
UC Irvine
UC Irvine Previously Published Works

Title
Reachable and Controllable Sets for Planetary Entry and Landing

Permalink
https://escholarship.org/uc/item/7tt8875n

Journal
Journal of Guidance Control and Dynamics, 33(3)

ISSN
0731-5090

Authors
Benito, Joel
Mease, Kenneth D

Publication Date
2010-05-01

DOI
10.2514/1.47577
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tt8875n
https://escholarship.org
http://www.cdlib.org/


 
 

1 

Reachable and Controllable Sets for Planetary Entry and 
Landing 

Joel Benito* and Kenneth D. Mease† 
University of California, Irvine, 92697-3975  

Understanding the envelope of entry trajectories that a given planetary lander is capable 

of flying can be an important aid for mission analysis and design. We consider two 

characteristics of this envelope: (i) the set of states reachable from a given entry state, and 

(ii) the set of entry states controllable to a given final state. Precise definitions of these sets 

are given and methods for computing them are presented. To illustrate their use, the sets are 

employed to characterize the Mars entry of two vehicle configurations, a low lift-to-drag 

ratio (L/D) capsule and a mid L/D ellipsled. A role for the sets in evaluating entry guidance 

algorithms is described. 

Nomenclature 

CS = controllable set 

CFP = controllable footprint 

DC  = drag coefficient 

LC  = lift coefficient 

γC  = component of the Coriolis acceleration in the flight path angle equation 

ψC  = component of the Coriolis acceleration in the heading angle equation 

D = drag acceleration 

F = set of feasible control-trajectory pairs 

g = gravitational acceleration 

h = altitude 

sh  = atmospheric density scale height 

 
* Graduate Student, Mechanical and Aerospace Engineering; jbenitom@uci.edu. 
† Professor, Mechanical and Aerospace Engineering; kmease@uci.edu. Associate Fellow AIAA. 
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J = cost function 

qk  = stagnation point convective heat rate constant 

L = lift acceleration 

m = vehicle mass 

P = set of states that do not violate path constraints 

q  = dynamic pressure 

Q  = stagnation point convective heat load 

Q  = stagnation point convective heat rate 

RS = reachable set 

RFP = reachable footprint 

r = distance from planet’s center to the vehicle’s center of mass 

nr  = nose radius 

S = reference surface 

T = transition map 

U = set of admissible control profiles 

V = velocity 

sV  = speed of sound 

γ  = flight path angle 

∆  = set of allowable deployment states 

θ  = longitude 

µ  = planet’s gravitational constant 

Π  = longitude and latitude extraction map 

ρ  = atmospheric density 

0ρ  = sea-level atmospheric density 

σ  = bank angle 

φ  = latitude 
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ψ  = heading angle 

pω  = planet’s rotation rate 

Χ  = set of allowable states 

Subscripts 

0 = initial 

f = final 

( )φθ ,  = restricted to a particular value of the ( )φθ ,  pair 

Superscripts 

J = minimizes the cost function J 

I. Introduction 

OR planetary landing mission analysis and design, it is beneficial to characterize the envelope of trajectories 

that a given lander is capable of flying. In particular, two characteristics of this envelope are the focus of our 

attention: (i) the set of states reachable from a given entry state, and (ii) the set of entry states controllable to a given 

final state. The objectives of this paper are to define the reachable set (RS) and the controllable set (CS), present 

methods for their computation, and illustrate the use of these sets via a detailed application to Mars entry for two 

vehicle configurations.  

Reachable and controllable sets are established concepts in mathematical systems theory; see for example Ref. 

[1]. We adapt the standard definitions to accommodate the particular features of entry flight – the boundary 

conditions and the path and control constraints. The landing footprint, a more familiar concept in flight mechanics, 

can be derived from the reachable set. The landing footprint is a two-dimensional set, typically given in terms of 

longitude and latitude. See Ref. [2] for an early paper describing landing footprints, Ref. [3] for optimal landing 

footprints, and Ref. [4] for a fast suboptimal computational approach. The RS is a six-dimensional set of values of 

the translational state variables for the entry vehicle. Using spherical coordinates for position and velocity as we do, 

two of the position coordinates are longitude and latitude. The landing footprint is, in a sense, a projection of the RS 

onto the longitude-latitude plane. Keeping track of the full translational state for the points that can be reached by a 

lander is important when state variables in addition to longitude and latitude are of interest. For example, there may 
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be multiple points in the RS with the same longitude and latitude, and the one of most interest might be the one with 

the highest altitude.  

The controllable set is a generalization of the entry corridor. The entry corridor is typically defined as the one-

dimensional set of the allowable entry flight path angles [2]. The determination of the entry corridor is important for 

mission planning and design, and it is in the list of recommendations for the design of entry guidance systems in 

Ref. [5]. A study of the effect of lift on the entry corridor is presented in Ref. [6]. A two-dimensional version of the 

entry corridor, accounting for variations of the entry angle with the entry velocity, has also been defined (see an 

example in Ref. [7]). Since the main entry trajectory constraints (such as heat rate and structural loads) and delivery 

requirements (such as downrange and altitude) are functions of the longitudinal state variables (velocity, flight path 

angle and radius), the lateral state variables are commonly ignored for the definition of the entry corridor. The entry 

interface is typically defined at a fixed altitude, and hence a two-dimensional entry corridor provides the necessary 

information for the characterization of the entry problem. Missions that require flexibility on the entry state, large 

crossrange and/or high landing accuracy may require a more complete representation that includes the lateral state 

variables. The CS generalizes the entry corridor by including both the longitudinal and lateral state variables in a 

six-dimensional set. The inclusion of the lateral state variables provides a complete representation of the entry states 

from which a vehicle can reach a given landing site. The projection of the CS in the latitude-longitude plane is the 

controllable footprint (CFP).  

Figs. 1 and 2 sketch the RS and CS and their corresponding footprints. The sets presented in Figs. 1 and 2 are 

simplified 3-dimensional versions of the more complex 6-dimensional general sets, but they illustrate the concept. 

 
 

Fig. 1 Reachable set and reachable footprint Fig. 2 Controllable set and controllable footprint 
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Computing the complete reachable and controllable sets or even just their boundaries would be computationally 

intensive. Instead, we compute certain extremal points in the sets that are of most interest. Extreme values of 

quantities are displayed for the reachable and controllable longitude-latitude pairs. We use a scoring function that 

summarizes all the trajectory characteristics to identify preferred areas within the reachable and controllable sets for 

placing the nominal landing and entry states, respectively. 

To illustrate the computation and use of these sets, we obtain the RS and CS for a representative Mars entry 

mission. Certain future Mars missions are pushing entry, descent, and landing (EDL) technology to accommodate 

more accurate, higher elevation landings [7]. To date, Mars landings have been at sites with below -1.4 km MOLA 

(Mars Orbiter Laser Altimeter) elevation. To reach much of the Ancient Highlands, the majority of the southern 

hemisphere, landing at +2 km MOLA elevations is required. The Mars Science Laboratory (MSL) mission is 

scheduled to land in the southern hemisphere at +1.6 km MOLA elevation. All previous missions to Mars have had 

unguided entries with landing errors only guaranteed to be on the order of 100 km. MSL will have a guided entry 

and is designed to land within 10 km of the desired site. High elevation landing sites are especially challenging 

because the parachute deployment altitude has to be higher also. Although there exist nominal trajectories that meet 

the requirements, if they involve lofting in the final entry phase, the amount of lift available to compensate for off-

nominal conditions may be less than needed. Some algorithms have been developed [8-9] to provide reference 

trajectories that preserve control authority to correct for errors during the final entry phase. An alternative vehicle 

configuration for this type of mission is an ellipsled configuration, which has a higher lift-to-drag (L/D) compared to 

that of a capsule. The RS and CS for Mars entry will be characterized for these two vehicle configurations to assess 

the impact of L/D on the entry capability with regard to parachute deployment altitude, landing footprint, feasibility 

in the entry targeting, and heat rate and load. 

II. Entry Problem Formulation 

A. Equations of Motion 

The equations of motion of an entry vehicle defined with respect to a planet-fixed coordinate frame are [3] 

 



 
 

6 

ψ

γ

φψγσ
γ

ψ

γσγ

γ

ψγφ

φ
ψγθ

γ

C
r

VL
V

C
r

VgL
V

gDV
r
V
r
V
Vr

+









+−=

+





















−−=

−−=

=

=

=

tancoscossin
cos
1

coscos1

sin

sincos

cos
coscos

sin

2
2

2













 (1) 

 

where θ  is the longitude, φ  is the latitude, r is the distance from the center of the planet to the vehicle center of 

mass, ψ  is the heading angle with 0=ψ  as due east and deg90=ψ  as due north, V is the velocity and γ  is the 

flight path angle. The bank angle is σ , the angle the lift vector is rotated around the velocity axis, with 0=σ  

corresponding to vertical upward and positive σ  generating a right turn. L and D are the lift and drag accelerations, 

defined by 
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The drag and lift coefficients DC  and LC  are solely functions of the Mach number. Angle of attack is not 

considered a controllable variable; it takes a Mach number dependent trim value dictated by the vehicle’s 

aerodynamics. S is the reference area, m is the vehicle mass, and ρ  is the atmospheric density. g  is the 

gravitational acceleration. The terms ψC  and γC  are the Coriolis acceleration components due to planet rotation 

and can be approximated by 
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where pω  is the planet angular rotation rate. 
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B. Downrange, Crossrange and Control Authority Definitions 

Distances traveled on the surface of the planet are measured with respect to the great circle arc that includes the 

projection of nominal entry and target points on the surface of the planet (see Fig. 3). The traveled distance parallel 

to the great circle arc is the downrange, and the perpendicular distance traveled is the crossrange. Positive 

crossranges correspond to positions on the starboard side of the great circle arc and negative crossranges correspond 

to positions on the port side. 

 

 

Fig. 3 Trajectory metrics 

 

It is of special interest to deploy the parachute at high altitudes, which is challenging due to the decreased 

atmospheric density. The altitude acceleration is  

 

γγσγγγ CVL
r

VDgh coscoscoscossin 2
2

+++−−=  (4) 

 

The vehicle flight path is controlled by rotating the lift vector around the velocity vector by an angle σ  from the 

vertical, called the bank angle. We refer to the term γcosL  as the altitude control authority (see Ref. [10] for a 

related definition). Especially close to the deployment point when the velocity is low, it is important to have as much 

altitude control authority as possible. γcosL  can be increased in different ways, although they all effectively limit 

lofting motion near the end of entry, because lofting decreases both L  and γcos . Further consideration of this issue 

will be found in Sections IV and V. 
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C. Vehicle Model 

The geometry of an MSL-type capsule [11], inherited from the Viking program, is a double-cone, with an 

aeroshell forebody shape of a 70 deg sphere-cone. This configuration can provide a lift-to-drag ratio (L/D) of about 

0.25.  An alternative configuration is the ellipsled vehicle [10-11]. The ellipsled geometry is formed by a spheroid 

extending into a cylinder, an elliptically blunted cylinder. This configuration can provide an L/D as high as 0.4. 

Figure 4 shows the MSL and ellipsled configurations. 

 

 

Fig. 4 MSL and ellipsled configurations 

 

The constraints described in the remainder of this subsection apply to both vehicle configurations. Bank angle, 

the means of flight path control, is limited to deg120≤σ . Due to limitations in the reaction control system, the 

bank rate and bank accelerations are limited to sdeg/20≤σ  and 2deg/5 s≤σ . The vehicle has constraints on 

acceleration, dynamic pressure, heat rate and heat load. These constraints will not be imposed in our computation, 

but the values of those variables will be examined. Convective heat rate ( Q ) can be approximated at the stagnation 

point by the Sutton-Graves equation [12] 
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where N=0.5, M=3, 49027.1 −= ekq , ρ  is the atmospheric density and nr  is the nose radius of the capsule. The 

total heat load Q  absorbed at the stagnation point the vehicle is the time integral of the heat rate. Dynamic pressure 

( q ) is given by 
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2

2
1 Vq ρ=  (6) 

 

For the results in this paper the lift and drag coefficients are assumed to be constant, a standard approximation 

for the hypersonic regime. The parameters of the vehicles used in the simulations are shown in Table 1. 

 

Table 1 Vehicle parameters 
 

 MSL-type Ellipsled Units 
DC  1.45 1.92 - 

LC  0.36 0.62 - 
DL /  0.248 0.323 - 

m  2804 2804 kg 
S  15.9 15.9 m2 
nr  0.66 0.66 m 

D. Atmospheric and Planetary Models 

The atmospheric density ρ  is approximated by the exponential function 

 

( )shh /exp0 −= ρρ  (7) 

 

where 0ρ  is the density on the surface of the planet, h  is the altitude and sh  is the scale-height. The planet is 

assumed to be spherical with a surface radius pr , and hence prrh −= . Given that in this paper the aerodynamic 

coefficients are assumed constant, the speed of sound is only needed for the definition of the parachute constraints. 

For the range of low altitudes involved, the speed of sound can be modeled by a constant velocity sV . The 

gravitational acceleration is modeled by 2/ rg µ= , where µ  is the planet gravitational constant. The numerical 

values of the planet parameters used in this paper for Mars are shown in Table 2. 

 

 

 



 
 

10 

Table 2 Martian parameters  

 

 

Parameter Value Units 
pr  3.3866e6 m 

µ  4.284e13 m3/s2 

0ρ  0.0158 kg/m3 

sh  9354.5 m 

sV  220 m/s 

pω  7.095e-5 rad/s 
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 Fig. 5 Disk-Gap-Band parachute box 

 

E. Parachute Deployment Constraints 

To date the parachute technology used for Mars entry is that inherited from the Viking program [7]. The selected 

parachute configuration is the Disk-Gap-Band, which must be deployed in the dynamic pressure range of 300-850 

Pa and the Mach number range of 1.4-2.2. The minimum deployment altitude is set to 6 km. When converted to 

altitude-velocity constraints, for a given atmospheric model, the parachute box, or set of all allowable deployment 

altitude-velocity pairs, is defined as shown in Fig. 5. 

III. Reachable and Controllable Set Definitions 

In this section we define a number of sets that are used to characterize the fight capability of an entry vehicle. 

These sets include feasible, reachable, and controllable sets. Reachable and controllable sets are concepts from 

systems theory, see for example Ref. [1]. The standard definitions are modified as needed for the entry guidance 

context. In preparation for defining the reachable and controllable sets, several other sets are first defined. We use 

standard set notation { }propertyApS :∈= , read “the set S is composed of all points p  found in set A  such that 

the property is satisfied”. The ‘colon’ denotes ‘such that’. 
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A. Basic Set Definition 

 As introduced in Eq. (1), we use the state representation [ ]TVrx ψγφθ ,,,,,= . We assume that x  will take 

values in a set 6ℜ⊂Χ ; Χ  will be specified for the computations, but is left general here. The set )(tU  of 

admissible σ  control profiles is defined by 

 

[ ]{ }],0[,)(,)(,)(:],0[,0)( maxmaxmax
2 ttCttU ∈∀≤≤≤∈= τστσστσστσσ   (8) 

 

where the bank angle profile for the time-interval 0 to t  is denoted by ],0[ tσ  and [ ]tC ,02  denotes the set of 

continuous functions with continuous first and second derivatives on the interval [ ]t,0 . )(tU  depends on the time 

duration t  and the constant bounds maxσ , maxσ  and max σ . 

The solution to the equations of motion, Eq. (1), at time t  for the initial condition ( ) 00 xx =  is expressed by the 

nonlinear transition map 

 

( ) [ ]],0[;, 0 txttx σΤ≡  (9) 

 

denoting the dependence of ( )tx  on the elapsed time t , 0x  and the bank angle profile. Because the dynamics are 

time independent, the initial time is always taken to be zero, without loss of generality. The transition map also 

depends on the particular force models employed, but because we are not investigating the impact of modeling 

errors in this paper, our notation does not explicitly indicate the model dependence. The state trajectory for time 

interval [ ]t,0  is expressed by 

 

[ ] [ ]
t

xtx
≤≤

Τ≡
τ

τστ
0

0 ],0[;,,0  (10) 

 

Thus ( )tx  is the value of x  at time t , whereas [ ]tx ,0  is the trajectory segment for the given time interval, a slight 

abuse of notation. 
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Let Χ⊂P  denote the set of states that do not violate the path constraints, defined by 

 

( ){ }0: ≤Χ∈= xpxP  (11) 

 

where ( )xp  is a vector that can include components specifying the limits on heat rate, acceleration and dynamic 

pressure, for instance. The deployment set Χ⊂∆ , the set of acceptable parachute deployment states is defined by 

 

( ){ }0: ≤Χ∈=∆ xdx  (12) 

 

where ( )xd  is a vector specifying the inequality deployment constraints. The definition of ( )xd  would, for example, 

include the limits shown in Fig. 5 on the deployment Mach number, dynamic pressure and altitude. If we are 

focusing our attention on a particular ( )φθ ,  pair, then we further restrict the deployment state to 

( ) ( ) [ ]{ }TxxXx φθφθ ,and:| , =Π∆∈∈=∆ , where ( ) Cxx =Π  is the mapping that extracts the longitude and latitude 

state variables from the state vector x , with 







=

000100
000010

C . 

We limit the initial entry states to a subset XX ⊂0  which may restrict the initial values of certain state 

variables. For instance, traditionally the entry altitude is fixed at kmh 1200 = ; we should have 00 <γ ; and the 

range of initial speeds and heading angles to be considered may be specified, since these values are dictated by the 

approach trajectory and associated errors. For the reachable set, 0X  will have a single entry state. 

Given an initial state 00 Xx ∈ ,  [ ] [ ]( )ff txt ,0,,0σ  is a feasible control-trajectory pair with final time 0>ft , if 

it satisfies the conditions: 

 

• [ ] ( )ff tUt ∈,0σ  

• ( ) [ ] [ ]fttPtxttx ,0,],0[;, 0 ∈∀∈Τ= σ  

• ( ) ∆∈ftx  
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Let ( )fXXF ,0  denote the set of all feasible control-trajectory pairs with initial state in 0X  and final state in fX , 

where fX  is ∆  or the more restrictive ( )φθ ,|∆  depending on the situation. 

B. Reachable Set 

The reachable set ( ) ∆⊂0xRS  is the set of deployment states with corresponding feasible control-trajectory 

pairs with entry state 0x ; that is 

 

( ) [ ] [ ]( ) { }( ) ( ){ }ffffff xtxxFtxt txxRS =∆∈∃∆∈=  with , ,0,,0 and  : 00 σ  (13) 

 

The symbol ∃  denotes ‘there exists’. In words, each final state in ( )0xRS  can be reached by a feasible control-

trajectory pair from 0x  for some ft , where ft  may be different for each final state. The reachable footprint (RFP) 

is derived from the ( )0xRS  as follows 

 

( ) [ ] ( ) ( ) [ ]{ }T
ff

T xwithxRSxxRFP φθφθ ,  :, 00 =Π∈∃=  (14) 

 

Thus to each value of [ ] ( )0, xRFPT ∈φθ , there corresponds at least one value of ( )0xRSx f ∈ .  

C. Optimal Reachable Subset 

There is typically more than one feasible control-trajectory pair that leads to a given [ ] ( )0, xRFPT
ff ∈φθ , i.e., 

the set { } ( )( )
ff

xF φθ ,0 |,∆  typically has more than one element. Rather than compute all the control-trajectory pairs 

that lead to a given ( )ff φθ , , it is prudent to first decide which are of most interest and compute only those. 

Determining extremal points in F and RS is a means of characterizing these sets. 

Using a cost function of the form 

 

[ ] [ ]( ) ( )( ) ( )( ) ( ) ( )( )∫++=
tf

LfFff dxftxfxftxtJ
0

0 ,0,0,,0 ττστσ  (15) 
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with Mayer terms, ( )( )00 xf  and ( )( )fF txf , and Lagrange term Lf , we determine trajectories that minimize J  for 

each longitude-latitude pair ( )φθ ,  in ( )0xRFP  over the set { } ( )( )φθ ,0 |,∆xF , and obtain optimal subsets of 

{ }( )∆,0xF  and ( )0xRS  that are denoted by { }( )∆,0xF J  and ( )0xRS J  and defined as  

 

{ }( ) { } ( )( )
[ ] ( )


0,
,00 |,,

xRFP

JJ

T

xFxF
∈

∆=∆
φθ

φθ  (16) 

 

where 

 

{ } ( )( ) [ ] [ ]( ) { } ( )( ) [ ] [ ]( ) { } ( )( ){ }φθφθφθ σσ ,0,0,0 |,over min is,0,,0:|,,0,,0 |, ∆∆∈=∆ xFtxtJxFtxtxF ffff
J  (17) 

 

and 

 

( ) ( ) [ ] [ ]( ) { }( ) ( ){ }ff
J

ffff
J xtxithxFtxttxRSxxRS =∆∈∃∈= w, ,0,,0 and   : 000 σ  (18) 

 

Note that the minimization in Eq. (17) is with a free final time. 

At a boundary point ( )φθ ,  of ( )0xRFP , { } ( )( )φθ ,0 |,∆xF  will typically have only one control-trajectory pair, but 

by default, it minimizes J  over { } ( )( )φθ ,0 |,∆xF . Though we do not offer a formal proof, it is clear that 

( ) [ ] ( ) ( ) [ ]{ }T
f

J
f

TJ xxRSxxRFP φθφθ , : :, 00 =Π∈∃=  is equivalent to ( )0xRFP . 

D. Controllable Set 

The controllable set ( ) 0, XCS ff ⊆φθ  is the set of entry states from which there exists a feasible trajectory to the 

longitude-latitude pair ( )ff φθ , , and it is given by 
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( ) [ ] [ ]( ) ( )( ) ( ){ }0,000 0with  |, ,0,,0 and  :, xxFtxttXxCS
fffffff =∆Χ∈∃∈= φθσφθ  (19) 

 

The controllable footprint (CFP) is derived from the ( )ffCS φθ ,  as follows 

 

( ) [ ] ( ) ( ) [ ]{ }T
ff

T
ff xwithCSxCFP 000000 ,  ,:,, φθφθφθφθ =Π∈∃=  (20) 

 

For each value of [ ] ( )ff
T CFP φθφθ ,, 00 ∈ , there corresponds at least one value of ( )ffCSx φθ ,0 ∈ . Note that this is 

a footprint (area on the ( )φθ ,  plane) of feasible entry points, not a landing footprint. 

E. Optimal Controllable Subset 

Analogous to the reachable set case, there is typically more than one feasible control-trajectory pair for a given 

[ ] ( )ff
T CFP φθφθ ,, 00 ∈ , i.e., the set ( ) ( )( )

ff
F φθφθ ,,0 |,|

00
∆Χ  typically has more than one element. We determine 

trajectories that minimize the cost function J  shown in Eq. (15) for each longitude-latitude pair in ( )ffCFP φθ ,  and 

obtain optimal subsets of ( )( )
ff

F φθ ,0 |, ∆Χ  and ( )ffCS φθ ,  denoted by ( )( )
ff

JF φθ ,0 |,∆Χ  and ( )ff
JCS φθ ,  and 

defined as  

 

( )( ) ( ) ( )( )
[ ] ( )


ff

T
ffff

CFP

JJ FF
φθφθ

φθφθφθ
,,

,,0,0

00

00
|,||,

∈

∆Χ=∆Χ  (21) 

 

where 

 

( ) ( )( ) [ ] [ ]( ) ( ) ( )( ){
[ ] [ ]( ) ( ) ( )( )}

ff

ffff

FtxtJ

withFtxtF

ff

ff
J

φθφθ

φθφθφθφθ

σ

σ

,,0

,,0,,0

|,|over min ,0,,0

|,|,0,,0|,|

00

0000

∆Χ

∆Χ∈=∆Χ
 (22) 

 

and 

 



 
 

16 

( ) ( ) [ ] [ ]( ) ( )( ) ( ){ }0,00 0 with |, ,0,,0  :,, xxFtxtCSxCS
ff

J
ffffff

J =∆Χ∈∃∈= φθσφθφθ  (23) 

where the minimization in Eq. (22) is with free final time. We claim that 

( ) [ ] ( ) ( ) [ ]{ }T
ff

JT
ff

J xwithCSxCFP φθφθφθφθ ,  ,:,, =Π∈∃=  is equivalent to ( )ffCFP φθ , . 

IV. Reachable Set Computation and Applications 

The trajectories presented in this and the next section have been obtained using the Graphical Environment for 

Simulation and Optimization (GESOP) [13], a trajectory optimization program that provides several optimization 

methods. We used the optimization method CAMTOS [14], which includes two discretization options: direct 

multiple shooting and direct collocation. A two-step strategy was used: direct collocation to obtain the initial guess 

for direct multiple shooting. 

A. Computational Approach  

The optimal reachable subset, ( )0xRS J , is computed to study the trajectories with maximum deployment 

altitude and control authority. The ( )0xRFP  is obtained from the optimal reachable subset. The optimal trajectories 

that form ( )0xRS J  are computed using GESOP after defining the boundary, control and path constraints and the 

performance index J . The final time ft  is free. 

The entry state 0x  is shown in Table 3. Since the initial state is fixed, { }00 xX = . Table 3 also shows the 

minimum and maximum values of the state variables allowed during entry, defining the set X . No limits on heat 

rate, dynamic pressure and acceleration are imposed, and hence P  equals X . The control constraints that define 

( )tU  are specified in Section II.C. Figure 5 shows the parachute deployment constraints which define the set ∆ . 

Table 3 Entry state 0x  Table 4 Optimization parameters 

 

State 
Variable 

Initial 
Value 

Min. 
Value 

Max. 
Value 

Units 

r  3522.2 pr  3522.2 km 
θ  -74.73192 -180 180 deg 
φ  -43.7513 -90 90 deg 
V  5433.5  0 5500 m/s 
γ  -15.76793  -45 maxγ  deg 
ψ  15.634524  -90 90 deg 

 

Variable Value Units 
γk  3.0e5 rad/1  

hk  1.0 m/1  

fγ  0.0 rad 

maxγ  0.0 rad 
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The trajectories are optimized to have high control authority and high deployment altitude by minimizing the 

cost function 

 

 

where the positive constants yk  and hk  are the weighting factors. For the two vehicles, the parameters used in the 

optimization are shown in Table 4. Limiting the maximum value of γ  to an appropriately chosen upper bound maxγ  

is an effective way of limiting the lofting motion and increasing the control authority [8]. In Ref. [9] a term is 

included in the cost function to bring to zero the deployment flight path angle, which decreases the lofting motion. 

In practice the vehicle control authority is never high enough to have a positive deployment flight path angle. This 

term works better than including the Lagrange term γcosLfL =  in the cost function (see Eq. (15)), which can 

provide undesirable results since lift is maximized when the altitude is minimized. 

B. Application to an MSL-Type Nominal Entry  

The nominal RFP is shown in Fig. 6, with contours showing the deployment altitude. Note that nominal implies 

nominal entry state and nominal vehicle and planet models. The RFP is 175 km long in downrange and 90 km wide 

in crossrange. Figure 7 presents the deployment velocity profiles. The value of the deployment velocity in the inside 

of the level sets is the maximum allowed, Mach 2.2 or 484 m/s. Figure 6 shows that near the boundary of the 

footprint the deployment altitudes are lowest. When all the control authority is used to minimize or maximize 

downrange, there is none left to raise deployment altitude. The interior of the RFP has the higher deployment 

altitudes, with the highest at downranges between 620 and 640 km. ( )0xRS J , as shown in Fig. 7, has a high 

deployment velocity uniformly in the interior of the set; this maximizes the control authority. All the deployment 

points are placed at the right edge of the parachute box (Fig. 5). 

 

( )[ ] ( )fhff thktkJ −−= 2γγγ  (24) 
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Fig. 6 Nominal RFP and deployment altitudes Fig. 7 RFP with deployment velocities 
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Fig. 8 Deployment dynamic pressure Fig. 9 Maximum heat rate 

 

Figure 8 shows the deployment dynamic pressure. Since the deployment velocity is the same for most of the 

RFP, the dynamic pressure looks like an inverted version of Fig. 6: low dynamic pressure for high deployment 

altitude and vice-versa. Figure 9 shows the maximum heat rates achieved during the entry; for the shorter 

trajectories where the energy has to be dissipated in less time, the maximum heat rates are higher. In general, 

trajectories with the lowest possible maximum heat rate are desirable to relax the requirements on the thermal 

protection system (TPS) and to leave margin for off-nominal cases. Figure 10 shows the total heat load. Note that 

heat load follows a pattern inverse to that of the maximum heat rate. 
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Fig. 10 Total heat load Fig. 11 Score 

 

All the points in the ( )0xRFP  are, by definition, reachable from 0x . If a point had to be chosen within the RFP 

to be the nominal deployment target it can be inferred from Figs. 6-10 that the preferred area where the target should 

be placed near the center of the RFP, where the maximum deployment altitude is the highest and the maximum heat 

rate and heat load are low. In order to quantitatively evaluate the best target point, one can define a scoring criterion. 

As an example, we define a scoring function inspired by the approach in Ref. [15], based on the four criteria in 

Table 5. minh  and maxh  are the minimum and maximum deployment altitudes found in JRS ; hfS  is 1 if 

( ) maxhth f =  and 0 if ( ) minhth f = . Deployment conditions in the center of the parachute box are desirable in order 

to have margins for trajectory tracking errors and to be able to trigger the parachute deployment when the vehicle is 

Table 5 Scoring criteria 

Score Description Weight Formula 

hfS  Deployment 
altitude 

40.0=hfW  
( )

minmax

min

hh
hth f

−

−
 

dpS  Deployment 
dynamic pressure 

00.0=dpW  ( )
0max

0
1

qq

qtq f

−

−
−  

hrS  Maximum heat 
rate 

30.0=hrW  
( )

( ) ( )maxmaxminmax

maxmaxmax

QQ
QQ





−

−
 

hlS  Total heat load 30.0=hlW  
maxmin

max

QQ
QQ
−

−  
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over the target latitude and longitude. dpS  is maximum for deployment dynamic pressure equal to 0q , the midpoint 

between minq  and maxq ; i.e. ( )minmax0 5.0 qqq += . dpW  is set to 0 in for the scoring of JRS  since it interferes 

with hfS ; however it will be used for the scoring of JCS . maxQ  is the maximum heat rate achieved during the 

trajectory, ( )maxmaxQ  and ( )minmaxQ  are the maximum and minimum maxQ  found in the trajectories that form JRS ; 

hence hrS  is 1 when ( )minmaxmax QQ  =  and 0 when ( )maxmaxmax QQ  = . Q  is the total heat load, and hlS  is 1 when 

Q  equals the minimum heat rate found in the trajectories that form JRS  and 0 when it equals the maximum. With 

these definitions, the score S  is computed adding up all the scores multiplied by the corresponding weight, as 

shown in Eq. (25). With these definitions the score S  is a number between 0 and 1 provided that the weights add up 

to 1. The score for the nominal MSL mission is shown in Fig. 11. The best area to place the nominal target point is 

between 600 and 650 km downrange and -20 and +20 km crossrange. 

 

bsbshlhlhrhrdpdphfhf SWSWSWSWSWS ++++=  (25) 

 

C. Application to an Ellipsled-Type Nominal Entry 

The nominal RFP for the ellipsled vehicle is shown in Fig. 12 along with the nominal RFP for the MSL vehicle. 

The ellipsled RFP is 300 km long in downrange and 180 km wide in crossrange, significantly larger that the one 

achievable with the MSL vehicle. Similar results are presented in Ref. [3], where optimal landing footprints are 

calculated (under several simplifications) for vehicles with different L/Ds. Figure 13 shows the maximum 

deployment altitude. Comparing with Fig. 6, the ellipsled vehicle can reach higher deployment altitudes: 15.5 km 

compared to 11 km for the MSL configuration. Parachute deployment altitudes for different L/Ds are shown in Ref. 

[7]; the corresponding trajectories exhibit lofting motion.  
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Fig. 12 Ellipsled vs. MSL RFP Fig. 13 Deployment altitude 

 

 

Figure 14 shows the deployment dynamic pressure. The deployment velocities of the states in JRS  for the 

ellipsled are the maximum allowed for most of the area of the RFP, as in Fig. 7. Hence, Fig. 14 is the mirror image 

of Fig. 13. The deployment dynamic pressures are as low as 350 Pa, compared to 550 Pa for the MSL vehicle (Fig. 

8). Figure 15 shows the maximum heat rate achieved for each of the trajectories with end states in JRS . The higher 

L/D of the ellipsled vehicle generates higher trajectories with lower atmospheric density and thus with lower heat 

rate (compare to Fig. 9). 

Figure 16 shows the total heat load, which is roughly the reverse pattern shown in Fig. 15. Short trajectories have 

higher heat rate and lower heat load; long trajectories have lower heat rate and higher heat load. As with the 
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Fig. 14 Deployment dynamic pressure Fig. 15 Maximum heat rate 
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maximum heat rate, the higher trajectories of the ellipsled configuration provide a lower heat load compared to the 

MSL configuration (see Fig. 10).  The scoring function is the same used for the MSL configuration shown in Table 

5 and Eq. (25). The score distribution for the ellipsled is shown in Fig. 17. 
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Fig. 16 Total Heat Load Fig. 17 Score 

D. Discussion 

Higher L/D provides a larger RFP, which translates into more landing sites reachable from an entry point and 

more capability to accommodate entry state dispersions. An increase in L/D also allows higher deployment altitude 

and lower deployment dynamic pressure, maximum heat rate and heat load. 

For guidance algorithms like EAGLE [16] that combine a trajectory planner and a trajectory tracker, the 

reachable sets can be used to analyze the range and optimality of the trajectory planner. Because the boundaries of 

the RS are achieved by minimizing or maximizing a function of the final state variables, e.g., downrange or 

crossrange, any planner that is not solving these trajectory optimization problems will only be capable of planning 

trajectories to an interior subset of the RS. How large this subset is relative to the RS is the measure of the capability 

of the planning algorithm. Ref. [4] shows a comparison of LFPs obtained with EAGLE and optimal ones. 

The RS can be used to decide the best nominal target site for a given entry state and planet and vehicle models. 

A scoring function based on multiple criteria can identify the best area for the target site. The choice of scoring 

function and weights affects strongly the result; the scoring function used in this paper is only an illustration. For 

both vehicles, the scoring maps show that there is an area at around 625 km downrange and 0 km crossrange where 

the target can be placed for best overall performance for both configurations (compare Figs. 11 and 17). 
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V. Controllable Set Computation and Applications 

A. Computational Approach 

Similar to the strategy for the RS, we compute an optimal subset of the controllable set, denoted ( )ff
JCS φθ ,  

and the associated footprint ( )ffCFP φθ , . We first specify the boundary constraints, the path constraints, the control 

constraints and the cost function for the optimal control problem. Table 6 shows the entry boundary constraints for 

both the MSL-type and the ellipsled-type vehicles, which define 0X  in each case. Table 6 also shows the minimum 

and maximum values of the state variables allowed during entry, which define X  in each case. These limits are 

never reached except for the one corresponding to maximum flight path angle, which is constrained to a specified 

maxγ  to ensure the vehicle has enough control authority by avoiding a lofting motion, as explained in Section II.A . 

No constraints on dynamic pressure, heat rate, heat load and total acceleration are imposed, and hence XP = . The 

values of these variables will however be examined. For all the trajectories, deg0max =γ . The deployment set ∆  is 

defined in Fig. 5. The control constraints that define ( )tU  are specified in Section II.C. The target pair ( )ff φθ ,  is 

set to ( ) ( )0.40,08.61, −−=ff φθ . 

 

Table 6 Entry state and state constraints 
 

State 
variable 

Nominal entry 
value 

Minimum 
value 

Maximum 
value 

Units 

r  3522.2 pr  3522.2 km 
θ  Free -180 180 deg 
φ  Free -90 90 deg 
V  5433.5 5800 0 m/s 
γ  Free -45 maxγ  deg 
ψ  

0ψ  -90 90 deg 
 

The variations in the initial heading angle 0ψ  are assumed to be caused by a deorbit timing error, and are thus 

associated with a lateral offset from the nominal entry point. The initial heading angle 0ψ  of each trajectory in JCS  

matches the heading angle of a point on the nominal great circle containing the nominal entry point and the target 

site ( )ff φθ ,  used in the previous section and specified in Table 3. The particular point on the nominal great circle is 

the one whose perpendicular contains the perturbed entry point as shown in Fig. 18. The initial radius is consistent 
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with the standard 120 km altitude. The initial velocity is fixed since for typical entry state dispersions its variation 

from a nominal value is small. This assumption is not necessary; the initial velocity can be varied at the expense of 

more computation. 

 

 

Fig. 18 Initial heading angle 

 

We will view the 6-dimensional CS by projecting it along the other coordinate axes onto the ( )φθ ,  plane; this is 

the CFP. Then we show the level sets for quantities of particular interest. For example, a more comprehensive 

characterization of the entry corridor [2] is achieved by computing for each point ( ) CFP∈00 ,φθ , the trajectories 

with the maximum and minimum flight path angles. Thus the cost function is 

 

( )0γkJ =  (26) 

 

where k  is 1 for minimum entry flight path angle, and -1 for maximum entry flight path angle. No term for 

increasing the control authority is included in the cost function, because it would compete with the maximizing the 

entry flight path angle, since steep entries present higher control authority. Instead, the path constraint maxγγ <  is 

imposed. 

B. Application to an MSL-Type Entry  

Continuing with the characterization of an MSL mission, JCS  is presented in this section. Figure 19 shows the 

CFP for the minimum entry flight path angle case, which has a size of 1200 km in downrange and an average of 

around 200 km in crossrange. An entry point at a downrange of 1200 km and a crossrange of 100 km means that 

ψ0 

Target 
point 

Nominal 
great circle 

Entry point 

ψ0 

Towards East 

Towards East 
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from this entry point a vehicle has to fly 1200 km parallel to the nominal great circle and 100 km normal to it. The 

CFP is not symmetric due to the Coriolis effects. Figure 20 shows the CFP with the maximum entry flight path 

angles.  The nominal entry point used in the previous section (Table 3) corresponds to a downrange of 640 km and a 

crossrange of 0 km. 
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Fig. 19 CFP for minimum entry flight path angle Fig. 20 CFP for maximum flight path angle 

 

Shorter downranges require steeper entry flight path angles, and longer downranges require shallower entry 

flight path angles. Figure 21 shows the difference between the maximum and minimum entry flight path angles, i.e., 

the depth of the JCS , terminology used in Refs. [2, 5, 6]. The depth decreases on the edges of JCS . Figure 22 

shows the contours of maximum heat rate on the CFP for the steepest entry flight path angle case, and Fig. 23 shows 

the total heat load for the case of shallowest entry flight path angle. Restricting our attention to values of heat rate 

and heat load at the maximum and minimum entry flight path angle values is based on the assumption that the 

extremal values of those quantities occur there. In Ref. [17], approximate formulas for lifting entry with constant 

0=σ  show that the maximum heat rate increases as the entry angle steepens and that the total heat load increases 

as the entry angle becomes shallower. Our assumption is that in a controlled entry (non-constant σ ) these 

tendencies are still valid. Figure 22 shows that the maximum heat rate is increasing for steeper entry flight path 

angles and lower downranges. If the maximum heat rate is limited to a certain value, due to TPS limits, the 

minimum entry flight path angle and the minimum downrange would be constrained.  
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Fig. 21 Entry flight path angle depth Fig. 22 Maximum heat rate (minimum ( )0γ  case) 

 

Figure 23 shows the total heat load for the maximum entry flight path angle case, in which the heat loads are 

higher than for the minimum flight path angle case. The pattern is the reverse of the one for maximum heat rate: heat 

load is maximum where heat rate is minimum and vice-versa. Limits in the TPS mass fraction, which determines the 

maximum heat load allowed, constrain the maximum entry flight path angle and maximum downrange. 
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Fig. 23 Heat load (maximum  ( )0γ  case) Fig. 24 Deployment dynamic pressure (minimum 

( )0γ  case) 

 

Figs. 24 and 25 show the deployment dynamic pressure for the minimum and maximum entry flight path angle 

cases, respectively. The deployment altitude for all the trajectories is very close to the minimum 6 km (this allows 
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for the optimization of the entry flight path angle), and hence the deployment dynamic pressure is an indication of 

the deployment velocity. Trajectories with shallow entry flight path angle have a higher deployment velocity and 

dynamic pressure than trajectories with steep entry flight path angles.  
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Fig. 25 Deployment dynamic pressure (maximum 

( )0γ  case) 

Fig. 26 Score (minimum ( )0γ  case) 

 

The scoring function used for the CS is the one used for the RS (Eq. (25)), with 0=hfW , 333.0=hrW , 

333.0=hlW , and 333.0=dpW . Figs. 26 and 27 show the score map for the minimum and maximum entry flight 

path angle cases. The scores are higher for steeper entry flight path angles at a given entry point. Figure 28 shows 

the entry maximum and minimum entry flight path angles along the line of zero crossrange with the score level sets, 

which have been linearly interpolated between the two surfaces. The best places to set the entry point would be 

between 600 and 800 km downrange and as close to the steepest allowable entry flight path angle as possible. Of 

course if modeling errors and the need for control margin and approach navigation accuracy are taken into account, 

the steepest entry angle would not be chosen. 
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Fig. 27 Score (maximum ( )0γ  case) Fig. 28 Score (zero crossrange) 

C. Application to an Ellipsled-Type Vehicle  

The CFPs for the MSL-type and the ellipsled vehicles are compared in Fig. 29. The increase L/D of the ellipsled 

allows mainly for more crossrange. The dimensions of the ellipsled CFP are 1300 km in downrange, and around 300 

km in crossrange on average. For the ellipsled, Fig. 30 shows the minimum flight path angle, and Fig. 31 the 

maximum flight path angle. 

 

2000 1800 1600 1400 1200 1000 800 600 400 
-300

-200

-100

0

100

200

300

Downrange, km

C
ro

ss
ra

ng
e,

 k
m

MSL-type

Ellipsled-type

 Downrange, km

C
ro

ss
ra

ng
e,

 k
m

-18-15

-14

-13

-12

-1
2

-11.5

-1
1.

5

-2
2

40060080010001200140016001800
-300

-200

-100

0

100

200

300
Flight Path
Angle, deg

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

 

Fig. 29 CFP MSL vs Ellipsled Fig. 30 CFP for minimum entry flight path angle 

 

Compared to the MSL-type vehicle, the ellipsled can accommodate a wider range of entry flight path angles for 

trajectories with the same downrange. This can be seen in Fig. 32: a 4 degree variation in flight path angle can be 
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accommodated by the ellipsled. MSL-type vehicles can accommodate a variation of 2 degrees. See Fig. 40 for a 

comparison of the flight path angle depth between both vehicles along the zero crossrange line. 
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Fig. 31 CFP for maximum entry flight path angle Fig. 32 Entry flight path angle depth 

 

The higher altitude trajectories of the ellipsled vehicle have lower heat rates and heat loads than trajectories 

flown by the MSL-type vehicle for the same downranges. Maximum heat rate is depicted in Fig. 33; heat load is 

shown in Fig. 34. Figures 35 and 36 show the deployment dynamic pressure. As with the MSL-type vehicle, the 

deployment altitude is very close to the minimum allowed, so dynamic pressure is indicative of the deployment 

velocity. The deployment dynamic pressure is higher for shallower entry flight path angles. 
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Fig. 33 Maximum heat rate (minimum ( )0γ  case) Fig. 34 Heat load (maximum ( )0γ  case) 
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Fig. 35 Dynamic pressure (minimum ( )0γ  case) Fig. 36 Dynamic pressure (maximum ( )0γ  case) 

 

Scoring maps are calculated with the same weights used for the MSL vehicle. The score is higher for steeper 

entry flight path angles, as seen in Figs. 37 and 38. Maximum and minimum entry flight path angle along the zero 

crossrange line and the level set of the scores are shown in Fig. 39.  It can be seen that the best area to place the 

entry state, for zero crossrange, is between 800 and 1400 km and the lowest possible entry flight path angle. 
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Fig. 37 Score (minimum ( )0γ  case) Fig. 38 Score (maximum ( )0γ  case) 

 

Figure 40 presents a comparison between the acceptable entry flight path angles along the zero crossrange line, 

showing that the vehicle with higher L/D can accommodate a wider range of entry flight path angles. A direct 

relation between L/D and entry flight path angle depth is also shown in Ref. [6].  
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Fig. 39 Score (zero crossrange) Fig. 40 Entry flight path angle depth comparison 

(zero crossrange) 

D. Discussion 

Figures 29 and 40 show that an increase in L/D enlarges the CS, thus there are more feasible entry states for a 

given deployment location; it especially allows for a wider range of entry flight path angles. Note that the freedom 

in the entry flight path angle diminishes the differences in size between the CFPs of the MSL-vehicle and the 

ellipsled-vehicle, as opposed to the RFP, where the differences were significant (see Fig. 12).  

The CS can be used to evaluate a trajectory planner. The set of entry states from which a planner can construct a 

trajectory to a designated landing site can be compared to the CS to evaluate the capability of the planner. The 

evaluation of the planner will depend on the design objectives. In some cases it is desirable for the planner to cover 

as much of the CS as possible so that large entry state dispersions can be accommodated. In other cases, covering 

the CS is not important; for example, planning trajectories with high control authority and high deployment altitude 

may be most important even at the expense of reduced coverage.  

The JCS  can be used, via the computation of a scoring function to select a nominal entry state. The scoring 

function and weights used in this paper are only an illustration of the utility of the computation of this set for 

mission planning and analysis. The approach navigation accuracy should also be compared to the CS size for the 

selection of the nominal entry state; it is desirable that the uncertainty of the nominal entry state ‘fits’ in the CS. This 

also highlights the utility of the CS to link the entry phase to previous phases.  
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VI. Conclusions 

As means of characterizing the envelope of feasible entry trajectories for a given vehicle, we have defined 

reachable and controllable sets and the related reachable and controllable footprints. The sets were used to 

characterize the Mars entry problem for two vehicle configurations with special attention to high altitude parachute 

deployment and high control authority trajectories. We discussed how these sets can be used to evaluate entry 

guidance algorithms and how they can be used to select a nominal entry state and a nominal parachute deployment 

site. 

The results obtained in this paper required extensive computation. The computation of these sets in this manner 

is feasible for pre-mission design, but for operational use, a faster approach would likely be required. 

Although the examples in this paper were limited to Mars entry, reachable and controllable set analysis is 

applicable to entry at Earth and other atmosphere-bearing planets and satellites. For example, the new crew 

exploration vehicle, Orion, will be required to deliver the crew safely to a designated landing site with high 

accuracy, without violating crew and vehicle constraints, from a large range of different entry conditions [18]. In the 

case of a return from the Moon, accommodating trajectories with downranges from 3100 to 5400 nm will require 

skip-entry trajectories. The controllable set to a designated landing site can be used to evaluate the capability of an 

entry algorithm to meet the downrange requirements. Entry from low earth orbit (from the International Space 

Station for instance) will require handling abort and emergency scenarios as autonomously as possible, for which the 

computation of the reachable set can be used to select the landing site from among all those reachable from the 

vehicle’s entry position. 

Acknowledgments 

The research reported in this paper was sponsored by the Jet Propulsion Laboratory, California Institute of 

Technology under contract with the National Aeronautics and Space Administration. 

References 

[1] Sontag, E.D., “Mathematical Control Theory,” 2nd ed., Springer, New York, 1998. 

[2] Wingrove, R.C., “A Study Of Guidance To Reference Trajectories For Lifting Reentry At Supercircular Velocity,” 

NASA TR-R-151, Ames Research Center, Moffet Field, CA, December 1963. 

[3] Vinh, N. X., “Optimal Trajectories in Atmospheric Flight,” Elsevier, New York, 1981. 



 
 

33 

[4] Saraf, A., Leavitt, J. A, Ferch, M., and Mease, K. D., “Landing Footprint Computation for Entry Vehicles,” AIAA Paper 

2004-4774, August 2004. 

[5] AviDyne, K. et al., “Guidance and Navigation for Entry Vehicles,” NASA-SP-8015, November 1968. 

[6] Wong, T. J., and Slye, R. E., “The Effect of Lift on Entry Corridor Depth and Guidance Requirements for the Return 

Lunar Flight,” NASA TR-R-80, Ames Research Center, Moffett Field, CA, 1961. 

[7] Braun, R.D. and Manning, R. M., “Mars Exploration Entry, Descent, and Landing Challenges,” J. Spacecraft and 

Rockets, Vol. 44, No. 2, pp. 310–323, 2007. 

[8] Benito, J. and Mease, K., “Entry Trajectory Planning For Higher Elevation Landing,” AAS Paper 07-309, AAS/AIAA 

Astrodynamics Specialist Conference, Mackinac Island, MI, August 2007. 

[9] Boada, J., Benito, J. and Mease, K., “Near Optimal Planner for Higher Elevation Landing,” 2008 Pegasus-AIAA Student 

Conference, Prague, Czech Republic. 

 [10] GESOP - Graphical Environment for Simulation and Optimization, Ver. 4.7.0, Astos Solutions, Germany, 

http://www.astos.de/. 

[11] Masciarelli, J. P., Westhelle, C. H. and Graves, C. A., “Aerocapture Guidance Performance for the Neptune Orbiter,” 

AIAA Paper 2004-4954, AIAA Atmospheric Flight Mechanics Conference, August 2004, Providence, RI. 

[12] Lockwood, M. K., Sutton, K., Prabhu, R., and Powell, R. W., “Entry Configurations and Performance Comparisons for 

the Mars Smart Lander,” AIAA Paper 2002-4407, AIAA Atmospheric Flight Mechanics Conference, Monterey, CA, August 

2002. 

[13] Sutton, K., and Graves, R., “A General Stagnation-Point Convective-Heating Equation for Arbitrary Gas Mixtures,” 

NASA TR R-376, 1971. 

[14] Gath, P. F., “CAMTOS - A Software Suite Combining Direct and Indirect Trajectory Optimization Methods,” Ph.D. 

thesis, University of Stuttgart, Nov. 2002. 

[15] Hanson, J. and Jones, R., “Test Results for Entry Guidance Methods for Space Vehicles,” Journal of Guidance, Control, 

and Dynamics, Vol. 27, No. 6, 2004, pp. 960-966. 

[16] Saraf, A., Leavitt, J. A., Chen, D. T., and Mease, K. D., “Design and Evaluation of an Acceleration Guidance Algorithm 

for Entry,” Journal of Spacecraft and Rockets, Vol. 41, No. 6, 2004, pp. 986–996. 

[17] Loh, W. H. T.,”Re-entry and Planetary Entry Physics and Technology,” Vol. 1, Springer-Verlag, New York, 1968. 

[18] Broome, J. and Johnson, W., “Orion Entry, Descent, and Landing Performance and Mission Design,” AIAA Paper 2007-

6430, AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, August 2007. 

 


	Reachable and Controllable Sets for Planetary Entry and Landing
	Nomenclature
	I. Introduction
	II. Entry Problem Formulation
	A. Equations of Motion
	B. Downrange, Crossrange and Control Authority Definitions
	C. Vehicle Model
	D. Atmospheric and Planetary Models
	E. Parachute Deployment Constraints

	III. Reachable and Controllable Set Definitions
	A. Basic Set Definition
	B. Reachable Set
	C. Optimal Reachable Subset
	D. Controllable Set
	E. Optimal Controllable Subset

	IV. Reachable Set Computation and Applications
	A. Computational Approach
	B. Application to an MSL-Type Nominal Entry
	C. Application to an Ellipsled-Type Nominal Entry
	D. Discussion

	V. Controllable Set Computation and Applications
	A. Computational Approach
	B. Application to an MSL-Type Entry
	C. Application to an Ellipsled-Type Vehicle
	D. Discussion

	VI. Conclusions
	Acknowledgments
	References



