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Differential dynamics of peripheral immune responses to acute SARS-CoV-2 
infection in older Adults 
 
Sloan A. Lewis1,2,9, Suhas Sureshchandra1,2,9, Michael Z. Zulu 1,2, Brianna Doratt1,2, Allen 
Jankeel1, Izabela Coimbra Ibraim1, Amanda N. Pinski1, Nicholas S. Rhoades 1,2, Micaila Curtis 1, 
Xiwen Jiang3, Delia Tifrea4, Frank Zaldivar5, Weining Shen 3, Robert A. Edwards4, Daniel 
Chow6, Dan Cooper2,7, Alpesh Amin7 and Ilhem Messaoudi 1,2,8, email  
 
In this study, peripheral blood mononuclear cells from young and old patients with COVID-19 
were examined phenotypically, transcriptionally and functionally to reveal age-, time- and 
severity-specific adaptations. Gene signatures within memory B cells and plasmablasts 
correlated with reduced frequency of antigen-specific B cells and neutralizing antibodies in older 
patients with severe COVID-19. Moreover, these patients exhibited exacerbated T cell 
lymphopenia, which correlated with lower plasma interleukin-2, and diminished antigen-specific 
T cell responses. Single-cell RNA sequencing revealed augmented signatures of activation, 
exhaustion, cytotoxicity and type I interferon signaling in memory T and natural killer cells with 
age. Although cytokine storm was evident in both age groups, older individuals exhibited 
elevated levels of myeloid cell recruiting factors. Furthermore, we observed redistribution of 
monocyte and dendritic cell subsets and emergence of a suppressive phenotype with severe 
disease, which was reversed only in young patients over time. This analysis provides new 
insights into the impact of aging on COVID-19. 
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The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 40 million cases and 
700,000 deaths in the US alone. SARS-CoV-2 targets lung airway and alveolar epithelial cells, 
vascular endothelial cells and macrophages in the lung. Infection triggers a vigorous innate and 
adaptive immune response that culminates in viral clearance or, in the case of severe infection, 
the development of a cytokine storm, acute respiratory distress syndrome (ARDS) and multi-
organ failure1. The estimated mortality rate of COVID-19 in the US is 1–2%, while 



approximately 80% of patients are thought to be asymptomatic or experience mild disease 
symptoms2,3. 

Although there are many questions that remain to be answered regarding the large 
discrepancies in disease outcomes, it is clear that advanced age is a leading risk factor for severe 
COVID-19 and death4–6. Indeed, the case fatality rate worldwide increases progressively with 
age (0.4% at age 55, 1.4% at age 65, 4.6% at age 75 and 15% at age 85)7,8. The highest 
proportion of patients who develop severe respiratory complications, such as respiratory failure, 
dyspnea, pneumonia, ARDS and death are older adults9–14. Age-related changes in immunity, 
dubbed ‘immunosenescence’, result in a marked increase in susceptibility to respiratory viral 
infections and attenuated vaccine responses15,16. Some of the hallmarks of immunosenescence 
include decreased frequency of naive T and B cells, increased prevalence of effector/terminally 
differentiated memory cells, as well as increased levels of circulating inflammatory mediators 
including interleukin-6 (IL-6) and C-reactive protein referred to as ‘inflammaging’17. Despite the 
rich literature on COVID-19 pathogenesis, the specific immune mechanisms associated with the 
increased severity of COVID-19 among older adults and the immune correlates of mild and 
severe disease in the older population remain elusive. 

While age-associated immune changes in the lung undoubtedly contribute largely to a 
reduced ability to fight SARS-CoV-2 infection18, such studies are challenging to conduct. 
Consequently, most studies to date have relied on profiling circulating immune cells19. These 
studies have shown that severe COVID-19 is mediated by dysregulated innate and adaptive 
immune responses. Elevated levels of IL-1, IL-6, IL-8 and CXCL10 in the blood have been 
associated with more severe infection or death20–24. Disruptions in distribution, activation as well 
as gene expression of circulating immune cells have been identified by single-cell RNA 
sequencing (scRNA-seq). Notably, a pronounced decrease of human leukocyte antigen – DR 
isotype (HLA-DR) on monocytes22,25,26, an increase in nonclassical CD16+ monocytes22 and a 
decrease in the frequency of total dendritic cells (DCs)26 compared to patients with moderate or 
mild COVID-19 and healthy controls. Additionally, mild disease results in increased interferon 
(IFN) signaling gene expression, whereas severe disease leads to impaired type I IFN responses27 
and reduced ability to respond to a secondary stimulation in monocytes28. Studies examining 
natural killer (NK) cells have reported reduced numbers of total NK cells with disease severity 
but no differences within subsets29–31. Similarly, NK cells have been shown to upregulate IFN 
response genes but have an exhausted phenotype and reduced cytolytic activity29,30. Another 
hallmark of severe COVID- 19 is lymphopenia32 that is accompanied by increased T cell 
activation and exhaustion30,33–36. 

Data from these studies have begun to paint a picture of significant immune 
dysregulation with COVID-19 that is potentially exacerbated in older patients37,38. Regardless, 
gaps in our knowledge remain. Notably, comprehensive longitudinal studies that include both 
young and older individuals with varying disease severity (from mild to fatal) as well age-
matched controls and integrated transcriptional and functional analyses are needed. In this study, 
we carried out a longitudinal phenotypic, transcriptional and functional analysis of peripheral 
blood mononuclear cells (PBMCs) from young and old patients with COVID-19 compared to 
age-matched healthy controls. Analysis of circulating immune mediators revealed higher levels 
of cytokines important for T cell survival and IFNβ in young individuals, while older individuals 
exhibited higher levels of myeloid cell recruiting chemokines. scRNA-seq analysis revealed 
dampened activation signatures in plasmablasts and memory B cells isolated from older 
individuals that correlated with reduced neutralizing titers. Analysis of the T cell subsets 



revealed heightened activation and exhaustion states with severe disease and an age-associated 
exacerbation of IFN and cytotoxicity signaling. Functionally, this led to immune paralysis in 
older individuals, with worsened T cell lymphopenia and diminished anti-SARS-CoV-2 T cell 
responses. Similarly, signatures of increased exhaustion and cytotoxicity markers were more 
evident in NK cells from older individuals. Finally, severe COVID-19 resulted in a functional 
rewiring of monocytes and DCs toward a more regulatory phenotype where nuclear factor 
kappa-light-chain-enhancer of activated B cell (NF-κB)-mediated responses were diminished 
while type I IFN responses were enhanced. The findings presented enhance our understanding of 
age-mediated disruptions in antiviral responses and will aid the design of therapeutics and 
vaccines for this at-risk population. 
 
Results 
Magnitude of cytokine storm in severe COVID-19 is modulated by age.  
 

To comprehensively assess the peripheral immune response to SARS-CoV-2 infection 
with age, we performed a combination of immunological, single-cell transcriptomic and 
functional assays (Fig. 1a) using blood samples obtained from 49 healthy donors (37 young and 
12 old), 25 mild/asymptomatic COVID-19 patients (13 young and 12 old) and 51 patients 
severely infected with COVID-19 (35 young and 16 old) with longitudinal sampling based on 
days post-symptom (DPS) onset (median approximately 10 DPS). Each group contained young 
(<60 years, median age 42.5 years) and old patients (≥60 years, median age 69) including 6 
patients (2 young and 4 old) who succumbed to infection (Supplementary Table 1). 

We first began by measuring circulating levels of key immune mediators using Luminex 
with a focus on factors significantly altered with severity and age. While several analytes were 
elevated with severe disease (Extended Data Fig. 1a), levels of IP-10, granulocyte-macrophage 
colony-stimulating factor (GM-CSF), IL-10 and TNF-related apoptosis-inducing ligand (TRAIL) 
were more elevated in older individuals with severe disease compared to young individuals. On 
the other hand, granzyme B and regulated on activation, normal T cell expressed and secreted 
(RANTES) were markedly lower in older individuals with severe disease relative to their young 
counterparts (Extended Data Fig. 1a). 

We next tracked temporal changes in plasma cytokines, chemokines and growth factors 
in young patients, old patients who survived and old patients who succumbed to COVID-19. 
Linear regression analysis revealed significant increase in T cell- (IL-2, IL-7, tumor necrosis 
factor-α (TNF), macrophage inflammatory protein-1β (MIP-1β), IL-4, IL-5, IL-13, CD40L) and 
myeloid cell-associated factors (IL-1α, IL-1β, GRO-β, CX3CL1) and growth factors (platelet-
derived growth factor-AA (PDGF-AA), transforming growth factor-α (TGFα), epidermal growth 
factor (EGF)) exclusively in young individuals with severe disease (Extended Data Fig. 1b). To 
test differences with age, we used an analysis of covariance (ANCOVA) on individual factors 
treated independently with DPS as a continuous covariate. Our analysis revealed sharp increase 
in circulating TH2 cytokine IL-5 and type I IFNβ in young individuals relative to older 
individuals with severe disease (Fig. 1b). On the other hand, levels of IFNα were reduced 
significantly in young and older individuals who survived over time (Fig. 1b). Interestingly, 
within the older group, a number of myeloid cell-associated growth factors (IL-3, granulocyte 
colony-stimulating factor (G-CSF), (GM-CSF)), chemokines (MIP-3β, monocyte 
chemoattractant protein 1 (MCP-1), eotaxin) and regulatory cytokines (IL-1RA and IL-10) were 
significantly different between older individuals who survived versus those who succumbed to 



infection (Fig. 1b). Furthermore, levels of IFNγ were significantly positively correlated while 
levels of GM-CSF were significantly negatively correlated with DPS only in older patients who 
succumbed to infection (Fig. 1b). 

Finally, we used supervised random forest modeling to identify factors that could have 
early (1–5 DPS) predictive value of COVID-19 outcomes (Extended Data Fig. 1c,d). 
Independent of age, plasma levels of IL-17A, IL-33, IP-10, IL-15, MIP-1β and IFNα were the 
strongest predictors of disease severity (Extended Data Fig. 1c,d). IL-17 levels were highly 
predictive of mild disease regardless of age, while MIP-1β levels were more predictive of severe 
disease in older adults (Extended Data Fig. 1d). 
 
Peripheral immune adaptations with disease severity and age. 
 

To assess the impact of age and COVID-19 disease severity on peripheral immune 
adaptations, we profiled the PBMCs from each patient by flow cytometry. Analysis of major 
populations in the blood including B cells, T cells, NK cells, DCs and monocytes identified 
significant differences in immune cell frequencies, particularly with disease severity and age 
(Fig. 1c). Specifically, decreased percentages of naive B cells and a concomitant increase in 
memory B cell fractions was observed in older patients with severe disease compared to healthy 
donors. Furthermore, severe disease in older patients was associated with significant decrease in 
central memory CD4 (TCM) and naive CD8 cells relative to their young counterparts (Fig. 1c). 
In contrast, mild disease was associated with an expansion of CD8 TCM cells in both young and 
older patients, albeit to a greater extent in older individuals. The frequencies of DC subsets 
decreased significantly in both old and young patients regardless of disease severity, whereas 
monocytosis was observed only in young patients with severe COVID-19 (Fig. 1c). 

To further characterize the unique aspects of the peripheral immune response to acute 
COVID-19 with age, PBMCs from 16 patients (young mild = 4; young severe = 4; old mild = 4; 
old severe = 4) and 8 healthy donors (young = 4; old = 4) were profiled by scRNA-seq (Fig. 1a). 
For patients with severe disease, we profiled PBMCs at three time points (ranging from DPS 2 to 
DPS 22) over the course of acute infection (Extended Data Fig. 2a). An average of 2,082 cells 
were sequenced per patient and time point for a total of 92,648 cells (Extended Data Fig. 2b). 
Principal component analysis and dimensional reduction using uniform manifold approximation 
and projection (UMAP) revealed distinct clustering into the major peripheral innate and adaptive 
immune subsets (Extended Data Fig. 2c). Clusters were annotated based on highly expressed 
marker genes using Seurat’s FindMarkers function (Extended Data Fig. 2d and Extended Data 
Table 2). This orthogonal immune profiling approach recapitulated salient features of COVID-
19, notably a reduction of naive CD8 T cells (especially in older patients) and DCs with severe 
disease (Extended Data Fig. 2e). Frequency of B cells contracted in young patients but expanded 
in older patients with severe COVID-19, while frequency of plasmablasts increased in patients 
with mild disease (Extended Data Fig. 2e). Finally, frequency of natural killer T (NKT cells) 
increased in both young and old individuals who experienced severe disease (Extended Data Fig. 
2e). 
Qualitative differences in B cell responses to acute SARS-CoV-2 infection in older patients.  

To assess the impact of disease severity and age on humoral responses to SARS-CoV-2 
infection, we re-clustered the B cells and plasmablasts and identified five subsets based on the 
expression of key B cell markers (Fig. 2a and Extended Data Fig. 3a). Modest increases in the 
proportions of plasmablasts were observed with disease but were more prominent in younger 



patients with mild disease (Extended Data Fig. 2e). We next measured the frequencies of 
proliferating B cells using flow cytometry. Independent of age, the frequency of total and 
proliferating terminally differentiated B cells was increased in patients with severe disease, while 
that of total and proliferating marginal zone-like B cells was increased only in patients with mild 
disease (Fig. 2b). 

Differential expression analysis in plasmablasts (Fig. 2c) within each group relative to 
age-matched healthy donors revealed increased expression in the Ig heavy chain genes IGHG3 
and IGHM only in young patients with severe disease (Fig. 2c). Additionally, expression of 
SSR4, important for B cell effector function, was increased with infection in young patients but 
decreased in older patients (Fig. 2c). Similarly, expression of the heavy chain gene IGHG3 
within memory B cells increased with infection in young patients but decreased in older patients 
(Fig. 2d). Finally, while severe disease was associated with the induction of genes associated 
with B cell activation (CD40, TRAF4, NFKB1/2 and REL), these changes were less pronounced 
in older individuals (Fig. 2d). Given the significant age differences in the transcriptional 
landscapes of memory B cells and plasmablasts after severe COVID-19, we tested for 
differences in humoral responses with age. SARSCoV-2 Spike-specific IgG and IgA end point 
titers were measured using ELISA and neutralizing antibodies measured using a focus reduction 
assay. While no differences were observed in the IgG or IgA end point titers (Fig. 2e and 
Extended Data Fig. 3b), advanced age was associated with significantly reduced SARS-CoV-2 
neutralization titers (Fig. 2f). Moreover, the frequencies of Spike protein-specific B cells were 
significantly reduced in older patients with severe disease compared to their young counterparts 
(Extended Data Fig. 3c and Fig. 2g). 

Severe COVID-19 in older patients is associated with increased severity of 
lymphopenia, exacerbated IFN signaling and dampened antiviral responses. A closer 
examination of T cell frequencies revealed a linear drop in total and naive CD4 and CD8 T cells 
across DPS in older patients (Fig. 3a,b). Severe disease was associated with increased 
frequencies of proliferating CD4 TCM (Fig. 3c) and CD8 effector memory T (TEM) cells (Fig. 
3d), although this induction was reduced in the old. In line with the significant loss of naive T 
cells and reduced proliferation, plasma levels of the T cell maintenance factors IL-2 and IL-7 
were only significantly increased with DPS in young patients with severe disease (Fig. 3d). 
Furthermore, surface expression of IL-2R (CD25) on CD8 T cells was significantly lower in 
older individuals compared to young individuals with severe disease (Fig. 3e). 

 



 
 
Fig. 1 | Age-dependent alterations in circulating factors and major immune cell subsets 
with COVID-19. a, Experimental design for the study created partially on Biorender.com. Blood 
was collected from healthy donors (n = 49; 37 young and 12 old), mild/asymptomatic patients (n 
= 25; 13 young and 12 old) and longitudinally in 35 young and 16 old patients with severe 
COVID-19. The immune phenotypes of PBMCs and concentration of soluble mediators in 
plasma were determined using flow cytometry and Luminex, respectively. Longitudinal 
serological responses to SARS-CoV-2 were measured using ELISA. A subset of PBMC samples 
(n = 4 healthy donors, 4 mild, 4 severe per age group) were profiled using scRNA-seq to 
determine dynamic peripheral immune adaptations of COVID-19 in mild/severe disease in 
young and older subjects. b, Bubble plot representing linear regression analyses of the 
concentration (pg ml−1) of select cytokines, chemokines and growth factors across DPS. The 
size of the bubble represents the Spearman correlation coefficient (positive in red and negative in 
blue) and the color intensity represents the significance of that correlation (−log10(P)) in each of 
the three groups. Differences with age are denoted with a single asterisk (between old survived 
and old deceased) or a hash symbol (between young and old) calculated using an ANCOVA test. 
c, Heat map of proportions of major immune cell subjects derived from live singlets quantified 
using flow cytometry. Six-way comparisons were tested using a one-way ANOVA with Holm–
Šídák multiple comparisons test where * = significant compared to healthy donors, + = 
significant compared to patients with mild disease, # = significant difference between old 
mild/severe and young mild/severe groups where */+/#P < 0.05, **/++P < 0.01, ***/+++/###P < 
0.001, ****/++++/####P < 0.0001. 



We next re-clustered T and NK cells to identify subsets at higher resolution (Fig. 3f). 
This allowed us to identify several subsets of memory CD4 and CD8 T cells as well as NK cells 
(Fig. 3f and Extended Data Fig. 4a). Within the CD4 TEM subsets, differentially expressed 
genes (DEGs) with severe COVID-19 enriched predominantly to pathways associated with 
lymphocyte activation (CD3E, IL2RA, IL7R), response to type I IFNs (IFI6, IRF1), antiviral 
immunity (ISG15, ISG20, MX1, TRIM8) and positive  regulation of cell death (FAS), 
particularly in the old patients (Fig. 3g). Severe COVID-19 was also associated with an 
expansion of the CD4 TEM cells re-expressing CD45RA (TEMRA) subset, most notably in 
young patients (Extended Data Fig. 4b). Moreover, this subset was transcriptionally dysregulated 
with severe disease only in older patients compared to age-matched controls and older patients 
with mild disease (Fig. 4a). Specifically, expression of genes associated with ATP metabolism, 
calcium signaling and response to hypoxia (including cytotoxic molecules such as GZMA, 
GZMB and KLRD1) were decreased in older patients with mild disease and increased in older 
patients with severe disease (Fig. 4a,b). Genes that were uniquely downregulated with severe 
disease in older patients enriched to gene ontology (GO) terms associated with antiviral 
immunity, leukocyte differentiation and negative regulation of the cell cycle (Extended Data Fig. 
4c). A consistent theme across both CD4 TEM and TEMRA clusters was upregulation of genes 
that map to GO terms associated with apoptosis in patients who experienced severe disease, as 
evidenced by increased scoring of the FAS signaling module in memory CD4 T cells in 
individuals with severe COVID-19, which was more pronounced in older patients (Extended 
Data Fig. 4d and Supplementary Table 3). Furthermore, a sharper decline in IL-2 signaling 
signatures was detected in memory CD4 T cells from older individuals with severe disease only 
(Extended Data Fig. 4e). 

Single-cell analysis of CD8 T cells identified four memory subset clusters in addition to 
naive CD8 T cells (Fig. 3f and Extended Data Fig. 4a). These memory clusters were identified as 
CD8 IFN (expressing high levels of IFN-simulated genes such as IFIT2, IFIT3), activated 
memory CD8 (CD69hi expressing CCL4 and IFNG) and two subsets of cytotoxic CD8 T cells 
(GZMHhi and GZMKhi) (Fig. 3f and Extended Data Fig. 4a). Comparisons of COVID-19 
associated DEGs in memory CD8 T cells revealed upregulation of prosurvival (BCL2) and 
antiviral factors (OAS3, TXNIP) with mild disease and enrichment of factors associated with the 
tissue-resident CD8 T cell development program (RUNX3, VIM, TGFB1) in severely affected 
patients (Fig. 4c). More importantly, while CD8 T cells from both young and old patients with 
severe COVID-19 expressed elevated levels of chemokines (CCL4L2, XCL2) and cytotoxic 
molecules (PRF1, GZMB, KLRD1) (Fig. 4c), the overall cytotoxicity scores in the GZMKhi 
clusters were significantly higher in older patients (Extended Data Fig. 4f). As observed in the 
CD4 TEM cluster, severe disease was associated with signatures of heightened CD8 T cell 
activation (CD3D and CD8B) (Fig. 4c). Finally, our analyses revealed significant upregulation of 
IFN signaling module scores in all CD8 T cell clusters with mild disease in both young and old 
individuals (Extended Data Fig. 4g), albeit to a greater extent in young patients (P < 0.0001). In 
contrast, IFN signaling module scores were significantly higher in older patients relative to 
young patients with severe disease (P < 0.0001) (Extended Data Fig. 4g) peaking at DPS 18 in 
the CD8 IFN cluster (Extended Data Fig. 4h). 
 
 



 
 
Fig. 2 | Qualitative differences in SARS-CoV-2-specific B cell responses with age. 
 
 
 



Fig. 2 | Qualitative differences in SARS-CoV-2-specific B cell responses with age. a, UMAP 
projection of 6,334 B cells and plasmablasts with major subsets annotated. b, Dot plots showing 
the frequency of total (top) and Ki67-expressing (bottom) terminally differentiated memory B 
cells (left) and marginal zone-like B cells (right) determined from flow cytometry (n = 12 young 
healthy donors, 12 older healthy donors, 6 young mild, 4 old mild, 27 young severe and 8 old 
severe). All percentages are reflective of the fraction of total live cells. c, Bubble plot showing 
the expression of selected genes in the plasmablast subset. The color of the dot represents the 
average expression and the size represents the percentage of cells expressing that gene. d, Bubble 
plot showing the expression of selected genes in memory B cell subsets. The color of the dot 
represents the average expression and the size represents the percentage of cells expressing that 
gene. e, Bar plots of Spike-specific IgG end point titers from patients with severe COVID-19 (n 
= 12 young from 7 individuals, n = 22 old from 16 individuals). f, Bar plots of antibody 
neutralization of SARS-CoV-2 virus (half-maximal inhibitory concentration (IC50)) measured 
from the plasma of patients with severe COVID-19 (n = 13 young from 6 individuals, 22 old 
from 12 individuals; exact P = 0.014). g, Bar plots showing the percentage of Spike+ B cells in 
the PBMCs of patients with severe COVID-19 (n = 9 per age group; exact P = 0.036). Two-
group differences were tested using a two-sided unpaired t-test with Welch’s correction. Six-way 
comparisons were tested using a one-way ANOVA with Holm–Šídák multiple comparisons test 
where * = significant compared to healthy donors, + = significant compared to mild patients, # = 
significant difference between old mild/severe and young mild/severe groups. The error bars 
represent median values with the interquartile range (IQR). P values: */+/#P < 0.05, **/++P < 
0.01, ***/+++P < 0.001. 
 
 

We next investigated if these transcriptional changes were associated with altered 
antigen-specific T cell responses against SARSCoV-2 (Fig. 4d). To quantify antigen-specific 
responses, purified CD2+ cells (with < 2% contaminating antigen-presenting cells) were 
stimulated with overlapping peptide pools covering several SARSCoV-2 open reading frames 
(E/M/N/Nsp14/ORF3a/6/7/8/10) for 24 h and secreted cytokine levels were assessed using 
Luminex (Fig. 4e). T cells from older patients with severe COVID-19 secreted attenuated levels 
of IFNγ (P = 0.09) and IL-2 (P = 0.1) relative to young patients with severe disease while the 
responses to CD3 were comparable between the two groups (Fig. 4e) suggesting impaired 
antigen-specific responses with age. Flow cytometry analysis of the unstimulated T cells after 24 
h in culture showed decreased frequencies of CD69+CD40L+ and OX40+CD40L+ T cells 
in older individuals with severe COVID-19 (Fig. 4f). Furthermore, after peptide stimulation, 
older individuals had fewer antigenspecific CD4 (OX40+CD137+) and CD8 (CD69+CD137+) T 
cells (Fig. 4g). 
 
Enrichment of terminally differentiated NK cells with an exhausted phenotype in older 
individuals with severe COVID-19. 
 

Given their critical role in antiviral immunity during acute infection, we next examined 
the impact of COVID-19 disease severity and age on NK cell phenotypes. Two major 
populations of NK cells were identified by scRNA-seq based on the expression of FCGR3A 
(CD16) and NCAM1 (CD56) (Fig. 3fand Extended Data Fig. 5a). We also identified a cluster of 
cytotoxic NK cells expressing high levels of PLGC2 (NKT cells) that drive innate immune 



responses against virally infected cells39. The frequency of this subset increased significantly in 
young patients and only modestly in older patients with severe disease (Extended Data Fig. 5b). 
NK cell exhaustion module scores from the NCAM1hi cluster were increased with severe 
disease and with advanced age (Fig. 5a). In contrast, induction of a robust cytotoxic program was 
only evident in young patients with severe disease as indicated by a significant increase in 
CD56++granzymeB+ cells by flow cytometry (Fig. 5b). This observation is in line with 
increased levels of granzyme B in plasma from young, but not older patients, with severe disease 
(Extended Data Fig. 1a). On the other hand, the frequency of NK cells expressing the activation 
marker KLRG1 and/or terminal differentiation marker CD57 was significantly increased in older 
patients with severe disease compared to their young counterparts (Fig. 5c). 

Even though the frequencies of the FCGR3Ahi NK cell cluster did not change with 
disease severity/age, we observed significant changes in their transcriptional program with 
COVID-19. DEGs from each disease group compared to their age-matched healthy donors 
enriched to GO processes associated with leukocyte activation, cell death and response to virus 
(Extended Data Fig. 5c). Interestingly, the pathways that were upregulated with severe disease in 
older patients (lymphocyte activation and leukocyte activation in immune response) were 
strongly downregulated with mild infection in young patients. Indeed, genes involved in cell 
migration (LGALS3 and CCL5) and activation (HLA-DRB1) were highly upregulated with 
severe disease in older patients (Fig. 5d). On the other hand, expression of numerous IFN-
stimulated genes (ISGs) (for example, ISG20, IFIT3, IFITM1) as well as B2M, IRF7 and STAT1 
were upregulated with mild disease (Fig. 5d). Indeed, the IFN module score was highest in NK 
cells from patients with mild disease (Fig. 5e). However, and as described for T cells, the IFN 
module score was higher in NK cells from old compared to young patients with severe disease in 
both CD56hi (P < 0.05) and CD16hi (P < 0.0001) clusters (Fig. 5e). Finally, the expression of 
genes associated with cytokine signaling (TNFSF4, TNFRSF18, STAT3, TNF, MAP3K8, 
RELA) and several cytokines and chemokines and their receptors (CXCR4, IFNGR1, IL21R, 
IL4R) were upregulated with severe disease but to a less extent in older patients (Fig. 5d). 
 
Aging exacerbates regulatory skewing of monocytes and DCs in patients with severe 
COVID-19.  
Young patients showed an increase in both classical and nonclassical monocytes (Extended Data 
Fig. 6a). On the other hand, the frequency of classical monocytes was significantly decreased 
while that of nonclassical monocytes was increased in older patients (Extended Data Fig. 6a). 
Regardless of age, the frequencies of plasmacytoid and myeloid DCs was reduced in patients 
with COVID-19 in a severity-dependent manner (Fig. 1c and Extended Data Fig. 6b). The most 
striking change, however, was the downregulation of surface HLA-DR and activation marker 
CD86 on both monocyte (Fig. 6a and Extended Data Fig. 6c) and DC subsets (Fig. 6b and 
Extended Data Fig. 6c). Furthermore, HLA-DR downregulation was more severe on cells from 
older patients compared to young patients (Fig. 6a,b) and regression analysis of HLA-DR 
expression over DPS revealed a recovery of its expression on classical monocytes over the 
course of infection in young but not older individuals (P < 0.0001) (Fig. 6c). On the other 
hand, expression of CD86 was relatively higher in older individuals with severe disease 
compared to young individuals (Fig. 6a,b). Re-clustering of the myeloid cell subsets from the 
scRNA-seq data identified four clusters of classical monocytes (MS1–MS4), intermediate and 
nonclassical monocytes, as well as myeloid and plasmacytoid DCs based on the expression of 
canonical markers (CD14, FCGR3A, FCER1A, LILRA4) (Extended Data Fig. 6d,e). Age-



dependent differences in surface HLA-DR on monocytes were validated at the transcriptional 
level since major histocompatibility complex (MHC) class II module scores were reduced with 
infection in a severity- and age-dependent manner (P < 0.0001) (Fig. 6d). Trajectory analysis 
revealed three unique lineages within the monocyte subsets (Fig. 6e) starting from the classical 
MS1 subset and ending either in nonclassical monocytes (lineage 1), antiviral cluster-expressing 
ISGs (lineage 3) or regulatory monocytes (lineage 2) expressing CD163 and F13A1 (Fig. 6e). 
This regulatory lineage was more prominent in patients with severe disease and was confirmed 
by flow cytometry with increased surface expression of CD163 and CD62L (Fig. 6f). 
Additionally, surface expression of CX3CR1 and CD11b was downregulated and remained 
reduced, whereas both CCR5 and CD64 increased over time with acute infection (Extended Data 
Fig. 6f). 
 

 
 

 
 



Fig. 3 | Heightened activation and cytotoxicity of T cells from older patients with severe 
COVID-19. a,b, Linear regression analysis of frequencies of total (a) and naive T cell (b) 
subsets with DPS in young and older individuals. c, Dot plots comparing the frequencies of 
proliferating CD4 TCM (left) and proliferating CD8 TEM (right) cells with mild and severe 
COVID-19 in young and older individuals measured using flow cytometry (n = 12 young healthy 
donors, 12 old healthy donors, 6 young mild, 4 old mild, 27 young severe, 8 old severe). d, 
Linear regression of plasma IL-2 and IL-7 levels and DPS within 
young (yellow) and older individuals (red) with severe COVID-19. The P value on the graph 
refers to ANCOVA testing of differences with age. The Spearman correlation coefficient and 
corresponding significant P for DPS is highlighted under each graph. e, Bar plots showing the 
mean fluorescence intensity (MFI) of CD25 expression on CD4 and CD8 T cells from patients 
with severe COVID-19 (n = 10 young, 9 old; exact P = 0.0007). f, UMAP projection of 66,656 
lymphocytes re-clustered from the main UMAP to identify the T and NK cell subpopulations at a 
higher resolution. Major subsets of CD4 T cells, CD8 T cells and NK cells are highlighted. g, 
Bubble plot of GO terms derived from COVID-19-induced DEGs in CD4 TEM cells from old 
and young individuals. The color and size of the bubble represents statistical significance and the 
number of genes, respectively. Two-group differences were tested using a two-sided unpaired t-
test with Welch’s correction. Six-way comparisons were tested using a one-way ANOVA with 
Holm–Šídák multiple comparisons test where * = significant compared to healthy donors, + = 
significant compared to patients mildly affected, # = significant difference between old 
mild/severe and young mild/severe groups. The error bars represent the median values with IQR. 
+/#P < 0.05, ***P < 0.001. 
 
 

 
 
Fig. 4 | Age-associated disparities in T cell activation and antigen-specific T cell responses 
in severe COVID-19. a, Venn diagram of DEGs detected in CD4 TEMRA clusters in older 
individuals with mild and severe COVID-19. b, Bar graph showing GO enrichment of DEGs 
upregulated with severe COVID-19 but downregulated in older individuals with mild COVID-19 



within the CD4 TEMRA cluster. The gene numbers associated with each term are indicated next 
to each term. The size of the bar indicates the significance of the enrichment. c, Bubble plot of a 
subset of genes that are differentially responsive in mild versus severe COVID-19 within 
memory CD8 T cell clusters. The size of the bubble is indicative of the percentage of cells 
expressing the marker and the color indicates the average expression level ranging from low 
(blue) to high (red). d, T cells from young and old patients with severe COVID-19 were purified 
by magnetic-activated cell sorting positive selection beads and stimulated with SARS-CoV-2 
overlapping peptides. e, Secretion of selected immune mediators was measured by Luminex 
where the bar graphs show pg ml−1 concentrations of IFNγ and IL-2 in (n = 8 young severe, 6 
old severe, 4 convalescent) patients after stimulation with peptide pool 6 or CD3 positive control. 
f, Percentages of CD69+CD40L+ (top) or OX40+CD40L+ (bottom) within total CD4 (left) or 
CD8 (right) from patients with severe COVID-19 (n = 10 young, 9 old). g, SARS-CoV-2-
specific CD4 and CD8 T cells measured as percentage of AIM+ (OX40+CD137+) CD4 T cells 
(top) and AIM+ (CD69+CD137+) CD8 T cells (bottom) after T cell stimulation with peptide 
pool 6 (n = 10 young severe, 8 old severe). Two-group comparisons were tested using a two-
sided unpaired t-test with Welch’s correction. The error bars represent the median values with 
the IQR. *P < 0.05, **P < 0.01. 
 
 



 
 

Fig. 5 | Increased frequency of terminally differentiated NK cells with an exhausted 
phenotype in older individuals. a, Violin plots comparing the exhaustion module scores for 
CD56hi (NCAMhi) NK cell subset. b,c, Dot plots comparing the frequencies of granzyme B-
expressing CD56++ NK cells (b) or KLRG1+ NK cells expressing CD57 (c) measured using 
flow cytometry (n = 12 young healthy donors, 12 older healthy donors, 6 young mild, 4 old mild, 
27 young severe, 8 old severe). d, Clustered heat map comparing normalized expression of genes 
enriching to the GO term ‘lymphocyte activation’ from the CD16hi NK subset obtained from 
patients with mild and severe COVID-19. The colors represent scaled gene expression ranging 
from blue (low) to red (high). Selected genes are highlighted. The error bars represent the 
medians and IQR. e, Violin plots comparing IFN signaling module scores in the CD56hi 
and CD16hi NK cell subsets. Six-way comparisons were tested using a one-way ANOVA with 
Holm–Šídák multiple comparisons test where * = significant compared to healthy donors, + = 
significant compared to mild patients, # = significant difference between the old mild/severe and 
young mild/severe groups. */+/#P < 0.05, **/++/##P < 0.01, ****/++++/####P < 0.0001. 



 

 
 
Fig. 6 | Myeloid cell adaptations with age and severe COVID-19. a,b, Dot plots comparing the 
MFIs of HLA-DR and the co-stimulation marker CD86 in classical and nonclassical monocytes 
(a) and myeloid and plasmacytoid DCs (b) (n = 12 young healthy donors, 12 old healthy donors, 
6 young mild, 4 old mild, 27 young severe and 8 old severe). c, Linear regression analysis of 
HLA-DR surface expression on classical monocytes as a function of DPS in young and older 
individuals. The Spearman correlation coefficient and corresponding significant P value for DPS 
are highlighted. d, Violin plot comparing changes in MHC class II RNA module scores within 
classical and nonclassical monocytes. e, UMAP projection of 15,922 monocytes (classical and 
nonclassical) clustered from the main UMAP. The three trajectories identified by Slingshot are 



highlighted with markers describing each trajectory. f, Surface expression changes in CD163 and 
CD62L on total monocytes from healthy donors (n = 5) and patients with severe COVID-19 (n = 
35 samples from 15 individuals; exact P = <0.0001 left, exact P = 0.0015 right). The error bars 
represent the medians and IQR. Two-group comparisons were tested using a two-sided unpaired 
t-test with Welch’s correction. Six-way comparisons were tested using a one-way ANOVA with 
Holm–Šídák multiple comparisons test where * = significant compared to healthy donors, + = 
significant compared to patients with mild disease, # = significant difference between old 
mild/severe and young mild/severe groups. #P < 0.05, **/++/##P < 0.01, ***/###P < 0.001, 
****/++++/####P < 0.0001 
 

 
Fig. 7 | Dysregulation of TLR responses in myeloid cells from patients with severe COVID-
19 



Fig. 7 | Dysregulation of TLR responses in myeloid cells from patients with severe COVID-
19. a, Violin plots comparing IFN and NF-κB signaling module scores in monocyte and DC 
subsets in patients with COVID-19 and healthy controls. b, Experimental design to measure the 
functional responses of monocytes and myeloid DCs from patients with severe COVID-19 and 
healthy donors created partially on Biorender.com. PBMCs collected longitudinally over the 
course of infection from young (SY) and aged (SA) patients with severe COVID-19 and healthy 
donors were stimulated with bacterial agonists (Pam3CSK4, lipopolysaccharide and FSL-1) and 
viral agonists (single-stranded RNA, imiquimod and ODN2216) separately for 8 h. Cytokine 
responses (TNF, IL-6 and IFNα) were measured using intracellular staining followed by flow 
cytometry. c, Dot plots comparing the frequencies of monocytes (CD14+, top) and myeloid DCs 
(HLA-DR+CD11c+, bottom) producing IL-6, TNF or both, after ex vivo stimulation with 
bacterial (left) and viral agonists (right) (n = 4 pre-COVID, 12 young severe, 3 old severe). d, 
Scatter plots with linear regression lines tracking the mean fluorescence of IFNα in IFNα+ 
monocytes (top) and IFNα+ myeloid DCs (bottom) after stimulation with bacterial (left) and 
viral agonists (right). The Spearman correlation and P values are highlighted in each graph. 
Young patients with severe disease are shown by the filled circles whereas older patients with 
severe disease are shown by the empty circles. The x axis denotes the DPS. The error bars 
represent the medians and IQR. Two-group comparisons were tested using a two-sided unpaired 
t-test with Welch’s correction. Six-way comparisons were tested using a one-way ANOVA with 
Holm–Šídák multiple comparisons test where * = significant compared to healthy donors, + = 
significant compared to mild patients, # = significant difference between old mild/severe and 
young mild/severe groups. Two-way comparisons were tested using a two-sided unpaired t-test 
with Welch’s correction. */+P < 0.05, **/##P < 0.01, ***P < 0.001, ****/++++/####P < 0.0001. 
 
 
Severe COVID-19 paralyzes innate immune responses to secondary stimulation.  
 

Differential gene expression analysis within classical monocytes revealed significant 
enrichment to the GO terms ‘response to virus’ and ‘response to IFN-γ’ in all patients, which 
was most significant in patients with mild disease. Interestingly, genes associated with negative 
regulation of immune response were differentially expressed only in the older group (Extended 
Data Fig. 7a). We next examined the impact of age and disease severity on signaling modules 
within myeloid cells (Fig. 7a). Within classical monocytes expression of several ISGs and other 
viral response markers was significantly increased in both young and older patients with mild 
disease (Extended Data Fig. 7b). Expression of alarmin molecules (S100A8, S100A9, S100A12) 
was increased in older patients with severe disease while that of antigen presentation was 
decreased (HLA-DRA) in classical monocytes in individuals with severe disease (Extended Data 
Fig. 7b). Finally, significant changes in the expression of genes associated with wound healing, 
myeloid cell activation and hematopoiesis were observed in nonclassical monocytes in 
individuals with both mild and severe disease in older patients (Extended Data Fig. 7c). DEG 
analysis in the myeloid DC subset revealed significantly increased expression of the IFN-
responsive genes ISG20, MX1, STAT1 and IFI44L with disease in older patients (Extended Data 
Fig. 7d). Retinoic acid-inducible gene I (RIG-I) signaling was also increased in the myeloid DC 
population from older patients with only a modest increase in young patients (Extended Data 
Fig. 7e). 



We next examined changes in pro-inflammatory and antiviral signaling modules in 
myeloid cell subsets with age and disease severity. While NF-κB signaling was downregulated in 
the monocytes of individuals with both mild and severe disease, its suppression was more 
prominent in older individuals with severe disease (P < 0.0001) (Fig. 7a). In contrast, type I IFN 
signaling scores were elevated in monocytes and DCs of individuals with both mild and severe 
disease, with a higher magnitude in older individuals with severe disease (Fig. 7a). To uncover 
the functional consequences of the transcriptional changes, PBMCs (healthy donors n = 4; severe 
n = 15) were stimulated with either a viral or bacterial agonist cocktail and the production of IL-
6, TNF and IFNα by monocytes and DCs were measured using flow cytometry (Fig. 7b). In 
response to either bacterial or viral agonists, a lower percentage of both monocytes and DCs in 
patients with severe disease produced IL-6 and TNF, regardless of age (Fig. 7c). We also 
detected a positive correlation between IFNα production and DPS in patients with severe disease 
(Fig. 7d). These data suggest that severe COVID-19 leads to a rewiring of the inflammatory 
response pathways in myeloid cells with implications for response to secondary infections. 
 
Discussion 
 

The clinical presentation of COVID-19 is highly heterogeneous; it is influenced by host 
factors such as age, sex, body mass index and underlying medical conditions, notably diabetes, 
hypertension and cardiovascular disease. Advanced age is a major driver of severe disease with 
individuals older than 50 accounting for 95% of deaths and exhibiting exponential increase in 
hospitalization and intensive care unit (ICU) admissions8. This increased vulnerability of older 
individuals to respiratory viral infections is mediated by age-associated deterioration of immune 
function (immunosenescence) and heightened inflammation at baseline (inflammaging)19. While 
recent studies have shed light on host response to mild and severe COVID-19, the precise 
immune correlates of the disease in at-risk populations, particularly older adults, are unclear. To 
address this question, we used a systems immunology approach to profile the circulating 
inflammatory environment using Luminex, frequency and phenotype of key immune cells using 
flow cytometry, and transcriptional landscape using scRNA-seq in PBMC samples 
from young and old patients with mild and severe COVID-19 and compared these measurements 
to those obtained in age-matched healthy donors. 

Shifts in plasma inflammatory environment and the ensuing cytokine storm in severe 
COVID-19 have been well documented22,24. Our analysis, however, revealed that older 
individuals with severe disease showed significantly higher induction of GM-CSF, TRAIL, IP-
10 and IL-10 but lower levels of granzyme B and RANTES compared to their younger 
counterparts. Lower levels of RANTES coupled with higher levels of IP-10 indicate 
dysregulated recruitment of T cells with potentially greater adhesion to endothelial cells40–42. 
Furthermore, linear regression analysis revealed a failure to upregulate IFNβ in older individuals 
but a progressive increase in IFNγ levels in older individuals who succumbed to the disease. On 
the other hand, young individuals exhibited more robust increases in both T cell factors (IL-2, 
IL-7, TNF, IL-4, IL-5) and myeloid factors such as IL-1α and IL-1β. Levels of IL-1RA increased 
with DPS in young but not older patients while the converse was true for GM-CSF, a 
myelopoietic pro-inflammatory growth factor43. These data suggest discordant inflammatory 
and regulatory responses in older individuals with severe COVID-19, particularly in non-
survivors. Interestingly, lower levels of IL-17 during the first five DPS was associated with poor 
prognosis (ICU admission/intubation and death). This observation differs from recent reports that 



high levels of IL-17 (ref. 22) and T helper 17 cells44 are correlated with the immunopathology 
of severe COVID-19 and the proposed use of IL-17 blockade as a therapeutic avenue to limit 
acute lung injury45. This discrepancy highlights the need for careful evaluation of the timing for 
administering immune modulators in the context of COVID-19. 

As reported previously, we observed substantial induction of plasma B cells with mild 
disease30,46–48, albeit less prominently in older individuals. Expression of JCHAIN was higher in 
plasmablasts from older individuals at baseline, in line with reported age-mediated increased 
activation/differentiation in the B cell compartment49. Furthermore, gene signatures associated 
with commitment to plasma cells were more robust with mild disease. Interestingly, while mild 
disease was associated with accumulation and proliferation of marginal zone-like B cells, severe 
disease was associated with the accumulation of terminally differentiated memory B cells, which 
have been linked to adverse COVID-19 outcomes46. Finally, transcriptional signatures 
associated with B cell activation and NF-κB signaling were dampened in older individuals with 
severe COVID-19. Coupled with lower levels of plasma CD40LG in older individuals with 
severe disease, these observations suggest a disruption in follicular helper T cell responses in 
older patients. While levels of binding antibodies did not vary with age, those of neutralization 
antibodies were significantly diminished in older individuals. Furthermore, older patients 
exhibited fewer Spike-specific B cells. This observation agrees with recent studies demonstrating 
enrichment of ORF8-specific B cells in older adults, which are primarily nonneutralizing50. 
Collectively, these observations point at reduced plasticity of B cells with age or their increased 
reliance on CD4 T cell help, which have been shown to be impaired with severe COVID-19 in 
older individuals51,52. 

T cell lymphopenia and impaired T cell responses are a hallmark of acute viral infection, 
including severe COVID-19 (refs. 25,48,53,54). Our analyses revealed a significant drop in both 
total and naive T cells with DPS in older patients with severe COVID-19, notably within the 
CD8 T cell compartment. This drop could potentially be explained by increased trafficking to the 
site of infection or cytokine storm-induced apoptosis as reported for other viral diseases32. To 
that end, we observed a clear upregulation of cell death (Fas signaling) pathway in memory T 
cells in older patients. Moreover, severe COVID-19-associated metabolites in blood (such as 
lactic acid) can suppress T cell proliferation32. Indeed, our data highlight that while relatively 
abundant, Ki67+ proliferating T cells are reduced with age. These observations are in line with a 
progressive decrease in plasma levels of the T cell proliferation factors IL-2 and IL-7, and 
concomitant reduction in surface CD25 expression (IL-2R) on CD8 T cells and IL-2R signaling 
module in older individuals. There is mounting evidence of T cell dysfunction/exhaustion 
with severe COVID-19 (refs. 35,44,54,55). Gene expression differences in memory CD4 and 
CD8 T cells indicated increased T cell activation signatures with severe COVID-19 in the older 
patients. This hyperactivation of T cells could also explain the depletion of T cells, which is 
more significant in older patients. Functional exhaustion of T cells with severe COVID-19 is 
further evident from a lack of IFNγ and IL-2 production in response to SARS-CoV-2 peptide 
pools containing open reading frames 7 and 8. The poor antigenspecific responses coupled with 
reduced frequencies of activation markers (CD40L, CD69) support the conclusion that advanced 
age is associated with aberrant T cell activation potentially mediated by increased systemic 
inflammation and impaired T cell immunity in severe COVID-19 (ref. 56). 

The gene expression changes reported in this study also suggest that CD8 T cells from 
patients with severe disease exhibit increased cytotoxicity (based on increased expression of 
GZMB, PRF1, XCL1, XCL2) and NK cell markers (KLRD1), as previously reported using flow 



cytometry26. We also report an increase in the frequency of terminally differentiated, adaptive 
CD57+ NK cells31, which were recently shown to be indicative of poor patient survival after 
severe disease57. Functional exhaustion of NK cells has recently been described31,37,57 in the 
context of severe COVID-19. Our data suggest that this state is further exacerbated in older 
individuals, with lower frequencies of granzymeB+ NK cells, circulating granzyme B levels and 
reduced expression of the IFNG and PRF genes in the more cytotoxic CD56++ NK cells in older 
individuals with severe disease. 

Our data show an increase in nonclassical monocytes in both young and old patients with 
severe disease; however, an increased prevalence of classical monocytes is only evident in young 
individuals. In contrast to monocytes, a significant drop in both myeloid and plasmacytoid DCs 
in blood is observed with severe disease regardless of age30,46. As described recently28,30,58, we 
report a drop in MHC class II molecules (protein and RNA) on both monocytes and DC subsets 
independent of age, but HLA-DR expression recovers faster in young patients. This 
downregulation of HLA-DR in monocytes coupled with significantly lower CD86 expression 
suggests skewing of cells into a state of immune tolerance28. Indeed, our analysis within classical 
monocytes suggests a preferential trajectory of classical monocytes toward a regulatory cluster-
expressing high levels of CD163 in patients with severe disease. Furthermore, monocytes and 
DCs from patients with severe COVID-19 exhibit attenuated response to Toll-like receptor 
(TLR) stimulation providing a potential explanation for increased susceptibility to secondary 
bacterial infections as described recently59,60. In contrast to the dampened response after 
stimulation with bacterial antigens, we report an elevated IFN signaling module with severe 
disease, particularly in myeloid DCs in older individuals. Stimulation of both monocytes and 
DCs with viral agonists targeting TLRs 7, 8 and 9 resulted in higher IFN production, suggesting 
innate immune signaling preferentially geared toward antiviral responses. Indeed, we detected a 
robust upregulation of the IFN signaling module across several cell types. Moreover, older 
individuals with severe disease exhibited stronger ISG signaling compared to young individuals, 
potentially due to delayed viral clearance. Exaggerated innate immunity in the lung, impaired 
antigen presentation and lymphopenia are hallmarks of other respiratory viral infections such as 
influenza and respiratory syncytial virus in the old18. Our analysis extends these observations and 
confirms the impairment of innate and adaptive immune responses in blood after severe COVID-
19 in older patients. 

We acknowledge several limitations in our study design and implementation. First, we 
analyzed immune parameters by DPS, which is self-reported and can be rather inaccurate and 
arbitrary. Second, we broadly defined patients with mild disease as ones with a positive PCR test 
with either no symptoms associated with COVID-19 or a mild disease not requiring an extensive 
(>3 d) hospital stay. Lack of longitudinal samples from patients from this category prevented us 
from modeling disease dynamics with varied severity. Third, given the nature of this pandemic, 
there are some biases in patient and healthy donor cohorts. For example, healthy donors were 
predominantly female (68% in the young; 58% in the old) while a significant number of patients 
with severe disease were Hispanic (69% in the young; 75% in the old). Young patients with 
severe COVID-19 had elevated body mass index with respect to young healthy donors but there 
was no significance compared to the older patients with severe disease. Additionally, patients in 
the severe categories presented with a wide array of underlying conditions that might have 
played a role in disease severity/outcome. A significant number of patients were treated with 
remdesivir; however, there is limited evidence suggesting its role in either immune activation or 
suppression in the blood. Due to limited statistical power, we pooled patients with severe disease 



at any DPS time point into one category for initial analysis before regressing the data with time. 
Future studies will stratify young and old patients by clinical scores to identify innate immune 
correlates of disease severity and identify determinants of disease resolution and survival in 
patients with severe COVID-19. More importantly, it will address the impact of age/infection on 
qualitative differences in humoral responses and long-term durability of T cell responses to 
SARS-CoV-2 vaccine in the older population. 
 
Methods 
 
Ethics statement. This study was approved by the University of California, Irvine institutional 
review boards. Written informed consent was obtained from all enrolled participants. 
 
Study participants and experimental design. Blood samples from patients admitted to the 
University of California, Irvine Medical Center (UCIMC) who participated in the National 
Institutes of Health (NIH) ACT-1 trial were used in these studies. Participants gave written 
consent to have the remainder of their blood samples used for ancillary studies related to 
COVID-19. Samples were stratified by disease severity––healthy donors, mild/moderate 
COVID-19 and severe COVID-19 and age (<60 categorized as young and ≥60 categorized as old 
where the median ages of young and old patients were 43 and 70, respectively). Samples from 
healthy donors (n = 49; 37 young and 12 old) were obtained from previous unrelated studies 
collected before 2018 and blood from seronegative healthcare workers collected after March 
2020. Individuals with asymptomatic/mild disease (n = 25; 13 young and 12 old) were identified 
as those that tested positive for SARS-CoV-2 during their visit to UCIMC for reasons unrelated 
to COVID-19 symptoms (for example, heart attack, exacerbation of autoimmune disease, 
elective surgeries). These samples were obtained through the COVID-19 biospecimen bank at 
UCIMC. A total of 51 patients with severe COVID-19 (35 young and 16 old) were profiled, 
including patients with severe illness requiring hospitalization (ward), critical illness requiring 
ICU admission without/with intubation. For patients with severe disease, blood was collected 
longitudinally over several DPS, with the median DPS being 10 and 11 d for the young and old 
groups, respectively. Six patients (two young and four old) from our analysis succumbed to the 
disease. Due to limited sample availability, only a subset of samples were utilized in each of the 
assays. Detailed characteristics of the cohorts and experimental breakdown by sample are 
provided in Supplementary Table 1. 
 
Plasma and PBMC isolation.  
Whole-blood samples were collected in EDTA vacutainer tubes. PBMC and blood plasma 
samples were isolated after whole-blood centrifugation at 1,200 g for 10 min at room 
temperature in SepMate tubes (STEMCELL Technologies). Plasma was stored at −80 °C until 
analysis. PBMCs were cryopreserved using 10% dimethyl sulfoxide/FCS in Mr. Frosty Freezing  
containers (Thermo Fisher Scientific) at −80C then transferred to a cryogenic unit until analysis. 
 
Measuring circulating immune mediators.  
The concentration of immune mediators in the plasma was measured using the Human XL 
Cytokine Discovery Premixed Kit (R&D Systems) that includes cytokines (IFNα, IFNβ, IFNγ, 
IL-1β, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL17E, IL-1RA, IL-2, IL-7, TNF, TRAIL, IL-33), 
chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL20/MIP-3α, CCL5/RANTES, 



CCL11/eotaxin, CXCL1/GRO-α, CXCL2/GRO-β, CXCL10/IP-10, CX3CL1/fractalkine), 
growth factors (GM-CSF, G-CSF, EGF, vascular endothelial growth factor, PDGF-AA, TGFα) 
and effector molecules (granzyme B, PD-L1, CD40L, FLT3L). Samples were diluted according 
to the manufacturer’s instructions and run in duplicate on the MAGPIX Instrument (Luminex). 
Data were fitted using a five parameter logistic regression on the xPONENT software v.7.0c. 
 
Antibody end point titer ELISA.  
Clear 96-well, high-binding polystyrene ELISA plates were coated with 100 μl per well of 500 
ng ml−1 SARS-CoV-2 Spike protein receptor-binding domain (GenScript) in PBS overnight at 4 
°C. Plates were blocked using 5% milk in wash buffer (0.05% Tween in PBS) for 1 h at room 
temperature, washed three times with wash buffer and incubated with heat-inactivated (55 °C for 
30 min) plasma samples (1:30 starting dilution) in threefold dilutions in duplicate for 1 h. 
Responses were visualized by adding horseradish peroxidase (HRP)-conjugated antihuman IgG 
(BD Pharmingen) or IgA (Cell Sciences) to the wells for another 90 min at room temperature, 
followed by three washes and the addition of o-phenylenediamine dihydrochloride substrate 
(Thermo Fisher Scientific) as substrate. The reaction was stopped using 1 M of HCl. Optical 
densities (ODs) were read at 490 nm on a VICTOR3 Multilabel plate reader (PerkinElmer). End 
point IgG and IgA titers were calculated using log transformation of the linear portion of the 
curve with 0.1 OD units as the cutoff. Titers were standardized using a positive-control sample 
included with each assay. 
 
Focus reduction neutralization test. 
 Heat-inactivated plasma serially diluted (1:3) in HyClone DMEM supplemented with 10 mM of 
HEPES buffer were combined with SARS-CoV-2 (100 plaque-forming units) at 37 °C 5% CO2 
for 1 h. The antibody–virus inoculum was then transferred onto Vero E6 cells (C1008; ATCC) 
that were seeded in a 96-well plate at 3.5 × 104 cells per well the previous day. After 1-h 
incubation at 37 °C 5% CO2, 1% methylcellulose (Sigma-Aldrich) in DMEM (5% FCS) was 
overlaid on the infected Vero cell layer. Plates were incubated at 37 °C 5% CO2 for 24 h. After 
24 h, the medium was carefully removed and the plates were fixed with 100 μl of 10% neutral-
buffered formalin for 1 h at room temperature. After fixation, plates were washed with deionized 
water and 50 μl of ice-cold methanol supplemented with 0.3% of hydrogen peroxide was added 
to each well. Plates were incubated at −20 °C for 10 min followed by 20 min at room 
temperature. The plates were washed 3 times with deionized water and blocked for 1 h with 5% 
nonfat dry milk in PBS. Anti-SARS Nucleocapsid Protein Antibody (catalog no. NB100-56576; 
Novus Biologicals) at 1:1,000 dilution in 5% nonfat dry milk/PBS was added. After an overnight 
incubation at 4 °C, plates were washed 4 times with PBS, 40 μl of HRP-conjugated anti-rabbit 
IgG antibody (BioLegend) 1:1,500 was added to each well and plates were incubated for 2 h at 
room temperature. Plates were developed using TrueBlue HRP substrate and imaged on an 
EliSpot reader. Each plate included a positive and a negative control. The halfmaximal inhibitory 
concentration (IC50) was calculated by nonlinear regression analysis using normalized counted 
foci on Prism 7 (GraphPad Software). One hundred percent of infectivity was obtained by 
normalizing the number of foci counted in the wells derived from the cells infected with SARS-
CoV-2 virus in the absence of plasma. 
 
 
 



Phenotypic analysis of circulating lymphocytes and monocyte by flow cytometry.  
Frozen PBMCs were thawed, washed in FACS buffer (2% FCS, 1 mM of EDTA in PBS) and 
counted on TC20 (Bio-Rad Laboratories) before surface staining using two independent flow 
panels (Extended Data Fig. 8). For the innate panel, the following antibodies were used: CD3 
(clone SP34, 1:20 dilution; BD Pharmingen) and CD20 (clone 2H7, 1:20 dilution: BioLegend) 
for the exclusion of T and B lymphocytes, respectively. We further stained for CD56 (Brilliant 
Violet 711, 1:200 dilution; BioLegend), CD57 (HNK-1, 1:20 dilution; BioLegend), KLRG1 
(clone SA231A2, 1:20 dilution; BioLegend), CD16 (clone 3G8, 1:100 dilution; BioLegend), 
CD14 (clone M5E2, 1:100 dilution; BioLegend), HLA-DR (clone L243, 1:200 
dilution; BioLegend), CD11c (clone 3.9, 1:20 dilution; Thermo Fisher Scientific), CD123 (clone 
6H6, 1:20 dilution; BioLegend) and CD86 (clone IT2.2, 1:20 dilution; BioLegend). For the 
adaptive panel, the following antibodies were used: CD4 (clone OKT4, 1:20 dilution; 
BioLegend), CD8b (clone 2ST8.5H7, 1:100 dilution; Beckman Coulter), CD45RA (clone HI100, 
1:20 dilution; Tonbo Biosciences), CCR7 (clone G043H7, 1:20 dilution; BD Biosciences), CD19 
(clone HIB19, 1:200 dilution; BioLegend), IgD (clone IA6-2, 1:20 dilution; BioLegend), CD27 
(clone M-T271, 1:20 dilution; BioLegend), KLRG1 (clone SA231A2, 1:20 dilution; BioLegend) 
and PD-1 (clone EH12.2H7, 1:20 dilution; BioLegend). Cells were surface-stained at 
4 °C for 30 min, permeabilized, fixed and stained intracellularly with Ki67 (clone B56, 1:5 
dilution; BD Biosciences) for the adaptive panel and granzyme B (clone QA16A02, 1:20 
dilution; BioLegend) for the innate panel. Dead cells were excluded using the Ghost Dye 
Viability Dye (Tonbo Biosciences). 

Monocytes from a subset of samples were phenotyped using an additional 
panel. Briefly cells were thawed, incubated with Fc blocking reagent (Human TruStain FcX; 
BioLegend) for 10 min at room temperature and stained at 4 °C for 30 min using the following 
panel: CD14 (clone M5E2, 1:100 dilution; BioLegend), HLA-DR (clone L243, 1:200 dilution; 
BioLegend), CD62L (clone DREG-56, 1:20 dilution; BioLegend), CD163 (clone GHI/61, 1:20 
dilution; BioLegend), CCR5 (clone J418F1, 1:25 dilution; BioLegend), CD40 (clone 5C3, 1:20 
dilution; BioLegend), CCR2 (clone FAB151C, 1:25 dilution; R&D Systems), CD64 (clone 10.1, 
1:100 dilution; BioLegend), CX3CR1 (clone 2A9-1, 1:20 dilution; BioLegend), CD80 (clone 
2D10, 1:20 dilution; BioLegend), CD11b (clone ICRF44, 1:20 dilution; BioLegend) and 
monocyte blocker (Tru-Stain Monocyte Blocker; BioLegend). Samples were acquired on the 
Attune NxT acoustic focusing cytometer (Thermo Fisher Scientific). 

T cells from a subset of samples were phenotyped using two separate panels. PBMCs 
were stained at 4 °C for 30 min using either: panel 1, CD4 (clone OKT4, 1:20 dilution; 
BioLegend), CD8 (clone RPA-T8, 1:5 dilution; BD Biosciences), CD3 (clone OKT3, 1:20 
dilution; BioLegend), CD38 (clone HIT2, 1:20 dilution; Tonbo Biosciences), HLA-DR (clone 
LN3, 1:20 dilution; BD Biosciences), PD-1 (clone EH12.2H7, 1:20 dilution; BioLegend), CD25 
(IL-2R, clone BC96, 1:100 dilution; BioLegend), CD127 (IL-7R, clone RDR5, 1:20 dilution; 
Invitrogen), CD95 (clone DX2, 1:20 dilution; BioLegend), CTLA-4 (clone BNI3, 1:20 dilution; 
BioLegend); panel 2, CD4 (clone OKT4, 1:100 dilution; Tonbo Biosciences), CD3 (clone OKT3, 
1:20 dilution; BioLegend), CD134 (OX40, clone BER-ACT35, 1:20 dilution; BioLegend), CD69 
(clone FN50, 1:20 dilution; BioLegend), CD154 (CD40L, clone 24-31, 1:20 dilution; 
BioLegend), CD137 (4-1BB (4B4-1), 1:20 dilution; BioLegend) separately. Samples were 
washed and analyzed on the Attune NxT acoustic focusing cytometer. All flow data were 
analyzed using FlowJo v.10 (FlowJo LLC). 



To detect antigen-specific B cells, approximately 1 × 106 PBMCs were stained with 100 
ng of full-length biotinylated Spike protein (Sino Biological) that was preincubated with 
streptavidin-Brilliant Violet 510 (BioLegend) at a 2:1 ratio for 1 h at 4 °C and CD20-fluorescein 
isothiocyanate (FITC) (clone 2H7, 1:20 dilution; BioLegend) for 30 min at 4 °C. Negative 
controls were PBMC-stained with streptavidin-phycoerythrin (BioLegend) and CD20-FITC. 
Samples were washed twice and resuspended in 200 μl FACS buffer before being analyzed on 
the Attune NxT acoustic focusing cytometer (Thermo Fisher Scientific). 
 
Monocyte stimulation assay.  
Approximately 1 × 106 PBMCs were cultured in the presence of Roswell Park Memorial 
Institute 1640 medium (controls), bacterial and viral agonists at 37 °C. The bacterial agonist 
cocktail consisted of a combination of 2 μg ml−1 of Pam3CSK4 (TLR1/2 agonist; InvivoGen), 1 
μg ml−1 of FSL-1 (TLR2/6 agonist; Sigma-Aldrich), and 1 μg ml of lipopolysaccharide (TLR4 
agonist from Escherichia coli O111:B4; InvivoGen). The viral agonist cocktail consisted of 5 μg 
ml−1 of imiquimod (R848, TLR7 agonist; InvivoGen), 1 μg ml−1 of single-stranded RNA 
(ssRNA40/LyoVec, TLR8 agonist; InvivoGen) and 5 μg ml−1 of ODN 2216 (CpG ODN, TLR9 
agonist; InvivoGen). Samples were stimulated for 1 h after which a protein transport inhibitor 
(brefeldin A) was added and incubated for an additional 7 h at 37 °C. Cells were then washed 
twice in FACS buffer and surface-stained using the following antibody cocktail: CD14 (clone 
M5E2, 1:100 dilution; BioLegend), HLA-DR (clone L243, 1:200 dilution; BioLegend) and 
CD11b (clone ICRF44, 1:20 dilution; BioLegend) for 30 min at 4 °C. Stained cells were then 
fixed and permeabilized using fixation buffer (BioLegend) and incubated overnight with a 
cocktail of intracellular antibodies: IL-6 (clone MQ2-6A3, 1:5 dilution; BD Biosciences), TNF 
(clone MAb11, 1:100 dilution; BD Biosciences) and IFNα (clone LT27:295, 1:50 dilution; 
Miltenyi Biotec). Samples were acquired on the Attune NxT acoustic focusing cytometer 
(Thermo Fisher Scientific). Data were analyzed using FlowJo v.10. 
 
T cell stimulation assay with SARS-CoV-2 overlapping peptide pools. 
T cells from healthy donors (young and old) and patients with severe disease (young and old) 
were magnetic-activated cell sorting-purified from PBMCs using anti-CD2 magnetic beads 
(Miltenyi Biotec). The purity of positive fractions was confirmed using flow cytometry and were 
>90%; 1 × 105 T cells per well were stimulated with 1 μg of a SARS-CoV-2 overlapping peptide 
pool covering Nsp14/E/M/ORF3a/6/7a/7b/8/10 (15 amino acids overlapping by 12 amino acids; 
Thermo Fischer Scientific), anti-CD3/CD28 (positive control) or medium (negative control) in 
96-well plates for 24 h at 37 °C and 5% CO2. T cell responses in convalescent patients served as 
a positive control. Plates were spun and supernatants was collected to measure IFNγ, IL-2, IL-10, 
TNF and IL-4 using a custom ProcartaPlex Human High Sensitivity Luminex kit (Invitrogen). 
Undiluted samples were run in duplicate on the MAGPIX Instrument. Data were fitted using a 
five parameter logistic regression on the xPONENT software. 
 
 
scRNA library preparation.  
Cryopreserved PBMCs from each patient (n = 4 per group for healthy donors and mild disease; n 
= 4 per time point for severe disease) were thawed, washed and stained with 1 μg per test cell-
hashing antibody (TotalSeq B0251,B0254, B0256, B0260, clones LNH-95 and 2M2; 
BioLegend) for 30 min at 4 °C. Samples were washed three times in ice-cold PBS supplemented 



with 2% FCS and sorted on the FACSAria Fusion (BD Biosciences) with Ghost Dye Red 710 
viability dye (Tonbo Biosciences) for dead cell exclusion. Live cells were counted in triplicate 
on a TC20 Automated Cell Counter (Bio-Rad Laboratories) and pooled in groups of four based 
on disease severity and time point. Pooled cells were resuspended in ice-cold PBS with 0.04% 
bovine serum albumin in a final concentration of 1,200 cells μl−1. Single-cell suspensions were 
then immediately loaded on the 10X Genomics Chromium Controller with a loading target of 
17,600 cells. Libraries were generated using the v.3.1 chemistry according to the manufacturer’s 
instructions with additional steps for the amplification of hashtag oligo barcodes and library 
preparation using the Chromium Single Cell 3ʹ Feature Barcoding Library Kit (10X Genomics). 
Libraries were sequenced on an Illumina NovaSeq with a sequencing target of 30,000 reads per 
cell RNA library and 2,000 reads per cell hashtag oligo barcode library. 
 
scRNA-seq data analysis. 
 Raw reads were aligned and quantified using the Cell Ranger Single-Cell Software Suite with 
Feature Barcode addition (v.4.0; 10X Genomics) against the GRCh38 human reference genome 
using the STAR aligner (v.2.7.9s). Downstream processing of aligned reads was performed using 
Seurat v.4.0. Droplets with ambient RNA (cells with fewer than 200 detected genes) and dying 
cells (cells with >25% total mitochondrial gene expression) were excluded during initial quality 
control. Data objects from all groups were integrated using Seurat61 using the healthy, young 
donor samples as the reference. Data normalization and variance stabilization was performed on 
the integrated object using the SCTransform function where a regularized negative binomial 
regression was corrected for the differential effects of mitochondrial gene expression levels. The 
HTODemux function was then used to demultiplex donors and further identify doublets, which 
were then removed from the analysis. Dimension reduction was performed using RunPCA 
function to obtain the first 30 principal components followed by clustering using the 
FindClusters function in Seurat. Clusters were visualized using the UMAP algorithm as 
implemented by Seurat’s runUMAP function. Cell types were assigned to individual clusters 
using the FindMarkers function with a fold-change cutoff of at least 0.4 and using a known 
catalog of well-characterized scRNA markers for human PBMCs62. Clusters from three major 
cell types (T and NK cells, myeloid cells, B cells) were further subsetted from the total cells and 
re-clustered to identify minor subsets within those groups. The list of cluster-specific markers 
identified from this study are cataloged in Supplementary Table 2. Figures were generated using 
Seurat, ggplot2 (v.3.3.1) and pheatmap (v.1.0.12). 
 
Pseudo-temporal analysis.  
The pseudotime trajectory of CD4 and CD8 T cells and monocytes was reconstructed using 
Slingshot (v.1.2.0)63. The analysis was performed on each of these subsets individually with 
Treg and mucosal-associated invariant T cells excluded from the T cell analysis due to unique 
developmental origins. For each set of cells, the UMAP dimensional reduction performed in 
Seurat was used as the input for Slingshot. For the calculation of the lineages and pseudotime in 
the T cell subsets, the naive clusters were set as the root state. In the monocytes, MS1 was set as 
the root state. 
 
Differential expression analyses. 
 Differential expression analysis was performed with MAST using the default settings in Seurat. 
All disease comparisons were performed relative to healthy donors from the corresponding age 



groups. Only statistically significant genes (fold-change cutoff ≥ 1.5; adjusted P ≤ 0.05) were 
included in the downstream analysis. 
 
Module scoring and functional enrichment.  
For gene scoring analysis, we compared gene signatures and pathways from the Kyoto 
Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/pathway.html) 
(Supplementary Table 3) in subpopulations using Seurat’s AddModuleScore function. CD8 T 
cell specific modules were derived from previously published work64. NK cell exhaustion scores 
were calculated using the aggregate expression of the exhaustion markers PDCD1 (PD-1), 
LAG3, HAVCR2 (TIM-3) and B3GAT1. Fas-Jnk signaling scores were calculated using the 
aggregate expression of FAS, FASLG, DAXX, MAP3K5, MAPK8, MAPK9 and MAPK10. 
HLA class II module scores were calculated using the aggregate expression of HLA-DM (A, B), 
HLA-DP (A1, B1), HLA-DO (A, B), HLA-DQ (A1, A2, B1, B2) and HLA-DR (A, B1, B5). 
Overrepresentative gene ontologies were identified using one-, two-, four- and 8-way enrichment 
of differential signatures using Metascape (v.3.5)65. Functional enrichment networks were 
edited and annotated using Cytoscape v.3.6.1. All plots were generated using ggplot2 and Seurat. 
Differences in module scores were tested for statistical significance using a one-way analysis of 
variance (ANOVA). 
 
Statistical analysis.  
Two-group comparisons were tested using a two-sided unpaired t-test followed with Welch’s 
correction after testing for normality using a Shapiro–Wilk test with alpha levels set at 0.05. 
Group differences were tested using an ordinary ANOVA test followed by Holm–Šídák multiple 
comparisons test with alpha levels set at 0.05. Linear regression analysis compared significant 
shifts in curve over the horizontal line, with Spearman correlation coefficients reported for each 
age group. Group differences with regression were tested by fitting an analysis of covariance 
(ANCOVA) model on each parameter with age as a binary variable and DPS as a continuous 
covariate. Alpha levels were set at 0.1. 
 
Reporting Summary.  
Further information on research design is available in the Nature Research Reporting Summary 
linked to this article. 
 
Data availability 
The datasets supporting the conclusions of this article are available on the National Center for 
Biotechnology Information Sequence Read Archive under accession no. PRJNA727024. Further 
information and requests for resources should be directed to the corresponding author. 
 
Code availability 
The code used for the data analysis and figures in this study is available on GitHub 
(https://github.com/MessaoudiLab/COVID-19-Aging-Paper/). 
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Extended Data Fig. 1 | Longitudinal profiling of soluble plasma mediators in mild and severe 
COVID-19 patients stratified by age. (a) Dot plots representing concentrations (pg/mL) of select 
cytokines, chemokines and growth factors measured by Luminex assay (n = 21 Young HD, 12 
Aged HD, 9 Young Mild, 8 Aged Mild, 29 Young Severe, 11 Aged Severe). (b) Bubble plot 
representing linear regression analyses of the concentration (pg/mL) of select cytokines, 
chemokines, and growth factors across days post symptom onset (DPS). The size of the bubble 
represents positive correlation coefficient (spearman r) and the color represents the -log10(p 
value) significance of that positive correlation for each analyte in each of the three groups. (c) 
MDS plot of proximity scores from a random forest of circulating immune mediators at 1-5 DPS 
colored by age and disease severity. (d) Bubble plot of the top six most predictive variables (1-5 
DPS) as ordered by mean decrease in accuracy. The size of the bubble represents the fold-change 
in concentration vs. young healthy controls and the color represents the decrease in accuracy for 
each group-mediator pair. Error bars represent medians and inter-quartile range. Six-way 
comparisons were tested using one-way ANOVA with Holm-Sidak’s multiple test comparison 
where *=significant compared to healthy donors, += significant compared to mild patients, 
#=significant difference between Aged Mild/Severe and Young Mild/Severe groups. P-values: 
*/+/#=p < 0.05, **/++=p < 0.01, ***/###=p < 0.001, ****/++++=p < 0.0001. 



 
 

 
Extended Data Fig. 2 | Single cell RNA profiles of PBMC of mild and severe COVID-19 
patients stratified by age. (a) Longitudinal sampling scheme for scRNA-seq from patients with 
severe COVID-19 with representative shape indicative of their clinical status/outcome. (b) Bar 
graph comparing the number of cells (log scale) captured from each patient at each timepoint by 
scRNA-Seq. (c) UMAP projection of all 92,648 cells isolated from both young and aged healthy 
donors, patients with mild and severe (longitudinally sampled) COVID-19. Major immune cell 
subsets are annotated. (d) Bubble plot of identifying genes highly expressed in each cluster 
determined using the FindMarkers function in Seurat. Level of normalized expression is shown 
using a color scale ranging from low (blue) to high (red). Size of the bubble is representative of 



the fraction of cells within each cluster expressing the marker. (e) Box plots comparing cell 
percentages calculated from clusters identified by dimensional reduction of all scRNA-Seq data 
(n = 4 per group). The box hinges represent from 25th to 75th percentiles, the whiskers represent 
minimum and maximum values and the center line is the median. Six-way comparisons were 
tested using one-way ANOVA with Holm-Sidak’s multiple test comparison where *=significant 
compared to healthy donors, += significant compared to mild patients, #=significant difference 
between Aged Mild/Severe and Young Mild/Severe groups. P-values: */#=p < 0.05, **=p < 
0.01. 
 

 
 
Extended Data Fig. 3 | Humoral responses to severe and mild COVD-19 in the young and 
aged. (a) Bubble plot of markers used to identify B cell clusters using Seurat’s FindMarkers 
function. Normalized transcript levels are shown using a color scale ranging from low (blue) to 
high (red). Size of the bubble is representative of the fraction of cells within each cluster 
expressing the marker. (b) Bar plots of Spike-specific IgA End Point Titers from young and aged 
patients with severe COVID-19 (n = 12 Young from 7 individuals, n = 22 Aged from 16 



individuals). Error bars represent medians and inter-quartile range. Two-way comparison was 
tested using two-sided unpaired t-test with Welch’s correction. (c) Representative flow plots for 
detection of antigen specific B cells in PBMC. 
 

 
 



Extended Data Fig. 4 | Phenotypic and functional changes in T cell subsets with mild and 
severe COVID-19 in the elderly. (a) Bubble plot of genes highly expressed in each T cell 
cluster determined using the FindMarkers function in Seurat. Level of normalized expression is 
shown using a color scale ranging from low (blue) to high (red). Size of the bubble is 
representative of the fraction of cells within each cluster expressing the marker. (b) Box plots 
comparing frequencies of CD4 TEMRA cells within total cells from each patient identified from 
single cell analysis of T and NK cell subset (n = 4/group; exact p = 0.032). The box hinges 
represent from 25th to 75th percentiles, the whiskers represent minimum and maximum values 
and the center line is the median. (c) Bar graph showing over-representative GO terms in genes 
in CD4 TEMRA cells uniquely down-regulated with severe COVID-19 in aged subjects. 
Gene numbers associated with each term are highlighted next to each term. (d) Violin plot 
comparing Fas Signaling module scores within memory CD4 T cell clusters. (e) Box plots 
comparing longitudinal changes in IL-2 signaling module in memory CD4 T cell clusters from 
young and aged subjects with severe COVID-19. X axis represents days post symptom onset 
(DPS). The box hinges represent from 25th to 75th percentiles, the whiskers represent minimum 
and maximum values and the center line is the median. (f) Violin plots comparing cytotoxicity 
module scores within GZMHhi and GZMKhi CD8 T cell clusters. (g) Violin plots comparing 
interferon signaling module scores within all memory CD8 T cell clusters. (h) Box plots 
comparing longitudinal changes in interferon modules in CD8 IFN T cells from young and aged 
subjects with severe COVID-19. X axis represents days post symptom onset (DPS). The box 
hinges represent from 25th to 75th percentiles, the whiskers represent minimum and maximum 
values and the center line is the median. Six-way comparisons were tested using one-way 
ANOVA with Holm-Sidak’s multiple test comparison where *=significant compared to healthy 
donors, += significant compared to mild patients, #=significant difference between Aged 
Mild/Severe and Young Mild/Severe groups. P-values: *=p < 0.05, **/++/##=p < 0.01, 
***/+++/###=p < 0.001, ****/++++/####=p < 0.0001. 
 



 
 
Extended Data Fig. 5 | Age-specific NK cell responses with mild and severe COVID-19. (a) 
Bubble plot of genes highly expressed in each NK cell cluster determined using the FindMarkers 
function in Seurat. Level of normalized expression is shown using a color scale ranging from low 
(blue) to high (red). Size of the bubble is representative of the fraction of cells within each 
cluster expressing the marker. (b) Box plots comparing frequencies of NKT cells (expressing 
PLCG2) within total cells in each patient identified from single cell analysis (n = 4/age 
group/disease state; exact p = 0.041). The box hinges represent from 25th to 75th percentiles, the 
whiskers represent minimum and maximum values and the center line is the median. Six-way 
comparisons were tested using one-way ANOVA with Holm-Sidak’s multiple test comparison 
where *=significant compared to healthy donors. (c) Bubble plot representing functional 
enrichment of DEG in CD16high (FCGR3Ahigh) NK cells from aged and young subjects with 
mild and severe COVID-19. Color and size of the bubble represents statistical significance and 
number of genes respectively. P-values: *=p < 0.05. 
 
 



 
 
Extended Data Fig. 6 | Rewiring of myeloid cell phenotypes with severe COVID-19. (a-b) 
Dot plots comparing frequencies of (A) classical monocytes and non-classical monocytes as well 
as (b) myeloid DC (mDC) and plasmacytoid DC (pDC) using flow cytometry (n = 12 Young 
HD, 12 Aged HD, 6 Young Mild, 4 Aged Mild, 27 Young Severe, 8 Aged Severe). (c) 



Histogram of surface expression of HLA-DR and CD86 expression from on total monocytes and 
DC. (d) UMAP projection of monocytes and DCs reclustered from the main UMAP. Major 
subsets of monocytes and DCs are highlighted. (e) Bubble plot of genes highly expressed in each 
cluster determined using Seurat’s FindMarkers function. Level of normalized expression is 
shown using a color scale ranging from low (blue) to high (red). Size of the bubble is 
representative of the fraction of cells within each cluster expressing the marker. (f) Bar graphs 
comparing key monocyte surface markers in healthy donors (HD) and severe COVID-19 patients 
sampled during different stages of acute infection post symptom onset. Regression panel below 
each bar graph compares progression of the marker over the course of acute infection. Error bars 
represent medians and inter-quartile range. Six-way comparisons were tested using one-way 
ANOVA with Holm-Sidak’s multiple test comparison where *=significant compared to healthy 
donors, += significant compared to mild patients, #=significant difference between Aged 
Mild/Severe and Young Mild/Severe groups. Two-way comparisons were tested using two-sided 
unpaired t-test with Welch’s correction. P-values: */+=p < 0.05, **/++=p < 0.01, ***=p < 0.001, 
****=p < 0.0001. 
 
 

 
Extended Data Fig. 7 | Compromised monocyte responses to secondary insult with severe 
COVID-19. (a) Bubble plot of gene ontology terms derived from COVID-19 induced DEG in 
classical monocytes from aged and young subjects. Color and size of the bubble represents 
statistical significance and number of genes respectively. (b) Clustered heatmap comparing 
normalized transcript levels of genes enriching to GO terms ‘response to virus’ and ‘response to 
interferon-gamma’ within classical monocytes from young and aged patients with mild and 
severe COVID-19. Colors represent scaled gene expression ranging from blue (low) to red 



(high). (c) Functional enrichment of genes differentially expressed in non-classical monocytes 
following mild and severe COVID-19 Color and size of the bubble represents statistical 
significance and number of genes respectively. (d) Bubble plot showing gene expression changes 
in myeloid DCs from young and aged patients with mild and severe COVID-19. Size of the 
bubble is representative of the fraction of cells within each cluster expressing the marker. (e) 
Comparison of changes in RIG-I signaling module scores with COVID-19 in DC subsets. 
Sixway comparisons were tested using one-way ANOVA with Holm-Sidak’s multiple test 
comparison where *=significant compared to healthy donors, #=significant difference between 
Aged Mild/Severe and Young Mild/Severe groups. P-values: ##=p < 0.01, ###=p < 0.001, 
****=p < 0.0001. 
 

 
 
Extended Data Fig. 8 | Gating strategy for flow phenotyping. (a) Gating strategies for the 
adaptive and innate flow phenotyping panels. 




