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ABSTRACT

In this work, bandwidth properties of planar leaky-wave
antennas made of a grounded dielectric slab covered
with a partially-reflecting surface are investigated. The
partially-reflecting surface is described by an equivalent
shunt susceptance. It is shown that, with respect to a
constant frequency-independent susceptance, the antenna
bandwidth is not reduced using a frequency-dependent
model, except for very specific cases. With reference to
passive lossless structures, numerical examples are pro-
vided that illustrate the attainable performance and con-
firm the theoretical analysis.

Key words: Leaky-wave antennas; partially-reflecting
surfaces; electromagnetic-bandgap structures; Fabry-
Perot cavity.

1. INTRODUCTION

Planar leaky-wave (LW) antennas offer various advan-
tages with respect to other highly-directive radiating sys-
tems in terms of structural simplicity, cost effectiveness
and compatibility with planar integration [1], [2]. In a
uniform two-dimensional (2D) configuration, their op-
erating principle consists of the excitation by a simple
source (e.g., a horizontal infinitesimal electric or mag-
netic dipole) of a pair of cylindrical TE and TM leaky
waves along a planar layered structure [3]. One of the
simplest among such planar configurations is a grounded
dielectric slab covered with a dielectric and/or metallic
screen that partially shields it (a Partially-Reflecting Sur-
face, PRS) [4]-[6]. Some examples of such PRSs that
have been studied in the past in connection with LW an-
tennas are shown in Fig. 1: a thin high-permittivity di-
electric layer (Fig. 1(a)) [7], a stack of alternating high-
and low-permittivity layers (Fig. 1(b)) [8], a periodic ar-

(a)

(b)

(c)

(d)

Figure 1. Examples of LW antennas based on different
types of PRS: (a) thin high-permittivity dielectric layer;
(b) stack of alternating high- and low-permittivity layers;
(c) periodic array of metallic patches; (d) periodic array
of slots on a conducting plate.

ray of metallic patches (Fig. 1(c)) [9], or a conducting
plate with a periodic array of slots (Fig. 1(d)) [10].

We consider here a PRS-covered grounded slab aimed at
producing a narrow directive beam pointing at broadside,
which can be used either as an antenna or as a screen for
enhanced electromagnetic transmission through a sub-
wavelength aperture. The analysis is based on a trans-
verse equivalent representation of the structure under
plane-wave incidence, in which the lossless PRS is mod-
elled as a shunt susceptance (as shown in Fig. 2).

A study of this structure can be found in [6] where the
PRS is represented by a constant, frequency-independent
susceptance, while in [11] a LW interpretation of the
main properties of the antenna for broadside radiation
(i.e., gain, directivity, beamwidth, and bandwidth) is also
provided. In particular, in these papers it is shown that the
antenna is typically narrow-band when the PRS is repre-
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sented by a frequency-independent susceptance. How-
ever, it is not clear whether and how a more realistic
frequency-dependent model of the PRS would lead to
a deterioration of the bandwidth performance. In this
study, simple inductors or capacitors are considered as
PRS transverse models, along with series- and parallel-
LC circuits. In Sec. 2 previous analyses and findings are
summarized. The main result of the present investigation
is illustrated in Sec. 3 where it is shown that the antenna
bandwidth is not reduced in the inductance, capacitance,
and parallel-LC cases, whereas it can be narrowed under
specific conditions in the series-LC case. Numerical ex-
amples confirming the theoretical analysis are provided
in Sec. 4 and, finally, conclusions are drawn in Sec. 5.

2. BACKGROUND

The PRS-based LW antennas considered here are com-
posed of a dielectric slab with relative permittivity εr, rel-
ative permeability μr = 1, and thickness h, placed on
a ground plane; at the air-dielectric interface we assume
the presence of some screen (or structure) that partially
shields the slab, i.e., a partially-reflecting surface (PRS)
(see Fig. 1). A horizontal electric (or magnetic) dipole is
assumed as a source, which is located at an height z = hs
over the ground plane.

A transverse equivalent network (TEN) as in Fig. 2 is
used to model such an antenna. In [12] and [6] it has been
shown that a constant shunt susceptance BS is accurate
for representing both superstrate dielectric layers and 2D
periodic arrays of metal patches or slots placed on top of
the grounded substrate; of course, the shunt susceptance
varies with the angle of radiation, but for narrow-beam
regions of interest (such as close to broadside) it may be
assumed to be constant with θ and φ.

The TEN model can be used either for the calculation of
the far-field pattern radiated by a source through an appli-
cation of the reciprocity theorem or for the determination
of the wavenumber kρ of a mode propagating along the
structure in the ρ direction [11].

In [11] it has been shown that when broadside radiation
is considered, the main properties of the far field near the
broadside direction are equal in the E and H planes. In
particular, it has been shown that the radian frequency
ωopt at which the broadside power density is maximum is
the one for which the following condition holds:

cot (k1h) =
√

1
εr

η0BS (1)

where k1 = ω
√

εr /c, η0 is the free-space impedance,
and c is the speed of ligth in vacuum. Equation (1) re-
quires the slab thickness h to be approximately equal to
one half of a wavelength inside the slab when the nor-
malized susceptance B̄S = BSη0 is much larger than
one (i.e., when the leaky parallel-plate waveguide is al-
most ‘closed’); moreover, the source is optimally placed
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Figure 2. Transverse equivalent network (TEN) for the
structures in Fig. 1, excited by a unit-amplitude hori-
zontal electric or magnetic dipole source (modeled by a
parallel current source or a series voltage source, respec-
tively).

at hs = h/2 or at hs = 0 for an electric or a magnetic
source, respectively. Condition (1) also implies the pres-
ence of a pair of dominant TEz and TMz LWs with small
and nearly equal values of the phase constants and the
attenuation constants [11] and can also be re-written as
Bin = 0 where

Bin = BS − Y0 cot (k1h) (2)

is the input susceptance looking from above into the TEN
model of the PRS structure and Y0 = 1/η0. It has been
shown in [11] that for a frequency-independent suscep-
tance an approximate closed-form formula can be ob-
tained for the broadside pattern bandwith:

BW � 2
√

εr

π

1
B̄2

S

(3)

3. FREQUENCY-DEPENDENT EQUIVALENT
SUSCEPTANCES

In what follows we investigate how a frequency-
dependent susceptance modelling the PRS would change
the bandwidth performance of the considered antenna.
Simple inductors or capacitors are considered as PRS
transverse models, along with series- and parallel-LC cir-
cuits, all shown in Fig. 3; these four cases are considered
below.

3.1. Capacitor PRS

In the capacitor-PRS case, we can write

BS(ω) = BSopt

(
ω

ωopt

)
(4)
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Figure 3. Frequency-dependent susceptance models of
the partially-reflecting surface.

where BSopt is the value at the center frequency of opera-
tion ωopt, at which the radiation at broadside is maximum.
From (2) we can write

Bin = BSopt

(
ω

ωopt

)
− Y0 cot (k1h) (5)

Near resonance, k1h � π. Therefore, we can approxi-
mate the cotangent function in (5) using cot x � 1/(x −
π) (valid for x � π). Normalizing the susceptance (mul-
tiplying by η0), this yields

B̄in = B̄Sopt

(
ω

ωopt

)
+

1
π − k1h

(6)

The derivative of the normalized input susceptance with
respect to the frequency ω is

∂B̄in

∂ω
=

B̄Sopt

ωopt
+

h
√

εr

c (π − k1h)2
(7)

At the optimum frequency ωopt we have B̄in = 0, and
hence from (6)

B̄in = B̄Sopt +
1

π − k1opth
= 0 (8)

where k1opt is the value of k1 at the optimum frequency
ωopt. Therefore we can re-write the derivative above as

∂B̄in

∂ω

∣∣∣∣
ωopt

=
1

ωopt

[
B̄Sopt + (k1opth) B̄2

Sopt

]
(9)

For a highly directive antenna,
∣∣ B̄Sopt

∣∣ � 1; hence, the
second term inside the square brackets in the above equa-
tion is much larger than the first term. This implies that
the derivative is hardly affected by the frequency varia-
tion of the capacitor. Therefore, it follows that the band-
width is limited by the frequency variation of the resonant
(nearly half-wavelength) section of shorted transmission
line in the TEN model, and not the capacitive PRS on top
of it.

3.2. Inductor PRS

The inductor-PRS analysis is similar to the capacitor-PRS
one, except that now we use

BS(ω) = BSopt

(ωopt

ω

)
(10)

Following the same steps as above, we easily obtain

∂B̄in

∂ω
= − B̄Sopt

ω

ωopt

ω
+

h
√

εr

c (π − k1h)2
(11)

Near resonance we can approximate (11) as

∂B̄in

∂ω
= − B̄Sopt

ωopt
+

h
√

εr

c (π − k1h)2
(12)

so that

∂B̄in

∂ω

∣∣∣∣
ωopt

=
1

ωopt

[
−B̄Sopt + (k1opth) B̄2

Sopt

]
(13)

Except for the minus sign in front of the first term, the
result is the same as that for the capacitor, so the conclu-
sion is the same. Therefore, the bandwidth for the induc-
tor PRS is never significantly affected by the frequency
variation of the PRS.

3.3. Series-LC PRS

In the series-LC PRS case, we have

Bin = −
[

ωC

ω2LC − 1
+ Y0 cot (k1h)

]
(14)

Near the optimum frequency ωopt the cotangent function
can be approximated as in the previous cases; moreover
1−ω2LC � (1−ω

√
LC )(1 + ωopt

√
LC ), so that after

some algebra (14) can be written as

Bin �
(

Y0

π

)⎡⎣ 1

1 − ω
(

h
√

εr

πc

)
⎤
⎦

+

(
ωoptC

1 + ωopt

√
LC

)(
1

1 − ω
√

LC

) (15)

This is of the form

Bin �
(

ATL

1 − ω/ωTL

)
+
(

ALC

1 − ω/ωLC

)
(16)

where ‘TL’ denotes the transmission line and ‘LC’ de-
notes the LC circuit. The frequency ωTL is the resonance
frequency of the transmission line, at which k1h = π
(this is not the same as the frequency ωopt, which is
the frequency that gives the maximum power density at
broadside). The frequency ωLC = 1/

√
LC is the reso-

nance frequency of the series LC circuit that models the



PRS. Note that both terms in the above equation, the one
arising from the transmission-line resonator and the one
arising from the LC resonator, have the same form.

Taking the derivative, at the optimum frequency we have

∂Bin

∂ω

∣∣∣∣
ωopt

�
[

ATL/ωTL

(1 − ωopt/ωTL)2

]
+

[
ALC/ωLC

(1 − ωopt/ωLC)2

]
(17)

Moreover, from (16), at ωopt we also have(
ATL

1 − ωopt/ωTL

)
+
(

ALC

1 − ωopt/ωLC

)
= 0 (18)

Therefore, from (17) we obtain

∂Bin

∂ω

∣∣∣∣
ωopt

�
(

ATL

1 − ωopt/ωTL

)[
1

ωTL−ωopt
− 1

ωLC−ωopt

]
(19)

The series LC-PRS will make a significant contribution
to the derivative term (and hence be important in the de-
termination of the bandwidth) if the second term inside
the square brackets in (19) is significant relative to the
first term.

Hence, the frequency variation of the PRS will not be
important for the bandwidth, provided the transmission
line is operating much closer to its resonance frequency
than the PRS is.

That is, the frequency variation of the PRS will be unim-
portant for the bandwidth provided that |ωTL − ωopt| �
|ωLC − ωopt|. The two resonance frequencies are related
to each other. The closer we operate near the circuit reso-
nance, the closer the LC circuit will be to a short circuit.
This, in turn, implies that the transmission line must then
be operated closer to its resonance condition, in order to
operate at the optimum point. Hence, it is not clear if the
above condition will ever be satisfied, and if so, under
what conditions. To explore this further, we invoke (1),
which is satisfied at the optimum frequency ωopt. Approx-
imating the cotangent function, and inserting the form of
BS for the series LC circuit, after some algebra we obtain

1 − ω
√

LC

1 − (k1h/π)
= −π

η0√
εr

(
ωC

1 + ω
√

LC

)
(20)

This is approximately equivalent to

ω − ωLC

ω − ωTL
= −π

η0√
εr

(
ωC

1 + ω
√

LC

)
(21)

which gives, taking into account that ω
√

LC �
ωLC

√
LC � 1:

ω − ωLC

ω − ωTL
= −π

η0

2
√

εr
ωC (22)

Therefore, a condition for the frequency variation of the
series LC circuit to be unimportant is

π
η0

2
√

εr
ωoptC � 1 (23)

That is

B̄C � 2
√

εr

π
(24)

where B̄C is the normalized susceptance of the capacitor
in the series-LC circuit.

3.4. Parallel-LC PRS

In the parallel-LC PRS case, we have

Bin = −
[
1 − ω2LC

ωL
+ Y0 cot (k1h)

]
(25)

Approximating the cotangent function, we obtain

Bin � Y0/π

1 − ω
(

h
√

εr

πc

) − 1
ωL

+ ωC (26)

This has the form

Bin �
(

ATL

1 − ω/ωTL

)
+
(

ωC − 1
ωL

)
(27)

The derivative at the point of operation (maximum broad-
side radiation) is

∂Bin

∂ω

∣∣∣∣
ωopt

�
(

ATL

1 − ωopt/ωTL

)(
1

ωTL − ωopt

)

+
(

C +
1

ω2
optL

) (28)

Since at ω = ωopt we have Bin = 0, from (27) and after
some algebra, (28) can be re-written as

∂Bin

∂ω

∣∣∣∣
ωopt

�
(

ATL/ωopt

1 − ωopt/ωTL

)

·
[

ωopt

ωTL − ωopt
− 1 + (ωLC/ωopt)

2

1 − (ωLC/ωopt)
2

] (29)

The second term inside the square brackets will be much
smaller than the first term, provided the LC circuit is not
close to resonance. Note that for a PRS modeled as a
parallel-LC circuit, the circuit will not be operating near
resonance for a highly-directive antenna (since the PRS
should be close to a short circuit near the operating fre-
quency, and not close to an open circuit). Hence, for a
parallel-LC PRS, the frequency variation of the LC cir-
cuit is never of significant importance in the bandwidth
calculation.

4. NUMERICAL RESULTS

In order to compare the frequency-dependent PRSs con-
sidered in the previous section, a reasonable way to pro-
ceed is to assume the same value for the magnitude of



the normalized susceptance at the optimum frequency∣∣ B̄S(ωopt)
∣∣ =

∣∣ B̄Sopt

∣∣ for all the cases. It follows that for
the simple capacitor and simple inductor cases we have

C =

∣∣ B̄Sopt

∣∣
η0ωopt

and L =
η0

ωopt

∣∣ B̄Sopt

∣∣ (30)

respectively. Note also that, maintaining the same op-
timum frequency ωopt for all the cases implies slightly
different values of the optimum substrate thickness h, de-
pending on the capacitive or inductive nature of the sus-
ceptance at the optimum frequency (see (1)).

As before, both in the parallel- and in the series-LC cir-
cuits, we require to have the same fixed value of the nor-
malized susceptance B̄Sopt at ωopt and, in addition, we
choose the product LC such that LC = p/ω2

opt (the pa-
rameter p is a tuning parameter that indicates the sepa-
ration between the LC resonance and the optimum fre-
quency). Therefore, in the parallel case

C =

∣∣ B̄Sopt

∣∣
η0ωopt

| p−1| and L =
p

| p − 1|
η0

ωopt

∣∣ B̄Sopt

∣∣
(31)

while in the series case

L =
η0 | p − 1|
ωopt

∣∣ B̄Sopt

∣∣ and C =
p
∣∣ B̄Sopt

∣∣
| p − 1|ωoptη0

(32)

The inductive or the capacitive nature of the susceptance
B̄S(ω) depends on the value of p: If B̄Sopt is positive, p
should be chosen less than one for the series case, and
larger than one for the parallel case.

For the structure considered in the numerical results, the
excitation consists of an electric source placed in the mid-
dle of the slab. A relative permittivity εr = 2.2 is as-
sumed, while the optimum frequency and the absolute
value of the normalized susceptance at the optimum fre-
quency are chosen as fopt = 20 GHz and

∣∣ B̄Sopt

∣∣ = 20,
respectively. The value of the slab thickness h is derived
from (1) and is h = 5.17 mm for a capacitive susceptance
and h = 4.93 mm for an inductive susceptance.

In Fig. 4(a), the broadside power density P (in dB, rel-
ative to one Watt per steradian) is reported as a func-
tion of frequency for the cases of a simple capacitor and
a simple inductor PRS. For comparison, also the cor-
responding cases that assume a frequency-independent
value

∣∣ B̄S(ω)
∣∣ = 20 for the normalized susceptance are

shown. In Fig. 4(b), the same as in (a) is reported for the
cases of a parallel- and a series-LC circuit. It has been
assumed that p = 2, hence the parallel-LC susceptance
is capacitive and the series-LC is inductive. For compar-
ison, also in this figure the corresponding cases that as-
sume a frequency-independent value

∣∣ B̄S(ω)
∣∣ = 20 for

the normalized susceptance are shown.

From these figures, it can be observed that the frequency
behavior of the PRS does not seem to be important in
determining the bandwidth of the antenna.
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Figure 4. Broadside power density P as a function of fre-
quency for a PRS-based antenna with εr = 2.2, fopt =
20 GHz, and

∣∣ B̄Sopt

∣∣ = 20. (a) Simple capacitor and
simple inductor PRS, together with the corresponding
frequency-independent PRSs. (b) Parallel- and series-
LC PRS, together with the corresponding frequency-
independent PRSs as in (a).

In order to verify the conclusion about the possible effect
of a series-LC PRS on the bandwidth performance of the
antenna, a comparison is presented between a structure
with a frequency-independent PRS and a series-LC PRS.
Again, for a fair comparison, we assume that at the opti-
mum frequency ωopt the values of the normalized suscep-
tances are equal. Once the C value has been fixed, the
latter condition puts a constraint for the L value of the
LC circuit. The capacitance C is chosen according to

η0ωoptC = rB
2
√

εr

π
(33)

as a function of ωopt, εr, and of the parameter rB . Ac-
cording to the analysis in Sec. 3.3 (see (23)), when
rB � 1 we should not see a bandwidth variation in the
series-LC PRS structure with respect to the frequency-
independent PRS one. For a structure with fopt = 20
GHz and

∣∣ B̄Sopt

∣∣ = 20, in Fig. 5, the broadside power
density P is reported as a function of frequency for dif-
ferent cases: the frequency-independent PRS structure
(solid gray line) and five series-LC PRS structures with
different values of rB (50, 10, 5, 2, and 1). It can thus be
observed that, while for low values of rB the bandwidth
performance is dramatically deteriorated, for rB ≥ 10,
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Figure 5. Broadside power density P as a function of
frequency for a series-LC PRS-based antenna with the
same parameters as in Fig. 4, and different values of rB ,
together with results for the corresponding frequency-
independent PRS (solid gray line).

the bandwidth behavior of the series-LC PRS antenna
is basically the same as the frequency-independent PRS
one.

5. CONCLUSION

In this paper, the bandwidth properties of highly-directive
planar leaky-wave antennas based on partially-reflecting
surfaces have been studied. Assuming the possibility to
describe the partially-reflecting surface with a shunt sus-
ceptance, it has been shown how the bandwidth of the
antenna is affected by a frequency-dependent behavior of
such susceptance. In particular, four kinds of partially-
reflecting surfaces have been investigated, concluding
that the frequency dependence is not important for the
cases of a partially-reflecting surface modeled as L, C,
or parallel-LC elements; for a partially-reflecting sur-
face modeled as a series-LC element it may be impor-
tant for some specific cases. It is also concluded that pas-
sive lossless realizations of the partially-reflecting surface
cannot lead to bandwidth improvements with respect to
the frequency-independent susceptance case, thus open-
ing the investigation field to the consideration of lossy
and/or active realizations.
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