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Abstract 

Modern phylogenetics research is often performed within a Bayesian framework, using sampling algorithms such as Markov chain 
Monte Carlo (MCMC) to approximate the posterior distribution. These algorithms require careful evaluation of the quality of the gener-
ated samples. Within the field of phylogenetics, one frequently adopted diagnostic approach is to evaluate the effective sample size and to 
investigate trace graphs of the sampled parameters. A major limitation of these approaches is that they are developed for continuous 
parameters and therefore incompatible with a crucial parameter in these inferences: the tree topology. Several recent advancements 
have aimed at extending these diagnostics to topological space. In this reflection paper, we present two case studies—one on Ebola 
virus and one on HIV—illustrating how these topological diagnostics can contain information not found in standard diagnostics, and 
how decisions regarding which of these diagnostics to compute can impact inferences regarding MCMC convergence and mixing. Our 
results show the importance of running multiple replicate analyses and of carefully assessing topological convergence using the output 
of these replicate analyses. To this end, we illustrate different ways of assessing and visualizing the topological convergence of these 
replicates. Given the major importance of detecting convergence and mixing issues in Bayesian phylogenetic analyses, the lack of a 
unified approach to this problem warrants further action, especially now that additional tools are becoming available to researchers.

Keywords: effective sample size, topologies, Bayesian inference, phylogenetics, phylodynamics, convergence, mixing, EBOV, HIV

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our 
RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

Introduction
Background
When performing Bayesian phylogenetic inference using Markov 
chain Monte Carlo (MCMC) algorithms, the standard practice to 
evaluate the quality of the generated samples is to visually inspect 
trace plots and to compute the corresponding effective sample 
size (ESS) of the sampled parameters. This can be done using 
a variety of software packages such as Tracer (Rambaut et al., 
2018), Beastiary (Wirth and Duchene, 2022) or CODA (Plummer 
et al., 2020), for example. However, such software packages only 
produce diagnostics for simple, often univariate and continuous, 
model parameters, which the topology of the phylogenetic tree 

is not. If these diagnostics suggest the MCMC convergence and 

mixing of the simple model parameters are satisfactory, it is usu-

ally assumed that this will be the case for the topology as well. 

This is potentially problematic, as the tree topology is often of key 

interest in phylogenetic and phylodynamic studies, and obtain-

ing a correct (consensus) phylogeny is essential when performing 

outbreak investigation and monitoring ongoing epidemics [see e.g. 

Attwood et al. (2022)].
Recent research has focused on convergence and mixing diag-

nostics applicable to the tree topology, including studies by Lan-

fear et al. (2016), Magee et al. (2023), and Guimarães Fabreti and 
Höhna (2021). The former two studies focus on finding ways to 
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apply the principles of trace graphs and effective sample sizes 
to the topology as a whole, while the latter study considers the 
presence of each split in the tree as an individual parameter 
to be evaluated using classical diagnostics. We here explore the 
main topological methods introduced by Lanfear et al. (2016) and 
Guimarães Fabreti and Höhna (2021), as well as those from Magee 
et al. (2023) on the data from an Ebola virus (EBOV) study by Dudas 
et al. (2017) and an HIV study by Hong et al. (2020). Of note, we 
also include the multidimensional scaling (MDS) ESS metric—a 
more conservative tree ESS measure (Magee et al., 2023)—that 
also enables us to project the high-dimensional phylogenies onto 
a small number of dimensions suitable for visualization (Kruskal, 
1964a; Kruskal, 1964b).

We find that the evaluation of convergence and mixing of sam-
ples in topological space can reveal issues not typically detected 
by standard diagnostics for (convergence and mixing of) contin-
uous parameters. Furthermore, we find that decisions regarding 
the computation of these diagnostics can impact the conclusions 
regarding MCMC convergence and mixing. We selected the EBOV 
study because of its large size and the rich complexity of the mod-
els that were applied, making it a prime case study of a challenging 
phylogenetic analysis that could be susceptible to hidden conver-
gence and mixing issues. Further, HIV phylogenies are known to 
be star-like (i.e. have short internal but long external branches), 
which could lead to a different set of issues from a topological 
perspective.

Phylogenetic distance metrics
A central concept in our exploration is that of phylogenetic dis-
tance, a quantitative measure of similarity between two phylo-
genetic trees. Such a distance can be computed in several ways, 
using what we will refer to as phylogenetic distance metrics. These 
distances are zero for two identical trees and are expected to 
increase as trees grow more dissimilar. The metrics considered 
in this paper are: the Robinson–Foulds distance (Robinson and 
Foulds, 1981) and its weighted counterpart (Robinson and Foulds, 
1979), the path difference (Steel and Penny, 1993), the branch 
score (Kuhner and Felsenstein, 1994), the Kendall–Colijn distance 
(Kendall and Colijn, 2016) with 𝜆 = 0 (i.e. disregarding the branch 
lengths), and the rooted subtree-prune-regraft (SPR) distance
(Whidden et al., 2013).

In order to provide the reader with some intuition of what 
aspects of topological differences these metrics convey, we use a 
toy example of two phylogenetic trees with the same set of time-
calibrated taxa on which an example calculation of each of these 
metrics is performed.

Fig. 1 shows, for each branch in the tree, the partition defined by 
that branch. Each of these branches also has an associated branch 
length in both trees, which is reported as well. The Robinson–
Foulds distance is simply the number of partitions present in 
one tree but not the other, which in this case is 2, since only 
{AB|CD} and {AC|BD} are such partitions. The weighted Robinson–
Foulds distance would be the sum of the absolute differences 
in the branch lengths of branches defining corresponding par-
titions, which are shown in the |Δ| column. This distance is 
thus 17. Closely related is the branch score, which takes the 
square root of the sum of squares of |Δ|, which in this case
equals 7.42. 

Fig. 2 shows—for both trees—all pairwise tip-to-tip path 
lengths, which is the number of internal nodes that must be 
crossed to go from one tip to the other. The path difference is the 
square root of the sum of squares of the differences in path lengths 
dP between the two trees, which in this case equals 2. Fig. 2 also 

Figure 1. Partitions defined by each branch in the two trees and the 
associated branch lengths. The branches defining partition {A|BCD} and 
their associated branch lengths are bolded in both trees and the table. 
|Δ| is the absolute difference of two corresponding branch lengths. 
Certain partitions do not exist in one of either trees, in which case the 
branch length is shown as none and treated as 0 for the computation of 
|Δ|. The (weighted) Robinson–Foulds distance and the branch score can 
be computed from the information contained in the provided table.

Figure 2. Pairwise tip-to-tip path lengths dP, defined as the number of 
internal nodes that must be crossed (not counting the root node) to get 
from one tip to another, as well as absolute difference between these. 
The path to go from tip A to B is bolded in both trees, as are the crossed 
internal nodes. Also shown is the closely related MRCA-to-root path 
length dMRCA−root for each pair of tips, defined as the number of internal 
nodes that must be crossed to go from the MRCA of the tips to the root 
node (MRCA node included). The path difference and Kendall–Colijn
distance can be computed from the information contained in the 
provided table.

shows the path lengths from the most recent common ancestor 
(MRCA) of each pair of tips to the root node |Δ|. The Kendall–Colijn 
distance (with 𝜆 = 0, as considered in this manuscript) is the square 
root of the sum of squares of these |Δ| values, which in this case 
equals 2.45. 
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Figure 3. The subtree-prune-regraft (SPR) move required to transform 
tree 1 into tree 2, disregarding branch lengths. The move involves 
pruning the branch defining the {C|ABD} partition and regrafting it onto 
the branch defining the {A|BD} partition. The SPR distance is the number 
of SPR moves required to transform tree 1 into tree 2, in this case 1.

Thus, these distance metrics can be divided into two gen-
eral categories. First are metrics defined by partitions and branch 
lengths (Robinson–Foulds, weighted Robinson–Foulds, branch 
score) as shown in Fig. 1. Second are metrics defined by path 
lengths between tips and/or nodes (path difference, Kendall–
Colijn).

A last type of distance metric we consider is the SPR distance. 
SPR refers to a type of operation that can be performed on a 
tree to change its topology. This is closely related to the nature 
of the trees considered in this manuscript, since most Bayesian 
phylogenetic software packages make use of SPR-like moves to 
explore tree space. Fig. 3 shows the SPR move that would be 
required to transform tree 1 into tree 2. Since only one such 
move is needed, the SPR distance between the two trees shown
equals 1. 

Topological convergence diagnostics
We here briefly discuss the topological convergence diagnostics 
considered in this manuscript.

The topology trace plot, as defined by Lanfear et al. (2016), 
works very similarly to standard trace plots used for continuous 
parameters. The value of the trace being graphed is the phylo-
genetic distance from each sampled tree to a chosen reference 
tree. As a reference tree, one can choose between, for example, 
one of the posterior trees or a consensus tree. However, choosing 
a tree that is part of the chain will cause a ‘slump’ in the trace 
plot as the distance from this tree to itself is inevitably equal to 
zero. It is good practice to try several reference trees and com-
pare the resulting trace plots. In this manuscript, we use the first 
tree as a reference and exclude it from the graphs to avoid scaling
issues.

The pseudo-ESS (Lanfear et al., 2016) is the ESS of the vector 
of phylogenetic distances from an arbitrarily chosen focal tree to 
all other trees in the sample (note the analogy with the topology 
trace plot). Because there is randomness involved in the choice of 
the focal tree, the computation is repeated using each tree in the 
sample as a focal tree. The lowest value and median value are then 
reported.

The approximate ESS (Lanfear et al., 2016) derives an approx-
imation of the common ESS calculation of dividing the actual 

sample size by the autocorrelation time, but uses a topological ver-
sion of autocorrelation time estimated by determining the thin-
ning interval at which the average phylogenetic distance between 
subsequently sampled trees ceases to increase as the thinning 
interval increases.

The Fréchet correlation ESS (Magee et al., 2023) is defined 
analogously to the standard one-dimensional continuous ESS, but 
substitutes Pearson autocorrelation for an alternative definition of 
autocorrelation between trees using Fréchet (co)variances, which 
make use of the relationship between covariance and Euclidian 
distance—here substituted with whatever phylogenetic distance 
is being used.

The split frequency ESS (Magee et al., 2023) is computed by 
treating each tree as a vector of binary split indicators (split 
is present/absent). Fréchet (co)variances can then be computed 
using the Euclidean norm (as the trees are now reduced to vectors 
of binary indicators), which enable computation of an ESS. Note 
that this is the only method that does not explicitly use any kind 
of phylogenetic distance metric.

The multidimensional scaling ESS (Magee et al., 2023) (MDS 
ESS) is computed by performing multidimensional scaling of the 
matrix of squared pairwise distances between trees. The first 
dimension of the resulting multidimensional scaling matrix is 
then used to compute an ESS on.

Materials and methods
Software
We computed the topological ESS estimators described in the 
previous section using the treess package version 1.0.1 (Magee 
et al., 2023) with R v4.3.0 (R-team, 2022), the phylogenetic dis-
tances required for these ESS estimators using the R packages
phangorn v2.11.1 (Schliep et al., 2022) and TreeDist v2.6.1 (Mar-
tin et al., 2023), the per-split ESS values with the R package
convenience (Guimarães Fabreti and Höhna, 2021), and the 
approximate subtree-prune-regraft (aSPR) distances using RSPR 
version 1.3.1 (Whidden et al., 2013). We constructed the tangle-
grams using Baltic version 0.2.2, available at https://github.com/
evogytis/baltic. Finally, we also made use of Tracer v1.7.2 (Ram-
baut et al., 2018) and the TreeAnnotator v1.10.4 tool associated 
with the BEAST 1.10.4 software package for summarizing maxi-
mum clade credibility (MCC) trees (Suchard et al., 2018), as well as 
the R package ggtree v3.8.2 (Xu et al., 2022) for visualization of
these trees.

Data
The first dataset considered in this study is from a genomic epi-
demiology study of the largest Ebolavirus (EBOV) outbreak to date, 
which investigated the impact of several potential predictors, such 
as climate and demographic information, on EBOV spread in West 
Africa from 2014 to 2015. We refer the interested reader to the 
original publication for further details (Dudas et al., 2017). In 
summary, Dudas et al. (2017) performed Bayesian phylogenetic 
inference using MCMC on a total of 1610 EBOV genome sequences 
sampled between March 2014 and October 2015 using an HKY +
Γ4 nucleotide substitution model, an uncorrelated relaxed molec-
ular clock model with an underlying lognormal distribution and a 
flexible non-parametric coalescent model (Gill et al., 2013) as the 
tree prior. We downloaded the 1000 posterior sample trees, which 
were sampled every 10 000 iterations, and log-files from the orig-
inal publication from https://github.com/ebov/space-time/tree/
master/Analyses/Phylogenetic. Of note, the burn-in was already 

https://github.com/evogytis/baltic
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discarded from the posterior sample trees file shared by Dudas 
et al. (2017).

We obtained the second dataset considered from a 2020 phylo-
geographic study of the spread of HIV-1 subtype B in the USA. As 
in the EBOV study, the HIV study also aimed to identify relevant 
covariates for the spread of the virus, but also studied the impact 
of different subsampling schemes on these inferences. We refer 
interested readers to the original publication for further details 
(Hong et al., 2020), from which we selected a data set consisting 
of 500 sequences that was constructed with the aim of maximiz-
ing phylogenetic diversity. The authors used a GTR + Γ4 nucleotide 
substitution model, a strict molecular clock model, and a logistic 
population growth model acting as a tree prior. The output of the 
original analysis also consists of 1000 posterior sample trees. The 
burn-in was already discarded from the posterior sample trees file, 
which is available on https://github.com/hongsamL/HIV_trees.

Assessing topological convergence
The EBOV data
Fig. 4 shows the topology trace plots for the EBOV analysis using 
the six different topological distance metrics, as well as the cor-
responding topological ESS estimates. The results in this figure 
can be grouped in two sets based on the distance metric used: 
the (weighted) Robinson–Foulds distance, the branch score and 
the aSPR distance on the one hand, and the path difference and 
Kendall–Colijn distance on the other. Note that this grouping of 
metrics is closely related to the conceptual differences between 
them as shown in Figs 1 and 2.

In the former group of metrics, the combined traces can be 
clearly divided into three distinct parts at iterations 333 and 
666. This suggests that three independent replicate analyses were 
combined to obtain the posterior sample of trees in the study of 
Dudas et al. (2017), which has been confirmed by the authors. 
Bayesian phylogenetic inference on large data sets indeed com-
monly employs the practice of concatenating the samples of 
several independent chains to both reduce computation time (by 
increasing the ESS values of continuous parameters) and assess 
convergence towards the same posterior. Four of the topology 
trace plots in Fig. 4 therefore suggest a discrepancy between the 
posterior space explored by the three chains. Whether this indi-
cates failure to converge to the same posterior, a case of extremely 
slow/poor mixing, or something else entirely is not clear. The ESS 
estimates in this group tend to be substantially lower when com-
puted for the entire sample than when computed for the three 
individual samples, which can be expected if the subsamples 
explore different parts of tree space. This is not entirely consis-
tent though, as the approximate ESS only shows this behaviour 
when considering the aSPR distance, and the split-frequency ESS 
does not show this behaviour at all. It should be remarked that 
the split frequency ESS is invariant to the choice of phyloge-
netic distance metric, as it is computed on the vector of splits
directly.

In the latter group of metrics—considering the path difference 
and the Kendall–Colijn distance—the three individual samples are 
indistinguishable in the topology trace plots. The ESS values are 
also substantially better across the board and do not decrease 
when considering the whole concatenated sample as opposed to 
the individual samples, but instead are higher than the ESS of each 
individual sample.

The HIV data
Fig. 5 shows the topology trace plots for the HIV analysis using 
the six different topological distance metrics, as well as the 
corresponding topological ESS estimators. Similar to the EBOV 
analysis, the full sample is a concatenated set of two samples [as 
confirmed by the authors of Hong et al. (2020)], but with each sam-
ple containing a different number of trees. However, unlike with 
the EBOV data, this is not immediately apparent from any of the 
topology trace plots (of the combined sample). All distance metrics 
show a clear slump at the beginning, which could be indicative of 
the discarded burn-in not having been set sufficiently high from a 
topological perspective (but indeed set sufficiently high from the 
current standard practice of only assessing the traces of contin-
uous parameters), which suggests part of the sample is from a 
non-converged part of the analysis. Topological ESS values tend 
to be substantially lower across the board for this dataset, most 
often not even reaching the often-used ESS cut-off of 200 for con-
tinuous parameters. Further, the difference in behaviour between 
the different distance metrics as seen in the EBOV data is not
apparent here. 

Alternative visualizations
The topological trace graphs presented in the previous section 
require relatively few computational resources to generate, but 
only provide partial information as they only consider distances 
from a single reference tree. We present two alternative kinds 
of visualizations—generated from pairwise distance calculations 
(meaning all distances between all possible pairs of the 1000 trees 
in the samples: producing 449 500 distances) to produce a more 
comprehensive visual mapping of topological distances between 
sampled trees.

Pairwise heatmaps
A first alternative visualization comes in the form of heatmaps of 
the pairwise distances. Fig. 6 shows heatmaps of the Robinson–
Foulds distances for the EBOV trees and HIV trees, and of the path 
distances for the EBOV trees.

For the EBOV posterior tree samples, the patterns seen in the 
trace graphs of Fig. 4 are also seen in Fig. 6, i.e. distinguishable 
samples when using the Robinson–Foulds distance, but not when 
using the path difference. We refer to Supplementary Figures S2 
and S4 for pairwise heatmaps using the other distance metrics, 
which also recreate the previously observed patterns.

For the HIV posterior tree samples, all heatmaps actually show 
a clear distinction between the two samples. This discrepancy—
which was not visible in the trace graphs of Fig. 5—is thus only 
produced when considering all pairwise distances as opposed to 
only distances from the first tree sample. 

Network graphs
The 1000 × 1000 matrix of pairwise distances between trees can be 
converted into a similarity matrix, done here by normalizing the 
distances to a range of 0 to 1 and subtracting them from 1. Using 
a force-directed algorithm (Fruchterman and Reingold, 1991), one 
can create a two-dimensional graph where each tree is repre-
sented by a node and relative distances between nodes reflect 
the pairwise distances between trees. Fig. 7 shows the network 
graphs of the Robinson–Foulds distances for the EBOV and HIV 
trees, and of the branch score for the HIV trees. All other network 

https://github.com/hongsamL/HIV_trees
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Figure 4. Topology trace plots for the EBOV analysis using six different phylogenetic distance metrics, with associated topological ESS estimates. 
Color-coded trace plots correspond to color-coded columns in the topological estimates, with all of them generated from samples from the same three 
independent BEAST runs. The X-axis shows the index of the sampled tree (thinned sample), while the Y-axis shows the phylogenetic distance from the 
first tree. The distance from the first tree to itself (which is inevitably 0) is excluded from the graph to avoid scaling issues. ESS values below 200—an 
often-used cutoff in practice for terminating running analyses in Bayesian phylogenetics—are highlighted in red. This sample of 1000 trees is in fact a 
concatenated set of three samples from independent BEAST runs that yielded 333, 333, and 334 trees, respectively. Notice how certain topological 
distance metrics show clear jumps between the separate runs, while for others the traces seem entirely homogeneous.

graphs (for both datasets) can be found in Supplementary Figures 
S1 and S3.

For the EBOV trees, the patterns we came to expect from the 
trace graphs and heatmaps are reproduced. However, for the HIV 

trees, the two sets of samples can be clearly distinguished using 
the Robinson–Foulds distance, but not using the branch score. This 
is surprising, given how these two metrics are closely related (see 
Fig. 1). Furthermore, in the first subsample of the HIV trees (trees 
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Figure 5. Topology trace plots for the HIV analysis using six different phylogenetic distance metrics, with associated topological ESS estimates. 
Color-coded trace plots correspond to color-coded columns in the topological estimates, with all of them generated from samples from the same two 
independent BEAST runs. The X-axis shows the index of the sampled tree (thinned sample), while the Y-axis shows the phylogenetic distance from the 
first tree. The distance from the first tree to itself (which is inevitably 0) is excluded from the graph to avoid scaling issues. ESS values below 200—an 
often used cutoff in practice for terminating running analyses in Bayesian phylogenetics—are coloured in red. This sample of 1000 trees is in fact a 
concatenated set of two samples from distinct BEAST runs that yielded 744 and 256 trees, respectively.
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Figure 6. Heatmaps of pairwise distances between trees in the EBOV and 
HIV combined sets of samples. For the EBOV trees, the three sets of 
samples can be clearly distinguished using certain distance metrics 
(shown here: Robinson–Foulds) but not with others (shown here: path 
difference). For the HIV trees, the two sets of samples can be 
distinguished using the Robinson–Foulds distance, which was not the 
case in Fig. 5.

1–744), the colouring of the nodes show a clear gradient—in line 
with the shape of the trace graphs in Fig 5. 

These visualizations may currently be hard to implement 
in practice, as the increase in computation time from a 
simple trace graph (which requires 999 distances in our 
1000-tree samples) to a set of pairwise distances (499 500 dis-
tances) is substantial—going up to several days on a standard
computer.

Figure 7. Network graphs of pairwise distances between trees in the 
EBOV and HIV combined sets of samples. Each node reflects a tree, and 
the relative distances between nodes reflect the pairwise distances 
between trees. Nodes are coloured by position in the sample, going from 
light to dark. For the HIV trees, the two sets of samples can be clearly 
distinguished using the Robinson–Foulds distance, but not using the 
branch score. For the EBOV trees, the network graph made with the 
Robinson–Foulds distance shows the three distinct runs clearly.

Non-distance metric based approaches
All approaches considered in the previous two sections—with the 
exception of the split frequency ESS—explicitly rely on computing 
phylogenetic distances between trees in a sample. We here discuss 
a few alternative explorations and diagnostics for topological 
convergence.
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Figure 8. Trace plots for the root node height and tree length for the 
EBOV samples. Tree length refers to the sum of all tree branches, and is 
thus a statistic closely related to the topology of the tree. The root 
height, a commonly evaluated parameter, shows satisfactory mixing, 
while the tree length, which is less often included in convergence/mixing 
assessment, has an ESS of 20 which indicates problematic mixing. The 
ESS of individual replicates can be found in tables S1 and S2 for the 
EBOV and HIV samples, respectively.

Continuous parameters
An easy first step would be to consider whether the continuous 
parameters of the model show any signs of convergence or mixing 
issues. While this is standard practice in Bayesian phylogenetic 
inference, we here pay specific attention to those parameters that 
directly translate aspects of a phylogenetic tree into continuous 
values. Fig. 8 shows trace graphs of the height of the root node and 
the total tree length in the EBOV sample. The height of the root—a 
continuous parameter often evaluated using standard methodol-
ogy, as it reflects the temporal distance between the youngest tip 
and the most recent common ancestor of all sequences—shows a 
well-mixed sample with a satisfactory ESS. The trace of the tree 
length, which is not often readily assessed despite it being readily 
implemented in the BEAST software package, shows three distin-
guishable subsamples—although the difference is not marked—as 
well as a very poor ESS of only 20. 

Supplementary Figure S5 shows the same plots for the HIV 
sample. In this case, neither of the two statistics show a dis-
crepancy between the two runs and the ESS values are very 
high.

Maximum clade credibility trees
The observed discrepancies between individual runs in the 
explored posterior topological space for both the EBOV and HIV 
samples raise the question of what these differences actually 
reflect in terms of phylogenetic inference. An often employed 
summary tree for such samples is the maximum clade credibil-
ity (MCC) tree. We can compute this tree for the total EBOV and 
HIV samples, as well as the individual subsamples, and compare 
them.

Fig. 9 shows a tanglegram comparing the MCC trees of the 
EBOV samples by linking the corresponding taxa to each other. 
Taxa are coloured by country of origin. The trees all have the 

same overall shape, but several clades end up in different loca-
tions depending on the individual run. Further, Supplementary 
Figure S6 shows a tanglegram of the MCC trees of the first and 
second half of the first EBOV run (so trees numbered 1–166 and 
trees numbered 167–333); these two trees thus reflect within-
run variability. Although these trees have differences as well—as 
expected from the inherent randomness of the MCMC algorithm—
they are substantially more similar than the MCC trees of different 
replicate analyses, as shown in Fig. 9, thus coinciding with our pre-
vious findings that suggested higher between-run variability than 
within-run variability.

Similarly, Fig. 10 shows a tanglegram comparing the MCC trees 
of the HIV samples by linking the corresponding taxa to each 
other. Taxa are not coloured by geographic origin but simply by 
location in the sample—as they were in the network graphs of 
Fig. 7. Again, there are substantial differences between the first 
and second run. Supplementary Figure S7 shows a tanglegram of 
the MCC trees of the first and second half of the first HIV run 
(so trees numbered 1–372 and trees numbered 373–744). Unlike 
for the EBOV trees, it is not apparent from the MCC trees that 
there would be more between-run than within-run variability in 
the sampled topologies. This is in line with the low ESS values 
for the HIV samples—as shown in Fig. 5—and can potentially be 
attributed to the typical star-like shape of HIV phylogenies. 

ESS of individual tree splits
The approach by Guimarães Fabreti and Höhna (2021) does not 
aim to compute an ESS for the entire topology. Instead, each 
split in the tree is considered individually as a binary parame-
ter (1 = present, 0 = absent) for which an ESS is computed using 
standard methodology.

Fig. 11 shows the cumulative density of ESS values of the 6859
splits observed in the EBOV trees and the 2371 splits observed in 
the HIV trees. For the EBOV trees, the vast majority of these (94%) 
have an ESS above the often-used cutoff value of 200. Guimarães 
Fabreti and Höhna (2021) suggest a more stringent cutoff of 625, 
which is met by 90% of the splits. Although not shown here, 
the three independent samples that make up the full EBOV sam-
ple showed a nearly identically shaped distribution of individual 
split ESS values. Thus, the vast majority of splits show a satis-
factory ESS both by according to the commonly used cutoff and 
more stringent cutoff suggested by Guimarães Fabreti and Höhna
(2021). For the HIV trees, the ESS values are substantially lower, 
with only 51% of the splits having an ESS above 200 and 22% 
above 625. By both criteria, these ESS values suggest poor mixing 
of the HIV sample. Thus, when considering the approach towards 
topological convergence assessment suggested by Guimarães Fab-
reti and Höhna (2021), the EBOV trees suggest satisfactory results, 
while the HIV trees do not. 

Discussion
In this case study, we applied an ensemble of diagnostics in 
topological space on a set of large trees, obtained through 
Bayesian phylogenetic inference under a set of complex mod-
els and through combining the output of at least two indepen-
dent replicate analyses. Importantly, we find that the different 
approaches to evaluating topological convergence can lead to 
drastically different conclusions, a finding that to the best of our 
understanding has not been observed to this extent before. It is 
likely that a combination of the complexity of the models, the size 
of the datasets, and the fact that we looked at samples that result 
from two or three different/independent analysis replicates—as 



Importance of assessing topological convergence  9

Figure 9. Tanglegram of the MCC trees of the EBOV sample. The tips of the trees are connected to each other by lines, coloured by the country of 
origin. Disagreement between the subsamples regarding the location of several clades is apparent by the fact that the lines connecting the tips of 
these clades are not parallel. The MCC tree of the total sample is identical to the MCC tree of the second subsample.

opposed to only just one—allowed us to observe these phenom-
ena that went unnoticed before. These findings stress the impor-
tance of assessing topological convergence to the posterior and 
not merely continuous parameter and (joint) density convergence, 
which is the current approach in nearly all Bayesian phyloge-
netic and phylodynamic studies. Even when additional continuous 

parameters—such as the root height and the tree length—are 
to be logged for assessing their ESS, these still offer no guaran-
tee at avoiding topological convergence difficulties. Whether the 
discrepancies we found affect inferences on estimates of param-
eters of interest downstream in the analysis is not yet clear, and 
warrants further research.
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Figure 10. Tanglegram of the MCC trees of the HIV sample. The tips of the trees are connected to each other by lines, coloured by position in the first 
MCC tree. Disagreement between the subsamples regarding the location of several clades is apparent by the fact that the lines connecting the tips of 
these clades are not parallel. The MCC tree of the total sample is identical to the MCC tree of the first subsample.

The importance of performing replicate analyses
We emphasize the importance of running more than one repli-
cate analysis—using different starting points—when performing 
Bayesian phylodynamic inference, as it is clear from our results 
that even a well-behaved sample from a single replicate may not 
be representative of the posterior topological space. When per-
forming multiple replicate/independent analyses, it is important 
to favour a few long runs over many short runs (see section 1.11.3 
in Brooks et al. (2011)), as many short runs can keep one from 
running the analysis long enough to detect pseudo-convergence 
(i.e. when the Markov chain appears to have converged but not 

to the true posterior distribution, possibly due to parts of the 
state space being poorly connected by the Markov chain dynamics 
which means that it takes many iterations to get from one part to 
another) or other problems.

Visualizing topological convergence
The most straightforward approach to visualizing topological 
convergence is the topological trace plot. Making such a graph 
requires the choice of a reference tree, which can have a substan-
tial impact on the ability of the trace to discriminate between runs. 
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Figure 11. Cumulative densities of the ESS values of individual splits in 
the sampled EBOV and HIV trees. ESS values of 200 and 625 are indicated 
and connected to their corresponding cumulative density values with 
dotted lines. These ESS values were computed using the convenience R 
package.

For example, the two HIV runs could not be distinguished in any of 
the topology trace graphs in Fig. 5, which used the first tree in the 
sample as a reference tree from which to compute distances—but 
were clearly distinct when considering all pairwise distances in 
Figs 6 and 7. Fig. 12 shows the trace plots of the Robinson–Foulds 
distance to each tree using the MCC trees of the first and sec-
ond subsamples as the reference trees, instead of simply the first. 
The discrepancy between individual runs is much more appar-
ent here than in the trace plots of Fig. 5. This suggests that the 
choice of reference tree can have a substantial impact on the abil-
ity of topological traces to discriminate between runs, and is an 
important consideration when interpreting these diagnostics. Fur-
thermore, the trace graphs of Fig. 5 had a trajectory reminiscent 
of undiscarded burn-in. However, the trace graphs of Fig. 12 show 
a pronounced slump around the reference (MCC) trees, which 
cannot be explained by burn-in. A possible explanation would be 
that—despite thinning of the chain and there being no sign of any 
problems with the transition kernels—the chain could exhibit very 
strong autocorrelation leading to the trees closer to the reference 
tree simply being more similar to it. Given that the reference tree 
in Fig. 5 was the first tree, it can be difficult to tell whether the 
slump is due to autocorrelation or burn-in.

The issue of selecting a reference tree is resolved by consid-
ering pairwise distance based visualizations such as heat maps 
and network graphs instead of a topological trace plot, making 
such visualizations preferable. However, the computational cost 
of calculating n × (n − 1)/2 distances for a sample of n trees quickly 
ramps up as n increases. A possible solution would be to reduce the 
sample size for the purposes of convergence assessment by only 

Figure 12. Trace plots of the Robinson–Foulds distance to each tree using 
the MCC trees of the first and second subsample (trees 717 and 925, 
respectively) as the reference tree for the HIV analysis.

using a subset of equally spaced trees—such as was done in Sup-
plementary Figures S1(e) and S3(e). This can substantially reduce 
the computational requirements, at the cost of not considering 
every tree in the sample. 

The choice of distance metric
The impact of the choice of topological distance metric on the 
ability to detect discrepancies in the combined chains cannot be 
systematically determined in a case-study format such as this. 
Comparing trees using SPR distances—which are closely related 
to how the studied trees were generated since most implemented 
MCMC transition kernels use SPR-like moves for exploring tree-
space—did suggest that the trees explored by the replicate analy-
ses differ in a topologically substantial manner. In the EBOV data, 
the metrics which detected differences between replicates were 
those based on splits in the trees, while the metrics that could not 
were those based on tip-to-tip distance. In the HIV data however, 
the difference in performance between these two categories was 
much less clear, with metrics from both groups being both capa-
ble and incapable of detecting differences between replicates. We 
speculate that tree shape—with the HIV data in this analysis being 
characteristically ‘star-like’ with longer branches towards the tips, 
and the EBOV data being more ‘ladder-like’ (Colijn and Plazzotta, 
2018)—may have an impact on how sensitive different topological 
distance metrics are to changes in topology.

While we would recommend using a variety of distance met-
rics when performing topological convergence assessment, the 
unweighted Robinson–Foulds distance and the SPR distance are 
good starting points given that they were the only ones capable of 
capturing the discrepancies between the independent replicates 
for both the EBOV and HIV data. As for which ESS estimator to use, 
it is difficult to make strong recommendations based on our cur-
rent results, given that the behaviour of the different estimators 
depended both on the dataset and the distance metric used. We 
would restate the conclusions made by Magee et al. (2023) that the 
pseudo-ESS and the Fréchet correlation ESS are the optimal choice 
according to their experiments, although we recommend looking 
at the entire range of pseudo-ESS values (not just the median and 
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minimum), since the choice of reference tree can have a large 
impact on its value.

On combining the output of independent 
replicates
Finally, our findings raise important questions as to how the out-
put of replicate Bayesian phylogenetic and phylodynamic analyses 
should be combined when discrepancies in topological space are 
detected. The EBOV and HIV replicates produced samples from 
different regions of the posterior distribution, and the sampled 
trees from these replicates were systematically more different 
than trees from the same replicate, which suggests that these 
replicates were stuck in local modes of the topological space. A 
key open question stemming from our work is how to combine 
these sampled trees in such a way that the resulting summary 
tree accurately reflects the region of highest posterior topological 
probability as well as the uncertainty surrounding it.

Simply averaging the samples with weights proportional to 
their size—which is currently standard practice—might not pro-
duce estimates that properly reflect the multimodal posterior. As 
with the HIV example, where the two subsamples were of unequal 
size, the region explored by the first subsample represents almost 
three fourths of the total sample, a degree of representation that 
is unlikely proportional to the posterior mass of this region com-
pared to the second subsample. From Fig. 10, the MCC tree of 
the total HIV sample is the MCC tree of the first subsample. 
However, when we artificially lengthen the second subsample by 
duplicating it two additional times, such that the first and sec-
ond subsample are roughly of equal length, we find that the MCC 
tree of the total sample is no longer the initial estimate. Thus, 
if concatenated samples are exploring different regions of topo-
logical space, their relative weights in the total sample have a 
meaningful impact on downstream inferences. Techniques such 
as importance sampling could be employed to weigh samples pro-
portionally to their posterior density (Yao et al., 2022), such that 
relative representation of different regions of the posterior are pre-
served, but we considered these to deserve additional attention 
and out of scope of the current manuscript.
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