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ABSTRACT OF THE THESIS 

 

Moving Toward Precision:  

Understanding the Heterogeneity of Obesity 

 

by 

 

Kin Wai Tony Hung 

 

Master of Science in Clinical Research 

University of California, Los Angeles, 2020 

Professor Janet S. Sinsheimer, Chair 

 

Background: Obesity is a global health pandemic that has been linked to detrimental health 

and socioeconomic impact. Growing evidence have recognized obesity as a spectrum of 

metabolic imbalances with complex biopsychosocial interactions including the brain-gut axis. A 

precision understanding on obesity while at its infancy is necessary to accelerate reduction of its 

health burden. 

Methods: With our aim to better understand the biopsychosocial interactions at the transitional 

junction of obesity development, we conducted a cross sectional study in overweight and obese 

individuals. Univariate and multivariate logistic regression models were used to examine obesity 

and its association with sociodemographic, clinical, and dietary-behavioral factors. Biological 

interactions including the gut microbiome, gut amino acids and brain structural volumes were 

also examined. Microbial data were analyzed for alpha diversity, beta diversity, and relative 

abundance of taxa. Amino acids and brain structural volumes were analyzed using multiple 

ANOVA. Interactions were tested by Pearson correlations and corrected for multiple hypothesis. 
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Results: Among 130 participants, there were higher odds of obesity if individuals were Hispanic 

[Adjusted Odds Ratio (AOR) 1.70, p = 0.0089], and married (AOR 1.63, p = 0.036). Compared 

to non-Hispanic, Hispanic had a significantly different microbiome profile (p = 0.046) with lower 

microbial species richness (Chao1) (p = 0.032) and evenness (Shannon) (p = 0.0029). A 

predominance of the phylum Firmicutes was positively correlated to American diet consumption 

(p = 0.036) while negatively correlated to Hispanic ethnicity (p = 0.021). Fourteen of twenty gut 

amino acids including all essential amino acids were increased among Hispanics (p < 0.05). 

Brain structural volumes in reward regions were decreased especially if individuals were 

Hispanic (pallidum, p = 0.036; brainstem, p = 0.011), married (left thalamus, p = 0.024), or 

consumed an American diet (brainstem, p = 0.043). 

Conclusions: Hispanic expressed a unique gut microbial signature, which was associated with 

obesity despite sociodemographic, clinical, and dietary differences. Gut amino acids and brain 

structural volumes may further differentiate Hispanic ethnic differences and warrant future 

research. Addressing ethnic disparities guided by biologic phenotypes may unlock novel 

understanding of obesity heterogeneity and transform its impact on obesity care. 
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Table 1. Baseline participant characteristics 

  
 

Overall 
(n = 130)  

Overweight 
(n = 62)  

Obese 
(n = 68)  P 

Characteristic No % No % No %  
Age       0.17 

  Less than 30y 59 45.4% 32 51.6% 27 39.7%  
  30y or older 71 54.6% 30 48.4% 41 60.3%  
Gender       0.093 

  Female 87 66.9% 37 59.7% 50 73.5%  
  Male 43 33.1% 25 40.3% 18 26.5%  

Ethnicity       0.014* 

  Hispanic 52 40.0% 18 29.0% 34 50.0%  

  Non-Hispanic 78 60.0% 44 71.0% 34 50.0%  

Education       0.51 

  College Graduate 37 29.8% 19 32.8% 18 27.3%  
  Non-College Graduate 87 70.2% 39 67.2% 48 72.7%  
Annual Income       0.88 

  Less than $70K 64 55.7% 31 56.4% 33 55.0%  
  $70K or More 51 44.3% 24 43.6% 27 45.0%  
Marital Status       0.028* 

  Married 30 25.6% 9 16.4% 21 33.9%  

  Not Married 87 74.4% 46 83.6% 41 66.1%  

Waist to Hip Ratio‡       0.043* 

  Obese 37 43.9% 15 44.1% 22 68.8%  

  Normal 29 56.1% 19 55.9% 10 31.3%  

Dietary Pattern       0.031* 

  American Diet 99 76.2% 42 67.7% 57 83.8%  
  Non-American Diet 31 23.8% 20 32.3% 11 16.2%  

 
*P-value < 0.05 
‡Waist to Hip ratio adjusted by gender obesity cut off of >0.9 for male >0.85 for female 
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Table 2. Univariate and multivariate analyses of  
biopsychosocial characteristics associated with obesity  

        

 Univariate analyses  Multivariate analyses 

Characteristic 
Un-

AOR 95% CI P Value 
 

AOR 95% CI P Value 
Age  
  Less than 30y 
  30y or older (reference) 

0.79 
– 

0.55 - 1.12 
– 0.17  

 
– 

 
– 

 

 

Gender        

  Female 1.37 0.94 - 2.00 0.093  – –  

  Male (reference) – –      

Ethnicity        

  Hispanic 1.56 1.08 - 2.26 0.014*  1.70 1.13 - 2.54 0.0089* 

  Non-Hispanic (reference) – –   – –  

Education        

  College Graduate 0.88 0.59 - 1.30 0.51  – –  

  Non-College Graduate (reference) – –      

Annual Income        

  Less than $70K 0.97 0.67 - 1.42 0.88  – –  

  $70K or More (reference) – –      

Marital Status        

  Married 1.62 1.02 - 2.54 0.028*  1.63 1.02 - 2.60 0.036* 

  Not Married (reference) – –   – –  

Waist to Hip Ratio        

  Obese 1.67 1.00 - 2.79 0.043*  – –  

  Normal (reference) – –      

Dietary Pattern        

  American Diet 1.57 1.02 - 2.41 0.031*  – –  

  Non-American Diet (reference) – –      

 
*P-value < 0.05 
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Table 3. Multivariate subgroup analyses of ethnicity and marital status associated with obesity  
        

 Hispanic  Non-Hispanic 

Characteristic AOR 95% CI P Value  AOR 95% CI P Value 

Marital Status        

  Married – –   1.81 1.01 - 3.24 0.036* 

  Not Married (reference) 
 

– 
 

– 
  

 – –  

 Married  Not Married 

Characteristic AOR 95% CI P Value  AOR 95% CI P Value 

Dietary Pattern        

  American 5.00 1.47 - 17.02 0.0019*  – –  

  Non-American (reference) – –   – –  

Gender        

  Female – –   1.63 1.00 - 2.68 0.04* 

  Male (reference) – –   – –  

 
*P-value < 0.05 
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Table 4. Odd ratio of obesity based on biopsychosocial and dietary risk factors 
 

 
 

 
Hispanic  

(AOR 1.7) 
 

 
Non-Hispanic  

(AOR 1) 
 

 
 

Married 
(AOR 1.81) 

American Diet 
(AOR 5) 

 
15.4 

 
 

Non-American Diet 
(AOR 1) 

 
3.1 

American Diet 
(AOR 5) 

 
9.1 

 

Non-American Diet 
(AOR 1) 

 
1.8 

 
 
Not Married 

(AOR 1) 

Female 
(AOR 1.63) 

 
2.8 

 
 

Male 
(AOR 1) 

 
1.7 

Female 
(AOR 1.63) 

 
1.6 

 

Male 
(AOR 1) 

 
1 
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Table 5. Association of Firmicutes:Bacteroidetes with  
sociodemographic and dietary characteristics 

 
 Firmicutes:Bacteroidetes 

Characteristic Ratio 95% CI P Value 
Age  
  Less than 30y 
  30y or older (reference) 

1.15 
1.16 

0.89 - 1.40 
0.63 - 1.68 

0.97 
  

Sex    
  Female 0.99 0.80 - 1.18 0.27 

  Male (reference) 1.49 0.61 - 2.35  

Race    
  Hispanic 0.78 0.62 - 0.94 0.021* 

  Non-Hispanic (reference) 1.40 0.90 - 1.91  

Education    
  College Graduate 1.22 0.85 - 1.58 0.87 
  Non-College Graduate 
(reference) 1.17 0.73 - 1.60  

Annual Income    
  Less than $70K 0.95 0.74 - 1.17 0.37 

  $70K or More (reference) 1.11 0.83 - 1.39  
Marital Status    

  Married 0.89 0.63 - 1.16 0.24 

  Not Married (reference) 1.09 0.87 - 1.31  

Waist to Hip Ratio    

  Obese 1.37 0.41 - 2.34 0.77 

  Normal (reference) 1.22 0.71 - 1.74  

Dietary Pattern    

  American Diet 1.26 0.87 - 1.66 0.036* 

  Non-American Diet (reference) 0.78 0.58 - 1.00  

Obesity    

  Overweight 1.06 0.79 - 1.33 0.57 

  Obese 1.24 0.69 - 1.79  
 

*P-value < 0.05 
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Table 6. Association of Firmicutes or Bacteroidetes predominance with  
obesity by ethnicity or dietary characteristics 

 
 Bacteroidetes Predominance  Firmicutes Predominance  

 

 
Hispanic (%) Non-Hispanic (%) p  Hispanic (%) Non-Hispanic (%) p 

Overweight 
  

15 (41.7%) 
  

 
24 (57.1%) 

  

0.17 
   

 
3 (18.8%) 

  

20 (58.8%) 
  

0.0062* 
  

Obese 
 

21 (58.3%) 
 

18 (42.9%) 
   

13 (81.3%) 
 

14 (41.2%) 
  

 
 Bacteroidetes Predominance  Firmicutes Predominance  

 

 
American Diet (%) Non-American Diet (%) p  American Diet (%) Non-American Diet (%) p 

Overweight 
  

25 (43.9%) 
  

 
14 (66.7%) 

  

0.07 
   

 
17 (41.5%) 

  

6 (66.7%) 
  

0.17 
  

Obese 
 

32 (56.1%) 
 

7 (33.3%) 
   

24 (58.5%) 
 

3 (33.3%) 
  

 
*P-value < 0.05 
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Table 7. Multiple one-way ANOVA p-values of characteristics associated with  
amino acids adjusted for FDR 

 
  Characteristics 

Pathways Metabolites Hispanic Race Marital Status American Diet F:B Ratio Obesity 

Amino Acid 
Metabolism 

Glycine 0.026* 0.86 0.30 0.78 0.73 

Serine 0.030* 0.86 0.30 0.78 0.73 

Threonine 0.045* 0.89 0.30 0.78 0.85 

Alanine 0.030* 0.86 0.30 0.78 0.97 

Aspartate 0.10 0.89 0.95 0.78 0.73 

Asparagine 0.59 0.86 0.92 0.78 0.73 

Glutamate 0.033* 0.89 0.37 0.78 0.73 

Glutamine 0.15 0.86 0.30 0.78 0.97 

Histidine 0.045* 0.86 0.89 0.78 0.73 

Lysine 0.026* 0.86 0.30 0.78 0.73 

Phenylalanine 0.030* 0.86 0.30 0.78 0.73 

Tyrosine 0.030* 0.86 0.89 0.78 0.73 

Tryptophan 0.045* 0.86 0.30 0.78 0.73 

Leucine 0.030* 0.86 0.30 0.78 0.73 

Isoleucine 0.026* 0.86 0.30 0.78 0.73 

Valine 0.026* 0.86 0.30 0.78 0.73 

Methionine 0.026* 0.86 0.30 0.97 0.85 

Cysteine 0.99 0.86 0.30 0.97 0.73 

Arginine 0.47 0.97 0.30 0.78 0.73 

Proline 0.24 0.86 0.36 0.78 0.97 

 
*P-value < 0.05 
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Table 8. Multiple one-way ANOVA p-values of characteristics associated with  
brain structural volumes adjusted for FDR 

 
  Characteristics 

Pathways Metabolites Hispanic Race Marital Status American Diet F:B Ratio Obesity 

Brain 
Structure 
Volume  

Left Thalamus 0.08 0.024* 0.52 0.99 0.22 

Right Thalamus 0.22 0.23 0.47 0.99 0.24 

Left Caudate 0.23 0.35 0.95 0.71 0.31 

Right Caudate 0.23 0.35 0.95 0.71 0.31 

Left Putamen 0.95 0.92 0.76 0.60 0.77 

Right Putamen 0.95 0.92 0.76 0.60 0.84 

Left Pallidum 0.036* 0.87 0.88 0.97 0.99 

Right Pallidum 0.036* 0.87 0.68 0.97 0.99 

Left Hippocampus 0.96 0.64 0.37 0.80 0.24 

Right Hippocampus 0.96 0.64 0.74 0.80 0.16 

Left Amygdala 0.83 0.44 0.98 0.39 0.85 

Right Amygdala 0.83 0.30 0.98 0.11 0.85 

Left Accumbens 0.93 0.31 0.87 0.59 0.48 

Right Accumbens 0.93 0.24 0.87 0.61 0.48 

Brain Stem 0.011* 0.54 0.043* 0.52 0.39 

 
*P-value < 0.05 
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Figure 1. Microbial Profiles of Hispanic versus Non-Hispanic 

           
B. 
 

 
 

C. 

 
  

A. Alpha Diversity. Chao1 and Shannon Indexes illustrated in box plots of Hispanic vs. non-
Hispanic. B. Beta Diversity. Principal coordinates analysis plots of microbial composition of 
Hispanic vs. non-Hispanic. P-value is shown for the difference in root square Jensen-Shannon 
divergence distance matrix. C. Differential expression of microbial genera associated with 
Hispanic vs. non-Hispanic 
  

P = 0.032 P = 0.0029 

P = 0.046 

A.
. 
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Figure 2. Pearson correlations of significant characteristics 
 

A. 
Hispanic 

 

 

 
Non-Hispanic 

 
 

 
B. 

Married 
 

 
 

 
Not Married 

 

 

C. 
American Diet 

 

 
 

 
Non-American Diet 

 

 
D. 

Female 

 
 

 
Male 

 

 
Notable differences in correlation patterns were observed in four significant covariates: A. Hispanic vs. non-Hispanic, 
B. Married vs. not Married, C. American diet vs. non-American diet, and D. Female vs. Male. Continuous mapping 
displayed positive (red) or negative (blue) correlations with darker color representing stronger correlation. All 
correlations depicted are q < 0.05. Color boxes index amino acid (purple), brain structure (blue), F:B ratio (red), BMI 
(red) 
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Introduction: 

Obesity is a heterogenous, chronic condition that has reached pandemic proportions 

over the past 50 years.1,2 Defined as excessive fat accumulation diagnosed at a body mass 

index (BMI) ≥ 30 kg/m2, obesity has been associated with an increased risk of mortality, 

accounting for 19% of premature deaths, and is a major risk factor for other noncommunicable 

diseases including cardiovascular diseases, diabetes mellitus, and cancer.3,4,5 From 1975 to 

2016, the global prevalence of obesity has nearly tripled from 3.2% to 11.1% in adult men and 

from 6.4% to 15.3% in adult women.6,7 In the United States alone, over 88 million adults (42.4%) 

are estimated to be obese, of which non-Hispanic blacks (49.6%) have the highest age-adjusted 

prevalence of obesity, follow by Hispanics (44.8%), non-Hispanic Whites (42.2%) and non-

Hispanic Asians (17.4%).8 The heterogeneity in obesity prevalence between and within 

countries have been explained by not only ethnicity, but also socio-economic differences.9,10 For 

instance, disparities in obesity prevalence between neighboring countries might be explained by 

exposure to obesogenic or “Western-American” diet (high energy content, high sugar and fat, 

and low in fiber).11 Furthermore, prior studies that evaluate disparities in obesity prevalence in 

the United States have found that factors such as cultural norms, poverty, indicators related to 

the food environment (i.e. access to supermarkets or fast food restaurants), gender, marital 

status, and other demographic groups are also associated with obesity outcomes.12 Indeed, the 

obesogenic environmental and societal risk factors are multifaceted, and include dietary 

influences, social determinants, societal infrastructures, public health policies and beyond.13,14  

Current research supports the fundamental pathogenesis of obesity as an excessive 

energy imbalance overtime predisposed by genetic and epigenetic susceptibility and regulated 

by metabolic hemostasis.15,16 Notably, studies have highlighted a key regulatory role of the 

brain-gut-microbiome (BGM) signaling in obesity development.17,18,19,20,21,22 Signaling from the 

brain influences many gastrointestinal processes, including the gut microbiome.23 Alterations in 

the brain’s key reward and emotional regulation regions may also contribute to dysregulation of 
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appetitive behaviors and predisposition to obesity.24,25 Conversely, signals from the gut 

microbiota can alter neural signaling to the brain.26,27 While the exact mechanisms of BGM axis 

remain incompletely understood, emerging evidences have suggested that gut microbiota 

output of amino acids in part influence neurodevelopmental processes and contribute to the 

development of metabolic disorders.28,29 In particular, fecal metabolites, including branched 

chain amino acids (BCAA), aromatic amino acids (AAA), certain amino acids, as well as their 

downstream metabolic byproducts, have been shown to influence glucose homeostasis and 

insulin resistance.30 Additionally, alteration in gut microbial composition and diversity, or 

dysbiosis, have been associated with obesity. Other microbial signatures such as the 

Firmicutes:Bacteroidetes (F:B) ratio have been observed in obese individuals to potentially 

reflect differences in their metabolic profiles.31 Indeed, the heterogeneity of obesity and its 

complex causes are increasingly been recognized as reflected by a proposal to change the 

International Code of Diseases (ICD) classification of obesity from “endocrine, nutritional and 

metabolic diseases” to an overarching parent category instead based on arrays of its 

multifaceted etiologies, degree of adiposity and health risks.32,33 Albeit, significant questions 

remain about the relationships by which how in conjunction these biopsychosocial factors 

interact with BGM axis and contribute to obesity, and thus warrant further investigation.  

With our aim to better understand the heterogeneity of obesity at the transitional junction 

of obesity development, we conducted a cross sectional study in healthy overweight and obese 

individuals to examine the biopsychosocial interactions and to identify potential BGM 

biomarkers of obesity. Studied variables included sociodemographic (age, gender, ethnicity, 

education, income, and marital status), clinical (waist to hip ratio), and dietary-behavioral factors 

(dietary pattern). Gut microbiome, fecal metabolites, and brain structural volumes data were 

investigated as potential BGM biomarkers. Our study aimed to test the hypotheses that 1. 

interactions between covariates differed between overweight individuals compared to obese 
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individuals, and 2. gut microbiome, fecal metabolites, and brain structural volumes would 

characterize differential biophenotypes among the studied variables. 

 

Methods: 

Study Population 

The sample was comprised of 130 right-handed individuals, between the age of 18-50 

years old without significant medical or psychiatric conditions. Participants were recruited at the 

University of California Los Angeles (UCLA) Center for Neurobiology of Stress and Resilience 

(CNSR) between July 2015 and August 2019, through advertisements posted in the UCLA and 

Los Angeles community. Medical and psychiatric conditions were screened using a 

standardized screening sheet and a physical exam by a trained registered nurse. All participants 

were classified as healthy after a clinical assessment that included a modified Mini-International 

Neuropsychiatric Interview Plus 5.0.34 Exclusion criteria included substance abuse, pregnancy, 

tobacco dependence (half a pack or more daily), abdominal surgery, vascular risk factors, 

weight loss surgery, excessive exercise (more than 1 hour every day and marathon runners) or 

psychiatric illness. Even though often associated with increased BMI, participants with 

hypertension, diabetes or metabolic syndrome were excluded to reduce heterogeneity of the 

population. Also, participants with eating disorders, including digestive or eating disorders such 

as anorexia or bulimia nervosa were excluded for the same reason. Participants taking 

medications that interfere with the central nervous system or regular use of analgesic drugs 

were excluded. Participants were also excluded if they had been on antibiotics or probiotics with 

3 months of recruitment.  

All participants were in the overweight and obese category. In accordance to the World 

Health Organization (WHO) definition, BMI = 25 - 29.9 kg/m2 was defined as overweight, and ≥ 

30 kg/m2 was obese. No participants exceeded 400 lbs due to Magnetic resonance imaging 

(MRI) scanning weight limits.  
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Written informed consent were obtained from all participants prior to surveys and data 

collection. All procedures complied with the principles of the Declaration of Helsinki and were 

approved by the Institutional Review Board at our institution (IRB # 16-000187). 

Data Collection and Processing 

Anthropometrics data 

Our study included baseline data collection of participants’ sociodemographic 

information, body measurements and dietary consumption pattern. Sociodemographic data 

included information on age, gender, ethnicity, education, annual income, and marital status. 

We dichotomized age as “less than 30 years” (<30y) or “30 years or older” (≥30y), gender as 

“male” or “female,” ethnicity as “Hispanic” or “non-Hispanic,” education as “college graduate” or 

“non-college graduate,” annual income as “less than $70K” or “$70K or more,” and marital 

status as “married” or “not married.” Body measurements collected include weight (kilograms), 

height (centimeters), and waist and hip circumferences (centimeters). Waist to hip ratio were 

then computed based on the body measurements and was dichotomized as “obese” or 

“normal”, adjusted by the gender obesity cut-off of > 0.9 for male and > 0.85 for female.  

Diet Habits 

Dietary pattern was reported in a dietary consumption questionnaire, which asked 

participants to select the diet(s) that best reflect what they consume on a regular basis. 

Qualitative dietary pattern was reported as American diet or other diets, which we dichotomized 

as “American diet” or “non-American diet.” American diet was defined as diet characterized by 

of high consumption of processed foods such as frozen and packaged foods as well as pasta 

and breads; meats, including red meat, fish, eggs, and dairy products were also consumed; 

vegetables and fruits were consumed but not in large quantiles. Other diets and descriptions 

include Mediterranean, paleo, vegetarian, gluten free, diary free, low FODMAP (fermentable 

oligo-, di-, monosaccharides and polys), or other diets. Questionnaire was established by the 

UCLA CNSR. 
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Fecal specimen 

Fecal specimens were requested from eligible participants for microbiome and 

metabolite characterization. Participants were each provided with a fecal collection kit that 

included gloves, a collection hat, a preservative vial with an attached spoon, and an addressed 

stamped envelope. Participants were instructed to mail in fecal sample after collection. Fecal 

specimens were stored in -80oC freezer till sample processing. Fecal samples were aliquoted 

under liquid nitrogen.  

Microbiome Characterization: 16S Ribosomal RNA Sequencing 

Genomic DNA was extracted from 0.5 mL duodenal aspirate using the Powersoil kit as 

per the manufacturer’s instructions (MO BIO, Carlsbad, CA, USA). The V4 region of 16S 

ribosomal RNA (rRNA) genes was amplified and underwent paired end sequencing on an 

Illumina MiSeq (San Diego, CA, USA).35  The 253 base pair reads were processed using QIIME 

version 1.9.1 with default parameters.36 Sequence depth ranged from 37,860 to 631,287 

sequences per sample. Operational taxonomic units (OTUs) were picked against the May 2013 

version of the Greengenes database, prefiltered at 97% identity. The OTUs were removed if 

they were present in fewer than 10% of samples. Alpha diversity (i.e. diversity within a sample) 

were calculated in QIIME using OTU-level data rarefied to 37,860 sequences. 

Fecal Amino Acids Characterization 

Samples were also shipped to Metabolon for processing and analysis as a single batch 

on their global metabolomics and bioinformatics platform. Data was curated by mass 

spectroscopy using established protocols and software as previously described. 

Brain Magnetic Resonance Imaging 

MRI Acquisition 

Whole brain structural data was acquired using a 3.0T Siemens Prisma MRI scanner 

(Siemens, Erlangen, Germany). Detailed information on the standardized acquisition protocols, 

quality control measures, and image preprocessing were previously published. The following 



 6 

structural acquisition protocol was used: High resolution T1-weighted images were acquired: 

echo time/ repetition time (TE/TR) =3.26ms/2200ms, field of view (FOV)=220×220mm slice 

thickness=1mm, 176 slices, 256×256 voxel matrices, and voxel size=0.86×0.86×1mm.  

Quality Control and Preprocessing of images:  

Structural images were included based on compliance with acquisition protocol, full brain 

coverage, minimal motion (Gibbs ringing), absence of flow/zipper, and minor atrophy/vascular 

degeneration. Preprocessing for quality control involved bias field correction, co-registration, 

motion correction, spatial normalization, tissue segmentation, Maximum relative motion 

thresholds for translation and rotation for each direction (x, y, and z) were set at 2mm and 2°, 

respectively. No subjects presented with serious adverse imaging artifacts and no subjects 

exceeded motion thresholds.  

Structural Image Parcellation:  

T1-image segmentation and regional parcellation were conducted using FreeSurfer 

v.5.3.0 following the nomenclature described in the Destrieux and Harvard-Oxford subcortical 

atlas. This parcellation results in the labeling of 165 regions, 74 bilateral cortical structures, 7 

subcortical structures, the midbrain, and the cerebellum. 

Brain Regions of Interest 

Based on previous research, regions of interest were restricted to core regions of the 

reward and emotional regulation network (basal ganglia: caudate nucleus, globus pallidum, 

putamen, thalamus, nucleus accumbens, amygdala, hippocampus, and brainstem [including the 

substantia nigra/SN and ventral tegmental area/VTA]), as these regions have been implicated in 

brain-gut axis alterations associated with obesity. 

Statistical Analysis 

We conducted univariate and multivariate logistic regression models to estimate the 

unadjusted and adjusted odds ratios for covariates associated with the primary outcome, 

respectively. Primary outcome was overweight or obese categorization, for which we 
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dichotomized individuals as “overweight” (BMI = 25 - 29.9 kg/m2) or “obese” (BMI ≥ 30 kg/m2). 

Multivariate models were performed by minimizing the Bayesian information criterion (BIC) 

using backward stepwise method. Subgroup multivariate analyses were performed on 

significant covariates. Descriptive statistics were calculated as frequencies and percentages. 

Statistical significance for all analyses was set at P < 0.05. All statistical analyses were 

conducted using JMP PRO (Mac, version 14.0). 

Biological interactions including the gut microbiome, amino acid metabolism and brain 

structural volumes were also examined against primary outcome and covariates. Microbial data 

using 16S rRNA sequencing were analyzed for alpha diversity, beta diversity, and association of 

taxa abundance. Alpha diversity refers to metrics of diversity within a community (i.e. patient 

sample), which pertain to the total number of species (richness) or how evenly distributed the 

members of a community are among the species present (evenness).37 For our study, we used 

Chao1 (a metric of richness) and Shannon index (a metric of evenness) with 97% OTUs 

representing the equivalent of species. The significance of differences in alpha diversity was 

calculated by two-tailed t test. Beta diversity refers to comparison of microbial composition 

across communities (i.e. patient samples) based upon which species are present/absent or their 

relative abundances.38 In our study beta diversity was calculated using root square Jensen-

Shannon divergence distance, a phylogenetic metric that compares the fraction of a 

phylogenetic tree that is covered by the species present in one sample compared to another 

and visualized by principal coordinates analysis in R. Adonis, a permutational ANOVA, was 

carried out using 10,000 permutations to test for differences in root-square Jensen distances 

across the various covariates. Association of microbial genera with color grade and significant 

covariates were evaluated using DESeq2 in R-studio, which uses an empirical Bayesian 

approach to shrink dispersion and fit non-rarified count data to a negative binomial model.39 This 

method has previously been shown to be robust for detecting differences in the abundances of 

microbes in 16S rRNA datasets.40 P-values for differential abundance were converted to q 
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values to correct for multiple hypothesis testing (<0.05 for significance).41 Amino acid 

metabolites and brain structural volumes were analyzed using multiple one-way ANOVA. 

Parameters were controlled and corrected for multiple hypothesis testing by false discovery rate 

(FDR). Finally, Pearson correlations were performed with gut microbial (F:B ratio), fecal amino 

acids, brain structural volumes, and sociodemographic continuous variables (age and BMI). 

Correlations were analyzed among but not within types and were separated by significant 

categorical covariates (e.g. “Hispanic” vs. “non-Hispanic”). P-values for correlation were 

converted to q values to correct for multiple hypothesis testing (<0.05 for significance). 

Significant correlations (q < 0.05) were used to build multi-partite interaction networks for 

visualization. Continuous mapping displayed positive (red) or negative (blue) correlations with 

darker color representing stronger correlation. 

 

Results: 

Baseline Participant Characteristics 

Among 130 studied participants, 62 (48%) were overweight and 68 (52%) were obese. 

About half of all participants were ≥30y (55%) and earned an annual income less than $70K 

(56%). Majority of them were female (67%), non-Hispanics (60%), non-college graduate (70%), 

and not married (74%). Forty-four percent (44%) of participants had an obese waist to hip ratio, 

while 56% had a normal ratio. Most consumed typical American diet (76%), while one quarter 

consumed a non-American diet (24%), which include Mediterranean, paleo, vegetarian, gluten 

free, diary free, low FODMAP, or other diets. Compared to the overweight participants, obese 

participants were more likely to be Hispanic (50% vs. 29%, p =0.014), to be married (34% vs. 

16%, p=0.028), to have an obese waist to hip ratio (69% vs. 44%, p=0.043), and to consume an 

American diet (84% vs. 68%, p=0.031). Distribution of age, gender, education, and annual 

income were similar between the overweight and obese participants. Baseline characteristics 

are displayed in Table 1. 
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Odds of Obesity 

In univariate analyses (Table 2), individuals were found to have higher odds of obesity if 

they were Hispanic [Odds Ratio (OR) 1.56, p=0.014], were married (OR 1.62, p=0.028), had an 

obese waist to hip ratio (OR 1.67, p=0.043), and consumed an American diet (OR 1.57, 

p=0.031). Controlling for all covariates, multivariate analyses (Table 2) found that individuals 

had higher odds of being obese if they were Hispanic [Adjusted OR (AOR) 1.70, p = 0.0089] or 

married (AOR 1.63, p = 0.036). In subgroup analyses (Table 3), Hispanics had higher odds of 

obesity independent of other covariates, whereas non-Hispanics had higher odds of obesity if 

they were married (AOR 1.81, p=0.036). Among married individuals, those who consumed an 

American diet had higher odds of being obese (AOR 5.00, p=0.0019). For individuals who were 

not married, female had higher odds of obesity (AOR 1.63, p=0.04). Combined obesity OR of 

significant covariates were computed based on AOR from subgroup analyses (Table 4). The 

highest combined obesity OR (15.4) was observed with combined risk factors of Hispanic 

ethnicity (AOR 1.7), married (AOR 1.81), and American dietary consumption (AOR 5). The 

lowest combined obesity OR (1) was seen with combined factors of Non-Hispanic ethnicity 

(AOR 1), not married (AOR 1), and male gender (AOR 1). 

Microbiome analysis 

Microbial composition as represented by root square Jensen-Shannon divergence 

distance, a measure of phylogenetic similarity between samples, showed a statistically 

significant differences in the microbiome of samples of Hispanic participants compared to the 

non-Hispanic participants (p=0.046) (Figure 1B). A trend toward statistically significant 

differences in the relative abundance of the gut microbiota between participants with annual 

income below $70K and above $70K (p=0.066). Compared to the non-Hispanic, Hispanic 

participants had a significantly lower microbial species richness (Chao1) (p = 0.032) and 

evenness (Shannon) (p = 0.0029) (Figure 1A). Participants who were ≥30y also had a 

significantly lower microbial species richness (Chao1), and a trend toward a lower microbial 
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species evenness (Shannon) (p=0.099). Participants had similar beta and alpha diversity 

independent of other covariates (p>0.05) or obesity status (obese or overweight). 

Analysis of relative abundance of microbes at the phylum levels confirmed taxonomic 

shifts by Hispanic ethnicity (Figure 1C). Compared to non-Hispanic, Hispanic had relatively 

fewer Firmicutes and more Bacteroidetes (p=0.021), corresponding to a negative correlation of 

F:B ratio (Table 5). In contrast, participants who consumed primarily an American diet as 

opposed to a non-American diet had relatively more Firmicutes and fewer Bacteroidetes 

(p=0.036), corresponding to a positive correlation of F:B ratio. Among individuals with 

Bacteroidetes predominance (F:B ratio <1), neither Hispanic ethnicity (p=0.17) nor American 

dietary consumption (p=0.07) were significantly associated with being overweight or obese, 

albeit a trend toward statistical significance was observed (Table 6). On the contrary, among 

individuals with Firmicutes predominance gut microbiome (F:B ratio>1), odds of obesity was 

significantly magnified among the Hispanic (p=0.0062), while odds of obesity was similar 

independent of American dietary consumption (p=0.17). 

Amino Acid Metabolites 

Fourteen of twenty fecal amino acids including all essential amino acids were increased 

among Hispanic (p < 0.05). These include BCAA (leucine, isoleucine, valine), AAA 

(phenylalanine, threonine, tryptophan), other essential amino acids (histidine, lysine, 

methionine), and certain non-essential amino acids (glycine, tyrosine, serine, alanine, 

glutamate). Presence of fecal amino acids was not statistically different among other studied 

covariates including marital status, consumption of American diet, F:B ratio, and obesity status. 

Amino acid metabolites analyses are displayed in Table 7. 

Brain Structural Volumes 

Regional brain structural volumes were decreased among Hispanic (pallidum, p = 0.036; 

brainstem, p = 0.011), married (left thalamus, p = 0.024), and individuals who consumed an 

American diet (brainstem, p = 0.043). Compared to non-Hispanic, Hispanic participants also had 
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a trend toward a decreased in thalamus volumes (p=0.08). Hippocampus and amygdala 

structural volumes showed trend toward association with obesity status (p=0.16) and F:B ratio 

(p=0.11), respectively. Accumbens, caudate and putamen structural volumes were not 

significantly different among any studied covariates or obesity status. Brain structural volumes 

analyses are displayed in Table 8. 

Correlations 

Notable differences in correlation patterns were observed in the four significant 

covariates (Figure 2): A. Hispanic vs. non-Hispanic, B. married vs. not married, C. American diet 

vs. non-American diet, and D. female vs. male. First, Hispanic and non-Hispanic had opposite 

correlation patterns of 1. BMI with brain reward regions and 2. F:B ratio with fecal amino acids. 

In Hispanic, BMI was positively correlated to the brain emotional regulatory region (amygdala), 

and F:B ratio was negatively correlated to fecal amino acid (tryptophan). In non-Hispanic, BMI 

was negatively correlated to the brain satiety and reward regions (amygdala, hippocampus, 

thalamus, caudate), and F:B ratio was positively correlated with fecal amino acid (alanine). 

Second, unique correlation patterns were found in individuals who were not married. 

Specifically, BMI was positively associated with fecal amino acid (asparagine) and negatively 

correlated to brain satiety and reward regions (hippocampus, thalamus). Being not married was 

also found to have negative correlation of F:B ratio and fecal amino acids (tryptophan, glycine, 

aspartate, lysine). 

Correlation patterns of F:B ratio and fecal amino acids were opposite based on dietary 

patterns. For individuals who consumed an American diet, F:B ratio was positively correlated to 

fecal amino acids (cysteine, alanine, histidine). Whereas for individuals who consumed a non-

American diet, F:B ratio was negatively correlated to fecal amino acids (tryptophan, threonine, 

glycine, methionine, phenylalanine, cysteine, tyrosine). A positive correlation of brain satiety 

region (hippocampus) and fecal amino acid (glutamate) was observed for American diet 

consumption, whereas negative correlations of multiple brain regions (hippocampus, caudate, 
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thalamus, pallidum, putamen) with fecal amino acids (tryptophan, threonine, glutamine, 

methionine, phenylalanine, cysteine, tyrosine, valine, alanine, asparagine, aspartate, serine, 

glutamate, isoleucine, lysine, proline, leucine) were found for non-American diet consumption. 

Finally, notable gender differences were found in correlation pattern of fecal amino acids 

with brain reward regions. In females, fecal amino acid (histidine) was negatively correlated to 

brain reward region (amygdala). Whereas in males, fecal amino acids (lysine, leucine, 

isoleucine, methionine, glutamate) were positively correlated to brain satiety region 

(hippocampus). 

 

Discussion: 

In our cross-sectional study of 130 healthy participants, Hispanic and married individuals 

were associated with obesity despite other sociodemographic, clinical, and dietary differences. 

Significant interacting factors including female gender and American dietary consumption were 

found to further heighten the odds of obesity in our subgroup analyses. Intriguingly, Hispanic 

individuals expressed unique gut microbial, fecal amino acids and brain structural signature, 

while married individuals were found to have decreased thalamus structural volume. Individuals 

who consumed an American diet were found to have distinct Firmicutes predominance 

microbiome and decreased brainstem volumes, but its independent association to obesity was 

subjugated to other covariates. Correlation patterns suggest complex BGM interactions among 

significant obesogenic biopsychosocial characteristics. Taken together, our study provides 

findings that inform further precision understanding of obesity heterogeneity.  

Consistent with previous literatures, our findings support the understanding of the 

complex pathogenesis of obesity and underscore the obesity risks among the Hispanic and 

married.42,43,44,45,46 According to the Center for Disease Control (CDC), Hispanic Americans are 

1.2 to 1.8 times more likely to be obese than non-Hispanic whites across all age groups.47 The 

disproportional obesity prevalence in turn contributes to the significant health disparities among 
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the Hispanic community.48,49,50,51,52,53 On the contrary, studies have suggested that marriage 

associates with weight gain, but also promotes overall health.54,55 Certainly, a multitude of other 

factors might confound the underlying risks and influence the health burden of obesity.56,57 Our 

subgroup analyses, for instance, found that female gender and consumption of a typical 

American diet potentiate the odds of obesity among the Hispanic and married. For the Hispanic, 

prior studies have hinted at contributing causes of obesity including higher rates of 

unemployment, higher levels of food insecurity, and poor access to healthcare resources.58,59,60 

Marital association to obesity might be subjected to economic, cultural, or psychosocial 

influences beyond that of our studied covariates.61 Acknowledging that our understanding 

remains generalized, however, the challenge will be to devise obesity prevention and 

management strategies that are individualized. 

Recent efforts toward a more precision understanding of obesity have directed our 

attention to the gut microbiome.62,63 In our study, we found that individuals who are obese 

compared to overweight have similar microbial profiles, suggesting that these two “metabolic 

states” might not be detected by the gut microbiome alone. In contrast, distinct microbial profiles 

characterized by lower microbial species richness (Chao1) and evenness (Shannon) were 

observed in Hispanic individuals, suggesting dysbiosis might be a potential link to the observed 

ethnic differences. Indeed, dysbiosis have been described to associate with many other chronic 

conditions such as diabetes, inflammatory bowel diseases, colorectal cancer, and even 

aging.64,65,66,67 In our study, individuals who were ≥30y of age had lower microbial diversity than 

those <30y; whether this is contributing to or is a consequence of aging is yet to be elicited. 

Certainly, the lower microbial diversity observed in Hispanic and older individuals suggests 

correlation to dysbiosis and thus warrant further investigation.  

Intriguingly, we observed a distinct microbial predominance of the phylum Firmicutes or 

Bacteroidetes among individuals who consume an American diet or who are Hispanic, 

respectively. The significance of this observation, to be sure, is debatable.68,69,70,71 Several 
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reports though have suggested that a relative reduction in the phylum Bacteroidetes and a 

proportional increase in Firmicutes are characteristic of metabolic syndrome such as in 

obesity.72,73,74 In our analyses, we observed that among the Bacteroidetes predominance 

individuals with neither being Hispanic nor consumption of an American diet is associated with 

obesity. On the contrary, among the Firmicutes predominance individuals, the odds of being 

obese for Hispanic is magnified. In other words, having a Bacteroidetes predominance gut 

microbiome appears to exhibit a “protective” effect to dampen the odds of obesity, while having 

a Firmicutes predominance gut microbiome “detrimentally” heighten the odds. Notably, we 

observed no significant difference in the relative abundance of Firmicutes to Bacteroidetes 

between the overweight and obese, suggesting that once again any microbial difference 

between the obese and overweight might be too small to be detected. Acknowledging that there 

have also been contradictory studies, the relative abundance of Firmicutes to Bacteroidetes is 

nevertheless a simple and potentially a meaningful microbial signature that can assist in further 

differentiating heterogeneity of obesity.75,76 

As the studies of the gut microbiome have led us to recognize the significance of the 

microbial composition, they have also inspired research efforts into the fecal metabolites.77,78 By 

examining the metabolic byproducts of macro- and micronutrient, studies of the metabolites or 

metabolomics attempt to address not what but how the microbiome contribute to the host body 

homeostasis.79 While the exact mechanisms are yet to be elucidated, prior studies have 

suggested that the gut microbiome alter the bioavailability and distribution of free amino acids in 

the gastrointestinal tract, and in turn modulate synthesis of short-chain fatty acids (SCFA) and 

thus host metabolism.80,81 Interestingly, certain amino acids such as the BCAA and AAA are 

found to be more closely associated with metabolic disorders.82,83 Alteration of plasma BCAA 

metabolism, for instance, was found to result in accumulation of toxic metabolites, which 

subsequently trigger mitochondrial dysfunction and stress signaling associated with insulin 

resistance.84,85 In our study, we found that Hispanic, when compared to non-Hispanic, had 
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greater abundance of distinct fecal amino acids, including BCAA (leucine, isoleucine, valine), 

AAA (phenylalanine, threonine, tryptophan), other essential amino acids (histidine, lysine, 

methionine), and certain non-essential amino acids (glycine, tyrosine, serine, alanine, 

glutamate). Amino acids profiles were similar among other studied covariates. Taken together, 

one might infer that an increase in fecal amino acids abundance suggests either an increase in 

amino acids synthesis and/or uptake, or a decrease in amino acids breakdown. Questions, 

however, remained as to the underlying cause and implications of such findings. Although 

causality might not be confirmed, metabolomics seems to bring us closer to a more precise 

understanding of perhaps ethnic differences of obesity that invites further investigation. 

Equally intriguing are our findings of reduced brain structural volumes among the 

individuals with obesity risk factors. We have known for decades that obesity has been linked to 

a number of underlying neurobiological changes. In particular, prior studies have revealed that 

individuals who are obese exhibited smaller cortical thickness and total cerebral volume.86 In a 

prospective observational study of 12,087 participants, total body fat (TBF) in men is negatively 

associated with all subcortical gray matter volumes (thalamus, caudate nucleus, putamen, 

globus pallidus, hippocampus, and nucleus accumbens, except for amygdala), while TBF in 

women is negatively associated with globus pallidus volume.87 Literatures suggest that a 

reduction in neuronal fiber bundle length, which has been found to correlate with elevated BMI, 

is believed to contribute to the brain atrophy.88 In our study, brain structural volumes were 

decreased among the Hispanic (pallidum, p = 0.036; brainstem, p = 0.011), married (left 

thalamus, p = 0.024), and individuals who consumed an American diet (brainstem, p = 0.043). 

These regions of volume reduction correspond to the brain reward network, suggesting potential 

neurobehavioral associations to these obesity risk factors.89 Interestingly, brain structural 

volumes are not significantly different between the overweight and obese, which parallel to their 

resemblance of gut microbiome and fecal metabolites. Certainly, our understanding is still at its 
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infancy, but our findings present a promising perspective to understand the heterogeneity of 

obesity and to guide future translational and functional studies. 

Notably, a probable cross-link among our findings that merit further exploration is the 

brain-gut axis. In our correlation analyses we find evidence to support the intricate BGM 

connection to obesity. Among the four significant covariates (Hispanic ethnicity, marital status, 

American dietary consumption, and gender), significant correlation networks were found, 

including correlations between 1. BMI with brain reward regions (BMI-Brain), 2. BMI with fecal 

amino acids (BMI-AA), 3. fecal amino acids with gut microbiome (AA-GM), and 4. brain reward 

regions with fecal amino acids (Brain-AA). Our analyses support a plausible hypothesis that a 

complex relational network exists among fecal amino acids, dysbiosis (per F:B ratio), brain 

reward network and obesity. To be sure, correlational relationships do not necessarily prove 

causation, and their interpretations might be challenging given possibility of confounders. 

However, correlations do provide valuable insights into the direction and strength of the studied 

relationships, which may be useful for hypotheses generation in future investigations. As such, 

several interesting observations of the correlational network are noteworthy to discuss: 

First, a positive BMI-Brain correlation with the amygdala (emotion regulatory region) was 

observed for the Hispanic, whereas negative BMI-Brain correlations with the hippocampus 

(satiety region) were found across number of factors including non-Hispanic, female, being not 

married, and consumption of an American diet. Acknowledging the heighten obesity risk of the 

Hispanics, a positive BMI-Brain correlation suggests dysregulation of the brain emotional 

network might play a contributing role its disproportional obesogenic risk. On the contrary, 

negative BMI-Brain correlations with the hippocampus might suggest potential negative 

feedback of satiety signaling or hippocampus volume reduction due to obesity. Second, from the 

perspective of the microbiome, all positive AA-GM correlations involve cysteine, alanine, or 

histidine, whereas negative AA-GM correlations involve tryptophan. Notably, opposite AA-GM 

correlations between and within two contrasting factors are observed: 1. American diet (positive) 



 17 

vs. non-American diet (negative) and 2. Hispanic (negative) vs. non-Hispanic (positive). The 

opposite AA-GM correlations within and between dietary pattern and ethnicity might suggest 

opposite mechanistic pathogenesis of obesity that depend on Firmucutes and Bacteroidetes 

influence on fecal amino acids. For instance, Firmucutes predominance association to American 

dietary consumption might promote fecal cysteine, alanine, or histidine production and in part 

contribute to its obesogenic potentials, or Bacteroidetes predominance association to Hispanic 

ethnicity and its negative correlation to fecal tryptophan might influence ingestive behavior, 

appetite, and metabolic homeostasis.90 Third, glutamate has direct negative correlation to BMI, 

whereas asparagine has direct positive correlation to BMI. Interestingly, a recent study that 

aimed to identify metabolic pattern associated with obesity found that plasma concentration of 

amino acids including glutamate, alanine, proline, tyrosine, and BCAAs were higher in the 

obese participants, while asparagine and serine were higher in non-obese participants.91 

Consistent to this observation, our study suggests that balancing the gastrointestinal absorption 

and execution of amino acids such as glutamate and asparagine might have direct correlation to 

obesity. Finally, we found that positive Brain-AA correlations commonly involve the 

hippocampus (brain satiety region) with glutamate, whereas negative Brain-AA correlations 

involve many other brain regions (amygdala, hippocampus, thalamus, accumbens, caudate) 

with commonly BCCA (leucine, isoleucine, valine), AAA (phenylalanine, threonine, tryptophan) 

and methionine.92 The direct and indirect interactions of fecal amino acids and brain regions are 

though complex, making interpretation of our finding challenging. For instance, synaptic 

glutamate signaling in brain includes multiple interacting receptors, modulating cotransmitters 

and distinct regional dynamics that have been implicated in anxiety, stress, memory, and certain 

psychiatry disorders.93 An animal study has suggested that high fat diets trigger neurochemical 

changes through glutamatergic transmission, leading to a desensitization of NMDA receptors 

within the hippocampus, which might account for cognitive deficits.94  
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Indeed, we have come a long way in understanding the heterogeneity of obesity, but we 

ought to recognize that obesity is not only heterogenous in its pathophysiology, but also is in its 

manifestations and its response to therapies.95 For instance, individuals with similar body weight 

or BMI have been shown to exhibit markedly different co-morbidities and levels of health 

risk.96,97 Although majority of individuals with obesity will develop conditions such as diabetes or 

cardiovascular disease, a minority proportion will remain free of cardiometabolic comorbidities 

during their lifetime and even metabolically healthy.98 Furthermore, the heterogeneity of obesity 

is complicated by the recognition that the current "one-size-fits-all" treatment approaches, 

including pharmacotherapy, diet and lifestyle interventions, are often hit-or-miss with highly 

variable efficacies and outcomes.99 Only until recently, studies have begun to reveal distinct 

clinical subtypes of obesity that have differential responses to pharmacotherapy.100  While still at 

its infancy, precision obesity care is undoubtably on the horizon.101 

Several limitations need acknowledgement. First, our cross-sectional study design 

limited our ability to establish temporal or causal relationships between the studied covariates 

and the primary outcome of obesity status. A prospective observational study design might 

provide enhanced power and temporal association to our observations, but feasibility of such 

design is challenging. Our sample size of 130 participants is notable but a larger sample size 

can yield greater power given multiple hypothesis testing and correction. In addition, our 

microbiome, metabolites, and brain structural volumes data contain missing data, which 

confound interpretation. Given the multifactorial nature of obesity, not all relevant variables 

might be represented by our covariates. Subject to recall or social desirability bias, self-reported 

dietary pattern can be strengthened with actual dietary consumption data, albeit collection of 

actual diet consumption data presents its own challenge. Continuous covariates (i.e. age, waist 

to hip ratios) and outcome variables (i.e. obesity status instead of BMI) were dichotomized with 

the advantage for ease of statistic computation, but power to detect statistical significance 

difference can be compromised.102 our Lastly, our participants are recruited confined to a 
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community at Los Angeles and our analyses are limited to the population of healthy individuals 

who are overweight or obese, hence limiting generalizability. 

Nevertheless, our findings present a noteworthy perspective in understanding how 

heterogeneity of obesity is influenced by biopsychosocial risk factors and might be precisely 

differentiated through gut microbial, fecal metabolites and brain structural characterization. We 

conclude to accept our hypotheses and find consistent evidence to suggest Hispanic and 

married individuals are associated with obesity despite sociodemographic, clinical, and dietary 

differences. Notably, Hispanic might express a unique gut microbial, fecal amino acids, and 

brain structural volumes signature that warrant future research. Microbial characterization in 

particular is an emerging predictive marker for therapeutics and might also serve as selection 

biomarker in obesity practices and clinical trials. By addressing ethnic disparities guided by 

precision phenotypes, we may potentially unlock novel understanding of obesity heterogeneity 

and transform its impact on obesity care. 
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