
UCSF
UC San Francisco Previously Published Works

Title
An international report on bacterial communities in esophageal squamous cell carcinoma

Permalink
https://escholarship.org/uc/item/7v0672dh

Journal
International Journal of Cancer, 151(11)

ISSN
0020-7136

Authors
Nomburg, Jason
Bullman, Susan
Nasrollahzadeh, Dariush
et al.

Publication Date
2022-12-01

DOI
10.1002/ijc.34212
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7v0672dh
https://escholarship.org/uc/item/7v0672dh#author
https://escholarship.org
http://www.cdlib.org/


An international report on bacterial communities in esophageal 
squamous cell carcinoma

Jason Nomburg1,2,3, Susan Bullman4, Dariush Nasrollahzadeh5,6, Eric A. Collisson7,8, 
Behnoush Abedi-Ardekani6, Larry O. Akoko9, Joshua R. Atkins6, Geoffrey C. Buckle7,8, 
Satish Gopal10, Nan Hu11, Bongani Kaimila12, Masoud Khoshnia5, Reza Malekzadeh5, 
Diana Menya13, Blandina T. Mmbaga14,15, Sarah Moody16, Gift Mulima17, Beatrice P. 
Mushi9, Julius Mwaiselage18, Ally Mwanga9, Yulia Newton19, Dianna L. Ng7,20, Amie 
Radenbaugh19, Deogratias S. Rwakatema14,15, Msiba Selekwa9, Joachim Schüz21, Philip R. 
Taylor11, Charles Vaske19, Alisa Goldstein11, Michael R. Stratton16, Valerie McCormack21, 
Paul Brennan6, James A. DeCaprio1,3,22, Matthew Meyerson1,2,22,23,*, Elia J. Mmbaga9,24,*, 
Katherine Van Loon7,8,*

1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

2Broad Institute of MIT and Harvard, Cambridge, MA

3Harvard Program in Virology, Harvard Medical School, Boston, MA

4Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

*Correspondence to: Katherine Van Loon - Katherine.VanLoon@ucsf.edu, Elia J. Mmbaga - ejmmbaga@medisin.uio.no, Matthew 
Meyerson - matthew_meyerson@dfci.harvard.edu. 

Author Contributions
Conceptualization - K.V.L., E.J.M., M.M.
Data curation - J.N., Y.N., C.V.
Formal analysis - J.N.
Funding acquisition - K.V.L., S.B., J.A.D., M.M., M.R.S., P.B.
Investigation - J.N.
Methodology - J.N., K.V.L., M.M., E.J.M.
Project Administration - J.N., K.V.L.
Resources - D.N., E.A.C., B.A., L.O.A., J.R.A., G.C.B., S.G., N.H., B.K., M.K., R.M., D.M., B.T.M., S.M., G.M., B.P.M., J.M., A.M., 
Y.N., D.L.N., A.R., D.S.R., M.S., J.S., P.R.T., C.V., A.G., M.R.S., V.M., P.B., E.J.M., K.V.L.
Software - J.N.
Supervision - K.V.L., E.J.M., M.M., J.A.D.
Validation - J.N.
Visualization - J.N.
Writing - original draft - J.N.
Writing - review and editing - J.N., S.B., D.N., E.A.C., B.A., L.O.A., J.R.A., G.C.B., S.G., N.H., B.K., M.K., R.M., D.M., B.T.M., 
S.M., G.M., B.P.M., J.M., A.M., Y.N., D.L.N., A.R., D.S.R., M.S., J.S., P.R.T., C.V., A.G., M.R.S., V.M., P.B., J.A.D., M.M., E.J.M., 
K.V.L.
The work reported in the paper has been performed by the authors, unless clearly specified in the text.

CONFLICT OF INTEREST
M.M. receives research support from Bayer, Janssen, and Ono, has patents licensed to Bayer and Labcorp, is a consultant for Bayer, 
Interline, and Isabl, and has equity in Interline and Isabl. J.A.D. has received research support from Rain Therapeutics, Inc. J.A.D. has 
served as consultant to Rain Therapeutics, Inc. and Takeda, Inc. S.B. has consulted for GlaxoSmithKline and BioMx, and is on the 
cancer program scientific advisory board for BioMx. D.L.N. receives research funding from Cepheid, Inc., unrelated to this article. 
E.A.C. received expert consulting fees arising from an unrelated matter from Nant Bio in 2021 and 2022. C.V. is a shareholder of 
NantHealth. The other authors declare no conflict of interest exist.

Ethics Statement
This paper describes data that has already been collected. All studies were previously approved by the relevant ethical review boards 
and all patients acknowledged their informed consent, details of which can be found in the relevant publications.

HHS Public Access
Author manuscript
Int J Cancer. Author manuscript; available in PMC 2024 May 17.

Published in final edited form as:
Int J Cancer. 2022 December 01; 151(11): 1947–1959. doi:10.1002/ijc.34212.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of 
Medical Sciences, Shariati Hospital. Tehran Iran.

6International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology Branch, 
Lyon, France

7University of California, San Francisco (UCSF) Helen Diller Family Comprehensive Cancer 
Center, San Francisco, CA, USA

8Division of Hematology/Oncology, Department of Medicine, UCSF, San Francisco, California, 
USA

9Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania

10University of North Carolina, Chapel Hill, North Carolina, USA

11Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA

12UNC Project - Lilongwe, Malawi

13School of Public Health, Moi University, Eldoret, Kenya

14Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania

15Kilimanjaro Christian Medical University College, Moshi, Tanzania

16Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Wellcome Trust 
Genome Campus, Hinxton, Cambridgeshire, UK

17Kamuzu Central Hospital, Lilongwe, Malawi

18Ocean Road Cancer Institute, Dar es Salaam, Tanzania

19NantOmics/NantHealth, Inc., El Segundo, California, USA

20Department of Pathology, UCSF, San Francisco, CA, USA

21International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle 
Epidemiology Branch, Lyon, France

22Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

23Department of Genetics, Harvard Medical School, Boston, MA

24Department of Community Medicine and Global Health, University of Oslo, Norway

Abstract

The incidence of esophageal squamous cell carcinoma (ESCC) is disproportionately high in 

the eastern corridor of Africa and parts of Asia. Emerging research has identified a potential 

association between poor oral health and ESCC. One possible link between poor oral health 

and ESCC involves the alteration of the microbiome. We performed an integrated analysis 

of four independent sequencing efforts of ESCC tumors from patients from high- and low-

incidence regions of the world. Using whole genome sequencing (WGS) and RNA sequencing 

(RNAseq) of ESCC tumors from 61 patients in Tanzania, we identified a community of bacteria, 

including members of the genera Fusobacterium, Selenomonas, Prevotella, Streptococcus, 
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Porphyromonas, Veillonella, and Campylobacter, present at high abundance in ESCC tumors. 

We then characterized the microbiome of 238 ESCC tumor specimens collected in two additional 

independent sequencing efforts consisting of patients from other high-ESCC incidence regions 

(Tanzania, Malawi, Kenya, Iran, China). This analysis revealed similar ESCC-associated bacterial 

communities in these cancers. Because these genera are traditionally considered members of the 

oral microbiota, we next explored whether there was a relationship between the synchronous 

saliva and tumor microbiomes of ESCC patients in Tanzania. Comparative analyses revealed 

that paired saliva and tumor microbiomes were significantly similar with a specific enrichment 

of Fusobacterium and Prevotella in the tumor microbiome. Together, these data indicate that 

cancer-associated oral bacteria are associated with ESCC tumors at the time of diagnosis and 

support a model in which oral bacteria are present in high abundance in both saliva and tumors of 

some ESCC patients.

Graphical Abstract

Keywords

ESCC; microbiome; Fusobacterium 

INTRODUCTION

Esophageal cancer is the sixth most common cause of cancer-related death worldwide 

(1). There are two histologic subtypes of esophageal cancer with distinct biological 

characteristics, geographic distributions, and risk factors (2). Esophageal adenocarcinoma 

is the most common histologic form of esophageal cancer in high-income countries and 

is associated with factors including gastroesophageal reflux disease, Barrett’s esophagus, 

and obesity (3, 4). By contrast, esophageal squamous cell carcinoma (ESCC) represents 

more than 90% of worldwide esophageal cancer cases and is the dominant histology in 

low-resource settings. In particular, there are two main regions where ESCC is endemic: 

(1) the Asian esophageal cancer belt, extending from western/northern China to central and 

southeast Asia; and (2) the eastern corridor of Africa, extending from Ethiopia to South 

Africa (5, 6).
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Emerging research has identified a possible association between poor oral health and ESCC. 

Studies from Asia, Europe, Latin America, Kenya, and Iran have reported associations of 

ESCC with poor oral hygiene, chronic periodontal disease, dental decay, and tooth loss (7–

16). Recently, three parallel case-control studies in Kenya and Tanzania, conducted as part 

of the African Esophageal Cancer Consortium (AfrECC) and ESCCAPE (esccape.iarc.fr) 

collaborations, reported possible associations of poor or infrequent oral hygiene with 

increased risk for ESCC in East Africa (17–20).

Alterations of the oral microbiome due to poor oral health is one proposed biological 

pathway that could explain the link between oral health and ESCC. Many bacterial genera 

associated with gastrointestinal cancers contain species that are traditionally associated with 

healthy or diseased oral microbiomes. For example, Helicobacter pylori was discovered 

to be associated with gastric cancers and mucosa-associated lymphoid tissue (MALT) 

lymphomas, indirectly by promoting gastric inflammation and directly by influencing 

cellular signaling (21). Similarly, bacteria of the genera Fusobacterium, Selenomonas, and 

Prevotella are enriched in colorectal cancers (22–24) and can be visualized invasively within 

tumor tissue (25). Fusobacterium, in particular, has been reported to promote carcinogenesis 

through the selective expansion or inhibition of certain classes of immune cells (26) and 

may drive cellular proliferation by stimulating Wnt/β-catenin signaling (27, 28). Other 

bacterial genera such as Porphyromonas, Campylobacter, and Streptococcus have emerging 

associations with various human gastrointestinal cancers (29–35).

As part of ongoing investigation into the microbiome’s association with ESCC, we 

performed an integrated analysis of four independent sequencing efforts including ESCC 

tumors from patients from both high- and low-incidence regions of the world. In addition, 

we investigated the relationship between the microbiomes of matched ESCC tumors and 

saliva specimens in a subset of ESCC cases.

MATERIALS AND METHODS

Samples and sequencing efforts

The origin and number of samples is as follows: MUHAS Tanzania cohort (n=61) (36), 

UNC Project - Malawi cohort (n=30) (37). The Mutographs study (n=210) (38) originated 

from patients in Golestan, Iran (n=55), ESCCAPE case-control studies in Tanzania (n=18) 

(19) and Kenya (n=64) (17), and patients in Shanxi, China (n=71). While there are over 500 

samples in the full Mutographs study, our investigation was limited to a subsample of 210 

samples. TCGA ESCC (n=36) and COAD samples (n=51) have been previously described 

(39, 40). The TCGA ESCC cohort includes tumors from patients in United States (n=3), 

Ukraine (n=3), Vietnam (n=22), and Russia (n=8), regions which have lower incidence of 

ESCC. Information on sample acquisition and sequencing for the UNC Project - Malawi, 

Mutographs, and TCGA patient samples can be identified in their relevant publications (19, 

36–40). Details on each sequencing cohort are also listed in Table 1.

We provide sequencing statistics on studied samples in Supplementary Table 1. This 

table includes the following information for each sample: the total number of reads, the 

total number of reads that passed quality and complexity filtration during GATK-PathSeq 
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analysis, the number of human-mapped reads, the number of reads mapped to the microbial 

reference database, and the number of unmapped reads.

MUHAS Tanzania sample collection and sequencing

DNA and RNA were extracted from tumor samples using the Qiagen AllPrep kit. Saliva 

samples were collected in the Oragene DISCOVER ORG-500 tube and DNA was extracted 

using the Oragene PrepIT L2P extraction kit. Saliva samples were collected at the time 

of tumor collection. RNA integrity was assessed using an Agilent bioanalyzer, and RNA 

and DNA quantity was assessed by Nanodrop and PicoGreen (Invitrogen) methods. DNA 

sequencing libraries were prepared with the KAPA Hyper Prep kit, and samples were 

sequenced to a target depth of 60x coverage (for tumor) or 30x coverage (for saliva) on an 

Illumina NovaSeq. RNA isolations with RIN > 7 were prepared with the KAPA Stranded 

RNAseq with RiboErase kit and sequenced on an Illumina HiSeq or NovaSeq to a target 

of 200 million 150bp paired reads. Additional methodologic details can be found in the 

associated publication (36).

Bacterial identification and quantification

GATK-PathSeq (41) was used to conduct computational subtraction of human-mapping 

reads from input RNAseq and WGS datasets. GATK-PathSeq initially maps reads to a host 

reference database consisting of the human genome grch38 and various supplemental human 

reference sequences. Next, non-human reads are mapped against a comprehensive microbial 

database, and microbe read assignments are reported for further study.

For all analyses, we used the GATK-PathSeq “score”, which is roughly equivalent to read 

count. The GATK-PathSeq score is calculated by: 1) distributing a read count to multiple 

species if the read maps to multiple species (e.g. if a read maps to two species, each species 

gets +0.5 of a read); and 2) normalizing the read count to genome length (only in WGS 

data). The score is calculated at the taxonomic level of the entry in the reference (usually 

a species or strain). The genus score is the sum of scores assigned to each species in that 

genus.

Bacterial abundance analyses and plotting were conducted in R (v3.5.1). To calculate 

relative abundance at a phylogenetic level (e.g., phylum or genus), GATK-PathSeq results 

were filtered for taxa at the level, and relative abundance was calculated for each taxon as 

follows: (# of taxon reads)/(total # reads at the selected phylogenetic level). The rows of 

all bacterial abundance heatmaps are arranged according to the mean abundance across all 

samples. The sample order of relative abundance stacked barplots were determined based 

on Fusobacterium genus relative abundance except where noted. In Figure 2D, if any cohort 

contained more than 50 samples, 50 samples were randomly selected for plotting. The 

distribution of relative abundances of genera of interest in all samples can be found in Figure 

S2, where width of each violin represents the relative distribution of observed bacterial 

relative abundance for all patients in each patient cohort.

Jaccard distance between RNAseq and WGS data from each ESCC tumor was calculated 

in R based on bacterial genera with at least 1% relative abundance. The qualitative Jaccard 

Nomburg et al. Page 5

Int J Cancer. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



index was used in this case because the comparison was between DNA and RNA analytes 

which would not be expected to be quantitatively identical.

Tumor-saliva similarity

Only tumor-saliva pairs from the MUHAS Tanzania cohort with at least 10,000 reads 

mapped to the bacterial superkingdom were analyzed for similarity (N=21). Bray-Curtis 

dissimilarity metrics between tumor-oral pairs were calculated using the R package vegan 

(42). Figure 3A presents the Bray-Curtis similarity (1 – Bray-Curtis dissimilarity), for each 

tumor-oral pair.

To determine the correlation between the relative abundance of specific genera between 

tumor and saliva microbiomes, common-abundant genera with at least 1% abundance in at 

least 3 tumor-saliva pairs were identified. This resulted in the identification of 16 common-

abundant genera. Correlations represent a two-sided Pearson correlation coefficient. To 

determine tumor-saliva enrichment of common-abundant genera, the difference in relative 

abundance of each genus between each tumor-saliva pair was plotted (Figure 3C). For the 

relative abundance bar plots of tumor-saliva pairs (Figure 3D), bacterial genera that had been 

highlighted in previous figures are labeled.

Bacterial contaminant identification

We identified potential bacterial contaminants with two approaches. First, we used a bacteria 

genera blacklist identified by Salter et al. and Poore et al. (43, 44) as bacteria commonly 

present in negative-blank controls. Second, we implemented the Decontam program (45). 

Decontam works on the assumption that the relative abundance of contaminants should be 

inversely proportional to the library concentration, and thus incorporates information on 

library concentrations prior to pooling for sequencing. We ran Decontam on samples from 

the Mutographs cohort with an aggressive p-value threshold of p < 0.2 and the “frequency” 

method. The code used to run Decontam can be found in running_decontam.Rmd. We 

then removed the blacklist and Decontam-called bacterial genera from each dataset, and 

re-generated Figure 2 as Figure S3B–E. The code used to do this analysis is present at 

Fig_S3_blacklist_and_decontam.Rmd.

We implemented Snippy (v4.4.5) (https://github.com/tseemann/snippy) for variant calling, 

and then FastTree (46) for constructing phylogenetic trees of Fusobacterium isolates. We 

first ran snippy-multi, followed by rerunning snippy-core on samples with sufficient single 

nucleotide polymorphisms (SNPs) relative to the reference. We implemented Snippy only 

on Fusobacterium-high samples that had sufficient SNPs, resulting in 4 samples from 

MUHAS Tanzania and 5 from ESCCAPE Kenya. As the reference Fusobacterium strain, 

we used Fusobacterium nucleatum subspecies polymorphum (accession NZ_LN831027.1). 

We included WGS reads from genetically-similar tumor-oral Fusobacterium pairs previously 

sequenced by Abed et al. (47) in each run of snippy-core.

Batch effects

Batch effects arise during separate collection, processing, and sequencing of samples. In 

the context of microbiome studies, this will result in differences in the amount and identity 
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of sequencing reads from contaminating genera. As noted above, because we do not have 

the controls necessary to concretely identify contaminating bacteria, we do not take action 

to remove contaminants. We acknowledge that batch effect may influence the relative 

abundance of non-contaminant bacteria (e.g. as a consequence of DNA or RNA extraction), 

meaning that there may be some minor quantitative differences as a result.

RESULTS

Study Population

To evaluate the potential role of the host microbiota in ESCC, we investigated the 

microbiome of 299 ESCC specimens from patients in five different countries with a 

high incidence of ESCC. Specimens were collected through four independent sequencing 

efforts (Figure 1A). Specimens consisted of whole genome sequencing (WGS) and RNA 

sequencing (RNAseq) data from the tumor and saliva of 61 patients from Tanzania (the 

“MUHAS Tanzania” cohort) (36), RNAseq data from the tumors of 30 ESCC patients in 

Malawi (the “UNC Project – Malawi” cohort) (37), and WGS from 208 additional samples 

of tumors from patients in high ESCC incidence regions, including specimens from ESCC 

patients in Tanzania (n=18) and Kenya (n=64) that were collected in the ESCCAPE studies 

(esccape.iarc.fr) and specimens from ESCC patients in East Golestan, Iran (n=55) and 

Shanxi, China (n=71) that were sequenced as part of the Cancer Research UK Mutographs 

project (“Mutographs” cohorts) (38). In addition, we analyzed WGS data of ESCC from 

The Cancer Genome Atlas (39), which includes a small number of tumors from patients in 

low-incidence geographic regions including the United States (n=3), Ukraine (n=3), Vietnam 

(n=22), and Russia (n=8) (the “TCGA” cohort). Patient characteristics are shown in Table 2.

Bacterial populations are abundant and diverse in ESCC tumors

We used the metagenomic analysis tool GATK-PathSeq (41) to process the RNAseq and 

WGS data. GATK-PathSeq uses a sequential mapping strategy to assign reads to human 

and microbial reference genomes, resulting in detailed information on sequencing reads of 

human and microbial origin (Figure S1A). We likewise used GATK-PathSeq to process 

WGS data sets from 50 colon adenocarcinoma (COAD) specimens available from TCGA 

(40) for comparison, as there is strong evidence of microbial associations with COAD (22–

25).

The bacterial burden of ESCC tumors ranged from 10 to 1000 bacterial reads per million 

human reads, similar to numbers observed in TCGA COAD (Figure 1B). Furthermore, the 

Shannon diversity of bacterial populations at the genus level ranged from 2 to 3 (Figure 

1C). By comparison, ESCC-associated bacterial communities are as diverse or more diverse 

than TCGA COAD. At the phylum level, ESCC bacterial populations generally consist 

of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria (Figure 1D, 

Figure S1B). Of note, the higher than expected abundance of the phylum Actinobacteria 
specifically in the TCGA ESCC samples is attributable, in particular, to a very high 

abundance of the genus Tetrasphaera (Figure S1C). This is evidenced by a depressed 

Shannon diversity of Actinobacteria genera in these samples (Figure S1D) and may indicate 
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contamination of the TCGA ESCC samples. Actinobacteria have been reported as a source 

of contaminating reads in TCGA gastrointestinal cancer samples (48).

Bacterial genera associated with carcinogenesis are observed at high relative abundance 
in ESCC tumors from Tanzania

To determine if bacteria with known associations with cancer are present in ESCC, we 

first analyzed the sequencing series of the 61 ESCC cases from the MUHAS Tanzania 

cohort with both WGS and RNAseq data. The paired WGS and RNAseq data from these 

tumors allowed investigation of bacterial communities at the DNA and RNA levels. Both 

WGS and RNAseq data revealed high relative abundance of bacterial genera previously 

associated with carcinogenesis in these ESCC tumors (Figure 2A, 2B). The high relative 

abundance of the Fusobacterium genus was particularly notable. Other bacterial genera 

of interest include Streptococcus, Porphyromonas, Campylobacter, Prevotella, Veillonella, 

and Selenomonas, many of which have been associated with gastrointestinal malignancies 

alongside or independently of Fusobacterium (25, 29, 32, 34, 49). The mean Jaccard 

similarity index between tumor RNAseq and WGS data from the same tumor is 0.54, greater 

than the average Jaccard similarity index of random RNAseq-WGS pairs (0.36), indicating 

that bacterial populations inferred from WGS and RNAseq data are generally consistent 

(Figure 2C).

Next, we attempted to determine if similar bacterial genera were also present in ESCC from 

patients in high-incidence countries beyond Tanzania. Investigation of RNA sequencing data 

from patients in Malawi, WGS data from patients in Kenya, China, and Iran, as well as from 

the independent ESCCAPE Tanzania patient group revealed pervasive evidence of similar 

bacterial genera in the tumors of these patients (Figure 2D, Figure S2). To investigate if 

similar microorganisms were found in ESCC tumors from patients in low-incidence regions, 

we investigated WGS data from ESCC tumors originating from USA, Ukraine, Vietnam, 

and Russia that were available through TCGA. While the number of ESCC tumors available 

from low-incidence regions was low and relies on a single sequencing effort, we found that 

the tumors of many of these patients contain similar bacterial genera (Figure 2D, Figure 

S2). Colon cancers from the TCGA COAD cohort revealed evidence of Fusobacterium, as 

expected; however, these COAD samples were notable for much lower relative abundance of 

the other genera of interest, when compared to ESCC tumors.

Assessing contamination

To understand if bacterial contaminants were influencing our results, we identified potential 

contaminating bacterial genera and assessed the impact of their removal. We identified 

potential contaminating genera in two ways: 1) bacteria that had been identified by Settler 

et al. and Poore et al. as potential contaminants present in “negative-blank” sequencing 

controls (43, 44); and 2) bacteria that were identified by the Decontam algorithm (45) 

as potential contaminants. An average of 1.58% of bacterial genus reads belonged to 

bacterial genera present in the blacklist (Figure S3A). We were able to implement the 

Decontam algorithm only on the Mutographs samples (ESCCAPE Tanzania; ESCCAPE 

Kenya; Shanxi, China; and Golestan, Iran). In these samples, Decontam-called bacterial 

genera represented an average of 12.2% of bacterial genus reads (Figure S3A). We then 
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assessed the impact of the removal of blacklist and Decontam-identified bacterial genera on 

our results and found that the removal of these bacterial genera only had a marginal effect 

that did not change our conclusions (Figure S3B–E).

While the identification of Fusobacterium, Streptococcus, Porphyromonas, Campylobacter, 
Prevotella, Veillonella, and Selenomonas in multiple independent sequencing efforts reduces 

the likelihood they are contaminants, we implemented a secondary approach to rule out 

contamination. We focused on Fusobacterium in Fusobacterium-high samples from the 

MUHAS Tanzania and ESCCAPE Kenya cohorts, reasoning that if Fusobacterium was a 

contaminant, it would be the same isolate (and thus genetically similar) in each sample 

within each sequencing effort. As a positive control, we included WGS data from two pairs 

of tumor and oral Fusobacterium isolates from colorectal cancers generated by Abed et 

al., who had found that these tumor and oral Fusobacterium pairs were genetically similar 

isolates (47). We found that while our approach groups the oral and tumor isolates as 

reported by Abed et al., Fusobacterium from patients in the MUHAS Tanzania (Figure S3F) 

and ESCCAPE Kenya (Figure S3G) patient groups were genetically distinct within each 

sequencing effort, indicating that the Fusobacterium is not a sequencing contaminant.

Evaluation of association between saliva and tumor microbiomes in ESCC patients from 
Tanzania

We next investigated the similarity between the saliva and tumor microbiomes of ESCC 

patients. Paired tumor-saliva samples were only available from patients in the MUHAS 

Tanzania cohort; these paired tumor-saliva specimens were analyzed to evaluate bacterial 

abundance as a proxy for the oral microbiome.

We first assessed the similarity between paired saliva and tumor microbiomes with the Bray 

Curtis similarity index (50). To avoid potential confounding due to low bacterial read counts 

in some tumor samples, we limited these analyses to the 21 tumor-saliva pairs that contain 

appreciable microbial sequencing depth (at least 10,000 bacterial reads each). We found 

that the saliva and tumor microbiomes from the same patient in the Tanzanian samples are 

significantly more similar than random saliva-tumor pairs (p=0.0003, Wilcoxon rank sum 

test) (Figure 3A). Next, we asked if there are bacterial genera whose relative abundance in 

the saliva correlates with their relative abundance in the tumor. For this analysis, we included 

only common-abundant bacterial genera with at least 1% relative abundance in at least 

three tumor-saliva pairs. The relative abundance of four bacterial genera (Fusobacterium, 

Veillonella, Streptococcus, and Porphyromonas) are strongly correlated between tumor and 

saliva microbiomes, while other common-abundant bacterial genera were not (Figure 3B). 

To assess if any bacterial genera are preferentially enriched in the tumor microbiome relative 

to the saliva microbiome, we next calculated the difference in the relative abundance of the 

common-abundant bacterial genera between tumor-saliva pairs. Several genera including 

Porphyromonas and Veillonella were at higher relative abundance in the saliva, while 

Prevotella and Fusobacterium were enriched in the tumor microbiome (Figure 3C). Finally, 

the relative abundance of tumor-associated bacteria including Fusobacterium, Prevotella, 

Selenomonas, Veillonella, Streptococcus, and Campylobacter are strikingly similar between 

the microbiomes of tumor and saliva pairs (Figure 3D).
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DISCUSSION

This report provides a comprehensive analysis of bacterial communities present in ESCC 

tumors from nine countries from different regions of the world, which were previously 

sequenced in four independent studies. We found traditionally oral, cancer-associated, 

bacterial genera in tumors from patients in Tanzania, Malawi, Kenya, China, and Iran. 

These results provide evidence that these bacterial genera may be associated with ESCC 

in these high-incidence regions. We also identified similar bacterial genera in ESCC 

tumors from low-incidence regions, although this finding was based on a small sample 

size and only one sequencing cohort. Finally, in a sub-analysis of tumor and saliva pairs 

available from Tanzania, we demonstrated that the paired saliva and tumor microbiomes of 

ESCC patients were strikingly similar at the time of diagnosis; in particular, we identified 

a specific correlation between the saliva and tumor relative abundance of the bacterial 

genera Fusobacterium, Veillonella, Streptococcus, and Porphyromonas, with Prevotella 
and Fusobacterium significantly enriched in the tumor microbiome. Altogether, these data 

support the hypothesis that there is an association between the saliva and tumor microbiomes 

of ESCC patients in Tanzania. Additional studies are necessary to confirm this finding in 

additional patient groups and to clarify the significance.

Many of the bacterial genera identified in this study have been previously implicated in 

the carcinogenesis of gastrointestinal cancers. For example, studies have found that oral 

microbiota including Fusobacterium, Prevotella, Selenomonas, Veillonella, Streptococcus, 

and Campylobacter can be used to distinguish individuals with colorectal cancer from 

healthy controls (51), and that Fusobacterium nucleatum strains that colonize the oral 

cavity and tumors of patients with colorectal cancer are identical in some patients (52), 

raising the possibility that the oral cavity is a source of extra-oral cancer microbiota. 

Our group has previously shown that Fusobacterium, Selenomonas, and Prevotella can 

be visualized invasively within colorectal tumors and liver metastases (25). Fusobacterium 
nucleatum has been previously identified in esophageal cancers and is associated with 

shorter overall survival (53). Members of the genus Porphyromonas have been previously 

observed invasively within ESCC tumors (29) and have been reported to promote oral 

squamous cell carcinoma through a variety of mechanisms (30, 31). Campylobacter jejuni 
has been reported to promote tumorigenesis in mice (32), and Streptococcus species have 

been identified in human esophageal cancers (33). In addition, the striking association of 

Streptococcus bovis with colorectal cancer has led to the recommendation that colonoscopy 

be performed upon detection of Streptococcus bovis bacteremia or endocarditis (34, 35). 

Oral commensal bacteria such as Veillonella species have been previously implicated in 

pathogenesis of lung cancer (49). A prospective cohort of American patients (54) and 

a study of Japanese patients (55) likewise found that oral microbiome composition is 

associated with risk for development of esophageal cancer.

We found that bacterial genera including Fusobacterium, Prevotella, Selenomonas, 

Veillonella, Streptococcus, and Campylobacter are pervasive in the microbiome of ESCC 

tumors from patients in high-incidence regions. Moreover, the bacterial composition of 

ESCC tumors is remarkably similar across countries in those high-incidence regions, raising 

the possibility that particular bacterial genera may be involved in ESCC carcinogenesis 
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or that they may colonize tumors as a result of the common clinical presentation of 

patients with severe dysphagia. Notably, there are several alternative hypotheses that warrant 

mention. For example, it is possible that the ESCC-associated bacterial genera simply 

represent common members of the esophageal microbiome (56) and that the microbial 

populations we observed in these cancers are not significantly different from those found 

in normal esophagus tissue. A limitation of our study is a lack of normal esophageal tissue 

from ESCC cases or healthy controls in these settings, which would allow us to address this 

possibility. Another possible explanation is that ESCC tumors provide a favorable niche in 

which these bacteria are sequestered, in the setting of malignant obstruction, and allowed to 

colonize. Thus, it is plausible that ESCC-associated bacteria are not necessarily promoting 

ESCC carcinogenesis but rather represent passengers resulting from the sequestration of 

oral secretions proximal to an obstructing tumor. While the previous association of these 

bacterial genera with other cancers is consistent with the hypothesis that they influence 

carcinogenesis of ESCC, future studies are necessary to identify which, if any, direct 

influences these bacterial genera have upon ESCC carcinogenesis. Nevertheless, even if 

these bacterial genera do not have a role in increasing ESCC risk, but arise at the time 

of disease onset, they may have an important role to play as part of a biomarker for 

non-invasive early detection. Finally, a concern of all microbiome analyses is that observed 

bacteria can be a consequence of contamination at some step between tumor harvest and 

sequencing. However, our analysis of potential contaminants and the fact that we identify 

Fusobacterium, Prevotella, Selenomonas, Veillonella, Streptococcus, and Campylobacter in 

four independently collected sequencing efforts indicates that these finding are unlikely due 

to contamination.

While this study focused on the presence of bacteria with ESCC in high-incidence 

regions, we found evidence of similar cancer-associated bacteria in tumors in patients 

from low-incidence regions (USA, Ukraine, Vietnam, and Russia). A limitation of this 

assessment is the small sample size (n=36) and reliance on a single TCGA cohort that 

likely contains contaminants (48). Regardless, this finding does not exclude the possibility 

that the microbiome could be a factor driving patterns of ESCC incidence. For example, 

it is possible that the prevalence of ESCC-associated bacteria in people could vary across 

regions, which in turn could drive these differing rates of ESCC incidence. This is an 

important topic for future study.

We found that the structure of synchronous paired tumor and oral microbiomes were 

strikingly similar, although in a limited group of 21 patients. It is possible that this 

similarity is driven by transient contact of saliva and its associated microbiome with 

the tumor (e.g., during swallowing or tumor extraction). However, we found that only 

four of sixteen common-abundant bacterial genera correlate in abundance between the 

tumor and oral microbiomes, suggesting tumor-oral microbiome similarity is not driven 

exclusively by “in-trans” interactions between the saliva and tumor. We also found that 

genera including Prevotella and Fusobacterium are often specifically enriched in the tumor 

microbiome, supporting a model where specific oral bacterial preferentially colonize the 

tumor. A caveat of this study is that we infer oral bacterial populations from the saliva, 

despite diverse communities of bacteria throughout the oral cavity (57). However, we 

do observe Fusobacterium in the saliva despite its general association with periodontal 
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plaques (58), suggesting saliva is capable of detecting periodontal pathogens. Additionally, 

because the samples studied here are from patients with late-stage disease, it is possible 

that tumor-induced changes to upper-gastrointestinal physiology and dysphagia symptom-

induced major dietary changes could themselves alter the oral microbiomes of these patients. 

The previous findings from the ESCCAPE studies in Kenya and Tanzania (17, 19) which 

found strong associations with dental staining (ORs > 10) and for which photographic 

validation studies suggest that most dental staining was not fluorosis, also point to a recent 

build-up of chromogenic bacteria. Studies of the oral microbiome of patients at earlier stages 

of ESCC and in prospective studies are necessary to address this possibility. We restricted 

our analysis to 21 tumor-saliva pairs that have a sufficient number of bacterial reads (at 

least 10,000). It is likely that excluded samples are not molecularly distinct from included 

samples but that the relatively low bacterial read counts in some tumors is simply reflective 

of low sequencing depth. Additional studies are necessary to understand the relationship 

between tumor and oral bacterial communities in additional patient groups in other high- and 

low- incidence regions.

Our observation of similar tumor and saliva microbiomes in ESCC patients is especially 

notable considering emerging evidence linking periodontal disease and poor oral health with 

increased risk of various cancers (17, 59, 60). This raises several important questions for 

future inquiry. It will be essential to determine if there is a difference in the oral prevalence 

of these identified cancer-associated bacteria between ESCC patients and non-patients 

earlier in the natural history of the disease, for example through comparisons of patients 

with esophageal squamous dysplasia and healthy controls. Because the prevalence of these 

bacteria may be associated with factors such as oral health, hygiene, and diet, studies of 

the impact of these factors on the oral microbiome in the general population would inform 

whether the oral microbiome is on a pathway linking oral hygiene to ESCC risk and may 

have a role in prevention.

In conclusion, we show that cancer-associated, traditionally-oral bacteria including 

the genera Fusobacterium, Selenomonas, Prevotella, Streptococcus, Porphyromonas, 
Veillonella, and Campylobacter are highly abundant within ESCC tumors from patients in 

regions with a high incidence of ESCC. We also show that there is a correlation between 

the genus composition of the saliva microbiome and the ESCC tumor microbiome of some 

ESCC patients. These findings will be foundational for future studies to understand if 

and how bacteria influence ESCC pathogenesis and to understand the role of the oral 

microbiome in this process. Finally, this study highlights the benefit of collaborative 

investigation to evaluate the international heterogeneity of this disease.
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Refer to Web version on PubMed Central for supplementary material.
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Novelty and Impact:

Esophageal cancer is the sixth most common cause of cancer-related death worldwide. 

There are unexplained geographic patterns of esophageal squamous cell carcinoma 

(ESCC), with disproportionately higher incidence rates occurring in the eastern 

corridor of Africa and parts of Asia. We found that bacteria associated with other 

gastrointestinal cancers are associated with ESCC from patients in nine countries 

worldwide, highlighting a pressing need for future studies to understand the role of the 

microbiome in ESCC pathogenesis.
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Figure 1. Microbiome structure and composition of ESCC tumors
A. Description of ESCC patients, and sample types, assessed in this study. TCGA – 

The Cancer Genome Atlas; ESCCAPE – Esophageal Squamous Cell Carcinoma African 

Prevention Research; Mutographs – Cancer Research UK Mutographs Project.

B. Bacterial burden of ESCC tumors for each patient cohort. Units are bacterial reads per 

million human reads as determined by GATK-PathSeq analysis. Each dot represents one 

sample. Analyte type (RNA or DNA) and tumor type (ESCC or COAD) are indicated by 

color.

C. Shannon diversity of ESCC tumors for each patient cohort. Shannon diversity was 

determined for each sample at the genus level based on genera that are at least 1% relative 

abundance. Each dot represents one sample. Analyte type (RNA or DNA) and tumor type 

(ESCC or COAD) are indicated by color.
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D. Heatmap describing the relative abundance of the five top phyla sorted by average 

phylum relative abundance. Each column represents one sample. Rows represent the 

indicated phyla. Units are relative abundance. Samples from each cohort are WGS unless 

noted with “(RNA)”, in which case they are RNAseq.
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Figure 2. Identification of bacterial genera associated with carcinogenesis
A. Bacterial genera relative abundance of WGS data from the MUHAS Tanzania cohort. 

Each column represents a single sample. Samples are ordered by decreasing Fusobacterium 

relative abundance. Units are relative abundance of bacterial genus-mapping reads. Color 

indicates the genus, and seven genera are specified. Only patients with GATK-PathSeq 

analysis from both RNAseq and WGS tumor data are plotted (n=59).

B. Bacterial genera relative abundance of RNAseq data from the MUHAS Tanzania cohort. 

Each column represents a single sample. Here, column order is dictated according to the 

patient order in Figure 2A. Units are relative abundance of bacterial genus-mapping reads. 

Color indicates the genus, and seven genera are specified. Only patients with GATK-PathSeq 

analysis from both RNAseq and WGS tumor data are plotted (n=59). Samples are ordered 

in the same order as Figure 2A, which is by Fusobacterium genus relative abundance in the 

WGS data.

C. Jaccard index between RNAseq and WGS data of tumors from the MUHAS Tanzania 

cohort. For the “Paired by Sample” column, Jaccard indices were calculated only between 

the WGS and RNAseq data from the same tumor (n=59 comparisons). For the “Random 

Pairs” column, Jaccard indices were calculated between all possible WGS-RNAseq pairs 

independent of patient of origin to represent the expected random distribution of Jaccard 

indices (n=3,481 comparisons). Jaccard index was calculated from relative abundance at the 

genus level based on genera that are at least 1% relative abundance. The width of the violin 

represents the relative proportion of comparisons with each Jaccard index, and lines indicate 

25th, 50th, and 75th percentiles.

D. Bacterial genera relative abundance of the remaining patient cohorts, including RNAseq 

and WGS data as indicated. Each column represents a single sample. Samples are ordered 

by decreasing Fusobacterium relative abundance within each patient cohort. Units are 

relative abundance of bacterial genus-mapping reads. Color indicates the genus, and seven 
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genera are specified. Here, if there were more than 50 samples in a patient cohort, 50 

samples were randomly selected for visualization. USA – United States, UA – Ukraine, RU 

– Russia. All cohorts consist of WGS data, with the exception of the tumors from Malawi 

which are RNAseq. (Number of samples plotted: UNC Project - Malawi 30; ESCCAPE 

Tanzania 18; ESCCAPE Kenya 50; Shanxi, China 50; Golestan, Iran 50; TCGA ESCC 

Vietnam 22; TCGA ESCC USA/UA/RU 14).
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Figure 3. Association between synchronous saliva and tumor microbiomes in Tanzanian ESCC 
patients
A. Bray Curtis Similarity comparing tumor-saliva pairs from patients in the MUHAS 

Tanzania cohort. Analysis was restricted to the 21 tumor-saliva pairs that contained at least 

10,000 bacterial reads. This analysis was conducted at the genus level and using relative 

abundance. For the “Paired by Patient” column, Bray Curtis Similarity was calculated 

only between the tumor and saliva WGS data from the same patient. For the “Random 

Pairs” column, Bray Curtis Similarity was calculated between all possible tumor-saliva pairs 

independent of patient of origin to represent the expected random distribution of Bray Curtis 

Similarity. (p=0.0003, Wilcoxon rank sum test).

B. Correlation between the relative abundance of common-abundant bacterial genera in 

paired saliva and tumor WGS data. Analysis was restricted to the 21 tumor-saliva pairs that 

contained at least 10,000 bacterial reads. Common-abundant bacterial genera are bacterial 

genera that are at least 1% abundance in at least 3 tumor-saliva pairs – 16 bacterial genera 

made this cutoff. Correlation represents a two-sided Pearson correlation. X-axis is the 

correlation coefficient, and Y axis is the correlation P-Value plotted on a log scale.

C. Enrichment of genera in the oral or tumor microbiome. Each row details one of the 16 

common-abundant bacterial genera. Each row contains one data point per patient, for a total 

of 21 data points. The value of each point represents the difference in the relative abundance 

of the specified genus in the tumor and saliva microbiomes of one patient, with positive 

values indicating a genus is at higher relative abundance in a patient’s tumor. For example, 

if a genus is at a relative abundance of 0.7 (70%) in the tumor and 0.3 (30%) in the saliva 

of a patient, the plotted value for that genus and that patient is 0.4. Curves represent the 

distribution of this relative abundance difference across the tumor-saliva pairs, with dots 

indicating individual tumor-oral pairs. Vertical red lines indicate quartiles.

Nomburg et al. Page 23

Int J Cancer. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Relative abundance bar charts of tumor-saliva pairs. Analysis was restricted to the 21 

tumor-saliva pairs that contained at least 10,000 bacterial reads. Units are relative abundance 

of bacterial genus-mapping reads. Color indicates the genus, and seven genera are specified. 

(abbreviations: T – tumor, S – saliva).
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