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LETTER
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Abstract
Residential rooftop solar is slated to play a significant role in the changing US electric grid in the
coming decades. However, concerns have emerged that the benefits of rooftop solar deployment
are inequitably distributed across demographic groups. Previous work has highlighted inequity in
national solar adopter deployment and income trends. We leverage a dataset of US solar adopter
household income estimates—unique in its size and resolution—to analyze differences in adoption
equity at the local level and identify those conditions that yield more equitable solar adoption, with
implications for policy strategies to reduce inequities in solar adoption. The solar inequities
observed at the national and state levels also exist at more granular levels, but not uniformly so;
some US census tracts exhibit less solar inequity than others. Some demographic, solar system, and
market characteristics robustly lead to more equitable solar adoption. Our findings suggest that
while solar adoption inequity is frequently attributed to the relatively high costs of solar adoption,
costs may become less relevant as solar prices decline. Results also indicate that racial diversity and
education levels affect solar adoption patterns at a local level. Finally, we find that solar adoption is
more equitable in census tracts served by specific types of installers. Future research and policy can
explore ways to leverage these findings to accelerate the transition to equitable solar adoption.

1. Introduction

Residential rooftop solar photovoltaics (PV) are
slated to play a significant role in the changing US
electric grid in the coming decades (US DOE 2021).
Households adopting rooftop solar can reduce their
electricity bills by displacing the volumetric portion
of their retail rate (in $ kWh−1). Electricity rate struc-
tures commonly recoup most fixed costs through
these volumetric payments, and hence electricity sup-
pliers may need to increase electricity rate levels as
a result of solar deployment, effectively shifting costs
to non-solar-adopters. Grid cost shifting is common;
however, some have argued that solar-driven cost
shifts could be regressive as a result of solar adoption
inequity: high-income households are more likely to
adopt solar than low- and moderate-income (LMI)
households (Borenstein 2017, Clastres et al 2019,
Metcalf 2019, Burger et al 2020). Preventing regressive
cross-subsidies by accelerating the transition to more
equitable rooftop solar adoption is a key piece of the

emerging clean energy justice policy agenda (Eisen
and Welton 2019, Carley and Konisky 2020).

Inequities are not inherent to rooftop solar.
Indeed, rooftop solar could mitigate existing energy
inequities, such as by reducing the energy cost bur-
dens of LMI households (Bednar and Reames 2020).
However, LMI households have been and remain
significantly less likely to adopt rooftop PV than
high-income households in the United States (Yu
et al 2018, Lukanov and Krieger 2019, Barbose et al
2021b, O’Shaughnessy et al 2021b). Those historical
adoption inequities are driven largely by structural
inequalities, especially income inequality and geo-
graphic income segregation (O’Shaughnessy 2021).
Income inequality provides the conditions for solar
adoption inequity as some high-income households
are more capable of adopting PV at current prices
than LMI households. The literature has identified
several income-driven differences in solar access,
including LMI household cash constraints, lower
rates of home ownership, building structural issues,
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language barriers (Mueller and Ronen 2015, Lukanov
andKrieger 2019, Sunter et al 2019, Brown et al 2020),
and lower rooftop solar hosting potential in LMI
neighborhoods (Reames 2021). The ‘split-incentives’
of energy efficiency, well documented in the liter-
ature (Bird and Hernández 2012, Gillingham et al
2012), are also present for solar (Bird and Hernández
2012, Inskeep et al 2015), driving to less solar adop-
tion among renters, who are disproportionally lower
income (JCHSHU 2020). Income inequality can also
lead installers to target high-income households,
especially if income is geographically segregated such
that installers can concentrate marketing efforts in
high-income neighborhoods (O’Shaughnessy et al
2021a). Adoption inequity in the U.S., specifically,
can also be attributed to federal and state tax credits
for PV adoption that are less accessible to LMI house-
holds (Borenstein and Davis 2016). Solar inequity
transcends income alone; rooftop solar adoption pat-
terns are stratified by other demographic factors as
well (Lukanov and Krieger 2019, Sunter et al 2019).
Inequitable solar adoption will solidify and exacer-
bate broader social inequities. While a more equal
distribution of the private benefits of solar among
income groups will not reduce cost shifts, it will make
them less regressive (Borenstein et al 2021). Realiz-
ing solar’s full market potential—and the associated
climate, economic development, and employment
benefits—will require adoption of solar at all income
levels (Sigrin andMooney 2018) as well as public and
political support, which would be hindered by a per-
ception of continued solar inequity (Eisen andWelton
2019). Adoption inequity is not a unique or necessar-
ily permanent feature of rooftop PV (O’Shaughnessy
2021). Many emerging technologies go through a
transient phase of high costs and inequitable adoption
(Attanasio and Pistaferri 2016), and rooftop PV is on
a trajectory to become more equitable over time as
costs decline (Borenstein 2017, Barbose et al 2021b).

Previous work has explored rooftop solar adop-
tion inequity at the state or national level (Barbose
et al 2021b) and how policies and business mod-
els influence adoption inequity (O’Shaughnessy et al
2021b). In this paper, we build on this research by
exploring how socioeconomic and market factors
affect adoption inequity at a local (census tract)
level. Our tract-level analysis allows us to demon-
strate that PV adoption inequity does not only stem
from regional PV deployment patterns. Rather, we
show that PV adoption inequity persists down to
the level of income differences between neighbors,
though some tracts show more inequity than others.
Our primary objective is to analyze these local differ-
ences and identify those conditions that yield more
equitable adoption. In doing so, we aim to inform
policy discussions on how to accelerate the trans-
ition to more equitable solar adoption. The analysis
is based on a solar adopter income dataset unique
in both its large sample size, as well as its reliance

on modeled, household-level PV adopter incomes,
instead of US census data. The dataset’s size and res-
olution enable us to make statements that are both
broadly applicable to the US context while focusing
on local solar adoption equity patterns, which are dis-
tinct from national patterns.

The paper is organized as follows. The first section
includes a description of the data and variable con-
struction for both the descriptive and regression ana-
lysis. The initial set of results are from the descriptive
analysis to understand national and state adopter
income trends as well as to explore determinants
of solar inequity. The second set of results focuses
on the regression model to understand the various
drivers of local inequity. The final section presents
high level conclusions and interpretations of our
results.

2. Data andmethods

In this article, we focus on incomes of residential
rooftop solar adopters in the US from 2010 through
2019. All data sources and key variables are defined
and summarized in table 1. Our final data sample
comprises records on 1.9 million systems, represent-
ing about 82% of all PV adopters in the US over the
study period (84% for 2019 adopters). We used the
household-level dataset to construct a census tract-
level dataset (census tracts are geographic units rep-
resenting several city blocks). The tract-level dataset
comprises 12 561 tracts.

The modeled household level income estim-
ates are a central element to this analysis; we per-
form several key operations on those data. We
validated modeled household-level income data by
establishing correlation between modeled incomes
and zip-code level incomes and found that the
income model consistently estimated lower house-
hold incomes for adopters that received LMI incent-
ives (see O’Shaughnessy et al (2021b) for more
details).

We analyze the impacts of various demographic
and PV market factors on PV adopter income trends
through the following tract-level linear regression
model:

b= DβD +MβM + S+ ε

where b is the median tract-level income bias of
PV adopters, defined as the difference between the
median solar adopter income and themedian income
of all households in the tract, D is a vector of demo-
graphic variables, M is a vector of PV market vari-
ables, and S is a state fixed effect. The bias met-
ric represents how PV adopter incomes differ from
the incomes of other households at the US census
tract level. The regression coefficients can be inter-
preted as the impacts of the independent variables
on how PV adopter incomes differ from the incomes
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Table 1. Data sources and descriptions.

Dataset Description Data type Data source

Tracking the Sun (TTS) Household-level rooftop solar
adoption data, see detailed
description in Barbose et al
(2021a)

Solar PV addresses and system
attributes

Most TTS variables are
described in detail in Barbose
and Darghouth (2019).
Relevant variables for this
analysis include household
addresses, installer names, the
percentage of systems in the
tract that are customer-owned
versus leased, the median
installation price in the tract
(in 2019 US$ W–1), and the
median nameplate capacity in
the tract (in kWDC).

Building permit data TTS data are augmented with
municipal permitting data
from two building permit data
aggregators: Ohm Analytics
and BuildZoom.

Solar PV addresses Household addresses where
permitting data indicated the
installation of a PV system.

Experian Modeled household-level
incomes (model is
proprietary)

Household incomes for PV
adopters

Modeled incomes appended
to PV adoption records from
TTS.

US Census American
Community Survey

General population
demographics data at the
county and tract levels

Population-level demographic
attributes

Median household income,
population, race, education,
owner occupancy rates,
income inequality (GINI
coefficient), urban score

Council for Community
and Economic Research

County-level cost-of-living
index, described in detail in
Council for Community and
Economic Research (C2ER)
(2017)

Cost-of-living index Independent variable used in
regression analysis

of their neighbors (i.e. other households living in
the vicinity in the same tract). Put simply, posit-
ive coefficients indicate that PV adopters living in
tracts with higher values of that variable tend to earn
more than their neighbors, all else equal. The demo-
graphic variables include the tract median income,
a county-level cost-of-living (COL) index, the GINI
coefficient (a measure of income inequality), the per-
centage of households that self-identify as Black or
Asian, the percentage of households with more than a
high school education, the percentage of households
that own the homes where they reside (owner occu-
pancy), and the percentage of the tract classified as
urban. The PV market variables include the average
installed system price, the average system size (kW),
the percentage of customers that lease rather than
own their PV systems (where the term ‘leasing’ com-
prises any form of third-party ownership, including
power purchase agreements), the percentage of sys-
tems installed by LMI installers (defined as installers
that install more than half of their systems in tracts
below 80% of state median income), and the per-
centage of systems installed by small-scale installers
(defined as installers with fewer than 1000 installs in
the study period). We provide more detailed inform-
ation on the construction of these variables. We use
county-clustered, robust standard errors.

Before proceeding to the results, we note two lim-
itations of our analysis. First, our analysis is based
on geographically aggregated data. Though the ana-
lysis of geographically aggregated data is common
in the social sciences (Clark and Avery 1976), one
known weakness of such analysis is that the res-
ults are sensitive to the arbitrarily selected scale and
shape of geographic areas (Nelson and Brewer 2017,
Tidemann et al 2019). Aggregating at a higher geo-
graphic level, for instance, will increase standard
errors on regression coefficients. However, assuming
that the underlying data are spatially correlated, the
value of regression coefficients for variables expressed
in relative values are robust to changes in the scale and
shape of aggregation (Geronimus and Bound 1998,
Reynolds and Amrhein 1998, Pietrzak 2014). In our
case, key variables are highly spatially correlated, par-
ticularly income (Reardon and Bischoff 2011), such
that our arbitrary selection of census tracts as the
unit of aggregation should not significantly affect
the analysis. Second, previous research has shown
that household income levels can affect PV market
characteristics such as adoption rates (Yu et al 2018)
and prices (Gillingham et al 2016). For this reason, we
exclude adoption rates from the regression, given that
this variable would be problematically endogenous.
We chose to include other potentially endogenous
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Figure 1. Annual household income distribution for all US households and US solar adopters.

regressors, such as PV prices, but present regression
results without any market variables as a robustness
check.

3. Results

In this section, we first introduce some descriptive
analyses to better understand some of the income
trends of solar adopters, particularly as they relate
to the broader population-at-large. We then invest-
igate the drivers behind the observed solar adoption
inequity.

3.1. PV adopter income trends: descriptive analysis
Figure 1 shows histograms of annual household
incomes for all households (light bars) and for
solar households only (dark bars). The figure illus-
trates two skews in the installer income distribution.
First, the figure depicts income inequality: household
income is unevenly distributed across adopters, with
some adopters earning significantly more than oth-
ers. Solar adopter income inequality is largely a reflec-
tion of underlying income inequality in theUS, where
incomes are highly unequal (Alvaredo et al 2013).
Second, the figure depicts adoption inequity: high-
income households are overrepresented among PV
adopters relative to their shares of the total US popu-
lation. Themedian annual income of all households is
$64k whereas the median income of all solar adopters
is $120k. The disparities in the distribution are most
pronounced at the low and high ends of the income
spectrum, as also reported in Barbose et al (2021b).

We quantify solar adoption inequity in terms of
income bias. This is defined as the difference between
solar adopter incomes and the median income of

all households within the broader population. That
broader population can be specified at any geographic
scale, which impacts the level of income bias. To illus-
trate, figure 2 shows the distribution of income bias
across solar adopters using four geographical defin-
itions for the population-at-large: US, state, county,
and US census tract; in the remainder of this art-
icle, we will refer to these as ‘US income bias’, ‘state
income bias’, ‘county income bias’, and ‘tract income
bias’, respectively. As shown, income bias generally
decreases as the reference income level for the broader
population progresses to smaller geographical scales.
PV adopters more closely resemble other households
in the same tract, in terms of income, than they do
the county, the state, or the US population. This
pattern reflects income segregation; high- and low-
income households tend to geographically cluster in
distinct areas (Reardon and Bischoff 2011). Income
segregation and the clustering of PV adoption in
high-income tracts explain some of the income bias
observed at a US level. Nevertheless, median tract
income bias, though lower, it is still positive. This
indicates that solar adopters tend to earn more than
other households even at more granular geographies.

The income bias observed in figure 2 is largely
determined by income bias distributions for states
with larger PV markets—in particular, California,
which represents over 50% of our solar adopter
sample. The high household incomes of the gen-
eral population in California, relative to the US
population, contributes to the US income bias levels
(left-most bar in figure 2). In addition to the high
absolute income levels, California also has amongst
the highest median US and tract income bias com-
pared to other states, as shown in figure 3 (in panels
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Figure 2. Income bias distributions based on comparison to median household incomes at increasing geographical resolutions.
Income bias values above $0 indicate higher PV adopter incomes compared to the median household in each respective
geography. The box bounds the 25th and 75th percentile values, divided by the median; the whiskers indicate the 10th and 90th
percentile values.

(a) and (b), respectively). Almost all states display
positively skewed income bias, indicating solar adop-
tion inequity, though for most states, this trend is less
pronounced than in California. The following section
dives into the drivers for the local inequity.

3.2. What drives solar adoption inequity at a local
level?
To examine what demographic and solar market
characteristics drive solar adoption inequity at a local
level, we consider 11 variables that could explain
differences in local income bias. These variables,
described in section S1, include demographic charac-
teristics of the solar adopters’ tracts (education, race,
urban/rural, income inequality) and characteristics
related to the PV system (the system price, whether
it is leased or owned, the size of the installer, and
whether the installer focuses on LMI PV adopters).
Note that we exclude some potential drivers of adop-
tion inequity—such as federal or state tax credits—
that do not meaningfully vary at a tract level. For
each of these variables, we analyze differences inmean
tract income bias between different values of each
variable (e.g. the difference between the mean tract
income bias in majority Black vs non-majority Black
tracts). The tract income bias difference in means
for each variable considered is shown in figure 4
(all statistically significant at the 0.05 level) and sig-
nifies whether there is more or less solar adop-
tion inequity as a result of specific characteristics.
For example, the difference in means is negative for
majority Black tracts; although income bias is still
positive in majority Black tracts, it is lower than
in majority non-Black tracts (i.e. adoption is more
equitable in majority Black tracts). A hypothesis for
these results is offered in the following section, which

explores several regression models to better under-
stand the drivers for tract income bias.

Table 2 presents the results of three variations of
the regression model to evaluate the robustness of
specific results: (a) our preferred specificationwith all
variables described in section 2; (b) amodel with only
the demographic variables; and (c) a model with only
the PV market variables. Recall that the dependent
variable is adopter tract income bias, a proxy for solar
inequity. To facilitate comparison across the variables,
we standardized values for all variables such that
each coefficient represents the change in PV adopter
income bias from a one standard deviation change in
the variable.

The regression includes three variables related to
local income levels. First, the income coefficient sug-
gests that tract income bias is higher in lower-income
areas, all else equal. In relatively low-income areas,
only a subset of relatively high-income households
may be financially capable of adopting PV at current
prices. As a result, in low-income areas, one would
expect PV to flow to those high-income households,
increasing tract income bias. Second, the model sug-
gests that tract income bias is higher in areas with
higher living costs. Similar to the case of income, this
result suggests that PV adoption is less equitable when
some households face cash constraints due to high
living costs. Third, the GINI result shows that tract
income bias is higher in areas with greater income
inequality. This result illustrates how income inequal-
ity is a necessary—though not sufficient—condition
for PV adoption inequity. Income inequality is clearly
a necessary condition, in that tract income bias would
always be zero if income were evenly distributed
across households. However, average tract income
bias would also be zero if PV systems were randomly
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Figure 3. US income bias distribution (panel (a)) and tract income bias distribution (panel (b)) by state. The box bounds the 25th
and 75th percentile values, divided by the median; the whiskers indicate the 10th and 90th percentile values.

Figure 4. Difference in means for tract income bias for various demographic and system characteristics. Notes: demographic
variables indicate majority at tract level (i.e. Black=majority Black tract). Higher PV price indicates price greater than median
US price ($ W−1). More educated indicates majority with an education level greater than high school. Higher inequality indicates
a GINI coefficient greater than US median (0.4194 as per US census five-year average for 2019). Variables defined in SI.
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Table 2. Regression results dependent variable (Y)=median adopter tract income bias; county-clustered, robust standard errors in
parentheses.

(a) All variables
(b) Demographic
variables

(c) Market
variables

Tract median income −11.84a −9.99a —
(0.81) (0.98) —

COL index 9.41a 7.22a —
(1.49) (1.53) —

GINI 7.86a 8.63a —
(0.57) (0.62) —

%Black −2.35a −3.30a —
(0.30) (0.38) —

%Asian 2.24a 2.15a —
(0.57) (0.52) —

Education 16.54a 18.45a —
(1.71) (2.07) —

Owner occupancy −5.11a −4.19a —
(0.80) (0.70) —

Urban 3.86a 2.18a —
(0.51) (0.50) —

PV price −0.16 — 0.19
(0.10) — (0.40)

PV system size 7.00a — 0.61
(0.69) — (1.17)

Leasing −4.16a — −9.95a

(0.94) — (1.14)
LMI installer −3.46a — −6.53a

(0.43) — (1.12)
Small installer −1.31a — 0.89

(0.63) — (1.18)
State FE X X X
N 12 561 12 561 12 561
R2 0.48 0.44 0.16
a p < 0.05.

distributed across households with different income
levels. That is, income inequality only translates to
PV adoption inequity if there are mechanisms that
drive PV to high- instead of low-income households.
As discussed in the section 1, such mechanisms exist
on both the demand and supply side of PV mar-
kets. On the demand side, high-income households
are more financially capable of adopting PV and may
thus be more likely to adopt, all else equal. On the
supply side, installers are more likely to target high-
income households (O’Shaughnessy et al 2021a). In
both cases, income inequality creates conditions that
exacerbate thesemechanisms anddrive PVonto high-
income rooftops.

The coefficients on the two race variables sug-
gest that tract income bias is lower in areas with
greater shares of Black households but higher in areas
with larger Asian populations, all else equal. Both
results lack straightforward explanations. One pos-
sibility is that tract median income is an imper-
fect control for differences in local income levels
and that the result reflects spurious correlation
between race and income. Another possibility is
that the results reflect correlation with an omitted
variable. For instance, due to racist housing prac-
tices, homes in areas with large Black populations

may be systematically different from homes in other
areas in ways that affect adoption inequity. Still,
the robustness of the results suggests that racial
diversity has real impacts on adoption equity. We
offer three hypotheses, which all present potential
areas for further research. First, racial differences
may correlate with differences in social structures
with respect to income levels. For instance, areas
with large Black populations may have stronger social
ties between high- and low-income households, and
those ties could act as conduits of social influence
that drive LMI PV adoption across income levels.
Second, the result may reflect differences in how
income is geographically segregated. Due to racist
housing practices, Black households of all income
rangeswere restricted to living in certain areas. There-
fore, income tends to be less segregated within tracts
with large Black populations (Reardon and Bischoff
2011, Intrator et al 2016). All else equal, income integ-
ration removes the structural cues that drive income-
targeted marketing (O’Shaughnessy et al 2021a),
such as clear geographic distinctions between high-
and low-income neighborhoods, and will therefore
improve adoption equity. Third, installers in com-
munities with large Black populations may have,
or may develop, specific skills that enable them
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to market more effectively to a more diverse cus-
tomer base both in terms of race and income. The
data are consistent with this installer-led hypothesis.
Only about 2% of installers generate more than
10% of their sales in areas that are more than 50%
Black. Households served by those installers earn
about $7600 yr−1 less, on average, than households
served by other installers, controlling formedian tract
income (t = 10.0). As a result, the presence of specific
installers in areas with larger Black populations could
explain some of the observed results.

The model suggests that tract income bias is
higher in more educated areas. Like the result for
whether a tract is majority Black, this result lacks
a straightforward explanation. Again, the result may
reflect correlation with an omitted variable. One pos-
sibility is that education levels correlate with differ-
ences in social structures. For instance, education
levels are generally higher in areas surrounding col-
lege campuses. Such areas are often defined by a
transient group of relatively low-income households,
such as students and temporary researchers, that are
less likely to make long-term home investments. In
these areas, PV may naturally flow to a population of
stable, relatively high-income earners. The relation-
ships between these types of local social strata and
PV adoption inequity are another area for further
research.

The results indicate that income bias is lower in
areas with higher owner-occupancy rates, but higher
inmore urban areas.We offer the following interpret-
ation of these results. Homeowners are more likely to
adopt PV and earn more, on average, than renters.
As a result, in areas with low rates of owner occu-
pancy, PV will naturally flow toward a small group of
relatively high-income homeowners. Higher owner-
occupancy rates break this mechanism, so that PV
adoption ismore equitable at a local level in areaswith
fewer renters. Similarly, in urban areas with a hetero-
geneous mix of single and multifamily housing, PV
will tend to flow to a group of relatively high-income
households, primarily single-family homeowners.We
excluded variables for housing types due to collinear-
ity with the owner-occupancy variable. Variables for
solar suitability, including roof condition, age, and
shading, were also excluded due to data constraints.
The effects of housing patterns on PV adoption equity
are an additional area for future research.

The regressions provide several insights into the
relationships between market characteristics and PV
adoption equity. First, the model suggests that differ-
ences in local PV prices are not associated with dif-
ferences in adoption equity. This null result is sur-
prising, indicating that high local PV prices do not
significantly exacerbate adoption inequity as may be
expected. However, it is worth reiterating that PV
prices are potentially endogenous, that is, PV prices
may not be truly independent given that PV adopter
incomes have been shown to influence prices. Second,

the results suggest that tract income bias tends to be
higher in areas with larger PV systems. We interpret
this result to mean that areas with larger PV systems
are areas with larger homes with more rooftop space
to support more panels. Third, tract income bias is
lower in areas with higher rates of PV leasing, consist-
ent with previous findings showing that LMI house-
holds are more prone to leasing than higher-income
households (O’Shaughnessy et al 2021b).

Finally, the results suggest that differences across
installers influence PV adoption equity. Income bias
is lower in areas served by LMI installers and, to a
lesser extent, by smaller installers, though this res-
ult is not robust when excluding the demographic
variables. One interpretation of these results is that
certain installers have, or develop, skills that allow
them to access a broader customer base in terms
of income. The data provide some preliminary sup-
port for this hypothesis. For instance, LMI installers
are more likely to install leased systems and less
likely to install systems with premium features such
as high-efficiency modules, DC optimizers, or bat-
tery storage (see section S2). Similarly, among small
installers, leased systems aremore frequently installed
and premium features are less frequently installed
in lower-income tracts. These differences may reflect
ways that LMI and small installers cater to LMI cus-
tomer needs. The hypothesis that installer skillsets
and marketing tactics can influence adoption equity
is a suggested area for future research.

4. Conclusion and discussion

Rooftop PV has been and continues to be inequit-
ably distributed with respect to income in the United
States. PV adoption inequity is largely the outcome
of structural inequalities that impact the adoption
of most emerging technologies, especially income
inequality and income segregation. Nonetheless, PV
adoption inequity is not an inevitable outcome, and
PV has been more equitably deployed in some areas
than in others. In this paper, we analyzed the drivers
of PV adoption inequity at a local level. Deconstruct-
ing the factors that explain difference in PV adop-
ter incomes can assist policymakers in designing tar-
geted interventions at a more local scale to facilitate
more equitable PV adoption. Our results yield three
key implications.

First, while solar adoption inequity is frequently
attributed to high PV prices, the insignificant effects
of prices in our regression model suggests that this
attribution is not straightforward. Falling costs have
made PV more financially accessible to LMI house-
holds, and most customers have access to financing
options that require little or no money up front. Our
regression model suggests that falling costs reduce
the role of price in explaining PV adoption inequity.
Instead, other structural barriers may play more
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important roles. For instance, lower LMI home own-
ership rates may drive adoption inequity, as indic-
ated by the significant coefficients on the urban and
owner-occupancy variables in the regression. These
results suggest that researchers should continue to
explore the structural barriers to LMI adoption and
validates the measures policymakers undertake to
increase solar equity, including facilitating PV adop-
tion for renters, in multifamily housing, and in urban
areas (e.g. community solar, virtual net metering, tar-
geted subsidy programs).

Second, we find several interesting results in terms
of relationships between race, education, and PV
adoption equity. Both the descriptive and regression
results suggest that racial make-up and education
levels may affect local PV adoption patterns. While
the legacies of racist housing policies are likely to be
implicated in these findings, we also posit that these
effects may be connected to sociological factors, such
as distinct social networks in communities with lar-
ger shares of non-white households that could affect
how social influence translates to PV adoption. With
further study, researchersmay be able to identify ways
to use local social networks to accelerate PV adoption
equity.

Finally, our descriptive and regression model
results suggest that PV adoption is more equit-
able in census tracts served by specific types of
installers, particularly installers that operate at smal-
ler scales and have experience working in LMI and
racially diverse tracts. Although further research is
required, these results suggest that some installers
have or develop specific skills tomore effectively reach
LMI households. Future qualitative research could
analyze the marketing practices of these installers
and identify specific strategies that result in more
equitable customer acquisition. Policymakers could
explore supply-side interventions that diffuse these
strategies to more installers. One such strategy is for
installers to offer financing, particularly leasing. Con-
sistent with previous research, our descriptive and
regression results show that leasing is associated with
more equitable adoption at a local level. However,
leasing can be a challenging business model, partic-
ularly for small-scale installers. Policymakers could
explore ways to facilitate leasing or other financing
models for small-scale installers, such as through state
green banks.

In conclusion, our results demonstrate that PV
adoption patterns are not inherently inequitable. The
degree to which PV adoption is equitable varies,
and some of this variation can be explained by local
demographic and PV market factors. PV is equitably
distributed in different areas to different degrees, and
some of these differences can be explained by local
demographic and PV market factors. The drivers of
these differences have implications on equity discus-
sions about who benefits from solar and who bears
the burden of cost shifts at the local level. Future

research and policy can explore ways to leverage these
differences to accelerate the transition to equitable PV
adoption.
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