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Abstract
Gabon is one of 11 high-forest, low-deforestation (HFLD) countries in the world. It has the highest
proportion of preserved forests in the Congo Basin and is the first country to create large forest
carbon offset credits in the market. However, about 60% of forests in Gabon is allocated to logging
concessions, causing concerns for forest degradation and the sustainability of carbon credits. Here,
we use a combination of air- and space-borne remote sensing data and the-state-of-the-art
gradient boosted regression trees to estimate forest structure and aboveground biomass carbon
density (ACD) of trees at 100 m resolution for the year circa 2020. Mapping spatial variations of
ACD across floristically diverse landscapes, we estimate average density and total living carbon
storage of trees at the national and sub-national levels. The estimated ACD of trees in forestlands
within the country was 142.12± 7.3 Mg C ha−1 with the highest values found in central Gabon
(150.08± 5.8 Mg C ha−1) and on highlands (161.18± 6.7 Mg C ha−1). On average, in every
region, ACD of forests found within logging concessions (149.89± 6.1 Mg C ha−1) was higher
than unmanaged forests of unprotected areas (122.81± 4.4 Mg C ha−1), indicating the combined
effects of logging in carbon-rich forests and increased productivity due to management. The
country’s total estimated biomass carbon for trees (above and belowground) stored within the
forests was 4.14± 0.3 Pg C with 68% found within logging concessions and 14% within protected
areas. The map provides high precision and comprehensive assessment of carbon stocks of trees in
Gabon’s forests, significantly improving the country’s prospects to implement climate mitigation
policies and to participate in carbon markets.

1. Introduction

The urgency ofmitigating climate change has spurred
global efforts to harness the role of forests in
sequestering atmospheric carbon dioxide (Richard
et al 2011, Moomaw et al 2020, Smith et al 2020,
Hurteau 2021). This prompted the United Nations
FrameworkConvention onClimate Change (UNFCC

2009, Aniel Bodansky 2010) to set up financial incent-
ives to countries aiming to reduce carbon emissions
from deforestation and forest degradation (REDD+;
Pachauri and Meyer 2014). Countries intending to
achieve this goal must either reduce their national
deforestation and degradation rates or maintain
them low especially for high-forest, low-deforestation
(HFLD) countries (Da Fonseca et al 2007). National
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entities that demonstrate emissions reductions may
be able to sell those carbon credits on the interna-
tional carbon market (Pan et al 2022, Sacherer et al
2022, Schumacher 2023).

The Republic of Gabon in Central Africa is one
of 11 HFLD countries (Da Fonseca et al 2007) with
extensive tropical rainforest that spans approximately
22 million hectares, representing nearly 88% of its
land areas (Sannier et al 2014). These forests have
one of the highest aboveground biomass (AGB) in
the world (Saatchi et al 2011, Austin et al 2017),
with the highest proportion of preserved forests in
the Congo Basin (Shapiro et al 2021), and the lowest
rates of tree cover loss (<0.1% averaged over 30 years,
Hansen et al 2013). Additionally, forests in Gabon are
a substantial asset for the country to develop carbon
credits for different international markets, to offset
national emissions from other sources, and to drive
its progress towards its commitments under interna-
tional climate agreements. However, like other coun-
tries in the Congo Basin, the government has targeted
industrial agriculture and logging (covering about
70% of the country) for its economic development,
while committing to reduce greenhouse gas emissions
and preserve ecosystems and biodiversity. Forests of
Gabon are therefore exploited extensively by the tim-
ber industry. This introduces a difficulty in account-
ing for forest exploitation while addressing the trade-
off between the promotion of carbon sequestration
and conservation of its forests under the REDD+
initiative (Molua 2019). To make informed land-use
planning, decision-makers require accurate estima-
tion of the carbon storedwithin its forests at a relevant
spatial scale (Romijn et al 2012, Herold et al 2019).

Previous efforts to quantify forest carbon stock
of trees in Gabon relied on small numbers of field
inventory plots (Medjibe et al 2011, 2013, Poulsen
et al 2020), which failed to capture the variability
of carbon stocks across its floristically diverse forests
(CNC 2021). Developing an accurate map of forest
carbon at landscape scales (1 ha) has two advant-
ages: (1) provides spatial distribution carbon stocks to
allow for better forest management and conservation,
and (2) allows more precise national or jurisdictional
level carbon accounting for emissions and removals
compared to limited inventory samples (McRoberts
Ronald et al 2022). Meanwhile remote sensing obser-
vations of forest structure and estimates of biomass
can be used for amore systematic assessment of forest
carbon storage at local to national levels. The venue of
laser technology into forest monitoring such as air-
borne laser scanning (ALS) has shown its potential to
extend AGB estimation beyond the limited networks
of field inventory plots (Réjou-Méchain et al 2019,
Duncanson et al 2022). ALS measurements provide
detailed information of the forest canopy height and
have been coupled with carbon estimates from field
inventory plots to derive regional AGBmaps over few
hundreds of hectares in Gabon at 100m (1 ha) spatial

resolution (Mitchard et al 2012, Armston et al 2016,
Fatoyinbo et al 2017, Silva et al 2017, 2018, Labriere
et al 2018). Although ALS can be used to extend the
analysis to larger areas, it is costly and impractical to
use over larger geographic areas. The availability of
the new spaceborne laser technology from the NASA
Global Ecosystem Dynamics Investigation (GEDI)
overcomes this challenge by providing an unpreced-
ented sampling density of the vertical structure of the
forest globally at 25m resolution (Dubayah et al 2021,
Lahssini et al 2022a, 2022b). Several machine learn-
ing (ML) algorithms have been developed to extra-
polate footprint-level forest canopy height measure-
ments fromGEDI by integrating multisource satellite
imagery and other geospatial datasets (Hansen et al
2013, Lang et al 2019, Potapov et al 2021, Lahssini et al
2022b).

In this study, we use state-of-the-art geospatial
modeling techniques to map AGB of forests over
Gabon at 1 ha) spatial resolution for the year circa
2020. Our methodology is designed: (1) to gener-
ate wall-to-wall layers of forest structure by mapping
canopy height measurements derived from GEDI
using ML algorithms and satellite imagery as predict-
ors, (2) to convert the height metrics to live AGB of
trees using a large number of biomass estimates from
airborne lidar data to train additional ML models,
and (3) to estimate below ground live biomass (BGB)
of roots from AGB and summing the two compart-
ments to get an estimate of the total living carbon of
trees in the forest available for the country. We com-
pared the mapped estimates of tree AGB with estim-
ates from the national forest inventory (NFI) plots
and GEDI direct estimates of tree AGB (L4B product)
available for the country.

2. Methods

2.1. Study area
Gabon is located in the Gulf of Guinea along the
Atlantic coast of Central Africa (figure 1) The cli-
mate is equatorial, warm and humid with a mean
annual temperature (averaged 1901–2015) of 25 ◦C
and a mean annual precipitation of 1800 mm. Gabon
is sparsely populated (Zhang et al 2002) with almost
90% of the population living in urban areas (World
Bank Group 2019) or distributed in small villages
along a few main roads that cross the country.

2.2. Mapping forest height metrics
We used Google Earth Engine (GEE) cloud compu-
tiong platform (Gorelick et al 2017) to combine satel-
lite datasets from Landsat, ALOS PALSAR, Digital
Elevation Model from Copernicus and three relat-
ive height (RH) metrics from GEDI measurements:
RH50, RH75, and RH98 corresponding to the can-
opy height of 50th, 75th, and 98th percentile of energy
returns relative to the ground (see supplementary
material for more details). To reduce the systematic
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Figure 1. Study area showing the distribution of field and airborne sampling data over the different land cover allocation in
Gabon. LVIS: NASA Land Vegetation and Ice Sensor; NFI: national forest inventory; UAV: Unmanned Aerial Vehicle.

geolocation errors observed with GEDI footprints
(Tang et al 2023), the ∼6.2 million GEDI shots at 25
mwere aggregated to 100m grid cells (pixels) and the
average value for each height metric was retained as
the dependent variable. We filtered aggregated pixels
with a minimum of 3 footprints of 25 m, yielding a
total of ∼1.5 million height metrics at 100 m across
the study area. Of these data, 80% were used for
model training and 20% for the final model valid-
ation. We used Gradient Boosted Regression Trees
(GBRT; Friedman 2002) as the machine learning
algorithm to predict and map each RH metric across
Gabon. GBRT algorithm has become widely popular
for remote sensing applications due to the accuracy of
its results (Chen and Guestrin 2016, Colin et al 2017,
Xu et al 2021). After being scaled to have an identical
mean and standard deviation, the satellite predict-
ors were geographically aligned and stacked with the
100 m GEDI training data and tiled into 20 × 20 km
areas with 70% overlap.We applied local GBRTmod-
els over each tile considering a minimum of 500
aggregated GEDI pixels available for the respective
tile as training. For tiles with fewer GEDI training

pixels, we considered those available over neighbor-
ing non-overlapping tiles until the conditionwasmet.
A wall-to-wall canopy height prediction was obtained
by mosaicking estimates from each tile considering
the median value of overlapping pixels to minimize
discontinuity effects between tiles (figure S1).

2.2.1. Estimating AGB and associated uncertainties
We used the ALS-based AGB estimates for trees avail-
able over the country (figure 1) to train aGBRTmodel
with the predictedRHmetrics and generate a national
scale AGB map. We also developed a pixel-based pre-
diction uncertainty associated with the spatial mod-
eling of AGB by performing a 10-fold cross valida-
tion (CV) with 90% training and 10% testing and
repeating the procedure 100 times. The pixel level
error is assigned by the variance of the 100 times pre-
dictions. As height metrics have been used to predict
the biomass, we consider the height metrics as pre-
dictor layerswithout any uncertainty and consider the
variance of carbon density inference at the national
level to include both sampling and the residual vari-
ance (see supplementary material). To provide the
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mean and variance of the regional and national level
estimateswe followed the error propagation approach
that considers the variance associated with the model
and the spatial correlation (Xu et al 2016, McRoberts
Ronald et al 2022, Cushman et al 2023). The valid-
ation of the biomass carbon density was also per-
formed using National Forest Inventory (NFI) and
research plots. We used the 450 1 ha plots available
over Gabon fromNFI and local random or systematic
samples to assess the accuracy of the predicted AGB
map at the pixel level.

2.2.2. National carbon statistics
We applied the most recent carbon conversion factor
for tropical forests of 0.456 (Martin et al 2018) adop-
ted by Gabon (CNC 2021) to convert AGB to above-
ground carbon density (ACD) of trees. The average
national ACD estimate was compared to the ones
from the systematic random sampling with NFI and
the biomass product from GEDI L4B (Dubayah et
al 2022). We combined the recent map of floristic
types available over the Congo Basin (Réjou-Méchain
et al 2021) with the forest cover map developed by
theGabonese Studies and SpaceObservations Agency
(AGEOS, CNC 2021) to assess the variation in car-
bon density within themain forest formations. A sim-
ilar comparison was made for different landforms in
the country based on the landform map available of
the region (Viennois et al 2022). We used a post-hoc
pairwise Tukey test to test for the significant differ-
ence between the mean ACD values. We estimated
the belowground living carbon density (BCD) from
the roots using the root-shoot ratio of 0.235 (Mokany
et al 2006) and added it to the ACD to get an estimate
of the total living carbon density (TCD) of trees. The
total carbon in live tree vegetation was obtained by
multiplying the TCD with the total forest area avail-
able for the year 2020.

3. Results

3.1. Canopy height estimates over Gabon
The performance of the models used to predict dif-
ferent RH metrics varied according to the valida-
tion dataset (figure 2). Overall, the model perform-
ances showed better agreementwhen compared to the
GEDI validation dataset (figures 2(a)–(c)) in com-
parison with LVIS data that showed the best agree-
ment with RH75 between 20 and 35 m predictions
(figure 2(e)).

3.2. Aboveground carbon prediction
The error associated with ACD predictions over
Gabon gave an R2 of 0.59 with an RMSE of
40.4 Mg C ha−1 when compared to ALS-based ACD
(figure 3(a)) while the validation with plot data gave a
similar R2 (0.5) and lower RMSE (38.85 Mg C ha−1).

We noticed a general decrease of the error towards
higher ACD estimates (figure 3(b)) with less than
22.8 Mg C ha−1 of absolute error obtained for ACD
ranges between 91.2 and 182.4 Mg C ha−1 (rep-
resenting about 70% of the validation dataset). The
predicted ACD map showed no systematic error
(bias = 0.01 Mg C ha−1) when compared with ALS-
based ACD estimates, whereas the validation with
plot-based ACD showed an overall systematic error of
5 Mg C ha−1, caused mostly by the overestimation of
ACDwithin 0–90Mg CMg ha−1 that can be adjusted
in a bias-correction approach.

The spatial distribution of ACD revealed a
detailed gradient of forest structure (figure 4) from
low ACD of forests along the coast—except for
tall mangrove forests in Pongara national park
(figure 4(b)); followed by an increase towards the
country’s interior and a drop within the northeastern
flooded forests (figure 4(c)). The map also captured
the spatial variability in ACD associated with log-
ging (logging roads and tree harvesting; figure 4(d))
and secondary forests recovering around urban areas
(figure 4(e)).

3.3. Regional and national level estimates
The national scale average forest ACD predicted from
our map is 142.12 ± 7.3 (95% CI) Mg C ha−1

(figure 3(c)) and in close agreement with the value
reported from NFI plots (141.7 ± 60.4 Mg C ha−1)
and significantly higher than GEDI L4B estimations
(104.42 ± 12.6 Mg C ha−1). Note that the precision
of the estimate from the Gabon carbon map from
our study is significantly better than the NFI and the
GEDI L4B estimates due to the large number of pixels
and significantly negligible systematic error.

The comparison of the average ACD and its
RMSE derived from our map with estimates from
NFI plots and GEDI L4B revealed differences within
vegetation types and landforms (figure 5). The
highest ACD was found within Central forests
(150.08 ± 5.8 Mg C ha−1, figure 5(a)); Congolian
north-eastern forests (140.25 ± 7.2 Mg C ha−1)
and tall mangroves (130.3 ± 6.3 Mg C ha−1)
with wetlands (33.63 ± 12.6 Mg C ha−1) and
low mangroves (24.2 ± 22.2 Mg C ha−1) hav-
ing the lowest ACD. Highlands supported forests
with the highest ACD (figure 5(b)) within moun-
tains (161.18 ± 6.7 Mg C ha−1) and hills
(149.38 ± 5.3 Mg C ha−1). Forests with the low-
est ACD of trees were found on coastal plains
(92.61± 4.2 Mg C ha−1).

3.4. National assessment of carbon storage
The total live carbon (aboveground + belowground)
of trees stored within forests in Gabon was estim-
ated to be 4.14 ± 0.3 Pg C (table 1). The highest
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Figure 2. Validation of the modeled relative heights over Gabon. Density plot showing model performances of the different RH
models (RH50; RH75 and RH98 as first, second and third columns) from spaceborne GEDI (first row) and airborne LVIS (second
row). Filled red points are the average of predicted RH metrics within successive bins of 10% percentiles with associated standard
deviation (black vertical bars).

Figure 3. Validation of the modeled aboveground carbon density (ACD) over Gabon. Relationship between predicted and
reference ACD with colors of the point cloud showing a gradient of increasing point density from blue to red (a). Filled points are
the average of predicted ACD within 10 percentiles intervals and associated standard deviation (black vertical bars). Uncertainties
associated with ACD estimates within 10 percentile intervals and associated standard deviation (b). The gray ribbon highlights
bins with less than 20 Mg C ha−1 of absolute error. National scale averages of ACD from different data sources (c).

total carbon was stored within logging conces-
sions (2.82 ± 0.1 Pg C) representing 68% of
the total carbon of the country, with only 14%
(0.58 ± 0.2 Pg C) stored within protected areas and
17% (0.73 ± 0.3 Pg C) stored within unprotected
forests. Community forests with their low surface

area (∼0.27 million ha) had the lowest carbon stocks
(0.04 ± 0.2 Pg C). Minkébé and Lopé were the
two national parks with the highest carbon stor-
age (∼0.1 Pg C each) while Ogooué-Ivindo was
the province with the highest forest carbon storage
(0.77± 0.3 Pg C).
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Figure 4. Spatial distribution of the aboveground carbon density (Mg C ha−1) of Gabon’s forests at 1 ha resolution for the year
circa 2019 (a). Zoom-in subsets highlighting carbon variability within tall mangrove forests of Pongara National Park (b), flooded
forests (c), degraded forests within logging concessions (d), and secondary forests along urban areas (e).

Figure 5. Average aboveground carbon density (ACD) for trees and its variation calculated for each vegetation type (a) and
landforms (b). Colors are estimates derived from this study (pink), 450–1 ha NFI plots (green) and GEDI L4B biomass product
(blue) with bars corresponding to their associated standard deviation.

4. Discussion

High resolutionmapping of forest structure in Gabon
is constrained by its dense and complex canopy
(Mitchard et al 2012, Hansen et al 2013, Labriere et al
2018, Silva et al 2018, Lang et al 2019, Mohammad
et al 2019). The localized ML approach implemen-
ted in this study, helped to improve the precision
of predicted canopy height metrics (RMSE ∼ 6 m

on average) as compared to existing global products
from Lang et al (2019; RMSE = 8.2 m with RH98)
and Potapov et al (2021, RMSE = 7 m with RH95).
Above 35 m the model precision was mainly lim-
ited by the saturation of the relationship between the
canopy structure and the satellite predictors (Simard
et al 2011, Fayad et al 2014, Wang et al 2016, Potapov
et al 2021). All heightmetrics showed a slight dilution
error by overestimating the height of shorter forests

6



Environ. Res. Lett. 19 (2024) 074038 L B Takougoum Sagang et al

Table 1. Tree carbon statistics over Gabon within different forest management categories, and jurisdictions with their respective relative
proportions to the national total. The forest area estimates are based on the land cover map provided by the Gabonese Studies and Space
Observations Agency (AGEOS) for 2020 at 30 m resolution. Total living forest carbon density (TCD) includes above ground (ACD
±95% CI) and below ground (BCD) from root biomass.

Area
(Mha)

ACD mean
(Mg C ha−1)

BCD mean
(Mg C ha−1)

TCD mean
(Mg C ha−1)

Total C
(Pg C)

Total
C (%)

Management

Logging 15.234 149.89± 6.1 35.22± 8.47 185.11± 14.57 2.8201 68.11
Protected 3.252 144.40± 8.7 33.93± 9.81 178.34± 18.51 0.5801 14.01
Unprotected 4.831 122.81± 4.4 28.86± 10.3 151.67± 14.7 0.7328 17.7
Community 0.272 137.77± 4.1 32.38± 9.71 170.15± 13.81 0.0463 1.12

National Parks

Akanda 0.028 32.80± 7 7.71± 3.5 40.51± 10.5 0.0011 0.03
Birougou 0.069 136.92± 5.4 32.18± 6.94 169.10± 12.34 0.0117 0.28
Ivindo 0.297 162.99± 5.22 38.30± 6.43 201.29± 11.65 0.0597 1.44
Loango 0.123 111.30± 6.32 26.16± 9.39 137.46± 15.71 0.0169 0.41
Lopé 0.466 173.57± 6.8 40.79± 10.84 214.36± 17.64 0.1000 2.42
Mayumba 0.005 83.08± 6.9 19.52± 10.55 102.61± 17.41 0.0005 0.01
Minkébé 0.758 144.84± 6.2 34.04± 8.96 178.88± 15.16 0.1356 3.28
Monts de Cristal 0.120 156.84± 4.6 36.86± 5.06 193.69± 9.66 0.0232 0.56
Moukalaba-Doudou 0.416 156.12± 6.4 36.69± 9.66 192.81± 16.06 0.0802 1.94
Mwagna 0.115 150.19± 5.9 35.30± 8.09 185.49± 13.99 0.0215 0.52
Plateaux Batéké 0.057 81.62± 6.6 19.18± 10.18 100.80± 16.78 0.0058 0.14
Pongara 0.072 92.63± 12.7 21.77± 6.18 114.40± 18.88 0.0082 0.20
Waka 0.107 161.63± 4.7 37.98± 5.17 199.62± 9.87 0.0214 0.52

Provinces

Estuaire 1.876 136.74± 8.6 32.13± 17.38 168.87± 24.98 0.3168 7.65
Haut-Ogooué 2.305 131.28± 6.5 30.85± 9.85 162.14± 16.35 0.3737 9.03
Moyen-Ogooué 1.573 149.50± 6.5 35.13± 10.02 184.64± 16.52 0.2904 7.01
Ngounié 3.500 146.45± 6 34.42± 8.38 180.87± 14.38 0.6332 15.29
Nyanga 1.607 144.34± 6.5 33.92± 9.91 178.25± 16.41 0.2864 6.92
Ogooué-Ivindo 4.273 146.47± 6.1 34.42± 8.89 180.89± 14.99 0.7729 18.67
Ogooué-Lolo 2.872 161.37± 6 37.92± 8.09 199.30± 14.09 0.5724 13.82
Ogooué-Maritime 1.875 111.60± 6.5 26.23± 10.06 137.83± 16.56 0.2584 6.24
Wouleu-Ntem 3.708 138.81± 6.4 32.62± 9.51 171.43± 14.91 0.6357 15.35

Total 23.592 142.12± 8.2 33.40± 4 175.52± 12.2 4.1408± 0.332

and underestimating the height of tallest forests. This
effect is partially due to the lack of sample data at
the lower and higher end of the distribution for-
cing the machine learning model to overfit the pre-
diction towards the main part of the distribution.
As these areas are relatively small over the country,
their impact on the overall carbon density estimation
likely remains small. The 1-ha resolution ACDmap of
forest trees generated from this study is the first avail-
able product calibrated for the Republic of Gabon
using state-of-the-art techniques in geospatial mod-
eling. The map reveals large-scale spatial variability
of the carbon stored within its forests with low uncer-
tainty (95% CI = 0.03). The average ACD obtained
over Gabon’s forests (142.12 ± 7.3 Mg C ha−1) is
consistent with previous estimates from NFI plots
(141.7 ± 60.4 Mg C ha−1; Poulsen et al 2020)
but with significantly better uncertainty due to the
large number of map pixels. Considering the recent
global biomass product from GEDI L4B led to∼30%

underestimation of national scale average ACD. This
highlights the importance of calibrating local biomass
models to improve the accuracy of biomass maps at
regional to national scales (Næsset et al 2020).

The level of details achieved at finer scales helps
us to accurately describe carbon allocation at the
national level. The low carbon density recorded
within coastal forests on plains is a consequence of a
heavy historical harvesting that occurred in the area
during slave trade (16th–19th century) and colonial-
ism (Collomb et al 2000, CNC 2021). Ever since, most
of the forests have been sustainably managed either
for timber production within logging concessions
or protected for biodiversity conservation. Logging
concessions represent about 60% of the total forest
cover of the county (CNC 2021) and store the highest
amount of ACDon average (149.89MgC ha−1 ± 6.1)
as compared to unmanaged forests found within
unprotected areas (122.81 Mg C ha−1 ± 4.4) which
agrees with Poulsen et al (2020). The higher ACD
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observed within logging concessions is most likely
a consequence of direct selection of forests with a
high abundance of large trees suitable for logging.
Except for forests dominated by Okoumé, most of the
industrial logging in Gabon is selective and focused
on high-value tree species (White 1994, 2020) lead-
ing to a low biomass loss (Medjibe et al 2011, 2013).
In addition, the higher rates of carbon sequestra-
tion from post-harvest activities (Gourlet-Fleury et al
2013, Medjibe 2020) and the longer rotation cycles to
at least 20 years implemented in Gabon (République
Gabonaise 2001, Pérez et al 2005) provides more time
for the forest to recover after disturbance, supporting
the maintenance of high carbon storage. This posit-
ive effect of management on carbon storage can be
exacerbated in areas with fertile soils, as soil fertility
has been identified to be the only environmental vari-
able positively influencing ACD in Gabon from plot
data (Poulsen et al 2020).

The national scale carbon estimates provided in
this study constitute a baseline for future forest man-
agement or emission reduction projects. The coun-
try’s total estimated carbon stock (above and below-
ground) is 4.14 Pg C, with a country-scale error
of less than 1%. About 68% of the total carbon
stock is found within logging concessions (2.82 Pg C)
given their spatial extent and the high ACD in these
forests. The 13 national parks in the country store
14% of the total carbon, equivalent to 0.58 Pg C.
Among these parks, four (Ivindo, Lopé, Minkébé
and Moukalaba-Doudou) stand out for having the
largest forest cover and the highest ACD on aver-
age and 65% of the carbon stock in national parks
is found within them. Most of these parks have their
forest structure vulnerable to global change (Réjou-
Méchain et al 2021) except for Akanda, Monts de
Cristal, Plateaux Batéké and Pongara, where only 7%
(0.03 Pg C) of the total carbon is found. The four
coastal provinces (Estuaire, Moyen-Ogooué, Nyanga,
Ogooué-Maritime) with the less dense forests store a
total of 1.15 PgC representing 28%of the total carbon
storage of the country. The remaining carbon storage
is similarly distributed within the five other provinces
found at the interior, except for Haut-Ogooué, which
stores only 9% of the total carbon due to the dom-
inance of savanna vegetation and forests impacted
by long term human disturbances related to mining
(CNC 2021).

Most of the forests in Gabon are found in areas
that were historically villages spread across the coun-
try before colonial occupation forced their clearance
in favor of coerced settlement of the population along
the major roads (CNC 2021). In addition, the impact
of slave trade in the coastal area led to a reduc-
tion in its human population which resulted in the
regeneration of vast swathes of forest which today are
150–500 years old (CNC 2021). Further back still, a
population crash that affected much of West Central

Africa between about 1200–800 years ago, reduced
the human influence on the forests in Gabon (Oslisly
et al 2013). As a result, most of the current forests
in Gabon, like elsewhere in Central Africa, are act-
ively progressing towards later successional stages and
more old growth vegetation types, partially explain-
ing their tendency toward a long-term stable carbon
sink (Lewis et al 2009, Hubau et al 2020).

5. Conclusion

We provided the first systematic and accurate assess-
ment of the forest carbon density and storage at land-
scape scales for the second largest forested coun-
try in the world. This map not only reveals the
extensive spatial variability of carbon stored within
Gabon’s forests but also does so with low uncer-
tainty, providing reliable data for decision-making.
Considering the spatial extent of logging concessions
across Gabon, improved quantification, and charac-
terization of the influence of management practices
on the forest structure would enable a more informed
accounting of carbon fluxes, providing a foundation
for an improved set of incentives for conserving forest
carbon stocks and sinks. The map we generate can
be used as input into calculations of baseline car-
bon stocks and emissions in the context of REDD+
at regional to national scales. We expect significant
improvements of Gabon’s forest biomass mapping
in future with the launch of NISAR (L-band) and
BIOMASS (P-band) radar missions in early 2024.
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TheNFI plot data used in this study are the properties
of Le Ministère des Eaux, de la Forest, de la Mer, de
l’Environnement of the Republic of Gabon and are
subject to third party restrictions. All the GEDI and
satellite data are freely available from the Google
Earth Engine repositories via these links: https://
developers.google.com/earth-engine/datasets/
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#description and https://developers.google.com/
earth-engine/datasets/catalog. The AfriSAR grid-
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LVIS over Gabon are freely available at the NASA
ORNLDAAC https://daac.ornl.gov/cgi-bin/dsviewer.
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