Do et al. [2014].

The last work we include under interlinked games is the one by
Just and Netanyahu [2000] where they demonstrate that achieving
strict dominance of the linked game is not trivial and that results and
implications depend on the structures of the isolated games. Another
application of the interconnected game concept can be found in Just
and Netanyahu [2004] where they consider modeling bilateral agree-
ments for sharing common pool resources under conditions of unequal
access. Their work shows how game structure and benefits suggested
by interconnected games are modified when the victim pays strategies
are removed from the feasibility set.
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The peace agreement between Jordan and Israel, and Egypt and
Israel, and the establishment of the Palestinian Authority led to
several attempts at addressing the water conflict between Israel and
its Arab neighbors, which at that time were very promising. Several
works use the relative advantage of the players in a game of water
creation and/or exchange.

Dinar and Wolf [1994a,b, 1997] develop the concept of water for
technology in the lower Nile Basin. They demonstrate the economic
rationale for exchange of technology and knowhow for the water saved
by using that technology. If allocations (water or income) are assumed
among countries with some level of hostility, political considerations
which are usually not incorporated in economic analysis can hin-
der or even block the most efficient arrangement. Dinar and Wolf
[1994a,b, 1997] demonstrate, using several CGT concepts that are
amended by political models (PRINCE Political Accounting System;
and the Generalized Shapley Value with political probabilities), how
incorporating political considerations in the analysis may provide a
more acceptable regional solution compared to the economic-related
allocations.

A different focus on possible cooperation via exchange is discussed
in Brill et al. [1999]. The authors depart from the situation of water
scarcity in the Gaza Strip and technological capacity for wastewater
treatment in Israel. They suggest the following scheme that does make
a lot of economic sense: wastewater from Gaza will be sent to Israel for
treatment and fresh water (either treated or desalinated), in exchange,
will be sent from Israel to Gaza. The cooperative Nash Bargaining
Solution and the non-cooperative Nash–Cournot solution [Tirole, 1988]
are compared. The results suggest that as scarcity level increases, the
gap between cooperative and non-cooperative solutions increases. More
examples on the application of GT to water conflicts in this part of the
world can be found in Becker et al. [2001]. An example of application
of game theory to the sharing of the Mountain Aquifer between Israel
and the Palestinian Authority is analyzed in Netanyahu et al. [1998],
using both cooperative and non-cooperative bargaining GT and other
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solutions and suggesting that GT approaches are robust with regards
to demand elasticity, user costs and pumping costs.

Additional work was done on the potential for regional cooperation
in water allocation and use between Israel and the Palestinians in light
of increasing regional scarcity. Yaron [2002] suggests several solutions
to be considered using the entire arsenal of water resources in each
entity showing relative advantages in its production and use.

Interest has grown in the first part of the 21st century as more work
was published on aspects related to international water treaties —
treaties on management of joint international waterways. This line
of work addresses the so-called: ‘self-enforced agreements’, ‘stability
of coalitions’, and ‘mechanism design’ of treaties in light of climate
change. Review of the literature in this field can be found in two PhD
dissertations published recently [Ansink, 2009, Moes, 2013].

Kilgour and Dinar [2001] address variation in water supply and its
impact on the stability of international agreement. They claim that
most water allocation agreements refer to the long-term mean flow and
as such treaties are unable to accommodate variations in conditions.
They develop a flexible mechanism that produces a Pareto-efficient
Allocation for every possible flow volume in a river, which can also
be extended to accommodate other kinds of variation, such as changes
in water demand. They apply the mechanism to historical water flow
data for the Ganges, using stylized water demand relationships for
India and Bangladesh. They derive equilibrium negotiation solutions
and conclude that variable allocation substantially outperforms fixed
allocation, improving regional welfare by at least 10%.

Several works focused on issues related to specific basins around
the world. Frisvold and Caswell [2000] analyze common water sources
and pollution problems on the US–Mexico border. Using game theory,
the work draws policy lessons for institutions funding border water
projects. The diversity and geographic dispersion of water conflicts
suggests potential for applying the Interconnected Game Approach
to US–Mexico water negotiations. Guner [2008] applies Evolutionary
Game Theory to explain how issues of water and territory dominate
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relations between Turkey and Syria, upstream and downstream ripar-
ians in the Euphrates and Tigris Basin. The analysis suggests that
stability in the basin relations does not depend upon the values terri-
tory and water represent for the fitness of Syrian and Turkish foreign
policies. No evolutionary stability is possible unless doves are coopera-
tive toward hawks. If doves are cooperative toward hawks, the unique
evolutionarily stable outcome implies their extinction. Riparian rela-
tions will ultimately evolve into mutual intransigence, hence leading
to disagreement on any cooperative solution. Teasley and McKinney
[2011] model water and energy resources of the Syr Darya Basin, con-
sidering transboundary cooperation and benefits sharing. The authors
use a river basin model and different methods for allocating the ben-
efits of cooperation such as the Shapely Value, Proportional Shares,
Equal Shares, the Nucleolus, and Nash–Harsayni. All but the Shap-
ley Value result in allocations that are more likely to be violated and
are less stable. Eleftheriadou and Mylopoulos [2008] implement game
theoretical concepts in the case study of Greek–Bulgarian negotia-
tions on the Nestos/Mesta transboundary river. They show that imple-
menting interconnected games widens the countries’ available options
and contributes to the avoidance of unreasonable outcomes while bal-
ancing uneven “power” potentials. Hamandawana et al. [2007] ana-
lyze, using a Game Theory framework, the interstate conflict between
Angola, Botswana, and Namibia over the Okavango River’s shared
water. Houba et al. [2013] model the welfare effects in the year from
strengthening the Mekong River Commission’s (MRC) governance ver-
sus joint management of the entire Mekong River Basin (MRB). Their
analysis shows that the Lower Mekong Basin (LMB) has no incentive
to negotiate with China and is better off strengthening the MRC’s
governance instead.

Additional works that we should mention include Beard and
McDonald [2007] who applied the concept of Time Consistent
Cooperative Dynamic Games [Filar and Petrosjan, 2000] to an inter-
national basin with water-right trading. Beard [2011] reviews the liter-
ature on the river-water sharing problem and discusses that literature
with respect to the connection to the bankruptcy literature, and mod-
els of directional flow, which are detailed below. Thiel [2004] criticizes
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the use of the Basin-Wide Welfare Maximization model as a basis for
treaties in EU international rivers. Using GT concepts applied to the
case of the five Portugal–Spain shared basins (Luso-Spanish Conven-
tion), the analysis rejects a basin-wide welfare economic evaluation of
the negotiations on transnational agreements. Instead, it suggests that
mutual payments as described here might only be applied in the long
term and only to specific transboundary spillover welfare issues.

A series of studies focused on achieving stable agreements in styl-
ized river-basin structures followed the seminal work by Ambec and
Sprumont [2002]. These authors refer to a group of agents arranged
sequentially along a river, and are characterized by a given set of pref-
erences for water and money. The aim is to find an allocation that will
be efficient, stable (in the sense of the core), and fair. They show that
a cooperative game of this problem is convex, thus implying a large
core that would guarantee the three requirements: efficiency, stability
and fairness. They prove that only one welfare vector in the core can
satisfy the three requirements — the allocation based on the marginal
contribution vector that corresponds to the order of the agents along
the river.

The work by Ambec and Sprumont [2002] was extended by Ambec
and Ehlers [2008] to include two extensions — a satiation point in the
benefit function of the players along the river, and unidirectional exter-
nalities. The authors observe that the cooperative core might be empty;
instead, they suggest a unique allocation of the water — the down-
stream incremental distribution — is the unique distribution which is
both fair–according to the “aspiration welfare” principle — and satis-
fies the Non-Cooperative Core lower bounds. In addition, it satisfies all
core lower bounds for all connected coalitions if and only if each agent’s
individual rationality constraint is independent of the behavior of the
other agents.

The ideas in Ambec and Ehlers were further extended in Ambec
et al. [2013] to include fluctuations in the water flow of the river due
to droughts. Their river geography is again a sequential river where
the players along the river agree (or not) to release an amount of river
water in exchange for a negotiated compensation. The work addresses
the vulnerability of such agreements to reduced water flows. Among
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all types of agreements, they find one, which is self-enforced under the
most severe drought scenarios, the upstream incremental allocation,
that assigns to each country its marginal contribution to its followers
in the river. Its mirror image, the downstream incremental allocation,
that featured in previous works, is not sustainable to reduced flow at
the source. They demonstrate the usefulness of the model in the case
of the Aral Sea Basin.

Ansink and Ruijs [2008] address the sharing problem by assessing
the effect of climate change and the choice of a sharing rule on stability
of the agreement using a game theoretic model. The results of their
work suggest that a decrease in mean river flow decreases the stability
of an agreement, while an increased variance can have a positive or a
negative effect on stability, depending on the institutions in place. An
agreement where the downstream country is allocated a fixed amount
of water has the lowest stability compared to other sharing rules.

Another work that addresses the impact on stochastic river flow
in the stability of treaties is Ansink [2009]. The author tries to find
water allocation agreements that can be self-enforcing under stochastic
situations. An agreement is an outcome of a bargaining game which is
the result of a repeated extensive-form game in which countries decide
whether or not to comply with the agreement. The work suggests that,
for sufficiently low discounting rates, every efficient agreement can be
sustained in subgame perfect equilibrium. The solution induced by this
particular agreement implements the downstream incremental alloca-
tion [see also Ambec et al., 2013], an axiomatic solution to water allo-
cation that assigns all gains from cooperation to downstream countries.

A work that responds to points raised in Dinar et al. [1992]
and Ambec and Sprumont [2002] is Houba [2008]. This contribution
addresses the fundamental critique in Dinar et al. [1992] on the use of
GT in river basin management: People are reluctant to do monetary
transfers unrelated to water prices, and game theoretic solutions impose
a computational burden. The authors develop a single optimization pro-
gram that significantly reduces the computational burden, where water
prices and property rights result from exploiting the Second Welfare
Theorem. An application to a bilateral version of the Theoretical River
Basin Model in Ambec and Sprumont [2002] is provided.
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Van den Brink et al. [2010] expands the results of downstream
incremental allocation in Ambec and Sprumont [2002] by adding a
class of weighted hierarchical solutions [Kononenko, 1974] that satisfy
the ‘Territorial Integration of all Basin States’ principle for sharing
water of international rivers (in the international water law). They find
that when all players have increasing benefit functions, every weighted
hierarchical solution is core-stable. In case of satiation points, every
weighted hierarchical solution is independent of the externalities.

Other works worth mentioning include: Choi and Lee [2008] who
address a transboundary river between South and North Korea in the
Bukhan River, showing cooperation is the best option for South and
North Korea. Colat-Parros [1999] shows that cooperative sharing of
international waters results in minimal water-resource depletion com-
pared to uncooperative sharing. Dinar et al. [2007, 2013] demonstrate
the use of Cooperative Game Theory concepts in international river
basin allocation conflicts, and uses, as an example, the Syr Darya. Kin-
dle [2009] views the Canada–US bulk water export issue as a conflict,
and proposes strategies (using Game Theory and legal approaches)
that Canada could take to protect its freshwater. Kolodziej et al. [2006]
define an allocation of joint water sources with external disagreement
of interests as an n-person Non-Cooperative Game, and solve this dis-
agreement, using the Parallel Evolutionary Strategy HGS Nash.

Guldmann and Kucukmehmetoglu [2002], Kucukmehmetoglu and
Guldmann [2004], Kucukmehmetoglu [2009], Kucukmehmetoglu et al.
[2010], and Kucukmehmetoglu [2012] develop mathematical program-
ming models that allocate the waters of the Euphrates and Tigris
Rivers to agricultural and urban uses in Turkey, Syria, and Iraq, while
accounting for water conveyance costs. CGT concepts (Core, Shapley
Value) are used to identify stable water allocations, under which all
three countries find it beneficial to cooperate. Lee et al. [2011] modeled
multi-purpose dams and allocation of the benefits and costs associ-
ated with them between North Korea and China, using a cooperative
two-person Non-zero-sum Game. Mahjouri and Ardestani [2010] apply
game theory concepts to interbasin water transfers in Iran. Missfeldt
[1999] compares various game theory approaches to the handling of
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transboundary water pollution. Wang et al. [2013] apply a relative util-
ity function combined with the asymmetric Nash Bargaining Method
to analyze the trans-jurisdictional conflict between water quantity and
water quality in the Zhangweinan Canal Basin in China. Wu and Whit-
tington [2006] apply CGT concepts such as Core, Nucleolus, and Shap-
ley Value to Nile water conflicts. Yang et al. [2008] model the water
conflicts between Beijing and Hebei province, which are in the upstream
and downstream of the Guanting Reservoir Basin (GRB), using Non-
Cooperative and Cooperative scenarios; and van der Laan and Moes
[2012] model international river pollution problems. The unique feature
of the model is that each player along the river benefits from activities
that cause pollution downstream, and, at the same time, players (except
the first one) are also harmed by pollution that originates upstream.
Using principles from international water law the authors determine
that cooperation is the best strategy and suggest ‘fair’ ways of solv-
ing the pollution problem, based on property rights’ doctrines from
international law, such as Absolute Territorial Sovereignty, Unlimited
Territorial Integrity, and Territorial Integration of all Basin States.

6.8 Water conflict and negotiation

Application of GT to the field of water conflict and negotiation has
also increased over time, especially with the application of NCGT
approaches. Works in this category include all types and levels of
players that have been mentioned in the previous categories. The
annual number of published works in this category is presented in
Figure 6.8.

A series of papers by Carraro et al. focuses on various angles of con-
flict and negotiations in water resources. Carraro et al. [2005] review the
applications of Non-Cooperative Bargaining Theory to water-related
issues, which fall under the category of formal models of negotiation.
This group of models identifies the conditions under which agreements
are likely to emerge, and specify their characteristics. Once these are
identified and specified, models can help policy makers in devising the
“rules of the negotiation game” that could help obtain a desired result.
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Figure 6.8: Annual GT publications, negotiation, N = 24.

The paper discusses the Non-Cooperative Bargaining Models applied
to water allocation problems in the literature, with particular atten-
tion placed on those directly modeling the process of negotiation. In
addition, they review Negotiation Support Systems (NSS) developed
to support the process of negotiation. NSS have not yet been applied
in real-life negotiation.

Carraro et al. [2007] review and demonstrate the applications
of Non-Cooperative Bargaining Theory to water management prob-
lems. They demonstrate the usefulness of the bargaining approach for
groundwater allocation, surface water allocation, water quality regu-
lation and allocation of international water among riparian countries.
They demonstrate the use of concepts such as auction games and issue
linkage. They suggest that assessment of game theoretic models in ana-
lyzing past behavior, or in predicting future agreements, “will not be
complete as long as utility functions and constraints are assumed by
researchers, rather than derived from actual behavior” (p. 346).

Carraro and Sgobbi [2008] provide insights into asymmetries and
uncertainties of the negotiation process by using a NCGT approach,
applied to natural resources such as water. The results suggest that
uncertainty affects players’ behavior and modifies the likelihood of a
self-enforcing agreement to emerge.
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Additional works that are relevant to this group include Marchiori
et al. [2012a,b], Marchiori [2010], Stratton et al. [2008], Sgobbi and
Carraro [2011], and Rausser et al. [2011].

Another group of works uses the graph model approach. Kilgour
et al. [1987] apply a graph model to address conflict and understand
the moves in the case of a multiplayer conflict. The graph model is
different than other approaches in that it takes outcomes, rather than
individual decisions, as the basic units for describing a conflict. The
model is applied to the case of a conflict over North Dakota’s diversion
off the Missouri River for irrigation that is then creating pollution in the
Red and Souris Rivers that flow into Canada. Additional applications
of the graph model can be found in Hipel and Ben-Haim [1999], Hipel
et al. [1994], Hipel et al. [1974, 1976], and Hipel and Walker [2011].

Adams et al. [1996] apply the Rausser Simon Framework for non-
cooperative, multilateral bargaining that can be used to conceptualize
negotiation processes, where the outcome of the negotiation process
depends crucially on the “constitutional” structure of the game: the
input each group has in the decision-making process, the coalitions of
groups that can implement proposals, the scope of the negotiations,
and the outcome if the parties fail to reach agreement. The model is
used to analyze water policy negotiations in California.

Thoyer et al. [2001] applies also the Rausser and Simon Model
[Adams et al., 1996] to assess directions of reforms in the Adour Basin
in the southwestern France. Negotiations over decentralization such as
water rights handling, taxes, investment, etc., are modeled in a negoti-
ation game between farmers, basin authority, central government, and
environmental groups.

Other relevant works include Hermans [2003] who applies two meth-
ods for conflict exploration, (1) analysis of options and (2) argumenta-
tive analysis, to water resources management in the Philippines; Lussier
et al. [1989] who applied GT-based techniques of conflict analysis to
the Shoal Lake water supply conflict in southeastern Manitoba, Canada
and Sakakibara et al. [2002], who apply a graph model to conflict res-
olution for cases with incomplete information.

Another line of work applies the Nash Bargaining Theory in a
two-level negotiation for water allocation. Richards and Singh [1997]
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demonstrate the interaction between international and domestic levels
of negotiation over an international river basin. This kind of two-level
negotiation is especially important when local interests for water may
conflict with national interests.

Saleth et al. [1991] applies several bilateral and multilateral bargain-
ing approaches, including Nash Bargaining Theory, and the Harsanyi
Approach [Harsanyi, 1986] to a thin-water market in a watershed in
Illinois. Important findings are that the institutional features in the
region, such as the size of the market, the size of the farms, and the
information structure affect the outcome of the negotiation process.

Soubeyran and Tomini [2012] assess the risk of a conflict between
riparians sharing international water. Using a Nash Bargaining Frame-
work they show that the risk for conflict increases as level of scarcity
increases and as asymmetry in water productivity is higher.

6.9 Water and the environment

We distinguish this section from Section 6.4 (Water Pollution Control)
in that the models that are included in this section capture the eco-
nomic value of the environment rather than regulating its pollution.
A group of works applies GT models to issues related to changes in
water projects’ impacts on the environment and the environmental flow
needs. Some of the reviewed works introduce the environment as a pas-
sive player that is protected by a priori regulation by the government.
Another group of works has the environment as a player with objectives
and strategic behavior. The annual number of published works in this
category is presented in Figure 6.9.

Hanemann and Dyckman [2009] document how the State of
California has failed to organize itself effectively to resolve the conflict
about whether and how to transfer water from the Bay-Delta to users
elsewhere in the state, and make a decision on how to manage the Delta
of the San-Joaquin and Sacramento Rivers. The strategy consistently
adopted by the State was to encourage the main parties — agricultural
and urban water diverters, and fisheries and other instream-protection
interests — to work out a solution among themselves, rather than
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Figure 6.9: Annual GT publications, environment, N = 10.

imposing one externally. The authors show that a bargaining solution
is unlikely to exist because of the extreme opposition of interest among
the parties.

Using the same environmental conflict, Madani and Lund [2012]
argue that the Delta problem is of a Prisoner’s Dilemma nature, in
which stakeholder self-interest makes cooperation unlikely within a rea-
sonable time frame. However, because the core of the Delta conflict
changes as the unsustainable future becomes more widely understood,
the problem has characteristics of a Chicken Game, where cooperation
is in everyone’s interest, but it is unlikely because parties deviating
from the status quo are likely to bear more of the costs of a long-term
solution.

A third strand of work refers to the integrated ecosystem services
and the minimum flow that is needed in order to secure such set of
services. Buckley and Haddad [2006] address the problem of ecological
restoration within a mosaic landscape in which restoration activities
elicit feedbacks from individuals and groups that are harmed by restora-
tion outcomes. They identify three potential outcomes ranked by the
extent of restoration of ecosystem services and processes: nonstrate-
gic, noncooperative strategic equilibrium, and cooperative bargaining
solution. The authors apply their approach to restoration activities on
California’s upper Sacramento River.

Dinar et al. [2006] apply CGT as a mediated mechanism to water
allocation in the Kat Basin in South Africa, where two groups of
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farmers and the environmental water flows compete against each other
on scarce water. The GT approach is compared with a negotiated, role-
playing game. Both approaches provide similar allocations among the
two groups of farmers and the environment.

Supalla [2000] and Supalla et al. [2002] analyze the problem for
the Middle Platte ecosystem, which arises from the insufficient water
available to meet both instream ecological demands and out-of-stream
economic needs. The game consists of a sequential auction with
repeated bidding to determine how much instream-flow water each of
three states — Colorado, Nebraska, and Wyoming — will provide and
at what price. The results suggest that the use of auction mechanisms
can improve the prospects for reaching a multi-state agreement on who
will supply instream-flow water, if the auction is structured to discour-
age misrepresentation of costs and if political compensation is allowed.

Ji and Wang [2007] introduce voluntary environmental cooperation
among regions in a river basin by means of Optimal Control Theory
and GT, using cooperative and non-cooperative differential game mod-
els of water environmental management in a river basin. The authors
derive a generalized formula of side-payment for promoting voluntary
environmental cooperation among regions which is then applied to a
water environmental management example in a simplified framework.

We conclude this section by mentioning three edited books [Hanley
and Folmer, 1998, Dinar et al., 2008, Dinar and Rapoport, 2013] with
many studies that apply GT to environmental issues, including water
resources.

6.10 Watershed management and regulation/
river basin planning

The literature applying GT to watershed management could as well
be placed in other sections such as international water (Section 6.7) or
allocation (Section 6.6). However, we decided to select a subset of works
that are characterized by introducing regulations and planning aspects
to the basin/watershed analysis. The annual number of published works
in this category is presented in Figure 6.10.
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Figure 6.10: Annual GT publications, basin management, N = 10.

Collins and Maille [2011] develop two theoretical models that
explain group allocation decisions at a watershed level including:
rewards and penalty to individual contributors, and a reduced form
problem with cost-sharing and joint abatement.

da Costa and Bottura [2007] present and use the Strategic Games
Matrix (SGM) as a general framework for multiple interacting intel-
ligent autonomous agents’ control systems analysis and design that is
inspired by GT. The SGM concept is applied to a water resources’
regulation control problem, with multiple interacting autonomous
stakeholders, in the watershed of Paijanne Lake in Finland.

Fernandez [2005] applies a game theoretic model of upstream and
downstream countries in the Tijuana River watershed shared by the
US and Mexico to examine cooperative and non-cooperative strategies
of a common watershed management. The results suggest that different
transfer payments, such as the Chander-Tulkens Cost-Sharing Rule or
the Shapley Value, imply the size of the existing transfer from down-
stream to upstream could increase the amount currently allocated.

Hoffman [2010] examines the effort to protect the world’s water
supply by a cooperative institution of watershed collaboration, focusing
on economic issues and using New York City’s collaboration within the
Catskill/Delaware watershed as a case study.

Howard [2006] interprets, using GT, how different participants
behaved under certain sets of rules in 2000 when the New South
Wales Government used a regional governance process to develop water
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management plans throughout the State. The work concludes by sug-
gesting that GT is helpful in explaining stakeholder behavior.

Johnson et al. [1973] apply simulation games to planning in the
context of a watershed. These games deal with prediction of different
future consequences from alternative actions at present and the impact
of the predicted consequences on the players. The game models a tra-
ditional life cycle of migrating tribes of Southern Sudan.

Okada et al. [1998] analyze the development of a regional water
distribution system in a game that is characterized by two prop-
erties, namely, physical and social networks. Both the physical and
social networks affect the cost functions. One interesting finding is that
economies of scale may not always hold for water distribution pipeline
systems. The notions of equilibrium based on Myerson’s value coupled
with “component balance” and “equal bargaining power” are proved to
serve as the intended cost allocation scheme.

Wei and Gnauck [2007] demonstrate the resolution of a conflict
over water resources in the Hanjiang River Basin as non-cooperative
and cooperative games. Wei et al. [2010] illustrate management of the
conflict associated with the South-to-North Water Transfer Project on
the Yang Tse in China. In particular, the authors refer to conflicts
concerning water allocation and nitrogen reduction and involve two
levels, including one main game with five players and four sub-games,
each containing three sub-players.

Other works of interest include Mahjouri and Ardestani [2011] who
developed cooperative and non-cooperative methodologies for a large-
scale watershed allocation problem (quantity and quality) in Southern
Iran; Lee [2012] focuses on the development of a multi-objective game-
theory model (MOGM) for balancing economic and environmental con-
cerns in reservoir watershed management and for assistance in decision
making, applying the framework to Tseng-Wen Reservoir, Taiwan.

6.11 Multipurpose water projects

The reader is referred to Section 2.1 for early application of GT to
multiple water projects in the TVA. Besides that early literature we
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Figure 6.11: Annual GT publications, multipurpose, N = 54.

report in this section additional and recent works. The works in this
category refer to different sectors that are involved in a multipurpose
project such as a dam, a reservoir, or a water supply project. The
major question these works address is the allocation of benefits and
costs among the sectors involved in the project. The annual number of
published works in this category is presented in Figure 6.11.

Driessen and Tijs [1985] compare four different cost allocation meth-
ods for joint costs of water resource projects among sub-projects, based
on separable and nonseparable costs. Three non-GT methods: the
Egalitarian Nonseparable Cost (ENSC) Method, the Separable Costs
Remaining Benefits (SCRB) Method, the Minimum Costs Remaining
Savings Method, and a new method, the so-called Nonseparable Cost
Gap Method, based on the GT γ-value. The non-GT methods do not
necessarily belong to the Core.

Straffin and Heaney [1981] consider the fair allocation of joint costs
in relation to dividing costs of dam systems among participatory uses.
The authors apply solution concepts including the Core, a special case
of the Nucleolus and the imputation which minimizes the maximum
propensity to disrupt.

Homayoun-Far et al. [2010] develop a continuous model of dynamic
game of reservoir operation when demands from various uses exist.
The authors use two solution concepts: the Ricatti Equations and
Collocation Methods. The Ricatti Equations Method is a closed-form
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solution, requiring less computational effort compared with discrete
models. The collocation solution method applies Newton’s Method or
a quasi-Newton Method to find the problem solution. The two solution
concepts were applied to a reservoir in the Zayandeh-Rud River
Basin in central Iran as a case study and the results are compared
with alternative water-allocation models. The results show that the
Collocation Method leads to improved values of the reliability indices
for the total reservoir system and utility satisfaction of water users,
compared to the Ricatti Equation Method. Homayoun-Far et al. [2011]
further develop the model by considering a stochastic dynamic game
for water allocation from a reservoir system. The continuous random
variable of inflow to the reservoir in the state transition function was
replaced with a discrete approximation rather than using the mean
of the random variable. The Collocation Method was introduced as
an alternative to Linear-Quadratic (LQ) approximation methods to
resolve a dynamic model of game.

In their book chapter, Dinar et al. [2006b] develop a simple model
that incorporates the stochastic nature of water supply to a regional
model to determine the size a regional water project under stochastic
water supply. In view of future climate change effects on the water
cycle, the world is expected to face more stochastic and extreme events
of water supply. Therefore, incorporating stochastic consideration of
water supply becomes more acute in designing regional water facilities.
With various water users having different attitudes toward risk, the
combination of stochastic events and players’ risk attitude becomes
increasingly important in regional cooperation. The authors apply a
Stochastic GT framework to an example of a water treatment plant.

Israel et al. [1994] present a very general GT framework for reassess-
ing the operation and management of existing multi-purpose water
projects subject to competing and conflicting water uses, with applica-
tion to the water use conflicts in the Truckee-Carson Basin, Nevada.

Loughlin [1977, 1978] examines the efficiency and equity of the
SCRB allocation method in a multi-purpose water project allocation
problem.
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Okada [1982] and Okada and Tanimoto [1996] compare the results
of the SCRB method to the Weak Nucleolus and to the Proportional
Nucleolus in an allocation problem of the cost of a multi-purpose reser-
voir in two variations of the sectors involved.

And finally, Suttinon et al. [2012] demonstrate the use of
option games to evaluate trade-offs between flexibility and strategic
commitment in industrial water infrastructure projects. The approach
combines real options and game theory. It was applied to the case of
the Government of Thailand’s investments in tap and industrial water
supplies and/or the private sector investment in recycled-water devel-
opment. The investments are evaluated under four different strategic
scenarios: (1) both parties invest, (2) Government invests first, private
sector waits, (3) private sector invests first and Government waits, and
(4) both parties wait. Results suggest that option games provide a
tool that allows decision makers to accurately value all choices with
consideration not only of future uncertainties, but also of competitors’
decisions.



7
Conclusions and Further Needs

in the Field of Water

Game Theory applications and developments for water resources have
shown a significant increase in the past seven decades. We reviewed the
use of GT approaches in various water resource sectors from 1942 to
2013. We were able to identify and catalogue nearly 600 works that use
and apply GT concepts and frameworks to water resource management.
However, about half of these works were, in our opinion, less appropri-
ate to be used in this paper because of their very stylistic nature —
highly abstract water systems that cannot be extrapolated to other
locations or circumstances. The remaining 294 works we analyzed in
the paper allowed us to create a comprehensive set on water issues and
the success or difficulties of applying GT to address these issues.

Clearly, GT can be a very good tool in addressing certain issues,
but may face difficulties with other issues. In the following, we review
major strengths realized in the field and future developments that are
needed in our opinion.

The scope and intensity of GT works for allocation of joint water
project costs have been very impressive. Cooperative Game Theory
allocation schemes have led many, if not the majority, of water projects
over several decades and continue leading that work to date. Allocation
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schemes have been successfully applied at local, regional, and interna-
tional levels, at sectoral and multisectoral levels, and in a variety of
projects with different natures. However, we observe rather a small
group of works that apply GT to water-related issues that are char-
acterized by externalities and/or stochastic nature in supply. These
two aspects — externality and stochasticity — are rather important in
the future development of the water sector due to increased competi-
tion over scarce water resources, leading to different negative external-
ities, and due to the impact of climate change, leading to the increased
stochastic nature of water supply.

GT made also, especially in recent years, a major contribution in the
field of international water. This is actually the field with the highest
increase in GT applications, which is not surprising, given the strategic
nature of international scarce water that are shared by riparian states
with increasing populations. Works, employing GT approaches, made
their mark both in issues related to allocation of the water or the
benefits from water uses among the riparians, and in issues related
to regulation of transboundary unidirectional externalities (pollution).
However, like in the case of cost allocation for joint projects, GT so far
did not properly or widely enough address the issues of externalities and
stochasticity in the supply of the water to the flow of the basin. This is
a bit surprising since, especially in the field of international water, other
categories have moved forward with advanced applications of methods
and examples addressing unidirectional externalities and stochasticity.

One of the major problems facing water sector management and
planning decision is the impact of climate change on water supply and
its effect on decisions leading to permanent infrastructure investment.
While we reviewed several works that applied stochastic cooperative
game theory approaches, it appears that much more is needed in light
of the likely increase in water variability due to climate change.

We also realized that the role of GT in multi-party negotiations and
allocations could be enhanced in works with issue linkage framework.
Issue linkage allows the players involved to expand the core, such that
solutions to an issue at dispute may have higher likelihood of being
agreed on. Expanding the game by adding issues to the negotiating
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matrix is one possibility of arriving at a stable solution. Another pos-
sibility is to expand the group of players beyond the original set by
searching and adding more members to the set that may lead to a
higher likelihood of cooperation. Indeed one has to consider the higher
transaction costs associated with larger group of players, which may
make it less desirable to expand the set of players. But, given the high
rate of economies of scale in joint facilities, this is a risk worth taking.

Finally, we have seen very little attention placed on the important
aspect of equity in the hundreds of papers we reviewed. The angle of
equity is critical in the stage of evaluating the stability of the solution
to the game. While the traditional assumption of profit maximization
holds in most works reviewed, it is still not sufficient in dealing with
situations where there is a large range of welfare differences between the
various players involved. Having very rich and very poor players in the
same game (e.g., international games, regional games, urban games)
leads to results that will not be acceptable to some players, even if
traditional game theory acceptability and stability conditions (such as
Core) hold.
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Annex 1. Data Collection and Classification
Methodology

We reviewed literature in several subscription databases, including
EconLit, Web of Science, Compendex, PAIS International, Worldwide
Political Science Abstracts, and CIAO. GoogleScholar was also used.
EconLit collects scholarly economic and related literature from 1969
to present, covering accounting, consumer economics, monetary
policy, labor, marketing, demographics, modeling, economic theory,
planning, and more. Web of Science indexes scholarly literature in
the sciences, social sciences, arts, and humanities. For the purposes
of this review, sciences from 1900 to present and social sciences from
1956 to present are compiled and searched. Compendex comprehen-
sively catalogs engineering literature. In addition to economic issues,
PAIS (Public Affairs Information Service) International lists selected
literature on politics, business, finance, law, international trade and
relations, public administration, government, political science, public
policy, and social issues from 1972 to present. Worldwide Political
Science Abstracts focuses on political science and government articles
from 1984 to present. Columbia International Affairs Online (CIAO)
covers working papers from university research institutes, papers series
from NGOs, foundation-funded research projects, and proceedings
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from conferences from 1991 to present. In order to reduce massive
numbers of results, GoogleScholar can be adjusted to include a
library’s holdings in an OpenURL Linker, which enables discovery and
access to the university’s subscribed resources.

Indexers categorize works in a database using the database’s
controlled vocabulary of index terms, subjects, and/or descriptors.
Additionally, authors may supply keywords. The databases may be
produced by different publishers and may use distinctive descriptors,
subjects, or indexing terms to describe similar ideas. Initial suggested
keywords used for our search include cooperative/non-cooperative
game theory, water, hydropower, irrigation, environment, pollution,
wastewater, rivers, international waters, water ways, urban/residential
water, developing countries, developed countries, equitable allocation,
poverty, flooding, drought, equity, natural resources, aquifers, and
transboundary waters. Fisheries are not covered in this monograph.

Exploratory keyword searches in each database using terms such
as “game theory” and “water” or “environment” allow us to discover
what the actual descriptors or subjects for the research are for each
database. For example, a search in EconLit for keywords “game theory”
and “water” might show the following subjects (followed by the number
of citations in the database):

• Economic development: agriculture; natural resources; energy;
environment; other primary products (18)

• Game theory and bargaining theory: general (43)

• Game theory and bargaining theory: other (21)

• Renewable resources and conservation: government policy (14)

• Noncooperative games (12)

• Renewable resources and conservation: water (56)

• Air pollution; water pollution; noise; hazardous waste; solid
waste; recycling (21)

• Cooperative games (17)
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A similar keyword search in Compendex might yield:

• Game theory (142)

• Water resources (36)

• Mathematical models (34)

• Resource allocation (25)

• Decision making (23)

• Algorithms (22)

• Optimization (22)

• Probability — game theory (22)

• Decision theory (17)

• Iterative methods (16)

A Web of Science query with the same keywords might result in:

• Water resources (58)

• Environmental Sciences (51)

• Engineering electrical electronic (46)

• Engineering civil (40)

• Economics (28)

The scope, vocabularies, and search algorithms of the databases dif-
fer, dramatically affecting the results. Even with refinement of subject
terms, the citations needed to be extensively reviewed for relevancy.
Phrases might be enclosed in quotes in order to force exact matching.
Boolean logic could be employed to be sure that multiple terms were
present in the search results by using the operator “AND” with subject
terms. The operator “NOT” could be employed to force exclusion of any
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topic such as fisheries. As time passed during the project, searches could
be modified to exclude citations from the past as those had already
been “found.” Additionally, a database might supply clickable facets,
so that one can limit results by source type (journals, papers, books,
book chapters, dissertations, etc.), year, subject terms, or publication.
Late in the project several new, older citations were discovered as new
resources were indexed by the database providers, particularly in Web
of Science.

We started with an initial set of 103 citations, which formed the
foundational set of citations in EndNote Web. Searches were per-
formed periodically over a three-year period gathering over 600 cita-
tions. Most of the rest of the citations were found in the EconLit and
Web of Science databases. Citations were entered into EndNote Web in
labeled sets, usually the database name and the date, using automated
importing features provided by the databases wherever possible. Some
databases have better functioning export abilities into citation man-
agement tools. To populate records in EndNote Web, as many fields
as possible were filled in the record, including abstracts, subjects, key-
words, and OpenURL links. In some cases, additional fields or even
entire records were added by hand. New citations were reviewed and
placed into working sets in EndNote Web; they were labeled “Include,”
“Maybe” and “Exclude.” Over time, as each database was reviewed for
new citations, it became necessary to check the list of potential cita-
tions against the existing sets in EndNote Web to avoid duplication.
The set name was entered into the Research Note field. If the citation
was in print and owned by the university libraries, then the library,
catalog record link and call number were noted. If the item needed to
be requested by interlibrary loan, it was noted and the item requested.

Working collaboratively online from two different institutions
presents some logistical wrinkles to work out. At one point it became
necessary to move sets from one account to another, changing the owner
to the data set. Not wanting to lose any data, sets were named Include,
Include_old, Exclude, and Exclude_old. At the time of writing, using
Cite While You Write in Microsoft Word, it can be confusing which
citation is the “right” citation to insert, as the citation from each
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set will show multiple times in the drop-down list. It became clear
that unique identifying words were needed to distinguish which cita-
tion was the “correct” citation from the correct set. Phrases such as
“Final Include” were added to the Include set. At the point of inser-
tion, using Cite While You Write, it was fairly simple to scroll down
through the record and find the appropriate phrase and insert the cor-
rect citation. Since Cite While You Write builds the reference list as
citations were inserted, choosing the correct citation means there will
not be any duplicate citations in the reference list.

Citation management software saves time, effort and allows better
organization during the research and writing process. However, clean
data can be a seemingly insurmountable goal. Even with the utmost
care, dirty data crept into the data set. Surprisingly, sometimes the
database indexers got it wrong. The database citation exporter may
garble the data, or human error might sneak into hand-entered data.
One database might include an initial, the other the first name. First
and last names may be transposed. Lead authors might change. De-
duplication was done regularly in multiple waves. Transposed names
were not discovered until later and required backing up to fix funda-
mental problems in the data set. Some exported citations, perhaps from
different databases, contained more fields of information than others,
requiring comparison and filling in.

A matrix was created to help analyze, formulate trends in the data
and determine subheadings. A spreadsheet was created where each cita-
tion in the dataset was both a row heading and a column label. In
the intersecting cell, keywords and subjects were listed. Keywords and
subjects were then experimentally run through a freely available text
analyzer. After gathering the keywords and subjects, they were cleaned
and processed into a spreadsheet and submitted into the online tool.
The results (Table A.1) were not very helpful as individual words, not
phrases, were reported.

To prepare for the writing, citations were categorized into the fol-
lowing categories for annual and cumulative game theory citations:
urban water, hydrology, irrigation, pollution, groundwater, alloca-
tion, international water, negotiation, ecology, basin management, and
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Table A.1: Text analyzer results by word frequency and rank.

Word Occurrences Frequency (%) Rank
Water 346 6.20 1
Game 191 3.40 2
Theory 181 3.20 3
Resources 143 2.50 4
Management 112 2.00 5
Resources 108 1.90 6
Theory 96 1.70 7
Renewable 87 1.50 8
Conservation 87 1.50 8
Decision 77 1.40 9

multipurpose. Citations were limited to one topic for the categorization.
Additionally, citations were grouped into sections covering the history,
trends, and the future of game theory. Once arranged in logical order,
abstracts were inserted. Data set quality remains a constant concern.
It is important to make sure the final set of citations contains all of
the citations needed for the review. Citations may need to be moved
into or out of the final set. A spreadsheet was constructed showing the
section, subsection, author, year of publication, and any required notes
such as a few words from the abstract in order to identify the author’s
different citations from the same year. This spreadsheet could also be
used to prepare the pivot tables for the publication trend lines for each
subsection of the paper.
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