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A hybrid approach to molecular continuum processes combining Gaussian basis

functions and the discrete variable representation

T. N. Rescigno,1 D. A. Horner,2 F. L. Yip,2 and C. W. McCurdy3, 1

1Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, CA 94720
2Department of Chemistry, University of California, Berkeley, CA 94720

3Departments of Applied Science and Chemistry, University of California, Davis, CA 95616

Gaussian basis functons, routinely employed in molecular electronic structure calculations, can
be combined with numerical grid-based functions in a discrete variable representation to provide
an efficient method for computing molecular continuum wave functions. This approach, combined
with exterior complex scaling, obviates the need for slowly convergent single-center expansions, and
allows one to study a variety of electron-molecule collision problems. The method is illustrated by
computation of various bound and continuum properties of H+

2 .

I. INTRODUCTION

The theoretical treatment of electron-impact ioniza-
tion and double photoionization of small atomic and
molecular species has, in recent years, become an im-
portant and active area of research. For the simplest
atomic three-body Coulomb systems [1, 2], significant
advances in both theory and computation have been
made. It is now possible to carry out a complete first-
principles “reduction to computation” of virtually all as-
pects of the problem, including the most detailed fully
differential cross sections, for both electron-impact ion-
ization “(e,2e)” and double photoionization “(γ, 2e)”.
Grid-based numerical methods employing exterior com-
plex scaling (ECS) have played a key role in this devel-
opment and have been successful in treating problems
characterized by the presence of one or two continuum
electrons in the final state [3]. In general, complex scaling
avoids the explicit enforcement of asymptotic boundary
conditions by imposing a transformation on the electron
coordinates that causes outgoing waves to decay expo-
nentially [4]. Exterior complex scaling [5, 6] also sim-
plifies the imposition of asymptotic boundary conditions
through the use of complex coordinates, but by scaling
electron coordinates only beyond the radius of a hyper-
sphere, it allows physical quantities to be extracted from
a region of space where all coordinates are real. Nu-
merical grid-based treatments such as finite difference
schemes [2], finite element methods [7, 8], the discrete
variable representation (DVR) coupled with finite ele-
ments [9], and most recently, B-spline [10, 11] examples,
have been successful in incorporating exterior complex
scaling for the solution of scattering problems, providing
converged solutions that are insensitive to the details of
exterior complex scaling parameters.

While the extension of current methods to simple
molecular targets is conceptually straightforward, the
practical consequences of treating a non-spherically sym-
metric target present formidable computational chal-
lenges. By choosing product basis functions for each elec-
tron of the form

χilm(r) = fi(r)Yl,m(r̂) , (1)

composed of a radial part fi(r) and spherical harmon-
ics Yl,m(θ, φ), to represent the angular coordinates, then
ECS can be simply applied to the radial coordinates to
produce outgoing wave solutions that decay exponen-
tially beyond some fixed radial point recs. A basis of
radial functions with compact support, such as B-splines
[12] or DVR position eigenfunctions [13], is particularly
useful for describing electronic coordinates at large r,
thus allowing for a large region of space to be efficiently
described almost completely. In addition to being well
suited for ECS, that is, without acquiring physical con-
sequences sensitive to the details of complex scaling [10],
the use of such functions facilitate the computation of
matrix elements through simple numerical formulas and
produce sparse or structured matrices that can easily be
computed and diagonalized. An atomic product basis of
the type given in Eq. (1) could also be used, in conjunc-
tion with an expansion about a single-center, to treat
molecular problems, but the lack of spherical symmetry
results in coupling between the various angular momen-
tum channels that is not present in the atomic case. The
single-center approach has in fact been employed, in con-
juction with an ECS implementation using B-splines, in a
first-principles study of double photoionization of molec-
ular hydrogen [14]. While such an approach is viable
for the simplest molecular targets such as H2 or D2, it
would be difficult to generalize to heavier systems, since
single-center expansions become increasingly difficult to
conve7rge as the nuclear charge increases beyond one and
would require many partial waves to achieve accurate re-
sults.

In contrast to numerical grid schemes, analytic ba-
sis functions have been extensively applied to molecu-
lar problems, particularly to bound-state molecular elec-
tronic structure problems. Gaussian basis functions are
ubiquitous in computational quantum chemistry, since
matrix elements involving Gaussians centered on diffrent
nuclei can be evaluated in terms of known analytic func-
tions. The inherent local nature of Gaussian functions
also means that they are not, by themselves, well-suited
for scattering calculations where electrons must be well
described at distances far from nuclear centers. The in-
clusion of increasingly diffuse Gaussians or expansively
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FIG. 1: Description of areas of physical space where different basis representations of electronic coordinates are best suited. In
a mixed-basis composed of Gaussians and DVR functions, a radial interface r0 specifies the linkage between the two constituent
bases.

large basis sets as a remedy to their locality eventually
fails due to the development of linear dependencies within
the Gaussian basis. Furthermore, in connection with ex-
terior complex scaling, Gaussian functions, like other an-
alytic basis functions, require a cumbersome “smoothed”
exterior scaling treatment that can produce unwanted
physical consequences [15–17].

It is our intent here to demonstrate that Gaussian ba-
sis functions, which are ideally suited to describing the
multi-center behavior of molecular wave functions over a
restriced region of space, can be combined with exterior
scaled finite-element/DVR functions to provide a hybrid
basis that is well suited for applications to molecular scat-
tering problems, including (e,2e) and (γ,2e) problems.
Moreover, the combination of numerical grid-based ap-
proaches with traditional Gaussian basis expansions al-
lows one to make a connection with standard quantum
chemistry descriptions of many-electron target states.
Such connections were central to the development of
modern variational methods used in electron-polyatomic
molecule scattering calculations and are a key motivating
factor in the present work. The formulation of a proper
linearly independent aggregate basis requires considera-
tion of the coupling bewteen the two component bases
and a practical scheme for evaluating the requisite ma-
trix elements in the hybrid basis. The following section
describes the hybrid basis and outlines the construction
of one-electron operators. In Section III we provide some
illustrative examples involving the hydrogen molecular
ion H+

2 . We conclude with a brief discussion.

II. CONSTRUCTION OF A HYBRID

GAUSSIAN-DVR BASIS

The mixed Gaussian-DVR basis is defined by the re-
gions of space where either Gaussian basis functions or
DVR basis functions are better suited to compute phys-
ical quantities. We therefore begin by partitioning space
into an inner region 0 ≤ r < r0, which contains the nu-
clei, and an outer region which extends to some large dis-
tance rmax. For scattering problems, the outer region is
further divided into an intermediate region r0 ≤ r < recs
and an asymptotic region recs ≤ r < rmax. This spatial
partitioning is depicted in Fig. 1. Electron radial coor-
dinates will be complex- scaled only in the asymptotic
region under the ECS transformation,

r →
{

r r < recs
recs + (r − recs)e

iη r ≥ recs
(2)

We must choose recs large enough that the interaction po-
tentials can be safely truncated beyond that point. Since
the DVR basis functions have compact support and do
not extend inward of r0, the inner region will be spaned
only by Gaussians. The Gaussians, on the other hand,
can extend into the intermediate region, but are assumed
to be negligible in the asymptotic region. This requires
that the Gaussian basis and DVR grid be chosen to en-
sure all Gaussian functions are effectively zero beyond
recs. For small molecules, this is generally not a problem
since recs is typically located tens of bohr away from the
nuclei. The location of the interface r0 which marks the
beginning of the DVR region depends on several factors.
Generally, these include the fixed nuclear geometry and
the nature (i. e. , radial extent) of the Gaussian basis. Be-
fore discussing the factors which determine the optimal
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location of r0 and the operational interplay between the
Gaussian and DVR basis functions, it is appropriate to
elaborate on the dominant basis functions of the intervals
separated by r0 in Fig. 1.

Little need be said here about the choice of Gaus-
sian functions as a basis for expanding molecular or-
bitals. Since the independent proposal of Boys [18] and
McWeeny [19], the use of Gaussian basis functions has
pervaded atomic and molecular electronic structure the-
ory [20]. Although atomic orbitals are better described
by Slater-type orbitals (STOs), Gaussian basis func-
tions (GTOs) have distinct computational advantages
over STOs in molecular calculations, benefiting from the
fact that the product of two Gaussians on different cen-
ters yields another Gaussian centered along the line con-
necting the two. This fact results in computational ef-
ficiency relative to STOs by reducing the evaluation of
two-electron Coulomb repulsion matrix elements for two-
electron operators to calculations involving at most two-
center integrals. The most common type of Gaussians,
which we also employ here, are Cartesian Gaussian func-
tions of the form

GΓ(r) = N(x−XΓ)lΓ(y − YΓ)mΓ(z −ZΓ)nΓe−αΓ|r−RΓ|
2

,
(3)

where N is a normalization constant and (XΓ, YΓ, ZΓ)
are the Cartesian components of the center RΓ. These
“primitive” Gaussians are frequently employed as basis
functions in fixed linear combinations or “contractions”,
which are chosen to model STOs for the construction of
atomic or molecular orbitals [21–25].

Many one-electron matrix elements, including overlap
integrals

SΓΓ′ =

∫ ∞

0

GΓ(r)GΓ′(r)dr (4)

as well as kinetic energy and electron-nuclear attraction
matrix elements,

TΓΓ′ = − 1
2

∫ ∞

0 GΓ(r)∇2GΓ′(r)dr, (5)

VΓΓ′ =
∫ ∞

0 GΓ(r) 1
|r−R|GΓ′(r)dr (6)

can be expressed in closed form in terms of well known
analytic functions [20]. The computation of these quan-
tities, as well as other one- and two-electron matrix el-
ements, has been continuously refined and incorporated
into numerous atomic and molecular structure software
packages.

The discrete variable representation that we employ
takes the analysis of Manolopoulos and Wyatt [26] as its
point of departure. It combines a high order treatment
of the kinetic energy operator in a polynomial basis with
the advantage of providing a diagonal representation of
the radial portion of any local operator, which dramati-
cally simplifies the computation of matrix elements of the
potential. On the interval [a, b] one can define normalized
DVR basis functions in terms of Lagrange interpolating

polynomials as

fi(r) =

{

w
−1/2
i

∏

j 6=i
r−rj

ri−rj
a ≤ r ≤ b

0 otherwise
. (7)

The mesh points [ri] and weights [wi] are derived from a
Gauss-Lobatto quardature. Gauss-Lobatto quadrature is
similar to the more familiar Gauss-Legendre quadrature,
both of which approximate integrals as,

∫ b

a

F (r)dr ≈
n

∑

i=1

F (ri)wi. (8)

In Gauss-Lobatto quadrature, two of the points are con-
strained to coincide with the end points, which means
that Eq.(8) can be made exact when F (r) is a polyno-
mial of degree ≤ 2n− 1.

The DVR functions have the property, when evaluated
at the mesh points, that

fi(rj) = δi,j/
√
wi (9)

and they are thus orthonormal under Gauss-Lobatto in-
tegration,

∫ b

a

fi(r)fj(r)dr ≈
n

∑

k=1

fi(rk)fj(rk)wk = δi,j . (10)

It also follows from Eq. (9) that, under Gauss-Lobatto
integration, the DVR functions give a diagonal represen-
tation of any local radial operator:

∫ b

a

fi(r)V (r)fj(r)dr ≈
n

∑

k=1

fi(rk)V (rk)fj(rk)wk

= δi,jV (ri).

(11)

Note that, while the Gauss-Lobatto quadrature rules only
require the evaluation of operators at the mesh points,
the DVR functions, through Eq. (7), have an underlying
continuous representation that can be used to evaluate
the wave function at any value of r.

Since Gauss-Lobatto quadrature explictly includes the
end points as quadrature points, it is possible to combine
this particular variety of DVR with the finite-element
method by imposing continuity conditions at element
boundaries. In the FEM-DVR approach [9] we divide
the ECS contour for the radial coordinate of each elec-
tron into one-dimensional finite elements with one of the
boundaries coinciding with the point recs where the real
and complex parts of the contour join. In each element we
use the same order n Gauss-Lobatto quadrature. In the
proposed hybrid method, the first radial element begins,
not at the origin, but at the point r0. The boundary con-
dition that the wave function vanish at the end of the grid
is imposed by simply excluding the DVR function asso-
ciated with the last point rmax. Similarly, we exclude the
DVR function associated with the point r0 to insure con-
tinuity of the overall basis across that point. This does



4

not imply an unphysical constraint on the wave function,
since the Gaussian portion of the basis does not vanish
at r0. Further details about the FEM-DVR procedure
can be found in refs. [9] and [3].

The hybrid basis, then, consists of a set of Gaussian
functions which span the inner region centered on the
molecule and extends beyond r0, but not beyond recs,
along with a set of orthonormal DVR functions, which
begin at r0, are real-valued out to recs and complex
from recs to rmax. These DVR functions are then com-
bined with spherical harmonics to complete the basis.
Matrix elements involving only Gaussian functions can
be easily calculated using known analytic expressions,
while matrix elements involving DVR functions or Gaus-
sians and DVR functions are computed numerically. We
found that the radial portions of all of the DVR and
most of the mixed Gaussian/DVR matrix elements were
adequately approximated using Gauss-Lobatto quadra-
ture. The sole exception was found to be the overlap
integrals between Gaussians and DVR functions which
we found to be needed to very high accuracy. The ra-
dial parts of these integrals were therefore computed us-
ing high-order Gauss-Legendre quadrature. The angular
parts of all numerically computed matrix elements were
performed to machine accuracy using high-order Gauss-
Markov quadratures tabulated by Lebedev and Laikov
[27].

III. ILLUSTRATIVE EXAMPLES: BOUND AND

CONTINUUM STATES OF H
+

2

A. Bound States

To illustrate the power of the hybrid representation
discussed above, we present the results of several calcu-
lations on the simplest one-electron molecule, H+

2 . For
these calculations, the coordinate origin was placed at
the midpoint of the molecular axis with the nuclei situ-
ated along the z-axis. The Born-Oppenheimer electronic
Hamiltonian for H+

2 in atomic units (~ = e = me = 1) is

H = −1

2
∇2 − 1

|r −A| −
1

|r + A| . (12)

In this geometry, the azimuthal quantum number m is
a good quantum number and eigenstates possess a def-
inite parity. For all problems considered, the Gaussian
basis consisted of six s-type functions and four p-type
functions centered on each nucleus. The s-type functions
were simply chosen as the six functions with the largest
exponents from Huzinaga’s ten-s expansion of the hydro-
gen 1s function in Gaussians [21]. The orbital exponents
for the p-type functions were chosen as 3.0, 1.5, 0.75 and
0.325. This modest-sized basis of Gaussians is by itself
incapable of giving a good description of any of the bound
states of H+

2 . The calculations were all carried out at the
equilibrium internuclear distance, R = 2.0 bohr.

TABLE I: Energies of the 2Σg,u states of H+

2 at an internuclear
distance of R = 2.0 bohr.

State Energy (a. u.)

Hybrid basis Reference [28]

1sσg −0.602 619 −0.602 634

2pσu −0.167 523 −0.167 534

2sσg 0.139 140 0.139 135

3pσu 0.244 589 0.244 587

3dσg 0.264 230 0.264 222

3sσg 0.322 321 0.322 319

4pσu 0.362 686 0.362 687

4dσg 0.369 210 0.369 208

4fσu 0.373 355 0.373 356

5fσu 0.419 349 0.419 156

5gσg 0.419 664 0.419 627

6hσu 0.445 904 0.444 329

We begin with calculations on the first few bound
eigenstates of 2Σg and 2Σu symmetry. For these cal-
culations, a basis of real DVR functions, combined with
spherical harmonics up to l = 7 were generated using
17th order Lobatto quadrature in five real finite elements
of length 5.0 bohr beginning at r0 = 1.1 bohr. The results
for gerade (l = 0, 2, 4, and 6) and ungerade (l = 1, 3, 5,
and 7) configurations are displayed in Table I, along with
the accurate values given by Madison and Peek [28]. The
small differences seen between the two sets of values can
be attributed, not to errors in the DVR portion of the
basis, but to the modest size of the Gaussians basis used
here and consequent small errors in the wave functions
in the interior regions near the nuclei. Indeed, addition
of more partial wave DVR functions did not change the
results to the number of figures shown.

Further evidence about convergence of the DVR ex-
pansion in the hybrid basis is provided in Table II, which
shows convergence in l for the lowest eignvalue in the hy-
brid basis, as well as in a pure single-center, DVR-only
radial basis. With the hybrid basis, convergence to six
significant figures is obtained with lmax = 8, while the
single-center basis results, with lmax = 12, are still vary-
ing in the fourth figure.

B. Continuum States

The continuum states of the H+
2 ion are solutions of

the equation:

[

H − k2

2

]

Φ(+)(k, r) = 0 , (13)

whereH is the Hamiltonian defined in Eq. (12). To apply
ECS to solve this equation, we must convert it into a
driven equation for the scattered wave part of Φ(+). The
incoming wave part of the solution of Φ(+) is determined
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TABLE II: Convergence of the 1sσg ground state of H+

2 at
R = 2.0 bohr.

Energy (a. u.)

Gaussian Basis

−0.601 860

lmax Hybrid basis DVR only

0 −0.602 430 −0.518 475

2 −0.602 504 −0.583 470

4 −0.602 599 −0.596 067

6 −0.602 619 −0.599 501

8 −0.602 620 −0.600 734

10 −0.602 620 −0.601 264

12 −0.602 620 −0.601 522

Reference [28]

−0.602 634

by the long range behavior of the potential and thus is
the same as that of the atomic Coulomb problem with
Z = 2. We can therefore write

Φ(+)(k, r) = χ(k, r) + g(r)ψ(+)
c (k, r) , (14)

where ψ
(+)
c (k, r) is the standard (Z = 2) Coulomb func-

tion, whose incoming momentum specifies the direction
of k and g(r) is a cutoff function which is zero at r = 0
and must approach one as r gets large, but is otherwise
arbitrary. The Coulomb function can be expanded in
partial waves as

ψ(+)
c (k, r) =

(

2

π

)1/2
∑

l,m

ileiηl(k)Y ∗
l,m(k̂)

φ
(c)
l,k (r)

kr
, (15)

where φ
(c)
l,k (r) is the standard radial Coulomb function

which goes asymptotically as sin
[

kr + (Z/k) ln 2kr −
πl/2 + ηl(k)

]

with the Coulomb phase shift ηl(k). We
can therefore construct the function χ(k, r) defined in
Eq. (14) from the solutions of the driven equations

(k2

2
−H

)χ(r)l0 ,m(r)

r
=

(

H − k2

2

)

g(r)
φ

(c)
l0 ,k(r)

r
Yl0,m(r̂) .

(16)
To solve Eq. (16), we expand χ(r)l0,m(r) as

χ(r)l0,m

r
=

∑

Γ

cl0,m
Γ GΓ(r) +

∑

i,l

cl0,m
il

fi(r)

r
Yl,m(r̂)

≡
∑

Γ

cl0,m
Γ GΓ(r) +

∑

l

Rl0,m
l (r)

r
Yl,m(r̂) .

(17)
Sincem is a good quantum number, the Cartesian powers
of the Gaussian functions (ie, lΓ,mΓ and nΓ of Eq. (3))

can be restricted to sum to m. Substitution of this ex-
pansion into Eq. (16) leads to a set of complex linear
equations for the unknown coefficients. If we choose the
cutoff function g(r) to be non-zero only for r-values be-
yond the range of the Gaussian functions, then no matrix
elements between Gaussians and Coulomb functions are
required in setting up the right hand side of the linear
equations. The T -matrix elements can be obtained by
matching the behavior of χ(r)l0m to the asymptotic form

χ(r)l0m −→
r→∞

∑

l

Tm
l,l0Yl,m(r̂)ei(kr+(Z/k) ln 2kr−πl/2+ηl(k))

(18)
at large values of r where g(r) is one.

In Tables III and IV we show elements of the lowest
3 × 3 block of the T-matrix computed using the hybrid
basis using six real finite-elements of 17th order DVR,
and a complex turning point R0 = 50.0 bohr. For these
calculations, l-values up to 7 were included. A com-
pletely converged calculation would produce a complex-
symmetric T-matrix. The near symmetry of the com-
puted off-diagonal elements is an indication of the con-
vergence of the computed results.

C. Photoionization of H
+

2

In the weak-field limit, the H+
2 photoionization ampli-

tude is given by
〈

Φ(−)(k, r)
∣

∣ε · r
∣

∣Φ0(r)
〉

, (19)

where Φ0(r) is the initial state target wave function, ε
is the direction of polarization and the final continuum
state Φ(−)(k, r) is related to Φ(+)(k, r) by

Φ(−)(k, r) =
[

Φ(+)(−k, r)
]∗
. (20)

Given the H+
2 continuum functions and the initial state

wave function, it is straightforward to evaluate the am-
plitude as a volume integral. However, it is also possible
to derive a surface integral expression for the photoion-
ization amplitude, which is easier to evaluate, as follows.
We begin with the so-called first-order equation

[

E0 + ω −H
]

Ψsc = ε · rΨ0 , (21)

where E0 is the initial state energy and ω is the pho-
ton energy. Equation (21) can be solved, in complete
analogy to Eq. (16), by expanding Ψsc in a combined
Gaussian/DVR basis:

Ψsc =
∑

Γ

cΓGΓ(r) +
∑

i,l

cil
fi(r)

r
Yl,m(r̂)

≡
∑

Γ

cΓGΓ(r) +
∑

l

ψl,m
sc (r)

r
Yl,m(r̂)

(22)

and deriving complex linear equations for the expansion
coefficients.
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TABLE III: H+

2 T-matrix elements in 2Σg symmetry at R = 2.0 bohr. Values of l and l′ refer to the incident and scattered
angular momentum respectively.

l = 0 l = 2 l = 4

k = 0.632455

l′ = 0 −0.394697 + 0.806582i 0.010282 − 0.010774i 0.000060 + 0.000113i

l′ = 2 0.010253 − 0.010803i 0.287289 + 0.091121i 0.006738 + 0.002474i

l′ = 4 0.000061 + 0.000112i 0.006752 + 0.002420i 0.042134 + 0.001845i

k=1.00000

l′ = 0 −0.396284 + 0.804174i 0.014883 − 0.014690i 0.000187 + 0.000429i

l′ = 2 0.014874 − 0.014701i 0.309300 + 0.108113i 0.016495 + 0.006679i

l′ = 4 0.000188 + 0.000428i 0.016505 + 0.006647i 0.049971 + 0.002882i

k=1.41421

l′ = 0 −0.402412 + 0.796598i 0.007086 − 0.006476i −0.000388 + 0.001282i

l′ = 2 0.007087 − 0.006478i 0.334214 + 0.129657i 0.029545 + 0.013468i

l′ = 4 −0.000387 + 0.001283i 0.029553 + 0.013448i 0.060234 + 0.004850i

TABLE IV: H+

2 T-matrix elements in 2Σu symmetry at R = 2.0 bohr. Values of l and l′ refer to the incident and scattered
angular momentum respectively.

l = 1 l = 3 l = 5

k=0.632455

l′ = 1 0.385636 + 0.181877i 0.007367 + 0.004381i −0.000004 + 0.000051i

l′ = 3 0.007388 + 0.004330i 0.091028 + 0.008465i 0.005503 + 0.000652i

l′ = 5 −0.000004 + 0.000051i 0.005502 + 0.000606i 0.023841 + 0.000618i

k=1.00000

l′ = 1 0.327598 + 0.123193i 0.023564 + 0.011808i 0.000026 + 0.000333i

l′ = 3 0.023578 + 0.011771i 0.104795 + 0.011949i 0.011202 + 0.001536i

l′ = 5 0.000027 + 0.000333i 0.011202 + 0.001511i 0.029364 + 0.001028i

k=1.41421

l′ = 1 0.239482 + 0.063844i 0.045646 + 0.018207i 0.000271 + 0.001023i

l′ = 3 0.045654 + 0.018183i 0.125938 + 0.018974i 0.018076 + 0.003034i

l′ = 5 0.000272 + 0.001022i 0.018078 + 0.003020i 0.036446 + 0.001742i
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Figure 2 shows plots of the real parts of the Σu and
Πu components of Ψsc at R = 2.0 bohr for the case of a
10 eV photoelectron. The basis set parameters for these
calculations were identical to those used in computing
the H+

2 continuum functions described above. The wave
functions in these cases are plotted in a plane contain-
ing the molecular axis. It is interesting to note that the

wave function is prominently directed along the axis of
polarization; along the molecular axis in the case of paral-
lel (Σu) polarization and perpendicular to the molecular
axis in Πu symmetry.

We can express the photoionization amplitude in terms
of Ψsc by writing:

〈

Φ(−)(k, r)
∣

∣ε · r
∣

∣Φ0(r)
〉

=
〈

Φ(−)(k, r)
∣

∣(E −H)(E −H + iε)−1ε · r
∣

∣Φ0(r)
〉

=
〈

Φ(−)(k, r)
∣

∣E −H
∣

∣Ψsc(r)
〉

.
(23)

The desired surface integral is obtained by allowing H on
the last line of Eq. (23) to operate to the left and using

Green’s theorem to write:

〈

Φ(−)(k, r)
∣

∣ε · r
∣

∣Φ0(r)
〉

=
〈

Φ(−)(k, r)
∣

∣E −H
∣

∣Ψsc(r)
〉

=
1

2

∫

S

[

Φ(−)∗(k, r)∇Ψsc − Ψsc∇Φ(−)∗(k, r)
]

· dS

=
1

2

√

2

π

∑

l,m

ileiηl(k)Yl,m(k̂)

×
∑

l′

{

[

φ
(c)
l,k (r)

kr
δl,l′ +

Rl,m
l′ (r)

r

]

d

dr

ψl′,m
sc (r)

r
− ψl′,m

sc (r)

r

d

dr

[

φ
(c)
l,k (r)

kr
δl,l′ +

Rl,m
l′ (r)

r

]

}

r2

∣

∣

∣

∣

∣

r=S

.

(24)

Note that in deriving Eq. (24) we have assumed that
the surface S over which the integral is evaluated is large
enough that the Gaussian functions are all zero, so that
only the DVR contributions to Ψsc and Φ(−)(k, r) are re-
tained. The photoelectron momentum k and the polar-
ization direction ε are conveniently expressed in a coordi-
nate system tied to the molecular axis, which we denote
by the vector Â in the laboratoiry frame. The differential
photoionization cross section for an H+

2 molecule with a
specific fixed-in-space orientation is then given by

σ(k, ε, Â) = 4π2ωk

c

∣

∣

∣

〈

Φ(−)(k, r)
∣

∣ε · r
∣

∣Φ0(r)
〉

∣

∣

∣

2

. (25)

For the total cross section, averaged over all molecular
orientations, we can use the expression:

σtot =
4πω

c
Im

〈

Ψ0

∣

∣ε · r
∣

∣Ψsc

〉

. (26)

The total photoionization cross sections for polariza-
tion parallel and perpendicular to the molecular axis
are plotted in Figs. 3 and 4 , respectively. The agree-
ment with the accurate numerical results of Bates and
Opik [29] is essentially perfect.

The differential photoionization cross sections at 10 eV
photoelectron energy are shown in Fig. 5 for four different
orientations of the molecule with respect to the direction
of polarization. To our knowledge there are no other
numerically accurate treatments with which to compare
our results, so for comparison we show the unnormal-
ized model results of Walter and Briggs [30], which were
obtained using an ansatz “2C” wave function. It is inter-
esting to note that an accurate treatment shows that the
photoelectron distribution follows the direction of pho-
ton polarization, while the simple 2C model incorrectly
predicts alignment along the molecular axis.

IV. DISCUSSION

Over the past five years or so, it has been convinc-
ingly demonstrated that grid-based methods are capable
of fully solving problems in which two unbound electrons
escape a simple atom or molecule. The principal diffi-
culty with extending these purely numerical methods to
anything but the simplest molecular targets centers on
the need for a multi-center approach that avoids slowly
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FIG. 2: Real part of scattered wave functions at R = 2.0 bohr for 10 eV photoelectrons in Σu (left) and Πu (right) symmetry.
The wave functions are plotted in a plane containing the molecular axis.
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FIG. 3: Total photoionization cross section for polarization
parallel to the molecular axis. Solid curve: current results;
Points: Bates and Öpik [29].
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FIG. 4: Total photoionization cross section for polarization
perpendicular to the molecular axis. Solid curve: current
results; Points: Bates and Öpik [29].

convergent, single-center expansions, combined with an

orbital description of inner-shell target electrons. We
have argued that a practical connection with the tech-
niques of quantum chemistry, which can readily address
these difficulties, can be made by adopting a hybrid basis
approach in which nuclear-centered Gaussian functions,
which can span the physical regions of space where the
target-electron charge density is significant, are combined
with finite-element/DVR functions that do not penetrate
the molecular core region but extend into the asymptotic
domain. Exterior complex scaling of the outer DVR func-
tions can then provide a basis for studying both bound
and continuum problems. In this paper, we have taken
the first steps toward demonstrating the viability of the
approach by constructing such a basis and applying it
to several one-electron molecular problems, namely, the
bound states, continuum states and photoionization of
H+

2 . This method was indeed found to provide rapidly
convergent results. Moreover, the required matrix ele-
ments could all be calculated using either analytic expres-
sions or simple numerical quadrature. To go beyond the
simple one-electron problems considered here, the critical
step will be the demonstration that two-electron matrix
elements can be rapidly and accurately evaluated. That
demonstration, along with applications to a two-electron
target molecule, will be the subject of a future publica-
tion.
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FIG. 5: Differential cross sections and angular distributions for H+

2 at polarization angle θ = 0◦, 30◦, 60◦, and 90◦ (top to
bottom) with respect to the molecular axis (horizontal) and a 10.0 eV ejected electron in the plane of the polarization and
molecular axes. Solid curve: current result. Dashed curve: 2C un-normalized angular distributions of Walter and Briggs
[30]. Note that for pure Σ polarization (top panel), the cross sections are roughly twenty times smaller than for pure pure Π
polarization (bottom panel).
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