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Abstrat

The omputational grid is beoming the platform of

hoie for large-sale distributed data-intensive applia-

tions. Aurately prediting the transfer times of remote

data �les, a fundamental omponent of suh appliations,

is ritial to ahieving appliation performane. In this

paper, we introdue a performane predition method,

ARM (Adaptive Regression Modeling), to determine

data transfer times for network-bound distributed data-

intensive appliations.

We demonstrate the e�etiveness of the ARM method

on two distributed data appliations, SARA (Syntheti

Aperture Radar Atlas) and SRB (Storage Resoure Bro-

ker), and disuss how it an be used for appliation

sheduling. Our experiments demonstrate that applying

the ARM method to these appliations predited data

transfer times in wide-area multi-user grid environments

with auray of 88% or better.

1 Introdution

Ensembles of distributed omputational, storage, and

other resoures, also known as omputational grids [12,

14℄, are beoming an inreasingly important platform

for appliations whih perform alulations over large

datasets. Suh appliations inlude image aquisition

and proessing alulations, digital library searhes, high

performane massive data assimilation, distributed data

mining and others [11, 17, 15, 10, 1, 24, 3℄. Aggregating

distributed resoures presents the opportunity to employ

or aquire data from very large datasets whih are too

large to be stored at a single site.
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For several distributed data-intensive appliations,

data movement aross the network is a ritial deter-

minant of appliation performane. In partiular, in

addition to being data-intensive, suh appliations are

network-bound as well, with appliation performane

heavily determined by the bandwidth available on net-

work links used during data transfers. Examples of

network-bound distributed data-intensive appliations

are JPL's Syntheti Aperture Radar Atlas (SARA) ap-

pliation [24℄, whih allows the user to selet and view

images generated from from a large, repliated, and dis-

tributed database of radar data, and SDSC's Storage Re-

soure Broker (SRB) [3, 19℄, whih provides a uniform

interfae for users to obtain data from a heterogeneous

and distributed olletion of data repositories.

EÆient exeution of network-bound appliations on

omputational grids an be hallenging. Although

these platforms o�er onsiderable performane potential

through aggregation of resoures, performane may be

diÆult to ahieve in pratie. In partiular, the load

and availability of shared resoures suh as networks may

be hard to predit, yet aurate preditions of �le trans-

fer times are ritial to the development of performane-

eÆient appliation exeution strategies.

In this paper, we present a method, Adap-

tive Regression Modeling (ARM), for predit-

ing the duration of data transfer operations in

network-bound distributed data-intensive appli-

ations. Our tehnique predits performane in produ-

tion, multi-user distributed environments by employing

small network bandwidth probes, provided by the Net-

work Weather Servie (NWS) [25, 26℄, to make short-

term preditions of transfer times for a range of �le sizes.

Our approah is based on the use of statistial regression

methods to alibrate appliation exeution performane

to the dynami state of the system. The result is an a-

urate performane model that an be parameterized by

\live" NWS measurements to make time-sensitive predi-

tions.

The development of performane methods suh as

ARM is ritial to the appliation performane for

network-bound distributed data-intensive appliations in
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multi-user omputational grid environments. As part of

the Appliation Level Sheduling (AppLeS) projet [2,

5℄, our experiene shows that the development and pa-

rameterization of aurate performane models an be a

diÆult and error-prone proess. ARM relies on observ-

able performane measurements only, and thus an be

ontinuously updated to adapt to urrent network ondi-

tions automatially and in real-time. We demonstrate the

e�etiveness of the ARM method for two network-bound

data-intensive appliations with dissimilar data require-

ments: the SARA image aquisition tool whih targets

relatively small �les (1-3 MB), and the SRB query tool

whih is designed for muh larger (16 MB or more) �les.

This extended abstrat is organized as follows: In Se-

tion 2, we briey desribe the harateristis of network-

bound distributed data-intensive appliations, and in par-

tiular, SARA and SRB. Setion 3 presents several per-

formane models for prediting data transfer times for

this appliation lass. We propose the ARM predition

method and present experiments whih demonstrate its

e�etiveness for both SARA and SRB in Setion 4. In

Setion 5, we summarize and briey touh on related and

future work.

2 Network-Bound Distributed

Data-Intensive Appliations

We use the term data-intensive appliations to denote

omputations whih aess and perform operations on nu-

merous or massive datasets. Within this appliation lass,

we identify a sublass of network-bound distributed

data-intensive appliations for whih a prime determinant

of appliation performane is movement of data aross the

network.

To illustrate the harateristis of network-bound dis-

tributed data-intensive appliations we provide a brief de-

sription of JPL's Syntheti Aperture Radar Atlas appli-

ation and SDSC's Storage Resoure Broker.

The Syntheti Aperture Radar Atlas (SARA) [24, 20℄,

developed at JPL and SDSC, is a web-based distributed

data-intensive appliation whih allows users with aess

to the World-Wide Web to view images of the Earth's

surfae taken by a syntheti aperture radar. The SARA

datasets are repliated aross several high-apaity stor-

age sites. Via a Java applet, users of the SARA system

an request an image of an arbitrary sub-region with er-

tain features of the data highlighted. The size of SARA

�les transmitted aross the network typially ranges from

1 to 3 MB.

SDSC's Storage Resoure Broker (SRB) [3, 19℄ is mid-

dleware that provides data-intensive appliations with a

uniform API to aess heterogeneous distributed storage

resoures systems inluding �le systems, databases, and

hierarhial and arhival storage systems. SRB provides

users the apability to aess and aggregate massive quan-

tities of data sattered aross wide area networks.

Note that there are several important di�erenes be-

tween SARA and SRB. Most obviously, SARA �les are

typially small whereas SRB �les an be quite large. In

order to ahieve performane, SARA must selet a data

server among the data servers whih house the target

repliated �le. To do that, SARA needs to ompare the

predited �le transfer times for the repliated �le to all

the data servers. For SRB, the data transfer is often part

of a larger appliation framework, and thus, �le transfer

time may be a omponent of a larger performane model.

Appliations whih use SRB for data aess require rea-

sonably aurate transfer time estimates in order to per-

form sheduling deisions with them.

3 Performane Models

It would be reasonable to expet that a simple perfor-

mane model of remote �le transfer time for a network-

bound distributed appliation would suÆe for sheduling

and appliation exeution. In partiular, the straight-

forward model RBW (Raw BandWidth model) shown

below:

FileT ransferT ime=

DataSize

AvailableBandwidth

ould be used to estimate the time for transferring

�les between various servers based on the value of

AvailableBandwidth between the lient and eah of the

servers. This value ould be supplied by a network moni-

tor suh as the Network Weather Servie (NWS) [25, 26℄,

whih measures and foreasts the load and availability of

system resoures (inluding network bandwidth).

The RBW model an be used to predit the �le trans-

fer performane of both SARA and SRB in a wide-area

grid environment. However, this simpli�ed model does

not aount for di�erenes in network onditioning (mes-

sage sizes, bu�er sizes, et.) between NWS probes and

those used by the two appliations. In partiular, NWS

probes are typially 64 kB pakets, whereas SARA has

data transfer sizes of 1-3 MB and SRB may have data

transfer sizes of 16 MB and above. While NWS probes

must be small in order to minimize intrusiveness on the

network, they are insuÆient for prediting the available

bandwidth for muh larger transfers diretly.

In addition, RBW fails to onsider appliation ompu-

tational and internal message bu�ering overheads, whih

may have non-trivial e�ets on performane for even the

most network-bound appliations. It is not surprising

then that RBW model predits performane relatively

inaurately (with errors up to 100%), as illustrated in

Table 1. What is interesting is that the peaks and valleys
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Figure 1: Linear Regression mapping NWS (16 MB mes-

sages) to SRB (16 MB �le transfers)

as predited by RBW seem to orrelate with observed �le

transfer behavior.

3.1 Regression Modeling

Regression modeling is in general a simple method for es-

tablishing a funtional relationship among variables [8, 9,

6℄. In order to ahieve more aurate preditions, we on-

sidered the use of a linear regression model to address the

disrepany, exhibited in the RBW model, between the

performane behavior of small NWS probes and larger �le

transfers. We developed two linear models that map NWS

bandwidth measurements to the observed �le transfer be-

havior of the network-bound distributed data-intensive

appliation within a spei�ed time-frame.

The �rst model demonstrates an upper bound on the

expeted auray of this tehnique. We started by re-

gressing large-�le transfer times with 16MB NWS band-

width probes. This probe size is too large to be prati-

al for the NWS in general, but it allowed the NWS to

more aurately mimi the atual network load during

�le transfer. Figure 1 shows the results of using this teh-

nique to model �le transfer times from the University of

California at Davis to the University of California at San

Diego. The experiments show this regression model pa-

rameterized by data from 16MB data transfers and 16MB

NWS message size probes. The results were very impres-

sive. We observe in the graph how the modeled �le trans-

fer performane traks very losely the atual throughput

measurements. Our next step was to investigate a less in-
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Figure 2: Linear Regression mapping NWS (64 kB mes-

sages) to SRB (16 MB �le transfers)

trusive approah to determine if the tehnique ould be

implemented pratially.

3.2 A Pratial Approah | NWS with

64 kB Probes Only

In order to derease overhead, we onsidered a new regres-

sion model, whih uses NWS inputs with 64 kB probes.

This is the probe size that is ommonly used by the Net-

work Weather Servie to perform bandwidth measure-

ments and foreasts. Using small probes, the NWS is

able to maintain a low level of intrusiveness over the net-

work [25, 26℄.

Representative results using the low overhead model,

are shown in Figure 2. Note that the model still traks

very losely the atual �le transfer measurements.

In the next setion, we fous on the development

of a performane model using the less intrusive re-

gression approah whih we all Adaptive Regression

Modeling (ARM).

4 Using ARM to Dynamially

Predit Exeution Performane

The previous setion disusses the goodness of the regres-

sion \�t" between traes of NWS probe data and atual

�le transfers. In this setion we desribe how to use the

regression tehnique to atually predit the exeution

performane of the SRB and SARA grid appliations at

run-time | the ARM foreasting method.
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Figure 3: Foreasting SARA �le transfer behavior with

the ARM method.

SRB { NMAE

site RBW ARM

U.C. Davis 54.10% 11.09%

NCSA 105.20% 9.20%

W.U. St. Louis 96.31% 11.95%

Rutgers 101.56% 1.15%

SARA { NMAE

site RBW ARM

Utah 34.43% 9.97%

UIUC 36.06% 11.04%

Calteh 15.80% 11.67%

Table 1: Normalized Mean Absolute Errors

(NMAE) for �le transfer throughput foreasts obtained

diretly from bandwidth measurements RBW and from

the Adaptive Regression Modeling (ARM) foreaster.

Sine linear regression is heap to ompute, we start by

deriving an initial model from historial appliation and

NWS performane data. As the appliation exeutes, we

monitor its performane and add the monitored values to

the performane history of the program. When a predi-

tion is required, we realulate the regression oeÆients

\on-the-y" using the original performane history, the

most reent performane measurements, and the orre-

sponding NWS data for the most reent time frame. In

this way, the model evolves and adapts in response to

hanging performane onditions.

We term the initial set of samples required to \heat-up"

the regression model the Start-up Window. Having an ini-

tial regression model derived from the Start-Up Window,

we obtain a new bandwidth sample from NWS, and use

this value in the regression model to generate a predition

of the �rst �le transfer throughput value.

While the appliation exeutes, the regression funtion

is updated at eah new appliation �le transfer. The new

�le transfer sample and the network bandwidth value

(from the NWS) are inorporated as a new pair within

history of network and �le transfer samples that will

be used in the alulation of the next regression model.

Then, the updated regression model is used to foreast

the next �le transfer, and so on.

We refer to the set of samples used to generate eah

new regression model at exeution time as the Running

Time Window. The Running Time Window slides over

the past history of network and appliation measurements

at eah new appliation transfer. The regression model is

updated at eah new sample assuring that the foreaster

will adapt to the most reent appliation resoure require-

ments and observed network behavior. At eah update,

the oldest sample pair of the Running Time Window is

4



9.127 9.128 9.129 9.13 9.131 9.132 9.133 9.134 9.135

x 10
8

−0.5

0

0.5

1

1.5

2

2.5

3

U.C. Davis

Timestamp

B
a
n
d
w

id
th

 (
M

b
/s

)

RBW
Measured SRB
(ARM) Predicted SRB

(a) mahler.ipi.udavis.edu

9.126 9.128 9.13 9.132 9.134 9.136

x 10
8

0

0.5

1

1.5

2

2.5

NCSA

Timestamp
B

a
n

d
w

id
th

 (
M

b
/s

)

RBW
Measured SRB
(ARM) Predicted SRB

(b) vor.nsa.uiu.edu

9.126 9.127 9.128 9.129 9.13 9.131 9.132 9.133 9.134

x 10
8

0

0.5

1

1.5

Washington St. Louis

Timestamp

B
a

n
d

w
id

th
 (

M
b

/s
)

RBW
Measured SRB
(ARM) Predicted SRB

() brainmap.arl.wustl.edu

9.126 9.128 9.13 9.132 9.134 9.136

x 10
8

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Rutgers

Timestamp

B
a

n
d

w
id

th
 (

M
b

/s
)

RBW
Measured SRB
(ARM) Predicted SRB

(d) bioni.rutgers.edu

Figure 4: Foreasting SRB �le transfer behavior with the ARM method.
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disarded at eah new transfer. In this way, we �lter

out of the regression model past history that is no longer

relevant for new trends of system behavior.

We investigated the e�et of varying the size of the

Start-up Window and Running Time Window respe-

tively. After simulating the foreaster for several Start-Up

Window and Running Time Window lengths, we found

that the the modeling tehnique remains aurate for

a wide range of parameterizations. Usually a Running

Time Window length between 8 and 20 samples will yield

good preditions for the environments we have investi-

gated. The algorithm is even less sensitive to the length of

the Start-Up Window, sine its e�et is felt only initially.

A more detailed disussion of the e�ets of Start-

Up Window and Running Time Window param-

eters on performane, and the ARM pseudo-ode

will be provided in the �nal paper.

Figures 3 and 4 show a representative and omprehen-

sive set of experiments to predit �le transfer times using

the ARM method for SARA and SRB respetively. In

the experiments, SARA transferred �les of 3MB, at every

5 minutes from data-servers running at the University of

Utah, University of Illinois Urbana-Champaign and Cal-

teh. The SRB lient transferred 16MB �les at intervals

ranging from 2 to 25 hours from the University of Cal-

ifornia at Davis, University of Washington at St. Louis,

NCSA and Rutgers. Both lients ran at the University

of the California, San Diego. In the �gures, the di�er-

enes (the error) between predited (in blak) and atual

exeution times (in white) are represented by the verti-

al distane between eah pair of points. In Table 1, we

summarize the error results for this data.

4.1 Analysis

To determine predition auray, we use the Normalized

Mean Absolute Error (NMAE), given by

N

X

i=1

jEstimatedPerf

i

�MeasuredPerf

i

j

N �MeasuredPerf

� 100%

where N is the total number of predited measurements

and MeasuredPerf is the mean measured �le transfer

performane for a partiular site. The onept behind

the Normalized Mean Absolute Error is to alulate the

mean predition error, then normalize it by the mean �le

transfer throughput whih is given by MeasuredPerf .

In this way we provide an e�etiveness metri omparable

among di�erent appliations and sites, sine eah di�erent

environment might have distint performane harater-

istis. In other words, the error is given as a proportion

or perentage of the average performane pereived by an

appliation.

From observing the graphs it is striking how the ARM

preditions very losely trak the atual measured per-

formane of both SARA and SRB appliations. More-

over, Table 1 numerially on�rms the eÆay of this

method. As it an be observed, the highest relative errors

(NMAE) for ARM preditions are on the order of only

10%, whereas the errors for preditions using the RBW

model reah up to 100%. The largest di�erene ours

for the Rutgers data server, where the RBW model re-

sulted in an error of 101.56%, while the ARM foreasting

method predited with an error of just 1.15%.

Furthermore, it is important to emphasize that we were

able to suessfully obtain this high level of predition

auray with a low level of intrusiveness on the system

| using only small 64 kB messages to probe the network

behavior.

Although our analysis in this extended abstrat is on-

�ned to NMAE values, we also inlude Table 2, showing

mean square errors (MSE) for the preditions for all sites

in the experiments. Table 3 shows the mean �le transfer

throughput for eah data-server. In the �nal version

of the paper, we will disuss the MSE values in

greater detail.

4.2 Using ARM for Sheduling

The Appliation-Level Sheduling (AppLeS) approah

inorporates both appliation-spei� system require-

ments and dynami resoure performane information

to shedule distributed appliations in multi-user dis-

tributed environments [5, 20, 27℄. AppLeS appliation-

level shedulers use a performane model (based on the

appliation's ommuniation and omputational needs),

whih is parameterized by values representing system

harateristis (suh as available network bandwidth).

An AppLeS sheduler delays evaluation of the model until

run-time, at whih point the model parameters are sup-

plied by a foreaster suh as the Network Weather Servie

(NWS) [25, 26℄, whih reports urrent onditions and gen-

erates foreasts of various system performane measures,

suh as network bandwidth and CPU load.

The initial AppLeS shedulers we developed [2, 5, 27,

20, 18℄ foused on the development of adaptive ustom

shedules for individual grid appliations. We are ur-

rently developing AppLeS templates for sheduling stru-

turally similar lasses of grid appliations. We are fo-

using on several appliation lasses, inluding network-

bound distributed data-intensive appliations. For er-

tain appliations in this lass, like a basi SARA applia-

tion, using the RBW model to rank potential data servers

suÆes [20℄. However, appliations for whih preditions

using RBW are insuÆient require methods like ARM,

whih provide reasonably aurate run-time estimates of

�le transfer performane. Suh estimates are used to de-

termine an exeution shedule for the target appliation

whih is implemented by the AppLeS template.

6



SRB { MSE

site RBW ARM

U.C. Davis 0.7536 0.0534

NCSA 0.3320 0.0195

W.U. St. Louis 1.2147 0.0112

Rutgers 0.8129 0.0004

SARA { MSE

site RBW ARM

Utah 0.9674 0.1446

UIUC 0.8669 0.1515

Calteh 0.5128 0.2975

Table 2: Mean Square Errors (MSE) for �le transfer

throughput foreasts obtained diretly from bandwidth

measurements RBW and from the Adaptive Regression

Modeling (ARM) foreaster. These values are not nor-

malized.

SRB { Mean Throughput

site Mbits/s

U.C. Davis 1.4399

NCSA 1.0218

W.U. St. Louis 0.5659

Rutgers 0.8792

SARA { Mean Throughput

site Mbits/s

Utah 2.6838

UIUC 2.3569

Calteh 3.4825

Table 3: Mean Measured File Transfer Throughput values

for SRB and SARA

5 Conlusions and Future Work

This paper presents ARM, a dynami foreasting method

to predit the performane of data transfer operations for

network-bound distributed data-intensive appliations.

Our method ahieves a high level of auray for exem-

plar appliations SARA and SRB. In summary, this paper

makes the following ontributions:

� An ARM foreaster is derived automatially and in

real-time, by using a regression model to map mea-

surements of system behavior to observed appliation

performane.

� ARM foreasters dynamially adapt in time to

hanges in the environment. In partiular, hanges

in the workload and system reon�gurations are used

to parameterize frequent updates of the model.

� The overhead of omputing preditions using ARM

is low and relatively straightforward { the linear re-

gression is applied to a sliding window of a small

number of sample pairs, minimizing omputational

overhead. Moreover, generating preditions of ap-

pliation performane using the model is inexpen-

sive, making it possible reevaluate the model often

to adapt to rapidly hanging network onditions.

� The ARM method hides the internal details of the

underlying system. No knowledge about ommu-

niation protools, network topology, or loal �le

systems was neessary to ahieve good preditions.

For example, even though the SARA appliation ex-

hibits higher �le throughput than the NWS mea-

sured bandwidth and exatly the opposite happens

for the SRB transfers, the foreaster is able in both

instanes to make aurate preditions.

Regarding related work, performane analysis and

sheduling of data-intensive appliations are desribed by

the ADR group from University of Maryland in [23℄ and

by Thakur in [21℄. However, they fous on parallel data

servers running over loal area networks. Performane

monitoring and foreasting of wide-area networks is dis-

ussed in works suh as the NWS [25, 26℄, GloPerf [13℄

and [7, 4℄. The Netlogger system [22℄ presents a pro�ling

framework for distributed storage systems. A more de-

tailed related work setion will be inluded in the

�nal version of this paper.

In the future, we intend to investigate adaptive Run-

ning Window length hoies, adapting the past history

length aording to the urrent statistial trends regard-

ing the relation between system and appliation behavior.

In addition, we intend to extend this work to aount for

data transfers performed on hierarhial storage systems

suh as HPSS [16℄, inluding system with tertiary storage

(tapes). We should also be able to use the ARM method

to generate network foreasts for varied ommuniation

protools and on�gurations and aurate relative rank-

ing among several data servers. In extending the sope

of this work to new senarios, we also intend to look at

the possibility of on-demand re�nement of the regression

model to inlude additional fators, suh as disk or tape

behavior and server load, in order to do a better job of

assessing end-to-end �le transfer, and hene appliation,

performane.

Aknowledgements

The authors would like to thank NPACI researhers

Reagan Moore, Chaitanya Baru, Arot Rajasekar and

Mihael Wan for their invaluable help for providing us

7



aess to the SRB infrastruture, their onstant sup-

port, and insightful omments. The SARA appliation

was developed by Roy Williams at CalTeh and George

Kremenek at SDSC, both of whom helped immensely in

our experiments with SARA. We are also very grateful for

the important ideas resulting from disussions with our

olleagues from the AppLeS group. Essential help was

also provided by Jim Hayes in adding new apabilities to

the NWS, neessary to run our experiments. Finally, we

would like to thank the NPACI sites that provided the

data servers for this work.

Referenes

[1℄ A. Amoroso, K. Marzullo, and A. Riiardi. Wide-Area

Nile: A Case Study of a Wide-Area Data-Parallel Ap-

pliation. In ICDCS'98 - International Conferene on

Distributed Computing Systems, 1998.

[2℄ AppLeS webpage at

http://www-se.usd.edu/groups/hpl/apples.

[3℄ C. Baru, R. Moore, A. Rajasekar, and M. Wan. The

SDSC Storage Resoure Broker. In IBM CASCON '98,

1998.

[4℄ S. Basu, A. Mukherjee, and S. Klivansky. Time Series

Models for Internet TraÆ. IEEE Comput. So. Press,

1996.

[5℄ F. Berman, R. Wolski, S. Figueira, J. Shopf, and

G. Shao. Appliation level sheduling on distributed het-

erogeneous networks. In Proeedings of Superomputing

1996, 1996.

[6℄ G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Se-

ries Analysis | Foreasting and Control. Prentie Hall,

1994.

[7℄ R. L. Carter and M. E. Crovella. Dynami Server Sele-

tion Using Bandwidth Probing in Wide-Area Networks.

Tehnial Report TR-96-007, Computer Siene Depart-

ment, Boston University, 1996.

[8℄ S. Chatterjee and B. Prie. Regression Analysis by Ex-

ample. John Wiley & Sons, In., 1991.

[9℄ A. L. Edwards. An Introdution to Linear Regression and

Correlation. W. H. Freeman and Company, 1984.

[10℄ U. Fayyad and R. Uthurusamy. Data Mining and Knowl-

edge Disovery in Databases. Communiations of the

ACM, 1996.

[11℄ R. Ferreira, B. Moon, J. Humphries, A. Sussman,

J. Saltz, R. Miller, and A. Demarzo. The Virtual Mi-

rosope. In Pro. of the 1997 AMIA Annual Fall Sym-

posium, 1997.

[12℄ I. Foster and C. Kesselman. The Globus Projet: A

Status Report. In Pro. IPPS/SPDP '98 Heterogeneous

Computing Workshop, 1998.

[13℄ GloPerf webpage at

http://www-fp.globus.org/details/gloperf.html.

[14℄ A. S. Grimshaw, W. A. Wulf, and the Legion team. The

Legion Vision of a Worldwide Virtual Computer. Com-

muniations of the ACM, 1997.

[15℄ R. Grossman, S. Kasif, R. Moore, D. Roke, and J. Ull-

man. Data Mining Researh: Opportunities and Chal-

lenges - A Report of three NSF Workshops on Mining

Large, Massive, and Distributed Data, 1998. Available

at http://www.ndm.ui.edu/M3D-final-report.htm.

[16℄ High Performane Storage System webpage at

http://www.sds.edu/hpss/hpss1.html.

[17℄ B. R. Shatz. High-Performane Distributed Digital Li-

braries: Building the Interspae on the Grid. In Pro.

7th IEEE Symp. on High Performane Distributed Com-

puting, 1998.

[18℄ N. Spring and R. Wolski. Appliation level sheduling of

gene sequene omparison on metaomputers. In Pro.

12th ACM International Conferene on Superomputing,

Jul 1998.

[19℄ SDSC's Storage Resoure Broker projet webpage at

http://www.npai.edu/DICE/SRB/index.html.

[20℄ A. Su, F. Berman, R. Wolski, and M. M. Strout. Using

AppLeS to Shedule a Distributed Visualization Tool on

the Computational Grid. International Journal of Super-

omputer and High-Performane Appliations, 1999.

[21℄ R. Thakur, W. Gropp, and E. Lusk. A Case for Using

MPI's Derived Datatypes to Improve I/O Performane.

In Pro. of SC98: High Performane Networking and

Computing, 1998.

[22℄ B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,

J. Lee, D. Gunter, and S. Kim. The NetLogger Method-

ology for High Performane Distributed Systems Perfor-

mane Analysis. In Pro. 7th IEEE Symp. on High Per-

formane Distributed Computing, 1998.

[23℄ M. Uysal, T. Kur, A. Sussman, and J. Saltz. A Per-

formane Predition Framework for Data Intensive Ap-

pliations on Large Sale Parallel Mahines. In Pro. of

4th Workshop on Languages, Compilers, and Run-time

Systems for Salable Computers. 1998.

[24℄ R. Williams. Calteh's Syntheti Aper-

ture Radar Atlas projet webpage at

http://www.ar.alteh.edu/~roy/sara/index.html.

[25℄ R. Wolski. Dynamially Foreasting Network Perfor-

mane to Support Dynami Sheduling Using the Net-

work Weather Servie. In Pro. 6th IEEE Symp. on High

Performane Distributed Computing, August 1997.

[26℄ R. Wolski, N. Spring, and J. Hayes. The network

weather servie: A distributed resoure performane

foreasting servie for metaomputing. Future Genera-

tion Computer Systems (to appear), 1999. available from

http://www.s.utk.edu/~rih/publiations/nws-arh.ps.gz.

[27℄ D. Zagorodnov, F. Berman, and R. Wolski. Appliation

Sheduling on the Information Power Grid. International

Journal of High-Performane Computing, 1998.

8




