
Lawrence Berkeley National Laboratory
LBL Publications

Title

High performance sparse multifrontal solvers on modern GPUs

Permalink

https://escholarship.org/uc/item/7tv84567

Authors

Ghysels, Pieter
Synk, Ryan

Publication Date

2022-05-01

DOI

10.1016/j.parco.2022.102897

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tv84567
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

High performance sparse multifrontal solvers on modern GPUs
Pieter Ghysels∗, Ryan Synk†

Abstract
We have ported the numerical factorization and
triangular solve phases of the sparse direct solver
STRUMPACK to GPU. STRUMPACK implements sparse
LU factorization using the multifrontal algorithm,
which performs most of its operations in dense lin-
ear algebra operations on so-called frontal matrices
of various sizes. Our GPU implementation off-loads
these dense linear algebra operations, as well as the
sparse scatter-gather operations between frontal ma-
trices. For the larger frontal matrices, our GPU
implementation relies on vendor libraries such as
cuBLAS and cuSOLVER for NVIDIA GPUs and
rocBLAS and rocSOLVER for AMD GPUs. For the
smaller frontal matrices we developed custom CUDA
and HIP kernels to reduce kernel launch overhead.
Overall, high performance is achieved by identifying
submatrix factorizations corresponding to sub-trees
of the multifrontal assembly tree which fit entirely in
GPU memory. The multi-GPU setting uses SLATE
(Software for Linear Algebra Targeting Exascale) as
a modern GPU-aware replacement for ScaLAPACK.
On 4 nodes of SUMMIT the code runs ∼ 10× faster
when using all 24 V100 GPUs compared to when it
only uses the 168 POWER9 cores. On 8 SUMMIT
nodes, using 48 V100 GPUs, the sparse solver reaches
over 50TFlop/s. Compared to SuperLU, on a single
V100, for a set of 17 matrices our implementation is
faster for all but one matrix, and is on average 5×
(median 4×) faster.

1 Introduction
Sparse direct solvers are popular in both academia
and industry because of their robustness. Unlike
iterative solvers and preconditioners, sparse direct
solvers do not suffer from convergence issues and do
not require much tuning. However, correctly im-
plementing a sparse direct solver in a scalable and
high-performance way is very challenging. In this pa-

∗pghysels@lbl.gov, Lawrence Berkeley National Laboratory,
Computational Research Division, 1 Cyclotron Road, Berkeley,
CA 94720-8150

†University of Maryland

per, we present an efficient multi-GPU algorithm for
sparse multifrontal LU factorization and triangular
solve. The work presented here is part of the Ex-
ascale Computing Project (ECP), which is making
substantial investments in pursuit of application per-
formance gains by refactoring codes and developing
products to effectively utilize accelerated nodes.

In sparse matrix factorization, the sparse triangu-
lar factors are typically much more dense than the
original input matrix due to fill-in, i.e., extra nonze-
ros that are generated during the Gaussian elimina-
tion process. However, with a proper ordering of
the input matrix this fill-in can be minimized, and
the fill-in entries will appear in the sparse triangu-
lar factors in dense sub-blocks. Hence, with a good
ordering, most of the work in a sparse direct solver
is performed using dense linear algebra operations on
these dense sub-blocks, also referred to as supernodes
or frontal matrices in the multifrontal setting. Hence,
the numerical factorization phase can use higher level
BLAS routines and achieve relatively high perfor-
mance on modern multi-core architectures. However,
since many of these blocks are small, it is hard to
fully exploit the enormous performance potential of
modern GPUs.

The GPU-accelerated multifrontal algorithm we
present splits the problem into independent sub-
trees for which the factorization fits entirely in de-
vice (GPU) memory. Then this sub-tree is tra-
versed level by level, using hand coded device ker-
nels for the smallest matrices and vendor optimized
libraries for the larger ones. With this approach, we
minimize data movement between the CPU and the
GPU, and reduce kernel launch overheads. We also
present a multi-GPU version of the code which uses
SLATE [1] – Software for Linear Algebra Targeting
Exascale – a modern replacement for ScaLAPACK
funded through the ECP project. SLATE can use
the traditional ScaLAPACK 2D block-cyclic layout
but adds GPU acceleration. A natural solution for
the efficient factorization of all dense matrices on a
single level of the sparse assembly tree would be the
use of batched dense linear algebra routines. Sev-
eral libraries provide batched BLAS operations, for
instance MAGMA [2], cuBLAS, Kokkos kernels and
MKL. MAGMA even provides batched LU with piv-

1

oting. However, none of these libraries provide vari-
able sized batched LU factorization with pivoting,
which is what our solver needs.

Several high quality sparse direct solvers are avail-
able. For instance MUMPS [3] is a well-known paral-
lel multifrontal solver, but has no GPU support. The
non-symmetric multifrontal solver UMFPACK [4] is
used in Matlab, but has no GPU or MPI support.
The Watson Sparse Matrix Package (WSMP) [5, 6]
has no officially released version with GPU support.
UMFPACK, MUMPS and WSMP are so-called mul-
tifrontal solvers, see [7, 8] and Section 2. Other sparse
direct solvers include PasTiX [9] and SuperLU Dist
[10]. Both SuperLU Dist [11] and PaStiX [12] have
support for distributed memory and GPU accelera-
tion. However, since both SuperLU Dist and PaStiX
are supernodal, but not multifrontal, they typically
operate on dense linear blocks that are smaller than
the dense blocks found in multifrontal methods. The
smaller blocks make it hard to fully exploit the po-
tential of GPU accelerated nodes. In the main Su-
perLU factorization code, the only operations per-
formed on the GPU are the dense matrix-matrix mul-
tiplications for the Schur updates. SuperLU provides
a 3D factorization algorithm in which also certain
sparse gather/scatter operations are off-loaded, but
the dense LU factorization for the supernodes is still
performed on the CPU. Furthermore since our im-
plementation operates on relatively large distributed
dense matrices, we can make use of ScaLAPACK, or
the modern ScaLAPACK alternative SLATE, along
with all the optimizations that go into these libraries.
SuperLU uses a very different parallel layout of the
sparse triangular factors, and needs to implement this
functionality internally.

The outline of the paper is as follows. We give
a brief overview of the sparse multifronal LU fac-
torization in Section 2 where we also discuss the
MPI+OpenMP parallelization. In Section 3 we de-
scribe a modified parallelization scheme for the mul-
tifrontal algorithm that is more amenable to GPU
acceleration. Section 4 shows performance results for
a number of different GPUs and a range of linear
systems. Section 5 discusses the STRUMPACK software
library in more detail and gives some pointers that
should help with the installation. We conclude the
paper with Section 6, where we also discuss how the
work presented here can be a first step towards the de-
velopment of a class of high performance, GPU-aware
and robust preconditioners based on rank-structured
approximate multifrontal factorization.

2 Sparse Multifrontal LU De-
composition

We consider the LU factorization of a sparse matrix
A ∈ CN×N , as P (DrADcQc)P> = LU , where P
and Qc are permutation matrices, Dr and Dc are di-
agonal row and column scaling matrices and L and
U are sparse lower and upper-triangular respectively.
Dr, Dc and Qc are optional and are applied for nu-
merical stability. Qc aims to maximize the magnitude
of the elements on the matrix diagonal. Dr and Dc

scale the matrix such that the diagonal entries are
one in absolute value and all off-diagonal entries are
less than one. This step is implemented using the
sequential MC64 code [13] or the parallel method –
without the diagonal scaling – described in [14]. The
permutation P is applied symmetrically and is used
to minimize the fill, i.e., the number of non-zero en-
tries in the sparse factors L and U . This permutation
is computed from the symmetric sparsity structure of
A+A>. For large problems the preferred ordering is
typically based on the nested dissection heuristic, as
implemented in METIS [15] or Scotch [16].

The multifrontal method [7] relies on a graph called
the assembly tree to guide the computation. Each
node τ of the assembly tree corresponds to a dense
frontal matrix, with the following 2 × 2 block struc-

ture: Fτ =
[
F11 F12
F21 F22

]
, with F11 of dimension #Is

τ

and F22 of dimension #Iu
τ (the superscriptss and u

stand for separator and update respectively), see also
Fig. 1. Let nτ = #Is

τ + #Iu
τ denote the dimension

of Fτ . A frontal matrix is an intermediate dense sub-
matrix in sparse Gaussian elimination. The rows and
columns corresponding to the F11 block are called
the fully-summed variables because when the front
is constructed, these variables have received all their
Schur complement updates. The fully-summed vari-
ables correspond to Isτ , which are mutually exclusive,
with

⋃
τ I

s
τ = {1, . . . , N}. In the context of nested

dissection, the sets Isτ correspond to individual vertex
separators. The Iuτ index sets define the temporary
Schur complement update blocks F22. The use of this
temporary F22 block to pass Schur complement up-
dates up along the tree is the main difference between
multifrontal methods and other sparse direct solvers,
such as for instance SuperLU, in which Schur updates
are passed up in the tree not just to the parent, but
to multiple ancestors. Note that the frontal matrices
tend to get bigger toward the root of the assembly
tree. Furthermore, if ν is a child of τ in the assem-
bly tree, then Iuν ⊂ {Isτ ∪ Iuτ }. For the root node t,
Iut ≡ ∅. When considering a single front, we will omit
the τ subscript.

2

The multifrontal method casts the factorization of
a sparse matrix into a series of partial factorizations
of many smaller dense matrices and Schur comple-
ment updates. It consists in a bottom-up traversal of
the assembly tree following a topological order. Pro-
cessing a node consists of four steps:

1. Assembling the frontal matrix Fτ , i.e., combining
elements from the sparse matrix A with the chil-
dren’s (ν1 and ν2) Schur complement updates F22
into the (larger) Fτ . This involves a scatter oper-
ations and is called extend-add, denoted by l↔:

Fτ =
[
A(Isτ , Isτ) A(Isτ , Iuτ)
A(Iuτ , Isτ)

]
l↔ F22;ν1 l↔ F22;ν2

= l↔ l↔ (1)

2. Elimination of the fully-summed variables in the
F11 block, i.e., dense LU factorization with partial
pivoting of F11.

3. Updating the off-diagonal blocks F12 and F21.
4. Compute the Schur complement update:

F22 ← F22 − F21F
−1
11 F12.

We will also denote the Schur updated F22 for
front τ as the contribution block CBτ . F22 is tem-
porary storage (pushed on a stack), and can be
released as soon as it has been used in the front
assembly (step (1)) of the parent node.

After the numerical factorization, the lower trian-
gular sparse factor is available in the F21 and F11
blocks and the upper triangular factor in the F11
and F12 blocks. These can then be used to very effi-
ciently solve linear systems, using forward and back-
ward substitution. A high-level overview of the mul-
tifrontal algorithm for solving a sparse linear system
is given in the pseudo-code in Algorithm 1.

Figure 1 illustrates the multifrontal algorithm for
a sparse matrix resulting from the discretization of a
partial differential equation using a 5-point finite dif-
ference stencil on a regular two-dimensional 11 × 11
mesh. Figure 1a shows the mesh and the top 3 levels
of the nested dissection ordering. Nested dissection
is a heuristic algorithm for the ordering of a sparse
matrix to reduce the fill-in in the sparse factors. It is
based on recursively finding vertex separators. The
vertical line marked S0 is the root separator and this
separator corresponds to the root of the multifrontal
assembly tree, see Fig. 1b. The next level separa-
tors, S1

0 and S1
1 correspond to the F11 blocks of the

S0

S1
0 S1

1

(a)

S0

S1
0 S1

1 Isτ

Iuτ

. . .

(b)

Figure 1: (a) The top three levels of nested dissection
for an 112 mesh. The root separator S0 is a vertical
11 point line. The next level separators are S1

0 and
S1

1 . The root separator corresponds to the top level
front in (b), and similarly for the next level down
in the assembly/frontal tree. For the lower levels,
the fronts are regular dense matrices. Note that the
fronts in (b) are to scale, but from this figure it is not
obvious that the fronts typically get smaller lower in
the tree (except for the root front, which has no Schur
complement).

3

Algorithm 1 Sparse multifrontal symbolic analysis,
factorization and solve
Input: A ∈ CN×N , b ∈ CN
Output: x ≈ A−1b

1: A← DrADcQc . (optional) col perm & scaling
2: A← PAP> . symm fill-reducing reordering
3: Build assembly tree: define Is

τ and Iu
τ for every

frontal matrix Fτ
4: for nodes τ in assembly tree in topological order

do
5: . Build front F from sparse entries and child

contributions (extend-add)

6: Fτ ←
[
A(Is

τ , I
s
τ) A(Is

τ , I
u
τ)

A(Iu
τ , I

s
τ) 0

]
l↔ Fν1;22 l↔

Fν2;22
7: PτLτUτ ← Fτ ;11 . LU with partial pivoting
8: Fτ ;12 ← L−1

τ P>τ Fτ ;12
9: Fτ ;21 ← Fτ ;21U

−1
τ

10: Fτ ;22 ← Fτ ;22 − Fτ ;21Fτ ;12 . Schur update
11: end for
12: x← DcQcP

> bwd-solve (fwd-solve (PDrb))

next lower level in the assembly tree. Hence, typi-
cally the larger frontal matrices are found near the
root of the assembly tree since the separators tend to
get smaller further in the nested dissection recursion.
For regular N = k2 2D or N = k3 3D grids, the cost
of dense LU factorization on a front corresponding to
the largest separator (k for 2D and k×k for 3D) deter-
mines the asymptotic complexity of the solver. This
leads to O(N 3

2) and O(N2) asymptotic complexity
for 2D and 3D problems respectively. STRUMPACK
provides several approximate solvers with lower com-
plexity, see also the discussion in Section 6.

For a more detailed discussion of the multifrontal
method, see [8]. Since its introduction in [7], the
multifrontal method has been widely used in sparse
direct solvers. Popular multifrontal implementations
are available through the MUMPS solver [3], in UMF-
PACK (unsymmetric) [4] and in WSMP [5]. We im-
plemented the multifrontal method in the STRUMPACK
library1, using C++, MPI, OpenMP, CUDA and
HIP. STRUMPACK supports real/complex arithmetic,
single/double precision and 32/64-bit integers.

Pivoting Issues The row pivoting in STRUMPACK is
restricted to the F11 blocks only. For most problems
this works well, especially when it is used in com-
bination with (MC64) matrix reordering and scal-
ing. However, in certain cases this can still fail. We
have observed this for instance for linear systems from

1http://portal.nersc.gov/project/sparse/strumpack/

the interior point method used in optimization (Ex-
aSGD ECP project collaboration). In this setting
the linear systems become gradually more and more
ill-conditioned. Therefore, whenever our solver en-
counters a zero or very small pivot element, i.e., a
diagonal entry of the upper-triangular factor, this en-
try is replaced by a larger value. For the threshold
for small pivots the value τ = √εmach‖A‖1 is used. A
small positive pivot element is replaced by τ , a neg-
ative one by −τ . The resulting factorization is only
approximate, but is often still a very good precon-
ditioner, requiring only a few iterations of iterative
refinement.

2.1 MPI+OpenMP Parallelization
Following the assembly tree, the distributed algo-
rithm sets up nested MPI sub-communicators to fa-
cilitate the computation at each node and its sub-
tree. At the root of the tree, we create a two-
dimensional process grid using all the available pro-
cesses in the main MPI communicator, and distribute
the frontal matrix over this grid using the ScaLA-
PACK 2D block-cyclic data layout [17]. The process
grid is Pr×Pc with Pr =

⌊√
P
⌋

and Pc = P/Pr, with

at most
⌊√

P
⌋
−1 idle processes. Next, the root MPI

communicator is split in two communicators propor-
tionally to the number of flops required by the sub-
trees rooted at the children of the root node. Again
each child can construct a ScaLAPACK BLACS con-
text using a 2D process grid and distribute the child’s
frontal matrix over this subgrid. This is repeated re-
cursively until the MPI communicator has only one
process in it.

Numerical factorization requires traversing the as-
sembly tree from the leafs to the root. For a lo-
cal sub-tree, i.e., a tree assigned to a single MPI
process, this is done using OpenMP. When mov-
ing up to the distributed part of the assembly tree,
communication between fronts is required for the
extend-add operation. This is implemented using
an MPI Alltoallv on the MPI communicator of the
parent node, which includes all the processes from
the two sub-communicators corresponding to the two
children of that node.

The entire local tree traversal is done in a single
OpenMP parallel region using task parallelism. The
factorization of a node will first spawn two tasks,
one for each of the sub-trees rooted at its children.
When these two child tree traversals are completed
– guaranteed by a pragma omp taskwait – the fac-
torization of the node itself can proceed. In order
to exploit both the parallelism from the assembly

4

http://portal.nersc.gov/project/sparse/strumpack/

tree and the parallelism available in the dense lin-
ear algebra kernels at each node, we added OpenMP
tasking to the BLAS and LAPACK routines called
at each node in the OpenMP parallel region. Using
dynamically scheduled OpenMP task parallelism en-
sures good performance and load balance within a
node.

To exploit thread parallelism at the distributed
memory levels of the assembly tree, we use ScaLA-
PACK with multithreaded BLAS/LAPACK kernels.
The local sub-trees, however, are traversed within an
OpenMP region so we do not want multithreaded
BLAS here as this would lead to over-subscription
of cores and hence poor performance. Fortunately,
the default behavior of most vendor supplied BLAS2

implementations is to run sequentially when called
from within a parallel region and multithreaded oth-
erwise. We refer to [18] for more details about the
threaded implementation.

3 GPU Off-Loading Strategy
Algorithm 2 shows our new GPU-accelerated mul-
tifrontal factorization algorithm. Compared to the
OpenMP tasking parallelization scheme described in
Section 2.1, now the tree is traversed level by level,
from the leafs to the root. On a given level the
algorithm needs to perform dense LU decomposi-
tion, LU solve and matrix multiplication for every
front on that level. This is a perfect fit for so-called
batched BLAS kernels, which have recently gained
much attention, and are available in several libraries,
such as MAGMA [2], cuBLAS, Kokkos kernels and
MKL. However, none of these libraries provide vari-
able sized batched LU factorization with pivoting.
Therefore we rely on regular cuBLAS (and rocBLAS)
calls from within multiple streams, and for the very
small frontal matrices, we developed our own batched
kernels for partial LU factorization of a front, see Sec-
tion 3.2.

The input to Algorithm 2 is a sparse matrix A and
the root node of the assembly tree. Lines 5 to 24 han-
dle the case where the multifrontal factorization does
not completely fit in device memory. On Line 5 the
algorithm checks if the device has sufficient memory
to hold the entire multifrontal factorization of the as-
sembly tree rooted at node τ in device memory. If
this is not the case, then the code will first traverse
the two sub-trees rooted at the two children of node
τ using recursive calls to the same algorithm. After
these two smaller problems have completed, the Schur
complements Fν1;22 and Fν2;22 corresponding the the

2For instance, Intel MKL and Cray LibSci behave this way.

Algorithm 2 GPU-accelerated multifrontal numer-
ical factorization
Input: A ∈ CN×N in host memory; node τ of the
assembly tree
Output: LU ≈ A in host memory
factor GPU(A, τ):

1: for level ` from `max to 0 do
2: MF

` ← size of factors and piv vectors on level
`

3: MS
` ← size of Schur and temp storage on level

`
4: end for
5: if max(MF

` + MS
`) > available device memory

then
6: for all ν child of τ do
7: factor GPU(A, ν) . recursive call
8: end for
9: Fτ = [. . .] l↔ Fν1;22 l↔ Fν2;22 . Fτ on host

10: MF ← max(size(F11, F12), size(F12, F21,
F22))

11: allocate device(MF)
12: copy host to device(F11)
13: getrf device(F11, piv) . cuSOLVER
14: copy device to host(F11, piv)
15: if dim(Fτ ;22) 6= 0 then
16: copy host to device(F12)
17: getrs device(F11, piv, F12) . cuSOLVER
18: delete device(F11, piv)
19: copy device to host(F12)
20: copy host to device(F21, F22)
21: gemm device(-1, F21, F12, 1, F22) .

cuBLAS
22: copy device to host(F22)
23: end if
24: return
25: end if
26: dSold ← nullptr
27: for level ` from `max to 0 do
28: . allocate factor and pivot vector memory
29: dF, piv ← allocate device(MF

`)
30: . allocate Schur and sparse matrix memory
31: dS, dA← allocate device(MS

`)
32: copy host to device(dA) . elems of A for

assembly
33: front assembly device(`, dA, dF , dS, dSold)
34: swap(dS, dSold)
35: factor small fronts device< 8 >(`, dF , dS)
36: factor small fronts device< 16 >(`, dF , dS)
37: factor small fronts device< 24 >(`, dF , dS)
38: factor small fronts device< 32 >(`, dF , dS)
39: factor large fronts device(`, dF , dS)
40: synchronize device()
41: copy device to host(dF , piv)
42: end for
43: if dim(Fτ ;22) 6= 0 then . τ is not the root
44: copy device to host(Fτ ;22)
45: end if

5

two children of τ will be in host memory. Then, in
Line 9, Fτ is assembled on the host, using Fν1;22,
Fν2;22 and elements from the sparse matrix. This
step is the so-called extend-add operation, denoted
by the l↔ symbol. Lines 12 to 22 perform the partial
factorization of Fτ starting with Fτ in host memory.
The copies to the device, as in Line 12, copy to mem-
ory allocated on the device on Line 11. This part of
the code tries to minimize memory usage on the de-
vice, for instance by removing F11 from the device as
soon as it is no longer needed there, or by not over-
lapping the transfer of F12 with the LU factorization
of F11. However, if there is not enough device mem-
ory to hold either Fτ ;11 and Fτ ;12 or Fτ ;12, Fτ ;21 and
Fτ ;22, the algorithm will still fail. We plan to work
around this restriction in a future implementation.
However, in this case, one can simply use more GPUs,
see Section 3.3. Moreover, if there is not enough de-
vice memory to hold a single front, it is quite likely
that there will not be enough host memory to hold
the rest of the factors either. Line 13 performs the LU
factorization on the device and Line 14 copies both
Fτ ;11, now containing its LU factors, and the corre-
sponding pivot vector, back to the host. Lines 13, 17
and 21 use cuBLAS or cuSOLVER on NVIDIA and
rocBLAS or rocSOLVER on AMD hardware.

3.1 GPU Sub-Tree Traversal
Lines 26 to 45 handle the case when the entire factor-
ization of the assembly tree rooted at node τ fits in
device memory. The assembly tree is traversed level
by level. At every level, memory is allocated for the
factors (Fσ;11, Fσ;12 and Fσ;21 blocks for all σ at level
`), for the pivot vectors, for the Schur complements
(F22 blocks) and for the elements of the sparse ma-
trix that are required for the assembly of the fronts
at that level. Simultaneously, some memory is also
allocated to hold the front metadata such as front
sizes and pointers, but those details are omitted from
Algorithm 2.

Then the frontal matrix assembly is performed on
the device, Line 33, for all fronts on that level. As-
sembly of a frontal matrix requires elements from the
sparse matrix, which are copied to dA on the device
in Line 32, as well as the Schur complements, the
F22 blocks, of the previous level, level ` + 1. As-
sembly for all fronts on a level is done with a sin-
gle CUDA/HIP kernel launch. After the assembly
we keep dS in a separate pointer dSold so the Schur
complement at level ` can be used for the assembly
of the next level, level ` − 1. Next, partial factor-
ization of all the fronts can start. The small fronts,
i.e., fronts for which dim(F11) ≤ 32, are treated dif-

ferently then the larger ones. Section 3.2 discusses
the custom CUDA/HIP device kernel we developed
to handle the small fronts, called from Lines 35 to 38.
For all the larger fronts, i.e., dim(F11) > 32, on
level ` the code calls cuBLAS and cuSOLVER (or
hipBLAS and rocSOLVER) directly using different
streams. By default we use 4 stream, assigning fronts
to streams in a round robin way. This is done in the
factor large fronts device routine (not shown in
more detail), called on Line 39 of Algorithm 2.

After the GPU traversal of the assembly tree, the
last Schur complement corresponding to node τ is
copied back to host memory in Line 44. If τ is the
root node of the tree, there is no Schur complement so
this step can be skipped. Line 44 is only executed if
τ is the root of a sub-tree, for instance when the fac-
tor GPU routine was called recursively from Line 7,
or when node τ is the root node of the sub-tree as-
signed to this GPU, or MPI rank, within a distributed
memory instance of the solver, see Section 3.3.

Algorithm 2 has two memory allocations per level
of the assembly tree, in Lines 29 and 31. The num-
ber of levels is typically small. For instance for a
balanced nested dissection ordering the number of
levels is O(logN). However, allocating device mem-
ory seems to be a very costly operation, and we ob-
served that for relatively small problems the calls to
cudaMalloc can still be a serious bottleneck. We
plan to work on reducing this overhead in the future,
for instance relying on the memory management API
from Umpire [19].

3.2 Kernels for Small Fronts
To deal with the small fronts, we developed a GPU
kernel that performs partial LU factorization for all
the fronts, on a given level, with sizes in a certain
range. This kernel combines the LU factorization
of the F11 block, the LU solve F12 ← F−1

11 F12 and
the Schur complement update F22 ← F22 − F21F12.
The kernel is implemented to use a single NT × NT
threadblock per front, where the block size NT is
a template parameter. We instantiate this kernel
for NT = {8, 16, 24, 32}, such that the number of
threads in a block is at least 64 and at most 1024.
Hence, at each level, four lists are constructed cor-
responding to the fronts satisfying: dim(F11) ≤ 8,
8 < dim(F11) ≤ 16, 16 < dim(F11) ≤ 24, and
24 < dim(F11) ≤ 32. The kernels are launched with
a block size NT × NT and with a one-dimensional
grid, where the block index refers to the front. Front
metadata, such as sizes and pointers to the F11, F12,
F21, and F22 blocks and the pivot vectors, are cur-
rently stored in an array of structures. To improve

6

memory access coalescing, this could in the future be
changed to a single structure of arrays. All fronts
for which dim(F11) ≤ 32 are handled by this man-
ual kernel, even though cols(F12) ≡ dim(F22) could
be significantly larger than 32. For the LU solve
F12 ← F−1

11 F12, the columns of F12 are blocked and
loaded in shared memory in steps of NT columns.
Likewise for the Schur update F22 ← F22 − F21F12,
the F22 matrix is updated in blocks of size NT×NT
in shared memory.

3.3 SLATE
For the GPU acceleration of the distributed memory
fronts, we rely on SLATE [1] (Software for Linear
Algebra Targeting Exascale), a modern replacement
for ScaLAPACK. SLATE aims to achieve high perfor-
mance and maximum scalability on modern HPC ma-
chines with large numbers of cores and multiple accel-
erators per node. ScaLAPACK does not provide any
accelerator support. SLATE is a complete rewrite of
ScaLAPACK with a modern templated C++ API us-
ing standards like MPI and OpenMP, and also relying
on CUDA libraries for high performance on NVIDIA
GPUs.

Like ScaLAPACK, SLATE uses the proven 2D
block cyclic layout. However, the memory layout
and processor distribution of blocks (tiles) is more
flexible in SLATE. A SLATE matrix is stored tile
per tile, instead of with a local column major layout.
This allows SLATE to efficiently represent different
matrix types, such as symmetric, banded or triangu-
lar. Moreover, it allows for different distributions and
non-uniform block sizes.

In STRUMPACK, we use SLATE with the traditional
2D block cyclic data distribution, and column major
storage of the local matrix, as used by ScaLAPACK.
Because of this, the changes to the code to replace
ScaLAPACK with SLATE are very minimal. How-
ever, to achieve reasonable performance with SLATE
when using GPU acceleration, it is crucial to properly
tune the block size. When running with SLATE we
set the block size to 256, while for traditional CPU
ScaLAPACK, the block size is set to 32. For SLATE,
a larger block size drastically reduces overheads asso-
ciated to GPU off-loading, whereas taking the block
size too large would lead to poor load balance. For
ScaLAPACK, the performance does not depend as
much on the block size, since many local BLAS op-
erations can be performed on the entire local matrix,
or on row or column blocks of the matrix, instead of
on individual tiles.

SLATE takes care of the distributed memory dense
linear algebra operations on the distributed fronts.

The extend-add operation, which passes the Schur
complement F22 from a front to its parent front, is
still performed on the CPU. The extend-add opera-
tion is negligible in terms of floating point operations
compared to the dense linear algebra. However, for
the local sub-tree GPU traversal it is crucial that the
extend-add operation is performed on the GPU in
order to keep the fronts in device memory and avoid
data movement. For the distributed code, the extend-
add is performed using an MPI Alltoallv call, which
is performed from the CPU. By performing the dis-
tributed memory extend-add on the CPU we can also
accommodate large distributed fronts that do not fit
entirely in GPU memory.

3.4 Pivoting Issues
We developed a GPU kernel to replace small pivot
elements on the diagonal of the U factors of the LU
factorization of F11 by larger threshold values to pre-
vent unsafe division. This kernel is called just after
the LU factorization and right before the solve F12 ←
F−1

11 F12. The LAPACK routine xgetrf returns the
column index of the first zero pivot, but it will
still complete the entire LU factorization. However,
the cuSOLVER routine cusolverDnXgetrf aborts as
soon as it encounters a zero pivot. Hence, the result
is useless for our use case where we still want to apply
a slightly modified factorization as a preconditioner.
We have reported this issue to NVIDIA. Likewise, the
routine magma xgetrf native in MAGMA 2.5.4 fails
due to an illegal memory access when it encounters a
zero pivot.

3.5 Triangular Solve
After numerical factorization the sparse lower trian-
gular factor is stored in the F21 blocks and in the
lower triangular part of the F11 blocks. Likewise, the
sparse upper triangular factor is stored in the upper
triangular part of F11 and in F12. We also ported the
multifrontal forward (L) and backward (U) triangular
solve phases to GPU, using a similar strategy as in
Algorithm 2. However, where the performance of the
multifrontal factorization is bound by floating point
operations, the triangular solve is memory bandwidth
bound, at least for a single right-hand side. For mul-
tiple right-hand sides the arithmetic intensity of the
solve increases. If the factors are initially in host
memory, and one solves a linear system with a sin-
gle right-hand side, there is no potential gain from
execution on the GPU since copying the factors to
the GPU would take about as long as performing
the solve. However, there are use cases in which the

7

sparse solver is used repeatedly or with multiple right-
hand sides. Hence, we also provide routines to copy
the sparse factors to device memory and remove them
from the device again. This way the cost of copying
the factors to device memory can be amortized over
multiple solves. If the factors do not fit in device
memory, the code still works correctly, but the fac-
tors have to be moved to device memory for every
solve.

3.6 Porting to AMD Hardware
We originally developed the GPU code in STRUMPACK
on NVIDIA hardware using CUDA and the CUDA
Toolkit libraries cuBLAS, cuSOLVER. For AMD
hardware the CUDA code was ’hipified’. A tool3
is available for converting CUDA code to HIP code.
However, the process is typically quite straightfor-
ward, modifying the kernel launch syntax, and sim-
ply changing calls like cudaDeviceSynchronize()
and cudaMalloc() to hipDeviceSynchronize() and
hipMalloc() for instance. The hipcc compiler can
target both AMD and NVIDIA hardware, and the
HIP library hipBLAS is a thin marshalling layer that
supports both cuBLAS for NVIDIA and rocBLAS
for AMD as backends. Hence, in theory one could
use HIP to target both NVIDIA and AMD. However,
since at the moment there is no hipSOLVER mar-
shalling library (this would be a thin layer on top of
cuSOLVER and rocSOLVER), and because the HIP
CMake support is still under active development, we
are keeping both the CUDA and HIP code paths in
STRUMPACK.

STRUMPACK also supports complex arithmetic, rely-
ing on the C++ std::complex<T> datatype. How-
ever, standard C++ complex number arithmetic
is not supported in CUDA, so these numbers are
reinterpreted as CUDA thrust::complex<T> num-
bers. The problem with thrust::complex<T> num-
bers is that they do not have a default constructors
so they cannot be used in CUDA shared memory.
Therefore we need one more reinterpration cast be-
tween thrust::complex<float> and CUDAs builtin
float2 (or double2). On AMD hardware we use roc-
Thrust.

4 Experimental Evaluation
We start this section with a brief description of the
test setup in Section 4.1. The tests in Section 4.2
and Section 4.3 show single GPU results for regu-
lar mesh PDE problems and test matrices from the

3https://github.com/ROCm-Developer-Tools/HIPIFY

SuiteSparse collection respectively. In Section 4.4, we
look at the performance of the multi-GPU code. It
should be noted that in all experiments, the timing
for numerical factorization includes all data transfers
from and to the device. The factorization starts with
the sparse matrix in host memory and ends with the
sparse triangular factors in host memory.

4.1 Test Setup
We consider four different test systems, with four
different GPUs. The first system is the SUMMIT
cluster4, a large scale HPC cluster operated by the
Oak Ridge Leadership Computing Facility, and which
used to be the number one ranked system on the
TOP500 in 2018 and 2019. The entire SUMMIT ma-
chine has 4,608 nodes, with a combined peak per-
formance of over 200TFlop/s. Every compute node
has two 21-core POWER9 CPUs, 42 cores per node,
512GB of DDR4 memory and 6 NVIDIA Volta V100
GPUs. The second system is a typical workstation or
gaming rig, equipped with a 16-core AMD Ryzen 9
3950X, 128GB DDR4 and an NVIDIA GeForce RTX
2060 SUPER5. The final system is a small cluster op-
erated by HPE with a handful of nodes. Some of
the nodes have an AMD EPYC 7601 32-core pro-
cessor, 256GB memory and four MI60 AMD GPUs
each. This HPE system also has several nodes each
equipped with two 64-core AMD ROME CPUs and
four AMD Instinct MI100 GPUs. Since this is an
early access system used to mimic the setup of the
future Frontier system – scheduled to be installed at
the Oak Ridge Leadership Computing Facility in 2021
– all four of the AMD Instinct MI100 GPUs are con-
nected to the second CPU. Therefore, we only use this
second CPU and pin all threads to the second socket,
but still allow processes to use memory connected to
the first socket.

On SUMMIT we use GCC 9.1.0 and CUDA
11.0.221. On the desktop with the RTX2060, we use
Ubuntu 20.04, with GCC 9.3.0 and CUDA 10.1.243.
On the MI60 equipped nodes, we use GCC 9.2.0 and
ROCm 3.8.0 with hipcc based on Clang 11.0.0. Ta-
ble 1 lists the different accelerators or GPUs we use
for the experiments, along with some key character-
istics, such as their power usage, number of compute
units, theoretical peak performance etc.

For BLAS and LAPACK, we use OpenBLAS
0.3.10, currently the latest released stable version,
compiled with make USE OPENMP=1. We use Open-
BLAS on all test systems, even if on the POWER9

4https://www.olcf.ornl.gov/summit/
5https://www.techpowerup.com/gpu-specs/

geforce-rtx-2060-super.c3441

8

https://github.com/ROCm-Developer-Tools/HIPIFY
https://www.olcf.ornl.gov/summit/
https://www.techpowerup.com/gpu-specs/geforce-rtx-2060-super.c3441
https://www.techpowerup.com/gpu-specs/geforce-rtx-2060-super.c3441

GPU Memory Power Freq SMs/CUs SP Peak DP Peak Arch Vendor
V100 16GB 300W 1530MHz 80 15.7 TFlop/s 7.8 TFLOP/s Volta NVIDIA

RTX2060-S 8GB 175W 1470MHz 34 7.181 TFlop/s 224.4 GFlop/s Turing NVIDIA
MI60 32GB 225W 1294MHz 64 12 TFlop/s 5.3 TFlop/s GCN5 AMD

MI100 32GB 300W 1054MHz 120 32/15 TFlop/s 8 TFlop/s CDNA AMD

Table 1: Graphics processing units (GPUs) used in the experiments. NVIDIA count Streaming Multiproces-
sor (SMs), while AMD refers to them as Compute Units (CUs). The single precision floating point achievable
peak performance for the AMD Instinct MI100 is 32TFlop/s for GEMM, 15 for more general workloads not
using instructions optimized for GEMM specifically.

system one might recommend IBM’s optimized ESSL
library. The main issue for our use case is that
ESSL provides separate sequential and multithreaded
libraries. STRUMPACK relies on the behavior as imple-
mented in for instance MKL, OpenBLAS and Cray
LibSci, where the BLAS and LAPACK routines run
sequentially when called from within an OpenMP
parallel region, and exploit multiple threads other-
wise.

We construct an exact solution vector/matrix x̂
with entries sampled from a normal distribution with
mean zero and standard deviation 1. The correspond-
ing right hand side is computed as b = Ax̂. We then
solve Ax = b for x, which is always compared to the
exact solution x̂ to verify correctness.

4.2 Single GPU, PDE Problems on
Regular Grids

We first consider the discretization of the Poisson
equation ∇2u = f on a cubic N = k3 domain us-
ing a second order 7-point finite difference stencil
and Dirichlet boundary conditions. This leads to a
linear system with N rows and approximately 7N
nonzeros. Since the problem is defined on a regular
mesh, we can easily perform a nested dissection fill-
reducing reordering of the matrix without having to
call a library such as METIS. Figure 2 shows the per-
formance achieved during the numerical factorization
on the four different hardware platforms. The num-
ber of mesh points per dimension is incremented from
k = 20, in steps of 10, until the system runs out of
memory or until the job exceeds the time limit set by
the queue policy. The results are presented for both
single (SP) and double precision (DP). Figures 2a
to 2d show the results for the RTX2060, V100, MI60
and MI100 systems respectively. These figures also
compare with the respective CPUs. For the RTX2060
system, which has a single GPU, we compare with a
single CPU core and with all 16 CPU cores utilized
using OpenMP (a single MPI process is used). For
the V100 system, which is part of a SUMMIT node

with two 21-core POWER9 processors and 6 V100
GPUs, we compare with 7 POWER9 cores – since
there is one V100 GPU for every 7 POWER9 CPU
cores – and with all 42 POWER9 cores. Likewise, for
the MI60 system, we compare with 8 and 32 cores of
the EPYC 7601 CPU.

Using single precision, the numerical factoriza-
tion reaches 43% of the peak performance on the
RTX2060, 41% on the V100, 24% on the MI60 and
26% on the MI100. For the MI60, MI100 and V100,
the difference in performance between the single and
double precision is very close to a factor two. For
the RTX2060 however, theoretically the difference is
1 : 32, although we only observed a factor ∼ 12×.
Note that for smaller problems, the cheaper RTX2060
outperforms the other cards, possibly because this
one is optimized for low latency – important in games
– whereas the others are targeting HPC workloads
and are optimized for throughput rather than latency.
Finally, Fig. 3a compares the different GPUs directly.
We should note that at the time of writing, the AMD
Instinct MI100 card has not yet been officially re-
leased and we still expect the software – the ROCm
libraries and our STRUMPACK solver – to mature fur-
ther and eventually achieve significantly higher per-
formance on this card. The AMD Instinct MI100
has specific operations to accelerate matrix multipli-
cation. Currently, our kernels for small matrices do
not exploit these SGEMM operations yet. However,
the small matrix kernels are not the main bottleneck
in the code, as can be seen from Fig. 4a.

Figure 3b illustrates the same experiment as
Fig. 2a, but this time the wall clock time is shown.
Also here it is clear that there is a large overhead for
smaller problems for the GPU code. For larger prob-
lems, the asymptotic scaling of O(N2) becomes clear,
and the mid-range ∼ 400$/175W RTX2060 SUPER
gaming GPU outperforms even the 16-core Ryzen 9
3950X processor (∼ 700$/105W), at least for single
precision. Figure 4a takes a closer look at the 1003

Poisson problem, in single precision, which is the
largest one for which the factorization fits entirely

9

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160

G
F

lo
p
/s

k

RTX2060 SP
RTX2060 DP

Ryzen 9 3950X 1 core, SP
Ryzen 9 3950X 1 core, DP

Ryzen 9 3950X 16 cores, SP
Ryzen 9 3950X 16 cores, DP

(a) NVIDIA RTX2060

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

G
F

lo
p
/s

k

V100 SP
V100 DP

POWER9 7 cores, SP
POWER9 7 cores, DP

POWER9 42 cores, SP
POWER9 42 cores, DP

(b) NVIDIA V100

 0.01

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

G
F

lo
p
/s

k

MI60 SP
MI60 DP

EPYC 7601 8 cores, SP
EPYC 7601 8 cores, DP

EPYC 7601 32 cores, SP
EPYC 7601 32 cores, DP

(c) AMD Instinct MI60

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

G
F

lo
p
/s

k

MI100 SP
MI100 DP

AMD ROME 16 cores, SP
AMD ROME 16 cores, DP
AMD ROME 64 cores, SP
AMD ROME 64 cores, DP

(d) AMD Instinct MI100

Figure 2: Achieved performance in GFlop/s for the numerical factorization phase for sparse linear systems
derived from the discretization of the 3D Poisson equation on a regular k3 mesh, for different hardware
systems.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

G
F

lo
p
/s

k

RTX2060 SP
RTX2060 DP

V100 SP
V100 DP
MI60 SP
MI60 DP

MI100 SP
MI100 DP

(a) RTX2060 vs V100 vs MI60 vs MI100

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 20 30 40 60 80 100 120 140

T
im

e
(s

)

k

RTX2060 SP
RTX2060 DP

Ryzen 9 3950X 1 core, SP
Ryzen 9 3950X 1 core, DP

Ryzen 9 3950X 16 cores, SP
Ryzen 9 3950X 16 cores, DP

(b) Scaling of factorization time with k

Figure 3: Figure 3a compares the different GPU results from Fig. 2 directly. Figure 3b shows the O(N2)
scaling of the factorization time with N = k3.

10

in GPU memory. Figure 4a shows the time spent
on each level of the assembly tree, the floating point
rate achieved at each level (axis on the right), and the
overall average floating point performance for the en-
tire numerical factorization. On level 15 for instance,
there are 32768 nodes in the assembly tree (fronts), of
which 32, 643 have a top-left block smaller than 8×8,
and 125 have the top-left block smaller than 16× 16.
From level 10, which has 1024 nodes, and upwards
towards the root at level 0, all fronts are larger than
32×32. Hence all nodes on level 10 – 0 are handled by
cuBLAS/cuSOLVER directly. At the root level there
is a single front of size 10, 000× 10, 000. Level 1 has
two nodes, level 2 has 4 nodes and so on. It is clear
that the reasonably good performance of the solver is
achieved by the use of the GPU for the fewer, much
larger, frontal matrices near the root of the assembly
tree. The experiment shown in Fig. 4a was performed
on the RTX2060, which has a single precision peak
performance of 6.451TFlop/s. At level 1 of the as-
sembly tree, we achieve 3.418TFlop/s, which is 53%
of the peak performance.

4.3 Single GPU Results for SuiteS-
parse Test Matrices

Table 2 lists a number of selected matrices from the
online SuiteSparse matrix collection [20]. The table
shows the number of rows/columns in the matrices,
the number of nonzeros, the type – SPD for symmet-
ric positive definite, sym for symmetric, non-sym for
non-symmetric – and a brief description of the ap-
plication domain. We solve a linear system with
each of these matrices, with the results shown in Ta-
ble 3. For these tests, we run single precision on the
RTX2060-SUPER, and double precision on the other
cards. We do this simply because the double preci-
sion performance of the RTX2060 is so poor. For the
RTX2060, we compare with all 16 cores of the CPU.
For the two other systems, we compare with the num-
ber of CPU cores that are available per GPU, i.e., 7
POWER9 cores per V100, 8 AMD EPYC 7601 cores
per MI60, and 16 AMD ROME cores per MI100. The
main takeaway from Table 3 is again that the GPU
code performs well compared to the CPU code as long
as the problem is large enough. For the smaller prob-
lems, the CPU outperforms the GPU code. There
is too much overhead for the smaller problems from
GPU memory allocation, copies between host and de-
vice, kernel launch latency, and synchronization. For
larger problems, or more precisely, for problems for
which there is a lot of fill-in in the sparse triangu-
lar factors, such as cage13 and nlpkkt80, speed-up
from the GPU code over the CPU code is consider-

able. Compared to SuperLU, on the V100 our imple-
mentation is faster for all but one matrix, and is on
average 5× faster (median speedup is 4×). On the
POWER9, SuperLU is about 5× slower, but with the
median slowdown only 1.57×.

All the tests in Table 3 used the nested dissection
fill-reducing ordering from METIS 5.1.0 through the
METIS NodeNDP routine rather than METIS NodeND.
METIS NodeNDP is an undocumented routine that
returns the permutation vector as well as the separa-
tor tree information. In our experience the assembly
tree from METIS NodeNDP is often better balanced
than the tree derived from the permutation returned
by METIS NodeND. For the SuperLU dist results in
Table 3, we used the 3D factorization algorithm
using the pdgssvx3d driver, with a single MPI
process. The 3D algorithm off-loads more operations
to the GPU than the default driver pdgssvx. After
consulting the SuperLU developers, we settled on
the following tuning parameters: NREL=100,
NSUP=256, NUM CUDA STREAMS=1,
MAX BUFFER SIZE=500000000, N GEMM=100,
LOOKAHEAD=2. However, in Table 3 we report
the minimum of the times obtained with either these
or the default parameters.

Figure 5 attempts to give more insight into the per-
formance of the solver, on both GPU (the RTX2060)
and CPU (16 core Ryzen) for the problems from Ta-
ble 3. This shows that performance, in terms of
floating point operations per second improves as the
problem size increases. Here we measure the prob-
lem size as the total number of floating point op-
erations required during the numerical factorization
(horizontal axis on Fig. 5). The GPU only outper-
forms the CPU (in single precision) when the prob-
lem requires & 5 ·1013 floating point operations. This
also shows that, at least for single precision, the fac-
torization gets very close to the theoretical peak on
the RTX2060.

4.4 Multi-GPU Using SLATE
We now solve the visco-acoustic wave propagation
problem as described by the Helmholtz equation(∑

i

ρ(x) ∂

∂xi

1
ρ(x)

∂

∂xi

)
p(x) + ω2

κ2(x)
p(x) = −f(x).

(2)
Here x = (x1, x2, x3), ρ(x) is the mass density,
f(x) is the acoustic excitation, p(x) is the pres-
sure wave field, ω is the angular frequency, κ(x) =
v(x)(1−i/(2q(x))) is the complex bulk modulus with
the velocity v(x) and quality factor q(x). We solve
Eq. (2) by a finite-difference discretization on stag-

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

T
im

e
(s

)

G
F

lo
p
/s

Assembly tree level

Time (s)
GFlop/s

Average GFlop/s

(a) Time and flop rate per level in the tree

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N
u
m

b
er

 o
f

n
o
d
es

Assembly tree level

dim(F11) <= 8
8 < dim(F11) <= 16

16 < dim(F11) <= 24
24 < dim(F11) <= 32

32 < dim(F11)

(b) Number of nodes of different sizes per level

Figure 4: A closer look at the 1003 problem on the RTX2060. Figure 4a shows the time spent on each level
of the assembly tree as well as the floating point rate achieved on each level and the overall average achieved
floating point performance for the whole sparse factorization. Figure 4b shows the number of nodes on each
level, split into different sizes.

name N nnz type origin
atmosmodd 1,270,432 8,814,880 non-sym Computational Fluid Dynamics Problem

c-73 169,422 1,279,274 sym Optimization Problem Sequence
cage13 445,315 7,479,343 non-sym Directed Weighted Graph

Freescale1 3,428,755 17,052,626 non-sym Circuit Simulation Problem
Geo 1438 1,437,960 60,236,322 SPD Structural Problem

Hook 1498 1,498,023 59,374,451 SPD Structural Problem
memchip 2,707,524 13,343,948 non-sym Circuit Simulation Problem
ML Geer 1,504,002 110,686,677 non-sym Structural Problem
nlpkkt80 1,062,400 28,192,672 sym Optimization Problem

ohne2 181,343 6,869,939 non-sym Semiconductor Device Problem
PFlow 742 742,793 37,138,461 SPD 2D/3D Problem

pwtk 217,918 11,524,432 SPD Structural Problem
scircuit 170,998 958,936 non-sym Circuit Simulation Problem
Serena 1,391,349 64,131,971 SPD Structural Problem
torso3 259,156 4,429,042 non-sym 2D/3D Problem

Transport 1,602,111 23,487,281 non-sym Structural Problem
xenon2 157,464 3,866,688 non-sym Materials Problem

Table 2: Set of test matrices, taken from the SuiteSparse matrix collection.

12

STRUMPACK SuperLU
Ryzen EPYC ROME POWER9 POWER9

matrix RTX2060 16 core MI60 8 core MI100 16 core V100 7 core V100 7 core
atmosmodd 6.58 17.41 24.48 85.87 23.09 21.76 8.40 141.82 85.17 217.77

c-73 2.08 0.24 10.61 0.68 8.23 0.36 5.10 1.66 2.81 4.06
cage13 30.05 116.99 53.10 672.59 40.70 160.55 34.13 1123.67 - -

Freescale1 1.75 0.39 17.35 1.03 14.14 0.73 3.91 1.00 12.78 15.03
Geo 1438 17.81 48.00 54.31 250.50 52.83 61.01 21.41 414.18 165.12 440.57

Hook 1498 10.89 24.25 39.56 121.76 39.19 29.61 13.72 254.76 101.67 237.44
memchip 1.52 0.37 12.64 0.88 11.02 0.58 6.58 1.07 11.05 46.70
ML Geer 7.70 7.06 36.65 30.90 38.42 8.06 10.15 50.20 50.46 78.98
nlpkkt80 14.64 42.23 40.42 210.27 39.19 52.57 16.66 344.12 160.34 435.15

ohne2 1.13 0.70 10.75 2.77 9.01 0.74 2.13 4.00 5.90 7.00
PFlow 742 4.31 5.01 23.31 22.25 21.68 5.76 6.32 37.34 24.33 42.71

pwtk 0.77 0.18 9.09 0.56 7.27 0.21 1.61 0.87 3.68 2.11
scircuit 0.36 0.03 7.47 0.04 5.43 0.04 1.13 0.05 1.26 1.15
Serena 23.80 75.51 59.32 409.88 54.37 98.64 27.59 662.93 260.61 759.34
torso3 1.01 0.79 10.81 3.12 8.58 0.93 2.30 5.09 9.76 12.14

Transport 8.06 15.95 35.25 72.71 35.67 18.21 10.10 118.90 78.71 160.72
xenon2 0.65 0.31 8.81 0.95 6.77 0.31 1.41 1.42 3.89 -

Table 3: Time (in seconds) for numerical factorization for each of the matrices listed in Table 2. The
RTX2060 results are for single precision, while the V100, MI60 and MI100 results are for double precision.
For each matrix and each system, the faster time is emphasized. For SuperLU, there were failures for xenon2
and cage13 which need further investigation.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

1
0

9
 F

lo
p
 /

 s
ec

o
n
d

109 Flop

RTX2060, SP peak
RTX2060, DP peak
Ryzen 16 cores, SP
Ryzen 16 cores, DP

RTX2060, SP
RTX2060, DP

Figure 5: Performance of the factorization in terms of
floating point operations per second for the matrices
from Table 2 and Table 3, using the total number of
floating point operations on the horizontal axis.

gered grids using a 27-point stencil and 8 PML ab-
sorbing boundary layers [21], which requires the so-
lution of a complex sparse linear system where each
matrix row contains 27 nonzeros whose values depend
on the coefficients and frequency in Eq. (2). We set
v(x) = 4000m/s, ρ(x) = 1kg/m3, q(x) = 104. The
frequency is set to ω = 8πHz and the grid spacing is
set such that there are 15 grid points per wavelength.
This is a high frequency wave propagation problem
and is extremely hard to solve with iterative meth-
ods. Direct solvers are usually required for this type
of problem, although domain specific preconditioners
exist – see also the discussion in [22] where we present
a preconditioner based on approximate multifrontal
factorization.

Table 4 shows the timings for the numerical fac-
torization of the linear system resulting from the dis-
cretization of Eq. (2) for k = {100, 150, 200, 250} grid
points per dimension on a regular 3-dimensional cubic
domain. The distributed memory fronts are handled
by ScaLAPACK (with block size 32) for the CPU only
tests, and by SLATE (block size 256) for the GPU ac-
celerated tests. For the k = 100, 150, 200 CPU tests,
we use flat MPI, ie., one MPI rank per core, since this
gives the best performance. However, the k = 250
test with flat MPI on 8 nodes ran out of memory.
On 4 nodes of SUMMIT the code runs ∼ 10× faster

13

when using all 24 V100 GPUs compared to when it
only uses the 168 POWER9 cores. On 8 SUMMIT
nodes, using 48 V100 GPUs, the sparse solver reaches
over 50TFlop/s.

All distributed memory tests are performed on the
SUMMIT system, with POWER9 CPUs and V100
GPUs. These tests use ESSL instead of OpenBLAS
for BLAS and LAPACK due to some difficulties in
building SLATE with OpenBLAS, and because we
prefer to use IBM’s optimized ScaLAPACK library
which links to ESSL. The ESSL threading issue men-
tioned earlier is irrelevant for the ScaLAPACK re-
sults shown here since those use flat MPI, i.e., one
MPI rank per CPU core.

5 Getting the Code
We developed a GPU-accelerated sparse multifrontal
solver as part of the STRUMPACK software library,
which is available with a 3-clause BSD licence from
github.com/pghysels/strumpack. Up-to-date doc-
umentation, including configuration and installation
instructions, as well as several recent publications
can be found at the STRUMPACK website:
portal.nersc.gov/project/sparse/strumpack/
master/. Configuration of STRUMPACK is done using
modern CMake, with exported targets. Modern
CMake has excellent support for CUDA, treating
it as a language just as it does with C/C++ and
Fortran. With CMake version 3.18, the support
for HIP is not at the same level yet. Dependencies
required to build STRUMPACK are C++11, C and For-
tran compilers, BLAS, LAPACK, and METIS [15].
MPI is optional, but when it is enabled, then ScaLA-
PACK is required. Other optional dependencies
are OpenMP (≥ 3.1), ZFP [23], CUDA6 (includ-
ing cuBLAS and cuSOLVER), HIP7 (including
hipBLAS, rocBLAS, rocSOLVER and rocThrust),
MAGMA and Scotch [16]. Furthermore, if MPI is
enabled, then also ParMETIS [24], PTScotch [25],
ButterflyPACK8 [26], SLATE9, and Combinatorial
BLAS [27] offer additional optional functionality.

Given all these dependencies, it can be very chal-
lenging to properly configure and build the code
on a local desktop or on a large scale HPC clus-
ter. To ease the installation process, we developed
a spack installation script. Spack [28] is a package
manager specifically targeting HPC software, and is
funded by the ECP project. Moreover, STRUMPACK

6https://developer.nvidia.com/cuda-zone
7https://github.com/ROCm-Developer-Tools/HIP
8https://github.com/liuyangzhuan/ButterflyPACK
9https://icl.utk.edu/slate/

is part of the Extreme-scale Scientific Software De-
velopment Kit (xSDK) [29], and the Extreme-scale
Scientific Software Stack (E4S). Both are ecosys-
tems of reusable scientific software and can be in-
stalled through spack. New releases of xSDK thor-
oughly test compilation of all its packages on a va-
riety of systems, as well as verify compatibility be-
tween the different packages. For instance the solvers
in STRUMPACK can be called directly or through inter-
faces from PETSc [30], MFEM [31] or Trilinos [32],
which are all also included in the xSDK.

6 Conclusion and Outlook
We have ported the STRUMPACK sparse direct multi-
frontal solver to GPU, targeting both NVIDIA and
AMD hardware. By off-loading numerical factoriza-
tion for larger sub-trees of the multifrontal assem-
bly tree that fit entirely in GPU memory our al-
gorithm avoids a lot of data movement, and a lot
of kernel launch overhead. We use a combination
of CUDA kernels and cuBLAS/cuSOLVER calls to
achieve good performance. The code is also ported
to AMD hardware, using HIP and rocBLAS, roc-
SOLVER. For the distributed memory and multi-
GPU setting the code depends on the SLATE library,
a modern GPU-aware replacement for ScaLAPACK.
On 4 nodes of SUMMIT the code runs ∼ 10× faster
when using all 24 V100 GPUs compared to when it
only uses the 168 POWER9 cores. On 8 SUMMIT
nodes, using 48 V100 GPUs, the sparse solver reaches
over 50TFlop/s.

However, bottlenecks still remain which become es-
pecially apparent for the factorization of smaller lin-
ear systems. Since we have observed that the (de-
)allocation of memory on the device can be a bottle-
neck for small systems, we plan to improve the mem-
ory management in the solver [19]. Another possible
area of improvement is to use more tricks developed
specifically for batched dense matrix operations, as
for instance in [33, 2, 34]. Moreover, since we rely
on several third party libraries, we can expect per-
formance improvements just by using newer versions
of these libraries. For instance, the SLATE project is
relatively new and has initially focused mostly on fea-
ture completeness. We are hopeful that SLATE per-
formance will improve with future releases. Likewise,
we presented results for the AMD Instinct MI100,
which at the time of writing is not officially released
yet. We expect the performance of rocBLAS and
rocSOLVER to improve with coming releases of the
ROCm software stack.

STRUMPACK aims to provide a modern collection

14

github.com/pghysels/strumpack
portal.nersc.gov/project/sparse/strumpack/master/
portal.nersc.gov/project/sparse/strumpack/master/
https://developer.nvidia.com/cuda-zone
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/liuyangzhuan/ButterflyPACK
https://icl.utk.edu/slate/

1003 1503 2003 2503

P9 V100 P9 V100 P9 V100 P9 V100
SUMMIT nodes 1 2 4 8

P9 cores 42 84 168 336
of V100s - 6 - 12 - 24 - 48
MPI ranks 42 6 84 12 168 24 336 48

OpenMP/rank 1 7 1 7 1 7 1 7
Fact. time (sec) 105.58 18.63 581.45 61.29 1612.67 157.67 OOM 266.96

Speedup 5.7× 9.5× 10.2× -
TFlop/s 0.51 2.86 1.06 10.09 2.17 22.14 - 50.18

Flops 5.3 · 1013 6.2 · 1014 3.5 · 1015 1.3 · 1016

Fact. mem. (GB) 35.25 185.89 598.77 1482.38

Table 4: Statistics for the numerical factorization phase of complex linear systems from the discretization of
the 3D Helmholtz equation, a difficult problem for (unpreconditioned) iterative solvers such as (restarted)
GMRES and BiCGStab, and many preconditioners. On 4 SUMMIT nodes, and using all 24 available V100
GPUs, the code runs ∼ 10× faster compared to when only the POWER9 CPU cores are used. The 2503

CPU test ran out of memory.

of dense and sparse solvers and preconditioners re-
lying on rank-structured matrix formats. Rank-
structured or data-sparse matrix representations ex-
ploit on the presence of matrix sub-blocks that are
of low rank. Such blocks appear for instance in the
off-diagonal blocks of large dense matrices from the
discretization of integral equations using the bound-
ary element method. In sparse multifrontal solvers
– as has been the focus of this article – low rank
blocks are also found in the off-diagonal parts of
the frontal matrices arising in the multifrontal so-
lution of sparse systems coming from the discretiza-
tion of many partial differential equations. Hence,
STRUMPACK provides several rank-structured approx-
imate multifrontal solvers/preconditioners. The dif-
ferent rank-structured matrix formats currently sup-
ported in STRUMPACK include hierarchically semi-
separable (HSS), hierarchically off-diagonal low rank
(HODLR), butterfly, hierarchically off-diagonal but-
terfly (HODBF) [22], and block low rank (BLR). Al-
ternatively, STRUMPACK also provides lossless or lossy
compression of the sparse triangular factors using the
ZFP library, which provides compression algorithms
specifically designed for floating point data. However,
currently none of the rank-structured solvers or pre-
conditioners available in STRUMPACK run on GPUs.
Porting these advanced solvers to modern accelera-
tors is a major task that we have only just started to
tackle.

7 Acknowledgements
This research was supported in part by the Exascale
Computing Project (17-SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of Sci-
ence and the National Nuclear Security Administra-
tion, and in part by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Com-
puting Research, Scientific Discovery through Ad-
vanced Computing (SciDAC) program through the
FASTMath Institute under Contract No. DE-AC02-
05CH11231 at Lawrence Berkeley National Labora-
tory.

References
[1] M. Gates, J. Kurzak, A. Charara, A. YarKhan,

J. Dongarra, SLATE: design of a modern dis-
tributed and accelerated linear algebra library,
in: Proceedings of the International Conference
for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–18.

[2] A. Abdelfattah, A. Haidar, S. Tomov, J. Don-
garra, Novel HPC techniques to batch execu-
tion of many variable size BLAS computations
on GPUs, in: Proceedings of the International
Conference on Supercomputing, 2017, pp. 1–10.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent,
J. Koster, MUMPS: a general purpose dis-
tributed memory sparse solver, in: Interna-
tional Workshop on Applied Parallel Comput-
ing, Springer, 2000, pp. 121–130.

[4] T. A. Davis, Algorithm 832: UMFPACK V4. 3—
an unsymmetric-pattern multifrontal method,
ACM Trans. Math. Softw. 30 (2) (2004) 196–
199.

15

[5] A. Gupta, WSMP: Watson sparse matrix pack-
age (Part-I: direct solution of symmetric sparse
systems), IBM TJ Watson Research Center,
Yorktown Heights, NY, Tech. Rep. RC 21886
(2000).

[6] A. Gupta, WSMP: Watson Sparse Matrix Pack-
age (Part-II: direct solution of general sparse sys-
tems), Tech. rep., Citeseer (2000).

[7] I. S. Duff, J. K. Reid, The multifrontal solu-
tion of indefinite sparse symmetric linear, ACM
Trans. Math. Softw. 9 (3) (1983) 302–325.

[8] T. A. Davis, S. Rajamanickam, W. M. Sid-
Lakhdar, A survey of direct methods for sparse
linear systems, Acta Numer. 25 (2016) 383–566.
doi:10.1017/S0962492916000076.

[9] P. Hénon, P. Ramet, J. Roman, PaStiX: a High-
Performance Parallel Direct Solver for Sparse
Symmetric Positive Definite Systems, Parallel
Computing 28 (2) (2002) 301–321.

[10] X. S. Li, J. W. Demmel, Superlu dist: A scalable
distributed-memory sparse direct solver for un-
symmetric linear systems, ACM Transactions on
Mathematical Software (TOMS) 29 (2) (2003)
110–140.

[11] P. Sao, R. Vuduc, X. S. Li, A distributed CPU-
GPU sparse direct solver, in: European Confer-
ence on Parallel Processing, Springer, 2014, pp.
487–498.

[12] X. Lacoste, Scheduling and memory opti-
mizations for sparse direct solver on multi-
core/multi-gpu duster systems, Ph.D. thesis
(2015).

[13] I. S. Duff, J. Koster, The design and use of algo-
rithms for permuting large entries to the diago-
nal of sparse matrices, SIAM J MATRIX ANAL
A. 20 (4) (1999) 889–901.

[14] A. Azad, A. Buluc, X. S. Li, X. Wang,
J. Langguth, A distributed-memory algorithm
for computing a heavy-weight perfect matching
on bipartite graphs, SIAM J. Scientific Comput-
ing (2020 (to appear)).

[15] G. Karypis, V. Kumar, A fast and high qual-
ity multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–
392.

[16] F. Pellegrini, J. Roman, Sparse matrix order-
ing with scotch, in: International Conference on

High-Performance Computing and Networking,
Springer, 1997, pp. 370–378.

[17] J. Choi, J. J. Dongarra, R. Pozo, D. W. Walker,
Scalapack: A scalable linear algebra library for
distributed memory concurrent computers, in:
The Fourth Symposium on the Frontiers of Mas-
sively Parallel Computation, IEEE Computer
Society, 1992, pp. 120–121.

[18] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams,
A. Napov, An efficient multicore implementation
of a novel HSS-structured multifrontal solver us-
ing randomized sampling, SIAM J. Sci. Comput.
38 (5) (2016) S358–S384.

[19] D. A. Beckingsale, M. J. Mcfadden, J. P.
Dahm, R. Pankajakshan, R. D. Hornung, Um-
pire: Application-focused management and co-
ordination of complex hierarchical memory, IBM
Journal of Research and Development 64 (3/4)
(2019) 00–1.

[20] S. P. Kolodziej, M. Aznaveh, M. Bullock,
J. David, T. A. Davis, M. Henderson, Y. Hu,
R. Sandstrom, The Suitesparse matrix collection
website interface, Journal of Open Source Soft-
ware 4 (35) (2019) 1244.

[21] S. Operto, J. Virieux, P. Amestoy, J.-Y.
L’Excellent, L. Giraud, H. B. H. Ali, 3D finite-
difference frequency-domain modeling of visco-
acoustic wave propagation using a massively par-
allel direct solver: A feasibility study, Geo-
physics 72 (5) (2007) SM195–SM211.

[22] Y. Liu, P. Ghysels, L. Claus, X. S. Li, Sparse Ap-
proximate Multifrontal Factorization with But-
terfly Compression for High Frequency Wave
Equations, arXiv preprint arXiv:2007.00202
(2020).

[23] P. Lindstrom, Fixed-rate compressed floating-
point arrays, IEEE transactions on visualiza-
tion and computer graphics 20 (12) (2014) 2674–
2683.

[24] G. Karypis, V. Kumar, A parallel algorithm for
multilevel graph partitioning and sparse matrix
ordering, J PARALLEL DISTR COM 48 (1)
(1998) 71–95.

[25] C. Chevalier, F. Pellegrini, PT-Scotch: A tool
for efficient parallel graph ordering, Parallel
computing 34 (6-8) (2008) 318–331.

16

https://doi.org/10.1017/S0962492916000076

[26] H. Guo, Y. Liu, J. Hu, E. Michielssen, A
butterfly-based direct integral-equation solver
using hierarchical LU factorization for analyz-
ing scattering from electrically large conducting
objects, IEEE Trans. Antennas Propag. 65 (9)
(2017) 4742–4750.

[27] A. Buluç, J. R. Gilbert, The Combinatorial
BLAS: Design, Implementation, and Applica-
tions, Int. J. High Perform. C. 25 (4) (2011) 496–
509.

[28] T. Gamblin, M. LeGendre, M. R. Collette, G. L.
Lee, A. Moody, B. R. de Supinski, S. Futral, The
Spack package manager: bringing order to HPC
software chaos, in: SC’15: Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis,
IEEE, 2015, pp. 1–12.

[29] R. Bartlett, I. Demeshko, T. Gamblin, G. Ham-
mond, M. Heroux, J. Johnson, A. Klinvex, X. Li,
L. C. McInnes, J. D. Moulton, et al., xSDK
foundations: Toward an extreme-scale scien-
tific software development kit, arXiv preprint
arXiv:1702.08425 (2017).

[30] S. Balay, S. Abhyankar, M. F. Adams, J. Brown,
P. Brune, K. Buschelman, L. Dalcin, A. Dener,
V. Eijkhout, W. D. Gropp, D. Karpeyev,
D. Kaushik, M. G. Knepley, D. A. May, L. C.

McInnes, R. T. Mills, T. Munson, K. Rupp,
P. Sanan, B. F. Smith, S. Zampini, H. Zhang,
H. Zhang, PETSc Web page, https://www.
mcs.anl.gov/petsc (2019).
URL https://www.mcs.anl.gov/petsc

[31] R. Anderson, J. Andrej, A. Barker, J. Bramwell,
J.-S. Camier, J. Cerveny, V. Dobrev, Y. Du-
douit, A. Fisher, T. Kolev, et al., MFEM: a
modular finite element methods library, arXiv
preprint arXiv:1911.09220 (2019).

[32] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps,
et al., An overview of the trilinos project,
ACM Transactions on Mathematical Software
(TOMS) 31 (3) (2005) 397–423.

[33] A. Abdelfattah, A. Haidar, S. Tomov, J. Don-
garra, Performance, design, and autotuning
of batched gemm for gpus, in: International
Conference on High Performance Computing,
Springer, 2016, pp. 21–38.

[34] A. Charara, D. Keyes, H. Ltaief, Batched trian-
gular dense linear algebra kernels for very small
matrix sizes on GPUs, ACM Transactions on
Mathematical Software (TOMS) 45 (2) (2019)

1–28.

17

https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc

	Introduction
	Sparse Multifrontal LU Decomposition
	MPI+OpenMP Parallelization

	GPU Off-Loading Strategy
	GPU Sub-Tree Traversal
	Kernels for Small Fronts
	SLATE
	Pivoting Issues
	Triangular Solve
	Porting to AMD Hardware

	Experimental Evaluation
	Test Setup
	Single GPU, PDE Problems on Regular Grids
	Single GPU Results for SuiteSparse Test Matrices
	Multi-GPU Using SLATE

	Getting the Code
	Conclusion and Outlook
	Acknowledgements

