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Biaxial Normal Strength
Behavior in the Axial-Transverse
Plane for Human Trabecular
Bone—Effects of Bone Volume
Fraction, Microarchitecture,
and Anisotropy
The biaxial failure behavior of the human trabecular bone, which has potential relevance
both for fall and gait loading conditions, is not well understood, particularly for low-
density bone, which can display considerable mechanical anisotropy. Addressing this
issue, we investigated the biaxial normal strength behavior and the underlying failure
mechanisms for human trabecular bone displaying a wide range of bone volume fraction
(0.06–0.34) and elastic anisotropy. Micro-computed tomography (CT)-based nonlinear
finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes),
spanning the complete biaxial normal stress failure space in the axial-transverse plane.
The specimens, treated as approximately transversely isotropic, were loaded in the prin-
cipal material orientation. We found that the biaxial stress yield surface was well charac-
terized by the superposition of two ellipses—one each for yield failure in the longitudinal
and transverse loading directions—and the size, shape, and orientation of which
depended on bone volume fraction and elastic anisotropy. However, when normalized by
the uniaxial tensile and compressive strengths in the longitudinal and transverse direc-
tions, all of which depended on bone volume fraction, microarchitecture, and mechanical
anisotropy, the resulting normalized biaxial strength behavior was well described by a
single pair of (longitudinal and transverse) ellipses, with little interspecimen variation.
Taken together, these results indicate that the role of bone volume fraction, microarchi-
tecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial
strength behavior and the effect of these parameters on the axial-transverse biaxial
normal strength behavior per se is minor. [DOI: 10.1115/1.4025679]

Keywords: multiaxial failure, anisotropy, normalize, finite element analysis, bone
strength

1 Introduction

During both habitual and traumatic loading, trabecular bone is
often subjected to biaxial loads, i.e., loads acting simultaneously
along and transverse to the principal trabecular orientation. Dur-
ing gait loading, as a result of the direct action of the obliquely
oriented compressive joint contact force and the associated bend-
ing of the femoral neck, the longitudinal trabeculae all the way
from the femoral head to the medial femoral cortex are loaded pri-
marily in compression whereas the corresponding transverse tra-
beculae in this region are loaded primarily in tension [1]. A
similar biaxial loading pattern is also observed during a fall to the
side on the greater trochanter, but with the tension-compression
patterns reversed [2]. The biaxial strength behavior of trabecular
bone is, therefore, potentially relevant to both bone adaptation
under habitual loading and to whole-bone failure under traumatic
loading. Concerning the latter, due to the increased structural and
mechanical anisotropy of osteoporotic trabecular bone [3–6], it

has been proposed that increased mechanical anisotropy may be
an independent risk factor for hip fracture [7], although under-
standing of this issue remains incomplete.

Despite much previous research on the multiaxial behavior of
bone, the biaxial failure characteristics of human trabecular bone
remain unclear for bone having a low bone volume fraction, in
which the degree of mechanical anisotropy can be high. A fabric-
based, ellipsoidal, Tsai–Wu-type of failure criterion has been for-
mulated for trabecular bone [8]. However, triaxial compression
experiments on bovine tibial bone did not support the quadratic el-
lipsoidal shape of this criterion [9] and axial-torsion experiments
have pointed instead to a cellular-solid-type criterion having a
nonellipsoidal shape [10]. Nonlinear micro-CT based finite ele-
ment simulations on bovine [11] and human [12] trabecular
bone—all having high bone volume fraction—provided further
evidence of the need for a multiaxial criterion that is not ellipsoi-
dal in shape, due primarily to the different failure mechanisms
associated with the different loading directions. More recently,
experiments and finite element simulations were performed to fit a
piecewise quadratic Hill’s criterion [13] and a ellipsoidal
Tsai–Wu failure criterion [14], all as a function of bone volume
fraction and fabric-based morphological anisotropy. However,
since these experiments and simulations only included the mini-
mum number of load cases required mathematically to formulate
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a quadratic criterion—and given the aforementioned evidence
from the prior triaxial compression experiments on bovine tibial
bone [9]—it still remains unclear if the full biaxial failure enve-
lope is indeed ellipsoidal in nature or if some alternative descrip-
tion would be more appropriate. We, therefore, sought to extend
this previous research by further exploring the biaxial yield stress
behavior of human trabecular bone in the axial-transverse plane,
in which we spanned a wide range of loading conditions and
focused on accounting also for a wide range of bone volume
fraction, mechanical anisotropy, and microarchitecture.

2 Methods

We analyzed 15 specimens of morphologically diverse, human
trabecular bone (cadaver age¼ 63 6 12, 48–79; 4 female, 10
male) taken from four anatomic sites: vertebral body (n¼ 4), fem-
oral neck (n¼ 7), greater trochanter (n¼ 2), and proximal tibia
(n¼ 2). These specimens, taken from prior studies in our labora-
tory [15,16] were machined as 8 mm diameter cylindrical cores
along their principal material orientation and were scanned using
either micro-CT (Scanco Medical AG, Br€uttisellen, Switzerland)
at a voxel size of 10 lm [17] or serial milling at 22 lm [18]. The
micro-CT images were down-sampled to 20 lm using region-
averaging technique, and the resulting grayscale images at
20–22 lm were segmented to match the experimentally measured
bone volume fraction. A 5 mm cube was virtually extracted from
the central portion of these images, and the trabecular microarchi-
tecture parameters [19] (listed in Table 1) were calculated (Sky-
scan: CTAn software); the Euler angles of misalignment were
also calculated by conducting six uniaxial linear elastic finite
element analyses [20]. The angle of misalignment of each cube
specimen was confirmed to be within 610 deg, ensuring that the
axes of the extracted cube specimens were what we considered to
be adequately aligned with the principal material coordinate
system.

Micro-CT images of the cube specimens, at 20–22 lm resolu-
tions, were then used to generate finite element models by
converting each cubic voxel into an eight-noded brick element.
First, linear elastic analysis was performed on each specimen to
calculate the elastic modulus in the longitudinal (EL) and the two
transverse directions (ET1,ET2). The percentage deviation from
transverse isotropy (%DEV¼ 100 (ET1 – ET2)/ET1) was
11.1 6 7.7% for the 15 specimens, which we considered an ac-
ceptable error in assuming transverse isotropy of the specimens.
Thereafter, the transverse direction for mechanical loading was
chosen randomly for further analysis, and the elastic anisotropy
(EA) was defined as the ratio of the uniaxial moduli in the two
directions (EA¼EL/ET).

For all the finite element models, all elements were assigned
the same hard-tissue material properties having an isotropic elastic
modulus of 18.0 GPa, a Poisson’s ratio of 0.3, and a rate-
independent nonlinear constitutive model with both elastic-plastic
material and geometric kinematic nonlinearities [21]. In the con-
stitutive model, tissue-level failure was defined using a von Mises
yield criterion modified by a pseudo kinematic hardening parame-
ter to account for the tension-compression strength asymmetry of
the bone tissue. The tissue-level yield strains of 0.33% in tension
and �0.81% in compression were chosen based on a prior calibra-
tion study [22]. This particular implementation has been shown to
produce excellent agreement of the apparent-level 0.2% offset
yield strength (R2¼ 0.96) with values obtained from experiments
for uniaxial testing [22,23].

For each cube specimen, 18–20 separate analyses were per-
formed, each analysis representing a uniaxial or biaxial loading
state. For the uniaxial simulations, an unconstrained roller dis-
placement boundary condition was applied in the longitudinal or
transverse direction, producing an apparent-level state of uniaxial
stress. For the biaxial simulations, displacement boundary condi-
tions were applied in both the longitudinal and the chosen trans-
verse directions; the third direction was left unconstrained,T
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thereby producing a biaxial stress state in the principal material
coordinate system. Each biaxial simulation was defined by a
unique ratio of the maximum applied strain in the longitudinal
and transverse directions, for a total of 14–16 such biaxial loading
cases. All analyses were performed using a highly scalable,
implicit parallel finite element framework, Olympus [24] on a Sun
Constellation Linux Cluster (Ranger; Texas Advanced Computing
Center, TX), for a total of 275 nonlinear analyses requiring around
50,000 CPU hours.

The main outcome of these analyses was the apparent-level
yield strength in the longitudinal and transverse directions and,
calculated from that, the biaxial yield point. For the uniaxial load-
ing case, a strain offset of 0.2% on the stress-strain curve in the
loading direction was used to define the apparent-level yield
point; the percentage of yielded tissue was then calculated at this
apparent-level yield point, as described elsewhere [23]. Correla-
tions were calculated for both uniaxial yield strength and strain
against bone volume fraction, elastic anisotropy, and various
measures of microarchitecture (Table 1). Regression equations
were then developed for the uniaxial yield strengths as a function
of (when statistically significant) bone volume fraction, elastic an-
isotropy, and/or microarchitecture (Table 2). For each biaxial
loading case, the individual stress-strain curves in the longitudinal
and transverse directions were used to define the longitudinal and
transverse yield points, respectively, using a 0.2% strain offset cri-
terion on each curve. A single biaxial yield point (referred subse-
quently as the “chronological” yield point) was then defined by
the biaxial stress state at the instant of first yielding in either the

longitudinal or transverse direction (Fig. 1) as described elsewhere
[10,12]. In this way, biaxial failure was defined as the first instant
of failure in either the longitudinal or transverse loading direc-
tions. The percentage of yielded tissue was then calculated at the
chronological biaxial yield point for each loading case.

A further analysis of the yield points was conducted to develop
a mathematical description of the biaxial yield envelope expressed
as a function of bone volume fraction, elastic anisotropy, and
microarchitecture. This analysis involved two steps. First, for all
18–20 load cases for each specimen, we plotted both the finite
element-computed yield points associated with each of the longi-
tudinal and transverse loading directions, in the biaxial stress
space, and fit a separate curve to the yield points associated with
failure in each of the two loading directions. This analysis showed
that a quadratic ellipse [25] worked well for failure associated
with each individual loading direction (Fig. 2). The overall biaxial
failure envelope was then taken as the inner surface created by
each pair of longitudinal and transverse ellipses. For each speci-
men, the percentage error between the resulting fitted biaxial yield
surface and the direct finite element-computed biaxial yield points
was calculated using the difference of the vector norm of the
biaxial stress from the origin [12], as follows,

rpredicted � rFE

�� ��
rFEk k � 100 (1)

in which rpredicted is the predicted yield point from the fitted ellip-
ses and rFE is the finite element-computed yield point. This error
per simulated biaxial test was then averaged over all simulated
biaxial tests for each individual specimen, and the resulting mean
error per specimen was then averaged over all specimens in order
to assess how well the fitted biaxial failure criterion represented
the direct finite element-generated biaxial failure points.

Second, to express the biaxial failure criterion as a function of
bone volume fraction, elastic anisotropy, and the various micro-
architecture parameters, each resulting in longitudinal and trans-
verse ellipse for each individual specimen was characterized by
five coefficients: the diameter of the major and minor axes (a, b),
the shift of the center from the origin (h, k), and an angle of tilt
with the longitudinal axis (/) (Fig. 2); the equation of each ellipse
is given by the equation

2r0L
a

� �2

þ 2r0T
b

� �2

¼ 1;
r0L
r0T

� �
¼ cos/ sin/
� sin/ cos/

� �
rL� h
rT � k

� �

(2)

in which rL and rT are the longitudinal and transverse stresses,
respectively. We then calculated pairwise correlations of the five
coefficients of the fitted ellipse with bone volume fraction, elastic an-
isotropy, and the various microarchitecture parameters (Table 1).

Table 2 Power law regressions relating the four uniaxial yield
strengths with bone volume fraction (BV/TV) and elastic anisot-
ropy (EA) for n 5 15 specimens analyzed. (p < 0.001 for all
regressions).

c (BV/TV)m1(EA)m2

c m1 m2 R2 CV(%)
Longitudinal tension (ry

LT) 81.2 1.53 0 0.99 9.60
Longitudinal compression (ry

LC) 183 1.73 0 0.99 9.99
Transverse tension (ry

TT) 76.3 1.33 �1.07 0.99 11.2
Transverse compression (ry

TC) 164 1.41 �1.30 0.99 10.3

Note: CV¼ coefficient of variation (ratio of the RMSE to the mean of the
dependent variable).

Fig. 1 Definition of the chronological yield point. This graph
depicts the stress-normalized strain responses in the longitudi-
nal (solid line) and transverse (dotted line) directions for a sin-
gle specimen loaded biaxially in the longitudinal and
transverse directions. The normalized strains occur at the same
instant in time for both responses. For this loading, the ratio of
maximum applied strain in the longitudinal to transverse direc-
tion was 0.73, and yielding first occurred along the transverse
direction, which defined the chronological yield point.

Fig. 2 The longitudinal (solid) and transverse (open) yield
points and the respective yield ellipses for one specimen. Each
ellipse is represented by five parameters, the major and minor
diameters (a and b, respectively), the coordinates of the center
(h,k), and the angle of tilt of the major axis with respect to the
horizontal (/). The shaded region bounded by the two intersect-
ing ellipses defines the elastic region.
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To help better understand how bone volume fraction, anisot-
ropy, and microarchitecture specifically influenced multiaxial
behavior—as opposed to uniaxial behavior—we also developed a
stress-normalized criterion, in which the biaxial strength was nor-
malized by the uniaxial strength. To do so, for each specimen, the
finite element-computed longitudinal and transverse yield points
in each quadrant of the biaxial failure space were normalized by
the respective finite element-computed uniaxial strengths for the
specimen. For example, for a yield point in the longitudinal
tension-transverse compression quadrant, all longitudinal strength
values were divided by the uniaxial longitudinal tensile strength
and all transverse strength values were divided by the transverse
compressive strength of the specimen. A quadratic ellipse was
then fit to these normalized longitudinal and transverse yield
points (excluding the uniaxial points), and the five coefficients of
each ellipse were calculated. Correlation analysis was then used
to relate the five coefficients of the fitted normalized ellipses to
bone volume fraction, elastic anisotropy, and the various micro-
architecture parameters (Table 1). This was done for each individ-
ual specimen. Further, the normalized longitudinal and transverse
yield points from all specimens were pooled together in a single
plot and a quadratic ellipse was fit to each of the pooled normal-
ized longitudinal and transverse yield points (referred subse-
quently as the “dual-ellipse” yield surface, Fig. 3). Using Eq. (1),
a percentage error was calculated between the dual-ellipse yield

surface and the pooled normalized longitudinal, transverse, and
chronological yield points.

To facilitate comparison with the literature, two additional fits
were performed on the pooled normalized chronological yield
points (Fig. 4, Table 3)—a single quadratic ellipse as described in
Eq. (2) and a quartic super-ellipse similar to the modified super-
ellipsoid equation reported by Bayraktar et al. [12]

r̂0L
rL

� �4

þ r̂0T
rT

� �4

þ tLr̂0L þ tT r̂0T
rL þ rT

� �4

¼ 1

r̂0L
r̂0T

� �
¼

cos / sin /

� sin / cos /

� �
r̂L � cL

r̂T � cT

� � (3)

in which r̂L and r̂T are the normalized longitudinal and transverse
stresses, respectively, and cL, cT, tL, tT, rL, rT, and / are parame-
ters of the equation. Using Eq. (1), a percentage error was calcu-
lated between the finite element-computed normalized
chronological yield points and the corresponding predictions from
the dual-ellipse yield surface, single-ellipse surface, and the
quartic super-ellipse surface. To explore the sensitivity of the
biaxial yield strength to an alternate definition of yielding, we cal-
culated the yield point based on an “equivalent” stress-strain
curve as reported elsewhere [14]. Briefly, the individual stress-
strain response in the longitudinal and transverse directions from
each analysis were used to calculate an equivalent stress and
equivalent strain response. The equivalent stress or strain was
defined as the square root of the double inner product of the stress
or strain tensor respectively [14]. The yield point was calculated
based on a 0.2% strain offset on the equivalent stress-strain
response and the longitudinal and transverse stresses at the yield
point defined the “equivalent” yield point. The “equivalent” yield
data from all analyses were normalized with the respective uniax-
ial strengths of each specimen and the pooled data from all speci-
mens were plotted together (Fig. 5); a single quadratic ellipse was
also fit to the pooled equivalent yield data and was compared with
the dual-ellipse surface.

Finally, to gain insight into specific characteristics of the biaxial
failure behavior, the normalized dual-ellipse yield surface,

Fig. 3 A dual-ellipse fit to the normalized longitudinal and
transverse yield strength data pooled from all specimens. The
yield strength in each quadrant was normalized by the respec-
tive specimen-specific uniaxial strengths.

Fig. 4 (a) Dual-ellipse fit, (b) single-ellipse fit, and (c) quartic super-ellipse fit to the (same)
pooled normalized chronological yield strength data

Table 3 Coefficients of the single ellipse, dual-ellipse, and
quartic super-ellipse fits to the pooled normalized chronologi-
cal yield strength data

a b h k /

Single Ellipse 2.70 2.08 0.0220 �0.0496 40.6
Dual Ellipse
Longitudinal 5.94 2.04 �0.0065 0.1019 84.9
Transverse 3.19 2.03 0.1381 �0.0233 21.6

cL cT rL rT tL tT /

Quartic Super Ellipse 0.0014 �0.0547 1.05 1.42 0.84 1.98 102.9
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coupled with its underlying regressions between uniaxial strength
and bone volume fraction and elastic anisotropy, were used to cal-
culate the biaxial strength as a function of elastic anisotropy, for
three constant values of bone volume fraction, all done for two
relevant biaxial loading cases. The tissue-level yielding for these
two loading cases was investigated for three femoral specimens,
two from the femoral neck and one from the greater trochanter.

3 Results

For each specimen, the yield surface in the biaxial stress space,
as computed by the finite element analyses, was well represented
by the combination of the longitudinal and transverse ellipses
(Fig. 2). Across all 15 specimens, the mean (6SD) error between
the finite element-computed yield points for the longitudinal load-
ing direction and the fitted longitudinal ellipse was 2.9 6 0.7%;
for the transverse loading direction, the corresponding error was
3.3 6 0.7%. As expected, the major and minor diameters of the
ellipses (a,b) increased with increasing bone volume fraction
(Table 1). We also found that the minor diameters (b) decreased
with increasing elastic anisotropy and, therefore, the aspect ratio
(a/b) increased with elastic anisotropy. In addition, the angle of
tilt (/) of the ellipses decreased with increasing elastic anisotropy
asymptotically, tending to zero for highly anisotropic specimens.
The elastic anisotropy was not correlated with bone volume frac-
tion (p¼ 0.20) and was only weakly correlated with the morpho-
logical degree of anisotropy (DA) (r¼ 0.50, p¼ 0.06).

For uniaxial loading, the longitudinal yield strength was corre-
lated to bone volume fraction while the transverse yield strength
was correlated to both bone volume fraction and elastic anisotropy
(Table 1). Power law regressions described well the variation in
uniaxial strength when bone volume fraction and/or elastic anisot-
ropy served as the independent variables; microarchitecture did
not provide any additional statistical association (Table 2). Con-
sistent with results from prior experiments [15,16,26,27], the yield
strain for longitudinal compression increased with bone volume
fraction (r¼ 0.80, p¼ 0.0003) but for transverse compression did
not (p¼ 0.22).

As a result of these similar associations for uniaxial yield
strengths and the various coefficients of the longitudinal and trans-
verse yield ellipses, the coefficients of the normalized longitudinal
and transverse yield ellipses depended only weakly on bone vol-
ume fraction, elastic anisotropy, or microarchitecture (Table 1).

This weak dependence was also evident in the small amount of
scatter in the normalized longitudinal and transverse yield data
pooled from all specimens (Fig. 3), indicating that the residual
variations in the biaxial strength were minor after accounting for
the variations in uniaxial strength. This set of pooled normalized
longitudinal and transverse yield data from all specimens was
well described by a single dual-ellipse yield surface (Fig. 3, Table
3), which had a mean (6SD) error of 3.9 6 1.7% and 6.1 6 2.5%
for the fitted normalized longitudinal and transverse ellipses,
respectively. The pooled normalized (chronological) yield points
was best described by the dual-ellipse yield surface (Fig. 4(a),
mean 6 SD error¼ 4.8 6 4.1%), followed by the quartic-super-
ellipse yield surface (Fig. 4(b), mean 6 SD error¼ 5.2 6 4.2%)
and then the single-ellipse yield surface (Fig. 4(c), mean 6 SD
error¼ 6.5 6 4.6%).

While the pooled equivalent yield data was quite well described
a quadratic ellipse with a mean error of 4.9 6 4.4%, this
formulation did not capture the complete biaxial behavior (Fig. 5).
For a biaxial loading with a high proportion of longitudinal load-
ing, the equivalent yield points were close to the longitudinal
ellipse. However, the quadratic ellipse substantially over-
predicted the transverse tensile and compressive uniaxial
strengths. As a result, for biaxial loading with a high proportion of
transverse loading, the equivalent yield points lay between the
longitudinal and transverse yield ellipses (Fig. 5).

The normalized dual-ellipse yield surface, coupled with the
regressions on uniaxial strength, revealed that the biaxial yield
strength for two biaxial compression-tension loading scenarios
decreased with increasing elastic anisotropy, independent of the
bone volume fraction (Fig. 6). For a longitudinal compression and
transverse tension biaxial loading having a ratio of �5, the biaxial
apparent yield point was determined by the transverse response
for all three specimens. Visual inspection revealed that for this
loading case, there was predominantly tensile failure of the

Fig. 6 Variation of biaxial strength with elastic anisotropy at a
constant bone volume fraction (BV/TV) of 0.09, 0.18, and 0.20
for two biaxial loading cases: longitudinal compression and
transverse tension in a ratio of 5:1 (dotted line); and longitudi-
nal tension and transverse compression, also in a ratio of 5:1
(solid line). For longitudinal compression and transverse ten-
sion, biaxial strength was always defined by the transverse
direction. However, for longitudinal tension and transverse
compression, the biaxial strength was defined by the longitudi-
nal direction up to an elastic anisotropy of �6, beyond which
the biaxial strength was defined by the transverse direction,
leading to a change in the relation between biaxial strength and
elastic anisotropy.

Fig. 5 Comparison of dual-ellipse fit (solid) and a quadratic fit
(dotted) to the pooled normalized “equivalent” yield strength
data
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horizontally oriented trabeculae (Fig. 7) for all three specimens.
Of the two femoral neck specimens having a similar bone volume
fraction, the more anisotropic specimen sustained much less
tissue-level failure at the overall biaxial failure point. By contrast,
for longitudinal tension and transverse compression in a ratio of
�5, the direction determining the biaxial yield point depended on
anisotropy. For example, for the highly anisotropic femoral neck
specimen, the transverse direction yielded first whereas for the
two less anisotropic specimens, the longitudinal direction yielded
first. This is consistent with the observation that the biaxial failure
mode, for this particular biaxial loading, changed from the longi-
tudinal to the transverse direction above an elastic anisotropy of
around 6.0 (Fig. 6). Visual inspection revealed that for this type of
biaxial loading, there was predominantly tensile tissue failure for
all specimens. This failure distribution was primarily distributed
in the longitudinally oriented trabeculae for the less anisotropic
specimens and equally distributed between the longitudinally and
horizontally oriented trabeculae for the highly anisotropic speci-
men (Fig. 7).

4 Discussion

The results of this computational analysis suggest that the biax-
ial yield behavior of human trabecular bone, in the axial-
transverse plane, can be described well by a dual-ellipse surface,
the size of which depends primarily on bone volume fraction
whereas the shape (i.e., aspect ratio) and orientation of which
depend primarily on elastic anisotropy. This dependence of biax-
ial yield strength on bone volume fraction and elastic anisotropy
can be primarily attributed to a similar dependence of the uniaxial
yield strengths on bone volume fracture and elastic anisotropy,
resulting in relatively little unexplained inter-specimen variation
of biaxial yield behavior after accounting for the uniaxial yield
behavior. Using parametric study of this normalized failure crite-

rion, expressed as a function of the bone volume fraction and elas-
tic anisotropy, we found that, independent of bone volume
fraction, an increase in the elastic anisotropy, which is primarily
associated with a decrease in transverse strength, leads to a simul-
taneous increase in aspect ratio and decrease in orientation of the
biaxial yield surface, which together reduce biaxial strength by
making the specimen more susceptible to failure in the weaker
transverse direction.

One advantage of performing such investigations using high-
resolution, specimen-specific finite element simulation is that
insight can be obtained into the underlying failure mechanisms,
which would be difficult to achieve by experimentation. For exam-
ple, under a combined longitudinal-compression and transverse-
tension biaxial loading, as might typically occur in the proximal
femur during gait [1], we found that trabecular bone is likely to
yield first due to failure associated with the transverse tensile load-
ing component because of predominant failure at the tissue level
of the horizontally oriented trabeculae via tensile failure (bone tis-
sue is particularly weak in tension). However, for a combined
longitudinal-tension and transverse-compression biaxial loading,
as might typically occur in the proximal femur during a sideways
fall [2], the microstructurally weaker direction (transverse) is now
loaded in the stronger tissue-failure mode (compression), and the
microstructurally stronger direction (longitudinal) is loaded in the
weaker tissue-failure mode (tension). Therefore, the apparent-level
yield can occur either in the longitudinal or transverse direction,
depending on the degree of mechanical anisotropy of the speci-
men. For a less anisotropic specimen, the apparent-level yield
points in the longitudinal and transverse directions are similar, but
for a highly anisotropic specimen, we found that apparent-level
yield occurs first in the transverse direction. Further, in a highly
anisotropic specimen, since there are proportionately fewer and
thinner horizontally oriented trabeculae [5,28,29], the trabecular
microstructure can sustain only a small amount of tissue failure

Fig. 7 Distribution of yielded tissue at the biaxial yield point in thin (�0.45 mm) longitudinal sli-
ces taken from three 5 mm cube specimens subjected to two biaxial loading cases (top row: lon-
gitudinal compression and transverse tension in a ratio of about 5:1; bottom row: longitudinal
tension and transverse compression, also in a ratio of about 5:1). The percentage value denotes
the proportion (percentage) of total tissue yielded in the overall cube specimen at the biaxial
yield point. Red regions denote tissue yielded in tension and blue regions denote tissue yielded
in compression. BV/TV 5 bone volume fraction; EA 5 elastic anisotropy. (The reader is referred
to the online version of this article (doi:10.1115/1.4025679) for interpretation of the references to
color.)
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before overall apparent-level yield in the transverse direction.
Therefore, in the context of osteoporosis, under the biaxial loading
of the trabecular bone within the proximal femur that might typi-
cally occur during a sideways fall, for a given bone volume frac-
ture, a specimen having increased mechanical anisotropy can be
susceptible to premature yield in the nonprimary loading direction.
This mechanism might help explain results from previous studies
showing that when matched for bone volume fracture, patients
with hip fractures had a more anisotropic trabecular microstructure
compared to nonfracture controls [5,7].

The results from these biaxial simulations also lend insight into
off-axis behavior, specifically, why 45 deg off-axis compressive
yield strains do not depend on bone volume fraction although on-
axis longitudinal compressive yield strains do [15]. According to
the principles of stress tensor transformation, a 45 deg off-axis
compression at a normal stress r is equivalent to a combination of
an on-axis longitudinal compression-transverse compression equi-
biaxial normal loading at stress r/2 and a shear loading at stress
s¼ r/2. Since yielding under equibiaxial normal loading will
always occur in the transverse direction (Fig. 2), the yielding under
the equibiaxial normal component of the off-axis loading should be
dominated by failure associated with on-axis transverse compres-
sion. The results from our earlier work [23], together with the data
in Table 2, show that the on-axis transverse compressive strength is
about equal to or much lower than the shear strength, depending on
the degree of anisotropy. Therefore, the failure during 45 deg off-
axis compressive loading should occur primarily via compression
failure in the (on-axis) transverse direction. In that event, since the
on-axis transverse compressive yield strain does not depend on
bone volume fraction, the 45 deg off-axis compressive yield strain
should likewise not depend on bone volume fraction.

Our new results are consistent with previous studies that have
defined the multiaxial failure envelope for trabecular bone as an
intersection of multiple surfaces as opposed to just a single
quadratic-type surface. Our yield envelope consisting of two inter-
secting ellipses in stress space is similar to what has been pro-
posed previously for bovine bone in strain space, based on micro-
CT-based finite element analysis [11]. Two intersecting ellipses
have also been used to define a failure envelope for cellular solids
[30] under biaxial loading, based on assumptions of the plastic
collapse of cell walls as the primary failure mode, while others
also proposed two separate ellipsoidal envelopes based on a gen-
eralized Hill’s failure criterion [31]. Alternatively, the inner
surface of the two intersecting ellipses can be defined by a super-
ellipsoid equation as done previously for human femoral bone in
strain space [12]. The equation employed in the current study is
similar in form to the modified super-ellipsoid equation [12] but
with the exponents enforced to equal a value of 4.0 and an addi-
tional parameter introduced to quantify the angle of tilt. The angle
of tilt is introduced since the biaxial yield was defined in stress
space as opposed to strain space in the previous study [12]. While
both strain- and stress-based criteria can be incorporated into com-
putational models, we are reporting the criterion in stress space
since a stress-based criterion facilitates direct comparison with
multiaxial experiments because it is not necessary to measure any
Poisson effects. We also observed that the angle of tilt of the yield
ellipses varies with elastic anisotropy, which is consistent with
previous studies on fiber-reinforced composite materials [32] that
have suggested the angle of tilt is a function of anisotropy.

One prominent question concerning multiaxial behavior of
human trabecular bone remains whether the yield behavior can be
described by the quadratic Tsai–Wu criterion. A recent study [14],
specifically addressing the failure behavior of human vertebral tra-
becular bone, used Cowin’s [8] type of formulation to propose a
single Tsai–Wu ellipsoidal criterion as a function of both bone
volume fraction and fabric based anisotropy. However, that study
calibrated data generated from finite element simulations using
just a few loading cases and as such did not have a sufficient num-
ber of degrees of freedom to detect more complex behavior. In a
previous study on tri-axial compressive behavior of bovine trabec-

ular bone, it was found that although one can indeed calibrate a
single Tsai–Wu quadratic yield envelope to triaxial data, the
resulting fit was not general and, therefore, did not work well for
altered loading conditions [9]. Alternatively, as shown here, the
yield surface could be well described by a quartic super-ellipse
equation. That yield surface has boxlike shape, which is also sup-
ported by theoretical and experimental studies on open-cell foams
[30,33]. In the normalized stress space, we observed that the angle
of tilt of the longitudinal ellipse is close to 90 deg, which suggests
that failure responses in the longitudinal direction occur around a
constant principal stress. On the other hand, the transverse ellipse
had an angle of tilt of 22 deg, which, at about halfway between
0 deg and 45 deg, suggests that failure in the transverse direction
is somewhere between a principal stress type failure and quadratic
von Mises type failure (the angle of tilt for a von Mises yield
equation is 45 deg). Taken together, these results, therefore, sug-
gest that the biaxial failure of human trabecular bone in the axial-
transverse plane, like other porous microstructured materials [34],
is not entirely quadratic.

One unique challenge in comparing different multiaxial failure
criteria across studies is to account for the failure in the multiple
different loading directions. While in this study we chose to define
the apparent—level yield point based on two individual stress—
strain curves in the longitudinal and transverse directions as done
previously in other studies [10–12], Wolfram et al. [14] defined
the apparent-level yield point based on an “equivalent” stress-
strain curve constructed from the components of the stress and
strain tensor. Similarly, other studies on multiaxial behavior of
cortical bone [35], cellular solids [36], and polymers [37] have
used “equivalent” stress and/or strain definitions to define a
composite-type yield point under multiaxial loading. Our results
show that while the “equivalent” approach works well for a biax-
ial loading having a high proportion of longitudinal loading, such
biaxial yield points are overestimated when there is substantial
transverse loading (Fig. 5). This is reflected in a 50% over-
prediction of the uniaxial transverse yield strengths from the
elliptical fit to the equivalent yield points (Fig. 5). Using the chro-
nological yield definition leads to only a minor over-prediction of
uniaxial compressive yield strengths, which is likely due to
unavoidable edge-effects of unconnected trabeculae on the bound-
ary [38]. Under predominantly longitudinal loading, the transverse
stress is negligible due to the anisotropic nature of trabecular bone
and, therefore, the biaxial equivalent stress-strain response closely
resembles the uniaxial longitudinal stress-strain response. How-
ever, under a more predominantly transverse type of biaxial load-
ing, the magnitude of transverse stress becomes comparable to the
magnitude of longitudinal stress, and therefore, the equivalent
yield point lies somewhere between the yield points obtained
from the longitudinal and transverse directions individually. The
use of two separate stress-strain responses, one for each principal
material direction, while mathematically more complex is more
mechanistic in nature and allows one to interpret the mode of
apparent-level yield in either the longitudinal or transverse
trabecular orientation.

While we assumed trabecular bone to behave as a transversely
isotropic material as assumed in previous studies [9,14], its behav-
ior is truly orthotropic [39]. The large scatter and error observed
in elliptical fit in the transverse direction can be possibly
explained by the random choice of the transverse direction. If we
assume a significant difference in the elastic moduli in the two
transverse directions, the observed scatter in the normalized chro-
nological yield data can vary depending on the choice of the trans-
verse plane, which may lead to higher or lower error estimates of
the proposed dual-ellipse yield surface. It would be worthwhile to
further explore the yield behavior in other planes and include
other loadings such as shear loading in order to obtain a more
complete picture of the multiaxial yield behavior. We also
allowed an angle of misalignment of up to 10 deg in the trabecular
bone specimens, which can induce an error of up to 9.5% in the
measurement of the elastic moduli [39]. While it is difficult to get
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specimens that are perfectly aligned with the principal material
coordinate system, the error due to this misalignment is of the
same magnitude as the error in the uniaxial strength predictions
with power law regressions on bone volume fraction. Therefore,
we assumed the misalignment of 10 deg or less adequately
represents the elastic anisotropy of the trabecular bone specimens.

Our study has some additional limitations. First, at the tissue
level we considered only plastic yielding and kinematically non-
linear “large deformations” as the failure mechanism under all
biaxial loading modes. Based on cellular solid theory, different
failure mechanisms such as brittle cracking under tension can lead
to different failure envelopes under biaxial loading [30,40]. While
our elastic-plastic constitutive model was shown to give good
agreement for both apparent-level and tissue-level yield for longi-
tudinal compression loading [23], there remains a need to investi-
gate more sophisticated tissue-level constitutive models in these
types of multiaxial computational studies since bone tissue mate-
rial properties may change with age and disease, and the degree of
ductility is not unlimited [41–43]. Second, we considered the
bone tissue to be homogeneous and isotropic. The material anisot-
ropy of the bone tissue likely only has a small influence on the
overall anisotropy of trabecular bone at the apparent level since
the apparent level anisotropy is primarily due to the trabecular
structure [44–46] (i.e., structural anisotropy). Likewise, the effects
of mineral heterogeneity on the apparent behavior should be also
minor [47,48]. Third, we used displacement boundary conditions
for generating the biaxial stress states in our finite element simula-
tions. This may provide an upper bound on the effective biaxial
strength whereas use of force boundary conditions may provide a
lower bound on the effective biaxial strength [49]. However, the
effect of bone volume fraction and anisotropy should still reflect
on the size, shape, and orientation of the yield ellipses irrespective
of the boundary condition used. Finally, it should be appreciated
that all our biaxial results were generated from computational
analyses, and, despite the excellent performance of these finite
element simulations for uniaxial strength behavior [23], definitive
validation for biaxial behavior can only come from additional
experiments.
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