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Abstract

Coordination protocols are an essential part
of every distributed system. In general,
centralized protocols are simpler and more
efficient than distributed ones. However, as a
distributed system gets large, the bottleneck of
the central coordinator renders protocols
relying on centralized coordination
inefficient. To solve this problem, hierarchical
coordination can be used. This solves the

scalability problem of the algorithms relying
on centralized coordination, since the
performance of hierarchical coordination
degrades logarithmically with the number of
participating processes.

In this paper we present a mechanism that
automatically organizes processes in a
hierarchy and maintains the hierarchy in the
presence of node failures, and addition and
removal of processes in the system. The
proposed scheme is simple and general, and
can concurrently support multiple logical
structures, such as a ring, a hypercube, or a
mesh.

1. Introduction

Distributed systems consisting of a network
of workstations or personal computers are an
attractive way to speed up large

computations. These systems have a much
higher performance-to-price ratio than large
parallel computers, and they are also more
widely available.

There are several coordination protocols that
must be used during the system execution.
Among these protocols are those responsible
for checkpointing [1], stability detection [3],
and maintaining a global virtual time [4].
Usually, protocols that involve a central
coordinator are more efficient, as they require
less communication messages, and are
simpler to construct. However, as a system
gets large, a bottleneck of the central
coordinator significantly slows down the
execution of the centraUzed protocols,
sometimes even making them unusable. The
reason for this is that during certain steps of
these protocols the coordinator must
broadcast information to all other processes,
and receives a reply messages from them.

To deal with this problem a hierarchical
coordination can be used instead of a

centralized one [3,5]. Hierarchical protocols
have the efficiency and simplicity of the
centralized protocols and, at the same time,
have the scalability of the distributed

'^otocols.



Even though it is generally agreed that using
a hierarchy is a good approach to solving the
scalability problem, it is not clear how to
build such a hierarchy, and maintain it in a
dynamically changing distributed system.
Addressing this problem is the main
contribution of this paper.

To evaluate the extent to which the use of a

hierarchy improves the performance of
centralized algorithms in large systems we
compared the performance of centrahzed and
hierarchical broadcasts. In [3] K. Guo
compares the performance of centralized and
hierarchical algorithms detecting a stable
property. The experiments were conducted
using the NS network simulator [6]. We
conducted our experiment in a real distributed
environment. We measured the performance
of simple broadcasting mechanism, that
consist of broadcasting the message, and
receiving all the acknowledgement messages.
We decided to measure the performance of
this broadcasting mechanism, as it is used in
many coordination protocols [2-5,7]. The
result of the experiments are presented in
section 2. Section 3 describes a Process Order

mechanism, using which the hierarchy of the
processes in the system can be automatically
built. Section 4 describes an algorithm used to
maintain Process Order consistency in the
presence of addition of new nodes to the
system as well as node failures. Section 5
discusses APIs to the Process Order library
and section 6 concludes this paper.

2 Performance of Centralized and

Distributed Coordination

We conducted an experiment to compare the
performance of the centralized and the
distributed coordination protocols running in
parallel with an apphcation in a distributed
environment.

2.1 The Environment

We used a cluster of Sun workstations

running Solaris 2.5.1 and Solaris 2.7. The
experiments were run at night, so the
fluctuations in the workstations' load was

minimal. The workstations were located in

two neighboring subnets. Within each domain
the workstations were coimected with

10Mbps shared ethemet with collision
domain less or equal to twelve. Domains were
connected by 100 mbps fiber with SIS CO
router 5500.

To implement inter-process communication
in our experimental program we considered
TCP/IP and UDP, as these protocols are most
widely available. TCP/IP was chosen. Even
though it has more overhead on creating
connection than UDP, it provides guaranteed
message delivery, which is essential for
checkpointing protocol.

The program was implemented in Java. We
also considered implementing it in C, but as
eonnections are rapidly created and
destroyed, C programs under UNIX have a
large delay period for closing previous
connections. Another benefit of using Java is
its portability, which is an important factor
for utilization of all available resources.

2.2 Application

Our distributed system consists of two
threads; an apphcation thread, and a
coordination thread. An application thread
computes a synthetic grid application.
Processors are arranged in a 2-dimentional

While(1 == 1){
compute array[array size];
send messages (pckt size) to

neighbors
receive messages from neighbors

Figure 1

' A)gical grid. Every element of the grid is
connected with its four nearest neighboring
elements. Eaeh grid element executes the



same function. Its psudocode is shown in
figure 1. ComputeQ takes in an array of
doubles and performs a simple arithmetic
modifications to each array element. Then a
message with the user-defined size is sent to
the four neighbors, and a similar message is
received from the four neighbors. Sending
and receiving is done through TCP/IP
sockets. Socket connections in this thread are

established at the beginning of the execution,
and closed only when the program terminates.

Sending Thread:
for (number of receivers){

Open Connection
Send message
Close Connection

}

Receiving Thread:
for (nixmber of receivers) {

Accept Connection
Receive message
Close connection

}

a) Coordinator Process

}

Accept Connection
Receive message
Close connection

Open Connection
Send message
Close Connection

b) Coordinated Processes

Figure 2. Centralized broadcast

2.3 Centralized Broadcast

The coordination thread running in parallel to
the apphcation thread is executing periodic
broadcasts. We implemented three
broadcasting strategies. A centralized
strategy, and two hierarchical strategies. The
implementation of the centralized
broadcasting is summarized in figure 2.

All the processes in the system are divided on
coordinator process and coordinated
processes. The broadcasting thread of the
coordinator process spawns two threads: one
for sending and one for receiving. A sending
thread broadcasts a message to all the
coordinated processes, and a receiving thread
receives aU the responses. A new cycle of
broadcasting can not be started until all the
responses to the current broadcast are
received. The broadcasting thread of all
coordinated processes have only one thread,
where they receive a message from the
coordinator, and reply back.

Since there is only a small number of socket
cormections that could be open at the same
time, a new connection is set up for every
send and receive. On the Solaris 5.1 only 64
fUe descriptors can be open at any time.
Considering that our apphcation thread
consumes several socket cormections, and
that there are other apphcations running on
this machine, we want to keep the number of
the open file descriptors used by the
broadcasting to the minimum.

2.4 Hierarchical Broadcast

In the hierarchical broadcast the broadcasting
thread of every process spawns two threads:
one for sending and one for receiving. Again,
as in the centralized broadcasting, we want to
minimize the number of open socket
cormections, and so every time a message is
sent or received, a new connection has to be
estabhshed. A new cycle of broadcasting can
not be started until the previous is completed.

Processes participating in the hierarchy can
be divided into three groups: a node that has
no coordinator, or a root node, nodes that
have both coordinator and children, or middle

.jgodes, and nodes that have a coordinator and
no children, or leaf nodes. The pseudocode
for each of these groups is shown in figure 3.



Root node: open, send, close to all children
accept receive close from all children

Middle node: accept, receive, close from parent
open, send, close to all children
accept receive close from all children
open, send, close to parent

Leaf node: accept, receive, close from parent
open, send, close to parent

Figure 3. Hierarchical broadcast

implemented protocols. The measurements
for each experiment were averaged over the
set of several runs.

A node sends a reply to its parent only after it
receives replies from all its children.

2.5 Experiment results

In the first set of experiments we compared
the performance of centrahzed broadcasting
with a hierarchy, where each node has a
maximum of two children. In such a

hierarchy the maximum number of open
coimections per process is three: one to
connect to the parent in the hierarchy, and
two to connect to the children. These two

extra socket connections could be acceptable
for many applications. For this reason, in
addition to the implementation described in
section 2.4 we implemented a broadcasting
scheme, where socket connections are
established only once, and then used for the
rest of the run. We call this implementation
SuperH. As we have only a limited number of
workstations for our experiment, we run our
broadcasting routine multiple times.

First we measured the time of one broadcast

for each protocol and for each system
configuration. The measured time includes
overhead for starting the Java process and
initializing global variables. In the following
experiments we subtract the time of the first
iteration from the total execution time of the

program to get the time spent on broadcasting
only.

In all experiments we used the same
workstations for each of the three

Figure 4 presents the times for running 10
iterations of the broadcast on 63 processing
elements (PE). The hierarchical broadcasting

I63PE i
Centralized 1 44.®

Hierarchical f 2.11
SuperH 1 0.6i

10 iterations on 63 processing elements

Figure 4

takes 21 times less time than centrahzed

broadcasting. SuperH is 3.5 times faster than
the Hierarchical implementation. It is worth
noting that a large part of the speedup came
from arranging processes in the hierarchy,
and only a small part is due to the fact that in
SuperH the overhead of establishing socket
connection is eliminated.

Even though all broadcasting strategies were
run for ten iterations, the simulated number of
processes participating in the broadcast is
different. In centrahzed broadcast we

simulated a system with 630 PEs. However,

63 PE 116 FE 15 PE

Centralized 07:43.i 39.6 39.7

Hierarchical 24.21 14.1 7.5

SuperH 4.8! 3.5 1.3

100 iterations. 63,16,and 15 processing elements

Figures



the bottleneck of the central coordinator
induced by the 63 PEs is much smaller than
one induced by 630 PEs, as will be
demonstrated later. Theoretically, with
hierarchical broadcasts we simulate a system
with 2^'-l PEs. As all the nodes at the same
depth of the tree broadcast to their children in
parallel, the broadcasting time grows with the
depth of the tree, and not with the number of
PEs. Figure 5 illustrates these arguments.

For the centralized broadcast in the first two

columns of figure 5 the number of processors
decreased by a factor of four, and the running
time decreased by a factor of almost twelve.
This reflects the difference in load on the

central coordinator induced by 63 and 16 PEs.
There was no noticeable difference in time

taken by the centralized broadcast when the
number of PEs decreased from 16 to 15. For

hierarchical broadcast the difference in

performance between columns one and two is
similar to that of columns two and three. The

reason for this is that in both cases, i.e., when
moving from 63 PEs to 16 PEs and when
moving from 16 PEs to 15 PEs, the depth of
the tree is decreased only by one level.

We also ran experiments modifying the
behavior of the application thread, described
in section 2.2. We modified the ratio of

computation to communication, but these
modifications had no effect on performance
of the broadcasting protocols.

In summary, our experiments show that
centralized broadcasting is slow for large
systems and that hierarchical broadcasting
scales well as the system size increases.

3 Process Order

3.1 Introduction

In this section we describe how to build and

maintain the participating processes in the
hierarchy. This becomes complicated, as

processes continuously enter and leave the
system. We propose a Process Order
mechanism to deal with this problem.

POID Name IP 1
5 PO 20i
1 P2 24!

2 P1 371
3 PS 44l

Figure 6

Each process in the computation has a unique
system id. It may consist of two integers: the
process id and the IP address. The process id
provides uniqueness in the machine, and the
IP address provides uniqueness in the
network. (If there is only one process per
physical node, the IP address is sufficient to
provide a unique system id.)

The processes in the system exchange their
system ids during the initialization phase.
Then each process sorts aU processes by then-
system ids, which can be represented by
integers. After the processes are sorted, each
process is given a Process Order Id (POID)
according to its place in the sorted list,
starting from 0. This information is stored in
a Process Order Table. An example of a
Process Order Table is shown in figure 6.

3.2 Building a Hierarchy

To address scalability problems in protocols
requiring a central coordinator, processes can
be arranged in a hierarchy. The Process Order
can be used to compute the hierarchy with the
formula

POIDcoord = POIDselfDIVK,

where K is the maximum number of

processes coordinated by any single process.
Using this scheme each process can identify

-^s coordinator without exchanging any
messages with other processes. Figure 7a
shows a centralized system with a single



3,d
7,fa 5-^^ r- 6.h

POID,„ord = POID,,ifDIV K
K =3

POID,oord = POIDse,fDIVK
K =3

a) centralized system b) hieraarchical organization

Figure 7

c) process "b" exited the system

coordinator. Figure 7b illustrates how this
scheme works when the number of

coordinated processes is set to three. The
number in each process name is the process
POID, and the letter is a symbolic name of
the process. This hierarchy can dynamically
adapt to the changes in the system topology.
Figure 7c shows the situation where process
"b" exits the computation. The system
automatically rearranges itself in a new
hierarchy. The same happens when
coordinator (root) exits, which solves a single
point of failure problem.

3.3 Hierarchy on the WAN

When processes are distributed through the
WAN, a hierarchy could be built in two steps
to minimize the communications between

different parts of the network. First a
hierarchy is built between hosts in different
subnets, and then within the subnets. This is
possible, as the location of the machine is
specified in its IP address.

4 Maintaining
Consistency

Process Order

In order for the Process Order scheme to

work, all processes in the system must have
the same set of elements in their PC Table. In

this section we discuss the necessary
operations to keep PO Tables consistent as
processes enter and exit the system. First we
present an algorithm that preserves PO Table
consistency in the failure-free environment.

4.1 Basic Algorithm

When a process is joining or exiting the
system

1. Message is sent to the root coordinator
containing IP and PID of the process that
is being added/removed. Root updates its
PO Table, and, if the process is being
added, it sends a copy of its PO Table to
the new process. Then root sends the
POModifv message to its children. This
message includes the information about
the process, as well as whether the
process is being added to or removed
from the system.



Until the update is finished, the Process
Order is inconsistent, so root does not
broadcast any application messages while
updating Process Order is in progress.

2. After receiving POModifv message a
process modifies its PO Table. If children
list changed, (as it did for the process a in
figure 7), the process breaks connections
with its old children and establishes

connections with its new children. Then

the process broadcasts POModifv message
to its children.

When a leaf process receives POModifv
message, it replies with POModifvAck
message to its parent.

3. When a node receives POModifvAck from

all its children, it sends POModifvAck
message to its parent.

When root receives POModifvAck

message from all its children, the use of
the hierarchy is resumed.

4.2 Fault Tolerant Algorithm

If failures are possible, then applying the
algorithm from section 4.1 can produce
inconsistencies. For example, assume a
process is joining the system. Root broadcasts
a POModifv message, and fails in the middle
of the broadcast. The message is propagated
along one of the branches, but not along the
other. If a new root is selected, using the
formula presented in section 3.2, the system
would continue executing with different
processes having different PO Tables.

Another, more common scenario, is the

following: when a new process is being added
to the system one of the nodes fails. As a
result, coordinator never receives the
POModifvAck from all its children, which
may result in a deadlock or PO Table

inconsistency, depending on how failures are
handled.

To deal with these problems, each process
keeps an additional data structure
POPendingList to maintain a hst of the
processes that are currently being added to or
removed from the PO Table. Each entry in
the POPendingList contains process
information and whether it is being added to
or removed from the system. When
broadcasting POModifv message, a process
attaches its POPendingList to it. When a
process receives such a message, it compares
the received POPendingList with its local
POPendingList. If the local POPendingList is
a subset of the received POPendingList, then
changes are made to the PO Table, and the
message is propagated to the process's
children. Otherwise, the process computes the
union of the two POPendingList structures
and sends the POModifvNew message to the
root. When root receives POModifvNew

message, it compares the attached
POPendingList with its local POPendingList.
If the hsts are not equal, root computes the
union of the two POPendingList structures
and sends a new POModifv message to its
children.

When multiple processes fail, it is possible,
that a POModifvNew message will be sent to
the non-root process. There are two possible
scenarios: first, a receiver process knows that
it is not a root process, and second, it does not
know. If the process knows that it is not a
root process, it simply forwards the message
to what it thinks is the root process. If the
process thinks it is a root process, it proceeds
as a root. Then the inconsistency will be
detected somewhere down the hierarchy, and
POModifvNew message will be sent.

Each POModifvAck message also includes the
^POPendingList of its sender. When the

process receives POModifvAck message, it



compares the received POPendingList with
its local POPendingList. If the lists are not
equal,POModifvAck message is discarded.

As system topology continues to be modified,
the size of the POPendingList can get very
large. To discard already processed changes
to the PO Table, after receiving all
POModifvAck messages, the root process
sends out POModifvDone message. When the
process receives this message, it subtracts the
received POPendingList from its local list.

Finally, we must consider the case where the
POModifvDone message does not reach every
node due to another node failure. In this case

the POModifvNew message will be sent to the
root, and the root will rebroadcast POModifv
message. We have to make sure that no
modification requests are processed twice.
The process can not be removed from the PO
Table twice. If the process is being added to
the PO Table, we have to verify that the
specified process is not already in the table
before adding it.

The complete algorithm is presented below.
1. Message is sent to the root coordinator

containing IP and PID of the process that
is being added/removed. Root updates its
PO Table, and, if the process is being
added, it sends a copy of its PO Table to
the new process. Then root adds the
process to its POPendingList, and sends
the POModifv message to its children.
This message includes local
POPendingList.

Until the update is finished, the Process
Order is inconsistent, so root does not
broadcast any application messages while
updating Process Order is in progress.

2. Receiving POModifv message; if local
POPendingList is not the subset of the
received one, send POModifvNew

message to the root. This message
includes local POPendingList.
If local POPendingList is a subset of the
received one, update PO Table. If children
list changed, (as it did for the process a in
figure 7), break connections with old
children and estabhsh connections with

new children. Then forward POModifv

message to children.

When a leaf process receives POModifv
message, it replies with POModifvAck
message to its parent.

3. Receiving POModifvAck message: if local
POPendingList is not the same as the
received one, then discard the message.
When the message is received with the
matching POPendingList fi-om all its
children, send POModifvAck message to
its parent.

When root receives POModifvAck

message fi-om all its children, it sends
POModifvDone message to its children.
This message contains the root's
POPendingList. The use of the hierarchy
is resumed.

4. Receiving POModifvDone message: if
local POPendingList is not the same as
the received one, send POModifvNew
message to the root. This message
includes local POPendingList. Otherwise,
clear local POPendingList and forward
the message to children.

5. Receiving POModifvNew message:
modify PO Table. If not root, then
forward this message to the root. If root,
modify local POPendingList to contain
the union of local POPendingList and
received POPendingList. Send POModifv
message to its children.



5 Process Order APIs

As discussed in the next section, there is often
a need in distributed systems to construct
structures other than binary trees. Process
Order can be used to construct these
structures. To facilitate easy use of the
Process Order we are implementing it as a set
Process Order library. Figure 8 presents a set
of interfaces for this library. POInit() function
initializes the Process Order Table, and inserts
a host process in it.

Using the function POAddCommPartners()
the user specifies a rule by which logical
connections have to be established and then

maintained. An example of such a rule is the
one we used in section 3.2 to build a

hierarchy. This function could be called
multiple times with different rules, as Process
Order can support multiple structures. Calling
this function results in opening socket
connections between processes that are
according to the rules are logically connected.

Function POGetCommPartners() returns the
set of the processes logically connected to the
calling process according to the rule submitter
in the function argument. If socket
connections were established with

POAddCommPartnersO, then the
corresponding socket descriptors are also
returned.

POAddO and PORemove() are used to add
and to remove elements from the POTable. If

POAddCommPartnersO was called to
establish socket connections on the logical
links, then calling POAdd() and PORemove()
will cause the creation and destruction of the

socket connections according to the changes
made to the logical connections. An example
of such a reconnection was described in

section 4.

To facilitate easy reconnection between
processes in case of modification of the

system topology, we use TCP/IP-based
communication library developed by
Christian Wicke [8].

6 Concluding Remarks

Aside from the hierarchy, it is often desirable
to arrange processes in other logical
structures, such as a ring [9], for fault
detection, a hypercube [10], to implement
stability detection algorithm, a mesh [11], for
grid computations, or groups [12], for load

POIni t(keyl, key2)

POAdd(keyl, key2, process name)
PORemove(keyl, key2)

POAddCoiranPartners( function )

POGetCoramPartners( function )

Figure 8. Process Order API

balancing. Process Order could be used to
construct and maintain these structures in a

similar way as for the tree. The usability of
the Process Order mechanism depends on
how well the desired logical structure could
be expressed with a formula.

The cost of maintaining the Process Order is a
total of 3n messages when adding or
removing a new process to the system, where
n is the number of processes. The cost of
maintaining the Process Order Table consists
of inserting and deleting elements in a sorted
list. Even with the most straightforward
algorithm this operation is of the order of
0(n). Maintaining the PO Table also requires
extra space: at least one integer per
participating process. Note that the cost of
maintaining Process Order is independent of
how many structures are being concurrently
supported by the mechanism.

As distributed systems become more
^complex, the need for supporting multiple
logical structures will increase. The Process
Order mechanism provides a set of



abstractions, that allow fast and clean creation
and maintenance of such structures.
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