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In brief

Immunological changes during COVID-19

resolution remain unknown. Burnett,

Okholm, Tenvooren et al. analyze longi-

tudinal blood samples from hospitalized

COVID-19 patients by single-cell mass

cytometry, identifying a conserved set of

immunological processes and cell

signaling states that uniquely accompany

COVID-19 recovery and associate with

better clinical outcomes at time of

admission.
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SUMMARY
While studies have elucidatedmany pathophysiological elements of COVID-19, little is known about immuno-
logical changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states
at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia
and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune com-
positions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital
discharge. Intra-patient longitudinal analysis revealed changes inmyeloid and T cell frequencies and a reduc-
tion in immune cell signaling across cell types that accompanied disease resolution and discharge. These
changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied
recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore,
although patients have heterogeneous immunological baselines and highly variable disease courses, a core
immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.
INTRODUCTION

SARS-CoV-2 and the resulting disease COVID-19 has resulted in

over 517,000,000 infected individuals and more than 6,200,000

deaths globally as of May 15, 2022 (World Health Organization,

2021a). In a prospective study of adults confirmed with SARS-

CoV-2, 91% of patients were asymptomatic or were outpatients

with mild illness, while 9% required inpatient care (Logue et al.,

2021). These patients can develop severe diseases, including

pneumonia, acute respiratory distress syndrome (ARDS), or mul-
1284 Immunity 55, 1284–1298, July 12, 2022 ª 2022 Elsevier Inc.
tiple organ failure, and often require supplemental oxygen sup-

port or, in the most critical cases, mechanical ventilation.

Although a small percentage of all infected patients succumb

to the disease (1.3%) (Centers for Disease Control and Preven-

tion, 2021), the majority of hospitalized patients successfully

combat and clear the infection. Many studies have focused on

features defining the subset of patients who ultimately succumb

to the disease; however, it is also essential to characterize suc-

cessful resolution and identify conserved immune features dur-

ing this interval.
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The immunopathology of COVID-19 is broadly characterized

by lymphopenia, lymphocyte dysfunction, abnormalities of

innate immune cells, and increased cytokine production (Lucas

et al., 2020; Mann et al., 2020; Mathew et al., 2020; Yang et al.,

2020). Early observations of serum cytokine levels in COVID-19

patients revealed high levels of circulating IL-6, generating the

hypothesis of an IL-6-driven cytokine storm and resulting immu-

nopathology (Moore and June, 2020; Yang et al., 2020). Howev-

er, other studies suggest that IL-6 levels do not differ between

severe and moderate COVID-19 patients (Wilson et al., 2020)

and may even be lower in severe COVID-19 than in other similar

critical illnesses (Sinha et al., 2020). While a meta-analysis eval-

uating IL-6-neutralizing therapies concluded that they may pro-

vide some benefit, individual clinical trials report conflicting re-

sults, raising questions about when and for whom they should

be used (Tsai et al., 2020; RECOVERY Collaborative Group,

2021; Rosas et al., 2021; WHO Rapid Evidence Appraisal for

COVID-19 Therapies (REACT) Working Group et al., 2021).

Corticosteroid treatment is another strategy to modulate im-

mune signaling and has been broadly adopted based on the re-

sults of prospective randomized clinical trials (Angus et al.,

2020; RECOVERY Collaborative Group et al., 2021). However,

their benefit may be modest (Wagner et al., 2021) and vary

across different subsets of patients (Chen et al., 2021; Sinha

et al., 2021; Wagner et al., 2021). Additionally, insufficient

type I interferon (IFN) signaling and autoantibodies that inhibit

type I IFN have been linked to a subset of severe cases of

COVID-19, suggesting that type I immune responses and IFN

signaling are likely protective (Zhang et al., 2020a; Asano

et al., 2021; Chang et al., 2021; Combes et al., 2021; van der

Wijst et al., 2021; Wang et al., 2021). High serum cytokine

levels, along with observations of broad immunological misfir-

ing, have been observed across patient subsets, indicating a

delicate balance between productive and destructive immune

responses and suggesting the importance of evaluating im-

mune cell signaling. However, it remains unclear what, if any,

immune cell signaling is protective and how immune cell

signaling dynamics change over time in patients who resolve

or fail to resolve COVID-19.

While many studies have made significant contributions to our

understanding of the immune system and its relation to COVID-

19,most analytical approaches are cross-sectional and describe

the immunological differences between COVID-19 severity

groups defined by clinical metrics, such as the WHO score. In

comparison, longitudinal studies are uniquely capable of assess-

ing changes in the immune response during disease progression

or resolution over time. Elucidating the immunological events

that accompany successful disease resolution is essential to in-

forming the management of patient care and contextualizing the

deviations from successful resolution that characterize the most

severe disease cases. Because the infection timeline is highly

variable, and human immunological responses are diverse, un-

derstanding immunological dynamics during this specific recov-

ery period requires longitudinal monitoring and high-dimensional

data from a large cohort of patients. Here, we investigated intra-

patient immunological changes across clinically relevant time

points to identify changes in immune responses that accompany

effective COVID-19 resolution. We obtained 230 longitudinal pe-

ripheral blood samples from 81 hospitalized COVID-19 patients,
7 patients with pneumonia and/or sepsis unrelated to SARS-

CoV-2 (COVID-19-negative patients), and 11 healthy individuals.

To investigate changes in immune cell signaling states over time,

we utilizedmass cytometry with a panel of antibodies specific for

immune cell phenotyping and for measuring phosphorylated cell

signaling proteins. We identified distinct immune cell composi-

tion and signaling states in COVID-19 patients compared to

COVID-19-negative patients and healthy individuals. Addition-

ally, we discovered a conserved and coordinated immune

response, including changes in myeloid and T cell abundance

and phenotypes, as well as a reduction in pan-immune cell

signaling, that accompanies COVID-19 resolution and hospital

discharge. Furthermore, these and other features were relevant

to resolution in themost severemechanically ventilated patients,

and these immune cell states correlated with better clinical out-

comes at time of admission. Our findings indicate that, although

patients have heterogeneous immunological baselines and high-

ly variable disease courses, there exists a core immunological

trajectory that defines recovery from severe SARS-CoV-2 infec-

tion. Our results provide a working model of a successful im-

mune response trajectory among patients with COVID-19

requiring hospitalization, deviations from which are associated

with extended hospitalization and mortality.

RESULTS

Longitudinal peripheral blood analysis was performed in
hospitalized COVID-19-positive and COVID-19-negative
patients
To investigate the composition of circulating immune cells and

the cell signaling states that characterize SARS-CoV-2 infections

and distinguish it from other respiratory infections, we collected

longitudinal peripheral blood (PB) samples from COVID-19 pa-

tients and COVID-19-negative patients with pneumonia and/or

sepsis (PCR negative for SARS-CoV-2) admitted to UCSF Med-

ical Center and Zuckerberg San Francisco General Hospital. PB

samples and corresponding patient demographics and clinical

parameters, e.g., World Health Organization (WHO) severity

scores (World Health Organization, 2021b), ventilation duration,

and hospital length of stay, were collected throughout inpatient

care (Tables S1, S2, and S3). PB samples from 11 healthy indi-

viduals were obtained as controls (Table S4), though median

age was younger than for hospitalized groups. Whole blood

was fixed using Smart Tube proteomic stabilizer and stored at

-80�C. All samples were processed, stained, and analyzed by

mass cytometry to quantify the expression of 30 protein markers

and 14 phosphorylated signaling molecules (Table S5). Samples

that met quality control standards (methods) were normalized

across batches (methods, Figure S1A) resulting in 205 samples

from 81 COVID-19 patients, 14 samples from 7 COVID-19-nega-

tive patients, and single samples from each of 11 healthy individ-

uals (Figure 1A and S1B, Table S6). COVID-19 patients were

classified into COVID-19 severity groups based on their WHO

score at day of sampling (3: mild, 4: moderate, 5–7: severe)

(World Health Organization, 2021b). We manually gated 38 ca-

nonical immune cell populations (Figure S1C) and evaluated im-

mune cell population frequencies, protein expression patterns,

and immune cell signaling pathways specific to COVID-19

course escalation and resolution.
Immunity 55, 1284–1298, July 12, 2022 1285
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Figure 1. COVID-19 immune phenotype and composition is highly divergent from healthy individuals and has distinct features compared to

other severe respiratory infections

(A) Overview of cohort. Patients were admitted to the hospital and enrolled in the study at day 0. Peripheral blood samples were collected up until day 28 of

hospitalization. Corresponding clinical parameters and WHO scores were documented. 205 samples from 81 COVID-19-positive patients were included in the

final cohort. Additionally, 14 samples from 7COVID-19-negative patients with other respiratory diseases and 11 healthy individuals were included in the study. On

average, we obtained 2 (range of 1–7) usable blood samples per patient.

(B) t-SNE plot of all patient samples at day 0 (n = 83) using phenotypic markers colored bymajor immune cell populations. Upper right panel: t-SNE plot of healthy

samples (n = 11); middle right panel: t-SNE plot of COVID-19-negative samples (n = 6); lower right panel: t-SNE plot of COVID-19-positive samples (n = 66).

(C) Immune cell population abundance at day 0 in COVID-19-positive (+), COVID-19-negative (-) patients, and healthy individuals (H). Nominal p values obtained

by Wilcoxon Rank Sum Test, followed by Benjamini-Hochberg correction with FDR < 0.1.

(D) Correlation between cell population abundance at day 0 and clinical outcomes, e.g., ventilation duration (vent duration) and hospital length of stay (hosp los)

for COVID-19-positive patients (n = 65, excluding the patient that is hospitalized for 260 days). Correlation estimates are obtained by Spearman correlation.

(E) Protein expression on neutrophils (F) in COVID-19-positive (COV+), COVID-19-negative (COV-) patients, and healthy controls at day 0 (Wilcoxon Rank Sum

Test, Benjamini-Hochberg correction with FDR < 0.1).

(F) Frequency of monocyte subsets in COVID-19-positive (COV+), COVID-19=negative (COV-) patients, and healthy controls at day 0. Nominal p values obtained

by Wilcoxon Rank Sum Test. See also Figure S1.

ll
Article

1286 Immunity 55, 1284–1298, July 12, 2022



ll
Article
Immune cell compositions inCOVID-19 patients, COVID-
19-negative patients, and healthy individuals are
distinct on day of admission
First, we characterized the immunological landscape of COVID-

19 patients, COVID-19-negative patients (critically ill, mechani-

cally ventilated controls with pneumonia and/or sepsis unrelated

to SARS-CoV-2 infection), and healthy individuals to assess

immunological signatures that may be specific to COVID-19 at

day of admission (day 0). Dimensionality reduction by t-distrib-

uted stochastic neighbor embedding (t-SNE) using only pheno-

typic markers revealed distinct immune cell compositions

between COVID-19-positive, COVID-19-negative, and healthy

individuals (Figure 1B). Consistent with previous studies,

COVID-19 patients exhibited a significantly different immune

cell composition compared with healthy individuals, with signifi-

cant frequency differences across almost all manually gated im-

mune cell populations (FDR < 0.1, Figure 1C) (Mathew et al.,

2020). To determine modules of immune changes, we evaluated

whether distinct immune cell populations correlate with each

other aswell aswith patient demographics or clinical parameters.

We found a coordinated adaptive immune response in which

several T cell subsets and B cell frequencies were positively

correlated with one another (Figure 1D). In contrast, the innate

arm demonstrated a dichotomous relationship, with an anti-cor-

relationbetweenneutrophil andmonocyte frequencies. Addition-

ally, monocyte frequencies at day 0 were positively correlated

with T cell subsets and negatively correlated with ventilation

duration (Figure 1D), suggesting there may be a coordinated im-

mune response associated with better clinical outcome.

Monocyte and neutrophil composition reveal distinct
compartmental shifts in the innate immune arm of
COVID-19 infection
Large shifts in innate immune compartments were evident be-

tween COVID-19 patients, patients with other respiratory infec-

tions, and healthy controls (Figure 1B); therefore, we further

investigated the composition of neutrophils and monocytes.

While neutrophil frequency was not significantly different

between COVID-19 patients and the healthy individuals

(Figures 1C and S1D), we found that a variety of proteins were

altered in their expression on neutrophils across groups. Neutro-

phils from COVID-19 patients exhibited significantly increased

expression of CD11c, CD14, CD16, and PD-L1, suggesting a

highly activated and inflammatory neutrophil phenotype in

COVID-19 patients (FDR < 0.1, Figure 1E). Additionally, while

the frequency of all monocytes was comparable between groups

(FDR > 0.1, Figure 1C), composition of monocyte subsets

(defined as classical, intermediate, and non-classical) was signif-

icantly different between patients with COVID-19 and other res-

piratory infections compared with healthy individuals (FDR < 0.1,

Figure 1C). Patients exhibited a significant increase in the fre-

quency of intermediate monocytes along with a relative

decrease in classical monocytes (Figure 1F).

Cross-sectional analysis of COVID-19 severity groups
reveals few immunological features that distinguish
severity states
We next evaluated the immunological differences between

COVID-19 severity groups across time (Figure S1E). We found
no significant differences between severity groups at day 0

(FDR > 0.1, Figure S1F) and only few population differences at

day 4 and day 7 (FDR < 0.1, Figure S1G). Within each severity

group, comparisons across time showed that plasmablasts con-

tract from day 0 to day 7 in the majority of severe COVID-19 pa-

tients (FDR < 0.1, Figure S1H), while activated CD4 T cells are

upregulated from day 0 to day 7 in mild COVID-19 patients

(FDR < 0.1, Figure S1I). The paucity of differences between

severity groups suggested that significant variability may exist

in the timing of disease escalation and resolution across individ-

uals and therefore the immunological processes that mediate

these changes over time.

Early, coordinated, and activated immune cell signaling
is associated with early hospital discharge in COVID-19
patients
To gain insights into key immune cell signaling modules associ-

ated with COVID-19, we measured the phosphorylation state of

14 signaling molecules across all immune cell subsets (Fig-

ure 2A). First, we evaluated the median expression of phosphor-

ylated signaling proteins across all CD45+ hematopoietic PB

cells in COVID-19-positive, COVID-19-negative, and healthy in-

dividuals at day 0. Differential expression analysis revealed five

signaling molecules (pSTAT1, pPLCg2, pZAP70/pSyk, pCREB,

and pSTAT3) that were upregulated in COVID-19 patients

compared with healthy individuals (FDR < 0.1, Figure 2B). To

determine whether a specific cell type was driving the higher

signaling state in COVID-19 patients, we evaluated the median

phosphorylation state of the respective signaling molecules

within manually gated immune cell subsets. We found higher

median signaling across the majority of cell subsets, showing

that immune cell signaling states are coordinated across most

cell types simultaneously and not driven by signaling within a

specific cell type (Figure S2A). Consistent with our observations

for immune cell populations, we observed no signaling differ-

ences within and across severity groups at day 0, day 4, and

day 7 (FDR > 0.1, Figures S2B and S2C).

To investigate coordinated signaling modules in CD45+ cells,

we evaluated correlations between the expression of signaling

molecules at day 0. For COVID-19 patients, we observed a coor-

dinated, positive signaling response (Figure 2C), which was ab-

sent in patients with other respiratory infections or sepsis (Fig-

ure 2D). To evaluate the relevance of this early, coordinated,

and activated signaling signature, we examined associations be-

tween the expression of signaling molecules at day 0 and clini-

cally relevant outcomes. By splitting the patients into two groups

based on time until discharge, we found that the expression of 8

of the 14 signaling molecules were significantly higher at day 0 in

patients that were discharged early (%30 days, n = 59)

compared with patients that were discharged late (> 30 days,

n = 7) (FDR < 0.1, Figure 2E). No signaling molecules were higher

at day 0 in patients who were discharged late (Figure 2E). We

also observed an overall trend of negative correlations between

median signaling in CD45+ cells and hospital length of stay as a

continuous variable, though these did not reach statistical signif-

icance (FDR > 0.1, Figure S2D). Consistent with these findings,

for patients on mechanical ventilation, we observed an overall

trend of negative correlations between CD45+ signaling and

ventilation duration, with the strongest correlations observed
Immunity 55, 1284–1298, July 12, 2022 1287
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Figure 2. Early, coordinated, and activated immune cell signaling is associated with early hospital discharge in COVID-19 patients

(A) Signaling schematic. Stars denote phosphorylated signaling molecules that are measured in the CyTOF panel.

(B) Expression of signaling molecules in CD45+ CD235a/b-negative peripheral blood immune cells at day 0 in COVID-19-positive (+), COVID-19-negative (-) pa-

tients, and healthy individuals (H). Nominal p values obtained by Wilcoxon Rank Sum Test, followed by Benjamini-Hochberg correction with FDR < 0.1.

(C and D) Correlation between signaling molecule expressions at day 0 for COVID-19+ patients (n = 66) (C) and COVID-19- patients (n = 6) (D). Correlation es-

timates are obtained by Spearman correlation.

(E) Differential expression analysis of signaling molecules at day 0 between COVID-19+ patients that are discharged early (% 30 days of admission, n = 59) and

late (>30 days after admission, n = 7). Nominal p values obtained by Wilcoxon Rank Sum Test. The log2 fold changes (late versus early) are plotted against the

negative log10 (nominal p values). Colors indicate whether signaling molecules are significantly higher in early discharged patients (blue) or late discharged pa-

tients (purple) or not differentially expressed (FALSE, gray) after Benjamini-Hochberg correction, FDR < 0.1.

(F) Correlation between pSTAT3, pERK, pS6, and pSTAT6 signaling at day 0 and ventilation duration for ventilated COVID-19+ patients (n = 16). Correlation es-

timates and nominal p values are obtained by Spearman correlation, followed by Benjamini-Hochberg correction. Blue lines and gray shadows represent the

best-fitted smooth line and 95% confidence interval. See also Figure S2.
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Figure 3. Conserved immunological processes and changes in cell signaling states accompany disease resolution and discharge

(A) Illustration of intra-patient analysis from admission to discharge for patients who are successfully discharged from the hospital within 30 days of admission

(n = 32).
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for pSTAT3, pERK, pS6 (nominal p value < 0.05, FDR = 0.1, Fig-

ure 2F), and pSTAT6 (nominal p value < 0.05, FDR = 0.12, Fig-

ure 2F). Median pSTAT3 expression in several cell subtypes

was significantly correlated with ventilation duration (FDR <

0.1, Figure S2F), and other cell type-specific signaling features

exhibited negative correlations as well, though these did not

reach statistical significance (FDR > 0.1, Figure S2F). Corre-

spondingly, signaling within cell subtypes demonstrated a broad

positive correlation with each other (Figure S2G), indicating

coordinated signaling states across cell populations. Taken

together, our results show that coordinated high signaling at

day of admission is associated with shorter length of hospitaliza-

tion and mechanical ventilation.

Conserved immunological processes and changes in
cell signaling states accompany disease resolution and
discharge
Although cross-sectional analysis can provide insights into the

immunological state of COVID-19 patients and severity groups,

the natural heterogeneity of patient immune responses and sig-

nificant differences in their disease time courses may obscure

immunological processes that mediate recovery. Therefore, we

aimed to identify conserved changes within patients, over time,

that are tied to clinically relevant outcomes. Given that themajor-

ity of our patients successfully recovered from the infection,

albeit after differing lengths of hospitalization, we investigated

immunological changes that occurred within patients from time

of admission (tp1) to time of discharge (tp2) from the hospital

(Figures 3A and S3A). For this analysis, we included patients

who were discharged within 30 days of admission across all dis-

ease severity states at time of enrollment (n = 32), allowing us to

identify conserved features among all COVID-19 patients who

successfully recover. A variety of immune cell subsets signifi-

cantly changed in frequency between tp1 and tp2 (FDR < 0.1,

Figure 3B). Monocytes, as well as activated CD4 and CD8

T cells, significantly increased at the time of discharge (tp2) as

patients resolved the infection (Figure 3C). Conversely, neutro-

phils and conventional type 1 dendritic cells (cDC1s) significantly

decreased in frequency by time of discharge (Figure 3C). For

most COVID-19 patients, the overall composition of immune
(B) Paired differential abundance analysis of immune cell populations between th

Sum Test). The log2 fold changes (tp2 versus tp1) are plotted against the negativ

down- (blue) or upregulated (purple) from tp1 to tp2 or not differentially expresse

(C) Frequency of monocytes, neutrophils, cDC1, and CD8 activated T cells at t

obtained by paired Wilcoxon Rank Sum Test. CD8 activated T cells and cDC1

dendritic cells, respectively), while monocytes and neutrophils are shown as a p

(D) Principal component analysis of significant immune cell subsets in 3B for tp1

space denoted on right (top). Summary ellipsoid of tp1, tp2, and healthy patients

(E) Population frequencies of significant immune cell subsets in 3B for tp1, tp2, and

are highlighted in green if tp2 is closer to healthy than tp1 and highlighted in yell

(F and G) Protein expression on CD8- and CD4 activated T cells (F) and onmonocy

transformed, scaled, and centered on heatmap. Bars indicate mean protein expr

Sum Test, Benjamini-Hochberg correction with FDR < 0.1).

(H) Scatter plots of CD11c and HLA-DR expression on non-classical monocytes

(I) Expression of signalingmolecules in significant immune cell subsets in 3B at tp1

Only significant signaling molecules are shown (Wilcoxon Rank Sum Test, Benja

(J) Expression of pTBK1 in CD8 activated T cells, and pSTAT3 expression in CD8 a

from the same patient. Nominal p values obtained by paired Wilcoxon Rank Sum

(K) Expression of PD-L1 on non-classical monocytes at tp1 and tp2. Lines connect

Rank Sum Test. See also Figure S3.
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cells became more like that of healthy individuals at the time of

discharge compared with the time of enrollment (distance be-

tween PCA centroids: healthy versus tp1 = 3.2, healthy versus

tp2 = 2.8, Figure 3D). However, some immune cell populations

exhibited deviations away from healthy at the time of discharge,

most notably activated CD4 and CD8 T cells (CD38+ HLA-DR+)

as well as monocytes (Figure 3E). This indicates that the immune

state at the time of discharge is characterized by the restoration

of certain elements of the immune response that were perturbed

early in infection alongside a continued immunological process,

including an expansion of activated T cells, that proceeds past

the time patients stabilize for discharge.

Patients who successfully resolve COVID-19 have
robust pan-hematopoietic signaling and cytotoxic
activated T cells at day of admission
To obtain more granular insights into the immunological pertur-

bations that accompany COVID-19 recovery, we evaluated

phenotypic changes and signaling dynamics within immune

cell populations that changed during disease resolution. We

focused on cell populations whose frequencies move away

from relative frequencies observed in healthy controls, indicating

they continue to have a dynamic response during infection reso-

lution. Activated CD4 andCD8 T cells exhibited a reduction in the

expression of GranzymeB and CD45RA as patients transition

from early infection to discharge (FDR < 0.1, Figures 3F and

S3B), consistent with a transition from more activated effector

cells to more of amemory phenotype. We also observed a signif-

icant change in the phenotype of circulating monocytes, which

expressed high PD-L1 at time of admission but higher expres-

sion of CD4, CD11c, and HLA-DR at time of discharge

(FDR < 0.1, Figures 3G, 3H, and S3B). Similarly, we observed a

reduction in PD-L1 expression on neutrophils at time of

discharge (FDR < 0.1, Figure S3B).

We then analyzed the median values of phosphorylated

signaling molecules within the relevant immune cell subtypes

to evaluate changes in cell signaling during this resolution phase.

A variety of cell signaling proteins were significantly downregu-

lated within the key immune cell populations at time of discharge

(FDR < 0.1, Figure 3I). Several signaling molecules changed in a
e first (tp1) and second (tp2) timepoints illustrated in 3A (paired Wilcoxon Rank

e log10 (nominal p values). Colors indicate if cell populations are significantly

d (FALSE, gray) after Benjamini-Hochberg correction, FDR < 0.1.

p1 and tp2. Lines connect samples from the same patient. Nominal p values

cells are shown as a percentage of parent populations (e.g., CD8 T cells and

ercentage of all cells.

, tp2, and healthy controls. Immune cell directionality and contribution to PCA

in PCA space on right (bottom).

healthy controls. Stars indicate median value for each group. Cell populations

ow if tp2 is moving away from healthy.

te subsets (G) at tp1 and tp2. Mean protein expression values have been log10

ession across all samples. Only significant proteins are shown (Wilcoxon Rank

in patient 1344 at day 0 (top) and day 7 (bottom).

and tp2. Median signaling expression values have been centered on heatmap.

mini-Hochberg correction with FDR < 0.1 within each cell type).

ctivated T cells and classical monocytes at tp1 and tp2. Lines connect samples
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Figure 4. Immune changes associated with COVID-19 resolution differ in patients who are hospitalized for more than 30 days or die from
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(B) Median cell population frequencies at tp1 (red) and tp2 (blue) for patients who are discharged % 30 days, >30 days, and deceased. Error bars represent

standard errors.

(C) Representative scatter plots of activated CD8 T cells (defined by CD38 and HLA-DR expression), at tp1 (left) and tp2 (right) for patients who are discharged

% 30 days, >30 days, and deceased.
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coordinated fashion across different immune cell types (e.g.,

pTBK1, pERK, and pSTAT3), with the broadest signaling

changes observed in activated CD8 T cells and monocyte sub-

sets (FDR < 0.1, Figures 3I and 3J). These observations are

consistent with previous studies describing the relationship be-

tween IL-6 expression and pSTAT3 signaling and subsequent

upregulation of PD-L1 in monocytes (FDR < 0.1, Figures 3F

and 3K) (Zhang et al., 2020b). Although signaling trajectories

trended in the same direction amongmost patients (Figure S3C),

we did not observe a clear trend toward healthy individuals (Fig-

ure S3D), likely explained by the expression variability and diffi-

culty of measuring signaling molecules in rare populations in

healthy individuals, e.g., activated CD8 T cells (Figure 3E). Taken

together, our results suggest that a coordinated set of changes in

immune cell abundances and signaling states occur in patients

who successfully resolve COVID-19.

Immune changes associated with COVID-19 resolution
differ in patients who are hospitalized for more than
30 days or die from COVID-19
To determine if the immune features identified in the resolution

phase are specific to patient recovery, we analyzed patients

who had delayed disease resolution, i.e. who remained hospital-

ized for more than 30 days (‘‘late discharge’’; n = 6) or who died

from COVID-19 (‘‘ultimately deceased’’; n = 5) (Figures 4A and

S4A). First, we evaluated changes in immune cell population fre-

quencies occurring within these patients but found no significant

changing populations between tp1 and tp2 for either group

(FDR > 0.1, Figure S4B). Focusing on cell populations that signif-

icantly changed between these time points in patients who were

discharged in %30 days, patients with poor clinical outcomes

exhibited different patterns over time aswell as greater variability

(Figures 4B and 4C, S4C, and S4D). Next, we evaluated signaling

dynamics in late discharge and ultimately deceased patients

to determine if the observed changes in early discharge

patients were evident. In contrast to patients resolving COVID-

19 in %30 days, which exhibited consistent changes from high

to low signaling states over time, we observed no significant

changes between tp1 and tp2 for late discharged and ultimately

deceased patients (FDR > 0.1, Figures 4D, S4F, S4G, and S4H).

Instead, these patients exhibited discoordinate signaling direc-

tionality in activated CD8 T cells (Figures 4E and S4I), a

complete lack of pS6 signaling in cDC1s (Figure 4E), and mar-

ginal changes in monocyte signaling states over time

(Figures 4F and S4I). When the late discharged patients were

within 30 days of discharge, the trajectory of several immune res-

olution features, e.g., monocytes, neutrophils, and signaling

molecules, did resemble the recovery trajectories in patients

hospitalized%30 days, suggesting that the resolution phase en-

gages in these patients as well before they are discharged

(Figures 4G and S4J). Taken together, these results indicate

that changes in cell signaling evident in early discharge patients

over time were not evident in patients with poor clinical out-
(E and F) Median signaling molecule expression at tp1 (red) and tp2 (blue) for p

represent standard errors.

(G) Monocyte frequencies (left plots) and CD8 activated pERK expressions (righ

charged%30 days (n = 142 samples) or >30 days (n = 30 samples). Black lines con

best-fitted smooth line and 95% confidence interval. Dotted lines intersect the x
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comes. Furthermore, these results suggest that the immune pro-

cesses observed during resolution through discharge are spe-

cific to a successful response against COVID-19.

Core immune resolution features characterize
COVID-19 patients recovering from ventilation
Having established immune features that accompany COVID-19

resolution among our entire patient cohort, we next examined

the immunological changes within only the most severe patients

who required mechanical ventilation (Figure S5A). We analyzed

immunological changes between three key time points: the first

time point after a patient was intubated (tp1), the last time point

before they were extubated (tp2), and the first time point after a

patient was successfully extubated (tp3) (Figure 5A). This al-

lowed us to evaluate the immunological dynamics that occur

during ventilation (tp1 versus tp2) and during successful recov-

ery from intubation (tp1 versus tp3). First, we analyzed the

within-patient immune cell frequency changes between tp1

and tp3 (n = 9, Figure S5B). Consistent with patients resolving

COVID-19, monocytes and activated CD4 andCD8 T cells signif-

icantly increased in frequency, while neutrophil frequency

decreased during ventilation resolution (FDR < 0.1, Figures 5B

and 5C). Additionally, ventilation resolution was characterized

by an increase in CD4 regulatory T cells (Tregs) and basophils

at time of recovery (FDR < 0.1, Figure 5B). These changes

were collectively associated with a coordinated trajectory of re-

covery from tp1 to tp3 (Figure 5D). Despite these coordinated

changes, patients did not return to an immune composition com-

parable to healthy donors, indicating that the time of extubation

remains an active immunological phase of disease resolution

from the most severe form of COVID-19. Some key immune

cell populations that remain different from healthy controls

included both activated CD4 and CD8 T cells as well as Tregs

(Figures 5E and S5C). Of these changes, only the observed in-

crease in activated CD8 T cells was apparent within patients dur-

ing intubation (tp1 versus tp2; n = 11), suggesting that additional

dynamic changes are specific to the resolution of severe COVID-

19 (FDR < 0.1, Figures S5D and S5E).

COVID-19 ventilation recovery is associated with T cell
andmonocyte phenotypic changes and a transition from
pSTAT to pCREB dominated signaling
Next, we further analyzed changes in immune cell activation and

cell signaling dynamics that accompany ventilation resolution.

Consistent with recovery trajectories in patients resolving

COVID-19, activated CD8 T cells expressed higher HLA-DR

and lower CCR7 at the time of extubation (FDR < 0.1, Figure 5F),

while neutrophils expressed lowerPD-L1 (FDR<0.1, FigureS5F).

Additionally, while there was no difference in monocyte subset

frequencies (FDR > 0.1, Figure S5G), non-classical (CD16+)

monocytes exhibited a shift from a CD64+ PD-L1+ phenotype

during ventilation to a CD4+ CD11c+ HLA-DR+ activated mono-

cyte phenotype at the time of extubation (FDR < 0.1, Figures 5G,
atients who are discharged %30 days, >30 days, and deceased. Error bars

t plots) relative to time to discharge in all samples from patients who are dis-

nect samples from the same patient. Blue lines and gray shadows represent the

-axis at day 30. See also Figure S4.
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5H, and 5I). CD64+ expression on non-classical monocytes

incrementally decreased between tp1 and tp3 (Figure 5I).

Cell signaling states also changed markedly from the time of

intubation to the time of extubation. During early time points of

mechanical ventilation (tp1), higher expression of pSTAT1,

pSTAT3, and pSTAT5 signaling was evident in CD4 Tregs, baso-

phils, and activated CD8 T cells (FDR < 0.1, Figures 5J, 5K, 5L,

and S5H). Conversely, pCREB signaling was significantly

increased after extubation (tp3) in CD4 Tregs and non-classical

monocytes (FDR < 0.1, Figures 5J, 5K, 5L, and S5H), suggesting

there is a transition from inflammatory cytokine signaling

response to pro-survival signaling within these cells, specifically.

Visualizing these signaling trajectories in PCA space revealed a

coordinated trajectory of immune cell signaling that accom-

panies extubation across patients (Figure 5M), though signaling

states remained distinct from those in healthy individuals (Fig-

ure S5I). Taken together, our analyses identify a conserved set

of immunological processes that are consistent among patients

who recovered frommechanical ventilation as a result of COVID-

19, elucidating an additional layer of immunological changes,

e.g., increases in CD4 Tregs, basophils, and pCREB signaling,

that are specific to these patients compared to recovery in pa-

tients who did not require mechanical ventilation.

Core immune resolution features define patients with
better clinical outcomes at time of admission
Having identified a signature of immune remodeling during

COVID-19 recovery, we next investigated if the early presence

of these features was associated with better patient outcomes.

We evaluated the immune composition of severe COVID-19 pa-

tients before or on the day they were ventilated (vent, n = 13) and

compared it to the immunological state at time of admission (day

0) for patients who never required ventilation (no vent, n = 50)
Figure 5. Recovery from severe COVID-19 requires core immune r

upregulation

(A) Illustration of intra-patient analysis of ventilated patients. Three timepoints are

(last sample before the patient is removed from a ventilator), and tp3 (first sampl

(B) Paired differential abundance analysis of immune cell populations between the

Test). The log2 fold changes (tp3 versus tp1) are plotted against the negative log1

down- (blue) or upregulated (purple) from tp1 to tp3 or not differentially expresse

(C) Frequency of monocytes, neutrophils, CD4 Treg, and CD8 activated T cells a

obtained by paired Wilcoxon Rank Sum Test. CD8 activated T cells are shown

neutrophils, and CD4 Tregs are shown as a percentage of all cells.

(D) Principal component analysis of significant immune cell subsets in 5B for tp1

space denoted on the right.

(E) Population frequencies of significant immune cell subsets in 3B for tp1, tp3, and

are highlighted in green if tp3 is closer to healthy than tp1 and highlighted in yell

(F and G) Protein expression on CD8 activated T cells (F) and on monocyte su

transformed, scaled, and centered on heatmap. Bars indicate mean protein expr

Sum Test, Benjamini-Hochberg correction with FDR < 0.1).

(H) Expression of PD-L1 on non-classical monocytes at tp1 and tp3. Lines connect

Rank Sum Test.

(I) Left: Scatter plots of CD11c and HLA-DR expression on non-classical monocyte

of CD64 on non-classical monocytes for patient 1279 from day 0 (tp1) to day 28

(J) Expression of signalingmolecules in significant immune cell subsets in 5B at tp1

Only significant signaling molecules are shown (Wilcoxon Rank Sum Test, Benja

(K) Expression of pSTAT1 (left) and pCREB (right) in CD4 Tregs at tp1 (blue) and

(L) Expression of pSTAT1 and pCREB in CD4 Tregs at tp1 and tp3. Lines connect

Rank Sum Test.

(M) Principal component analysis of significant signaling molecules in 5I for tp1,

space denoted on the right. See also Figure S5.
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(Figures 6A and S6A). Differential abundance analysis of immune

cell frequencies revealed higher frequencies of monocytes and

CD4 Tregs, as well as decreased neutrophil frequencies, in pa-

tients who never required ventilation (FDR < 0.1, Figures 6B

and 6C). Similar results were obtained when exclusively

analyzing samples collected prior to ventilation (vent, n = 8)

(FDR < 0.1, Figures S6B and S6C). Patients who never required

ventilation exhibited an immune state more like those of the

healthy controls (Figure S6D). While monocytes were signifi-

cantly downregulated at time of admission in patients who

required ventilation, we observed a consistent increase from

time of intubation to time of discharge with the highest incline

occurring right after time of extubation (Figure 6D). The opposite

directionality was observed for neutrophils (Figure 6D). CD4

Tregs, which are known to play a role in ARDS resolution and pul-

monary recovery, demonstrate a gradual increase in frequency

during patient intubation followed by the steepest increase after

extubation (Garibaldi et al., 2013; Mock et al., 2014) (Figure S6E).

Additionally, the phenotype of monocytes in patients who never

require ventilation resembles the activated monocyte subset

identified during discharge and ventilation recovery, expressing

significantly higher CD4 and CD11c (FDR < 0.1, Figures S6F and

S6G). Furthermore, basophil and CD4 Treg signaling states that

were identified during ventilation resolution were already signifi-

cantly higher in patients who required ventilation at time of

admission (p < 0.05, Figures 6E and S6H) and consistently

decreased during ventilation (Figure 6F).

In conclusion, we identified a set of conserved core immune

features that accompany disease resolution, including changes

in myeloid and T cell abundances as well as reduction in pan-im-

mune cell activation, with additional features that identify pa-

tients who recover from ventilation, e.g., an increase of CD4

Tregs and basophils (Figure 6G). These ventilation-specific
esolution features and additional regulatory T cell and basophil

considered: tp1 (first sample after a patient has been put on a ventilator), tp2

e after a patient is successfully removed from ventilation support).

first (tp1) and third (tp3) timepoints illustrated in 5A (pairedWilcoxon Rank Sum

0 (nominal p values). Colors indicate whether cell populations are significantly

d (FALSE, gray) after Benjamini-Hochberg correction, FDR < 0.1.

t tp1 and tp3. Lines connect samples from the same patient. Nominal p values

as a percentage of parent population (e.g., CD8 T cells), while monocytes,

, tp3, and healthy controls. Immune cell directionality and contribution to PCA

healthy controls. Stars indicate median value for each group. Cell populations

ow if tp3 is moving away from healthy.

bsets (G) at tp1 and tp3. Mean protein expression values have been log10

ession across all samples. Only significant proteins are shown (Wilcoxon Rank

samples from the same patient. Nominal p values obtained by pairedWilcoxon

s in patient 1276 at day 0 (tp1, top) and day 28 (tp3, bottom). Right: Expression

(tp3).

and tp3. Median signaling expression values have been centered on heatmap.

mini-Hochberg correction with FDR < 0.1 within each cell type).

tp3 (orange) for representative patients.

samples from the same patient. Nominal p values obtained by paired Wilcoxon

tp3, and healthy controls. Immune cell directionality and contribution to PCA
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(A) Illustration of inter-patient analysis of ventilated patients (vent, n = 13) versus patients who are never ventilated (no vent, n = 50). For ventilated patients, the

latest sample before the patient is put on a ventilator is used. For non-ventilated patients, day 0 is used.
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features are significantly different at time of admission between

patients who will require mechanical ventilation and those that

never require ventilation, and thus associate with poorer clinical

outcomes (Figure S6I).

DISCUSSION

Human immunology studies are inherently challenging because

of the variability across individuals. The urgency to understand

and respond to COVID-19 provided an opportunity to recruit,

study, and analyze a large number of individuals responding to

the same infection over a finite period of time (April 2020–April

2021). Since individuals recover from infection across a variable

amount of time, these studies highlight the benefit of longitudinal

analysis anchored on key clinical events in the disease process.

This analytical approach revealed the unifying trends among pa-

tients that define clinically relevant events, such as discharge

from the hospital or extubation after mechanical ventilation,

regardless of initial disease severity or time to recovery.

Our findings are consistent with several recent reports of im-

mune responses to COVID-19 while contributing an understand-

ing of the processes that accompany disease recovery,

including changes in immune cell signaling states. Although

some studies have suggested that early intervention tomodulate

immune hyperactivation may be beneficial in severe COVID-19

(Lucas et al., 2020), our data indicate that early immune cell

signaling is associated with shorter hospitalization and ventila-

tion duration. This indicates that an early robust immune

response, driven by pSTAT signaling, and subsequent contrac-

tion during recovery may be beneficial to resolving COVID-19.

Baseline differences in this signaling state across patients at

the time of hospital admission and the dynamic regulation of

signaling over time within individual patients during recovery

may, at least in part, explain conflicting reports from studies tar-

geting immune cell signaling pathways with IL-6 inhibitors or ste-

roids. In patients who require mechanical ventilation, additional

immunological changes, including increased Tregs and baso-

phils and reduced cell signaling in basophils, also accompany

recovery in addition to the core recovery trajectory observed in

patients who did not require ventilation. In our analysis, the

STAT1 pathway downstream of type I IFN signaling was not

differentially activated between patients with different disease

severities. Instead, our study identified that many signaling path-

ways are activated simultaneously at the time of hospitalization,

consistent with a recent report of concordant production of cyto-

kines associated with type 1, 2, and 3 immune responses in pa-

tients with severe COVID-19 (Lucas et al., 2020). Despite the
(B) Differential abundance analysis of immune cell populations between ventilate

log2 fold changes (vent versus no vent) are plotted against the negative log10 (nom

upregulated (purple) for vent versus no vent or not differentially expressed (FALS

(C) Frequency of monocytes, neutrophils, CD4 Tregs, and CD8 EM3 T cells in ven

CD8 EM3 T cells parent population (e.g., CD8 T cells), while monocytes, neutrop

(D) Monocyte (left plots) and neutrophil (right plots) frequencies relative to intub

samples from the same patient. Blue lines and gray shadows represent the best-fit

day of intubation or extubation.

(E) Expression of pSTAT3 and pPLCg2 in basophils in non-ventilated and ventilated

Rank Sum Test.

(F) Expression of pSTAT5 in CD4 Tregs relative to intubation or extubation in all

G) Graphical summary depicting the trajectories of key immune features involved
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importance of B cells to generate SARS-CoV-2-neutralizing an-

tibodies (Lucas et al., 2021), we did not identify changes in circu-

lating B cells associated with the recovery trajectory. This aligns

with the clinical observation that B cell-deficient patients or pa-

tients with agammaglobulinemia can recover from COVID-19

(Soresina et al., 2020; Bange et al., 2021) and suggests that B

cells may play a role in contributing to immunological memory

as compared to the resolution of severe COVID-19. Our work

identified regulatory T cells as significantly changing only in pa-

tients who require ventilation, starting at significantly lower fre-

quencies than in patients who never require ventilation support

but steeply increasing after extubation. These findings are

consistent with their critical role in pulmonary repair and ARDS

recovery (Garibaldi et al., 2013; Mock et al., 2014).

Overall, our study identifies core immunological changes that

accompany disease recovery from severe COVID-19 and pro-

vides a foundational model of a successful anti-SARS-CoV-2 im-

mune response to contextualize divergent immune processes

during poor disease outcomes in immunosuppressed or immu-

nocompromised patients, long-haul COVID-19 patients, pediat-

ric patients with MIS-C, or response to new variants. By eluci-

dating a conserved trajectory of successful recovery, this

study also nominates key immunological processes that could

be targeted to enable recovery of severe disease in COVID-19

patients and perhaps other acute respiratory infections.

Limitations of the study
Variability across patients limited the number of significant con-

clusions drawn from cross-sectional analyses. In addition,

healthy controls were on average younger than the hospitalized

patients, though ranges overlapped. Samples were only

collected during the hospitalization period, precluding analysis

of later convalescent time points. Additionally, the majority of

our patients recovered successfully. The limited sample size

and variable immune states of patients with long-term hospital

stays and deceased patients made it challenging to fully under-

stand the defining immune characteristics of patients with the

worst outcomes.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mass cytometry antibodies are

found in Table S5

This paper N/A

Biological samples

Blood sample UCSF hospital under the IMPACC study N/A

Chemicals, peptides, and recombinant proteins

Benzonase Sigma-Aldrich Cat# E8263-25KU; RRID: N/A

Calibration beads EQTM Four Element Fluidigm Cat#201078; RRID: N/A

TrueStain FcX (anti-mouse CD16/32

antibody (clone 93)

BioLegend Cat#101320

Cell Acquisition Solution Fluidigm Cat#201240

Critical commercial assays

MaxPar Antibody Conjugation Kit Fluidigm Cat#201300

Deposited data

Mass cytometry data This paper Mendeley data:

https://doi.org/10.17632/pmjrc8kw9x.2

Software and algorithms

Cytobank analysis software Cytobank, Inc https://cytobank.org

RRID: SCR_014043

Cellengine analysis software Primitybio https://primitybio.com/cellengine.html

RRID: N/A

Normalizer/Debarcoding Parker Institute for Cancer Immunotherapy https://github.com/ParkerICI/premessa

RRID: N/A

R environment R Development Core Team https://www.r-project.org/

RRID:SCR_001905

Other

Helios mass cytometer Fluidigm N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Matthew

Spitzer (matthew.spitzer@ucsf.edu).

Materials availability
This study did not generate new unique materials. Information regarding antibody conjugates is presented in Table S5.

Data and code availability
d Mass cytometry data are publicly available from Mendeley Data at https://doi.org/10.17632/pmjrc8kw9x.2.

d No new code or algorithms were developed during this study. All code used will be provided upon request without limitations.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
SUBJECT DETAILS

Human subjects
Patients, or a designated surrogate, provided informed consent to participate in the study. The study is approved by the UCSF Insti-

tutional Review Board: IRB 20-30497.Clinical study was designed and implemented according to the IMPACC study ((Null et al.,
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2021)). Patients were recruited fromUCSF hospital system and Zuckerberg San FranciscoGeneral Hospital and they, or a designated

surrogate, provided informed consent to participate in the study. Patients with presumed COVID-19 were enrolled within three days

of hospital admission and peripheral blood samples were collected under a protocol approved by the UCSF Institutional Review

Board (IRB 20-30497). Patients with confirmed positive SARS-CoV-2 polymerase chain reaction (PCR) were designated as

COVID-19 positive cohort (n = 81) and patients without confirmed SARS-CoV-2 PCR were designated COVID-19 negative (n = 7).

Healthy donors (n = 11) were recruited (IRB 19-27147) for a single peripheral blood time point and consisted of unexposed patients

in a similar age range as the hospitalized cohort. Clinical data and peripheral blood samples were collected at time of enrollment and

throughout hospitalization (mainly on days 4, 7, 14, 21, and 28). If escalation of care was required, samples were collected within 24

and 96 h of care escalation. All COVID-19 patients in this study were admitted into the UCSF hospital system and remained there for

the duration of our study. By definition, all in-patients reflect a World Health Organization (WHO) COVID-19 severity score of 3

or greater. Patient severity was determined by the clinical team to reflect the WHO COVID-19 severity scoring at each clinical

time point throughout in-patient treatment. Based on WHO stratifications (World Health Organization, 2021b) and consulting with

the treating physician teams, our study combined WHO score 5, 6, and 7 into the most severe clinical group. WHO scores of 3

and 4 correspond to Mild and Moderate groups, respectively. Participant age, gender, and additional demographic details are pro-

vided in Table S2.

METHOD DETAILS

Peripheral blood sample collection and processing
Blood samples were collected in one EDTA tube and processed within 6 h of collection. Whole blood was divided in 540 mL aliquots

then fixed by addition of 756 mL of SmartTube Stabilizer from SmartTube Inc (Fisher Sci. Cat# 501351692). After gentle mixing at

room temperature for 10 min, the samples were transferred to labeled cryovials and immediately carried to �80�C for long term

storage.

Sample thawing and filtering
Samples were subsequently thawed after being placed 10min into a 4�C refrigerator then incubated for 15min in a room temperature

water bath. After filtering with 70mm Cell Strainer (Celltreat, Cat# 229483) and washing in 45 mL Milli-Q H2O, samples were counted

and barcoded.

Antibodies and staining procedure
The source for all mass cytometry antibodies can be found in Table S5. Antibodies were conjugated to their associated metals with

MaxPar X8 labeling reagent kits (Fluidigm) according to manufacturer instructions, diluted with Candor PBS Antibody Stabilization

solution (Candor Bioscience, CAT#130 050) supplemented with 0.02% sodium azide, and filtered through an UltrafreeMC 0.1-mm

centrifugation filter (Millipore) before storage at 4�C. To reduce tube-to-tube pipetting variations, part of the signaling antibody panel

came from lyophilized antibody cocktail, made at Stanford University as previously described ((Han et al., 2018)). Surface and intra-

cellular master antibody cocktails were made and kept at �80�C in order to stain up to 600 samples.

Mass-tag cellular barcoding
Prior to antibody staining, mass tag cellular barcoding of prepared samples was performed by incubating cells with distinct combi-

nations of isotopically-purified palladium ions chelated by isothiocyanobenzyl-EDTA as previously described ((Zunder et al., 2015)).

After counting, 1*106 cells from aliquot were barcoded with distinct combinations of stable Pd isotopes for 15 min at room temper-

ature on a shaker inMaxpar Barcode PermBuffer (Fluidigm, cat#201057). Cells were washed twice with cell stainingmedia (PBSwith

0.5% BSA and 0.02% NaN3), and pooled into a single 15 mL tube.

Mass cytometry staining
Barcoded cells were stained with Fc Receptor Blocking Solution (BioLegend, Cat#422302) at 20 mg/mL for 5 min at RT on a shaker.

Surface antibody cocktail is then added with a 500 ul final reaction volume for 30min at RT on a shaker. Following staining, cells were

washed twice with cell staining media. Before intracellular staining, cells were permeabilized for 10 min with methanol at 4�C. Meth-

anol is then removed by washing the cells 2 times with cells staining media. Intracellular cocktail is then added to the cells in 500 uL

final reaction volume for 1 h at RT on a shaker. Cells were washed twice in cell staining media to remove antibodies excess and then

stained with 1mL of 1:4000 191/193Ir Iridium intercalator solution (Fluidigm,Cat#201192B) diluted in PBS with 4% PFA overnight.

Before mass cytometry run, cells were washed once with cell staining media, and twice with Cell Acquisition Solution (Fluidigm,

Cat# 201240).

Mass cytometry
Mass cytometry samples were diluted in Cell Acquisition Solution containing bead standards (Fluidigm, Cat#201078) to approxi-

mately 106 cells/mL and then analyzed on a Helios mass cytometer (Fluidigm) equilibrated with Cell Acquisition Solution. Approxi-

mately 0.5x106 cell events were collected for each sample at an even rate of 400–500 events/second.
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Data normalization and de-barcoding
Bead standard data normalization and de-barcoding of the pooled samples into their respective conditions was performed using the

R package from the PICI institute available at https://github.com/ParkerICI/premessa.

Quality control inclusion and exclusion criteria
In order to ensure high quality sample collection, processing, and staining across the cohort we developed a set of inclusion criteria

required for each sample to be used in our data analysis. We processed and ran CyTOF on 498 peripheral blood samples. After de-

barcoding and normalization, samples were uploaded to Cell Engine to assess adequate staining and cell number. Each barcode

plate was run with a healthy PB control sample aliquoted from two healthy donors to validate staining and for normalization between

barcode plates. If the control PB sample failed to stain themajor immune cell populations (T cell, B cell, granulocytes, monocytes), no

samples from that barcode plate were included. Individual samples were then assessed for CD45+ composition (>50%CD45+ stain-

ing required), cell abundance (>5,000 cells per sample required), and representation of the major immune cell populations (T cell, B

cell, granulocytes, monocytes). 230 samples passed QC and were used in the batch normalization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Batch normalization
All manually gated immune cells (CD45+) from samples meeting our inclusion criteria (n = 230) were downloaded as FCS files from

cellEngine. Premessa (Gherardini, 2021) (https://github.com/ParkerICI/premessa) and cytofCore (Bruggner et al., 2021) (https://

github.com/nolanlab/cytofCore) were used to harmonize panels between runs, and CytoNorm (Van Gassen, 2021) (https://github.

com/saeyslab/CytoNorm) were utilized to correct for batch effect. All markers were used for batch effect normalization, except

for Ki-67, which failed for several CyTOF runs and were excluded in the final data. Samples were separately normalized to control

1 and 2, and subsequently combined into one final data set of normalized FCS files.

Manual gating
Batch effect normalized FCS files were uploaded to Cell Engine for manual gating. Major immune cell populations were identified

based on prior gating strategy (Allen et al., 2020). T cell subsets were further identified based on phenotypicmarkers specified in prior

publication that suggested these specific subtypes could play a role in COVID-19 severity (Mathew et al., 2020).

t-SNE visualization
The multiparameter dimensionality reduction method t-distributed stochastic neighbor embedding (t-SNE) was employed to visu-

alize major shifts in immune distribution between COVID-19 positive, COVID-19 negative, and healthy individuals. CD45+ immune

cells from healthy peripheral blood samples were compared to day 0 (D0) peripheral blood samples fromCOVID-9 positive and nega-

tive individuals and respective groups were concatenated into a single FSC file which was then used in the t-SNE algorithm on Cell

Engine (cellengine.com). Only phenotypic markers were used as analysis channels and no phospho-signaling channels were input

into the t-SNE visualization. The default settings for t-SNE plot were utilized and a default of 90 nearest neighbors (k) was used.Manu-

ally gated immune cell populations were used to color the t-SNE plot to identify representative immune populations on the plot.

Defining groups and samples
For intra-patient resolution analyses, we defined three different groups; patients who were discharged within 30 days of enrollment in

the study (%30 days), patients who were discharged after 30 days of enrollment in the study (>30 days), and patients who died. For

patients who were discharged%30 days, the last sample (tp2) had to be obtained within 7 days of discharge. For patients who were

discharged >30 days and patients who died, the last sample (tp2) had to be obtained within 50 days of discharge. For all groups, the

first sample (tp1) had to be obtained within 14 days of enrollment. For intra-patient ventilation recovery analysis, samples had to be

obtained within 7 days of the point of interest, e.g. going on a ventilator or coming off a ventilator. For all comparisons; if multiple

samples fulfilled the requirements, we used the sample closest to the event of interest. The number of patients and specific sampling

timepoints used for each analysis are illustrated in the supplementary figures.

Statistical analysis
All statistical tests were performed in R (Team and Others, 2013; RStudio Team, 2016). The non-parametric Wilcoxon rank sum test

was utilized to compare immune population frequencies, median protein expression values, and median signaling molecule values

between groups of interest. For intra-patient analysis, we used the pairedWilcoxon rank sum test. Formultiple testing corrections, we

applied Benjamini-Hochberg correction and statistical differences were declared significant at FDR <0.1. Most of the plots were pro-

duced with the R package ggplot2 (Wickham, 2016).
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