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Abstract

The development of carbon dioxide (CO2) reduction electrocatalysts is an intensively

studied area in the development of CO2 capture, utilization, and storage strategies. In

this work, density functional theory (DFT) and ab initio molecular dynamics (AIMD)

are employed to study redox properties and the pathway of a side reaction of CO2

reduction electrocatalyst [Fe4N(CO)12]
-. The material of this chapter was published

as an article titled “Quantum chemical studies of redox properties and conforma-

tional changes of a four-center iron CO2 reduction electrocatalyst” in Chemical Sci-

ence (2018). I also present the multifaceted development of a molecular mechanics

force field, an important piece of molecular mechanics simulations that is widely used

for molecular structure and property prediction. An open-source python package for

restrained electrostatic potential (RESP), respyte is implemented for developing im-

proved electrostatic potentials (ESP) based charge models for a better description

of electrostatic interactions in force fields. I describe further improvements in Open

Force Field small molecule force field after the first optimized small molecule force

field from Open Force Field Initiative, which includes modification of parameter set

for improved performance in certain chemical spaces, and a more careful design of

quantum mechanics (QM) training data used to re-optimize bonded parameters.
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1 Introduction

1.1 Grand Challenges in Chemistry1

There are several grand challenges in chemistry that the current and the next genera-

tion of chemists should work on to make the world a better place. One of the challenges

is mitigating the atmospheric concentration of carbon dioxide (CO2). Global warm-

ing has been accelerated as the greenhouse gases including CO2 have accumulated in

Earth’s atmosphere. Since the largest source of anthropogenic CO2 emission is from

fossil fuel combustion, much research has been conducted to decrease the dependence

on fossil fuels by transitioning to renewable energy sources. However, the transition is

not feasible yet due to the high capital cost of renewable energy technologies and lack

of energy storage technologies. For solar energy, for example, improvement in silicon

purification methods, reduction of production cost of silicon photovoltaic module,

and minimization of the environmental impact of the production process should be

achieved to make it competitive. Another approach to actively reducing atmospheric

CO2 concentration is developing technologies for effective CO2 capture, utilization,

and storage (CCUS). CO2 utilization techniques can provide a possibility to produce

useful chemical products from CO2, and electrochemical reduction of CO2 is one of

the techniques that have been studied intensively. For designing catalysts that can

efficiently reduce CO2 to specific desired products, understanding their catalytic reac-

tion mechanisms is essential, which involves a combined experimental and theoretical

effort.

In addition to protecting ecological health, chemistry plays an important role in

the development of new therapeutics for protecting human health. Another grand

challenge associated with this aspect is a fast and accurate prediction of structures

and properties of molecules not yet synthesized. The crystal structure of a drug de-
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termines its properties, such as stability, solubility, and rate of dissolution. Therefore,

an accurate prediction of crystal structures of drug molecules is crucial in the phar-

maceutical industry. while the prediction over small rigid molecules has been rapidly

improved in recent years, it is still considered extremely challenging to accurately

predict more complex molecules. Accurate evaluation of the binding affinity of the

drug is also crucial for computer-aid drug discovery. While there are a number of

different techniques for affinity evaluation have been developed, they all have their

specific applications and limitations.2 Also, protein structure prediction is a crucial

challenge in drug developments, by taking into account the fact that there is a huge

gap between the number of known protein sequences and the number of correspond-

ing structures revealed. Molecular structure and property prediction largely rely on

molecular mechanics. Therefore, improving the accuracy of molecular mechanics sim-

ulations will lead to a more reliable prediction of molecular structure and properties

of interest.

1.2 Overview of Computational Chemistry Methods3

Theoretical chemistry is the subfield of chemistry where mathematical methods and

fundamental laws of physics are applied to study the structure and dynamics of chem-

ical systems. Given a chemical system of interest, theoretical chemistry can attempt

to compute: (1) The geometrical arrangements of the nuclei corresponding to sta-

ble molecules; (2) the molecular properties such as energies, dipole and quadrupole

moment, dipole polarizability, NMR spin-spin coupling constants; (3) the rate of

transformation of one stable molecule to another; (4) the time evolution of molecular

structures and properties, etc.

The majority of the systems of interest consist of more than two electrons. The

2



fundamental issue is that only one or two-body systems have exact solutions. There-

fore, numerical methods should be applied to solve many-body problems, which re-

quire a great number of mathematical operations. The development and widespread

of electronic computers enabled the treatment of the many-body systems with high

speed and high accuracy, with the advent of a new field in chemistry, computational

chemistry.

Decades of research in theoretical and computational chemistry have produced a

diverse library of methods for modeling the potential energy surface of a molecule.

Two principal categories of such methods are electronic structure method (quantum

mechanical method) and Force Field method (molecular mechanics method). Both are

models of the molecular energy and properties as a function of the nuclear coordinates.

The main differences between the two methods are how they describe a chemical

system and interactions between particles. While electronic structure methods choose

atomic nuclei and electrons as fundamental units, the force field method chooses atom

as a building block, i.e., electrons are not treated explicitly, instead, their effects are

taken into account implicitly.

1.2.1 Electronic Structure Methods (Quantum Mechanics)

In electronic structure methods, the electronic structure (the wave function of the

electrons and its corresponding energy) in a chemical system is determined by solving

the Schrodinger equation associated with the electronic molecular Hamiltonian (Hel),

which is a sum of kinetic and potential energies of the nuclei and electrons:

Hel = −
N∑
i=1

1

2
∇2
i −

M∑
A,i

ZA
rAi

+
∑
i<j

1

rij
(1)
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where ZA is atomic number of nuclear A, rAi is a distance between electron i and

nuclear A. Here the atomic system is used, i.e. (h̄ = e = me = 1). Since there is

no exact solution to the electronic Schrodinger equation for many-electron systems,

we have to rely on approximations and numerical methods for the description of

many-electron systems.

One of the most basic approximate electronic structure methods is Hartree-Fock

(HF) method. It applies the variational method, which states that the energy of

any approximate wave function is an upper bound to the exact energy. It chooses

a trial wave function with parameters and finds the best trial wave function that

gives the lowest energy possible, by minimizing the expectation value of Hamiltonian

(the energy of a wave function is the expectation value of the Hamiltonian operator,

divided by the norm of the wave function.) with respect to the parameters. Due to

the Pauli exclusion principle, which states two or more electrons cannot be in the

same quantum state within a quantum system at the same time, the electronic wave

function must be antisymmetric with respect to the exchange of any two-electron

coordinates. And in quantum mechanics, the simplest antisymmetric wave function

satisfying the Pauli principle is expressed as Slater determinants. For the general case

of N electrons and N spin orbitals, a Slater determinant is given as

Ψ(x1, x2, ..., xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) ... χk(x1)

χi(x2) χj(x2) ... χk(x2)

... ... ...

χi(xN) χj(xN) ... χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2)

The approximation in HF that the exact wave function can be approximated by a

single Slater determinant, introduces the neglect of electron correlation effect, which
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is electron-electron interaction in the electronic structure of a quantum system. (It

only accounts for the electron-electron interactions in an average fashion.) Therefore,

post-HF methods such as configuration interaction (CI)4, coupled-cluster (CC)5, and

Moller-Plesset(MP) perturbation theory6 have been developed to include the electron

correlation effect.

CI utilizes a linear combination of configuration state functions, which are linear

combinations of Slater determinants, to describe the wave function. The first term

of the CI wavefunction is the HF ground-state and the higher terms are some elec-

tronically excited states, which are to account for the electron correlation effects. If

all possibilities of excited configurations are included, termed Full-CI, the numeri-

cally exact solution to the electronic Schrodinger equation can be achieved, which is

in practice impossible to compute. MP perturbation theory and CC treat electron

correlation by using Rayleigh-Schrodinger perturbation theory to second, third, or

fourth-order (MP2, MP3, MP4) and by constructing a wavefunction using an expo-

nential cluster operator, respectively. The details of the methods are intentionally

omitted because they are out of scope for the present work.

Another widely used electronic structure method is density functional theory

(DFT). While post-HF methods give a systematic approach to the exact solutions,

they are expensive and not tractable for certain systems. DFT is known to give a

good combination of accuracy and computational cost. The method is based on the

Hohenberg-Kohn theorem, whose first theorem states that the ground-state electron

density contains the complete ground state properties of a many-electron system.

Electron density is a much simpler quantity than wave function because while wave

function has 3N spatial variables for an N-electron system and its complexity in-

creases exponentially, the electron density is a function in 3d space and has constant

complexity with the number of electrons. Thus, if we could extract the ground state

5



properties from the ground state density, we could potentially have a faster route to

solving quantum mechanics (QM) problems. The second H-K theorem is about “how

we get the energy from the density”, which states that given an approximate density

that originates from an antisymmetric N-electron wave function the energy given by

this density is an upper bound to the exact ground state energy. The problem here

is the exact functional connecting electron density and the ground state energy is

not known. Therefore, the fundamental goal of DFT method development has been

designing functionals connecting the electron density with the energy.

Early attempts to design DFT models tried to formulate all the energy terms as

a functional of the electron density alone, but the orbital-free models had the main

problem which is the poor representation of the kinetic energy. To solve the issue in

the orbital-free models, Kohn-Sham (KS) theory7 introduced orbitals. The idea in the

KS theory is to split the kinetic energy term into two parts, kinetic energy of non-

interacting electrons and a small correction term. While the electrons are interacting

in reality, the kinetic energy of non-interacting electrons provides 99 % of the exact

kinetic energy. Therefore, the errors from inaccuracies in the functionals are much

smaller in KS DFT models compared to orbital-free DFT models, thus KS theory has

been the basis of modern DFT.

While the KS-DFT method is comparable to HF in terms of its numerical meth-

ods and computational cost, it gives much more reliable results. Therefore, it has

become an important tool in many areas of chemistry and material science. The main

downsides of the DFT method are the absence of a systematic way to improve the

results towards the exact solution and the inaccuracy in describing intermolecular

interactions, such as dispersion interactions.

There is a hierarchy of approximations to the exchange-correlation functional in

DFT, often referred to as Jacob’s ladder. The lowest rung of Jacob’s ladder is the

6



local density approximation (LDA)8. In LDA, it is assumed that the local density can

be treated as a homogeneous electron gas, and under the assumption, the exchange-

correlation energy is only dependent on the electron density. The second rung is the

Generalized gradient approximation (GGA), where the exchange-correlation energy

is expressed not only by the density but also by its gradient.9–12 With the addi-

tional information, GGAs give a significant improvement over LDA, and popular

GGA functionals include BLYP13,14 and PBE15. The third rung is meta-GGA, where

higher-order derivatives of the electron density or orbital kinetic energy density are

included in the exchange-correlation energy as a variable.16–21 Fourth rung is hybrid-

GGA, which mixes some exact HF exchange with a GGA.22–25 The inclusion of a

suitable fraction of exact HF exchange is found to improve the accuracy of calcu-

lated results, becoming a standard feature of DFT method development. Examples of

hybrid-GGAs include PBE025 and B3LYP22, one of the most popular DFT function-

als. The fifth rung is generalized random phase approximation (RPA), which includes

virtual orbitals for a better description of dispersion interactions.26,27 Accuracy and

computational cost tend to increase up the ladder.

1.2.2 Force Field Methods (Molecular Mechanics)

In force field methods, the atom is used as a fundamental unit for describing a chemical

system, i.e., electrons are not treated explicitly in the methods, and molecules are

described by a ‘ball and spring’ model, where atoms are represented as spheres with

varying size and pairwise interactions, and bonds are springs with varying stiffness.

Solving the electronic Schrodinger equation to calculate electronic energy for a

given nuclear configuration is very demanding and complex. For most molecular dy-

namics applications, it is not practical to directly use the electronic structure method

to evaluate the potential energy at every time step. To reduce the computational cost

7



and complexity, a force field approximates the electronic energy as a parametric func-

tion of the nuclear coordinates. Many different functional forms of force field exist for

modeling the potential energy surface. But in general, force fields are expressed as a

sum of bonded and non-bonded interactions.

EFF = Ebond + Eangle + Edihedral + EvdW + Eelectrostatic (3)

where the first three terms describe bonded interactions, representing bond stretch-

ing, angle bending, torsional interactions, respectively, and the last two terms describe

non-bonded interactions, representing van der Waals (vdW) interaction and electro-

static interaction, respectively.

For bond stretching interaction, the properties of the chemical bond are defined in

terms of the two bonded atom types. An atom type represents an atom of a particular

element within its local chemical environment, for example, an sp3 carbon. Given two

bonded atoms, the force field provides parameters for the bonded energy based on

the bonded atom types. In the simplest model, the bond stretching interaction is

described as a simple harmonic motion.

Ebond(rAB) = kAB(rAB − rAB
0 )2 (4)

where rAB
0 is the equilibrium bond length and kAB is a force constant, a measure of

the stiffness of the bond. Note that most force fields are not capable of describing

bond dissociation.

The angle bending energy describes the energy change associated with bending an

angle formed by three connected atoms A-B-C. Similar to the stretching interactions,

it is usually given by a Taylor series around an equilibrium bond angle and truncated

8



at the second-order in its simplest form.

Eangle(θ
ABC) = kABC(θABC − θABC

0 )2 (5)

where θABC
0 is the equilibrium bond angle and kABC is a force constant, a measure

of the stiffness of the angle. As in the case of bonding, the parameters are defined in

terms of the three bonded atom types involved in the interaction.

The torsional energy is the energy required for rotation around a B-C bond in

four sequentially connected atoms A-B-C-D. Unlike the stretching and the bending

energies, the torsional energy is not expanded as a Taylor series because the torsional

angle can significantly deviate from the equilibrium angle. Instead, it is usually written

as a Fourier series.

Edihedral =
∑
n=1

Vn
(
1 + cos(nθ − phasen)

)
(6)

where θ is dihedral angle, n is periodicity, Vn is a rotational barrier, phasen is a phase

shift. Because the torsional energy is intermediate between the bonding and non-

bonding regimes, it is often the most heavily parameterized component of the whole

force field.

Non-bonded terms consist of vdW interactions and electrostatic interactions. The

vdW energy describes the non-polar part of the interactions between atoms that are

not directly bonded. One of the widely used models is Lennard-Jones (LJ) poten-

tial, where repulsive interaction is proportional to r−12 and attractive interaction is

proportional to r−6:

ELJ(rAB) = ε

[(
r0
rAB

)12

− 2

(
r0
rAB

)6]
(7)
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where rAB is the distance between atom A and atom B, ε is the depth of the potential

wall, r0 is the distance where the potential energy is zero.

The electrostatic energy describes the Coulombic interaction between atoms with

partial charges. Molecular charge distribution can be approximated by several differ-

ent charge models and the simplest approximation is the simple point charge model,

where the partial charges are assigned to each atom center. In the simple point charge

model, the electrostatic interaction between atom A and atom B is given by:

Eel(r
AB) =

qAqB

εrAB
(8)

where ε is a dielectric constant and qA and qB are atomic partial charges of atom A

and atom B respectively.

The main advantage of force field methods over quantum mechanics methods is

the greatly reduced computational cost, which enables simulations of large systems,

including biomolecular systems, with relatively long timescales (on the order of mi-

croseconds). On the other hand, the performance of the current generation of widely

used force fields in predicting thermodynamic properties shows that there is still scope

for improvement in the quality of parameters and the choice of functional forms.

1.3 Overview of my Ph.D. Research

As an effort in developing CO2 reduction electrocatalyst, first half of my Ph.D. work

focused on theoretical study of four-centered iron CO2 reduction electrocatalysts

[Fe4N(CO)12]
-. The complex is first found by Muetterties and coworkers28,29, and

in its resting state, it is found to be able to act as a selective electrocatalyst for CO2

reduction to formate in aqueous solution.30 After it undergoes two reduction events,

slow CO dissociation from the cluster is observed experimentally, making the cluster

10



inactive. While understanding the mechanism of the side reaction is important to

the overall strategy for designing a more robust molecular catalyst, the mechanism

was not yet uncovered. To uncover the mechanism, we employed DFT and ab initio

molecular dynamics (AIMD) to estimate the first two redox potentials of the complex

and explore the pathway of its side reaction involving CO dissociation.31

The second half of my Ph.D. work focused on the multifaceted development of

a small molecule force field. While the molecular structure and property prediction

largely rely on molecular mechanics, the accuracy of molecular mechanics simulations

is critically dependent on the quality of the molecular mechanics force field. There-

fore, improvement in the molecular mechanics force field will lead to more reliable

prediction of molecular structure and properties of interest.

Most molecular mechanics force fields use point charges to approximate the charge

distribution around atoms in a system. Restrained electrostatic potential (RESP),

where partial charges are fitted against quantum chemical electrostatic potentials

with restraints, is the most widely used ESP-based charge model for determining

atomic partial charges.32 However, several not-yet-resolved challenges remain, includ-

ing significant dependence of the fitted charges on many heuristic choices, indicating

that there is still room for improvement in the method. As a first step to develop

the next generation of the ESP-based charge model, we implemented an open-source

Python package for RESP, respyte, a tool capable of exactly reproducing the origi-

nal implementation and easily extensible for developing improved ESP-based charge

models.

Developing a high-quality general force field for the application to the wide range

of small organic molecules is challenging due to the vastness of the chemical space

that must be covered. While Current efforts in improving force fields mostly involve

in-house or commercial closed-source efforts, Open Force Field Consortium aims to

11



develop and release an automated, open infrastructure and open datasets for produc-

ing and benchmarking force fields, so that anyone can access and contribute to the

force field development. In our previous work, we showed our initial progress toward

the goals, the development of the Open Force Field toolkit, an open-source software

package for the development and application of force fields, and the first application

of the infrastructure to create a small molecule force field, OpenFF1.0.0, code-named

Parsley.33 The present work describes the further improvements in Parsley that have

been made, which include modifications and additions of parameter definitions for

improved performance in certain chemical spaces, and a more careful design of QM

reference data used to refit bonded parameters of Parsley.

12



2 Quantum Chemical Studies of Redox Properties

and Conformational Changes of a Four-center

Iron CO2 Reduction Electrocatalyst31

2.1 Introduction

Development of economically viable technologies for reducing CO2 concentration in

Earth’s atmosphere is one of the global environmental problems that we must solve

in the near future. One of the major research fields in modern chemistry is to develop

CO2 capture, utilization and storage strategies. Electrochemical CO2 reduction has

been studied as one of CO2 utilization techniques, which can give us the possibility

to produce useful products from CO2.

The discovery of CO2 reduction electrocatalysts represents a significant advance in

CO2 utilization.34 Certain metallic electrodes have been reported to have a catalytic

activity for carbon dioxide reduction; Hori reported the formation of hydrocarbons

and alcohols in electrochemical reduction of carbon dioxide at copper electrodes in

aqueous solution and discussed the reaction mechanism in 1989.35 In recent years, sev-

eral metal and metal dichalcogenide nanostructured catalysts with high surface area

have been proposed as promising candidates for electrocatalysts for the CO2 reduc-

tion.36–41 In addition to the heterogeneous catalysts, a number of molecular catalysts

have also been investigated for CO2 reduction and reviewed in several papers.42–44

In 2011, Rail and Berben has found that an Earth-abundant metal complex, first

described by Muetterties and coworkers28,29 and denoted as [Fe4N(CO)12]
- or 1- in

its resting state, can act as a selective electrocatalyst for CO2 reduction to formate

in aqueous solution.30 The preference of the catalyst for hydrogen evolution vs. CO2

reduction can be adjusted by tuning the strength of the acid used as a proton donor.

13



An isoelectronic compound, [Fe4N(CO)12]
2-, was found to be a catalyst for hydrogen

evolution only.45 In more recent work, Taheri and Berben further characterized the

CO2 reduction mechanism and proposed the reduced hydride H-1- as a key reaction

intermediate.46 The hydricity, or hydride donor-ability of H-1- was proposed as a

thermodynamic predictor of selectivity for hydrogen evolution or CO2 reduction; a

free energy window was proposed to explain the activity of 1- for CO2 reduction as

opposed to its isoelectronic analogues.

[Fe4N(CO)12]
- is experimentally known to undergo two reduction events. When 1-

is electrochemically reduced to 13-, slow CO dissociation from the cluster is observed,

resulting in the [Fe4N(CO)11]
3- or 23- species; the catalytic activity of this species is

unknown but presumed to be inactive. In a companion experimental work, the X-ray

crystal structure of 23- is reported.47 Simulations that uncover mechanisms of side-

reactions are important to the overall strategy for designing molecular catalysts which

are resistant to them. In this respect, this article describes the redox properties and

CO dissociation pathway of this complex using computational quantum chemistry to

complement the experimental findings and provide atomic-resolution insights.

The use of density functional theory (DFT) to study the electronic properties of

metal carbonyl clusters has precedent in the literature. In particular, Schaefer and

coworkers have produced a series of studies on the structures and metal-metal bond-

ing of Iron carbonyls and their derivatives.48–67 Several other groups also have carried

out DFT studies for geometry optimization and vibrational frequency analysis of iron

carbonyl complexes.68–71 Presumably, the strong fields from the CO ligands promote

a low-spin and single-reference electronic state, making DFT a qualitatively appro-

priate method for studying these otherwise daunting multi-center inorganic clusters.

Likewise, the application of DFT and solvent models for calculating redox potentials

is well established.72–74 On the other hand, we are not aware of any theoretical stud-
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ies that have investigated the redox properties and reactivity of 1; the significant

metal-metal bonding and variation of charge states in this cluster may pose signifi-

cant challenges for the density functional approximation and solvent model. For this

reason, it is vital to compare calculated observables with experimental data where

available.

In this theoretical study, we characterize the structures and energetics of the se-

ries of redox states: 10, 1-, 12- and 13-, and provide mechanistic insight into the CO

dissociation side-reaction: 13- → 23-+CO. Our calculations of the one-electron reduc-

tion potentials show close agreement with the experimentally measured values and

provide some evidence that the BP86 density functional approximation13,75 performs

more accurately for this system than the hybrid B3LYP functional.22 The dissocia-

tion pathway was found using high-temperature AIMD and relaxed to the minimum

energy path to calculate the activation barrier.76 The calculations predict a structure

of 23- in remarkable agreement with the X-ray crystal structure that was determined

concurrently,47 lending further confidence to the level of theory used in this study. We

also compare the CO dissociation barrier height to the analogous reaction after only

one reduction event: 12- → 22- + CO and show that dissociation from this electronic

state is energetically uphill, though the activation free energy of CO dissociation is

similar in both states. Our usage of DFT approximations is checked using natural

orbital occupation numbers from multireference complete active space self consistent

field (CASSCF) calculations at key geometries.77,78
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2.2 Computational Methods and Results

2.2.1 Redox Potential Calculations

We evaluated the relative free energies between the redox intermediates 10, 1-, 12-

and 13- using unrestricted Kohn-Sham DFT79 with the implicit solvent environment,

conductor-like screening model (COSMO)80 for comparison to experimentally de-

termined redox potentials. These calculations were carried out using the TeraChem

software, which uses graphics processing units to accelerate the computation of the

Coulomb and exchange matrices,81–83 effective core potentials (ECPs)84,85 and sol-

vent response86 that appear in the SCF calculation. A recently developed geometry

optimization method using translation-rotation internal coordinates was employed to

accelerate the energy minimization calculations.87

G = Gsolv +HSCF + ZPE +Htr,rot,vib − TStr,rot,vib (9)

∆G = Gred. −Gox. = −FE0 (10)

Geometry optimization was used to derive the self-consistent field (SCF) electronic

energy together with the solvation free energy. Vibrational frequency calculations

were used to derive the zero point energy and Gibbs free energy within the harmonic

approximation. To calculate the relative redox potential, we took the differences of

the free energies of redox pairs and subtracted the absolute potential of the reference

electrode, which is 4.67 V for the saturated calomel electrode (SCE). This value is

based on the absolute potential of the NHE which was determined by Reiss and Heller

to be 4.43 V,88 though this quantity is difficult to measure and values in the range of

4.2–4.7 V have been reported in the literature.89

We tested the dependence of results on the choice of DFT approximation by per-
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forming calculations using three functionals: the BP86 gradient-corrected semilocal

functional,13,75 the B3LYP hybrid functional,22 and the PBE0 hybrid functional.25

Previous studies have noted that BP86 may perform more reliably than B3LYP in

the study of the compounds in this paper.90,91 We also investigated whether adding

diffuse basis functions affects the calculation results, because previous gas-phase DFT

suggest that diffuse basis functions are needed for the description of anions.92–94 For

light elements (H, C, N, O) we used the def2-TZVP triple-valence Gaussian basis

set95,96 with f and higher angular momentum functions removed, denoted as def2-

TZVP(-f). For the iron atoms we used either the LANL08 or LANL08+ basis set /

ECP combination,97 which differ by the addition of a diffuse d angular momentum

function in the latter. We further tested the effects of adding a minimal set of diffuse

functions on light elements.98 The combined basis sets are called def2-TZVP(-f)-LTZ,

def2-TZVP(-f)-LTZ+, and ma-def2-TZVP(-f)-LTZ+ respectively. Finally, since the

cyclic voltammetry experiments to measure the redox potentials were carried out in

MeCN/H2O (95:5) solvent, we also conducted the calculations employing the dielectric

constants of water (78.4) and MeCN (37.5). From Table 1 and Table 2, we concluded

that the system has minor dependences on the choice of basis set and solvent while the

functional dependence is significant. The BP86 functional gave closer agreement with

experiment (RMSE < 0.2 V) than the B3LYP and PBE0 hybrid functionals (RMSE

> 0.4 V); the improved agreement is not due to shifting the absolute electrode poten-

tial, because the BP86 RMSE is still much lower than the other two functionals with

the average gap subtracted out. Overall, the combination of the BP86 functional, the

def2-TZVP(-f)-LTZ+ basis, and the dielectric constant of water yields good agree-

ment with experimental data with a root-mean-squared error (RMSE) of 0.15 V. The

relatively high accuracy of BP86 (compared to hybrid functionals) for this system is

consistent with previously published DFT studies of 3d transition metal containing
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complexes.90 To check the possible higher spin multiplicities for each state of the

catalyst, we also calculated energies of higher spin multiplicities for each redox state

(triplet and quintet for even-electron systems, quartet and sextet for odd-electron

systems) and found that increasing the spin multiplicity significantly increases the

total energy by over 10 kcal mol−1. From these findings we conclude that higher spin

multiplicities do not participate in the redox chemistry and reaction pathways in this

paper.

 def2-TZVP(-f)_LTZ+/ water (V) 
 10/1- 11-/2- 12-/3- RMSE 

exp >0.2 -1.23 -1.60  

B3LYP -0.13 -1.37 -2.07 0.42 

PBE0 -0.26 -1.42 -2.19 0.50 

BP86 0.37 -1.16 -1.54 0.15 

 Table 1: Functional dependence of the redox potential calculation and com-
parison with the experimentally determined redox potentials. The BP86
results are shown in bold as they are judged to be most reliable from the present data
and literature precedent.

  BP86/ acetonitrile (V) 

  10/1- 11-/2- 12-/3- RMSE 

exp >0.2 -1.23 -1.6  

def2-TZVP(-f)_LTZ 0.41 -1.30  -1.62  0.14 

def2-TZVP(-f)_LTZ+ 0.34 -1.22  -1.64  0.13 

ma-def2-TZVP(-f)_LTZ+ 0.39 -1.27  -1.55  0.15 

 Table 2: Addition of diffuse functions and solvent dependences of the redox
potential calculation. The line shown in bold is identical to the bolded line in Table
1.
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2.2.2 Computational Discovery of Dissociation Pathways by ab initio

Molecular Dynamics

We used AIMD to explore the chemical and structural rearrangements of Fe4N(CO)12

in its different electronic states. In the Born-Oppenheimer MD (BOMD) framework,

the motion of atoms is simulated by applying the nuclear gradients of the energy as

classical forces to the atoms, then accelerating the atoms along the force vectors us-

ing Newton’s second law. In order for the simulations to broadly sample the chemical

space and discover many reaction pathways while keeping the computational cost af-

fordable, accelerated sampling techniques are needed to cross over potential barriers

more rapidly.99–104 In this study, we simply ran unbiased AIMD at elevated temper-

atures to accelerate the sampling. A velocity Verlet integrator was used with a time

step of 1.0 fs. A Langevin thermostat was used with the equilibrium temperature set

to 1000 K and a collision frequency of 1.0 ps-1. Several simulations were started from

the energy-minimized structures of 12- and 13-, as well as the protonated isoelectronic

species, i.e. H-11- and H-12-. These simulations used the B3LYP functional and a hy-

brid basis set combining 6-31G*105 for light elements and the LANL2DZ basis set /

ECP for Fe106, abbreviated as 6-31G*-LDZ.
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Figure 1: RMSD time series to the initial optimized structure for a high-
temperature AIMD simulation of H-11-. Several trajectory snapshots are shown,
along with blue arrows indicating their corresponding simulation time. Fe, orange; C,
grey; N, blue; O, red; H, white.

The AIMD trajectories at elevated temperatures features highly fluxional behavior

of the CO ligands. Figure 1 shows the all-atom root-mean-square deviation (RMSD)

of the trajectory frames to the initial structure and several trajectory snapshots of

the simulation of H-11-. The RMSD rapidly reaches 1 Åafter 1000 simulation steps (1

ps) and increases steadily over the course of ∼ 15 ps to almost 3 Åas larger geometric

rearrangements took place. The conformational changes include concerted rotation of

multiple CO groups bonded to the same iron atom (analogous to torsion about a single

bond), as well as the exchange of CO ligands on different iron atoms. At frame 22500,

we observed a significant increase of RMSD to > 6 Åwhere a CO ligand dissociated

from the cluster. The distance between the dissociated CO and the catalyst molecule

continued to increase until the simulation was terminated at frame 37000.
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2.2.3 Characterization of Optimized Structures

The AIMD simulation explores the potential landscape very broadly, but a closer ex-

amination of the optimized structures and barriers is needed to assess the feasibility of

the discovered pathways at experimental conditions. We focused on trajectory frames

numbered 22000–22390 where the CO is observed to dissociate from the complex and

optimized a total of 40 trajectory frames evenly spaced by 10 frames (i.e. spanning

400 simulation time steps). The proton was deleted from the trajectory frames prior

to optimization. The charge and spin multiplicity of the twice-reduced state were set

to –3 and 1 respectively, prompted by CASSCF (8,8) calculations which indicated

that the lowest-energy state is a closed shell singlet.

Figure 2: Optimized structures of 13- (left) and 23-+CO (right) at the
B3LYP/6-31G*-LANL2DZ level of theory, before and after CO dissoci-
ation. The structures are characterized by a nearly planar isosceles triangular face
(left) and a rectangular face (right) that contain the nitrogen atom. Fe, orange; C,
grey; N, blue; O, red; H, white.

Figure 2 summarizes the main results when the cluster is optimized in the –3

charge, singlet electronic state. The lowest energy structure (Figure 2, left) is close to

Cs-symmetric with a single mirror plane; the Fe atoms surround the central N in an
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isosceles trigonal pyramidal arrangement. The central N is nearly in the plane made

by three iron atoms, with three in-plane Fe-N-Fe angles of 137, 137 and 84 degrees

respectively, summing up to 358 degrees. The other three Fe-N-Fe angles are between

85 and 90 degrees. Each Fe atom has three CO ligands with a tight distribution

of Fe-C distances ranging from 1.74–1.77 Å; the ab initio bond order (BO) indices

computed using Mayer’s method107 range from 1.05 to 1.25, indicating single bond

order.

The lowest-energy structure with a dissociated CO ligand (Figure 2, right) features

two CO ligands bridging a pair of Fe atoms. The three Fe atoms, central nitrogen

and two bridging carbons form nearly a planar rectangle, with Fe-N-Fe and C-Fe-C

angles of 168 and 174 degrees respectively. The cluster is also nearly Cs-symmetric

with a single mirror plane. Moreover, the bridging COs have significantly larger Fe-C

distances of 1.83 Å(left and right edges of rectangle) and 2.08 Å(bottom edge). The

increased lengths of the Fe-C bonds along the bottom edge of the rectangle suggest

that they possess a different electronic character; indeed these two bonds have ab initio

bond orders of 0.55, which are almost exactly half of the others. Our interpretation is

that the C-Fe-C is a three-center two-electron bond, which compensates for the two

σ-electrons that are lost in the dissociation process. To support this interpretation,

Figure 3 shows a doubly occupied CASSCF (8,8) optimized molecular orbital that

shows significant electron delocalization across the C-Fe-C bond; this is the only

orbital we observed that possesses bonding character for these atoms. A comparison of

the optimized structure with the experimentally determined X-ray crystal structure47

revealed an excellent agreement of 0.13 Å, lending confidence to the accuracy of the

theoretical methods used; the calculations were performed without knowledge of the

crystal structure, and the comparison was only performed later. The experimental

crystal structure also contains three Na+ counterions that further stabilize the 23-
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structure; these were not included in the present calculations.

To assess the possibility that 2 may be a catalyst for CO2 reduction, we computed

redox potentials of the 20/2-, 2-/22- and 22-/23- couples in analogy to 1. Our computed

potentials are +0.30, –0.45, and –1.05 V vs. SCE, respectively. Because all of these

potentials are more positive than the applied potential for electrocatalysis, we do not

think these species are participating redox intermediates in the main CO2 reduction

reaction.

Figure 3: Optimized, doubly-occupied molecular orbital of 23- at the CASSCF(8,8)/6-
31G*-LANL2DZ level of theory, indicating a delocalized bond that connects the three
Fe centers and two bridging C atoms in the foreground. The orbital is plotted with
an isosurface value of 0.07.

2.2.4 Calculation of Barrier Heights of CO Dissociation

The AIMD simulation that discovered the dissociation pathway is a good starting

point for estimating the activation barrier separating the initial and final states. An

initial reaction pathway is obtained by concatenating the MD trajectory frames with

the output frames from the geometry optimization. From these structures, an “initial

chain” of 21 equally spaced frames is selected. Because the initial chain may contain

kinks that interfere with the convergence of reaction path optimization methods, we

performed an initial smoothing by minimizing an elastic band energy function that
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depends solely on internal coordinate displacements. The resulting “smoothed chain”

is free of kinks and has a shorter arc-length than the initial chain, and is input into a

nudged elastic band (NEB) calculation. The NEB uses a climbing-image approach to

ensure the highest-energy structure is as close as possible to the true transition state.

Figure 4: Comparison of relative energies along CO dissociation coordinate from 13-

and 12- calculated using BP86/6-31G*-LDZ. The Fe–C distance for the dissociating
CO ligand is highlighted. Fe, orange; C, grey; N, blue; O, red; H, white.
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 13– → 23– + CO 12– → 22– + CO 
Structure ∆E ∆G ∆E ∆G 

Optimized IRC at BP86/6-31G*-LDZ 
Initial 0.0 0.0 0.0 0.0 

TS 18.8 17.4 22.4 18.1 
Final 10.6 7.2 22.1 16.3 

Separated 13.3 1.4 25.2 12.8 
Optimized IRC at M06-L/6-31G*-LDZ 

Initial 0.0 0.0 0.0 0.0 
TS 20.1 18.3 – – 

Final 11.0 7.6 – – 
Separated 15.9 3.6 22.9 12.9 

Optimized IRC at B3LYP/6-31G*-LDZ 
Initial 0.0 0.0 0.0 0.0 

TS 25.3 23.1 25.2 16.5 
Final 12.2 7.8 24.9 14.7 

Separated 14.8 3.3 27.2 11.5 
Optimized IRC at M06/6-31G*-LDZ 

Initial 0.0 0.0 0.0 0.0 
TS 23.5 22.5 – – 

Final 11.1 9.9 – – 
Separated 15.6 4.2 21.9 10.0 

 Table 3: Relative energies and free energies (via harmonic approximation)
for CO dissociation from 13- and 12-. Each group of four rows refers to calculations
performed using a different DFT approximation. In the fourth row of each group,
energies and free energies are calculated as a sum of the separated species in the
product. All energies are reported in kcal mol−1.

The blue curve in Figure 4 shows the total energy for CO dissociation from 13-

along the BP86/6-31G*-LDZ optimized reaction coordinate. The first part of the

path involves a torsional motion of six CO ligands, allowing the two highlighted Fe-C
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distances to come into closer contact. An intermediate is found with relative energy

of ∆E1 = +14.5 kcal mol−1 and activation barrier of Ea1 = +15.5 kcal mol−1; the

structure contains an additional Fe-C bond (distance = 2.09 Å; BO = 0.63). The sec-

ond transition state has energy Ea = +18.8 kcal mol−1 ( ∆G‡ = 17.4 kcal mol−1) and

the CO ligand beginning to dissociate from the cluster; this is followed by a relatively

flat energy basin where the two newly formed Fe-C bonds (the three-center bond)

become equal in length. The final CO-dissociated structure gives a reaction energy

∆E = +10.6 kcal mol−1 (∆G = +7.2 kcal mol−1). We also computed the reaction

energy by treating the products as completely separate species and obtained∆Esep =

13.3 kcal mol−1 (∆Gsep = +1.4 kcal mol−1). The higher value of ∆Esep is attributed

to dissociating intramolecular interactions and the lower value of ∆Gsep to the trans-

lational and rotational entropy of separated dissociation products. The slightly uphill

∆G and moderate ∆G‡ values indicate this mechanism may be operative for forming

the experimentally observed 23- species.

We also investigated CO dissociation from the 12- electronic state; because disso-

ciation is not observed from 12- in the experiment, we presume that the calculated

thermodynamic and/or kinetic parameters should be less favourable compared to 13-.

In searching for the reaction energies and activation barriers for the 12- state, we

proceeded from the same initial structures from the AIMD trajectory; the charge and

spin multiplicity were set to –2 and 2 respectively. Our BP86 calculations found an

uphill and nearly barrierless dissociation pathway (orange curve in Figure 4) with ∆E

= 22.1 kcal mol−1 and Ea = 22.5 kcal mol−1 (∆G = +16.6 kcal mol−1; ∆G‡ = 18.1

kcal mol−1). The reaction energy calculated using separated species as the products

is ∆E = 25.2 kcal mol−1 (∆G = 12.8 kcal mol−1).

Comparison of the dissociation pathways from 13- vs. 12- gives reaction free en-

ergies of ∆G = +7.2 vs. +16.3 kcal mol−1; with separated product species, ∆Gsep
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= +1.4 vs. +12.8 kcal mol−1. These values indicate that CO dissociation from 12- is

thermodynamically less favourable than from 13-, consistent with the experimental

findings. On the other hand, though the energy barrier for 13- is lower than for 12-

(∆E = 18.8 vs. 22.4 kcal mol−1), the calculated activation free energies are nearly the

same (∆G‡ = 17.4 vs. 18.1 kcal mol−1). Comparison of the overall shape of the dis-

sociation curve shows some other important differences; whereas the 13- pathway has

two clearly defined barriers and an intermediate, the 12- pathway is nearly barrierless

which indicates tunnelling effects may play a significant role in determining the reac-

tion rate.108 In summary, CO dissociation from 12- is found to be thermodynamically

less favourable, but more detailed reaction rate and free energy calculations may be

needed to accurately compare the kinetics of these two pathways.

Figure 5: Optimized structure of 12- at the BP86/6-31G*-LANL2DZ level
of theory, characterized by a “crooked butterfly” structure with a single
elongated Fe-Fe distance of 3.0 Å. Fe, orange; C, grey; N, blue; O, red; H, white.

2.2.5 Validation of Electronic Structure Method

The veracity of our predictions regarding CO dissociation rests upon the choice of

method. In this section we provide some justifications for our use of DFT in general,
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and the BP86/6-31G*-LDZ level of theory in particular. Our comparison tests include

four DFT approximations (BP86, B3LYP, the meta-GGA functional M06-L109 and

the hybrid meta-GGA M06110). Whereas the former two functionals contain minimal

empiricism, the latter two functionals contain 30+ parameters fitted to databases

of diverse molecular properties. Optimized IRCs from 13- and 12- were computed

using all four functionals in the 6-31G*-LDZ basis (Table 3). We also tested for basis

set effects in the BP86 and B3LYP calculations by comparing a smaller double-zeta

basis 6-31G*-LDZ (6-31G* for main group, LANL2DZ for Fe) and a larger triple-zeta

basis TZVP-LTZ (TZVP111,112 for main group, LANL2TZ for Fe). ∆E and Ea in

the large basis set were estimated by taking differences of single-point energies along

the small-basis-optimized pathway following the IRCMax approach.113 Our results for

comparing BP86 vs. B3LYP and basis set effects in the 13– dissociation pathway are

shown in Supplementary Table S1 and Supplementary Figure S1.

In all of our results, we found that increasing the basis set size has a relatively

small effect. In BP86/TZVP-LTZ calculations of CO dissociation from 13-, ∆E is

essentially unchanged from the 6-31G*-LDZ result (10.6 kcal mol−1); Ea is slightly

lower at 18.3 kcal mol−1. For the 12- pathway, BP86/TZVP-LTZ predicts a slightly

higher value for ∆E = 22.7 kcal mol−1, and there is no energy maximum on the

pathway; this is perhaps not surprising given the nearly barrierless dissociation curve.

In B3LYP/TZVP-LTZ calculations, the ∆E and Ea values changed by < 1 kcal mol−1

from the corresponding B3LYP/6-31G*-LDZ values. The choice of DFT functional

has a more significant impact. B3LYP/6-31G*-LDZ predicts ∆E = 12.2 kcal mol−1

and Ea = 25.3 kcal mol−1 for CO dissociation from 13-; notably, Ea is 6 kcal mol−1

higher than in BP86. Despite differences in the barrier height, the structures along

the 13- IRCs are highly similar for both functionals, as evidenced by B3LYP single-

point calculations along the BP86 optimized pathway and vice versa (Supplementary
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Table S1).

The most significant DFT functional dependence is seen in the 12- dissociation

pathway. For the reactant (12-) structure B3LYP predicts a pyramidal structure with

an isosceles triangular base, almost identical to the structure of 13- in Figure 2, left. On

the other hand, BP86 predicts a “crooked butterfly” structure (Figure 5) that is closer

to the 1- resting state; the largest Fe-N-Fe angle is 165 degrees, and one of the Fe-Fe

distances is elongated to 3.01 Å(the others Fe-Fe distances are between 2.55–2.65

Å). These structures are only stable on the potential surfaces of their respective

functionals, as a BP86 optimization started from the B3LYP-optimized structure

leads to the BP86 minimum and vice versa. Clearly a more objective measure is

needed to determine which DFT approximation is more appropriate for this system.

The differences in BP86 vs. B3LYP in the 12- state originates from the electronic

character of the ground state Kohn-Sham (KS) wavefunction. We computed the ex-

pectation value of the squared total spin operator 〈S2〉 to measure any deviations of

the KS wavefunction from a pure doublet (Supplementary Figure S2). Along the BP86

pathway, the 〈S2〉 value of the BP86 KS wavefunction is stable around 0.77, close to

the value of 0.75 for a pure doublet; on the other hand, the B3LYP wavefunction

has higher 〈S2〉 values ranging from 0.84 to 1.08, indicating a higher degree of spin

contamination. The spin contamination is even greater along the B3LYP IRC, where

the B3LYP wavefunction has 〈S2〉 close to 2.0 at the dissociated state. BP86 also pre-

dicts 〈S2〉 values around 1.6–1.7 for these structures, indicating a broken-symmetry

KS wavefunction containing more than one unpaired electron.
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Figure 6: Natural orbital occupation numbers calculated from CASSCF.
The input geometries are from IRCs of CO dissociation from 13- (left) and 12- (right)
optimized using BP86 (top) and B3LYP (bottom). Active spaces of (4,6) and (3,6)
were used for all structures from 13- and 12- respectively.

The significant spin contamination along the B3LYP IRC for 12- points to a mul-

tireference ground state that is not well-described by a KS determinant. To investigate

this further, we carried out single-point CASSCF calculations at the initial, TS, and

final geometries along the CO dissociation pathway for both the 13- and 12- IRCs

calculated using BP86 and B3LYP. These calculations employ the same 6-31G*-LDZ

basis set as the DFT calculations, and active spaces of (4,6) and (3,6) were used for

all states from 13- and 12- state pathways respectively. These calculations were carried

out in the ORCA software package.114,115

The optimized CASSCF molecular orbitals are very close to the natural orbitals

that diagonalize the density matrix; the eigenvalues are within 10-4 of the diagonal

elements, and off-diagonal elements are all < 10-4. The natural orbital occupation
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numbers for initial, TS, and final structures optimized using B3LYP and BP86 are

plotted in Figure 6; the more the occupation numbers deviate from 2.0 and 0.0 (for

occupied and virtual orbitals), the greater the multireference character. Our analysis

for 13- shows that the natural orbitals at the “frontier” have occupation numbers in

the range of 1.9–1.7 and 0.1–0.2. The variation in these values are small when com-

paring the initial, TS, and final structures, indicating there is no qualitative change

in the electronic character along the reaction pathway. Moreover, none of the natural

orbitals have occupation numbers near 1.0, which is a hallmark of wavefunctions that

display strong multireference character; this is the case for diradicals and homolytic

dissociation of N2.
77

For CO dissociation from 12-, the CASSCF calculations using BP86-optimized

structures show a similar pattern to 13-, except a singly occupied molecular orbital is

present. On the other hand, a major change in the electronic character is seen for the

B3LYP-optimized structures. The TS and final structures have occupation numbers

close to 1.0 in three orbitals, indicating strong ground-state multireference character;

this result agrees with the spin contamination observed in DFT wavefunctions for

the same structures. When comparing the BP86 and B3LYP functionals, only the

BP86-optimized structures have CASSCF ground states with consistent electronic

character; we thus conclude that BP86 gives the more reliable result overall.

We also calculated reaction energies and activation energies of the reactions us-

ing the M06 and M06-L functionals to confirm the accuracy of BP86 for this system

(Table 3). These calculations were performed in Q-Chem 5.0. We could not find a TS

structure for CO dissociation from 12- using these functionals, again possibly owing

to the nearly barrierless dissociation curve. The M06-L results are in close agreement

with BP86, which is reasonable given that both functionals contain no Hartree-Fock

(HF) exchange; spin contamination along the BP86-optimized 12- dissociation path-
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way is low, with 〈S2〉 = 0.79–0.80. The M06 results are closer to B3LYP, perhaps

because both functionals contain a similar amount of HF exchange (28 % vs. 20 %).

M06 also shows similar amounts of spin contamination to B3LYP along both the

BP86-optimized and B3LYP-optimized 12- dissociation pathways.

2.2.6 Calculated Vibrational Analyses

Infrared (IR) absorption spectra provide a meaningful connection between theory and

experiment; a harmonic vibrational analysis calculation provides a series of frequencies

and intensities that may be converted to a simulated spectrum by applying artificial

broadening to each absorption peak. The results of two frequency calculations are

shown in Figure 7, where we compare the IR absorption peaks of 12- and 23-, the

presumed initial and final states of CO dissociation. The approximate spectra cannot

accurately reproduce the widths of the experimental peaks, and only the shifts in

the peak positions, or the appearance of new peaks, is meaningful. The most notable

feature in the spectrum of 23- is a new peak that appears in a region red-shifted

from the main CO-stretching band by about 150 cm-1. The vibrational mode of this

peak corresponds to CO-stretching of the bridging CO ligands. The reduced frequency

indicates a slightly lower force constant in the CO bond of the bridging ligands that

donate more electron density to the Fe centers. This red-shifted stretching peak may

be used as a vibrational signature of CO dissociation.
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Figure 7: Comparison of vibrational spectra calculated at the BP86/6-31G*-
LDZ level for 12- (blue) and 23- (orange). The IR spectrum of 23- has a distinct
peak red-shifted from the main band of CO–stretches by about 150 cm (green arrow)
corresponding to a symmetric and antisymmetric stretch of the bridging CO ligands
(bottom). An artificial Lorentzian broadening of 10 cm is used.
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2.3 Conclusions

In this study, we calculated the redox properties of the CO2 reduction [Fe4N(CO)12]
-

(1-) and investigated the possibility of CO dissociation from the twice-reduced state,

13-. Our calculated redox potentials show close agreement with experimentally mea-

sured values. The structure of the product of CO dissociation (23-) was predicted and

found to be in close agreement with the experimental X-ray crystal structure. The

CO dissociation pathway from 13- is energetically accessible at ambient conditions (in

kcal mol−1: ∆E = +10.6, Ea = 18.8; ∆Gsep = +1.4, ∆G‡ = +17.4). The analogous

CO dissociation from 12- has a higher reaction energy and similar activation free en-

ergy (in kcal mol−1: ∆E = 22.1, Ea = 22.4; ∆Gsep = +12.8, ∆G‡ = +18.1) with a

nearly barrierless dissociation curve. Vibrational analysis of 23- shows a distinct CO

stretching peak red-shifted from the main CO stretching band, indicating a possible

vibrational signature of CO dissociation. Our calculations indicate that the BP86

semilocal functional gives more reliable results than the B3LYP hybrid functional

in the study of this system. Future studies will focus on the potentially important

role of counterions in stabilizing redox intermediates, as well as the strong solvent

dependence in the selectivity of this catalyst for H2 evolution vs. CO2 reduction.
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3 respyte: Modernized Implementation of RESP

for the Development of the Next Generation of

ESP-based Charge Model

3.1 Introduction

Most molecular mechanics force fields use point charges to approximate the charge

distribution around atoms in a system. Since atomic partial charges are not physical

observable, many different models have been proposed to define atomic partial charges

in a system. The most widely used method for fixed charge force fields is the restrained

electrostatic potential (RESP) method, where atomic partial charges are fitted against

quantum chemical electrostatic potentials (ESP) with restraints.32

While RESP has seen broad application over the past 20 years, many unresolved

challenges remain, including significant dependence of the fitted charges on many

heuristic choices; for example, (1) it deliberately uses a low level of theory, Hartree-

Fock (HF)116,117 with 6-31G* basis set105 in the gas phase, to overestimate the gas-

phase polarity of molecules to yield appropriate polarity of hydrated molecules, po-

larized by the solvent reaction field32,118,119. However, the over-polarization of HF/6-

31G* appears to be inconsistent across different molecules and to underestimate the

polarization typically induced by water. Therefore, there have been several studies

that explored whether ESPs computed with higher-level QM methods could provide

more accurate charges and thus more accurate simulation120–125; (2) The original im-

plementation samples ESP points on Merz-Singh-Kollman (MSK) shells126 with inner

and outer radii of 1.4 Ri and 2.0 Ri and 0.2 Ri spacing between point layers where Ri

is the van der Waals radius (Bondi radii), and with a density of 1 points/Å
2

in each

layer.32 While the fitted charges heavily depend on the choices involved in sampling
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grid points, the question of “what is the optimal grid-point sampling scheme?” is still

not completely resolved. Because of the many considerations involved in RESP, while

there have been several implementations of RESP, they produce different results for

the same input and/or are not fully featured.

Meanwhile, due to the oversimplification of the model, the fixed point charge mod-

els are no longer valid in describing short range interactions, where electron clouds of

adjacent atoms start to overlap. Charge penetration is the change in the electrostatic

interaction between two atoms and the associated loss of nuclear screening induced by

the overlap of electron clouds. To properly describe the phenomenon, more physically

realistic charge models, such as AMOEBA charge penetration model127, have been

proposed.

As a first step to develop the next generation of the ESP-based charge model, we

developed an open-source software implementation of RESP in Python, respyte. This

new tool is capable of exactly reproducing the original implementation and is also

easily extensible for developing improved ESP-based charge models.

3.2 Computational Methods

respyte is implemented in Python, licensed under BSD 3-clause License, and de-

pends on the following Python modules: Psi4128, SciPy129, NetworkX130, PyYAML131,

SymPy132 and RDKit133. respyte consists of two main functions: (1) grid point selec-

tion and QM calculation, and (2) charge fitting (Figure 8). Details on how to use the

package, as well as inputs and outputs can be found in Appendix B.
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Figure 8: Data flow diagram of respyte. “respyte-esp generator” executable takes
molecule coordinate files (with .pdb or .mol2 extension) along with the input file
(‘input.yml’), where the user specifies the grid generation scheme and QM level of
theory, and performs grid point selection and QM calculation using the Psi4 package.
“respyte-optimizer” executable then takes .espf files, which store the QM data from
the previous step, along with the input file (‘respyte.yml’), where the user specifies
charge model and many options involved in the fitting. It performs charge fitting
and returns fitted charges ({qi}). (In the visualization of QM (MM) ESPs computed
around methanol molecule, the size of the spheres around the molecule represents the
magnitude of ESP value at each grid point and the color of the spheres represents the
sign of the value, ranging from negative (red), zero (white) through positive (blue).)

The package is carefully designed (1) to support various charge models, (2) to en-

able easy implementation of new models, and (3) to support a user-friendly interface.

Each charge model has its own expression of ESP generated by a single particle.

For the simple point charge model, the ESP due to a single particle with the point

charge q is given by

V (r) =
q

r
(11)

For fuzzy charge model, a charge penetration model proposed by Paul Nerenberg

group that consists of a positive point charge, qcore, at the particle center and a

smeared negative charge, q – qcore, the ESP due to a single particle is given by

V (r) =
qcore
r

+
q − qcore

r
(1− e−αr) (12)

where α is the smearing parameter for the particle’s charge distribution. respyte eval-
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uates ESP for each grid point, for a given charge model (currently the simple point

charge model and the fuzzy charge model are supported.) and construct an objective

function, a sum of squared differences between QM ESP and MM ESP, which is given

by

χ2
ESP(q1, . . . , qn) =

m∑
i=1

(
Vi,QM − Vi,MM(q1, . . . , qn)

)2

(13)

When fitting along with electric field (EF), the objective contribution from EF is

given by

χ2
EF(q1, . . . , qn) =

m∑
i=1

(
Ei,QM − Ei,MM(q1, . . . , qn)

)2

(14)

and the objective function, χ2(q1, . . . , qn) is expressed as a linear combination of ESP

and EF contributions.

χ2(q1, . . . , qn) = ωESPχ
2
ESP(q1, . . . , qn) + ωEFχ

2
EF(q1, . . . , qn) (15)

where ωESP and ωEF are relative weights of each component.

In RESP, to increase transferability between conformers and to remove problem-

atic large charges, it applies restraints in the form of a penalty function to suppress

undesirable large charges to lower magnitudes. Harmonic penalty function for charges

is given by

χ2
p,rstr = a

n∑
j=1

(pj − p0j)2 (16)

where a is a restraint weight and p0j is the target parameter for the restraint. Hyper-

bolic penalty function for charges is given by

χ2
p,rstr = a

n∑
j=1

((p2j + b2)1/2 − b) (17)

where a is a restraint weight, b is a tightness of the hyperbola around the minimum.
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Hyperbolic restraint function is more recommended than a harmonic function for

charges because in such a function the well-determined polar charges are not overly

penalized based on their magnitudes.32

The overall objective function with the penalty function is given by

χ2 = ωESPχ
2
ESP + ωEFχ

2
EF + χ2

q,rstr (18)

and if a charge model has one or more additional parameter types, smearing param-

eters for the fuzzy charge model for example, additional penalty functions are added

to the overall objective function. The gradient and hessian of the objective function

are computed to run the Newton-Raphson method, which are given by

g
(t)
i =

∂χ2

∂qi
(q

(t)
1 , . . . , q(tn ) (19)

H
(t)
ij =

∂2χ2

∂qi∂qj
(q

(t)
1 , . . . , q(t)n ) (20)

In the method, the next set of parameters is given by

q(t+1) = q(t) −
[
H(t)

]−1
g(t) (21)

where q(t), g(t), H(t) are the set of parameters, gradient and Hessian of the objec-

tive function evaluated at iteration number t. It returns the parameter set once the

convergence criterion is met.

3.3 Conclusions and Future Directions

We implemented respyte, an open-source version of RESP in Python. The package

is capable of flexible grid point generation and QM ESP and EF calculation with
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a direct interface to the Psi4 package. The charge fitting part of the package is not

only able to reproduce the original implementation, but also carefully designed to

be extensible for developing the next generation of ESP-based charge models. Fuzzy

charge model, a charge penetration model proposed by the Paul Nerenberg group has

been implemented and the preliminary study showed that the fuzzy charge model

gives better reproduction of QM ESP over the simple point charge model.

Figure 9: Comparisons of the goodness of fit to the QM ESP for several
charge models; the simple point charge model and the fuzzy charge models
with different core charges (qc). Box plots of the relative root mean square error
(RRMS = {χ2

ESP/
∑

i=1 (Vi)
2}1/2) of the charge models for rigid small molecules.

(Results of normalized two-stage fittings with a=0.00001, b=0.1, c=0.000005, α0 =
3. c and α0 are for the fuzzy charges, where c is the harmonic restraint weight for α
and α0/rvdW is the target α for the restraint.)

Further research will focus on the evaluation of the fuzzy charge model for the

ability to reproduce experimental observables, such as the densities and heats of

vaporization of pure organic liquids.
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4 Development of an Open Small Molecule Force

Field

4.1 Introduction

Developing a high-quality general force field for the application to the wide range

of small organic molecules of interest in biology and drug discovery is challenging

due to the vastness of the chemical space that must be covered. While there are sev-

eral small molecule force fields widely used today, such as the general AMBER force

field (GAFF)134, the CHARMM general force field (CGenFF)135, and the optimized

potentials for liquid simulations force field (OPLS)136, there is still much room for im-

provement in current general small molecule force fields. Important properties where

the current generations of small molecule force fields lack accuracy include hydration

free energies, partition coefficients, and protein-ligand binding free energies.137–139

Current efforts in improving force fields mostly involve either a small number

of specialized research groups who have in-house knowledge and methods inherited

or commercial closed-source efforts. Open Force Field Consortium is an academia-

industry partnered open-source effort to develop the science and infrastructure for

the development of the next generation of small molecule and biomolecular force

fields, which aims to develop and release an automated, open, sustainable, extensible,

and well-supported infrastructure and open datasets for producing and benchmarking

force fields so that anyone can access and contribute to the force field development.

In our previous study, we showed our initial progress, the development of the Open

Force Field (OpenFF) toolkit, an open-source software package for the development

and application of force fields, and the first application of the infrastructure to create

a small molecule force field, OpenFF1.0.0, code-named Parsley, the first optimized
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SMIRKS-native Open Force Field (SMIRNOFF) force field. Benchmarking of Parsley

showed improved accuracy in optimized geometries and conformational energetics.33

As a short description of SMIRNOFF, while atom-typing has been a standard

way of force field parameter assignment due to its simplicity, it has several tech-

nical problems, including complexity in force field specification and proliferation

of redundant parameters. As an alternative to atom-typing, SMIRNOFF formal-

ism has been developed.140 SMARTS is a language built on Simplified Molecular

Input Line Entry Specification (SMILES) for defining chemical substructures. (http:

//www.daylight.com/dayhtml/doc/theory/theory.smarts.html) One simple

example of SMARTS string is [OH]c1ccccc1, which can be used to search for phenol-

containing molecules from a database. SMIRKS language (http://www.daylight

.com/dayhtml/doc/theory/theory.smirks.html) extends SMARTS with the nu-

merical labels on atoms in the substructure. While it has been originally designed to

specify chemical reactions, the numerical atom labels can be used to match specific

atoms involved in force field terms to assign force field parameters. [#6X4:1]-[#7X3:2]-

[#6X3]=[#8X1+0] is an example SMIRKS pattern to match the single bond(-) con-

necting the carbon with four bonds([#6X4:1]) and the nitrogen with three bonds

([#7X3:2]) in an amide group (:1 and :2 in the pattern are the numerical atom la-

bels.) In the SMIRNOFF formalism, each force field term has a hierarchy of parameter

definitions, where each definition consists of a SMIRKS pattern and numerical param-

eters attached to it. During a substructure search, if a SMIRKS pattern is matched

to a substructure in a given molecule, the parameters attached to the pattern are

assigned to the mapped atoms in the substructure. A big benefit of this approach is

that since each force field term is independent of each other, an extension of parame-

ter definitions is much simpler compared to atom-typing. The first force field adapted

the SMIRNOFF formalism, SMIRNOFF99Frosst showed that it retains the accuracy
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of its parent force field, AMBER parm99141 and Merck’s parm@Frosst142 for several

important thermodynamic properties, such as hydration free energies and host-guest

binding thermodynamics, with only ∼ 5 percent of lines of parameters for GAFF.143

Here the present study describes further improvements in Parsley, which include

modifications and additions of parameter definitions to improve performance in cer-

tain chemical spaces, and a more careful design of QM reference data used to re-

optimize the SMIRNOFF force field bonded parameters. The successive benchmark

results showed improved performance of the reoptimized force field, OpenFF 1.2.0, in

reproducing QM optimized geometries over its predecessor, especially for phosphonate-

containing molecules and exocyclic divalent nitrogen-trivalent nitrogen bond contain-

ing molecules.

4.2 Method

4.2.1 Training the Parsley Force Field

4.2.1.1 Refitted Parameters

We reoptimized the valence parameters present in modified SMIRNOFF99Frosst.

Each parameter definition is uniquely identified by an interaction type (e.g., bond

stretching) and a SMIRKS pattern (e.g., [#6X4:1]-[#6X3:2]) with one or more phys-

ical values attached (e.g., the equilibrium bond length and the force constant). Modi-

fication of some initial parameters and the addition of new parameter definitions have

been applied to improve performance in certain chemical spaces, where SMIRNOFF99

Frosst fails to properly describe. The change can be summarized as follows:

• Modification of the angle force constant k of bond angles in three-membered

rings (a3).
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• Addition of a34a, t155b to properly describe nonlinear R=S=O and nitrogen-

phosphorus double bond rotation, respectively.

• Three new bond and angle terms, a22a, b14a, and b36a were added to effectively

describe conjugation effect of N=C=S, resonance structure of a single bond

between sp2 carbon and oxygen with negative 1 charge, and resonance structure

of a double bond between nitrogen with positive 1 charge and nitrogen with

negative 1 charge, respectively.

• Periodicities of nitrogen-nitrogen single bond rotations (t128, t129, t130, and

t131) have been modified to properly describe the optimized geometries of

nitrogen-nitrogen single bond containing molecules.

• New improper torsions i2a, i3a, and i3b were added to describe planar triva-

lent N centers connected to pi-bond forming S or P, planar trivalent N centers

connected to a pi-bond-forming N, and planar trivalent N centers inside the

5-membered hetero-aromatic ring, respectively. And new torsions t51a, t51b,

t51c, associated with the new improper torsions, were added to describe sp3

C connected to trivalent N which is connected to N=C, sp3 C connected to

trivalent N which is connected to N=N or N=O, sp3 C and trivalent N bond

connected to 5-membered hetero-aromatic ring, respectively.

The full list of parameter definitions, which can be viewed in the published force field

XML file, openff-1.2.0.offxml, can be summarized as follows:

• Harmonic bond stretch: 88 equilibrium bond lengths and force constants.

• Harmonic angle bend: 36 equilibrium angles and 40 force constants. These two

numbers differ because four linear angles were kept linear during fitting.
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• Proper torsions: Each of the 163 torsion types is associated with an N-term

Fourier series of potential energy contributions, where N ≤ 6, and each term, i,

is of the form of Ei = ki(1 + cos(periodicityi θ − phasei)). We optimized all of

the amplitudes that were defined in SMIRNOFF99Frosst, comprising 160, 67,

25, 5, 5, 3 values of k1, k2, k3, k4, k5, and k6 respectively, for a total of 264

parameters. Parameters t156, t157, t158 represent torsion angles containing a

linear angle, and their values of k1 were kept at 0.0 during fitting. The phase

parameters, periodicityi and the selection of Fourier terms used for each torsion

were not optimized in this release.

• Improper torsions: The 7 improper terms were kept unmodified, to avoid over-

fitting. All of the above parameters were fitted simultaneously against all QM

data.

4.2.1.2 Compound Sets Used in Training

Six sets of small organic molecules were used to generate the quantum chemical

datasets used in fitting. The first compound set is the Roche Set, which contains

468 fragment-like molecules with one to three rotatable bonds. The set was gener-

ated using the MOE software144. The second set is the Coverage Set, which contains

80 molecules selected from eMolecules database145. The set was generated using a

greedy algorithm to maximize the parameter coverage with the minimum number of

molecules. These two compound sets were used for the previous training set genera-

tion, but additional four compound sets were added to extend the coverage of chemical

space. The third set is the Pfizer discrepancy set, which contains 100 fragment-sized

molecules, where their QM torsional profiles computed with HF/MINIX146 followed

by B3LYP/6-31G*//B3LYP/B-31G** are significantly different from those generated

using the OPLS3e force field. Relevant code is open on GitHub147. The fourth set is
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the eMolecules discrepancy set, which contains 2802 fragment-sized molecules, where

their energy-minimized geometries from SMINOFF99Frosst 1.0.8 significantly differ

from those generated from GAFF, GAFF2, MMFF94, and MMFF94s.148 The fifth

set is the Bayer set, which contains 5054 actual pharmaceutical compounds provided

by Katharina Meier from Bayer. Lastly, the supplemental molecule set contains 15

molecules manually selected from eMolecules database145 to achieve the full coverage

of torsion parameters.

4.2.1.3 Selection of Quantum Chemistry Methodology

Quantum chemical calculations were performed using the MolSSI QCFractal149 dis-

tributed quantum chemistry engine, and the results are deposited in the MolSSI

QCArchive Server (MQCAS)150,151, which allows open access to all data. For this

work, a single level of theory was used for all QM calculations, B3LYP-D3(BJ) /

DZVP22,152–154. We described the rationale for the choice of the methodology in our

previous work33, confirming that B3LYP-D3(BJ) reproduces the reference energies

with RMSEs of < 1 kcal mol−1 when very large basis sets (e.g., def2-QZVP155) are

used, and DZVP-DFT basis set gives the best compromise between accuracy and

computational cost for the molecule set including amino acids, small to medium-sized

peptides, and macrocycles.

4.2.1.4 Generation of Quantum Chemical Data for Compound Datasets
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  Roche set Coverage set Pfizer discrepancy set 

Opt. 
Geom. 

Cases 298 356 197 
MQCAS 
Dataset 

OpenFF Gen 2 Opt Set 1 
Roche 

OpenFF Gen 2 Opt Set 
2 Coverage 

OpenFF Gen 2 Opt Set 
3 Pfizer Discrepancy 

Vib. 
Freq. 

Cases 201 101 86 
MQCAS 
Dataset 

OpenFF Gen 2 Opt Set 1 
Roche 

OpenFF Gen 2 Opt Set 
2 Coverage 

OpenFF Gen 2 Opt Set 
3 Pfizer Discrepancy 

Tors. 
Scans 

Cases 124 121 68 

MQCAS 
Dataset 

OpenFF Gen 2 Torsion Set 1 
Roche 2 

OpenFF Gen 2 Torsion 
Set 2 Coverage 2 

OpenFF Gen 2 Torsion 
Set 3 Pfizer 

Discrepancy 2 
  eMolecules discrepancy set Bayer set Supplemental set 

Opt. 
Geom. 

Cases 2143 1751 - 
MQCAS 
Dataset 

OpenFF Gen 2 Opt Set 4 
eMolecules Discrepancy 

OpenFF Gen 2 Opt Set 
5 Bayer 

- 

Vib. 
Freq. 

Cases 358 443 - 
MQCAS 
Dataset 

OpenFF Gen 2 Opt Set 4 
eMolecules Discrepancy 

OpenFF Gen 2 Opt Set 
5 Bayer 

- 

Tors. 
Scans 

Cases 234 144 19 
MQCAS 
Dataset 

OpenFF Gen 2 Torsion Set 4 
eMolecules Discrepancy 2 

OpenFF Gen 2 Torsion 
Set 5 Bayer 2 

OpenFF Gen 2 Torsion 
Set 6 supplemental 2 

 

Table 4: Summary of quantum chemical calculations used to fit the force
field valence parameters in this work.

We curated the new training set to accurately model a broad range of chemistries,

aiming to improve the generalizability of the force field. The three main goals of the

new training set are (1) All parameter definitions are used for the force field; (2) All

parameter definitions are used a reasonable amount of time (∼ 5 times); (3) Each

parameter definition is used in diverse chemical environments. The approach chosen

to achieve the goals can be described as follows:

1. For each compound set, we labeled each molecule with bond, angle, and torsion

parameter definitions, using the OpenFF toolkit.

2. For each bond/angle parameter definition, (1) we listed molecules having sub-

structure matching to the SMIRKS pattern of the parameter definition; (2) cal-

culated a distance matrix using MACCS keys fingerprint and Tanimoto score
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available in the OpenEye package156; (3) performed DBSCAN clustering from

the distance matrix using the scikit-learn software package157; (4) then selected

randomly a molecule from each cluster under the assumption that the molecule

was a representative of unique chemistry within that cluster. For torsion pa-

rameters, to minimize the coupled torsion problem, it used a slightly more

complicated approach. First, each rotation has been converted into a directed

graph representation. In the representation, each node is one torsion parameter

definition, and each rotation is represented as a set of edges, whose starting

point is the torsion parameter found from the rotation in step 1 and ending

points are other torsion parameters sharing the central bond with the torsion

parameter. After converting all rotations in the compound sets into the graph

representation, it chose the most independent sets of edges (i.e., rotations) by

(1) randomly selecting one set of edges for each torsion parameter, (2) cal-

culating the number of overlapping edges then (3) looping over until it finds

near-minimum overlaps.

3. We combined all selected molecules from each compound set. Prior to running

quantum chemical calculations, the selected molecules were expanded to tau-

tomeric and isomeric states, using the Fragmenter software package.158
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Figure 10: Procedure of selecting torsion scans for training t51 ([*:1]-
[#6X4:2]-[#7X3:3]-[*:4]) from the Roche set. (a) is a list of 10 molecules having
a substructure matching to the t51’s SMIRKS pattern. (b) is the color distance ma-
trix of the 10 molecules generated using MACCS keys fingerprint and Tanimoto score.
The closer the element is to 0, the more similar the two structures are. (c) are the
two clusters generated from DBSCAN clustering of the distance matrix and (d) are
the two selected molecules from each cluster.

4.2.1.5 Application of ForceBalance

The parameter optimization was carried out with ForceBalance159, a Python software

package for force field optimization in a systematic and reproducible manner.159,160

ForceBalance v1.7.1161 was used to minimize the objective function. The OpenFF

Toolkit v0.6.0162 and the commercial OpenEye toolkit version 2019.10.2156 were used

to support the OpenFF force field and set up OpenFF simulations. The detailed

optimization algorithm, convergence criteria, objective function with regularization

can be found in our previous work.33
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4.2.2 Testing the Parsley Force Field

Once the parameters had been trained as detailed in Section 4.2.1, we tested the

resulting force field, Parsley 1.2.0, against the quantum chemical test set, termed the

Full Benchmark Set, that we used for our previous work33. The test set contains two

data types: optimized geometries, and energy differences among conformers of a given

molecule.

4.3 Results and Discussion

This section first describes the consequences of parameter optimization for accuracy

over the training set and then benchmarks Parsley on the separate test set compounds

and properties. The test set results should be indicative of Parsley’s accuracy in new

applications.

4.3.1 Improvement in Accuracy Over Training Set Data

4.3.1.1 Optimization of the Objective Function
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Figure 11: Objective, or loss, function, as a function of number of ForceBal-
ance iterations.

The accuracy of the force field for the training data has increased dramatically dur-

ing the parameter fitting process as anticipated. The dimensionless objective function

– the weighted sum of squared differences between QM and MM values – decreased

dramatically in the fitting, from 3.619e+04 to 6.877e+03 in 57 steps (Figure 11). The

objective function is a sum of accuracies of optimized geometries, vibrational spec-

tra, and torsion energy profiles. The summary of improvement in these components

can be found in Table 5 and Figure 13, and the details are provided in the following

subsections. Full fitting details can be found in the release package.163
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Training set Full test set 

Data class 
 

initial final % 
change 

initial final % 
change 

Geometry 
optimization 

Bond lengths 
(RMSE, Angstrom) 

0.0455 0.0220 -51.6 % 0.0401 0.0209 -47.8 % 

Bond angles 
(RMSE, degree) 

4.15 2.41 -41.9 % 3.79 2.71 -28.5 % 

Improper dihedrals 
(RMSE, degree) 

7.27 4.81 -33.9 % 6.83 4.31 -36.8 % 

Vibrational 
spectra 

Frequencies 
(RMSE, cm-1)  

104. 33.8 -67.4 % ND ND ND 

Torsion 
energy 
profiles  

Energies 
(RMSE, kcal/mol) 

2.96 2.00 -32.4 % ND ND ND 

Relative 
energies 

Energies 
(RMSE, kcal/mol) 

ND ND ND 1.76 1.54 -12.3 % 

 

Table 5: Overall change in root-mean-squared error (RMSE) metrics vs.
the quantum chemical result calculated for four types of properties, using
the initial and optimized force field, for training set and test set. ND = No
Data.

(b) (c)(a)

Figure 12: Improvement in components of the training set. Red histogram
shows performance with our initial force field, green histogram shows performance
with the optimized force field and blue histogram shows the distribution of changes
in objective function contribution of each target (individual molecules/ geometries
contributing to the objective function) due to the parameter optimization.

4.3.1.2 Optimized Geometries

For the geometric component, the objective function contribution measured the devi-
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ation of the bond lengths, bond angles and improper torsion angles in MM optimized

geometries from the values in corresponding QM optimized geometries. The objective

function contribution for a single conformer can be given by

Loptgeo(θ) =
∑
i∈ICs

(
xMM
i (θ)− xQM

i

di

)2

(22)

where θ is the force field parameters used in the MM optimization, di is a scaling

factor of 0.05 Å, 8 degrees and 20 degrees for bond lengths, bond angles, and improper

torsion angles, respectively. Please note that the deviations of proper torsion angles

were not considered in the geometric component, to be considered comprehensively

in torsional energy profiles.

The fitting led to overall improvement (Figure 12a, red to green) in the accuracy of

the optimized geometries in the training set. In the blue histogram of improvements,

the portion on the negative/ positive x-axis indicates the ratio of targets where accu-

racy is improved/ reduced, respectively. For a tiny portion of geometries, the accuracy

was degraded, and this can be explained by compromises that had to be made for

some geometries to improve the accuracy of other geometries which share the same

parameters. Table 5 provides a physically interpretable perspective of these results,

which shows that the RMSEs of bond-lengths, bond-angles, and improper torsion

angles in the MM optimized geometries relative to the QM ones in the training set

dropped by 34 ∼ 52 %.

Especially, molecules having deprotonated phosphonate group showed significant

improvement in v1.2.0, fixing a known issue with protonated phosphorus-connected

oxygens which have plagues AMBER-family force fields. In the optimized geome-

try from the v1.1.0 (transparent orange in the Figure 13), the hydroxyl hydrogen is

located much closer to the negatively charged oxygen (1.10 Å) than in the QM opti-
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mized geometry (> 2.4 Å), forming an overly strong intramolecular hydrogen bond.

The v1.2.0 corrects this error and gives a closer agreement with QM optimized geom-

etry by having a larger equilibrium angle for phosphorus-centered angle term (a38:

[*:1] [#15:2] [*:3]).

Figure 13: QM optimized geometry of CC(O)(P@@(O)[O-])P@(O)[O-].
(Transparent orange: MM optimized geometry with v1.1.0, transparent green: v1.2.0.
Gray: C; Red: O; White: H; Olive: P)

Benchmark analysis done by Victoria Lim164 shows that v1.1.0 fails to describe

(1) molecules having a single bond between divalent nitrogen and trivalent nitro-

gen (#7X2-#7X3); (2) azetidines; and (3) octahydrotetracenes. We speculated that

the poor performances on the chemical moieties would be due to the poor chemical

coverage of the training set data used for the previous fittings (< v1.2.0). In v1.1.0

release, periodicities for some nitrogen-nitrogen bond rotations were modified to prop-

erly describe the conjugated effect of the bonds. The parameter set change included

the modification of the periodicity of t128. However, since there were no exocyclic

divalent nitrogen-trivalent nitrogen rotations in the training set, a proper fitting of
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t128 could not be carried out, resulting in inaccurate optimized force constants of the

torsion parameter.

Figure 14: ddE w.r.t. RMSD and ddE w.r.t. TFD of divalent and trivalent
nitrogen-containing molecules. ddEi = [FF energy(i) – FF energy(0)] – [QM
energy(i) - QM energy(0)], where 0th conformer is defined as the one having the
lowest QM energy. Torsion fingerprint deviation (TFD) is a sum of Gaussian-weighted
differences of torsion angles between two conformations.165

Our new training set data includes the exocyclic #7X2-#7X3 rotations and the

new parameter set fitted to the training set showed clear improvement in lower-

ing TFD and RMSD which indicates it is improved in reproducing QM optimized

geometries while showing slight sacrifice in ddE (figure 14). Clear improvement in

reproducing optimized geometries of exocyclic #7X2-#7X3 containing molecules can

be visualized in an aligned overlay of QM optimized geometry and MM optimized

geometries from v1.2.0 and older version. The overlay of optimized geometries of

Cc1c(sc(n1)N/N=C/c2ccccn2)C (Figure 15) shows v1.2.0 successfully reproduces pla-

nar geometry of the molecule, fixing the bad performance in the older versions.
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Figure 15: QM optimized geometry of Cc1c(sc(n1)N/N=C/c2ccccn2)C. (
Transparent orange: MM optimized geometry with v1.1.0, transparent green: MM
optimized geometry with v1.2.0, Gray: C; White: H; Blue: N; Yellow: S)

4.3.1.3 Vibrational Frequencies

For the vibrational component, QM and MM vibrational frequencies computed by

normal mode analysis were sorted in ascending order to generate the sorted sequences

νQM,i and νMM,i, respectively. The objective function contribution measured the sum

of squared differences of the corresponding frequencies, with a scaling factor of dvib =

200cm−1, which can be given by

Lvib(θ) =
∑
i

(
νQM,i − νMM,i

dvib

)2

(23)

The fitting led to substantially improved accuracy of the vibrational frequencies

in the training set (Figure 12b, red to green), and the improvement is more markable

than that of optimized geometries (Figure 12a). The blue distribution in Fig 12b also

shows substantial improvement and Table 5 shows the corresponding result of a 67.4

% drop in the RMSEs of MM vibrational frequencies relative to the QM ones (from
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104 to 33.8 cm-1).

4.3.1.4 Torsional energy profiles

For torsional energy profiles, to get the MM torsional energy profile, each struc-

ture along the QM torsional profile was partially relaxed using the force field with

the harmonic restraint on each atom. During the restrained relaxations, the four

atoms determining the torsion were fixed and harmonic restraint with force constant

1 kcal mol−1 Å−2 was applied on each atom to avoid any large deviation of MM

structures from the QM structures. The objective function contribution measured

the weighted sum of squared differences between QM and MM energies along the

torsional energy profiles.

Ltor (θ) =
1

dE
2

∑
i∈N(gridpoints)

w (EQM (xi))(EQM (xi)− EMM (xi; θ))
2

∑
i∈N(gridpoints)

w (EQM (xi))
(24)

where E (xi) is a relative energy at the grid point i, dE is a scaling factor of 1.0 kcal mol−1,

and w is a weight of each grid point, which is calculated by an equation with two

cutoffs, 1.0 kcal mol−1 and 5.0 kcal mol−1.

w(E) =


1 E < 1.0kcal/mol(

1 + (E − 1)2
)− 1

2 1.0 ≤ E < 5.0kcal/mol

0 E ≥ 5.0kcal/mol

(25)

The fitting led to improved accuracy of the torsional energy profiles in the training

data (Figure 12c, red to green), although the improvement is less dramatic than for

the other two components. Table 5shows that the RMSEs of MM torsional energy

profiles relative to the QM ones decreased by 32.4 % (from 2.96 to 2.00 kcal mol−1).
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4.3.2 Test Set Result

Testing with data outside the training set gives an indication of the transferability of

the new parameters and hence of the accuracy that may be expected in actual use.

Here, we test the performance of the fitted parameters on optimized gas-phase geome-

tries outside the training set, relative conformational energies of gas-phase molecules,

using the same test set, we used for testing v1.0.0.

Figure 16: Improvement in components of the test set.

The overall objective function for the test set is lower for 1.2.0 (16712) than for

the initial force field (29174), and v1.1.0 (20096). The distribution of improvements

over the test set compounds shows the overall improvement in the accuracy of the

MM optimized geometries in the test data set, relative to the reference QM results,

while it shows no notable improvement in the accuracy of the MM relative conformer

energies when compared to v1.1.0.

4.4 Conclusions and Directions

We described a methodology to generate OpenFF 1.2.0, code-name Parsley, a SMIRNOFF

force field with bonded terms fitted against gas-phase QM reference data. With the

careful design of the expanded training set and the proper modification of the param-
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eter set, Parsley 1.2.0 provides more accurate molecular geometries in general over the

older versions and especially shows significant improvement in optimized geometries

of molecules having deprotonated phosphonate group and molecules having single

bond between divalent nitrogen and trivalent nitrogen.

Iterative force field improvement has been included in the subsequent releases

(OpenFF 1.2.1, 1.3.0, and 1.3.1), and it is noteworthy that v1.3 includes an impor-

tant fix of amide-related issues; (1) poor performance of v1.2 in reproducing amide

torsional energy profiles and (2) absence of appropriate torsion parameters for tertiary

amides in v1.2.

We aim to extend the optimization to nonbonded interaction parameters, which

is already underway. Also, we plan to address issues related to vibrational frequencies

fitting. In vibrational frequencies fitting in ForceBalance, force field Hessians are

computed by locally minimizing the QM geometries using the force field, followed

by evaluation of forces with numerical displacements. it carries out a normal mode

analysis and sorts the QM and MM frequencies from lowest to highest to yield the

sorted sequences νQM,j and νMM,j, respectively. The objective function contribution

for each normal mode set is computed as the sum of squared differences between

corresponding frequencies, scaled by a factor of dvib = 200 cm-1, as:

Lvib(θ) =
∑
i

(
νQM,i − νMM,i

dvib

)2

(26)

While the approach was chosen due to its computational efficiency, since QM and FF

vibrational frequencies are sorted simply in ascending order, it carries a potential risk

of mismatching between QM and MM vibrational modes. To remove the conceptual

problem, the idea of replacing vibrational frequencies fitting to internal coordinate

hessian fitting has been studied, and wait for a more in-depth tests and analyses.
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Internal coordinate hessian fitting computes force field hessian in the same way as

in the vibrational frequencies fitting, followed by converting QM and MM hessians

into primitive redundant internal coordinates. The objective function contribution is

computed as a difference between QM and MM internal coordinate Hessians. This

approach is free from the matching issue, and the preliminary study showed that the

force field optimized against the QM internal coordinate hessian gives a moderate im-

provement in replicating the QM vibrational frequencies and normal modes compared

to the force field optimized against the QM vibrational frequencies.
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A Supporting Information for Chapter 2: Quan-

tum chemical studies of redox properties and

conformational changes of a four-center iron CO2

reduction electrocatalyst

State: 1 (3–), Singlet 2 (2–), Doublet 

IRC Method 
& Basis 

BP86 
6-31G*-LDZ 

B3LYP 
6-31G*-LDZ 

BP86 
6-31G*-LDZ 

B3LYP 
6-31G*-LDZ 

Energies:  BP86/6-31G*-LDZ  BP86/6-31G*-LDZ 
Initial 0.0 0.0 0.0 0.0 

TS 18.8 18.7 22.5 47.4 
Final 10.6 10.7 22.1 46.9 

 BP86/TZVP-LTZ BP86/TZVP-LTZ 
Initial 0.0 0.0 0.0 0.0 

TS 18.3 18.0 – – 
Final 10.6 10.0 22.7 49.2 

 B3LYP/6-31G*-LDZ B3LYP/6-31G*-LDZ 
Initial 0.0 0.0 0.0 0.0 
TS 24.8 25.3 19.8 25.1 

Final 11.9 12.2 19.6 24.7 
 B3LYP/TZVP-LTZ B3LYP/TZVP-LTZ 

Initial 0.0 0.0 0.0 0.0 

TS 24.3 24.3 20.1 24.6 
Final 11.7 11.8 20.0 23.9 

 
Table S1: Relative energies (kcal mol−1) along CO dissociation pathway. Each
column refers to structures from an optimized IRC using the indicated method/basis.
Each set of four rows contains energies calculated using the specified method/basis.
Numbers in bold indicate energies taken directly from the optimized IRC; the other
numbers are estimated using the IRCMax approach – i.e. taking differences of single-
point energies along the pathway. Blank cells indicate that the final energy is the
highest and there is no “TS” energy.

Note: Although B3LYP appears to predict a lower barrier for CO dissociation along

with the BP86 IRC (highlighted in red), this result is misleading because the initial

structure is not stable.
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Figure S1: Energies along the intrinsic reaction coordinate for dissociation
of CO from 13- computed at the BP86/6-31G*-LDZ level (black), along
with the energies computed along the path using different methods and
basis sets (colored symbols). Key Fe-C distances are labeled using dotted lines.
The Fe-C bonds are drawn using a distance criterion of 2.1Å

62



 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

S
2

IRC Frame Number

S2 BP86
S2 B3LYP

 10

 20

 30

 40

 50

 60

E
n
e
rg

y
 (

kc
a
l/
m

o
l)

BP86 Reaction Coordinate

Energy BP86
Energy B3LYP

 20  40  60  80  100  120
 0

 0.5

 1

 1.5

 2

S
2

IRC Frame Number

S2 BP86
S2 B3LYP

 10

 20

 30

 40

 50

 60

E
n
e
rg

y
 (

kc
a
l/
m

o
l)

B3LYP Reaction Coordinate

Energy BP86
Energy B3LYP

Figure S2: Calculations of the relative energy and the expectation value
of the S2 operator for CO dissociation in 12- along the optimized IRC of
BP86/6-31G*-LDZ (left column) and B3LYP/6-31G*-LDZ (right column).
The B3LYP calculations contain more spin contamination – i.e. 〈S2〉 greater than 0.75
– along both reaction pathways. Additionally, both BP86 and B3LYP calculations
have significant spin contamination along the B3LYP IRC.

Note: Although B3LYP appears to predict a lower barrier for CO dissociation

along with the BP86 IRC, the initial structure is not stable.
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B Supporting Information for Chapter 3: respyte:

Modernized Implementation of RESP for the

Development of Next Generation of ESP-based

Charge Model

Here Section B.1 details input/output formats and the options available for the grid

point selection and QM calculation. Then Section B.2 describes the details of the

charge fitting part, including the structure of the system, a short description of each

class, and options available for the fitting part. An example of inputs and outputs

can be found in https://github.com/lpwgroup/respyte/tree/re-formatting/r

espyte/data/input.sample.

B.1 Grid Point Selection and QM Calculation

Executable, ‘respyte-esp generator’ takes an input directory, which consists of (1)

‘molecules’ directory, containing one or more sub-directories, each of which contains

a molecule coordinate file in PDB or MOL2 file format, and (2) the input file, ‘in-

put.yml’, in which the user specifies (a) the name, net charge and the number of

conformers of each molecule; (b) the grid-point sampling scheme; the grid type (Merz-

Singh-Kollman (MSK) grid, Face-Centered Cubic (FCC) grid), the inner and outer

boundaries and spacing between grid points; and (c) the QM level of theory, in-

clusion/exclusion of a PCM description of the solvent. The input should follow the

specific directory structure, which is shown in Figure S3.
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Figure S3: Input directory structure for grid point selection and QM calcu-
lation.

Once grid points are generated around each molecule, the 3D coordinate infor-

mation of the generated points is saved in a Psi4 readable ‘grid.dat’ file. Then QM

ESP and EF at each grid point are evaluated using the Psi4 package and saved in the

output file (.espf extension), under each subdirectory.
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B.2 Charge Fitting

Figure S4: Class diagrams of charge fitting part. The middle and bottom com-
partments contain key attributes and operations of each class.

respyte molecule class parses a coordinate file of a single conformation and identifies

equivalent atoms in different equivalence levels, polar atoms, and polar hydrogens

using RDKit. There are 5 different equivalence levels currently supported: ‘connec-

tivity’, ‘relaxed connectivity’, ‘nosym’, ‘symbol’, and ‘symbol2’. In ‘connectivity’, it

forces symmetry on chemically identical atoms, e.g., all hydrogens on a methyl group

are forced to be equivalent in this level. In ‘relaxed connectivity’, it forces symme-

try on polar atoms only, i.e., two hydroxyl oxygens in ethylene glycol are considered

equivalent, while the hydrogens on a methyl group are considered inequivalent to each

other in the level. In ‘nosym’ (no forced symmetry), all individual atoms are consid-

ered inequivalent. In ‘symbol’, it forces symmetry based on chemical elements, e.g., all
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carbons in a molecule are enforced to be the same. ‘symbol2’ forces the same symme-

try with ‘symbol’ but separates polar and nonpolar H atoms. For a given molecule,

it labels each atom with a unique integer, in the similar spirit as the atom-typing

scheme in many traditional force fields, for each equivalence level. Also, it parses espf

files and stores the QM properties.

respyte molecules class combines one or more respyte molecule objects and creates

a single system. As a new respyte molecule is added, it automatically re-labels all the

atoms in the system so that it forces symmetry across molecules during the charge

fitting. respyte model class takes respyte molecules object and builds a list of parame-

ters to-be-fitted for the system. Currently supported charge models in the class are (1)

the simple point charge model and (2) the fuzzy charge model. esp target (ef target)

class takes the molecules and model objects and constructs an objective function, a

sum of squared differences between QM ESP(EF) and MM ESP(EF). respyte penalty

class constructs a penalty function for the objective function. Two types of penalty

functions are currently supported: hyperbolic function (L1) and harmonic function

(L2). respyte objective combines the target objects and the penalty objects to build

an overall objective function of the system, evaluates the objective function, gradi-

ent, and hessian of the objective function at a given point in the parameter space.

respyte optimizer takes the respyte objective object and runs the Newton-Raphson

method using the SciPy package and returns the values once the convergence criterion

is met.

The command line executable for this step is ‘respyte-optimizer’, which takes an

input directory, which consists of (1) ‘molecules’ directory, containing one or more

sub-directories, each of which contains a molecule coordinate file in pdb or mol2

file format and an espf file generated from the first step, and (2) the input file,

‘respyte.yml’, in which the user specifies (a) the charge model type (the simple point
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charge model, the fuzzy charge model are currently supported), (b) targets: whether

to use ESP, EF or both in the fitting, (c) the penalty function: the functional form,

the restraint weight and the tightness of the hyperbola around the target value, (d)

the equivalence level of each parameter type (‘connectivity’, ‘relaxed connectivity’,

‘nosym’, ‘symbol’, and ‘symbol2’ are currently supported), (e) the residue charges,

fixed atomic charges, (f) the equivalent atoms, etc. Once the optimization converges,

under the ‘resp output’ directory, a .txt file for each conformation with the optimized

parameters is generated.
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C Supporting Information for Chapter 4: Devel-

opment of An Open Small Molecule Force Field

This document provides key additional details relating to the Parsley force field,

including information on datasets and tools used in training and testing the force

field as well as details on how to access these datasets and reproduce the calculations

done in training and testing. Much of this information is provided in software/scripts

available on GitHub and datasets available in QCArchive and elsewhere, as we detail

below.

C.1 Compound Sets Used in Training

SMI and PDF of the training dataset is available at https://github.com/openforce

field/openforcefield-forcebalance/releases/download/v1.2.0/training u

nique molecules.smi and https://github.com/openforcefield/openforcefie

ld-forcebalance/releases/download/v1.2.0/training unique molecules.pdf

SDF and PDF of Roche Optimization dataset is available at https://github.c

om/openforcefield/qca-dataset-submission/blob/master/submissions/202

0-03-20-OpenFF-Gen-2-Optimization-Set-1-Roche/optimization inputs.sdf

and https://github.com/openforcefield/qca-dataset-submission/blob/

master/submissions/2020-03-20-OpenFF-Gen-2-Optimization-Set-1-Roch

e/optimization inputs.pdf . PDF of Roche Torsiondrive dataset is available at

https://github.com/openforcefield/qca-dataset-submission/blob/master/s

ubmissions/2020-03-23-OpenFF-Gen-2-Torsion-Set-1-Roche-2/roche 2 sel

ected torsions.pdf.

A full list of SMILE strings of the Coverage Optimization dataset is available at
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https://github.com/openforcefield/openforcefield-forcebalance/raw/

release-1/1 valence parameter fitting/1 dataset generation/coverage s

et/2019-06-25-smirnoff99Frost-coverage/chosen supplemented.smi. SDF

and PDF of Coverage Optimization dataset is available at https://github.com/o

penforcefield/qca-dataset-submission/blob/master/submissions/2020-03

-20-OpenFF-Gen-2-Optimization-Set-2-Coverage/optimization inputs.sdf

and https://github.com/openforcefield/qca-dataset-submission/blob/ma

ster/submissions/2020-03-20-OpenFF-Gen-2-Optimization-Set-2-Coverage

/optimization inputs.pdf. PDF of Coverage Torsiondrive dataset is available at

https://github.com/openforcefield/qca-dataset-submission/blob/master/s

ubmissions/2020-03-23-OpenFF-Gen-2-Torsion-Set-2-Coverage-2/coverage

2 selected torsions.pdf.

Initial automated selection of the Coverage Set is described in a subdirectory of

the openforcefields GitHub repository, https://github.com/openforcefield/op

en-forcefield-data/tree/master/Utilize-All-Parameters, and additional

molecules were added manually as described in https://github.com/openforcefi

eld/open-forcefield-data/tree/master/Utilize-All-Parameters/suppleme

nt molecules to cover remaining gaps.

SDF and PDF of Pfizer Discrepancy optmization dataset are available at https:

//github.com/openforcefield/qca-dataset-submission/blob/master/submi

ssions/2020-03-20-OpenFF-Gen-2-Optimization-Set-3-Pfizer-Discrepancy

/optimization inputs.sdf andhttps://github.com/openforcefield/qca-data

set-submission/blob/master/submissions/2020-03-20-OpenFF-Gen-2-Optim

ization-Set-3-Pfizer-Discrepancy/optimization inputs.pdf. PDF of Pfizer

Discrepancy Torsiondrive dataset is available at https://github.com/openforcefi

eld/qca-dataset-submission/blob/master/submissions/2020-03-23-OpenFF
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-Gen-2-Torsion-Set-3-Pfizer-Discrepancy-2/pfizer 2 selected torsions.

pdf.

SDF and PDF of eMolecules Discrepancy optmization dataset are available at

https://github.com/openforcefield/qca-dataset-submission/blob/master/s

ubmissions/2020-03-20-OpenFF-Gen-2-Optimization-Set-4-eMolecules-Dis

crepancy/optimization inputs.sdf andhttps://github.com/openforcefield/

qca-dataset-submission/blob/master/submissions/2020-03-20-OpenFF-Gen

-2-Optimization-Set-4-eMolecules-Discrepancy/optimization inputs.pdf.

PDF of eMolecules Discrepancy Torsiondrive dataset is available at https://github

.com/openforcefield/qca-dataset-submission/blob/master/submissions/202

0-03-23-OpenFF-Gen-2-Torsion-Set-4-eMolecules-Discrepancy-2/emolecul

es 2 selected torsions.pdf.

SDF and PDF of Bayer optmization dataset are available at https://github.c

om/openforcefield/qca-dataset-submission/blob/master/submissions/202

0-03-20-OpenFF-Gen-2-Optimization-Set-5-Bayer/optimization inputs.sdf

andhttps://github.com/openforcefield/qca-dataset-submission/blob/

master/submissions/2020-03-20-OpenFF-Gen-2-Optimization-Set-5-Baye

r/optimization inputs.pdf. PDF of Bayer Torsiondrive dataset is available at

https://github.com/openforcefield/qca-dataset-submission/blob/master/s

ubmissions/2020-03-26-OpenFF-Gen-2-Torsion-Set-5-Bayer-2/bayer 2 sel

ected torsions.pdf.

PDF of supplemental Torsiondrive dataset is available at https://github.com

/openforcefield/qca-dataset-submission/blob/master/submissions/2020-

03-26-OpenFF-Gen-2-Torsion-Set-6-supplemental-2/supplemental 2 selecte

d torsions.pdf.
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C.2 Generation of Quantum Chemical Data for Compound

Datasets

An example of working with several QCArchive datasets is available at https://gi

thub.com/openforcefield/openforcefield-forcebalance/raw/release-1/2 b

enchmarking/test dataset generation/divide sets.ipynb. Details of molecules

which were removed can be found in fb-fit/targets/error_mol2s in the release

package available at github.com/openforcefield/openforcefield-forcebalanc

e/releases/tag/v1.2.0.

Details of how to download a dataset from the QCArchive server, filter, and gen-

erate ForceBalance-readable targets can be found here: https://github.com/openf

orcefield/openforcefield-forcebalance/raw/release-1/utils/optimized g

eo/make fb optgeo target.py

Details of how to download a dataset from the QCArchive server, filter, and gen-

erate ForceBalance-readable targets can be found here: https://github.com/openf

orcefield/openforcefield-forcebalance/raw/release-1/utils/vib freq tar

get/make vib freq target.py

Details of how to download a dataset from the QCArchive server, filter, and gen-

erate ForceBalance-readable targets can be found here: https://github.com/openf

orcefield/openforcefield-forcebalance/raw/release-1/utils/torsion tar

get/make torsion target new.py
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