
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Physics-Informed Machine Learning Models for Power Transmission Systems

Permalink
https://escholarship.org/uc/item/7tw8b72w

Author
Kong, Xianghao

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tw8b72w
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Physics-Informed Machine Learning Models for Power Transmission Systems

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Xianghao Kong

June 2022

Thesis Committee:

Nanpeng Yu, Chairperson
Stefano Lonardi
Ahmed Eldawy



Copyright by
Xianghao Kong

2022



The Thesis of Xianghao Kong is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

Throughout the writing of this dissertation I have received a great deal of support and

assistance.

I would first like to thank my advisor, Prof. Nanpeng Yu, whose expertise was

invaluable in formulating the research questions and methodology. Your insightful feedback

pushed me to sharpen my thinking and brought my work to a higher level.

I would particularly like to acknowledge my teammates, Yuanbin Cheng, Jie Shi,

Yuanqi Gao, Brandon Foggo and Koji Yamashita, for their wonderful collaboration and

patient support.

I would also like to thank my family for their wise counsel and sympathetic ear.

You are always there for me.

Finally, I could not have completed this dissertation without the support of my

friends, Jinghan Yao and Lin Cong who provided stimulating discussions as well as happy

distractions to rest my mind outside of my research.

The content of this thesis is a re-print of the materials that are appeared in the

following publications:

• Xianghao Kong, Brandon Foggo, Koji Yamashita, and Nanpeng Yu, Online Voltage

Event Detection Using Synchrophasor Data with Structured Sparsity-Inducing Norms,

IEEE Transactions on Power Systems, 2021. (Chapter 2)

• Xianghao Kong, Koji Yamashita, Brandon Foggo, and Nanpeng Yu, Dynamic Pa-

rameter Estimation with Physics-based Neural Ordinary Differential Equations, IEEE

Power and Energy Society General Meeting, 2022. (Chapter 3)

iv



To my advisor and my family for all the support.

v



ABSTRACT OF THE THESIS

Physics-Informed Machine Learning Models for Power Transmission Systems

by

Xianghao Kong

Master of Science, Graduate Program in Computer Science
University of California, Riverside, June 2022

Nanpeng Yu, Chairperson

In the past few decades, the rapid development of the United States power system

has led to the continuous expansion of transmission networks and an increasing number

of phasor measurement units (PMUs) have been deployed on the power system. Although

voltage and current phasor data can be obtained in a real-time operation environment, it is

still challenging to effectively utilize PMU data in a large distributed system. Simply using

off-the-shelf machine learning algorithms to process PMU data does not yield models with

sufficient performance in practice. In this thesis, the physical dynamics of the U.S.power

system was synergistically combined with machine learning to monitor and model a power

transmission system.

The first aspect was real-time data-driven power system monitoring. We devel-

oped an efficient data-driven framework to detect voltage events from PMU data streams.

In particular, we developed an innovative Proximal Bilateral Random Projection (PBRP)

algorithm to quickly decompose a PMU data matrix into a low-rank matrix, a row-sparse

event-pattern matrix, and a noise matrix. The row-sparse pattern matrix significantly dis-
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tinguishes events from normal behavior. These matrices were then fed into a clustering

algorithm to separate voltage events from normal operating conditions. Large-scale numeri-

cal study results on real-world PMU data show that the proposed algorithm achieved higher

F1 and F2 scores with 50% less computation time.

The second aspect was to model dynamic electric power generator parameters. Ac-

curate estimation of dynamic parameters is crucial to building a reliable model for dynamical

studies and reliable operation of the U.S. power system. A physics-based neural ordinary

differential equations (ODE) approach was developed to learn the generator dynamic model

parameters using PMU data. We designed a physics-based neural network to represent the

swing equations of the power system dynamics. The parameters of the generator dynamic

model were iteratively updated using the neural ODEs and the adjoint method. By exploit-

ing the mini-batch scheme in neural ODE training, the parameter estimation performance

was significantly improved with more than 50% computation speed up.
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Chapter 1

Introduction

The advent of phasor measurement units (PMUs) provides system operators with

time-synchronized voltage and current phasor measurements in real-time [7]. The widespread

deployment of PMUs around the world enables the development of data-driven algorithms

to estimate the dynamic parameters of power transmission systems [27, 49], detect power

system events [6, 26], replace missing values [12], classify power system events [43, 44], and

identify power system event signature [45]. Since the PMU data are generated from a phys-

ical network, the off-the-shelf machine learning algorithms often do not perform well on

power system data. To improve the computation efficiency and accuracy of the machine

learning algorithms, we developed physics-informed machine learning algorithms to monitor

and model power transmission systems in real time.

In this chapter, we will introduce the background of big data in power transmis-

sion systems (Section 1.1); describethe technical challenges (Section 1.2); summarize the

contributions of this thesis (Section 1.3); and finally, provide an organization of this thesis
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(Section 1.4).

1.1 Background

Phasor Measurement Units (PMUs) are capable of recording both amplitudes and

angles of voltage and current phasors. Time synchronization is provided by GPS. PMUs

have been widely deployed in transmission networks worldwide to improve the situational

awareness of power system operators [35]. The rapid adoption of PMUs in transmission

grids has led to tremendous growth in the amount of synchrophasor data (Fig. 1.1). For

example, with a 60 Hz sampling rate, each PMU can generate more than one gigabyte of

data per day [46]. The wealth of PMU data enables a development of various data-driven

applications to better monitor, model, protect, and control power systems.

Figure 1.1: The deployment network of PMU in 2015 [1].
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1.2 Technical Challenges

In this subsection, we present technical challenges associated with real-time power

system event detection and dynamic parameter estimation.

1.2.1 Online Voltage Event Detection

The existing methods of using synchrophasor data for data-driven power system

event detection can be roughly divided into three groups: traditional signal processing tech-

niques [23, 24, 33, 42]or statistical analysis [4], deep learning techniques [43, 48, 55], and

low-rank approximation methods [14,15,19,31,37]. However, these methods have their own

pitfalls. Most signal processing techniques analyze PMU data streams collected from differ-

ent locations separately and did not fully exploit underlying spatial-temporal correlations

in the PMU dataset. Despite the high accuracy achieved by deep learning techniques, their

success heavily depends on the availability of numerous high-quality event labels rarely avail-

able in practice. The PMU data decomposition methods by low-rank property are usually

oversimplified and ignore the unique structural pattern of events.

1.2.2 Dynamic Parameter Estimation in Generators

Two representative works in this field formulate dynamic power system parameter

estimation into nonlinear least-squares problem [20] and black-box neural network prob-

lem [38], respectively. The former may not be accurate enough for bulk power system

disturbances, and the latter leads to low estimation accuracy due to the lack of power sys-

tem domain knowledge in a neural network. There are also some works to solve this problem

3



using variants of Kalman filter [11, 16] to estimate parameters, and statistical models like

Bayesian approach [34] or Markov chain Monte Carlo method [51]. These methods either

have low estimation accuracy or fall into a local optimum.

1.3 Contributions

1.3.1 Online Voltage Event Detection

This work investigated power system anomaly detection algorithms in streaming

PMU data to issue an early alert to system operators. Mining the real-world data gathered by

hundreds of PMUs, covering thousands of events across the U.S., we discovered that regional

events mostly show a unique sparse structure in a noise matrix. Unique contributions of

this work include:

• The proposed iterative matrix decomposition approach, PBRP, which greatly accel-

erates the solution of a general low-rank and sparse matrix decomposition problem

where the residual matrix has a row-sparse structure.

• The data-driven event detection framework based on PBRP yields better theoretical

and empirical computation efficiency than existing SVD-based subspace characteriza-

tion approaches

• Unlike the model-based or supervised deep learning methods, our proposed voltage

event detection algorithm does not rely on detailed physical model or a large amount

of event labels for training.

• The numerical study on a large-scale real-world PMU dataset with hundreds of PMUs
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and voltage events shows that the PBRP-based event detection framework provides

higher F1 and F2 scores than state-of-the-art algorithms. The proposed algorithm can

also estimate event area/location along with PMUs that are sensitive to an event.

1.3.2 Dynamic Parameter Estimation in Generators

This work extended the prior research [34, 51] by converting a forward solver of

the ODEs representing power system dynamics into physics-informed neural networks. The

main contributions of this work are as follows:

• We adopt neural ODEs and the corresponding adjoint method to learn the parameters

of dynamic generator models online, which provides accurate estimates for parameter

gradients.

• By designing physics-based neural networks to represent the forward functions of

ODEs, we are able to leverage the parallel computing capabilities of graphics pro-

cessing units (GPUs) to accelerate the dynamic parameter learning. This advantage

becomes more apparent as the grid size increases.

• By leveraging the mini-batch scheme in updating dynamic parameters, the estimation

time can be shortened and the buildup of errors in the ODE solver can be reduced.

• Comprehensive numerical studies demonstrate that our proposed method can accu-

rately estimate not only the inertia constant but also mechanical power inputs using

PMU data during transmission line events.
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1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, the online voltage event

detection problem is solved based on a low-rank and sparse matrix decomposition method to

extract effective features out of streaming data. In Chapter 3, critical parameters in power

system dynamic models are estimated with the help of Neural ODE framework. The whole

dissertation is concluded in the Chapter 4.
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Chapter 2

Online Voltage Event Detection

Using Synchrophasor Data with

Structured Sparsity-Inducing Norms

Data-driven event detection algorithms are critical to making system operators

aware of abnormal system conditions [23]. The early detection of power system events

enables the operators to take corrective control actions in response to disturbance events.

In this section, we investigate practical anomaly detection algorithms based on efficient low-

rank and sparse matrix decomposition model in the streaming data systems to issue an early

alert, which helps reduce maintenance costs.

7



2.1 Related Works

The existing literature on the data-driven power system event detection using syn-

chrophasor data can be clustered into three groups. The first group of literature leverages

signal processing techniques and statistical analysis to detect system events. Signal pro-

cessing techniques such as discrete wavelet decomposition [23], dissipating energy flow [24],

empirical mode decomposition [33], self-coherence spectrum [56], Teager-Kaiser energy op-

erator [52], dynamic programming-based swinging door trending [8], graph signal process-

ing [42] [10], and parallel detrended fluctuation analysis [22] are adopted to detect oscillation

events [56], voltage events [23, 33, 42], frequency events [22, 23, 33, 42] and sequence of volt-

age and frequency events [52]. A multi-hypothesis statistical testing framework is developed

in [4] to detect power line outages. This group of techniques has achieved great success at

various types of power system events. However, most signal processing techniques analyze

PMU data streams collected from different locations separately and did not fully exploit

underlying spatial-temporal correlations in the PMU dataset.

The second group of papers adopts deep learning techniques to detect and classify

abnormal events. Convolution neural networks (CNN)-based classifiers [48] are built using

the rate of change of frequency and relative angle shift signals to detect and classify gener-

ator trip and load disconnection events. A novel information loading based regularization

and a graph signal processing-based PMU sorting algorithm were developed to improve the

parameter sharing scheme of the CNN framework [43]. An ensemble-based learning algo-

rithm, combining multiple machine learning algorithms, is proposed in [55]. Despite the

high accuracy achieved by deep learning techniques, their success heavily depends on the
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availability of numerous high-quality event labels rarely available in practice.

The third research group leverages the low-dimensionality and approximates low-

rank properties of PMU data to detect power system events. Recognizing that high di-

mensional PMU data lie close to a low dimensional manifold, principle component analysis

(PCA)-based event detection algorithms have been developed [15]. Two statistics derived

from a moving window PCA on PMU data matrices are used to detect frequency and island-

ing events [37]. It has been shown that pilot PMUs identified by the PCA can be used to

approximate non-pilot PMUs’ data streams. An event alert will be issued when the normal-

ized approximation error is larger than a pre-specified threshold [50]. In [31], a PCA-based

method is developed to measure the similarity of operation states between a pair of buses,

and the k-reachability is adopted to detect power system events. By exploiting the approx-

imate low-rank property of PMU data matrices, subspace characterization [29] and matrix

completion-based [14, 19] approaches have been proposed to detect power system events.

The PCA and matrix completion-based event detection algorithms model PMU data as the

sum of a low-rank matrix and a noise matrix. They overcome the shortcomings of algo-

rithms in the first two groups and do not require a large number of event labels for training.

However, the PMU data decomposition methods in the third group are oversimplified and

ignore the unique structural pattern of events.

Meanwhile, sparsity-inducing norms have been widely adopted in other power grid

fields. Examples include malicious cyber attack detection [13,18,30], imbalance identification

[40] and line outage detection [58]. Routtenberg et al. [40] successfully leveraged the sparse

structure in voltage measurements to localize imbalances in the power grid. Zhu et al. [58]
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leverage sparse overcomplete representations with l1 norms to identify sparse power line

outages. Liu et al. [30] propose a novel matrix decompsition method based on l1 norm to

detect the malicious attacks in the power grid. Hao et al. [18] assume the measurement

matrix can be recovered by a low-rank matrix and a sparse-attack matrix and apply l1 norm

to induce sparsity. The l1 norm only constraints a matrix to be element-wise sparse, i.e., non-

zero elements appear randomly in the matrix. This sparsity-inducing constraint is too weak

to cater a structured sparsity, like row-sparse or column-sparse. To break this limitation,

Gao et al. [13] proposed an attack identification algorithm with the l21 norm, assuming

that the measurement data matrix is a low-rank matrix plus a transformed column-sparse

matrix. This time, the sparse matrix is not directly stripped from the original measurement

matrix, but needs to be multiplied by a known transform matrix. To construct the transform

matrix, we need to know the structure of the power grid in advance, as well as the impedance

and admittance between different buses, which is hard to obtain in practice. Most of the

algorithms in this group rely on singular value decomposition (SVD), whose computation

time drastically increases with the number of PMUs and the analysis window length. This

drawback dramatically limits the scalability of the event detection algorithm. Our research

develops a novel method that decomposes the PMU measurement matrix into a low-rank

matrix, a sparse matrix, and a noise matrix without a transform matrix in a computationally

efficient manner.
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2.2 Online Voltage Event Detection

Mining the real-world data gathered by hundreds of PMUs, covering thousands of

events across the U.S., discovers that regional events mostly show a unique sparsity in the

noise matrix (Fig. 2.2). As the row of the noise matrix corresponds to individual PMUs, the

sparsity emerges in its row space, depending on how sensitive a PMU is to events. Among a

wide variety of power system events, voltage-related events mainly triggered by system faults

are recognized as a regional event. Therefore, the row-sparse property in the noise matrix

can exert an effect, especially in an event with a significant voltage dip. This paper proposes

further decomposing the noise matrix into a row-sparse event-pattern matrix and a pure noise

matrix, in light of the above. This innovative low-rank and sparse matrix decomposition

framework, extracting anomaly features from both the low-rank matrix and the row-sparse

event-pattern matrix, enables event alerts. Finally, an unsupervised clustering technique is

adopted to distinguish normal system operation data from that of the power system voltage

events.

2.2.1 Overall Framework

The overall framework of the proposed online voltage event detection algorithm

is summarized in Fig. 2.1. The proposed algorithm has three modules: a streaming ma-

trix decomposition module, an anomaly feature extraction module, and an event detection

module based on cluster analysis. The first modu le separately decomposes four types of

streaming PMU data matrices in w1-length windows. Each type of data matrix (X) would

be decomposed into a low-rank matrix (L), a sparse event-pattern matrix (S), and a noise

11



Figure 2.1: Overview of online event detection framework.

matrix (G) via PBRP algorithm. The second module extracts useful features, two anomaly

scores, LAS and SAS from decomposed matrices, L and S. The third module performs

cluster analysis on extracted features within w2-length windows to identify anomalies.

2.2.2 Low-Rank and Sparse Event-Pattern Matrix Decomposition

Let n denote the number of PMUs under consideration. We collect the streaming

PMU data into a matrix time series Xt ∈ Rn×w by placing new instances of data in the

rightmost column while removing the leftmost column. These matrices are decomposed in
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a specific way based on prior knowledge of their properties.
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Figure 2.2: The heatmap of “X − L" (left) and “X − L−G” (right) for active power data.

The first property of note has to do with the rank of these matrices. As shown by

small-scale empirical studies and theoretical derivations, voltage and current phasor data

under normal conditions exhibits a low-rank structure [14]. Using large-scale PMU data

from the Eastern Interconnection of the continental U.S. power transmission grid, the active

power (P), reactive power (Q), voltage magnitude (V), and frequency (F) data does possess

the low-rank property, which means the low-rank property holds up well during steady-state

operation periods. In Table 2.1, the analysis on a representative event shows that the largest

singular value of the reactive power data matrix accounts for 99.988% of the variance, while

this percentage drops to 59.743% during event periods. Suppose that this normal behavior

from the streaming PMU data matrices is decomposed as:

13



Table 2.1: Singular Value Decomposition of P, Q, V, and F data matrices over 1 second

Data Type Electrical Quantity
Singular Value Percentage Variance ( σ2

i∑
i σ

2
i
) Singular Value Proportion ( σi∑

i σi
)

1st 2nd 3rd 1st 2nd 3rd

Non-event Data

P (Active Power) 99.999261% 0.000536% 0.000109% 99.242040% 0.229736% 0.103609%

Q (Reactive Power) 99.988472% 0.008789% 0.001427% 97.134683% 0.910695% 0.366895%

V (Voltage Magnitude) 99.999995% 0.000005% 0.000000% 99.963393% 0.022302% 0.003274%

F (Frequency) 99.999999% 0.000000% 0.000000% 99.996304% 0.000824% 0.000654%

Event Data

P (Active Power) 95.003242% 4.933310% 0.045058% 78.391273% 17.863547% 1.707207%

Q (Reactive Power) 59.743182% 40.185730% 0.068034% 53.278058% 43.695845% 1.797904%

V (Voltage Magnitude) 99.545736% 0.447828% 0.006371% 92.892350% 6.230519% 0.743139%

F (Frequency) 99.999994% 0.000006% 0.000000% 99.971389% 0.023498% 0.001269%

X = L+ (X − L), (2.1)

where L is an approximation of X with rank r. Then the matrix, X−L, contains information

from the data that is residual from normal behavior, which is a promising first step towards

event detection.

The second property of note has to do with the structure of X −L during voltage

event periods. It turns out that these matrices have specific patterns of sparsity that we

can take advantage of. The main component of this structure comes directly from the fact

that voltage events, when they occur, often significantly affect limited area/zones. As such,

the number of PMUs interacting with a voltage event is prone to be limited (Fig. 2.2).

The right subfigure shows the heatmap of an event pattern matrix representing one-second

min-max normalized active power data. The event happens approximately at the red line.

14



Thus, we propose to decompose the PMU data matrix as follows:

X = L+ S +G, (2.2)

where L ∈ Rn×w is a low-rank matrix, S ∈ Rn×w is a row-sparse event-pattern matrix

representing the impact of voltage events, and G ∈ Rn×w denotes a noise matrix. Then, the

problem can be formulated as:

min
L,S

1

2
∥X − L− S∥2F

s.t.


rank(L) = r,

S is row-sparse.

(2.3)

It turns out that this “row-sparse" event pattern can be captured by using l21

regularization, where the l21 norm of S is defined as ∥S∥21 =
∑

i

√∑
j s

2
ij . In other words,

by adding the l21 norm on event-related matrix, S, to the objective function as a penalty

term, the solution will yield the desired row-sparse structure. The problem can then be

relaxed into a new one:

min
L,S

1

2
∥X − L− S∥2F + λ∥S∥21

s.t. rank(L) = r,

(2.4)

where the λ is a penalty coefficient of the l21 norm. This optimization problem (2.4) can be

solved with Coordinate Descent. This means that we alternate between solving the following

two sub-problems until ∥X−L(k)−S(k)∥2F
∥X∥2F

converges:
L(k) = argminrank(L)=r

1
2∥X − L− S(k−1)∥2F

S(k) = argminS
1
2∥X − L(k) − S∥2F + λ∥S∥21

(2.5)
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where L(k) and S(k) denote an estimate of L and S, respectively, in the k-th iteration.

To solve the first sub-problem, we forgo time-consuming exact optimization and

instead choose to approximate its solution via an enhanced version of Bilateral Random

Projections (BRPs).

2.2.3 Bilateral Random Projections

Bilateral Random Projections (BRPs) are a fast and accurate method of low-rank

matrix approximation. We showcase a new approximation approach here. First, consider

the following column-row-echelon decomposition of a matrix X ∈ Rn×w that has a rank r.

X =

[
c1 c2 · · · cr

]
︸ ︷︷ ︸

C

[
Ir | Ew−r

]
︸ ︷︷ ︸

E

P, (2.6)

where c1, c2, · · · , cr are any choice of r linearly independent columns of X, Ir ∈ Rr×r,

Ew−r ∈ Rr×(w−r) and P ∈ Rw×w acts on E as a column permutation matrix (EP is the

reduced row-echelon form of X, and P just moves the pivot columns of that echelon form back

to their original positions). This decomposition expresses a matrix as a selection of r linearly

independent columns from X and uses the matrix Ew−r to generate the remaining columns

from the selected ones. We can also express this same decomposition as X = (XA1)EP

where A1 acts on X to select those r independent columns. If we then use a matrix AT
2

to select r linearly independent rows of X and collect them into a matrix HT (via left-

application, i.e., HT = AT
2 X), then we have that

AT
2 X = AT

2 CEP. (2.7)

The left hand side of (2.7) has rank r, and EP has rank r as well due to its Ir submatrix,

so it must be the case that AT
2 C has rank r as well. But since AT

2 C has dimension r × r,
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this means that AT
2 C is invertible. Thus EP = (AT

2 C)−1AT
2 X. In other words:

X = CEP = C(AT
2 C)−1(AT

2 X) = C(AT
2 C)−1HT . (2.8)

To get from here to BRPs, all we need is relaxing the requirement that the matrices

A1 and A2 choose r linearly independent columns/rows of X, and instead let them randomly

choose subspaces via random linear combinations of the columns/rows of X. This can be

done by simply drawing the elements of A1 and A2 randomly, according to some distribution

(in this case, the standard normal distribution). The Johnson–Lindenstrauss lemma [9]

ensures that such random selection well approximates the process of selecting independent

rows and columns of X. In accordance with [57], we enhance this approximation algorithm

with a power scheme technique. The idea of this enhancement is simple — instead of

approximating X itself, X̃ = (XXT )qX for some integer q ≥ 1 are approximated. This leads

to a higher likelihood of randomly selecting the most important low-rank approximations

because the matrix X̃, while having the same row and column spaces as X, has its singular

values exponentiated to the power of 2q + 1, which leads to a much higher discrepancy

between the larger and smaller singular values. Once we have an approximation of X̃ given

by X̃ ≈ L̃ = C(AT
2 C)−1HT , we can use the same approximated subspaces of X̃ to get an

approximation of X via X ≈ L = L̃
1

2q+1 . This can be done efficiently by taking the QR

decomposition of C and H, denoted QcolRcol and QrowRrow respectively, and computing

L = L̃
1

2q+1 = Qcol

[
Rcol(A

T
2 C)−1RT

row

] 1
2q+1 QT

row (2.9)

Finally, the aforementioned algorithm is iteratively performed using the previous

iterations’ C matrix as the projection matrix for the next iterations’ H matrix and vice
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versa. We couple these iterations with an adaptive rank reduction scheme. This is done so

that if a too high rank, r, as input is chosen, an even lower rank approximation can still be

found if a good one exists. Specifically, at the end of each iteration, the enhanced algorithm

checks if the rank of the combined row-space and column-space containing matrix, AT
2 X̃A1,

is below our rank parameter. If so, the algorithm reduces the rank parameter and continues

the loop. However, if the rank of this matrix fail to reduce this iteration, the iteration is

terminated. The entire algorithm can be found in Algorithm 1.

In Algorithm 1, it is worth mentioning that the power scheme is strong enough when

q ≥ 3 according to [57]. It costs (2q+1)nwr floating-point operations (flops) to perform two

projections and r2(n+w) flops to perform each QR decomposition. The matrix division in

(2.9) requires an additional nwr + 2wr2 + 4r3 flops. In general, the rank r is much smaller

than n or w. Thus, the computational complexity of the BRP-based decomposition method

is O(nwr). This is far faster than the traditional matrix decomposition based on the SVD,

whose computational complexity is O(min(nw2, n2w)) [25].

2.2.4 Proximal Methods

The second sub-problem in (2.5) has the form of

min
S∈Rn×w

f(S) + λΩ(S), (2.10)

where f : Rn×w → R is a convex function, and Ω : Rn×w → R is a sparsity-inducing norm.

In this problem, F is half the square of the Frobenius norm of the difference between X −L

and S, and Ω is the square of the l21 norm. This is exactly the form of minimization that
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defines the proximal operator [2] given by:

ProxλΩ(u) = argmin
v∈Rw

1

2
∥u − v∥22 + λΩ(v). (2.11)

In this case, the u variable found in the generic proximal operator definition can be replaced

with X − L, and v with S. In the specific case where Ω(·) is the l21 norm, (2.11) is called

“group Lasso" [2], and the proximal operator for l21 is

Proxλ∥·∥21(X[i, :]) = (1− λ∥X[i, :]∥2)+X[i, :], (2.12)

where X[i, :] ∈ Rw is the i-th row of X, ∥X[i, :]∥2 =
√

Σjxij , and (·)+ ≜ max(·, 0). From

(2.12), we can see that the proximal operator maps a row of the target matrix at once.

2.2.5 Proximal BRP Algorithm

We call the proposed iterative approach to solve the matrix decomposition problem

(2.5), Proximal BRP (PBRP). It is summarized in the Algorithm 2.

2.2.6 Feature Engineering and Anomaly Detection with DBSCAN

After individually obtaining the low-rank matrix L and the sparse matrices asso-

ciated with P, Q, V, and F, we take useful measurements from them - which we will call

anomaly scores. Since the sparse matrix S represents the event patterns, its l21 norm is

selected as the first anomaly score. We will call this score ‘SAS’ (S-Anomoly Score) for

short. Furthermore, the sparsity of S intuitively comes from the regional variance of events,

and thus, SAS summarizes the spatial features of the data. Drawing on the idea in [14], the

maximum temporal difference of L is treated as the second anomaly score:
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LAS ≜ max
i,j

(∣∣∣∣L[i, j]− L[i, j − 1]

L[i, j − 1]

∣∣∣∣) , (2.13)

which summarizes the temporal features of the data.

After accumulating the two anomaly scores of P, Q, V, and F for w2 time steps, an

anomaly feature batch, B ∈ R8×w2 is obtained. This feature batch can be regarded as a time

series of length w2 containing 8-dimensional feature vectors. Since we intend to build an

unsupervised framework, we need an unsupervised algorithm to do classification on B. There

are two widely used unsupervised clustering algorithms: k-means and DBSCAN. Compared

with k-means, DBSCAN is more conducive to the detection of outliers [41]. DBSCAN is

a clustering algorithm based on density, so it is more suitable for various complex-shaped

datasets, while k-means is mainly intended for convex datasets with spherical distributions.

In DBSCAN, there are three types of points: core points, density-reachable points, and

outliers. They are defined as follows: If a point has at least ‘minpts’ other points in its ‘eps’

neighborhood, it is a core point. The points that are in the ‘eps’ neighborhood of a core

point are called a density-reachable point. Points that are neither core nor density reachable

are identified as outliers.

In our proposed framework, we apply DBSCAN on B every time it is updated. If

the 8-dimensional feature vector corresponding to time t is identified as the first outlier by

the DBSCAN in the time series, the voltage event is deemed to occur at time t.
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2.2.7 Summary of the Overall Event Detection Framework

The proposed voltage event detection framework is summarized in Algorithm 3,

and illustrated in Fig. 2.1. For each time window w1 and each data type l, the anomaly

score (AS) that includes SAS and LAS is obtained. These anomaly scores are calculated

based on L and S that are the outputs of the PBRP algorithm. Since P, Q, V, and F

data streams have different scales, the corresponding penalty coefficients λl are adjusted

separately and adaptively in Lines 4-9. When the maximum relative standard deviation

(RSD) stdi
µi

for PMUs in S exceeds a threshold θ, λl increases. The larger the RSD, the

greater the degree of signal dispersion - thus requiring the weight of S to be larger to alert

an event. Correspondingly, λl increases. However, if the l21 norm of S becomes zero, which

means that no event pattern exists in X, λl decreases. After all anomaly scores within a

time window of w2 are calculated, we construct the anomaly feature batch B and apply the

density-based cluster analysis on it to identify potential voltage events.

2.3 Numerical Study

The proposed event detection algorithm is validated using real-world PMU datasets

that were recorded following voltage events. The online algorithm for PMU data processing

and disturbance detection [14] and [19] are selected as benchmark algorithms.

2.3.1 Dataset Description

The PMU dataset is collected from the Eastern Interconnection of the U.S. power

transmission grid. The dataset includes P, Q, V, and F readings from 187 PMUs with a
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Figure 2.3: Voltage event example with four electric quantities.

sampling frequency of 30 Hz covering 668 labeled voltage events. Each event contains 3

minutes or 5400 samples of data (Fig. 2.3). Event datasets are divided into a validation

dataset with 80% of event samples and a testing dataset with 20% of event samples. Our

algorithm does not require training. The validation dataset is only used to determine the

hyper-parameters of the entire framework, and the testing dataset helps evaluate the final

performance.

2.3.2 Benchmark Method

The online algorithm for PMU data processing (OLAP) [14] and OLAP with a

Hankel matrix (HOLAP) [19] are two state-of-the-art power system event detection methods.

The Hankel matrix is more sensitive to the change in temporal correlation of the time series,
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but its size is larger. Both methods leverage the low-rank property of their target matrices

(the original data matrix in OLAP and the data matrix constructed with a Hankel structure

in HOLAP). OLAP computes the ratio of the first two singular values, denoted ζ, in a

short time window and detects system disturbances by using changes in this ratio. HOLAP

computes the rank-1 approximation error of the original Hankel matrix as well as that of

a permuted version of itself, and identifies an event by using the change in the ratio of

these two errors. This later ratio is denoted as η. To make a fair comparison, OLAP and

HOLAP are embedded into our proposed framework to replace PBRP by using ζ and η as

anomaly scores. In particular, Lines 3-9 in Algorithm 3 are replaced with the two comparison

algorithms.

2.3.3 Hyper-parameter Settings

Important hyper-parameters of three algorithms are summarized in TABLE 2.2.

The OLAP and HOLAP adopt the optimal parameters identified in [14] and [19] respectively.

The DBSCAN module calculates Euclidean distance between individual samples. Only the

eps is fine-tuned because all the algorithms are only sensitive to this hyper-parameter.

2.3.4 Numerical Results

We rely on the validation dataset to determine the optimal value of the hyper-

parameter ‘eps’ in DBSCAN. At the initial time t, the P, Q, V, F data in w1-length window

are respectively passed through the PBRP algorithm (Section 2.2.5) to obtain their corre-

sponding L and S. Then, we extract anomaly features SAS and LAS from the L and S
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Table 2.2: Hyper-Parameter Settings

Algorithm

Components

Window

Length
PBRP OLAP HOLAP DBSCAN

Parameter

Values

w1 = 30 ϵ = 0.001 w̄ = 5 κ = 5 minpts = 2

w2 = 300 λ = 10 eps : 2 ∼ 13

r = 5

q = 5

matrices (Section 2.2.6), generating an 8-dimensional feature vector at time t. Packing it

with w2 − 1 feature vectors before time t into a batch B, and send B to DBSCAN for clus-

tering analysis. If there is an outlier point, an alert will be issued. The result of the above

process is shown in Fig. 2.4. After getting the best ‘eps’, we use the best hyper-parameters

to evaluate the final performance of our voltage event detection framework on the testing

dataset.

Performance of Voltage Event Detection Framework

Two commonly used evaluation metrics in classification problems, F1 and F2 scores,

are used to evaluate the performance of our voltage event detection framework. The two

F-scores are calculated based on precision and recall that are further derived based on True

Positive (TP), False Positive (FP), and False Negative (FN). The TP means events are

detected within 1 second of the labeled event time. The FP denotes the scenarios where

the algorithm reports an event outside the above 1 second time window. The FN comprises

the cases where no event is detected within the aforementioned 1 second time window.
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Recall and precision are calculated as: Recall = TP
TP+FN , Precision = TP

TP+FP . F1 and

F2 scores are derived based on precision and recall as follows: F1 = 2×Precision×Recall
Precision+Recall ,

F2 = 5×Precision×Recall
4×Precision+Recall . The F1 score is the harmonic mean of the precision and recall,

while the F2 score weighs recall higher than precision.

The F1 and F2 scores of the proposed PBRP and the two benchmark on the

validation dataset are evaluated to select the appropriate hyper-parameter, eps (Fig. 2.4).

Note that two eps are selected for each algorithm, one that optimizes F1 score and the other

optimizes F2 score. After the hyper-parameters are selected, we apply the three algorithms to

the testing dataset. The PBRP algorithm achieves significantly higher F1 and F2 scores than

the benchmark algorithms on the testing dataset, mainly due to a substantial improvement

in Recall (Table 2.3). Note that in Table 2.3 the top (bottom) three rows correspond to the

hyperparameters optimized for F1 (F2) score.

The improvements over the benchmark can mostly be attributed to the ability to

capture the spatial properties with the anomaly score SAS. Both OLAP and HOLAP are

capable of capturing temporal anomalies. However, as seen in Fig. 2.5, these temporal

anomalies, which are also captured by the LAS indicator, does not become pronounced

right away. This leads to delay in the detection of events and significantly decreases the

recall. In contrast, the spatial anomaly indicators reach their peaks very quickly as soon as

the event begins.
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Figure 2.4: F scores of PBRP and benchmark algorithms on validation dataset.

Table 2.3: F scores of three algorithms on the testing dataset

Statistics OLAP HOLAP PBRP

Precision 0.8889 0.8824 0.8881

Recall 0.8955 0.8955 0.9478

F1 Score 0.8922 0.8889 0.9170

Precision 0.8089 0.8571 0.8000

Recall 0.9478 0.9403 0.9851

F2 Score 0.9163 0.9224 0.9415

Computational Efficiency

The computation complexity of BRP-based and SVD-based matrix decomposition

approaches were discussed at the end of Section 2.2.3. This computational efficiency is crucial

to apply the detection algorithms online. Faster event detection allows greater flexibility in

the design of any submodules that follow.

To showcase that our method is faster than its competitors, we varied the number
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Figure 2.5: An example of decomposition of streaming PMU data matrix X.

of PMUs while fixing w1 = 30 and w2 = 300. Therefore, the size of the matrix to be

decomposed is only proportional to the number of PMUs. All algorithm’s computation

times are reported in Table 3.4 after averaging over the detection of 100 randomly selected

voltage events. The partial computation time excludes the time of the cluster analysis (Line

13 in Algorithm 3). The PBRP algorithm uses 50% less computation time compared to the

benchmark algorithms. Furthermore, as the number of PMUs increases, the increase in the

computation time of the PBRP algorithm is slower than that of the benchmark algorithms.

Thus, the proposed algorithm shows better applicability to larger grids and larger numbers
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of sensors compared to benchmark algorithms.

Table 2.4: Average Computation Time of Algorithms Over Three-minute Time Period

Number of PMUs 50 100 150

Computation

Time (s)

(partial/total)

HOLAP 61.78/68.46 181.50/189.25 336.27/344.58

OLAP 7.53/15.01 9.58/17.33 16.99/24.79

PBRP 2.18/8.46 3.13/9.40 4.29/10.53

Identification of PMUs That Can Capture Voltage Events

As shown in Figs. 2.2 and 2.3, significant influence on voltage events is often

observed in a limited number of PMUs. The sparsity structure in the S matrix could help

identify which PMUs are closely related to a particular voltage event. For example, we

could first identify the non-zero elements in matrix S at the start of the events. These

row indices of these non-zero elements correspond to distinctive PMUs that firmly grasp an

event. Fig. 2.6 illustrates the identification of the distinctive PMUs on the voltage event.

The left column figures depict the original P, Q, V, and F data obtained from PMUs. The

middle column is the heat map of sparse matrix S. We remove the PMUs in the original X

matrix corresponding to the rows with zero elements at timestamp 24 identified as the start

of the event. The right column shows the filtered X, containing highly sensitive PMUs to

the event. The algorithm effectively identifies all the PMUs with sizable dynamic behavior

in P, Q, V, and F data streams.
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Figure 2.6: An example of identifying PMUs that are sensitive to voltage events.

2.4 Conlusion

This work reveals the distinctive sparsity structure of residual PMU data matrices

during regional voltage events. This distinctive characteristic of voltage events motivates

us to decompose the PMU data matrix into a low-rank matrix, a row-sparse event-pattern

matrix, and a noise matrix. The key features extracted from the low-rank and row-sparse

event-pattern matrices are leveraged in a clustering module to differentiate voltage events

from normal operating conditions. A computationally efficient proximal bilateral random
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project-based algorithm, PBRP, is proposed to perform the matrix decomposition with struc-

tured sparsity-inducing norms. The feature extracted from the row-sparse event-pattern ma-

trix significantly enhances the voltage event detection performance. A large-scale numerical

study with real-world PMU data shows that our proposed online voltage event detection

algorithm yields lower computation time, higher accuracy, and scalability than state-of-the-

art benchmark. The proposed algorithm can also specify event area/zones by identifying

the PMUs most sensitive to the detected event.
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Algorithm 1 Closed-Form BRPs with Power Scheme

Input: X ∈ Rn×w1 , rank r, power factor q

Output: BRP (X) ≜ L

1: Initialize: X̃ = (XXT )qX;

2: Initialize: ∀i, j, A1,(i,j) ∼ N (0, 1), A2,(i,j) ∼ N (0, 1);

3: while true do

4: C = X̃A1 = QcolRcol;

5: H = X̃TA2 = QrowRrow;

6: if rank(AT
2 C) < r then

7: r = rank(AT
2 C);

8: else

9: break;

10: end if

11: A1 = H;

12: A2 = C;

13: end while

14: L = Qcol[Rcol(A
T
2 C)−1RT

row]
1

2q+1QT
row;

15: return L;
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Algorithm 2 Proximal BRP (PBRP)

Input: X ∈ Rn×w1 , rank r, power factor q, λ, ϵ

Output: L, S

1: Initialization: L = S = 0

2: while ∥X−L−S∥2F
∥X∥2F

≥ ϵ do

3: L = BRP (X − S)

4: S = Proxλ∥·∥21(X − L);

5: end while

6: return L, S
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Algorithm 3 Voltage Event Detection Framework

Input: X(l) ∈ Rn×T (l ∈ {P,Q, V, F}); Analysis window lengths: w1, w2; DBSCAN:

minpts, eps; Adaptive Scheme: θ = 100, uprate = 1.1, downrate = 0.9.

Output: Anomaly Alert

1: for t = w1 + 1 : T do

2: for data type l = {P,Q, V, F} do

3: AS(l)[t]
L,S←− PBRP (X(l)[:, t− w1 : t], λ(l));

4: if max
i=1,...,n

| stdiµi
| > θ then

5: λ(l) = λ(l) × uprate;

6: end if

7: if ∥S∥21 == 0 then

8: λ(l) = λ(l) × downrate;

9: end if

10: end for

11: Construct the high-level feature batch:

B[t− w2 + 1 : t] =



AS(P )[t− w2 + 1 : t]

AS(Q)[t− w2 + 1 : t]

AS(V )[t− w2 + 1 : t]

AS(F )[t− w2 + 1 : t]


;

12: if t ≥ w2 then

13: DBSCAN(normalize(B), eps, minpts) → Alert;

14: end if

15: end for
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Chapter 3

Dynamic Parameter Estimation with

Physics-based Neural Ordinary

Differential Equations

High fidelity power system dynamic models are critical to both dynamic studies

and reliable operation of the power system. Without accurate parameters, power engineers

can not mimic historical disturbances and system events. But the nonlinearities and high

dimensionality of the time-varying power system dynamic model make it challenging to esti-

mate the parameters of generator dynamic models with high accuracy. This work proposes

a physics-based neural ordinary differential equations (ODE) approach to estimate these

parameters with PMU data.
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3.1 Related Works

The topic of parameter estimation for power system and generator dynamic mod-

els has been studied extensively in the past [32, 53]. We briefly review a few representative

research articles in this area. One of the first works formulates the dynamic parameter

estimation problem as a nonlinear least squares problem using the sensitivities of the alge-

braic state of the system with respect to continuous dynamic state [20]. The parameters of

the generator dynamic model are updated iteratively with a Gauss-Newton approach. The

sensitivities are derived with respect to the initial operating condition, which may not be

sufficiently accurate for bulk power system disturbances.

In another work [38], a black-box neural network is adopted with input neurons

represented by transient stability indices and the output neurons represented by parame-

ters of the generator dynamic model. The lack of power system domain knowledge in the

black-box model led to low estimation accuracy and poor sample efficiency. Reference [11]

used the Extended Kalman filtering (EKF) for this same task, but the linearization step

resulted in similarly low parameter estimation accuracy. To address the shortcomings of the

EKF approach, reference [16] applied the unscented Kalman filter (UKF). However, the ac-

curacy of UKF significantly reduces if the signal-to-noise ratio is low. Reference [17] utilized

a weighted least squares method by using sensitivities of measured modal frequencies and

damping to the parameters. The drawback of this approach is that it relies on estimating

dynamic modes of the power system, which may not be sufficiently accurate. A Bayesian

approach is proposed in [34], which formulates the dynamic parameter estimation as a max-

imum a posteriori (MAP) problem. The discrete adjoint method is used to estimate the
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gradient of the loss function with respect to the dynamic parameters. A local optimiza-

tion approach called the quasi-Newton method is applied to solve the MAP minimization

problem. This approach may lead to local optima when initial dynamic parameters are

drastically different from the ground truth, or the posterior distribution is non-Gaussian.

To deal with non-Gaussian posterior distribution, a Markov chain Monte Carlo (MCMC)

method aimed at finding the global optima for the MAP estimator is proposed [51].

3.2 Power System Dynamic Model

For ease of demonstration, a simplified dynamic model of a multi-machine inter-

connected power system is adopted. The proposed neural ODE-based parameter estimation

technique can be applied to more complex dynamic models. The simplified model assumes

that in the short observation period (a few seconds), the mechanical power input, Pm, is

constant, and the classical model represents a generator with a constant voltage source be-

hind a known transient reactance without damper winding. The terminal voltage Vi and

current phasors Ii of all power plants are assumed to be measured by PMUs.

The differential equation of the classical generator model is represented by the

swing equation shown in (3.1) [28].

M0

ωR
δ̈ = Pm − Pe, (3.1)

where, M0 is a inertia constant, MW · s/MVA, ωR denotes the rated rotor speed of a

generator, δ is the angular position of a rotor relative to a synchronously rotating reference.

The algebraic equations coupling the classical generator model to the rest of the
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power system are represented by the following equations:

Pei = ℜ{EiI
∗
i } = ℜ{Y ∗

reducedE
2
i }, (3.2)

where Pei denotes the active power output of the generator i, and Ei is the generator i’s

internal voltage phasor. ℜ{·} extracts the real part of a complex number, and ∗ is the

complex conjugate operation. Yreduced = Ygg−YgsY
−1
ss Ysg is the reduced Y-bus matrix. Ygg,

Ygs, Ysg, and Yss are sub-matrices of the admittance matrix of the entire system, where g

and s correspond to the generator buses and other buses in the system. Constant impedance

loads are assumed to be embedded into the Y-bus matrix.

The internal voltage of the classical generator dynamic model can be calculated

with PMU measurements at the terminal as: Ei = Vi + jx
′
di
Ii, where x

′
di

is the D-axis

transient reactance of generator i. Thus, the active power output of unit i can be calculated

as:

Pei = ℜ{Y ∗
reduced(Vi + jx

′
di
Ii)

2}. (3.3)

3.3 Dynamic Parameter Estimation

The overall framework of the iterative neural ODE-based dynamic parameter esti-

mation algorithm is shown in Fig. 3.1. We feed the initial states and start/end timestamps

into a physics-informed neural network representing the ODEs to produce estimates of future

states and PMU measurements. A loss function that quantifies the difference between the

estimated and observed system states is summed over every time stamp, and its gradients

(via adjoint) are back-propagated to dynamic parameters. Finally, the dynamic parameters
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Figure 3.1: Neural ODE-based dynamic parameter estimation framework.

are updated using gradient descent.

3.3.1 Overview of Neural ODEs

Neural ODEs are deep learning models which differ from standard machine learning

methods in one key way - while standard machine learning methods map input variables to

hidden variables for immediate use, Neural ODEs map input variables to the derivative of

hidden variables which must first be integrated before their use [5]. Mathematically, We can

write a standard neural network via the two equations s = f in
α (x), y = fout

α (s). In contrast

a neural ODE can be written as the two equations ∂s
∂t = f in

θ (x), y = fout
θ (s) where now the

function f in
θ returns time derivatives of the state variables instead of the state variables

themselves. Here, α and θ represent the parameters of the two corresponding models.

The advantage of Neural ODEs over more typical models is that the hidden vari-
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able, s, is now actually a smooth family of hidden variables parameterized by a new variable,

t. This variable is typically used to represent a continuous “depth” of the network, but can

also represent a time variable when modeling dynamical systems, in which we have the single

hidden variable per time instance. Our work will adopt the latter interpretation. Since our

goal is to model an existing function of time, this hidden variable can be used directly as

our output (i.e., fout
θ is the identity function).

The disadvantage of using Neural ODEs is that hidden variables need to be inte-

grated. In practice, this means they must be sent through an ODE solver. Furthermore, we

need to take gradients of the solver regarding the parameters so that the ODE must also be

back-propagated through.

The existing ODE solvers can be divided into two groups. One group consists of

adaptive-step ODE solvers, such as the Dormand–Prince method [3]; another group consists

of fixed-step ODE solvers, such as the Euler method [21] and the Runge-Kutta method [59].

The latter is faster and more widely used in the industry than the former. This paper adopts

the explicit fourth-order Runge-Kutta method with the 3/8 rule.

3.3.2 Physics-Informed Neural Network Design

Neural ODEs typically use the expressivity of large neural networks to model the

parameters of an ODE as a parametric black box. However, in our case, the ODE we are

modeling possesses explicit mathematical expressions - namely, the swing equation. Thus,

our neural network is explicitly modeled to the form of this known physical equation.

Let us assume that n generators and that |Ei| and Ybus are given. Denote the

element in the Y ∗
reduced matrix located at the i-th row and j-th column as |Yij |e∠ϕij . Then,
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the dynamic equations of the i-th generator can be formulated as follows:

δ̇i = gi(ωi[pu])

ω̇i[pu] = hi(δi=1,...,n)

gi = ωR(ωi[pu]− 1)

hi =
Pmi−

∑n
j=1 |Ei||Ej ||Yij |cos(δi−δj−ϕij)

M0i
,

(3.4)

where δi and ωi are the rotor angle and the rotor angle speed of generator i respectively.

The unknown parameters are Pmi and M0i . A neural network structure is strictly derived

following (3.4). An example of this design for two generators is visualized in Fig. 3.2. Only

the parameters in yellow boxes will be updated, others are fixed. In the case of multiple

generators, we only need to extend this figure horizontally. It is too difficult for Neural ODE

to solve all the unknown noisy parameters in one layer. Therefore, we use two nonlinear

layers exp(·) and ln(·) to separate them, improving the nonlinear fitting ability of neural

network. Since the reciprocal of M0i may be very small, it is amplified using a factor of k,

and then an extra activation function is added before the output layer, which multiplies its

input by a factor of 1
k . The weights and bias are fixed in the first two layers. Thus, only

the unknown parameters are updated. The neural network corresponding to gi is relatively

simple since every weight and bias are fixed.

3.3.3 Loss Function and Gradient Descent

The following mean square error loss function is used to train the physics-informed

neural network:

L(s) =

t1∑
t=t0

∥x(t)− s(t)∥22, (3.5)
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Figure 3.2: The diagram of the physics-informed neural network design.

where x(t) represents the vector time-series for calculated state variables (i.e., δi and ωi)

from the PMU data. s(t) denotes the vector time-series of state variables estimated from

the physics-based neural networks.

To calculate ∂L
∂θ , the gradients of L with respect to s(t) need to be computed first.

The adjoint method is chosen to derive the gradient of L with respect to the estimated

state variables [36]. Specifically, a new time series, a(t) = ∂L
∂s(t) , which we call the adjoint of

s(t), is created. It satisfies the following ODE [5]:

da(t)

dt
= −a(t)T ∂f(s(t), t, θ)

∂s
, (3.6)

where f denotes two physics-based neural networks, g and h, and θ denotes the parameters
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of the physics-based neural network M0i and Pmi .

The gradient of the loss function with respect to the neural network parameters,

θ, is a reverse integral over [t0, t1] [5]:

dL

dθ
= −

∫ t0

t1

a(t)T
∂f(s(t), t, θ)

∂θ
dt (3.7)

Algorithm 4 Calculate gradient w.r.t. θ by adjoint method.

Input: parameters in the neural network θ, time span [t0, t1], final state s(t1), adjoint ∂L
∂s(t1)

1: augS0 = [s(t1),
∂L

∂s(t1)
, 0];

2: Calculate dynamics of augmented state:

Dynamics = [f(s(t), t, θ),−a(t)T ∂f
∂s ,−a(t)

T ∂f
∂θ ];

3: ODESolver(Dynamics, augS0, t0, t1, θ)⇒

[s(t0),
∂L

∂s(t0)
, ∂L∂θ ];

4: return ∂L
∂θ ;

The gradient calculation steps are summarized in Algorithm 4. Finally, we up-

date the dynamic parameters θ with the limited-memory Broyden-Fletcher-Goldfarb-Shanno

method, which updates each weight with its own squared gradient.

3.4 Numerical Study

3.4.1 Simulation Set up

We generate pseudo PMU measurements from dynamic simulation data from a

3-machine 9-bus system (see Fig. 3.3). The power system parameters and initial operating
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Figure 3.3: WECC 3-machine-9-bus system [47].

conditions are given in Tables 3.1 and 3.2. A single transmission line is disconnected at

5s as a disturbance, and the simulation time is set at 10s. The initial values of six state

variables are given in [47] as δi=1,2,3 = [0.0396, 0.3447, 0.2304], ωi=1,2,3[pu] = 1. Vi and Ii

are calculated from δi and ωi, and are considered to be our input data. Then, random

Gaussian noise signal, G ∼ N(0, 0.001) is added to the magnitude and angle of Vi and

Ii, which is consistent with the estimated noise shown in a standard [39]. Finally, δi =

∠Ei can be indirectly derived from Ei = Vi + jx
′
di
Ii. Then, ωi is calculated by ωi[pu] =

δi[t+1]−δi[t−1]
4π∆T + ω0 [54] where ω0 = 1. Ground truth values of six parameters are: Pmi =

{0.7141, 1.6300, 0.8508}, M0i = {9.5515, 3.3333, 2.3516}.

Two disturbance scenarios are studied. The first one is a single line tripping be-

tween nodes 5 and 7. The dynamic response for this disturbance is the same as the one

illustrated in [47]. The second one disconnects the line between nodes 8 and 9. Note that the

rotor angles of the generators continuously grow following the line tripping events because

damper components are not modeled. The dynamic simulation time step is set as 1/120 s
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Table 3.1: Power System Parameters [47]

Branch Impedance (pu) Capacitance (pu) Load PL & QL(pu)

z14 = 0.0576i z45 = 0.0100 + 0.0850i B38
2 = 0.1045i PL5 = 1.25

x
′
d1 = 0.0608i z46 = 0.0170 + 0.0920i B45

2 = 0.0880i QL5 = 0.50

z27 = 0.0625i z57 = 0.0320 + 0.1610i B46
2 = 0.0790i PL6 = 0.90

x
′
d2 = 0.1198i z69 = 0.0390 + 0.1700i B57

2 = 0.1530i QL6 = 0.30

z39 = 0.0586i z78 = 0.0085 + 0.0720i B69
2 = 0.1790i PL8 = 1.00

x
′
d3 = 0.1813i z89 = 0.0119 + 0.1008i B78

2 = 0.0745i QL8 = 0.35

B89
2 = 0.1045i

Note: Per unit values are calculated with 100 MVA base (and nominal voltage).

Table 3.2: Initial Condition of Three Generators [47]

G1 G2 G3

Active power (pu) 0.7160 1.6300 0.8500

Reactive power (pu) 0.2700 0.0670 -0.1090

Terminal voltage (pu) 1.0400 1.0250 1.0250

for both events. The PMU measurements of the generators are then downsampled to 30 Hz.

3.4.2 Dynamic Parameter Estimation Results

The neural ODE fitting framework is tested with random [−10%, 10%] errors on

the initial value of six parameters. The dataset for each disturbance contains 5 s of data, i.e.,

150 data points. We set k for the generators as ki = {20, 7, 5} to make sure the ratio ki
M0i

is

almost the same. In the training process, we set the batch size and batch time as 20 and 10

steps, respectively. This means that we randomly choose 20 data points as the initial state
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(a) Disturbance 1, learning rate= 0.1 (b) Disturbance 2, learning rate= 0.9

Figure 3.4: The norm of six parameters’ gradient of the neural ODE estimation framework.

in the range of [t0, t1 − 1
3 ]. Then, starting from each initial state, we step forward-in-time

through the ODE solver for 10 contiguous timestamps and back-propagate against each of

these segments separately.

Parameter Estimation for Two Disturbances

We display the norm of gradient ∥∂L∂θ ∥2 against the training iterations in Fig. 3.4.

For each disturbance, we run the experiment 10 times with different random seed. Each

colored line represents an experiment. As shown in the figure, our proposed algorithm

converges within only two iterations for both disturbances.

We further quantify the accuracy and computation efficiency of our proposed neu-

ral ODE-based dynamic parameter estimation algorithm using the first disturbance. The

estimation errors are calculated for the six unknown parameters with three different data

lengths (1s, 3s, 5s). The relative estimation error (REE) = | ˆPara−Para|
Para × 100% is used as
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the accuracy metric. We treat the algorithm in [34] as the baseline for comparison. The

training stops when the change of ∥∂L∂θ ∥2 is less than a threshold value of 0.001. A large

learning rate could lead to divergence, while a small one requires long computation time.

For a fair comparison, the best learning rate is selected among 0.5, 0.05, and 0.005 to train

our proposed and baseline model. The same random seeds are used in both methods.

Parameter Estimation Accuracy

The REEs are calculated and shown in Table 3.3. The first and second number in

each cell represent the REE of the baseline and the proposed algorithm respectively. When

the PMU data length is 3s, our proposed algorithm achieves the lowest REE for the six

unkonwn parameters. We can also observe that the estimation of mechanical power input

is more accurate than that of generator inertia constant. Overall, the physics-based neural

ODE algorithm outperforms the baseline algorithm in terms of estimation accuracy for most

of the unknown parameters.

Computation Time & Scalability

The computation time of the proposed and baseline algorithms for estimating dy-

namic parameters from different length of PMU data are reported in Table 3.4. Note that

the learning rate of a scenario in an algorithm is selected such that divergence behavior is

avoided. As shown in the Table 3.4, our proposed physics-based neural ODE algorithm has

much shorter computation time than the baseline algorithm. When the data length is 3s,

the running time of our model is just 4.82 seconds, which is nearly 8 times faster than the
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Table 3.3: Relative Estimation Error (%) of Baseline and NeuralODE-based method

Data Length Initial

1s 3s 5s REE

Parameters

Pm1 2.36 / 1.50 7.70 / 1.49 7.47 / 1.26 4.21

Pm2 0.76 / 0.01 5.05 / 0.12 5.01 / 0.18 5.77

Pm3 1.05 / 0.41 6.27 / 0.32 6.52 / 0.46 4.76

M01 5.80 / 2.86 5.52 / 2.06 6.31 / 3.09 4.80

M02 4.36 / 3.19 5.92 / 2.18 5.88 / 3.67 6.10

M03 4.58 / 8.37 5.50 / 4.82 5.49 /10.51 5.33

Average 3.15 / 2.72 5.99 / 1.83 6.11 / 3.20 5.16

Note: Baseline / Physics-based Neural ODE Algorithm.

Table 3.4: Running Time (s) of Baseline and Neural ODE-based method.

Data Length
Running Time (second)

Learning Rate
Baseline Neural ODE-based

1s 8.38 3.78 0.5 / 0.5

3s 38.55 4.82 0.05 / 0.5

5s 100.25 4.67 0.05 / 0.5

Note: Baseline / Physics-based Neural ODE Algorithm.

baseline model. The mini-batch scheme of neural network training is leveraged in the pro-

posed algorithm, which greatly shortens the model running time and makes the algorithm

more scalable in handling longer training dataset.
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3.5 Conclusion

This work develops an online physics-based neural ODE algorithm to estimate

the parameters of the generator dynamic model. By synergistically combining the swing

equation and neural ODE model, our proposed algorithm outperforms the state-of-the-art

baseline algorithm in terms of estimation accuracy and computation time. Numerical studies

on a 3-machine 9-bus power system show that our proposed model is capable of accurately

estimating the dynamic parameters using just 3 seconds of noisy PMU data with 30 Hz

sampling frequency. Furthermore, the entire dynamic parameter estimation procedure takes

less than 5 seconds of computation time.
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Chapter 4

Conclusions

In this thesis, we demonstrated the potential of physics-informed machine learning

models in power transmission systems. In terms of data-driven monitoring, we designed an

online anomaly detection algorithm based on a fast low-rank and structured sparse matrix

decomposition approach, PBRP, to realize real-time monitoring of the streaming data sys-

tems. In terms of electric generator parameter estimation, we proposed a Neural ODE-based

parameter estimation model. In general, the main work of this thesis is as follows:

We revealed the distinctive sparsity structure of residual PMU data matrices during

regional voltage events. Crucial features extracted from low-rank and row-sparse event pat-

tern matrices were utilized in the clustering module to distinguish voltage events from normal

operating conditions. A computationally efficient near-end bilateral random item based algo-

rithm PBRP was proposed to perform matrix factorization with structured sparsity-induced

norm. The PBRP approach greatly accelerated the solution of a general low-rank and sparse

matrix decomposition problem where the residual matrix has a row-sparse structure. Mean-
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while, thanks to structural sparseness, PBRP also helped to pinpoint the location of events

once they are detected (Chapter 2).

We extended the prior work by converting a forward solver of the ODEs repre-

senting power system dynamics into physics-informed neural networks. The whole idea was

inspired by the Neural ODE framework that gets rid of the memory-consuming ‘backprop-

agation’ technique with the help of the ODE solver. With the help of mini-batch scheme,

our proposed algorithm outperformed the state-of-the-art baseline algorithm in estimation

accuracy and computation time. (Chapter 3).
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