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Weight loss or lower body mass index (BMI) could be an early symptom of Alzheimer disease (AD), but when
this begins to emerge is difficult to estimate with traditional observational data. In an extension of Mendelian
randomization, we leveraged variation in genetic risk for late-onset AD risk to estimate the causal effect of AD
on BMI and the earliest ages at which AD-related weight loss (or lower BMI as a proxy) occurs. We studied UK
Biobank participants enrolled in 2006–2010, who were without dementia, aged 39–73, with European genetic
ancestry. BMI was calculated with measured height/weight (weight (kg)/height (m)2). An AD genetic risk score
(AD-GRS) was calculated based on 23 genetic variants. Using linear regressions, we tested the association of
AD-GRS with BMI, stratified by decade, and calculated the age of divergence in BMI trends between low and
high AD-GRS. AD-GRS was not associated with BMI in 39- to 49-year-olds (β = 0.00, 95% confidence interval
(CI): −0.03, 0.03). AD-GRS was associated with lower BMI in 50- to 59-year-olds (β = −0.03, 95% CI: −0.06,
−0.01) and 60- to 73-year-olds (β = −0.09, 95% CI:−0.12, −0.07). Model-based BMI age curves for high versus
low AD-GRS began to diverge after age 47 years. Sensitivity analyses found no evidence for pleiotropy or survival
bias. Longitudinal replication is needed; however, our findings suggest that AD genes might begin to reduce BMI
decades prior to dementia diagnosis.

Alzheimer disease; body mass index; disease natural history; Mendelian randomization

Abbreviations: AD, Alzheimer disease; AD-GRS, Alzheimer disease genetic risk score; BMI, body mass index; CI, confidence
interval; GWAS, genome-wide association study; IGAP, International Genomics of Alzheimer’s Project; MR, Mendelian random-
ization; PC, principal component; SNP, single nucleotide polymorphism.

Given the long, insidious development of dementia and
the subtle nature of early cognitive changes, it remains
unclear at what age the earliest manifestations of Alzheimer
disease (AD) emerge. Growing evidence of brain changes
occurring decades prior to dementia diagnosis might help
explain the failure of recent AD clinical trials, which enroll
older adults with cognitive impairment (1–3). Identifying
early indicators of emerging AD pathophysiology could
point to a critical window when the disease trajectory might
be modifiable (e.g., prior to substantial neurodegeneration).
Weight loss might be an early indicator of incipient
AD (4–7). Neurodegenerative changes (8, 9); changes in
metabolism, appetite, and nutrition (10); or other metabolic

factors could have an impact on body mass index (BMI)
prior to clinical dementia onset. The age at which weight
loss emerges in patients who go on to develop AD is unclear
but might point to the earliest manifestations of AD.

Identifying the earliest age of AD-related weight loss is
challenging because higher midlife BMI might increase the
risk of AD (11–14). Thus, the earliest weight loss resulting
from developing AD might not be detectable when compar-
ing earlier BMI values of people subsequently diagnosed
with AD. Alternative study designs such as Mendelian ran-
domization (MR), which uses genetic variants as instru-
ments to evaluate the causal effect of a risk factor on a
health outcome (15–17), might be useful to evaluate the
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Figure 1. Hypothesized relationships between genetic risk for Alzheimer disease (AD) and body mass index (BMI). Based on our conceptual
model (A), we hypothesized that there would be an association between AD genetic risk score (AD-GRS) and lower late-life BMI but no
association between the AD-GRS and midlife BMI. Individuals with higher genetic risk for AD are at higher likelihood of developing AD, which we
conceptualize as beginning with neurodegeneration and early cognitive decline and subsequently leading to dementia. High midlife BMI might
also promote AD/cognitive decline through alternative pathways. However, AD-related changes might also lead to lower late-life BMI or weight
loss. The age at which an association between AD-GRS and lower BMI emerges could also point to an early manifestation of AD-related BMI
change. This interpretation requires several assumptions, violations of which are represented by dashed lines (B): that there are no pleiotropic
or independent effects of the AD-GRS on BMI via mechanisms unrelated to AD and that survival factors do not strongly affect the composition
of the analytical sample.

age when AD-related weight loss begins. Several prior MR
studies have found no evidence that BMI causes AD (18–
20); however, to our knowledge no study has focused on the
reverse (e.g., that AD reduces BMI).

MR approaches can provide stronger causal inference
than traditional observational studies by using genetic risk,
which is determined at conception, prior to disease onset,
but identifies individuals who are at high risk of developing
AD in the future. Thus, any association between AD-related
genetic variants and BMI cannot be attributed to the influ-
ence of early or midlife BMI on AD or other unmeasured
confounding. An association between AD genetic risk and
reduced BMI would suggest that a biological process asso-
ciated with the AD genetic risk score (AD-GRS) modifies
BMI. Any age-related changes in the association between
AD-GRS and BMI could indicate at what age AD biological
changes begin to affect BMI. Such an inference would be
possible only if we can plausibly assume there is not pleiot-
ropy of genetic risk for AD and BMI (15) or biases such as
selective survival bias (21, 22) that could account for results
(Figure 1).

The objective of the present study was to take advantage of
known genetic variation in late-onset AD risk (23) to identify
the earliest ages at which genetic risk for AD is associated
with lower BMI (as a proxy for weight loss). In this study, we
evaluated the association between late-onset AD genetic risk
and BMI across mid- to late-life participants in UK Biobank.
We also used an innovative approach to estimate the age of

divergence in BMI trajectories for those with high compared
with low risk of late-onset AD.

METHODS

Study setting and participants

We obtained data from the UK Biobank, an ongoing study
of over 500,000 adults. Participants aged 39–73 years were
recruited in 2006–2010 from across the United Kingdom
to provide detailed information about themselves via com-
puterized questionnaires, provide biological samples, under-
go clinical measurements, and have their health followed
prospectively (24). For these analyses, we excluded those
with missing genetic information (n = 15,221) or who were
flagged as recommended for genetic analysis exclusion (n =
378) and those with missing BMI (n = 1,295). We also
excluded participants classified as of non-European genetic
ancestry (n = 78,336) based on genetic ancestry principal
components, because genetic predictors of AD might differ
by ancestry/population stratification (25). After exclusions,
407,386 participants were included in the analytical sample.
Ethical approval for the UK Biobank was obtained from
the National Health Service National Research Ethics Ser-
vice, and all participants provided written informed consent.
The present study was approved by the UK Biobank under
application #34507 and by the University of California San
Francisco institutional review board.
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Genotyping and genetic risk scores for AD

Genotyping of UK Biobank samples was conducted with
2 closely related arrays (Affymetrix using a bespoke BiLEVE
Axiom array and Affymetrix UK Biobank Axiom array
(Affymetrix, Santa Clara, California) and is described in
detail elsewhere (26, 27). Briefly, all genetic data were
quality controlled and imputed by UK Biobank (downloaded
on December 1, 2017) to a reference panel that merged the
1000 Genomes Phase 3 and UK10K reference panels. A
secondary imputation was completed using the Haplotype
Reference Consortium reference panel, and results from the
Haplotype Reference Consortium imputation were prefer-
entially used at single nucleotide polymorphisms (SNPs)
present in both panels. Before the release of the UK Biobank
genetic data, a stringent quality control protocol (described
elsewhere) was applied at the Wellcome Centre for Human
Genetics (28).

To construct the AD-GRS in UK Biobank data, we used
summary results from the 2013 International Genomics of
Alzheimer’s Project (IGAP) meta-analyzed genome-wide
association study (GWAS) on late-onset AD in European
populations (23) to calculate an AD genetic risk score (AD-
GRS) for each participant. The IGAP study identified 23 loci
associated with AD, including 2 SNPs used to characterize
apolipoprotein E (APOE) ε4 allele status. The AD-GRS
was based on the meta-analyzed β coefficients obtained in
the IGAP’s stage 1 study, which included genotyped and
imputed data (7,055,881 single nucleotide polymorphisms,
1000G phase 1 alpha imputation, Build 37, Assembly Hg19)
of 17,008 Alzheimer disease cases and 37,154 controls.
We calculated the AD-GRS by multiplying each individ-
ual’s risk allele count for each locus by the β coefficient
(expressed as the log odds ratio) for that polymorphism (Web
Table 1, available at https://doi.org/10.1093/aje/kwab103)
and adding the products for all 23 loci. This step weights
each SNP in proportion to the observed association with AD
risk (either positive or negative). The scores can be inter-
preted as the log odds ratio for AD conferred by that individ-
ual’s profile on the 23 SNPs compared with a person who had
the nonrisk allele at each locus. We converted the AD-GRS
into a standardized z score based on the sample mean and
variance. This score has previously been shown to predict
cognition and dementia-related death in the UK Biobank
(29). We also calculated a secondary score of 27 SNPs
using summary results from the 2019 IGAP meta-analyzed
genome-wide association study (Web Table 2) (30).

Body mass index

BMI was calculated based on height and weight (kg/m2)
measured at the baseline assessment.

Other characteristics

Age, sex, and education were reported at the baseline
assessment. UK Biobank provides principal components
(PCs) related to genetic population stratification; we used
the first 10 PCs in our analyses to adjust for population

stratification. Educational level (less than high school, high-
school graduate, professional or vocational qualification,
college graduate) and smoking status (never, past, current)
were used as covariates for sensitivity analyses.

Participants completed several touchscreen-based cogni-
tive tests; we used reaction time (i.e., simple processing
speed) as a measure of cognition to confirm previously
established associations between BMI and cognition (12).
Reaction time was available on the largest number of par-
ticipants (99.3% of the present sample) and was correlated
with other cognitive tests (31). Participants were timed at
pressing a button as soon as 2 identical cards were seen on
the touchscreen; mean duration to first press of snap-button
was summed over rounds in which both cards matched. Par-
ticipants completed 12 rounds. Some values were excluded
when forming the average: rounds 0–4, which were regarded
as “training”; times under 50 milliseconds, which must be
due to anticipation rather than reaction; and times over 2,000
milliseconds, because the cards had disappeared by then.
Values in milliseconds were rounded to the nearest whole
number (32).

Statistical analysis

First, we evaluated the association between BMI and
reaction time to confirm expected associations seen in prior
research: specifically, that higher BMI in midlife is asso-
ciated with worse cognitive outcomes but higher BMI in
late life is associated with better cognitive outcomes (12).
We conducted analyses stratified by age at assessment (in
years: 39–49, 50–59, and 60–73). For each age stratum, we
used linear regressions to predict reaction time using BMI
(continuous) adjusted for age, age2, sex, and education.

Our primary analyses parallel the general approach of a
MR study (15–17), which leverages the fact that genetic
variants have an established temporal order (i.e., determined
at conception, prior to disease onset). Furthermore, one’s
genotype is not as susceptible to traditional confounders in
observational studies such as one’s socioeconomic status
or health status in midlife. If AD-related genetic variants
influence age trends in BMI, this provides evidence that
could inform whether and when AD or shared genetics affect
BMI (Figure 1).

We estimated separate age-stratified linear regressions
with the AD-GRS (23 SNPs based on 2013 IGAP data)
(23) as the primary predictor and BMI as the outcome.
Models included adjustment for age, age2, sex, and PCs.
Next, we estimated nonlinear trends for age using one linear
regression model for the whole sample with AD-GRS, age,
and age2 as primary predictors. We tested whether age trends
differed by AD-GRS using interaction terms between the
linear and quadratic age terms and AD-GRS. Based on this
regression equation we calculated the age at which curves
began to diverge. To illustrate difference between low and
high AD genetic risk we calculated predicted BMI curves for
the 10th percentile (low risk) and 90th percentile (high risk)
of the AD-GRS, from our prior model. Based on these same
percentiles we also estimated the earliest age at which high
AD-GRS was associated with a significantly lower BMI
compared with low AD-GRS. We repeated primary analyses
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using the secondary AD-GRS score (27 SNPs) updated with
2019 IGAP summary data (30).

We conceptualize that the association of the AD-GRS
and BMI represents an effect of incipient AD on BMI;
however, this requires the assumption that there are not
alternative pathways through which pleiotropic effects of
AD genes affect BMI (15–17). Our main hypothesis was that
in older ages the AD-GRS would be inversely associated
with BMI and that in younger ages the AD-GRS would
have no association with BMI (this latter finding would also
help rule out potential for pleiotropy of the AD-GRS on
midlife BMI). We also performed MR-Egger regression as a
sensitivity analysis to test for any horizontal pleiotropy (e.g.,
independent associations of genetic variants on both BMI
and AD) (33). We report intercept terms and the intercept test
from MR-Egger analysis; a nonzero intercept is suggestive
of horizontal pleiotropy.

Finally, selection and survival bias might be present in MR
studies, particularly if the AD-GRS has pleiotropic effects
on survival or if the exposure, outcome, and/or confounders
have strong effects on survival (21, 22). Additionally, a
healthy volunteer bias might influence enrollment in the UK
Biobank (34). We conducted several sensitivity analyses to
investigate this. First, we included additional adjustment in
our primary models of smoking status and educational level,
which might influence both BMI and survival. Next, we
used inverse probability weighting (35) to attempt to account
for potential selection factors that might be present in older
ages by upweighting characteristics of younger adults and
those who died early (21, 36). Stabilized weights were
inverse predicted probabilities based on logistic regression
models for younger age (ages 40–50 vs. ages ≥50) with
age, sex, smoking status, educational level, PCs, the AD-
GRS, and BMI and their interactions as predictors. We calcu-
lated 95% confidence intervals based on 1,000 bootstrapped
replications (37). Finally, we performed a negative control
analysis, an analysis in which we a priori expected a null
association with the AD-GRS but it would be susceptible
to selection bias. We evaluated for potential survival bias
by examining whether we observed similar trends in the
association between AD-GRS and smoking status, a factor
strongly associated with survival (38, 39) but that we would
not expect to be strongly associated with the AD-GRS. We
examined both ever-smoking and current smoking because
we can expect differential propensity for selection bias and
because there might be unexpected associations with AD
genes (pleiotropy) or early AD. We tested for significant age
× AD-GRS interactions and plotted probability of smoking
low versus high AD-GRS by age.

All regression models included adjustment for sex and
PCs as described above. Analyses were conducted in R,
version 3.6.2 (R Core Team, R Foundation for Statistical
Computing, Vienna, Austria). All tests were 2-sided with
α = 0.05, and we report 95% confidence intervals.

RESULTS

Participant baseline characteristics are shown in Table 1;
21.8% of the sample was aged 39–49 years, 32.9% aged 50–

59 years, and 45.3% was aged 60–73 years at time of base-
line assessment. Of the sample, 54.1% were female. Most
participants had BMIs in the normal (32.5%) or overweight
(42.8%) range.

Age-stratified results for the association between BMI and
cognition (reaction speed) are shown in Table 2. The associ-
ation between BMI and cognition (reaction speed) differed
by age. For ages 39–49 years, a higher BMI was associated
with worse reaction time (0.13-milliseconds slower reaction
time, with 95% confidence interval (CI): 0.01, 0.26; P =
0.03). In ages 50–59 a higher BMI was associated with
faster reaction time (0.12-milliseconds faster reaction time
for ages 50–59 (95% CI: 0.23, 0.0002; P = 0.045), and this
effect estimate was even stronger for ages 60–73 years (0.20-
milliseconds faster reaction time (95% CI: 0.32, 0.08); P =
0.001).

Age-stratified results for the association between BMI and
the AD-GRS are shown in Table 3. For ages 39–49 years,
AD-GRS was not significantly associated with BMI (0.00
per 1 standard deviation in AD-GRS, 95% CI: −0.03, 0.03;
P = 0.94). For ages 50–59 years AD-GRS was associated
with lower BMI (−0.03 per 1 standard deviation in AD-
GRS, 95% CI: −0.06, −0.01; P = 0.01), and this association
was stronger and significant for ages 60–70 years (−0.09 per
1 standard deviation in AD-GRS, 95% CI: −0.12, −0.07;
P < 0.001). MR-Egger regressions for each age grouping
found no evidence for horizontal pleiotropy: MR-Egger
intercept β = −0.008 (standard error = 0.011), P = 0.49, for
ages 39–49 years; β = 0.001 (standard error = 0.012), P =
0.91, for ages 50–59 years; and β = 0.003 (standard error =
0.001), P = 0.66, for ages 60–73 years.

Model-based BMI age curves showed an increasing tra-
jectory of average BMI for individuals aged 40–50, which
slowed and finally reversed so that by age 65 each additional
year of age was associated with lower BMI (Figure 2). For
participants with the average AD-GRS, age was associated
with increased BMI (0.92 points per decade, 95% CI: 0.85,
1.00), but for each decade after 40 this estimate decreased
(age2 term) by −0.21 (95% CI: −0.06, −0.01) points. This
slowing of the age-related BMI curve occurred earlier in
people with high AD-GRS scores (P < 0.001 for overall age
by AG-GRS interactions). One standard deviation in AD-
GRS was associated with an additional slowing of the BMI
curve of −0.02 (95% CI: −0.04, 0.00) points per decade.
The BMI of individuals with high versus low AD-GRS
scores began to diverge after age 47 years, and the curves
further diverged after age 65 (Figure 2). Comparing the 10th
to 90th percentile of AD-GRS, differences in BMI curves
were statistically significant after age 56.

Sensitivity analyses did not appreciably change results.
Estimates for primary models were unchanged with adjust-
ment for smoking status and educational level, and they
were similar when including inverse probability of selection
weights, although confidence intervals were wider (Web
Table 3). Results were very similar but slightly stronger
using the secondary AD-GRS based on updated 2019 results
(Table 3). Using this updated AD-GRS score, the age of
divergence was 46, and BMI differences were statistically
significant by age 55 years. Using smoking status as a
negative control for selection bias, we found no evidence for
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Table 1. Characteristics of Participants Included in Analyses of Alzheimer Disease Risk and Body Mass Index
(n = 407,386), UK Biobank, United Kingdom, 2006–2010

Participant Characteristic No. % Mean (SD)

Age group, years 56.9 (8.0)

39–49 88,758 21.8

50–59 134,163 32.9

60–73 184,465 45.3

Female sex 220,319 54.1

High-school graduatea 191,394 47.5

AD-GRS (z score) 0 (1)

At least one APOE ε4 allele 117,478 28.8

Reaction time, millisecondsa 535 (113.2)

Body mass indexb 27.4 (4.7)

Underweight (<18.5) 2,042 0.5

Normal (18.5–24.9) 132,315 32.5

Overweight (25.0–29.9) 174,204 42.8

Obese (30.0–39.9) 98,825 24.3

Morbidly obese (≥40.0) 7,632 1.9

Abbreviations: AD-GRS, Alzheimer disease genetic risk score; APOE, apolipoprotein E; SD, standard deviation.
a Missing data: education, 3,701 (<1%); reaction time, 2,484 (<1%).
b Weight (kg)/height (m)2.

age by AD-GRS interactions (all P >0.10). Plots for having
ever smoked (Figure 2B) and current smoking (Web Figure
1) showed little evidence for divergence.

DISCUSSION

We found evidence that higher AD-GRS is associated
with lower BMI in older adults. We found that the age at
which BMI curves begin to diverge is in midlife (age 47
years, with a statistically detectable difference by the late
50s). Age-stratified analyses mirrored this finding. Like-
wise, a higher BMI was associated with worse cognition in
midlife and then flipped to the inverse in older ages. These
findings are consistent with the hypothesis that reduced BMI
or weight loss is an early manifestation of the AD process
that can begin over 20 years prior to disease diagnosis.

This study expands upon prior work showing that weight
loss is a predictor of subsequent AD diagnosis (4–6, 12,
40) and AD neuropathologic burden (41). The majority
of prior studies have been based on observational data in
which it is not possible to establish temporal ordering of
BMI relative to established markers of preclinical AD. A
number of studies examining BMI in mid- to late life give
conflicting estimates of the age at which lower BMI is
associated with AD, ranging from 20 to 8 years prior to AD
diagnosis (13, 42, 43). Alternative analytical approaches,
such as ours, can help triangulate evidence around the timing
of BMI change in preclinical AD (44). By examining genetic
risk, which is determined at birth, we provide evidence that
some biological process associated with AD genetic risk
reduces BMI as early as age 50 years. The average age of
late-onset AD diagnosis is mid-70s to -80s even in those
with higher genetic risk (45, 46). Thus, we find that BMI

Table 2. Association Between Body Mass Index and Reaction Timea, UK Biobank, United Kingdom, 2006–2010

Age Group, years No. β 95% CI

39–49 87,973 0.13 0.01, 0.26

50–59 132,613 −0.12 −0.23, −0.0002

60–73 180,611 −0.20 −0.32, −0.08

Abbreviation: CI, confidence interval.
a Higher values = slower reaction time; based on linear regression models adjusted for age, age2, sex, and education.

Am J Epidemiol. 2021;190(10):2163–2171
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Table 3. Association Between AD-GRS and Body Mass Index Stratified by Agea, UK Biobank, United Kingdom, 2006–2010

Primary AD-GRS 2013 Scoreb 2019 Scorec

Age Group,
years

No.
β 95% CI β 95% CI

39–49 88,758 0.00 −0.03, 0.03 0.00 −0.04, 0.02

50–59 134,163 −0.03 −0.06, −0.01 −0.04 −0.07, −0.01

60–73 184,465 −0.09 −0.12, −0.07 −0.09 −0.11, −0.07

Abbreviations: AD-GRS, Alzheimer’s disease genetic risk score; CI, confidence interval; GWAS, genome-wide association study; SNP, single
nucleotide polymorphism.

a Reaction time was measured in milliseconds. Models adjusted for age, age2, sex, and principle components to account for confounding
by population stratification.

b AD-GRS of 23 SNPs using estimates from 2013 GWAS meta-analysis.
c AD-GRS of 27 SNPs using estimates from 2019 GWAS meta-analysis.

might begin to diverge between high and low AD genetic
risk up 20–30 years prior to dementia diagnosis. This work
focuses on late-onset or sporadic AD but complements evi-
dence on early-onset AD, where the Dominantly Inherited
Alzheimer Network (DIAN) study on autosomal dominant
AD found that BMI curves for mutation carriers diverged
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Figure 2. Age-related curves for body mass index (BMI) (A) and
smoking (negative control) (B) for high and low Alzheimer disease
genetic risk score (AD-GRS), UK Biobank, United Kingdom, 2006–
2010. Predicted curves for 10th (low) versus 90th (high) percentile
of genetic risk for AD began to diverge at age 47 years and were
significantly different by age 56 years.

from noncarriers as early as 17.8 years prior to expected
symptom onset (7). Together these studies add to increasing
evidence that pathologic processes related to AD begin to
manifest clinically many decades prior to diagnosis (1).
Furthermore, these findings suggest that midlife or earlier
could be a critical window for prevention of AD (e.g., prior
to substantial neurodegeneration). Currently, there are few
effective disease modification strategies for AD; perhaps
one reason for clinical trial failures is that we might be
intervening too late in the disease process. To effectively
prevent AD or modify the earliest events in the AD patho-
logic cascade, interventions (whether AD drug treatments or
lifestyle changes) might be needed by midlife.

There is some possibility that our findings are driven by
mechanisms other than the effect of AD-related disease on
BMI. Some genes for AD, such as apolipoprotein E ε4, could
affect BMI through alternative pathways (e.g., pleiotropy)
rather than via neurodegeneration, such as cardiovascular
disease (46), and might promote survival in earlier life.
However, we did not find strong evidence for horizontal
pleiotropy (e.g., independent effects of the AD-GRS on
BMI) in sensitivity analyses. Autopsy studies have found
that AD genetic loci are associated with AD neuropathology
but not with vascular pathologies, suggesting that AD genes
do increase risk for AD specifically (47). It is still possible
that metabolic changes represent an upstream factor (e.g.,
vertical pleiotropy) that contributes to accumulation of AD
pathology or factors closely linked to AD development but
that affects BMI independently (48). There is also concern
for selection bias due to selective survival, particularly for
late-life outcomes such as AD (21, 22), which is also asso-
ciated with dementia-related mortality (29). Selection bias
could be built into our AD-GRS in that it was based on
GWAS of the older IGAP sample (mean age approximately
74 years). However, our sensitivity analyses, including our
negative control evaluation of smoking, did not show evi-
dence of substantial survival or selection bias. Survival bias
could be stronger in studies with ages over 70, when the
AD-GRS and other factors are more strongly associated
with mortality (49). Future studies will be needed to verify
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that these findings represent early AD affecting BMI and
to clarify the mechanisms through which AD genes might
affect BMI.

Several plausible factors could promote weight loss in
early AD. Nutritional habits are worse in individuals with
cognitive impairment (10), and neurodegeneration changes
in AD are associated with lower BMI and weight loss (9,
41). Brain regions and pathways important for metabolism,
appetite, and weight maintenance might become disrupted
early in the disease process (8, 50). Our findings particularly
of age-related differences in the association between AD
and lower BMI lends further support to the hypothesis that
pathophysiological processes that culminate in AD diagno-
sis also lead to weight loss decades earlier (16). Although
we cannot conclusively say the association between AD-
GRS and lower BMI is due to a clear manifestation of AD,
our findings confirm that lower BMI as early as midlife is
associated with higher risk of AD and cognitive decline.

There are several important limitations to our analysis.
Our measurement of BMI is cross-sectional; future stud-
ies with longitudinal BMI measurements will be needed
to verify age at which weight loss can begin to occur in
preclinical AD. We cannot completely rule out selection
bias or pleiotropy of the AD-GRS or the GWAS for AD
genes; however, sensitivity analyses suggest that these biases
do not have a substantial impact on our results. Genetic
risk for AD explains only a small percentage of variation
in cognitive impairment and AD diagnosis; thus, there is
substantial variation in risk for AD that is not captured by
our risk score. This variation reduces the ability to detect
associations. These analyses were conducted among par-
ticipants of European ancestry who were generally healthy
and well educated; this could limit generalizability. How-
ever, there are also considerable strengths to this study,
particularly the large sample size, the use of BMI from mea-
surements, an innovative analytical approach, and consistent
findings across multiple sensitivity analyses. By using ge-
netic risk, we circumvent a central challenge in interpreting
prior results on weight loss, BMI, and AD.

We estimated that genetic factors that increase sporadic
AD risk reduce BMI as early as age 47, many years prior
to the average age of AD diagnosis (approximately 80
years). Our findings are consistent with the hypothesis that
weight loss manifests as a very early pathophysiological
change associated with AD. Additional longitudinal studies
are needed to confirm the exact mechanisms and earliest
detectable physiological changes resulting from AD.
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