
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Learning Representations for Information-rich Graphs

Permalink
https://escholarship.org/uc/item/7v14d6vv

Author
Huang, Zexi

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7v14d6vv
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Learning Representations for Information-rich

Graphs

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Zexi Huang

Committee in charge:

Professor Ambuj Singh, Chair
Professor Yu-Xiang Wang
Professor Xifeng Yan

June 2023

The Dissertation of Zexi Huang is approved.

Professor Yu-Xiang Wang

Professor Xifeng Yan

Professor Ambuj Singh, Committee Chair

April 2023

Learning Representations for Information-rich Graphs

Copyright c© 2023

by

Zexi Huang

iii

To my family for their unconditional love and support.

iv

Acknowledgements

The five-year PhD study at UCSB has been the most exciting and fruitful part of

my life. I would love to take this opportunity to thank all the people who supported,

motivated, and guided me through the journey.

First and foremost, my heartfelt gratitude goes to my PhD advisor, Prof. Ambuj

Singh. It is due to his guidance, encouragement, and enlightenment that I become the per-

son that I always aspire to be. And his vision, optimism, and wisdom will continue bene-

fiting me in the future. Great thanks to Prof. Yu-Xiang Wang and Prof. Xifeng Yan for

being part of my PhD committee and providing their expertise and valuable mentorship.

I feel fortunate to have collaborated with some of the brightest researchers in the

world: Arlei Silva, Mert Kosan, Sourav Medya, Sayan Ranu, Wei Ye, Manu Kondapaneni,

Marianne Arriola, and Saurabh Sharma. I am also grateful for having a great group of

labmates: Rachel, Richika, Chandana, Ashwini, Haraldur, Omid, Hongyuan, Furkan,

Yuning, Sikun, Nikunj, Christos, Rasta, Kha-Dinh, and Sean. Special thanks to Arlei

Silva, Mert Kosan, and Sourav Medya for being my greatest mentors and closest friends

during my PhD study. It is hard to imagine what would have happened without them.

I also want to thank my colleagues and friends during my internships at Amazon: my

manager Kannan Shah, my mentors Han Wezenberg and Alfredo Nantes, and my team-

mates Eric, Derek, Qian, Dushyanta, Vel, Gary, Puifai, and Gautham. They showed me

the value of data science in the industry and enabled me to make a real-world impact.

I am blessed to have great company and support from my roommates, Liang, Yuke,

Youfu, and Lianke. Life under a pandemic would have been a disaster without them.

Finally, committing to PhD study in a foreign country means being far away from

home and my dearest ones. I miss my family and this dissertation is dedicated to them.

v

Curriculum Vitæ
Zexi Huang

Education

2023 Ph.D. in Computer Science, University of California, Santa Barbara.

2022 M.S. in Computer Science, University of California, Santa Barbara.

2018 B.Eng. in Computer Science and Technology, University of Elec-
tronic Science and Technology of China

Publications

Refereed conference papers:

Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, Ambuj Singh. Global Coun-
terfactual Explainer for Graph Neural Networks. Best paper at the Machine Learn-
ing on Graphs Workshop (MLoG) and top 10 best papers at ACM International
Conference on Web Search and Data Mining (WSDM), 2023.

Zexi Huang, Arlei Silva, Ambuj Singh. POLE: Polarized Embedding for Signed Net-
works. ACM International Conference on Web Search and Data Mining (WSDM),
2022.

Zexi Huang, Arlei Silva, Ambuj Singh. A Broader Picture of Random-walk Based
Graph Embedding. ACM SIGKDD Conference on Knowledge Discovery & Data
Mining (KDD), 2021.

Under review and working papers:

Zexi Huang, Mert Kosan, Arlei Silva, Ambuj Singh. Link Prediction without Graph
Neural Networks. Under review, 2023.

Zexi Huang, Manu Kondapaneni, Arlei Silva, Ambuj Singh. Multiscale Community
Detection with Pointwise Mutual Information. Working paper, 2023.

Marianne Arriola, Mert Kosan, Zexi Huang, Saurabh Sharma, Ambuj Singh. Mul-
tiscale Anomaly Detection with Graph Autoencoders. Working paper, 2023.

Wei Ye, Zexi Huang, Yunqi Hong, Ambuj Singh. Graph Neural Diffusion Networks
for Semi-supervised Learning. Under review, 2022.

Science Internships

Applied Scientist, Amazon Summer 2022

Project: Stochastic Inventory Management for Print-On-Demand and Graph-based
Text Classification for Content Intelligence

Mentor: Alfredo Nantes

vi

Applied Scientist, Amazon Summer 2021

Project: Graph-based Fraud Detection in Kindle Direct Publishing

Mentor: Han Wezenberg

Applied Scientist, Amazon Summer 2020

Project: Graph-based Fraud Detection in Kindle Direct Publishing

Mentor: Han Wezenberg

Research Assistant, Nanyang Technological University Fall 2017 - Winter 2018

Project: Transfer Learning for Community Detection in Multiplex Networks

Advisor: Sinno Jialin Pan

Teaching Experience

Lead Teaching Assistant, Computer Science Department, UCSB 2020-2021

Teaching Assistant, Data Structures and Algorithms, UCSB Fall 2019

Instructor, LMU/UCSB Nanotech PhD Exchange and Symposium Spring 2019

Teaching Assistant, Introduction to Computer Science, UCSB Winter 2019

Teaching Assistant, Fundamentals of Database Systems, UCSB Fall 2018

Academic Services

Registration Chair : KDD’23

Program Committee: AAAI’23, KDD’22, SDM’22

Reviewer : NeurIPS’22, ICLR’22, KDD’20-21, WWW’20-21, TIST’22, TKDD’21-23

Representative: Graduate Affairs Committee, Computer Science Department, UCSB

vii

Abstract

Learning Representations for Information-rich Graphs

by

Zexi Huang

Graphs are powerful data structures that are used to model some of the most complex

systems in the world, such as interpersonal relationships in social networks, protein-

protein interactions in biology, and user-item pairs in recommender systems. Generating

representations that encode the rich information from graph data enables state-of-the-art

solutions to many real-world applications across various domains.

This dissertation focuses on our recent work on representation learning for information-

rich graphs. We first present a unified framework for random-walk based graph embed-

ding approaches and analyze how different choices of model components affect down-

stream task performance. We then propose a novel embedding method for signed graphs,

which incorporates social theory into random-walk dynamics to capture social polariza-

tion and enable effective signed link prediction. For attributed graphs, Graph Neural

Networks have become the most popular representation learning paradigm. We address

their limitations in combining structural and attribute information for link prediction and

introduce the first global counterfactual explainer for their applications in graph classifi-

cation. Finally, we investigate representation learning for multiscale graphs and discuss

several related problems including semi-supervised node classification, community detec-

tion, and anomaly detection. Research in this dissertation demonstrates the importance

of accounting for the interplay between the rich graph information and downstream task

properties in successful graph representation learning models.

viii

Permissions and Attributions

This dissertation contains material that has been published or is in the process of

being published. The author of this dissertation claims principal contributions in the

development of the published research works described below:

1. Part of the content of Chapter 2 has been previously published as: Zexi Huang, Arlei

Silva, Ambuj Singh. A Broader Picture of Random-walk Based Graph Embedding.

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining (KDD), 2021. DOI: 10.1145/3447548.3467300.

2. Part of the content of Chapter 3 has been previously published as: Zexi Huang, Arlei

Silva, Ambuj Singh. POLE: Polarized Embedding for Signed Networks. Proceedings

of the Fifteenth ACM International Conference on Web Search and Data Mining

(WSDM), 2022. DOI: 10.1145/3488560.3498454.

3. Part of the content of Chapter 5 has been previously published as: Zexi Huang,

Mert Kosan, Sourav Medya, Sayan Ranu, Ambuj Singh. Global Counterfactual

Explainer for Graph Neural Networks. Proceedings of the Sixteenth ACM In-

ternational Conference on Web Search and Data Mining (WSDM), 2023. DOI:

10.1145/3539597.3570376.

Based on the ACM Author Rights page (https://authors.acm.org/author-resources/

author-rights), authors can include partial or complete papers of their own (and no fee

is expected) in a dissertation as long as citations and DOI pointers to the Versions of

Record in the ACM Digital Library are included. Authors can use any portion of their

own work in presentations and in the classroom (and no fee is expected).

ix

https://dl.acm.org/doi/10.1145/3447548.3467300
https://dl.acm.org/doi/10.1145/3488560.3498454
https://dl.acm.org/doi/10.1145/3539597.3570376
https://authors.acm.org/author-resources/author-rights
https://authors.acm.org/author-resources/author-rights

Contents

Curriculum Vitae vi

Abstract viii

List of Figures xiii

List of Tables xx

1 Introduction 1

2 A Broader Picture of Random-walk Based Graph Embedding 8
2.1 Introduction . 8
2.2 Method . 11

2.2.1 Random-walk Process . 11
2.2.2 Similarity Function . 12
2.2.3 Embedding Algorithm . 17

2.3 Experiments . 21
2.3.1 Dataset . 21
2.3.2 Experiment Setting . 22
2.3.3 Results . 23

2.4 Insights on PMI vs Autocovariance . 31
2.5 Related Work . 34
2.6 Conclusion . 36

3 Polarized Embedding for Signed Networks 37
3.1 Introduction . 37
3.2 Random-walk on Signed Graphs . 40

3.2.1 Notations . 40
3.2.2 Signed Random-walk . 41
3.2.3 Similarity Consistency . 43

3.3 A Measure of Polarization . 44
3.3.1 Random-walk Based Polarization 44

x

3.3.2 Polarization of Real-world Graphs 46
3.4 Polarized Embedding for Networks . 51

3.4.1 Limitation of Existing Methods 51
3.4.2 The Solution: Polarized Embedding 52

3.5 Experiments . 55
3.5.1 Experimental Settings . 55
3.5.2 Results . 57

3.6 Related Work . 62
3.7 Conclusion . 64

4 Link Prediction without Graph Neural Networks 65
4.1 Introduction . 65
4.2 Limitations in Supervised Link Prediction Evaluation and Training . . . 67
4.3 Method . 70

4.3.1 Graph Learning . 71
4.3.2 Topological Heuristic . 73
4.3.3 N-pair Loss and Unbiased Training 74

4.4 Experiments . 75
4.4.1 Experiment Settings . 75
4.4.2 Link Prediction Performance . 79
4.4.3 Visualizing Gelato Predictions . 82
4.4.4 Loss and Training Setting . 84
4.4.5 Ablation Study . 85
4.4.6 Sensitivity Analysis . 88
4.4.7 Running Time . 89

4.5 Related Work . 92
4.6 Conclusion . 93

5 Global Counterfactual Explainer for Graph Neural Networks 94
5.1 Introduction . 94
5.2 Global Counterfactual Explanations . 97

5.2.1 Local Counterfactual . 98
5.2.2 Global Recourse Representation 99
5.2.3 Quantifying Recourse Quality . 100
5.2.4 Problem Formulation and Characterization 101

5.3 Proposed Method: GCFExplainer . 103
5.3.1 Structuring the Search Space . 104
5.3.2 Vertex-Reinforced Random Walk 105
5.3.3 Iterative Computation of the Summary 108

5.4 Experiments . 109
5.4.1 Experimental Settings . 109
5.4.2 Recourse Quality . 112

xi

5.4.3 Global Counterfactual Insight . 113
5.4.4 Ablation Study . 116
5.4.5 Convergence Analysis . 116
5.4.6 Sensitivity Analysis . 116
5.4.7 Running Time . 117

5.5 Related Work . 118
5.6 Conclusion . 119

6 Other Problems Related to Multiscale Graphs 120
6.1 Graph Neural Diffusion Networks . 121

6.1.1 Overview . 121
6.1.2 Method . 124
6.1.3 Results . 126

6.2 Multiscale Community Detection . 129
6.2.1 Overview . 129
6.2.2 Theoretical Analysis . 131

6.3 Multiscale Anomaly Detection . 138
6.3.1 Overview . 138
6.3.2 Model Design . 140

7 Conclusions 144

Bibliography 146

xii

List of Figures

1.1 Graph representation learning as the bridge between various types of
information-rich graphs and different downstream applications covered in
this dissertation. 3

2.1 Different random-walk based embedding methods (old and new) classi-
fied according to our analytical framework—with process, similarity, and
algorithm as main components. A key contribution of this work is to inte-
grate autocovariance as a similarity metric and show that it outperforms
Pointwise Mutual Information (PMI) in link prediction. 10

2.2 Node classification performance comparison between PMI and autocovari-
ance on varying training ratios. PMI consistently outperforms autocovari-
ance in all datasets. 24

2.3 Link prediction performance comparison between PMI and autocovari-
ance on varying percentages of top predictions (k). Autocovariance with
dot product ranking consistently outperforms PMI (with either ranking
scheme) in all datasets. 25

2.4 Node classification results for PMI, autocovariance, and their moving means
on varying Markov times. While both means stabilize the performance for
large Markov times, only log-mean-exp PMI consistently increases the peak
performance. 26

2.5 Community detection for PMI, autocovariance, their moving means, and
Markov Stability on varying Markov times. Log-mean-exp PMI outper-
forms autocovariance and Markov Stability for country and continent lev-
els. 27

2.6 Link prediction for PMI, autocovariance, and their moving means on vary-
ing Markov times. Neither log-mean-exp PMI nor mean autocovariance
increases the peak performance. 28

2.7 Relative added recall for link prediction after adding predictions from a
larger Markov time τ ′ to the best Markov time τ ∗. While the precision
drops at larger Markov times, they predict a distinct set of true (inter-
community) edges from those revealed at the best (and small) time. . . . 28

xiii

2.8 Link prediction performance for PMI and autocovariance using matrix
factorization and sampling algorithms on varying percentages of top pre-
dictions (k). Factorization algorithms achieve the best performance. . . . 29

2.9 Correlation between entries of the similarity matrices (PMI and autoco-
variance) and the corresponding dot product reconstruction from the em-
beddings generated via sampling and matrix factorization algorithms. The
results are generated using Zachary’s karate club network. Both edge and
non-edge pairs of nodes are shown. While a clear correlation can be noticed
in all cases, matrix factorization methods provide a better approximation
of the similarity metrics. 30

2.10 Node classification for directed and undirected embeddings with PageRank
on varying training ratios. Macro-F1 scores are not shown here as they
follow similar patterns as Micro-F1 scores. The undirected embedding
consistently outperforms both source, target and concatenated directed
embeddings in both datasets. 30

2.11 Link prediction for directed and undirected embeddings with PageRank on
varying top pairs. Directed embedding outperforms undirected embedding
for the very top ranked edges. 31

2.12 Correlation between (max normalized) degrees and 2-norms of embedding
vectors based on PMI and autocovariance. Autocovariance produces em-
beddings with norms that are well correlated with node degrees in both
datasets. 33

2.13 Edges predicted using PMI and autocovariance embeddings for a synthetic
graph with community structure and hubs (one per community, shown in
red). Autocovariance is more effective at capturing the hubs in the graph. 34
(a) PMI . 34
(b) Autocovariance . 34

3.1 Two synthetic graphs with the same underlying topology but different link
signs. Node colors depict communities and link colors depict signs. (a)
is more polarized than (b) as its link signs are related to the community
structure—negative links connecting two polarized communities. 38
(a) LFR-polarized . 38
(b) LFR-unpolarized . 38

3.2 Examples of signed walks with corresponding transition probabilities (Prob)
and inferred signs (Sign). 42

3.3 Illustration of our polarization measure based on signed random-walk dy-
namics (t = 3). The transitions for unsigned (|M |) and signed (M)
random-walks are more correlated in the polarized network (a), where a
negative link connects two antagonistic communities. On the other hand,
the correlation is lower in the less polarized network (b). 45

xiv

3.4 Polarization and social balance of real-world graphs, with reference to
synthetic ones. Most real-world graphs are as polarized as the synthetic
polarized one—LFR-polarized. 50

3.5 Distributions of the reconstructed similarity for different types of node
pairs in LFR-polarized. Polarized embedding (c) enables separation
of negatively connected pairs from the others while both (a) unsigned
embedding and (b) signed embedding fail to do so. 52

3.6 Comparison of performance of signed link prediction between POLE and
baselines. POLE outperforms all baselines in all datasets on both positive
and negative link prediction, except for negative links in Wiki-RfA, the
least polarized network. 58

3.7 Comparison of performance of signed link prediction between POLE and
baselines with reconstructed similarity ranking. POLE outperforms all
baselines in almost all datasets on both positive and negative link prediction. 59

3.8 Comparison of performance of signed link prediction with link existence
information between POLE and baselines. While adding unsigned similar-
ity narrows the performance gap between POLE and baselines on positive
link prediction, it significantly improves POLE on negative link prediction
and keeps its edge. 59

3.9 Comparison of performance of signed link prediction with link existence
information between POLE and baselines with reconstructed similarity
ranking. While adding unsigned similarity narrows the performance gap
between POLE and baselines on positive link prediction, it significantly
improves POLE on negative link prediction and keeps its edge. 60

3.10 Scatter plot of the reconstructed signed and unsigned similarity for differ-
ent node pairs in signed link prediction, along with the decision boundaries
based on each similarity and a combination of both (via the classifier), for
Referendum and Wiki-RfA. Combining signed and unsigned similar-
ity improves prediction for negative links but has a negligible effect on
predicting positive links. 61

3.11 Scatter plot of the reconstructed signed and unsigned similarity for differ-
ent node pairs in signed link prediction, along with the decision boundaries
based on each similarity and a combination of both (via the classifier), for
Congress, WoW-EP8, Bitcoin-Alpha and Bitcoin-OTC. Combin-
ing signed and unsigned similarity improves prediction for negative links
but has a negligible effect on predicting positive links. 62

4.1 GNN incorporates topology into attributes via message-passing, which is
effective for tasks on the topology. Link prediction, however, is a task for
the topology, which motivates the design of Gelato—a novel framework
that leverages graph learning to incorporate attributes into topology. . . 67
(a) Link prediction for attributed graphs 67

xv

(b) GNN: topology → attributes . 67
(c) Gelato: attributes → topology . 67

4.2 Receiver operating characteristic and precision-recall curves for the bad
link prediction model that ranks 1M false positives higher than the 100k
true edges. The model achieves 0.99 in AUC and 0.95 AP under biased
testing, while the more informative performance evaluation metric, Aver-
age Precision (AP) under unbiased testing, is only 0.05. 69
(a) ROC . 69
(b) PR under biased testing . 69
(c) PR under unbiased testing . 69

4.3 Gelato applies graph learning to incorporate attribute information into
the topology via an MLP. The learned graph is given to a topological
heuristic that predicts edges between node pairs with high Autocovariance
similarity. The parameters of the MLP are optimized end-to-end using the
N-pair loss. Experiments show that Gelato outperforms state-of-the-art
GNN-based link prediction methods. 71

4.4 Link prediction performance in terms of prec@k for varying values of k (as
percentages of test edges). With few exceptions, Gelato outperforms the
baselines across different values of k. 80

4.5 Link prediction performance in terms of hits@k for varying values of k.
With few exceptions, Gelato outperforms the baselines across different
values of k. 81

4.6 Illustration of the link prediction process of Gelato, AC, and the best
GNN-based approach, Neo-GNN, on a subgraph of Photo. Gelato effec-
tively incorporates node attributes into the graph structure and leverages
topological heuristics to enable state-of-the-art link prediction. 83
(a) Input adjacency matrix . 83
(b) Enhanced adjacency matrix . 83
(c) Attribute Euclidean distance . 83
(d) AC scores . 83
(e) Gelato scores . 83
(f) Neo-GNN predictions . 83
(g) AC predicted edges . 83
(h) Gelato predicted edges . 83
(i) Neo-GNN predicted edges . 83

4.7 Training of Gelato based on different losses and training settings for Photo
with test AP (mean ± std) shown in the titles. Compared with the cross
entropy loss, the N-pair loss with unbiased training is a more consistent
proxy for unbiased testing metrics and leads to better peak performance. 85

xvi

4.8 Link prediction performance in terms of prec@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe
noticeable improvement for some baselines (e.g., BScNets), Gelato still
consistently and significantly outperform the baselines. 87

4.9 Link prediction performance in terms of hits@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe
noticeable improvement for some baselines (e.g., BScNets), Gelato still
consistently and significantly outperform the baselines. 88

4.10 Performance of Gelato with different values of η. 89
(a) Photo performance . 89
(b) Cora performance . 89

4.11 Performance of Gelato with different α and β. 90
(a) Photo AP scores . 90
(b) Photo prec@100% scores . 90
(c) Cora AP scores . 90
(d) Cora prec@100% scores . 90

4.12 Training and inference time comparison between supervised link predic-
tion methods for Photo. Gelato has competitive training time (even when
baselines adopt biased training) and is significantly faster than most base-
lines in terms of inference, especially compared to the best GNN model,
Neo-GNN. 91
(a) Training time with baselines adopting biased training 91
(b) Training time with baselines adopting unbiased training 91
(c) Inference time per unbiased testing 91

5.1 Formaldehyde (a) is classified by a GNN to be an undesired mutagenic
molecule with its important subgraph found by factual reasoning high-
lighted in red. Formic acid (b) is its non-mutagenic counterfactual exam-
ple obtained by removing one edge and adding one node and two edges.
. 95

(a) Formaldehyde . 95
(b) Formic acid . 95

5.2 Edits between graphs. 99
5.3 Coverage and cost performance comparison between GCFExplainer and

baselines based on different counterfactual summary sizes. GCFExplainer
consistently outperforms the baselines across different sizes. 113

5.4 Recourse coverage comparison between GCFExplainer and baselines
based on different distance threshold values (θ). GCFExplainer consis-
tently outperforms the baselines across different θ. 114

xvii

5.5 Illustration of global and local counterfactual explanations for the AIDS
dataset. The global counterfactual graph (c) presents a high-level recourse
rule—changing ketones and ethers into aldehydes (shown in blue)—to com-
bat HIV, while the edge removals (shown in red) recommended by local
counterfactual examples (b) are hard to generalize. 115

5.6 Convergence of VRRW for the Mutagenicity dataset based on recourse
coverage with different summary sizes. VRRW fully converges after M =
50000 iterations. 117

6.1 Global airport network where different airports are organized by countries
and continents. 121

6.2 The t-SNE visualization of the GCN node embeddings based on a ran-
domized weight matrix and k layers of neighborhood aggregation for the
Cora dataset. Selecting k = 19 as the scale of aggregation reveal the clus-
ter structures, while neither small (k = 0, 1) nor large scales (k = 10, 000)
achieve comparable effects. Colors denote ground-truth node labels. . . . 122
(a) k = 0 . 122
(b) k = 1 . 122
(c) k = 19 . 122
(d) k = 10, 000 . 122

6.3 Learned mean absolute weights (βks) from GND-Nets-SLP for different
neighborhood scales. GND-Nets learns the optimal weights for different
datasets to enable better performance for node classification. 128
(a) Cora . 128
(b) PubMed . 128

6.4 Multiscale community detection with PMI. (a) Visualization of a Stochas-
tic Block Model instance with three blocks (communities) of sizes (10, 20, 40);
(b) AC of each community monotonously decreases with increasing Markov
time; (c) PMI of communities with different sizes reach unique peaks at
different Markov times, revealing their natural scales. 130
(a) SBM-(10, 20, 40) . 130
(b) AC . 130
(c) PMI . 130

6.5 Spectral energy distributions of normal nodes, node-level anomalies, and
three subgraph-level anomalies at different scales for Cora with injected
anomalies. Compared to normal nodes, the spectral energy distributions
of anomalous elements concentrate more on the high-frequency regions.
Further, the smaller the scale of the anomalies, the higher the frequency
bands they dominate. 140

6.6 Spectral property comparison between heat kernels and Beta kernels. Beta
kernels contain different band-pass filters that facilitate multiscale anomaly
detection. 142

xviii

(a) Heat kernels . 142
(b) Beta kernels . 142

xix

List of Tables

2.1 An overview of the datasets. 22

3.1 Top 20 least polarized members of the U.S. Congress in terms of our
random-walk based polarization measure. 47

3.2 Top 20 most polarized members of the U.S. Congress in terms of our
random-walk based polarization measure. 48

3.3 An overview of the datasets. 49

4.1 A summary of dataset statistics. 76
4.2 Reference of baseline code repositories. 79
4.3 Link prediction performance comparison (mean ± std AP). Gelato consis-

tently outperforms GNN-based methods, topological heuristics, and two-
stage approaches combining attributes and topology. (∗ Run only once as
each run takes ∼100 hrs; *** Each run takes >1000 hrs; OOM: Out Of
Memory.) . 80

4.4 Link prediction performance comparison (mean ± std AUC). AUC results
conflict with other evaluation metrics, presenting a misleading view of the
model performance for link prediction. (∗ Run only once as each run takes
∼100 hrs; *** Each run takes >1000 hrs; OOM: Out Of Memory.) 81

4.5 Results of the ablation study based on AP scores. Each component of
Gelato plays an important role in enabling state-of-the-art link prediction
performance. 86

4.6 Link prediction performance comparison (mean ± std AP) with super-
vised link prediction methods using unbiased training. While we observe
noticeable improvement for some baselines (e.g., BScNets), Gelato still
consistently and significantly outperform the baselines. (∗ Run only once
as each run takes ∼100 hrs; *** Each run takes >1000 hrs; OOM: Out Of
Memory.) . 87

4.7 Selected hyperparameters of Gelato. 88

5.1 The statistics of the datasets. 110
5.2 Accuracy of the GNN graph classifier. 111

xx

5.3 Recourse coverage (θ = 0.1) and median recourse cost comparison between
GCFExplainer and baselines for a 10-graph global explanation. GCF-
Explainer consistently and significantly outperforms all baselines across
different datasets. 113

5.4 Ablation study results based on recourse coverage. 116
5.5 Sensitivity analysis on α, the weight between individual coverage and gain

of coverage in the importance function. 117
5.6 Counterfactual candidates generation time comparison. GCFExplainer

(-S) has competitive running time albeit exploring more counterfactual
graphs. 118

6.1 Average classification accuracy (%) over 30 different data splits on Cora
with varying numbers of labeled nodes. GND-Nets consistently outper-
forms existing approaches at all label sparsity levels. 127

6.2 Average classification accuracy (%) over 30 different data splits on Pubmed
with varying numbers of labeled nodes (OOM: Out of Memory). GND-
Nets consistently outperforms existing approaches at all label sparsity
levels. 127

6.3 Average classification accuracy (%) over 30 different data splits on Com-
puters with varying numbers of labeled nodes (OOM: Out of Memory).
GND-Nets consistently outperforms existing approaches at all label spar-
sity levels. 128

xxi

Chapter 1

Introduction

We live in an era when data is generated at an unprecedented speed. In 2020, 84 petabytes

(1015 bytes) of data were created every minute, among which 42 million WhatsApp

messages were exchanged, 350 thousand tweets were posted, 6,659 Amazon packages

were shipped, and 300 hours of videos were uploaded to YouTube1. To take advantage

of the increasing availability of data, a new research field, data science, has emerged at

the intersection between computer science, statistics, and various application domains,

such as social science, biology, physics, and health care.

One fundamental topic of data science is representation learning. The goal of repre-

sentation learning is to extract key information from raw data to enable effective down-

stream applications. Compared to traditional feature engineering methods which rely on

hand-designed features based on domain expertise, representation learning models lever-

age deep neural networks to directly learn high-quality features (embeddings) from data.

Several representation learning paradigms have revolutionized our way of solving prob-

lems involving certain types of data, such as Convolutional Neural Network for images

and videos, and Transformers for natural languages.

1https://financesonline.com/how-much-data-is-created-every-day/

1

https://financesonline.com/how-much-data-is-created-every-day/

Introduction Chapter 1

The focus of this dissertation is representation learning on graphs. Graphs (or net-

works) are powerful data structures that are the natural choice for modeling many real-

world complex systems including online social networks, protein interactions, and finan-

cial transactions, to name a few. In fact, other types of structured data (such as images

and texts) can be modeled as (grid and line) graphs as well. The modeling power of

graphs comes from both the graph structure (or topology) that encodes relationship in-

formation, but also node and edge attributes that capture other descriptive information.

For example, the types of interpersonal relationships in a social network (e.g., friendly

or adversarial) can be represented by the signs on edges, and the topics of paper in a

citation network can be encoded as node attributes.

Owing to the modeling power of graphs, many real-world data science problems can

be mapped to graph-related tasks. The applications investigated in this dissertation in-

clude those that fall under the general categories of node classification, link prediction,

and community detection, and also more context-specific ones such as characterizing

polarization in a social network or generating novel candidates via counterfactual expla-

nation in drug discovery. The role of graph representation learning is to mobilize data

modeled as information-rich graphs to solve those downstream applications, as shown

in Figure 1.1. The main challenge of graph representation learning this dissertation at-

tempts to address is how to account for the interplay between the rich graph information

and downstream task properties to enable state-of-the-art performance.

The rest of the dissertation is organized by our contributions to the advancement of

graph representation learning, summarized as follows:

1. A Broader Picture of Random-walk Based Graph Embedding [1] (Chapter 2): Graph

embedding based on random-walks supports effective solutions for many graph-

related downstream tasks. However, the abundance of embedding literature has

2

Introduction Chapter 1

 Multiscale graphs

Signed graphs

Attributed graphs

Graph
Representation

Learning

Information-rich
Graphs

Node classification

Link prediction

Community detection

Measuring polarization

Applications

Counterfactual explanation

Anomaly detection

Figure 1.1: Graph representation learning as the bridge between various types of infor-
mation-rich graphs and different downstream applications covered in this dissertation.

made it increasingly difficult to compare existing methods and to identify oppor-

tunities to advance the state-of-the-art. Meanwhile, existing work has left sev-

eral fundamental questions—such as how embeddings capture different structural

scales and how they should be applied for effective link prediction—unanswered.

This work addresses these challenges with an analytical framework for random-walk

based graph embedding that consists of three components: a random-walk process,

a similarity function, and an embedding algorithm. Our framework not only cat-

egorizes many existing approaches but naturally motivates new ones. With it, we

illustrate novel ways to incorporate embeddings at multiple scales to improve down-

stream task performance. We also show that embeddings based on autocovariance

similarity, when paired with dot product ranking for link prediction, outperform

state-of-the-art methods based on Pointwise Mutual Information similarity by up

to 100%.

2. POLE: Polarized Embedding for Signed Networks [2] (Chapter 3): From the 2016

U.S. presidential election to the 2021 Capitol riots to the spread of misinformation

related to COVID-19, many have blamed social media for today’s deeply divided

3

Introduction Chapter 1

society. Recent advances in machine learning for signed networks hold the promise

to guide small interventions with the goal of reducing polarization in social media.

However, existing models are especially ineffective in predicting conflicts (or neg-

ative links) among users. This is due to a strong correlation between link signs

and the network structure, where negative links between polarized communities

are too sparse to be predicted even by state-of-the-art approaches. To address this

problem, we first design a partition-agnostic polarization measure for signed graphs

based on the signed random-walk and show that many real-world graphs are highly

polarized. Then, we propose POLE (POLarized Embedding for signed networks),

a signed embedding method for polarized graphs that captures both topological

and signed similarities jointly via signed autocovariance. Through extensive exper-

iments, we show that POLE significantly outperforms state-of-the-art methods in

signed link prediction, particularly for negative links with gains of up to one order

of magnitude.

3. Link Prediction without Graph Neural Networks [3] (Chapter 4): Link prediction,

which consists of predicting edges based on graph features, is a fundamental task in

many graph applications. As for several related problems, Graph Neural Networks

(GNNs), which are based on an attribute-centric message-passing paradigm, have

become the predominant framework for link prediction. GNNs have consistently

outperformed traditional topology-based heuristics, but what contributes to their

performance? Are there simpler approaches that achieve comparable or better

results? To answer these questions, we first identify important limitations in how

GNN-based link prediction methods handle the intrinsic class imbalance of the

problem—due to the graph sparsity—in their training and evaluation. Moreover,

we propose Gelato, a novel topology-centric framework that applies a topological

4

Introduction Chapter 1

heuristic to a graph enhanced by attribute information via graph learning. Our

model is trained end-to-end with an N-pair loss on an unbiased training set to

address class imbalance. Experiments show that Gelato is 145% more accurate,

trains 11 times faster, infers 6,000 times faster, and has less than half of the trainable

parameters compared to state-of-the-art GNNs for link prediction.

4. Global Counterfactual Explainer for Graph Neural Networks [4] (Chapter 5): Graph

neural networks (GNNs) find applications in various domains such as computational

biology, natural language processing, and computer security. Owing to their pop-

ularity, there is an increasing need to explain GNN predictions since GNNs are

black-box machine learning models. One way to address this is counterfactual rea-

soning where the objective is to change the GNN prediction by minimal changes in

the input graph. Existing methods for counterfactual explanation of GNNs are lim-

ited to instance-specific local reasoning. This approach has two major limitations

of not being able to offer global recourse policies and overloading human cognitive

ability with too much information. In this work, we study the global explainability

of GNNs through global counterfactual reasoning. Specifically, we want to find a

small set of representative counterfactual graphs that explains all input graphs.

Towards this goal, we propose GCFExplainer, a novel algorithm powered by

vertex-reinforced random walks on an edit map of graphs with a greedy summary.

Extensive experiments on real graph datasets show that the global explanation from

GCFExplainer provides important high-level insights of the model behavior and

achieves a 46.9% gain in recourse coverage and a 9.5% reduction in recourse cost

compared to the state-of-the-art local counterfactual explainers.

5. Other Problems Related to Multiscale Graphs [5, 6, 7] (Chapter 6): Here, we group

ongoing projects related to representation learning for multiscale networks to which

5

Introduction Chapter 1

the author of this dissertation has made significant contributions.

(a) Graph Convolutional Networks Meet Neural Diffusions [5] (Section 6.1): Graph

Convolutional Networks (GCNs) are pioneering models for graph-based semi-

supervised learning. However, they do not perform well on sparsely-labeled

graphs. Its two-layer version cannot effectively propagate the label informa-

tion to the entire graph (i.e., under-smoothing) while its deep version over-

smoothens and is hard to train (i.e., the over-smoothing problem). To address

these issues, we propose a new Graph Neural Network architecture called

GND-Nets (for Graph Neural Diffusion Networks) that exploits the multi-

scale structural neighborhood information of a node in a single layer. Using

the shallow architecture mitigates the over-smoothing problem while leverag-

ing both the local and global structural neighborhood information mitigates

the under-smoothing problem. The extraction and utilization of the multiscale

neighborhood information are achieved by a new graph diffusion method called

neural diffusions, which integrate neural networks into the traditional linear

and nonlinear graph diffusion dynamics. The adoption of neural networks

enables our model to attend to different datasets. Extensive experiments on

various sparsely-labeled graphs verify the effectiveness and efficiency of GND-

Nets compared with state-of-the-art approaches.

(b) Multiscale Community Detection with Pointwise Mutual Information [6] (Sec-

tion 6.2): Community detection consists of grouping nodes in a graph such

that they are densely connected within each community (cluster) and sparsely

across communities. Existing community detection algorithms tailored for

capturing communities at multiple structural scales, such as Markov Stability

based on the clustered Autocovariance (AC) similarity, assume a user-defined

6

Introduction Chapter 1

and fixed scale for the entire graph. Instead, we propose to adopt a different

node similarity metric for multiscale community detection, Pointwise Mutual

Information (PMI), inspired by the network embedding literature. We demon-

strate that community quality functions based on the PMI similarity reveal the

optimal (natural) scale for each community automatically and independently,

and can therefore lead to algorithms that detect heterogeneous community

organization of real-world graphs.

(c) Multiscale Anomaly Detection with Graph Autoencoders [7] (Section 6.3): Graph

anomaly detection, which consists of detecting suspicious or unexpected struc-

tural and feature patterns in attributed networks, has enabled many real-world

applications, such as fraud detection in financial systems and intrusion detec-

tion in cyber security. Existing graph anomaly detection approaches focus

on detecting individual anomalous nodes within a particular context or multi-

scale contexts. Here, we show that anomalous nodes in many real-world graphs

form cohesive anomalous clusters of different structural scales and exhibit dis-

tinctive spectral energy distribution patterns. To effectively surface those

multiscale anomalous subgraphs, we propose an unsupervised framework that

incorporates spectral localized Beta Wavelet Graph Neural Networks into the

graph autoencoder anomaly detection paradigm. Anomalies are then flagged

as those with unstable embeddings and large autoencoder reconstruction er-

rors.

7

Chapter 2

A Broader Picture of Random-walk

Based Graph Embedding

2.1 Introduction

Random-walk based graph embedding enables the application of classical algorithms

for high-dimensional data to graph-based downstream tasks (e.g., link prediction, node

classification, and community detection). These embedding methods learn vector repre-

sentations for nodes based on some notion of topological similarity (or proximity). Since

DeepWalk [8], we have witnessed a great interest in graph embedding both by researchers

and practitioners. Several regular papers [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

and a few surveys [23, 24, 25, 26, 27] have attempted to not only advance but also con-

solidate our understanding of these models. However, the abundance of literature also

makes it increasingly difficult for practitioners and newcomers to the field to compare

existing methods and to contribute with novel ones.

On the other hand, despite the rich literature, several fundamental questions about

random-walk based graph embedding still remain unanswered. One such question is

8

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

(Q1) how do embeddings capture different structural scales? Random-walks of different

lengths are naturally associated with varying scales [28]. However, downstream task

performance of embeddings has been shown to be insensitive to random-walk lengths

[8, 9]. Another relevant question is (Q2) how should random-walk embeddings be used for

link prediction? Following node2vec [9], several works train classifiers to predict missing

links based on a set of labeled pairs (edges and non-edges) [29, 30, 31]. This is counter-

intuitive given that the embedding problem is often defined in terms of dot products. In

fact, dot products are sometimes also applied for link prediction and for the related task

of network reconstruction, where the entire graph is predicted based on the embeddings

[32, 10, 26, 33].

With these questions in mind, we shall take a closer look at how embeddings are

produced in random-walk based methods. It starts with selecting a random-walk pro-

cess. DeepWalk [8] applies standard random-walks, while node2vec [9] considers biased

random-walks and APP [15] adopts rooted PageRank, among others. Then, a similarity

function maps realizations of the random-walk process into real values that represent

some notion of node proximity. Most existing methods rely on the skip-gram language

model [34], which has been shown to capture the Pointwise Mutual Information (PMI)

similarity [35]. Finally, an embedding algorithm is used to generate vector representa-

tions that preserve the similarity function via optimization. This can be based on either

sampled random-walks and gradient descent (or one of its variations) [8, 9], or (explicit)

matrix factorization (e.g., Singular Value Decomposition) [11, 14].

This breakdown of random-walk based embedding methods allows us to build a sim-

ple, yet powerful analytical framework with three major components: random-walk pro-

cess, similarity function, and embedding algorithm. As shown in Figure 2.1, our frame-

work both categorizes existing approaches and facilitates the exploration of novel ones.

For example, we will consider embeddings based on the autocovariance similarity, which

9

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Random-walk based embedding methods

DeepWalk[8]
Walklets[37]

LINE[13]

Sampling

NetMF[11]
NetSMF[14]

InfiniteWalk[22]

Factorization

PMI

This work

Sampling

Multiscale[12]
This work

Factorization

Autocovariance

Standard

node2vec[9]
APP[15]

NERD[16]
This work

Sampling

NetMF[11]
This work

Factorization

PMI

This work

Sampling

This work

Factorization

Autocovariance

Non-standard

A
lg

o
ri

th
m

S
im

il
a
ri

ty
P

ro
c
e
ss

Figure 2.1: Different random-walk based embedding methods (old and new) classified
according to our analytical framework—with process, similarity, and algorithm as
main components. A key contribution of this work is to integrate autocovariance as a
similarity metric and show that it outperforms Pointwise Mutual Information (PMI)
in link prediction.

has been proposed for multiscale community detection [28, 36], and compare it against

the more popular PMI similarity on multiple downstream tasks.

Our framework also provides tools to answer the aforementioned questions. For Q1,

we will not only illustrate how past work implicitly combines multiple scales and its

implications to node-level tasks, but also propose novel ways to incorporate scales to

improve edge-level task performance. To answer Q2, we will show that to optimize per-

formance, embedding methods should be designed with task settings in mind. Specifically,

we find that embeddings based on autocovariance, when paired with dot products, lead

to a two-fold improvement over existing methods. Our analysis shows the reason to be

that the particular combination enables the embedding to capture heterogeneous degree

distributions [38] in real graphs. One could argue that link prediction is the most rele-

vant downstream task for (positional) node embeddings, as graph neural networks often

outperform embedding approaches in node classification [39].

To summarize, the main contributions of our work are:

• We present a unified view of random-walk based graph embedding, incorporating

different random-walk processes, similarity functions, and embedding algorithms.

10

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

• We show how autocovariance can be applied as a similarity function to create novel

embeddings that outperform state-of-the-art methods using PMI by up to 100%.

• We illustrate ways to exploit the multiscale nature of random-walk similarity to

further optimize embedding performance.

• We conduct an extensive experimental evaluation of our framework on various

downstream tasks and provide theoretical insights behind the results.

2.2 Method

Consider an undirected weighted graph G = (V , E), where V = {1, . . . n} denotes the

set of n nodes and E denotes the set of m edges. The graph is represented by a weighted

symmetric adjacency matrix A ∈ Rn×n, with Auv > 0 if an edge of weight Auv connects

nodes u and v, and Auv = 0, otherwise. The (weighted) degree of node u is defined as

deg(u) =
∑

v Auv.

A node embedding is a function φ : V 7→ Rd that maps each node v to a d-dimensional

(d� n) vector uv. We refer to the embedding matrix of V as U = (u1, . . . ,un)> ∈ Rn×d.

For some embedding algorithms, another embedding matrix V ∈ Rn×d is also generated.

Random-walk based embedding methods use a random-walk process to embed nodes u

and v such that a similarity metric is preserved by dot products u>uuv (or u>u vv). In the

next section, we will formalize random-walks on graphs.

2.2.1 Random-walk Process

A random-walk is a Markov chain over the set of nodes V . The transition probability

of the walker jumping to node v is based solely on its previous location u and is charac-

terized by the adjacency matrix A. For the standard random-walk process, the transition

11

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

probability is proportional to the edge weight Auv:

p(x(t+1)=v|x(t)=u) =
Auv

deg(u)
(2.1)

where x(t) ∈ V is the location of the walker at time t.

Transition probabilities between all pairs of nodes are represented by a transition

matrix M ∈ Rn×n:

M = D−1A (2.2)

where D = diag([deg(1), . . . , deg(n)]) ∈ Rn is the degree matrix.

For a connected non-bipartite graph, the standard random-walk is ergodic and has a

unique stationary distribution π ∈ Rn:

πu =
deg(u)∑
v deg(v)

(2.3)

Standard random-walks provide a natural way to capture node neighborhood in undi-

rected connected graphs. One can also design biased random-walks to explore different

notions of neighborhood [9]. For directed graphs, a PageRank process [40] is often applied

in lieu of standard random-walks to guarantee ergodicity.

2.2.2 Similarity Function

A node similarity metric is a function ϕ : V × V 7→ R that maps pairs of nodes to

some notion of topological similarity. Large positive values mean that two nodes are

similar to each other, while large negative values indicate they are dissimilar.

Random-walk based similarity functions are based on co-visiting probabilities of a

walker. An important property of random-walks that has been mostly neglected in the

embedding literature is their ability to capture similarity at different structural scales

12

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

(e.g., local vs. global). This is achieved via a Markov time parameter τ ∈ Z+, which

corresponds to the distance between a pair of nodes in a walk in terms of jumps. One

of the contributions of this work is to show the effect of different Markov time scales on

the embedding and ways to exploit them to optimize downstream task performance.

We will describe two random-walk based similarity functions in this section, Point-

wise Mutual Information (PMI) and autocovariance. PMI has become quite popular

in the graph embedding literature due to its (implicit) use by word2vec [34, 35] and

DeepWalk [8, 11]. On the other hand, autocovariance is more popular in the context of

multiscale community detection [28, 36]. As one of the contributions of this work, we will

demonstrate the effectiveness of autocovariance based embeddings on edge-level tasks.

Pointwise Mutual Information (PMI)

Denote Xv(t) ∈ {0, 1} as the event indicator of x(t) = v, which can be true (1) or

false (0). The PMI between events Xu(t) = 1 and Xv(t+ τ) = 1 is defined as:

Ruv(τ) = PMI(Xu(t) = 1, Xv(t+ τ) = 1)

= log
p(Xu(t) = 1, Xv(t+ τ) = 1)

p(Xu(t) = 1)p(Xv(t+ τ) = 1)

(2.4)

PMI provides a non-linear information theoretic view of random-walk based proximity.

For an ergodic walk with the stationary distribution π as starting probabilities, PMI can

be computed based on π and the τ -step transition probability:

Ruv(τ) = log(πup(x(t+τ)=v|x(t)=u))− log(πuπv) (2.5)

where Ruv(τ) ∈ [−∞,− log(πv)]. In matrix form:

R(τ) = log(ΠM τ)− log(ππ>) (2.6)

13

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

where Π = diag(π) ∈ Rn×n and log(·) is the element-wise logarithm. The PMI matrix is

symmetric due to the time-reversibility of undirected random-walks.

It is noteworthy that LINE [13] and DeepWalk [8]—two random-walk embedding

methods—implicitly factorize PMI. Specifically:

Theorem 2.1 LINE and DeepWalk implicitly factorize the following matrices:

RLINE =R(1)− log b (2.7)

RDW = log

(
1

T

>∑
τ=1

exp(R(τ))

)
− log b (2.8)

where b and T are the number of negative samples and context window size, respectively,

and exp(·) is the elementwise exponential.

Proof: As shown in [11], LINE and DeepWalk factorize the following matrices:

RLINE = log(vol(G)D−1AD−1)− log b (2.9)

RDW = log(vol(G)(
1

T

>∑
r=1

(D−1A)r)D−1)− log b (2.10)

where b and T are the number of negative samples and the context window size in skip-

gram respectively, and vol(G) =
∑

u deg(u). Now, consider the standard random-walk

where M = D−1A and Π = D/ vol(G). We notice the following equivalence:

Lemma 2.1 The PMI similarity matrix R(τ) in Equation 2.6 for the standard random-

walk can be expressed as

R(τ) = log(vol(G)(D−1A)τD−1) (2.11)

We use ◦ and � to represent elementwise multiplication and division between matrices.

14

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

We have:

R(τ) = log(ΠM τ)− log(ππ>)

= log((π, . . . , π) ◦M τ)− log((π, . . . , π) ◦ (π, . . . , π)>)

= log(M τ)− log((π, . . . , π)>)

= log(M τ � (π, . . . , π)>)

= log(M τΠ−1)

= log(vol(G)(D−1A)τD−1)

(2.12)

Thus, RLINE factorizes a shifted version of the similarity at τ=1:

RLINE = R(1)− log b (2.13)

And RDW factorizes a smooth approximation of the average (log-mean-exp) for the

shifted similarity with t from 1 to T :

RDW = log

(
1

T

T∑
τ=1

exp(R(τ))

)
− log b (2.14)

As we see, LINE preserves the PMI similarity at Markov time 1, while DeepWalk fac-

torizes the log-mean-exp—a smooth approximation of the average—of the PMI matrices

from Markov time 1 to T .

15

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Autocovariance

The autocovariance is defined as the covariance of Xu(t) and Xv(t+ τ) within a time

interval τ :

Ruv(τ) = cov(Xu(t), Xv(t+ τ))

= E [(Xu(t)− E[Xu(t)]) (Xv(t+ τ)− E[Xv(t+ τ)])]

(2.15)

The value of Ruv(τ) is a linear measure of the joint variability of the walk visiting proba-

bilities for nodes u and v within time τ . Similar to PMI, for an ergodic walk and starting

probabilities π:

Ruv(τ) = πup(x(t+τ)=v|x(t)=u)− πuπv (2.16)

where Ruv(τ) ∈ [−πuπv, πu(1− πv)]. In the matrix form:

R(τ) = ΠM τ − ππ> (2.17)

The autocovariance (Equation 2.17) and PMI (Equation 2.6) matrices share a very

similar form, differing only by the logarithm operation. However, this distinction has

broad implications for graph embedding. PMI is a non-linear metric closely related

to the sigmoid function, which is a quite popular activation in deep learning, while

autocovariance is related to a piecewise linear function—see Section 2.2.3 for details.

We will compare PMI and autocovariance in multiple tasks in Section 2.3 and provide

theoretical and empirical insights on their different performance in Section 2.4.

16

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

2.2.3 Embedding Algorithm

The goal of an embedding algorithm is to generate vector representations that preserve

a given similarity metric:

U∗ = arg min
U

∑
u,v

(u>uuv −Ruv)
2

= arg min
U
‖UU> −R‖2F

(2.18)

where u>uuv captures similarity in the embedding space, R is a similarity matrix, and

‖·‖F is the Frobenius norm.

In the following sections, we discuss two different techniques to optimize this embed-

ding objective.

Matrix factorization

Matrix factorization is an explicit way to optimize the embedding. It generates a low-

rank approximation of R as UU> with rank(UU>) = d. Because R is symmetric, from the

Eckart-Young-Mirsky theorem [41], the optimal U∗ = Qd

√
Λd, where R = QΛQ> is the

Singular Value Decomposition (SVD) of R. Notice that, different from classical spectral

approaches [42], factorization-based embedding is not based on the graph Laplacian.

Direct SVD of R has a complexity of O(n3), which is infeasible for most applications.

However, scalable factorization is possible for sparse graphs. For autocovariance, one can

apply the Lanczos method [43], which only requires sparse matrix-vector multiplications.

This approach reduces the complexity to O(nd2 + mdτ). For PMI, as discussed in [14],

one can construct the spectral sparsifier of the similarity matrix and apply Randomized

SVD [44]. The resulting complexity for this method is O(m̃τ log n + m̃d + nd2 + d3),

where m̃ = O(mτ) is the number of non-zeros in the sparsifier.

17

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Sampling

Sampling-based algorithms produce embeddings that implicitly optimize Equation 2.18

by maximizing the likelihood of a corpus D generated based on samples from the process.

A sample i is a random-walk sequence 〈v(i)1 , v
(i)
2 , . . . v

(i)
L 〉 of length L with the initial node

v
(i)
1 selected according to a distribution p(v)—we will assume that p(v) = πv for the

remainder of this section. From each sample, we extract pairs (v
(i)
t , v

(i)
t+τ), where τ is the

Markov time scale. Thus, D is a multiset of node pairs (u, v).

Different from matrix factorization, sampling algorithms produce two embedding ma-

trices, U and V , the source and target embeddings, respectively. The use of two embed-

dings was initially proposed by word2vec [34] and is considered a better alternative. We

will focus our discussion on algorithms that exploit negative sampling, with b negative

samples, to efficiently generate embeddings. Let z be a random variable associated with

pairs (u, v) such that z = 1 if (u, v) appears in D and z = 0, otherwise. The log-likelihood

` of the corpus D can be expressed as:

` =
∑
u,v

#(u, v)(log(p(z=1|u, v))+bEw∼π log(p(z=0|u,w))) (2.19)

where #(u, v) is the number of occurrences of the pair (u, v) in D.

The form of the conditional probability function p(z|u, v) is determined by the simi-

larity function. For instance, in the case of PMI, p(z|u, v) is known to take the form of the

sigmoid function: σ(x) = 1/(1 + exp(x)) [11]. More specifically, p(z = 1|u, v) = σ(u>u vv)

and p(z = 0|u, v) = σ(−u>u vv). Here, we show how the objective in Equation 2.19 can be

maximized for the autocovariance similarity. First, we define the following conditional

18

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

probability function:

p(z = 1|u, v) = ρ

(
u>u vv + πuπv

u>u vv + (b+ 1)πuπv

)
(2.20)

p(z = 0|u, v) = ρ

(
πuπv

u>u vv + (b+ 1)πuπv

)
(2.21)

where ρ(x) is a piecewise linear activation with ρ(x) = 0, if x < 0, ρ(x) = x, if 0 ≤ x ≤ 1,

and ρ(x) = 1, otherwise.

The following theorem formalizes the connection between the above defined condi-

tional probability and autocovariance:

Theorem 2.2 For a large enough dimensionality d (d = Ω(n)), the embedding that

maximizes Equation 2.19 with a conditional probability given by Equation 2.20 and Equa-

tion 2.21 is such that:

u>u vv =
1

b
πup(x(t+τ)=v|x(t)=u))− πuπv (2.22)

Proof: We first show that, for b = 1, Equations 2.20 and 2.21 can be derived from

the definition of autocovariance and the Bayes Theorem. The corpus D is composed of

samples from the random-walk process, and thus, for autocovariance-based embeddings:

p(u, v|z = 1) = πup(x(t+τ)=v|x(t)=u))

= u>u vv + πuπv

(2.23)

For pairs that are not in the corpus (negative samples):

p(u, v|z = 0) = πuπv (2.24)

19

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Because b=1, p(z=0)=p(z=1), and p(u, v)=u>uuv+2πuπv. From the Bayes Theorem,

we get Equation 2.20 and Equation 2.21. We will assume that Equation 2.22 can be

computed exactly from samples:

u>u vv =
#(u, v)

b|D|
− #(u)#(v)

|D|2
(2.25)

Moreover, similar to [35], we will simplify Equation 2.19 as follows:

`=
∑
u,v

#(u, v) log(p(z=1|u, v))+b
∑
u,v

#(u, v)Ew∼π log(p(z=0|u,w))

=
∑
u,v

#(u, v) log(p(z=1|u, v)) + b
∑
u

#(u)
#(v)

|D|
log(p(z=0|u, v))

+ b
∑
u,w 6=v

#(u)
#(w)

|D|
log(p(z=0|u,w))

where #(v) =
∑

w #(v, w).

For a large enough number of dimensions, we can minimize the above Equation for

each pair (u, v):

`u,v = #(u, v) log(p(z=1|u, v)) + b#(u)
#(v)

|D|
log(p(z=0|u, v)) (2.26)

Now, we plug the conditional probabilities p(z = 1|u, v) and p(z = 0|u, v) from Equa-

tion 2.20 and Equation 2.21 into `u,v, and compute its derivative with respect to x =

u>u vv, and we have

∂`u,v
∂x

=
−#(u, v)πuπv

(x+ πuπv)(x+ (b+ 1)πuπv)
+

b#(u)#(v)

|D|(x+ (b+ 1)πuπv)

where we have conveniently dropped the function ρ.

Setting the derivative to zero, we get Equation 2.25. We emphasize that similar to

20

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

[35], our theorem only holds when d is large enough to allow embeddings to be optimal

pairwise, which can only be guaranteed in the general case when d = n.

While here we only show the sampling-based algorithm for autocovariance, previous

work has given a similar proof for PMI [11].

We minimize the likelihood from Equation 2.19 using gradient descent. The time

complexity of the sampling algorithms (for PMI and autocovariance) isO(|D|b), where |D|

is the size of the corpus and b is the number of negative samples—in practice, |D| = O(n).

2.3 Experiments

In this section, we evaluate several random-walk based graph embedding methods

defined according to our analytical framework on various downstream tasks and datasets.

2.3.1 Dataset

We apply six datasets (see Table 2.1) in our experiments.

• BlogCatalog [45]: Undirected social network of bloggers with (multi) labels

representing topics of interest.

• Airport: Flight network among global airports (from OpenFlights [46]). Edges

are weighted by the number of flights through the corresponding air routes. Labels

represent the countries and continents where airports are located. The largest

undirected connected component of the network is used in our experiments.

• Wiki-words [47]. Undirected co-occurrence network of words in the first million

bytes of the Wikipedia dump. Labels are Part-of-Speech (POS) tags inferred by

the Stanford POS-Tagger.

21

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

• PoliticalBlogs [48]. Network of hyperlinks between weblogs on US politics,

recorded in 2005. Labels represent political ideologies (conservative vs liberal). The

largest undirected connected component of the network is used in our experiments.

• Cora [49]: Directed citation network with categories (e.g., AI) and subcategories

(e.g, Knowledge Representation) as labels.

• Wiki-fields: Subset of the Wikipedia directed hyperlink network [50] covering

Computer Science, Mathematics, Physics and Biology for the year 2019. Fields

and subfields are used as labels.

|V| |E| labels

BlogCatalog 10,312 333,983 interests
Airport 3,158 18,606 countries/continents

Wiki-words 4,777 92,157 tags
PoliticalBlogs 1,222 16,717 ideologies

Cora 23,166 91,500 categories/subcategories
Wiki-fields 10,675 137,606 fields/subfields

Table 2.1: An overview of the datasets.

2.3.2 Experiment Setting

We evaluate embedding methods on three downstream tasks:

• Node classification. We follow the same procedure as [8]. For each dataset, we ran-

domly sample a proportion of node labels for training and the rest for testing. We

use one-vs-rest logistic regression implemented by LIBLINEAR [51] for multi-class

classification (Airport and Cora) and multi-label classification (BlogCatalog,

Wiki-words, and Wiki-fields). To avoid the thresholding effect [52] in the

multi-label setting, we assume that the number of true labels for each node is

22

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

known. Performance is reported as average Micro-F1 and Macro-F1 [53] for 10

repetitions.

• Link prediction. We randomly remove 20% of edges while ensuring that the residual

graph is still connected and embed the residual graph. Edges are predicted as the

top pairs of nodes ranked by either dot products of embeddings or classification

scores from a logistic regression classifier with the concatenation of embeddings as

input. We report precision@k [54] as the evaluation metric and also use recall@k in

our analysis, where k is the number of top pairs, in terms of the ratio of removed

edges.

• Community detection. We use k-means—with k-means++ initialization [55]—for

community detection, with the number of clusters set to be the actual number of

communities. Normalized Mutual Information (NMI) [56] between predicted and

true communities is used as the evaluation metric.

For all experiments, the number of embedding dimensions is set to d = 128. When

searching for the best Markov time, we sweep τ from 1 to 100. An implementation of our

framework is available at https://github.com/zexihuang/random-walk-embedding.

2.3.3 Results

In this section, we evaluate how different components of the embedding methods

affect their performance.

PMI vs autocovariance

We apply standard random-walks and the matrix factorization algorithm and analyze

the difference between PMI and autocovariance similarity.

23

https://github.com/zexihuang/random-walk-embedding

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Figure 2.2 shows the node classification performance on undirected datasets (exclud-

ing PoliticalBlog as it is a simple binary classification task). We select the Markov

time τ with the best performance for the 50% training ratio. Results show that PMI

consistently outperforms autocovariance for both Micro-F1 /Macro-F1 scores. The aver-

age gain is 6.0%/11.3% for BlogCatalog, 14.2%/24.5% and 4.6%/5.2% for Airport

with country and continent labels, and 12.9%/20.0% for Wiki-words. This is a piece

of evidence that PMI, which is non-linear, is more effective at node-level tasks.

0.36

0.38

0.40

0.42

M
icr

o-
F1

BlogCatalog

0.65

0.70

0.75

0.80

0.85

Airport: country

0.86

0.89

0.92

0.95

0.98
Airport: continent

0.45

0.49

0.53

0.57

Wiki-words

0 20 40 60 80 100

0.22

0.24

0.26

0.28

M
ac

ro
-F

1

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

PMI Autocovariance

0 20 40 60 80 100
0.84

0.87

0.90

0.93

0.96

0 20 40 60 80 100

0.10

0.12

0.14

0.16

0.0 0.2 0.4 0.6 0.8 1.0
Training ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: Node classification performance comparison between PMI and autocovari-
ance on varying training ratios. PMI consistently outperforms autocovariance in all
datasets.

Figure 2.3 shows the results for link prediction, where we select the best Markov

time for k = 100%. Autocovariance with dot product ranking consistently outperforms

PMI with either ranking scheme in all datasets. The average gains over the best ones

are 44.1% in BlogCatalog, 72.9% in Airport, 2.2% in Wiki-words, and 101.4%

in PoliticalBlogs. To the best of our knowledge, we are the first to observe the

effectiveness of autocovariance on edge-level tasks.

While both dot product-based and classification-based link prediction have been

24

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ec

isi
on

 @
 k

BlogCatalog

PMI (dot product) Autocovariance (dot product) PMI (classification) Autocovariance (classification)

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Airport

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

Wiki-words

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

PoliticalBlogs

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.3: Link prediction performance comparison between PMI and autocovari-
ance on varying percentages of top predictions (k). Autocovariance with dot product
ranking consistently outperforms PMI (with either ranking scheme) in all datasets.

widely used in the embedding literature, our results show that dot product is a clearly

superior choice for autocovariance embedding. It also leads to better or similar perfor-

mance for PMI embedding for all but the Wiki-words dataset. Thus, we will only show

results based on dot products in later experiments.

Results in this section beg the deeper question of why specific similarities and ranking

schemes lead to better performance. We will provide theoretical and empirical insights

on this in Section 2.4.

Multiscale

In this section, we analyze the effect of different Markov time scales on the embedding

performance using standard random-walks and matrix factorization.

Figure 2.4 compares the node classification performance for different similarity mea-

sures on varying Markov time scales from 1 to 50. The training ratio is fixed at 50%

for all datasets. The metrics have a peak performance at a certain Markov time. How-

ever, notice that this aspect has not been given much relevance by previous work on

embedding. This is a legacy of DeepWalk [8], which, as we have shown, implicitly applies

the log-mean-exp of the PMI matrix within a range of Markov times. Thus, we also

25

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

show the performance for the moving log-mean-exp PMI and mean autocovariance (it

is linear) in Figure 2.4. Interestingly, while both mean versions have smoother results,

only log-mean-exp PMI has a higher peak performance—with gains of 2.2%/4.8% for

BlogCatalog, 3.3%/17.4% and 0.4%/0.4% for Airport with country and continent

labels, and 7.1%/6.7% for Wiki-words. This shows log-mean-exp is indeed an effective

approach to combine PMI similarity at different scales. Conversely, we cannot apply a

similar strategy for autocovariance.

0.20

0.25

0.30

0.35

0.40

M
icr

o-
F1

BlogCatalog

0.5

0.6

0.7

0.8

Airport: country

0.88

0.91

0.94

0.97

Airport: continent

0.43

0.46

0.49

0.52

Wiki-words

0 10 20 30 40 50
0.05

0.10

0.15

0.20

0.25

M
ac

ro
-F

1

0 10 20 30 40 50
0.1

0.2

0.3

0.4

PMI Autocovariance Log-mean-exp PMI Mean autocovariance

0 10 20 30 40 50

0.84

0.88

0.92

0.96

0 10 20 30 40 50

0.04

0.06

0.08

0.10

0.12

0.0 0.2 0.4 0.6 0.8 1.0
Markov time τ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.4: Node classification results for PMI, autocovariance, and their moving
means on varying Markov times. While both means stabilize the performance for large
Markov times, only log-mean-exp PMI consistently increases the peak performance.

We observe similar results for community detection (see Figure 2.5). Also included are

results for Markov Stability [28], which applies clustered autocovariance for multiscale

community detection. For both countries and continents in Airport, (log-mean-exp)

PMI achieves the best performance. This is another piece of evidence for the effectiveness

of PMI on node-level tasks.

We then evaluate the effect of different Markov time scales on link prediction using

26

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8
NM

I

Airport: country

PMI
Autocovariance

Log-mean-exp PMI
Mean autocovariance

Stability

0 10 20 30 40 50

0.10

0.25

0.40

0.55

0.70

Airport: continent

0.0 0.2 0.4 0.6 0.8 1.0
Markov time τ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.5: Community detection for PMI, autocovariance, their moving means, and
Markov Stability on varying Markov times. Log-mean-exp PMI outperforms autoco-
variance and Markov Stability for country and continent levels.

BlogCatalog and Airport. We first note that a moving mean does not improve the

performance for either PMI or autocovariance (see Figure 2.6). We hypothesize the reason

to be that each edge plays a structural role that is specific to a few relevant scales (e.g.,

connecting two mid-sized communities). To validate it, we first find the best Markov

time τ ∗ in terms of precision@100% for autocovariance. Then, for every Markov time

τ ′ larger than τ ∗, we compute its added recall@100% —i.e., the proportion of correctly

predicted edges at τ ′ that are not predicted at τ ∗. We show the relative gain of added

recall compared to τ ∗ and the precision@100% for different values of τ ′ in Figure 2.7. For

BlogCatalog, while precision drops as τ ′ increases, the relative added recall increases

to up to 33.4% at τ ′ = 91 (4,042 new edges added to the 12,104 edges correctly predicted

at τ ∗ = 3). To further understand the roles of those edges, we show the relative added

recall for intra-continent edges and inter-continent edges separately for Airport. Most

of the gain is for inter-community edges (up to 34.0% at τ ′ = 42). This observation

suggests that link prediction can be improved by accounting for the scale of edges.

27

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

0 20 40 60 80 100
0.00

0.05

0.10

0.15
Pr

ec
isi

on
 @

 1
00

%

BlogCatalog

PMI
Autocovariance

Log-mean-exp PMI
Mean autocovariance

0 20 40 60 80 100
0.0

0.1

0.2

0.3

Airport

0.0 0.2 0.4 0.6 0.8 1.0
Markov time τ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.6: Link prediction for PMI, autocovariance, and their moving means on
varying Markov times. Neither log-mean-exp PMI nor mean autocovariance increases
the peak performance.

0 25 50 75 100

0.08

0.10

0.12

0.14

0.16

Pr
ec

isi
on

 @
 1

00
%

BlogCatalog

Precision
Added recall (all)

Added recall (intra)
Added recall (inter)

0 25 50 75 100
0.00

0.07

0.14

0.21

0.28

0.35
Airport

16

20

24

28

32

0

7

14

21

28

35

Re
la

tiv
e

ad
de

d
re

ca
ll

@
 1

00
%

 (%
)

0.0 0.2 0.4 0.6 0.8 1.0
Markov time τ0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.7: Relative added recall for link prediction after adding predictions from a
larger Markov time τ ′ to the best Markov time τ∗. While the precision drops at larger
Markov times, they predict a distinct set of true (inter-community) edges from those
revealed at the best (and small) time.

Factorization vs sampling

We now switch our focus to evaluating the performance of sampling and matrix fac-

torization algorithms. For PMI, we apply a publicly available node2vec implementation1

1https://github.com/eliorc/node2vec/blob/master/node2vec/node2vec.py

28

https://github.com/eliorc/node2vec/blob/master/node2vec/node2vec.py

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

with parameters that make it equivalent to DeepWalk. For autocovariance, we implement

our algorithm using the PyTorch framework with the Adam optimizer [57]. Parameters

are set based on [9]: 10 walks per node with length 80, 400 epochs for convergence, 1000

walks per batch, and 5 negative samples.

Figure 2.8 shows the link prediction performance where the context window size for

both PMI and autocovariance is set to the best Markov time for precision@100%. We

focus on link prediction because [11] has already shown evidence that matrix factorization

is superior to sampling for node classification. Factorization achieves better performance

for both datasets and similarity functions. The average gain of precision@k for PMI is

277.0%/553.7% on BlogCatalog/Airport, and 240.7%/121.5% for autocovariance.

0 25 50 75 100

0.1

0.2

0.3

0.4

Pr
ec

isi
on

 @
 k

BlogCatalog

PMI (factorization)
Autocovariance (factorization)

PMI (sampling)
Autocovariance (sampling)

0 25 50 75 100
0.0

0.2

0.4

0.6

Airport

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.8: Link prediction performance for PMI and autocovariance using matrix
factorization and sampling algorithms on varying percentages of top predictions (k).
Factorization algorithms achieve the best performance.

Figure 2.9 shows how dot products of 16-D embeddings for Zachary’s karate club

generated using sampling and matrix factorization algorithms approximate the entries of

similarity matrices. We notice that while embeddings produced by both sampling and

factorization approaches are correlated with the similarities, matrix factorization achieves

a higher correlation.

29

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

−0.8 −0.4 0.0 0.4 0.8 1.2
PMI

−0.8

−0.4

0.0

0.4

0.8

1.2

Sa
m
pl
in
g

Edge Non-edge

−0.8 −0.4 0.0 0.4 0.8 1.2
PMI

−0.8

−0.4

0.0

0.4

0.8

1.2

Fa
ct
or
iza

tio
n

−1.50 −0.75 0.00 0.75 1.50
Autocovariance

−1.50

−0.75

0.00

0.75

1.50

Sa
m
pl
in
g

−1.50 −0.75 0.00 0.75 1.50
Autocovariance

−1.50

−0.75

0.00

0.75

1.50

Fa
ct
or
iza

tio
n

Figure 2.9: Correlation between entries of the similarity matrices (PMI and auto-
covariance) and the corresponding dot product reconstruction from the embeddings
generated via sampling and matrix factorization algorithms. The results are gener-
ated using Zachary’s karate club network. Both edge and non-edge pairs of nodes
are shown. While a clear correlation can be noticed in all cases, matrix factorization
methods provide a better approximation of the similarity metrics.

Directed vs undirected

The final part of our evaluation compares embeddings for undirected and directed

graphs, which requires different random-walk processes, as discussed in Section 2.2.1. The

results for Cora and Wiki-fields are shown in Figure 2.10 and Figure 2.11. Overall,

directed embeddings outperform undirected ones for the very top ranked pairs in link

prediction, while undirected embeddings are better in node classification.

0 20 40 60 80 100
0.4

0.5

0.6

0.7

M
icr

o-
F1

Cora: category

Undirected Source Target Concatenated

0 20 40 60 80 100

0.2

0.3

0.4

0.5

Cora: subcategory

0 20 40 60 80 100
0.70

0.75

0.80

0.85

0.90

Wiki-fields: field

0 20 40 60 80 100

0.3

0.4

0.5

0.6

Wiki-fields: subfield

0.0 0.2 0.4 0.6 0.8 1.0
Training ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.10: Node classification for directed and undirected embeddings with PageR-
ank on varying training ratios. Macro-F1 scores are not shown here as they follow
similar patterns as Micro-F1 scores. The undirected embedding consistently outper-
forms both source, target and concatenated directed embeddings in both datasets.

30

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

0 5 10 15 20 25
0.04

0.06

0.08

0.10

0.12

Pr
ec

isi
on

 @
 k

Cora

Undirected Directed

0 5 10 15 20 25
0.35

0.40

0.45

0.50

0.55

Wiki-fields

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.11: Link prediction for directed and undirected embeddings with PageRank
on varying top pairs. Directed embedding outperforms undirected embedding for the
very top ranked edges.

2.4 Insights on PMI vs Autocovariance

This section provides both theory and experiments supporting the differences in per-

formance achieved by autocovariance and PMI. We will focus on link prediction, for

which autocovariance was shown to achieve the best performance. Our analysis might

benefit the design of novel embedding methods using our framework.

We will assume that the graph G has community structure [58] and heterogeneous de-

gree distribution [38], which hold for many real graphs and for generalizations of Stochas-

tic Block Models (SBM) [59]. Moreover, let the number of dimensions d be large enough

to approximate the similarities well. For simplicity, we consider an SBM instance with

two clusters and intra-cluster edge probability p significantly higher than the inter-cluster

probability q.

We will use the dot product setting for link prediction [60]. Specifically, we estimate

the probability of an edge as P (eu,v) ∝ max(0,u>v), where we have conveniently dropped

31

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

the embedding subscripts. Further, for p � q, u>v > 0 iff C(u) = C(v), where C(v) is

the cluster v belongs to. We then have the following observations.

Observation 2.1 Link prediction based on dot products correlates predicted node degrees

and the 2-norms of embedding vectors:

d̃eg(u) ≈
∑

v∈C(u)−{u}

u>v = ‖u‖2
∑

v∈C(u)−{u}

‖v‖2 cos(θu,v)

where cos(θu,v) is the cosine of the angle between u and v.

The above property follows from the community structure, as the majority of the

edges will be within communities. We now look at the norms of vectors generated by

autocovariance and PMI.

Observation 2.2 For autocovariance similarity:

‖u‖22 = π(u)([M τ]u,u − π(u)) =
deg(u)

2m

(
[M τ]u,u −

deg(u)

2m

)

Norms for autocovariance depend on two factors. The first is proportional to the actual

node degree, while the second expresses whether u belongs to a community at the scale τ .

For SBM, there exists a τ such that [M τ]u,u is close to deg(u)/m in expectation. That is

the case when the process is almost stationary within C(u), with m/2 expected edges, but

not in the entire graph. It implies that the embedding norms are proportional to actual

node degrees. Combining this with Observation 1, we can conclude that autocovariance

embedding predicts degrees related to the actual ones.

Observation 2.3 For PMI similarity:

‖u‖22 = log (π(u)[M τ]u,u)− log
(
π2(u)

)
= log

(
2m[M τ]u,u

deg(u)

)
32

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Notice that as [M τ]u,u approaches to deg(u)/m, ‖u‖2 becomes constant. As a conse-

quence, different from autocovariance, norms for PMI embeddings are not directly related

with node degrees.

In Figure 2.12, we provide empirical evidence for Observations 2 and 3—the cor-

relation between actual degrees and embedding norms for BlogCatalog, Airport,

Wiki-words, and PoliticalBlogs. The correlation for autocovariance is significantly

higher than that for PMI, showing the ability of autocovariance to capture heterogeneous

degree distributions.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

||u
|| 2

BlogCatalog

PMI Autocovariance

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Airport

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Wiki-words

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PoliticalBlogs

0.0 0.2 0.4 0.6 0.8 1.0
degree(u)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.12: Correlation between (max normalized) degrees and 2-norms of embedding
vectors based on PMI and autocovariance. Autocovariance produces embeddings with
norms that are well correlated with node degrees in both datasets.

Figure 2.13 shows the predicted links for an instance of SBM (p = 0.15, q = 0.02)

with two hubs—generated by merging 20 nodes inside each community. Visualization is

based on t-SNE [61] projection from 16-D embeddings. Around half of the edges (97 out

of top 200) are predicted to be connected to the hubs using autocovariance, but none

using PMI. This example shows how autocovariance with dot product ranking enables

state-of-the-art link prediction.

The analysis presented here does not apply to node-level tasks (node classification and

clustering), where the degree distribution does not play a major role. In fact, Figure 2.13

shows that PMI produces a better separation between clusters with hubs for each cluster

33

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

(a) PMI (b) Autocovariance

Figure 2.13: Edges predicted using PMI and autocovariance embeddings for a syn-
thetic graph with community structure and hubs (one per community, shown in red).
Autocovariance is more effective at capturing the hubs in the graph.

positioned in the middle, which is desired for node-level tasks. This property might be

explained by the non-linearity of PMI.

2.5 Related Work

We refer to [23, 24, 25, 26, 27] for an overview of graph embedding and representation

learning. The general problem of embedding vertices of a graph into a vector space can be

traced back to much earlier work on embedding metric spaces [62], spectral graph theory

[42], nonlinear dimensionality reduction [63] and graph drawing [64]. However, the more

recent appeal for graph embedding methods coincided with the renewed interest in deep

learning, specially the skip-gram model for text, such as word2vec [34]. DeepWalk [8],

which introduced the idea of using random-walks as graph counterparts of sentences in

skip-gram, is considered the pioneering work on random-walk based graph embedding.

Subsequent extensions have led to an extensive literature [9, 13, 10, 15]. Random-walk

based embedding models have also been proposed for heterogeneous [65], dynamic [66]

and multilayer networks [67].

34

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Previous work has proposed embeddings based on specific processes. For instance,

node2vec [9] applies a biased random-walk process that is flexible enough to capture ho-

mophily and structural similarity. In [15], the authors propose a variation of DeepWalk

with PageRank [40] instead of the standard random-walks. These studies motivate gen-

eralizing embedding to other processes, such as the Ruelle-Bowen random-walk, which

has maximum entropy [68], and even continuous-time random-walks [30, 69].

With the exception of [12], random-walk based embeddings cannot generalize—either

explicitly or implicitly—to other similarities besides Pointwise Mutual Information (PMI)

[11]. As an alternative, autocovariance similarity is the basis of Markov Stability [28, 36,

69], an effective multiscale community detection algorithm validated in many real net-

works. In [12], the authors introduced a general embedding scheme based on control

theory, of which autocovariance is a special case. However, they neither contextualized

it with other existing embedding approaches nor provided any theoretical or empirical

evaluation on any particular task. A link prediction algorithm based on autocovariance

was introduced in [70], but it does not produce embeddings. Integrating autocovariance

into the broader framework of random-walk embedding—with different processes and em-

bedding algorithms—and investigating its properties both theoretically and empirically

is a contribution of our work.

For some time, graph embedding models were divided into those based on skip-gram

[8, 9, 13], which are trained using sampled walks and stochastic gradient descent (or its

variations) and those based on matrix factorization [10, 18]. It was later shown that,

under certain assumptions, skip-gram based text embedding models perform matrix fac-

torization implicitly [35]. More recently, Qiu et al. [11] showed that DeepWalk, node2vec

and LINE [13] also perform implicit matrix factorization. Our framework incorporates

both sampling-based and matrix factorization algorithms and we show how the former

can generalize to similarities beyond PMI.

35

A Broader Picture of Random-walk Based Graph Embedding Chapter 2

Multiscale graph embedding based on random-walks has attracted limited interest in

the literature [19, 21], though many real-life networks are known to have a multiscale (or

hierarchical) structure [71, 72]. Notice that we focus on graphs where scales are defined

by clusters/communities. This is different from graphs where vertices belong to different

levels of a hierarchy, such as trees, for which hyperbolic embedding [73] is a promising

approach.

2.6 Conclusion

We have introduced a framework that provides a renewed bearing on random-walk

based graph embedding. This area has capitalized on the close connection with skip-gram

but has also been biased by some of its design choices. Our framework has enabled us to

scrutinize them, which will benefit researchers and practitioners alike. In the future, we

want to explore alternative choices of components in our framework, as well as extending

it to graphs with richer information, such as signed, dynamic, and attributed graphs.

36

Chapter 3

Polarized Embedding for Signed

Networks

3.1 Introduction

Social media has made our world more polarized [74, 75, 76]. The events surrounding

the 2016 U.S. election [77] and, more recently, the tragic U.S. Capitol riot [78] and

spread of COVID-19 misinformation [79, 80], have illustrated the dangers of a deeply

ideologically divided society. But if technology has led to the rise of polarization, can it

also help us to solve it? More specifically, can recent advances in representation learning

[8, 31] help us to address online polarization? One could argue these methods should

be as effective for predicting conflicts as they are for recommending connections and

content in social media platforms [26]. However, we will show that polarization leads to

new challenges for representation learning.

Signed graphs are a powerful tool for analyzing social polarization, capturing both

positive (friendly) and negative (hostile) connections between entities. They have been

used to model relationships between politicians in the U.S. Congress [81] and interactions

37

Polarized Embedding for Signed Networks Chapter 3

between Twitter users on political matters [82], both of which are known to harbor

polarization [83, 84]. In signed graphs, polarization is often related to the emergence of

conflicting communities [85], where nodes within each community form dense positive

connections and nodes across different communities are sparsely connected via negative

links. Figure 3.1 shows two signed graphs with the same underlying topology (based on

the LFR benchmark [86]) but different link signs. The left graph is more polarized as all

of its negative links connect the two communities, while link signs in the right graph are

unrelated to the community structure.

(a) LFR-polarized (b) LFR-unpolarized

Figure 3.1: Two synthetic graphs with the same underlying topology but different
link signs. Node colors depict communities and link colors depict signs. (a) is more
polarized than (b) as its link signs are related to the community structure—negative
links connecting two polarized communities.

To fight polarization, we first need to measure it. Existing measures [85, 87] are de-

fined as objective functions for community detection, requiring community memberships

as input. This dependence makes those measures less useful for real-world graphs, where

ground-truth memberships are often unknown. To solve this problem, we propose a novel

polarization measure based on the correlation between unsigned and signed random-walk

38

Polarized Embedding for Signed Networks Chapter 3

dynamics. By varying the random-walk length, our measure naturally captures polarized

community structure at different scales and does not rely on specific partitions. We will

demonstrate its effectiveness in characterizing both node and graph-level polarization.

But how can we fight polarization in a network? For unsigned graphs, one approach is

to bridge communities to reduce the effect of echo chambers [88]. Signed graphs open new

possibilities in this endeavor. In particular, if one can identify potential hostile links that

are likely to be formed in the future, they can take preventive measures to reduce further

polarization. The success of this approach relies on the accuracy of signed link prediction

[89, 90, 91], where both existence and signs of future links are inferred. However, while

unsigned and signed graph embedding methods have shown success at the related link-

level tasks of (unsigned) link prediction [9, 1] and sign prediction [29, 92], they cannot be

easily combined for signed link prediction in polarized graphs. That is because negative

links mostly connect antagonistic communities and are much sparser than positive links,

making it nearly impossible to predict their existence with unsigned embedding methods.

And without link existence information, even a perfect sign prediction oracle is unable

to predict the negative links.

To address the challenges mentioned above, we propose POLE, a novel signed embed-

ding method for polarized graphs. The key feature that distinguishes our method from

existing ones is that it captures signed and topological similarities jointly. Specifically,

it guarantees that positively related pairs are more similar than unrelated topologically

distant pairs, which are in turn more similar than negatively related pairs. This is accom-

plished by leveraging the signed random-walk that incorporates social balance theory [93]

and extending autocovariance similarity [28, 12] to signed graphs. In this way, negative

links can be predicted as the most dissimilar node pairs in the graph, at the other end

of the similarity spectrum.

To summarize, our main contributions are:

39

Polarized Embedding for Signed Networks Chapter 3

• We design a novel partition-agnostic polarization measure for signed graphs based

on the signed random-walk.

• We analyze how existing signed embedding methods fail in signed link prediction

for polarized graphs.

• We propose POLE, a novel signed embedding approach for polarized graphs that

captures both topological and signed similarities via signed autocovariance.

• We conduct an extensive experimental evaluation of our method on six real-world

signed graphs. Results show that POLE significantly outperforms state-of-the-art

methods in signed link prediction, especially for negative links.

3.2 Random-walk on Signed Graphs

We introduce our formulation for random-walks on signed graphs, the basis for our

polarization measure and embedding algorithm.

3.2.1 Notations

A signed undirected weighted graph is a tuple G = (V , E), where V = {1, . . . n}

denotes the set of n nodes and E = E+ ∪ E− denotes the set of m links, with positive

and negative signs. The graph is represented by a signed weighted adjacency matrix

A ∈ Rn×n, with Auv > 0 (or < 0) if a positive (or negative) link of weight |Auv| connects

nodes u and v, and Auv = 0 otherwise. We also use the absolute adjacency matrix |A|

to construct the degree matrix/vector D/d with Duu = du =
∑

v |A|uv as the degree of

node u.

40

Polarized Embedding for Signed Networks Chapter 3

3.2.2 Signed Random-walk

Random-walks are widely used for unsigned graph embedding due to their ability

to capture topological similarity at multiple structural scales. While there have been

several attempts to extend random-walks to signed graphs [94, 95], we will define our

own version to capture topological and signed similarity jointly and explicitly guarantee

polarized similarity consistency—we will discuss this important property in more detail

in the next subsection.

We start by recalling random-walks for unsigned graphs. A walk l is a sequence of

nodes 〈w0, w1, . . . wt〉 where (wτ , wτ+1) ∈ E . The transition probability of the walk is the

product of stepwise ones:

Prob(l) =
∏

(wτ ,wτ+1)∈l

Prob(wτ+1|wτ)

=
∏

(wτ ,wτ+1)∈l

|A|wτwτ+1/dwτ

(3.1)

Then, the t-step random-walk transition probability from node u to v can be expressed

as the sum of the transition probabilities of all length-t walks between u and v, denoted

as Walk(u, v, t):

|M |uv(t) =
∑

l∈Walk(u,v;t)

Prob(l) (3.2)

which serves as a measure of topological similarity between u and v. The Markov time t

controls the scale of the walk.

For signed graphs, we keep transition probabilities of walks for topological similarity

and add an inferred sign for each walk to capture signed similarity, leading to

Muv(t) =
∑

l∈Walk(u,v;t)

Sign(l) Prob(l) (3.3)

41

Polarized Embedding for Signed Networks Chapter 3

where Sign(l) = Sign(
∏

(w,w′)∈lAww′) determines the sign of the walk l between u and v.

We leverage the well-established social balance theory [93] to infer the sign of the walk,

which states the famous rule that “an enemy of my enemy is my friend” among other

rules. Figure 3.2 shows examples of signed transitions.

– +
Prob(𝑙)

– –

Sign(𝑙)1/2 1/2

1/2 1/2

1/2 × 1/2 = 1/4

1/2 × 1/2 = 1/4

−1 × 1 = −1

−1 × −1 = 1
1

2

4

3

5

𝑙

1, 2, 3

1, 4, 5

Figure 3.2: Examples of signed walks with corresponding transition probabilities
(Prob) and inferred signs (Sign).

Note that after adding signs to walks, Muv(t) ∈ [−1, 1] is no longer a probability but

rather captures a notion of signed similarity between u and v. In matrix form, we will

still call M(t) ∈ Rn×n the signed random-walk transition matrix even though it is not

stochastic. A nice property of M(t) is that it can be conveniently expressed in terms of

the signed adjacency and degree matrices:

M(t)=


(D−1A)t for discrete random-walks

exp(−(I −D−1A)t) for continuous random-walks

(3.4)

where I ∈ Rn×n is the identity matrix. We will use the continuous version of the transition

matrix in the rest of the work due to its finer granularity of the Markov time (t ∈ [0,+∞)

instead of t ∈ N0).

42

Polarized Embedding for Signed Networks Chapter 3

3.2.3 Similarity Consistency

The key advantage of our signed random-walk is that it guarantees polarized simi-

larity consistency, a property critical to signed link prediction in polarized graphs. The

consistency of similarity states which type of node pairs should be more similar than

other types. For example, unsigned embedding methods satisfy:

Property 3.1 (Topological similarity consistency) Topologically close nodes are more

similar than topologically distant ones.

And signed embedding methods guarantee:

Property 3.2 (Signed similarity consistency) Positively related nodes are more sim-

ilar than negatively related ones.

These properties enable the corresponding link-level downstream tasks, namely (un-

signed) link prediction and sign prediction.

The transitions of our signed random-walk as a similarity metric have a stronger

consistency guarantee:

Property 3.3 (Polarized similarity consistency) Positively related node pairs are

more similar than unrelated topologically distant pairs, which are in turn more similar

than negatively related pairs.

Property 3.3 is a direct implication of the transition probability defined in Equation 3.3.

Large positive/negative values of Muv(t) indicate that u and v are connected via mostly

positive/negative paths while small values mean that they are unrelated and topologically

distant. Property 3.3 also holds for a similarity defined by dot products between columns

of M . More specifically, 〈M:u,M:v〉 is large and positive (or negative) if and only if u

and v have transitions of same (or different) sign(s) to a common set of nodes. And the

similarity is small if their transitions reach a distinct set of nodes.

43

Polarized Embedding for Signed Networks Chapter 3

3.3 A Measure of Polarization

In this section, we propose and evaluate a measure of polarization based on the signed

random-walks we have just introduced.

3.3.1 Random-walk Based Polarization

A signed network is polarized if it comprises antagonistic communities with dense

positive connections in each community and sparse negative ones across communities.

Unlike previous works [85, 87] that define polarization as a quality measure of graph

partitions, our aim is to measure polarization based solely on graph structure. To achieve

this, we apply a soft characterization of the polarized community structure in the graph

based on signed random-walks.

The key observation that supports our polarization measure is that polarization in-

creases the correlation between unsigned and signed random-walk dynamics. Consider

the two graphs shown in Figure 3.3. While they share the same underlying topology, (a)

is more polarized than (b) as its negative link connects the two communities. We then

analyze how their signed random-walk transitions differ from unsigned ones. For node 1

in graph (a), only signs of its inter-community transitions are changed, whose magnitudes

are smaller, if not negligible, compared to the intra-community transitions. On the other

hand, the negative link in the less polarized graph (b) significantly affects the signed

intra-community transitions. As a consequence, the signed and unsigned transitions in

the polarized graph are more correlated than in the less polarized one.

We define the node-level polarization as the (Pearson) correlation between a node’s

signed and unsigned random-walk transitions:

Pol(u; t) = corr(|M |:u(t),M:u(t)) (3.5)

44

Polarized Embedding for Signed Networks Chapter 3

1

3

2

4

𝑀 :1 = [0.23, 0.21, 0.21, 0.18, 0.05, 0.02, 0.02, 0.02]

𝑀:1
𝑎 = [0.23, 0.21, 0.21, 0.18,

−0.05, −0.02, −0.02, −0.02]
𝑀:1

𝑏 = [0.12, −0.01, 0.09, 0.07,
0.03, 0.01, 0.01, 0.01]

corr 𝑀 :1, 𝑀:1
𝑎 = 0.9849

5

7

6

8 1

3

2

4 5

7

6

8

corr 𝑀 :1, 𝑀:1
𝑏 = 0. 6237

(a) (b)

Figure 3.3: Illustration of our polarization measure based on signed random-walk
dynamics (t = 3). The transitions for unsigned (|M |) and signed (M) random-walks
are more correlated in the polarized network (a), where a negative link connects two
antagonistic communities. On the other hand, the correlation is lower in the less
polarized network (b).

We can then define the graph-level polarization as the mean node-level polarization for

all nodes in the graph:

Pol(G; t) = mean
u∈G

(Pol(u; t)) (3.6)

The random-walk based polarization proposed here has two main advantages. First, it

is partition-agnostic and does not depend on the availability of ground-truth communities

or the outcome of community detection algorithms. Second, it can measure polarization

at different structural scales by tuning the Markov time t—large t captures polarization

between macro-level communities (e.g., hostility between political parties) while small t

measures it at a micro scale (e.g., disagreement between factions within a party). In the

next subsection, we will demonstrate that our measure is effective in characterizing both

node and graph-level polarization.

45

Polarized Embedding for Signed Networks Chapter 3

3.3.2 Polarization of Real-world Graphs

Node-level polarization

We apply our polarization measure to characterize nodes in a political network,

Congress [81]. Signed links in this network represent (un/)favorable interactions be-

tween U.S. congresspeople on the House floor in 2005. The statistics of the network are

shown in Table 3.3.

We rank all nodes by their polarization scores at a fixed t = 10. The top 20 least and

most polarized nodes are shown in Table 3.1 and Table 3.2. The congressperson with

the smallest score (−0.6542) is Henry Cuellar, a self-described moderate-centrist [96].

As a Democrat, he voted with President Trump (Republican) nearly 75% of the time,

advocating his fellow Democrats to embrace a more conservative voting record [97]. The

second least polarized person is Jane Harman (with −0.5376). She was described as a

centrist, particularly on defense and intelligence issues [98]. She was also once called the

best Republican in the Democratic Party [99]. In general, we found that our polarization

measure captures the political views (centrists vs. extremists) of the congresspeople

based on their signed interactions.

Graph-level polarization

We also apply our graph-level polarization measure to characterize real-world signed

graphs. In addition to Congress, we consider five other networks, with their statistics

summarized in Table 3.3:

• WoW-EP8 [100]: Interaction network of editors in the eighth legislature of the Euro-

pean Parliament. Link signs indicate whether they collaborate or compete with each

other.

46

Polarized Embedding for Signed Networks Chapter 3

Congressperson State Party Score

Henry Cuellar Texas Democratic -0.6542
Jane Harman California Democratic -0.5376
Curt Weldon Pennsylvania Republican -0.4381

Dutch Ruppersberger Maryland Democratic -0.4318
Jim Moran Virginia Democratic -0.3832
Dave Obey Wisconsin Democratic -0.3588

Wayne Gilchrest Maryland Republican -0.3503
Duke Cunningham California Republican -0.3248

Al Edwards Texas Democratic -0.3063
Lincoln Davis Tennessee Democratic -0.2901

Joe Barton Texas Republican -0.1492
Charles Bass New Hampshire Republican -0.1381
Mary Bono California Republican -0.1381

Charlie Dent Pennsylvania Republican -0.1381
Nick Rahall West Virginia Democratic -0.1357
Bill Young Florida Republican -0.1250

Roger Wicker Mississippi Republican -0.1189
Charles Rangel New York Democratic -0.0926
Candice Miller Michigan Republican -0.0743

Jim Kolbe Arizona Republican -0.0716

Table 3.1: Top 20 least polarized members of the U.S. Congress in terms of our
random-walk based polarization measure.

47

Polarized Embedding for Signed Networks Chapter 3

Congressperson State Party Score

Steve Buyer Indiana Republican 0.9897
James T. Walsh New York Republican 0.9877

Charles H. Taylor North Carolina Republican 0.9851
Zach Wamp Tennessee Republican 0.9776
Tom Cole Oklahoma Republican 0.9747

Geoff Davis Kentucky Republican 0.9261
Steve Israel New York Democratic 0.9019

Marsha Blackburn Tennessee Republican 0.8875
Virginia Foxx North Carolina Republican 0.8814

Steve King Iowa Republican 0.8516
Joe Crowley New York Democratic 0.8444
Virgil Goode Virginia Republican 0.8175

Robert E. Cramer Alabama Democratic 0.8117
Rubén Hinojosa Texas Democratic 0.8030

Carolyn McCarthy New York Democratic 0.8030
David Dreier California Republican 0.7874

Christopher Cox California Republican 0.7868
Jo Ann Davis Virginia Republican 0.7867

John E. Peterson Pennsylvania Republican 0.7867
Ray LaHood Illinois Republican 0.7793

Table 3.2: Top 20 most polarized members of the U.S. Congress in terms of our
random-walk based polarization measure.

48

Polarized Embedding for Signed Networks Chapter 3

• Bitcoin-Alpha and Bitcoin-OTC [101]: Trust networks of Bitcoin traders on the

platforms Bitcoin Alpha and Bitcoin OTC. Link weights and signs are based on users’

rating of each other.

• Referendum [82]: Interaction network of Twitter users on the 2016 constitutional

referendum in Italy. Link signs are inferred from the stance of the users.

• Wiki-RfA [102]: Voting network of Wikipedia users on adminship. Link signs indicate

whether users vote for/against each other.

|V| |E| |E−|/|E|

Congress 219 523 20.46%
WoW-EP8 789 116,009 18.63%

Bitcoin-Alpha 3,772 14,077 9.31%
Bitcoin-OTC 5,872 21,431 14.71%
Referendum 10,864 251,396 5.09%
Wiki-RfA 11,275 169,925 22.04%

Table 3.3: An overview of the datasets.

As reference for graph-level polarization, we construct two synthetic graphs, one

polarized and the other unpolarized, with the same underlying topology but different link

signs, as shown in Figure 3.1. The topology is based on the LFR benchmark [86] with the

following parameters: two structural communities with 50 nodes, an average node degree

of 12, and an inter-community link ratio of 0.15. Then, for the polarized version (LFR-

polarized), we assign link signs fully based on the structural communities—negative

for inter-community links and positive for intra-community links. For the unpolarized

version (LFR-unpolarized), we first assign nodes to two random communities with

the same cut size as structural communities. We then assign link signs based on the

random communities following the same rule. In this way, both graphs have the same

proportion of negative links and the same social balance—proportion of closed triangles

49

Polarized Embedding for Signed Networks Chapter 3

in the graph that satisfy the social balance theory [103]—of 1.0.

The polarization and social balance for the real-world graphs along with the two

synthetic ones are shown in Figure 3.4, with the Markov time t selected based on signed

link prediction performance (details in Section 3.5.1). As we see, most real-world graphs

are at the same level of polarization as LFR-polarized. On the other hand, their

social balance is not directly related to polarization, contrary to as one might think [76].

The only dataset that falls behind in polarization is Wiki-RfA, which might be due

to the more collaborative nature of its inter-community interactions. As we will discuss

in the next section, effective link prediction for those polarized graphs requires a novel

embedding scheme that satisfies polarized similarity consistency.

0.75 0.80 0.85 0.90 0.95 1.00
Balance

0.85

0.90

0.95

1.00

Po
la
ri
za
ti
on

Wiki-RfA

Bitcoin-OTC

Bitcoin-Alpha

Congress

WoW-EP8

Referendum

LFR-polarized

LFR-unpolarized

Figure 3.4: Polarization and social balance of real-world graphs, with reference to
synthetic ones. Most real-world graphs are as polarized as the synthetic polarized
one—LFR-polarized.

50

Polarized Embedding for Signed Networks Chapter 3

3.4 Polarized Embedding for Networks

Now that we have shown that many real-world graphs are polarized, here, we propose

a novel embedding method for effectively predicting signed links in polarized graphs.

We first demonstrate that existing embedding methods are incapable of this task due to

their weak similarity consistency (see Section 3.2.3). We then introduce polarized em-

bedding based on autocovariance and matrix factorization that addresses the limitations

of existing approaches.

3.4.1 Limitation of Existing Methods

The objective of signed link prediction [104, 105] is to predict both the existence and

the signs of future links given the observed graph. Most of existing signed embedding

methods focus on the second half of the task, sign prediction, which is specific to signed

graphs. The first half, link prediction, is a common downstream task for unsigned em-

bedding methods. Combining them seems like a viable solution for the task. However,

this approach fails to predict negative links in polarized graphs because they are sparse

and mostly appear as inter-community connections. They are hard, if not impossible, to

be predicted by unsigned link prediction algorithms based on topology only. Without the

existence of links known a priori, sign prediction itself is incapable of predicting negative

links.

We identify the key weakness of existing embedding methods as that they only pre-

serve weak similarity consistency. In particular, signed embedding methods [29, 106, 92,

107, 105, 31] just ensure signed similarity consistency—positively related pairs are separa-

ble from negatively related pairs—for sign prediction. And similarly, unsigned embedding

methods [8, 9, 1] only guarantee the topological similarity consistency—topologically close

node pairs are separable from distant pairs—for link prediction. While positive links are

51

Polarized Embedding for Signed Networks Chapter 3

detectable as the intersection of positive and topologically close pairs, negative links in

polarized graphs would remain hidden with other topologically distant pairs. Figure 3.5

(a) and Figure 3.5 (b) illustrate this idea. They show the distributions of reconstructed

similarity of positively connected pairs, negatively connected pairs, and disconnected

pairs for LFR-polarized via dot products of unsigned (RWE [1]) and signed embed-

ding (ROSE [31]), respectively. While both embedding methods are able to capture their

respective similarity consistency, negative links are always inseparable from disconnected

pairs. This motivates us to design an embedding method with a stronger similarity con-

sistency that enables the separation of negative pairs from the others. We describe such

an embedding method next.

−1.0 −0.5 0.0 0.5 1.0
0

1

2

3

4

De
ns

ity

(a) Unsigned embedding (RWE)

−1.0 −0.5 0.0 0.5 1.0
0

1

2

3

(b) Signed embedding (ROSE)

Disconnected Negative Positive

−1.0 −0.5 0.0 0.5 1.0
0

1

2

3

4

(c) Polarized embedding (POLE)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized reconstructed similarity

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.5: Distributions of the reconstructed similarity for different types of node
pairs in LFR-polarized. Polarized embedding (c) enables separation of negatively
connected pairs from the others while both (a) unsigned embedding and (b) signed
embedding fail to do so.

3.4.2 The Solution: Polarized Embedding

Our solution to the separability of negative pairs is polarized embedding, a novel

embedding scheme that captures polarized similarity consistency, the strongest consis-

tency among the three. This consistency guarantees that negatively related pairs are

more dissimilar than unrelated topologically distant pairs (thus “polarized”), which are

52

Polarized Embedding for Signed Networks Chapter 3

more dissimilar than positively related pairs. In this way, the negatively related pairs

stand out at the other end of the similarity spectrum, easily separable from others. In

the following subsections, we introduce our polarized embedding method, POLE, that

applies signed autocovariance similarity and matrix factorization.

Signed autocovariance similarity

POLE is based on the signed random-walk introduced in Section 3.2.2. As discussed in

Section 3.2.3, both the entries and the dot products of columns of the signed random-walk

transition matrix M(t) can be viewed as similarity metrics that satisfy polarized similarity

consistency. Therefore, one can directly use a low-rank representation of them—for

example, the matrix factorization of M(t) or M(t)>M(t)—as embeddings. However,

those embeddings may not be effective for link-level inference. Instead, we propose to take

advantage of the random-walk based similarity metrics that have been well understood

in unsigned embedding. In particular, it has been shown that autocovariance similarity

[28] enables state-of-the-art performance in unsigned link prediction by incorporating

node degree information [1]. This coincides with our goal of predicting signed links in

polarized graphs. Thus, we first extend autocovariance similarity to signed graphs.

The unsigned autocovariance similarity is built upon the co-visiting probability for

node pairs in a walk. However, as defined in our signed random-walk, M(t) is not a

stochastic matrix and does not encode probabilities. Instead, we resort to another in-

terpretation of autocovariance—a centered dynamic similarity metric [12]. The dynamic

similarity based on M(t) is

R(t) = M(t)>WM(t) (3.7)

where W ∈ Rn×n is a weight matrix. In the unsigned case, selecting W = Π − ππ>

makes R(t) equivalent to the autocovariance similarity, where π ∈ Rn is the stationary

53

Polarized Embedding for Signed Networks Chapter 3

distribution of the unsigned random-walk and Π = diag(π). For the signed case, M(t) is

singular if and only if the graph is perfectly balanced [108]. This means that there is no

“stationary distribution” for signed random-walks on most real-world graphs. However,

as [69] points out, the role of stationary distribution in the similarity formulation is to

provide a centrality measure—in the unsigned case, the degree centrality. Thus, we can

also use node degrees to construct the weight matrix:

W =
1

vol(G)
D − 1

vol(G)2
dd> (3.8)

where vol(G) =
∑

u du. And substituting this weight matrix into Equation 3.7 leads to

the signed autocovariance similarity matrix. To the best our knowledge, we are the first

to extend random-walk based similarity metrics to signed graphs in a principled manner.

Matrix factorization

We are now ready to introduce how to generate embedding based on signed autoco-

variance. Let uu ∈ Rk be the embedding of node u and U = (u1, . . . ,un)> ∈ Rn×k be

the embedding matrix. We use the dot product in the embedding space to preserve the

signed autocovariance similarity R:

U∗ = arg min
U

∑
u,v

(u>uuv −Ruv)
2

= arg min
U
‖UU> −R‖2F

(3.9)

This leads to a straightforward matrix factorization algorithm to find the optimal embed-

ding. Specifically, U∗ = Qk

√
Λk—where R = QΛQ> is the Singular Value Decomposition

(SVD) of R—is the optimal solution of U under the constraint rank(UU>) = k [41].

Figure 3.5 (c) shows distributions of reconstructed similarity of different types of node

54

Polarized Embedding for Signed Networks Chapter 3

pairs for polarized embedding. It is clear that negative pairs can be effectively separated

from unrelated and positive pairs. In addition, with negative pairs staying at the negative

end of the similarity spectrum, positive pairs are also more separable. This demonstrates

the strength of our polarized embedding that captures polarized similarity consistency.

3.5 Experiments

In this section, we demonstrate the effectiveness of POLE in signed link prediction

using the six datasets in Table 3.3. Our code is available at https://github.com/

zexihuang/POLE.

3.5.1 Experimental Settings

Baselines

We consider the following baselines:

• SiNE [29]: Combines an objective function based on social balance theory with a

learned pairwise similarity function.

• SIGNet [106]: Attempts to capture higher-order balance structure by computing em-

beddings for which dot product approximates the signed proximity for links in the

graph.

• SIDE [92]: Extends random-walk based embedding to signed graphs. Embeddings are

learned based on maximum likelihood using pairwise proximities that are sensitive to

link signs.

• BESIDE [107]: Applies balance and status theory to model signed triangles and

“bridge” links, which are not included in a triangle.

55

https://github.com/zexihuang/POLE
https://github.com/zexihuang/POLE

Polarized Embedding for Signed Networks Chapter 3

• SLF [105]: Decomposes node embeddings into two types of latent factors (positive

and negative). These factors, which are learned via coordinate descent, are applied to

generate four types of scores corresponding to positive, negative, neutral, and no link.

• ROSE [31]: Transforms the signed network into an unsigned bipartite one by repre-

senting each node multiple times. Embeddings for the unsigned network are generated

using a random-walk based approach and combined into signed embeddings.

Downstream task

We focus on signed link prediction, which consists of predicting of both link existence

and signs. We randomly remove 20% of links while ensuring that the residual graph is

connected and embed the residual graph. Then, for POLE, we rank all disconnected

node pairs based on reconstructed dot product similarity and predict the most simi-

lar/dissimilar pairs as positive/negative links. For baselines, we follow [105] and train

two logistic regression classifiers on concatenated node embeddings for positive/negative

pairs vs disconnected pairs, respectively. While ranking by classifier scores is adopted

by most baselines, we also conduct experiments with baselines using the same dot prod-

uct similarity ranking as for POLE. We report precision@k [54] for positive/negative

links respectively, where k is the number of top pairs in terms of the ratio of removed

positive/negative links, ranging from 10% to 100%.

Since the baselines are designed to only capture signed similarity consistency and thus

may perform poorly without link existence information, we also consider supplementing

them with an unsigned embedding method. This also allows us to analyze the inter-

action between unsigned similarity and the signed similarity captured by our polarized

embedding. Specifically, we apply RWE [1] with unsigned autocovariance and continu-

ous random-walk and compute the reconstructed similarity based on embeddings for the

56

Polarized Embedding for Signed Networks Chapter 3

unsigned residual graph. We then train logistic regression classifiers to combine the un-

signed similarity (encoding link existence information) and either reconstructed similarity

(for POLE) or classifier scores (for baselines) for final ranking and report precision@k

scores.

Parameters

We set the number of embedding dimensions k to 40 for all methods (except ROSE

which requires a multiple of 3, we set it to 42). The only other parameter in RWE

and POLE is the Markov time t, which is selected from {100.0, 100.1, . . . , 101.0} based on

signed/unsigned link prediction. Other parameters for baselines are set as recommended

in the original papers.

3.5.2 Results

Signed link prediction

Figure 3.6 shows the signed link prediction performance for different methods with-

out supplementing the unsigned link existence information. We first note that the pro-

posed method, POLE, outperforms all baselines in almost all datasets for both posi-

tive and negative links. The average gains in precision@k over the best baseline for

each dataset are 629.2%/58.8%/115.7%/108.3%/142.5%/468.8% on positive links and

220.0%/27.6%/261.8%/1539.4%/4.3%/-10.9% on negative links. This shows that POLE

enables state-of-the-art signed link prediction performance.

While the main motivation for POLE is predicting negative links, its superior perfor-

mance in positive link prediction is also consistent with our previous similarity analysis

(see Figure 3.5 (b) and Figure 3.5 (c)). The only scenario where POLE underperforms the

best baseline is the negative link prediction on Wiki-RfA. This is actually not surprising

57

Polarized Embedding for Signed Networks Chapter 3

0.0

0.1

0.2

0.3

0.4

Po
sit

iv
e

Pr
ec

isi
on

@
k

Congress

0.00

0.25

0.50

0.75

1.00
WoW-EP8

0.0

0.1

0.2

0.3
Bitcoin-Alpha

0.00

0.03

0.06

0.09

0.12

Bitcoin-OTC

0.0

0.1

0.2

0.3

Referendum

0.0

0.1

0.2

0.3

Wiki-RfA

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

Ne
ga

tiv
e

Pr
ec

isi
on

@
k

0 20 40 60 80 100
0.00

0.06

0.12

0.18

0.24

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0 20 40 60 80 100
0.0

0.2

0.4

0.6

SIGNet SiNE SIDE BESIDE SLF ROSE POLE

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6: Comparison of performance of signed link prediction between POLE and
baselines. POLE outperforms all baselines in all datasets on both positive and negative
link prediction, except for negative links in Wiki-RfA, the least polarized network.

as Wiki-RfA is the least polarized network among the six, as shown in Figure 3.4. When

the graph is less polarized (e.g., Figure 3.1 (b)), negative links are formed independently

from community structure, and therefore the polarized similarity consistency may not be

the best criterion to embed nodes.

We also conduct experiments with baselines using the same dot product similarity

ranking as for POLE and the results are similar to those discussed above as shown in

Figure 3.7.

Signed link prediction with link existence information

We now supplement each method with unsigned link existence information. Re-

sults are shown in Figure 3.8. Adding unsigned information narrows down the aver-

age performance gains of POLE over baselines on positive links to 18.0%/5.1%/4.4%/-

6.6%/11.2%/3.5%. But our method still exhibits significant gains on negative links,

outperforming the best baseline by 300.0%/93.9%/70.4%/243.8%/29.6%/79.7% for all

datasets including the least polarized Wiki-RfA. Even with unsigned link existence

information, our polarized embedding method has an edge over existing approaches, es-

58

Polarized Embedding for Signed Networks Chapter 3

0.0

0.1

0.2

0.3

0.4

Po
sit

iv
e

Pr
ec

isi
on

@
k

Congress

0.00

0.25

0.50

0.75

1.00
WoW-EP8

0.0

0.1

0.2

0.3
Bitcoin-Alpha

0.00

0.04

0.08

0.12

0.16
Bitcoin-OTC

0.0

0.1

0.2

0.3

Referendum

0.0

0.1

0.2

0.3

Wiki-RfA

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

Ne
ga

tiv
e

Pr
ec

isi
on

@
k

0 20 40 60 80 100
0.00

0.06

0.12

0.18

0.24

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0 20 40 60 80 100
0.0

0.2

0.4

0.6

SIGNet SiNE SIDE BESIDE SLF ROSE POLE

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.7: Comparison of performance of signed link prediction between POLE and
baselines with reconstructed similarity ranking. POLE outperforms all baselines in
almost all datasets on both positive and negative link prediction.

pecially for negative links.

0.0

0.1

0.2

0.3

Po
sit

iv
e

Pr
ec

isi
on

@
k

Congress

0.40

0.55

0.70

0.85

1.00
WoW-EP8

0.10

0.15

0.20

0.25

0.30
Bitcoin-Alpha

0.08

0.10

0.12

0.14

Bitcoin-OTC

0.20

0.25

0.30

0.35
Referendum

0.20

0.25

0.30

0.35
Wiki-RfA

0 20 40 60 80 100
0.0

0.1

0.2

0.3

Ne
ga

tiv
e

Pr
ec

isi
on

@
k

0 20 40 60 80 100
0.00

0.12

0.24

0.36

0.48

0 20 40 60 80 100
0.08

0.16

0.24

0.32

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

SIGNet SiNE SIDE BESIDE SLF ROSE POLE

0 20 40 60 80 100

0.05

0.10

0.15

0.20

0 20 40 60 80 100

0.04

0.06

0.08

0.10

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.8: Comparison of performance of signed link prediction with link existence
information between POLE and baselines. While adding unsigned similarity narrows
the performance gap between POLE and baselines on positive link prediction, it sig-
nificantly improves POLE on negative link prediction and keeps its edge.

The notable improvement of baselines after adding unsigned link existence informa-

tion is consistent with our expectation. For positive links, combining the signed/unsigned

embeddings enables the separation of positive pairs from negative/disconnected pairs, re-

spectively, as illustrated in Figure 3.5 (a) and Figure 3.5 (b). This boosts baselines to

a performance comparable with ours. For negative links, while all baselines still under-

59

Polarized Embedding for Signed Networks Chapter 3

perform POLE by a large margin, their predictions are improved significantly compared

to the scenario without link existence information. The most prominent improvement is

observed for Bitcoin-OTC, from negligible precision scores to notable ones of around

0.2 at k = 100%. This is reasonable since none of the networks are fully polarized,

and not all negative links in the networks are inter-community. Those that are intra-

community can be correctly predicted by unsigned similarity first and then correct signs

can be discovered using the baselines. The inter-community negative links, however, re-

main exclusively predictable via polarized similarity consistency, for which our polarized

embedding method is designed.

We also conduct experiments with baselines using the same dot product similarity

ranking as for POLE and supplemented with unsigned link existence information. The

results are similar to those discussed above as shown in Figure 3.9.

0.0

0.1

0.2

0.3

Po
sit

iv
e

Pr
ec

isi
on

@
k

Congress

0.40

0.55

0.70

0.85

1.00
WoW-EP8

0.10

0.15

0.20

0.25

0.30

Bitcoin-Alpha

0.06

0.09

0.12

0.15
Bitcoin-OTC

0.15

0.20

0.25

0.30

0.35
Referendum

0.15

0.20

0.25

0.30

0.35
Wiki-RfA

0 20 40 60 80 100
0.0

0.1

0.2

0.3

Ne
ga

tiv
e

Pr
ec

isi
on

@
k

0 20 40 60 80 100
0.00

0.12

0.24

0.36

0.48

0 20 40 60 80 100

0.08

0.16

0.24

0.32

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

SIGNet SiNE SIDE BESIDE SLF ROSE POLE

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100

0.02

0.04

0.06

0.08

0.10

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.9: Comparison of performance of signed link prediction with link existence in-
formation between POLE and baselines with reconstructed similarity ranking. While
adding unsigned similarity narrows the performance gap between POLE and baselines
on positive link prediction, it significantly improves POLE on negative link prediction
and keeps its edge.

At this point, it is important to analyze the interaction between unsigned similarity

and our polarized embedding. While the performance for negative links more than dou-

bles on average across the datasets, precision for positive links decreases by an average

60

Polarized Embedding for Signed Networks Chapter 3

of 2.9%. To understand this phenomenon, we draw scatter plots of the reconstructed

signed and unsigned similarity for different node pairs in signed link prediction, along

with the decision boundaries based on each similarity and a combination of both (via the

classifier). The results for Referendum and Wiki-RfA are shown in Figure 3.10, with

the rest in Figure 3.11. For positive pairs, signed and unsigned similarities are highly

correlated, and signed similarity alone is predictive enough. This is consistent with the

fact that regions above the signed and combined decision boundaries highly overlap. On

the other hand, prediction for negative links is clearly improved by combining signed

and unsigned similarities. The decision boundaries of the learned classifiers imply that

negative pairs should have smaller signed similarity than unsigned similarity. This rule is

especially useful as it filters out a large number of disconnected pairs with large negative

signed similarity but even larger negative unsigned similarity. Finally, this plot is another

illustration of how our method captures polarization. Referendum, the most polarized

graph (see Figure 3.4) of all, shows a clearer separation between positive and negative

pairs compared to Wiki-RfA, which is the least polarized.

Figure 3.10: Scatter plot of the reconstructed signed and unsigned similarity for dif-
ferent node pairs in signed link prediction, along with the decision boundaries based
on each similarity and a combination of both (via the classifier), for Referendum
and Wiki-RfA. Combining signed and unsigned similarity improves prediction for
negative links but has a negligible effect on predicting positive links.

61

Polarized Embedding for Signed Networks Chapter 3

Figure 3.11: Scatter plot of the reconstructed signed and unsigned similarity for dif-
ferent node pairs in signed link prediction, along with the decision boundaries based
on each similarity and a combination of both (via the classifier), for Congress,
WoW-EP8, Bitcoin-Alpha and Bitcoin-OTC. Combining signed and unsigned
similarity improves prediction for negative links but has a negligible effect on predict-
ing positive links.

3.6 Related Work

Measuring polarization. Social polarization has received great attention with the

increasing popularity in online social media [109]. In the context of networks/graphs,

polarization is often defined as the cohesiveness of communities. Several community

quality measures, such as conductance [110] and modularity [111], have been used for

analyzing polarization in the U.S. congress [112] and online social media platforms [84].

Later works consider other measures based on the community structure. For example,

[109] measures polarization based on the concentration of high-degree nodes in the com-

munity boundaries, and [113] extends it with betweenness and inter-community random-

walk transitions. Likewise, polarization in signed graphs is often related to the objective

62

Polarized Embedding for Signed Networks Chapter 3

function of signed community detection. In [85], the authors define polarization as the

size-normalized signed cut between two conflicting communities, which is later extended

to multiple communities in [87]. The main distinction of our polarization measure com-

pared with existing methods is that it leverages the signed random-walk to capture the

community structure at multiple scales and does not require specific community assign-

ments as input.

Signed link prediction. Link prediction is a common inference task for graphs [54, 114].

Link signs in signed graphs add another dimension to the problem, leading to the different

tasks of (1) link sign prediction [115, 116, 117], (2) link existence prediction [118, 31],

and (3) signed link prediction [89, 90, 91]. Signed link prediction is the most challenging

one among them, requiring both existence and signs of links to be inferred. Existing

signed link prediction methods are based on feature engineering [89], matrix factorization

[90, 119], and graph embedding [105]. Due to sparsity of links, several methods also

consider side information, including user-item ratings [104], user-user opinions [120, 104],

and user-review ratings [121]. Our work focuses on signed link prediction in polarized

graphs, which is an even harder problem as negative links mostly appear as sparse inter-

community connections. Yet by incorporating polarization in the embedding, our method

enables state-of-the-art signed link prediction without using additional information.

Signed graph embedding. Signed graph embedding enables the application of clas-

sical machine learning algorithms to graph-based downstream tasks, such as signed link

prediction [89, 90], node classification [106], and polarized community detection [85, 87].

Existing methods are often based on extending unsigned embedding methods (such as

those based on random-walks [8, 9]) and incorporating social theories (such as social bal-

ance theory [93] and social status theory [122]). Both SNE [123] and SIDE [92] extend

random-walk based objective functions to signed embedding. SiNE [29] incorporates

social balance theory and uses a learned pairwise similarity function modeled as a multi-

63

Polarized Embedding for Signed Networks Chapter 3

layer neural network. SIGNet [106] captures higher-order balance structure with efficient

sampling algorithms. BESIDE [107] combines social balance theory and social status

theory to model triangles and “bridge” links for embedding. SLF [105] models each node

with four signed latent factors in order to capture positive, negative, neutral, and the

absence of a relationship between them. ROSE [31] transforms the signed network into

a bipartite unsigned network and leverages an existing random-walk based method [9]

for embedding. While these methods capture the signed similarity consistency needed

for sign prediction (see Figure 3.5), they are unable to predict negative links in polarized

graphs even when combined with unsigned embedding [1]. By comparison, our polarized

embedding preserves polarized similarity consistency and can effectively predict both

positive and negative links in real-world signed graphs.

3.7 Conclusion

We have introduced several analytical tools for understanding and combating polar-

ization in signed graphs. They include a partition-agnostic polarization measure for both

nodes and graphs and an embedding algorithm that enables state-of-the-art signed link

prediction, especially for the hostile links in polarized graphs. We hope that our work

will be an important step towards making social media an environment for healthy and

constructive communication among individuals with diverse viewpoints.

64

Chapter 4

Link Prediction without Graph

Neural Networks

4.1 Introduction

Machine learning on graphs supports various structured-data applications including

social network analysis [124, 125, 126], recommender systems [127, 128, 129], natural

language processing [130, 131, 132], and physics modeling [133, 134, 135]. Among the

graph-related tasks, one could argue that link prediction [54, 114] is the most funda-

mental one. This is because link prediction not only has many concrete applications

[136, 137, 138] but can also be considered an (implicit or explicit) step of the graph-

based machine learning pipeline [139, 140, 141]—as the observed graph is usually noisy

and/or incomplete.

In recent years, Graph Neural Networks (GNNs) [142, 143, 144] have emerged as the

predominant paradigm for machine learning on graphs. Similar to their great success in

node classification [145, 146, 147] and graph classification [148, 149, 150], GNNs have been

shown to achieve state-of-the-art link prediction performance [151, 152, 153]. Compared

65

Link Prediction without Graph Neural Networks Chapter 4

to classical approaches that rely on expert-designed heuristics to extract topological in-

formation (e.g., Common Neighbors [154], Adamic-Adar [155], Preferential Attachment

[156]), GNNs have the potential to discover new heuristics via supervised learning and

the natural advantage of incorporating node attributes.

However, there is little understanding of what factors contribute to the success of

GNNs in link prediction, and whether simpler alternatives can achieve comparable per-

formance, as recently found for node classification [157]. GNN-based methods approach

link prediction as a binary classification problem. Yet different from other classification

problems, link prediction deals with extremely class-imbalanced data due to the spar-

sity of real-world graphs. We argue that class imbalance should be accounted for in

both training and evaluation of link prediction. In addition, GNNs combine topological

and attribute information by learning topology-smoothened attributes (embeddings) via

message-passing [158]. This attribute-centric mechanism has been proven effective for

tasks on the topology such as node classification [159], but link prediction is a task for

the topology, which naturally motivates topology-centric paradigms (see Figure 4.1).

The goal of this work is to address the key issues raised above. We first show that

the evaluation of GNN-based link prediction pictures an overly optimistic view of model

performance compared to the (more realistic) imbalanced setting. Class imbalance also

prevents the generalization of these models due to bias in their training. Instead, we

propose the use of the N-pair loss with an unbiased set of training edges to account for

class imbalance. Moreover, we present Gelato, a novel framework that combines topo-

logical and attribute information for link prediction. As a simpler alternative to GNNs,

our model applies topology-centric graph learning to incorporate node attributes directly

into the graph structure, which is given as input to a topological heuristic, Autocovari-

ance, for link prediction. Extensive experiments demonstrate that our model significantly

outperforms state-of-the-art GNN-based methods in both accuracy and scalability.

66

Link Prediction without Graph Neural Networks Chapter 4

������������		�
� �
�
�
�������������������

�������������� !�
��"�#�$�����%
#���&�'�(�)���*+��������
������,��
�
�
������������������� ���

(a) Link prediction for attributed graphs

�����������	
���
 ����������������������

����	����	������ !��"�#�$�����%!#���&�'�(�)�* +,��������!�� ���-����������������������� ���

(b) GNN: topology → attributes

�����������	
���
 ���������������������

����	����	������� ��!�"�#�����$ "���%�&�'�(�)�*+�������� ������,���������������������� ���

(c) Gelato: attributes → topology

Figure 4.1: GNN incorporates topology into attributes via message-passing, which
is effective for tasks on the topology. Link prediction, however, is a task for the
topology, which motivates the design of Gelato—a novel framework that leverages
graph learning to incorporate attributes into topology.

To summarize, our contributions are:

• We scrutinize the training and evaluation of supervised link prediction methods

and identify their limitations in handling class imbalance.

• We propose a simple, effective, and efficient framework to combine topological and

attribute information for link prediction without using GNNs.

• We introduce an N-pair link prediction loss combined with an unbiased set of

training edges that we show to be more effective at addressing class imbalance.

4.2 Limitations in Supervised Link Prediction Eval-

uation and Training

Supervised link prediction is often formulated as a binary classification problem,

where the positive (or negative) class includes node pairs connected (or not connected)

67

Link Prediction without Graph Neural Networks Chapter 4

by a link. A key difference between link prediction and typical classification problems

(e.g., node classification) is that the two classes in link prediction are extremely imbal-

anced, since most real-world graphs of interest are sparse (see Table 4.1). However, we

find that class imbalance is not properly addressed in both evaluation and training of

existing supervised link prediction approaches, as discussed below.

Link prediction evaluation. Area Under the Receiver Operating Characteristic Curve

(AUC) and Average Precision (AP) are the two most popular evaluation metrics for

supervised link prediction [160, 151, 161, 162, 163, 164, 165, 166, 153]. We first argue

that, as in other imbalanced classification problems [167, 168], AUC is not an effective

evaluation metric for link prediction as it is biased towards the majority class (non-

edges). On the other hand, AP and other rank-based metrics such as Hits@k—used

in Open Graph Benchmark (OGB) [169]—are effective for imbalanced classification if

evaluated on a test set that follows the original class distribution. Yet, existing link

prediction methods [160, 151, 163, 165, 153] compute AP on a test set that contains all

positive test pairs and only an equal number of random negative pairs. Similarly, OGB

computes Hits@k against a very small subset of random negative pairs. We term these

approaches biased testing as they highly overestimate the ratio of positive pairs in the

graph. Evaluation metrics based on these biased test sets provide an overly optimistic

measurement of the actual performance in unbiased testing, where every negative pair is

included in the test set. In fact, in real applications where test positive edges are not

known a priori, it is impossible to construct those biased test sets to begin with. Below,

we also present an illustrative example of the misleading performance evaluation based

on biased testing.

Example: Consider a graph with 10k nodes, 100k edges, and 99.9M disconnected

(or negative) pairs. A (bad) model that ranks 1M false positives higher than the true

edges achieves 0.99 AUC and 0.95 in AP under biased testing with equal negative samples.

68

Link Prediction without Graph Neural Networks Chapter 4

Specifically, Figure 4.2a and Figure 4.2b show the receiver operating characteristic (ROC)

and precision-recall (PR) curves for the model under biased testing with equal negative

samples. Due to the downsampling, only 100k (out of 99.9M) negative pairs are included

in the test set, among which only 100k/99.9M × 1M ≈ 1k pairs are ranked higher than

the positive edges. In the ROC curve, this means that once the false positive rate

reaches 1k/100k = 0.01, the true positive rate would reach 1.0, leading to an AUC

score of 0.99. Similarly, in the PR curve, when the recall reaches 1.0, the precision is

100k/(1k + 100k) ≈ 0.99, leading to an overall AP score of ∼0.95.

0 0.2 0.4 0.6 0.8 1.0
False positive rate

0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

0.01

AUC = 0.99

(a) ROC

0 0.2 0.4 0.6 0.8 1.0
Recall

0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.99

AP = 0.95

(b) PR under biased testing

0 0.2 0.4 0.6 0.8 1.0
Recall

0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.09

AP = 0.05

(c) PR under unbiased testing

Figure 4.2: Receiver operating characteristic and precision-recall curves for the bad
link prediction model that ranks 1M false positives higher than the 100k true edges.
The model achieves 0.99 in AUC and 0.95 AP under biased testing, while the more
informative performance evaluation metric, Average Precision (AP) under unbiased
testing, is only 0.05.

The above discussion motivates a more representative evaluation setting for super-

vised link prediction. Specifically, we argue for the use of rank-based evaluation metrics—

AP, Precision@k [54], and Hits@k [170]—with unbiased testing, where positive edges are

ranked against all negative pairs. These metrics have been widely applied in related prob-

lems, such as unsupervised link prediction [54, 10, 33, 1], knowledge graph completion

[170, 171, 172], and information retrieval [173], where class imbalance is also significant.

For the same example link prediction model mentioned above, with unbiased testing,

69

Link Prediction without Graph Neural Networks Chapter 4

when the recall reaches 1.0, the precision under is only 100k/(1M + 100k) ≈ 0.09, as

shown in Figure 4.2c, leading to an AP score of ∼0.05, a more realistic evaluation of the

model performance. Further, in our experiments, we will illustrate how these evaluation

metrics combined with unbiased testing provide a drastically different and more informa-

tive performance evaluation in real-world datasets compared to existing approaches.

Link prediction training. Following the formulation of supervised link prediction as

binary classification, most existing models adopt the binary cross entropy loss to optimize

their parameters [160, 151, 161, 162, 164, 152, 165, 166]. To deal with class imbalance,

these approaches downsample the negative pairs to match the number of positive pairs

in the training set (biased training). We highlight two drawbacks of biased training : (1)

it induces the model to overestimate the probability of positive pairs, and (2) it discards

potentially useful evidence from most negative pairs. Notice that the first drawback is

often hidden by biased testing. Instead, this work proposes the use of unbiased training,

where the ratio of negative pairs in the training set is the same as in the input graph.

To train our model in this highly imbalanced setting, we apply the N-pair loss for link

prediction instead of the cross entropy loss (Section 4.3.3).

4.3 Method

Notation and problem. Consider an attributed graph G = (V,E,X), where V is

the set of n nodes, E is the set of m edges (links), and X = (x1, ..., xn)> ∈ Rn×r collects

r-dimensional node attributes. The topological (structural) information of the graph is

represented by its adjacency matrix A ∈ Rn×n, with Auv > 0 if an edge of weight Auv

connects nodes u and v and Auv = 0, otherwise. The (weighted) degree of node u is

given as du =
∑

v Auv and the corresponding degree vector (matrix) is denoted as d ∈ Rn

(D ∈ Rn×n). The volume of the graph is vol(G) =
∑

u du. Our goal is to infer missing

70

Link Prediction without Graph Neural Networks Chapter 4

links in G based on its topological and attribute information, A and X.

Model overview. Figure 4.3 provides an overview of our link prediction model. It

starts with a topology-centric graph learning phase that incorporates node attribute

information directly into the graph structure via a Multi-layer Perceptron (MLP). We

then apply a topological heuristic, Autocovariance (AC), to the attribute-enhanced graph

to obtain a pairwise score matrix. Node pairs with the highest scores are predicted as

(positive) links. The scores for training pairs are collected to compute an N-pair loss.

Finally, the loss is used to train the MLP parameters in an end-to-end manner. We

named our model Gelato (Graph enhancement for link prediction with autocovariance).

Gelato represents a paradigm shift in supervised link prediction by combining a graph

encoding of attributes with a topological heuristic instead of relying on increasingly

popular GNN-based embeddings.

�����������	
����
����������������

����	����	�������
���� �!�����"
 ���#$%�&�'�(�)*��������
��������
���������������� ���

Figure 4.3: Gelato applies graph learning to incorporate attribute information into
the topology via an MLP. The learned graph is given to a topological heuristic that
predicts edges between node pairs with high Autocovariance similarity. The param-
eters of the MLP are optimized end-to-end using the N-pair loss. Experiments show
that Gelato outperforms state-of-the-art GNN-based link prediction methods.

4.3.1 Graph Learning

The goal of graph learning is to generate an enhanced graph that incorporates node

attribute information into the topology. This can be considered as the “dual” operation

71

Link Prediction without Graph Neural Networks Chapter 4

of message-passing in GNNs, which incorporates topological information into attributes

(embeddings). We argue that graph learning is the more suitable scheme to combine

attributes and topology for link prediction, since link prediction is a task for the topology

itself (as opposed to other applications such as node classification).

Specifically, our first step of graph learning is to augment the original edges with

a set of node pairs based on their (untrained) attribute similarity (i.e., adding an ε-

neighborhood graph):

Ẽ = E + {(u, v) | s(xu, xv) > εη} (4.1)

where s(·) can be any similarity function (we use cosine in our experiments) and εη is a

threshold that determines the number of added pairs as a ratio η of the original number

of edges m.

A simple MLP then maps the pairwise node attributes into a trained edge weight for

every edge in Ẽ:

wuv = MLP([xu;xv]; θ) (4.2)

where [xu;xv] denotes the concatenation of xu and xv and θ contains the trainable pa-

rameters. For undirected graphs, we instead use the following permutation invariant

operator [174]:

wuv = MLP([xu + xv; |xu − xv|]; θ) (4.3)

The final edge weights of the enhanced graph are a weighted combination of the

topological weights, the untrained weights, and the trained weights:

Ãuv = αAuv + (1− α)(βwuv + (1− β)s(xu, xv)) (4.4)

where α and β are hyperparameters. The enhanced adjacency matrix Ã is then fed

into a topological heuristic for link prediction introduced in the next section. Note that

72

Link Prediction without Graph Neural Networks Chapter 4

the MLP is not trained directly to predict the links, but instead trained end-to-end to

enhance the input graph given to the topological heuristic. Also note that the MLP can

be easily replaced by a more powerful model such as a GNN, but the goal of this work is

to demonstrate the general effectiveness of our framework and we will show that even a

simple MLP leads to significant improvement over the base heuristic.

4.3.2 Topological Heuristic

Assuming that the learned adjacency matrix Ã incorporates structural and attribute

information, Gelato applies a topological heuristic to Ã. Specifically, we adopt Auto-

covariance, which has been shown to achieve state-of-the-art link prediction results for

non-attributed graphs [1].

Autocovariance is a random-walk based similarity metric. Intuitively, it measures the

difference between the co-visiting probabilities for a pair of nodes in a truncated walk and

in an infinitely long walk. Given the enhanced graph G̃, the Autocovariance similarity

matrix R ∈ Rn×n is given as

R =
D̃

vol(G̃)
(D̃−1Ã)t − d̃d̃>

vol2(G̃)
(4.5)

where t ∈ N0 is the scaling parameter of the truncated walk. Each entry Ruv represents

a similarity score for node pair (u, v) and top similarity pairs are predicted as links.

Note that Ruv only depends on the t-hop enclosing subgraph of (u, v) and can be easily

differentiated with respect to the edge weights in the subgraph. In fact, Gelato could be

applied with any differentiable topological heuristic or even a combination of them. In

our experiments (Section 4.4.2), we will show that Autocovariance alone enables state-

of-the-art link prediction performance.

Next, we introduce how to train our model parameters with supervised information.

73

Link Prediction without Graph Neural Networks Chapter 4

4.3.3 N-pair Loss and Unbiased Training

As we have mentioned in Section 4.2, current supervised link prediction methods rely

on biased training and the cross entropy loss (CE) to optimize model parameters. Instead,

Gelato applies the N-pair loss [175] that is inspired by the metric learning and learning-

to-rank literature [176, 177, 178, 179] to train the parameters of our graph learning model

(see Section 4.3.1) from highly imbalanced unbiased training data.

The N-pair loss (NP) contrasts each positive training edge (u, v) against a set of

negative pairs N(u, v). It is computed as follows:

L(θ) = −
∑

(u,v)∈E

log
exp(Ruv)

exp(Ruv) +
∑

(p,q)∈N(u,v) exp(Rpq)
(4.6)

Intuitively, L(θ) is minimized when each positive edge (u, v) has a much higher sim-

ilarity than its contrasted negative pairs: Ruv � Rpq,∀(p, q) ∈ N(u, v). Compared to

CE, NP is more sensitive to negative pairs that have comparable similarities to those

of positive pairs—they are more likely to be false positives. While NP achieves good

performance in our experiments, alternative losses from the learning-to-rank literature

[180, 181, 182] could also be applied.

Gelato generates negative samples N(u, v) using unbiased training. This means that

N(u, v) is a random subset of all disconnected pairs in the training graph, and |N(u, v)|

is proportional to the ratio of negative pairs over positive ones. In this way, we leverage

more information contained in negative pairs compared to biased training. Note that,

similar to unbiased training, (unsupervised) topological heuristics implicitly use infor-

mation from all edges and non-edges. Also, unbiased training can be combined with

adversarial negative sampling methods [183, 184] from the knowledge graph embedding

literature to increase the quality of contrasted negative pairs.

74

Link Prediction without Graph Neural Networks Chapter 4

Complexity analysis. The only trainable component in our model is the graph learning

MLP with O(rh+ lh2) parameters—where r is the number of node features, l is the num-

ber of hidden layers, and h is the number of neurons per layer. Notice that the number

of parameters is independent of the graph size. Constructing the ε-neighborhood graph

based on cosine similarity can be done efficiently using hashing and pruning [185, 186].

Computing the enhanced adjacency matrix with the MLP takes O((1 + η)mr) time per

epoch—where m = |E| and η is the ratio of edges added to E from the ε-neighborhood

graph. We apply sparse matrix multiplication to compute entries of the t-step AC in

O((1 + η)mt) time. Note that unlike recent GNN-based approaches [151, 187, 153] that

generate distinctive subgraphs for each link (e.g., via the labeling trick), enclosing sub-

graphs for links in Gelato share the same information (i.e., learned edge weights), which

significantly reduces the computational cost. Our experiments will demonstrate Gelato’s

efficiency in training and inference.

4.4 Experiments

We provide empirical evidence for our claims regarding supervised link prediction and

demonstrate the accuracy and efficiency of Gelato. Our implementation is available at

https://anonymous.4open.science/r/Gelato/.

4.4.1 Experiment Settings

Datasets. Our method is evaluated on five attributed graphs commonly used as link

prediction benchmark [161, 162, 164, 165, 166, 153], with statistics summarized in Ta-

ble 4.1:

• Cora [188] and CiteSeer [189] are citation networks where nodes represent sci-

75

https://anonymous.4open.science/r/Gelato/

Link Prediction without Graph Neural Networks Chapter 4

entific publications (classified into seven and six classes, respectively) and edges

represent the citations between them. Attributes of each node is a binary word

vector indicating the absence/presence of the corresponding word from a dictio-

nary.

• PubMed [190] is a citation network where nodes represent scientific publications

(classified into three classes) and edges represent the citations between them. At-

tributes of each node is a TF/IDF weighted word vector.

• Photo and Computers are subgraphs of the Amazon co-purchase graph [191]

where nodes represent products (classified into eight and ten classes, respectively)

and edges imply that two products are frequently bought together. Attributes of

each node is a bag-of-word vector encoding the product review.

#Nodes #Edges #Attrs Avg. degree Density

Cora 2,708 5,278 1,433 3.90 0.14%
CiteSeer 3,327 4,552 3,703 2.74 0.08%
PubMed 19,717 44,324 500 4.50 0.02%
Photo 7,650 119,081 745 31.13 0.41%

Computers 13,752 245,861 767 35.76 0.26%

Table 4.1: A summary of dataset statistics.

We use the publicly available version of the datasets from the pytorch-geometric

library [192] (under the MIT licence) curated by [193] and [194].

Baselines. For GNN-based link prediction, we include six state-of-the-art methods

published in the past two years: LGCN [162], TLC-GNN [164], Neo-GNN [152], NBFNet

[165], BScNets [166], and WalkPool [153], as well as three pioneering works—GAE [160],

SEAL [151], and HGCN [161]. For topological link prediction heuristics, we consider

Common Neighbors (CN) [154], Adamic Adar (AA) [155], Resource Allocation (RA)

[195], and Autocovariance (AC) [1]—the base heuristic in our model. To demonstrate

76

https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE

Link Prediction without Graph Neural Networks Chapter 4

the superiority of the proposed end-to-end model, we also include an MLP trained directly

for link prediction, the cosine similarity (Cos) between node attributes, and AC on top

of the respective weighted/augmented graphs (i.e., two-stage approaches where the MLP

is trained separately for link prediction rather than trained end-to-end) as baselines.

Hyperparameters. For Gelato, we tune the proportion of added edges η from {0.0,

0.25, 0.5, 0.75, 1.0}, the topological weight α from {0.0, 0.25, 0.5, 0.75}, and the trained

weight β from {0.25, 0.5, 0.75, 1.0}, with a sensitivity analysis included in Section 4.4.6.

All other settings are fixed across datasets: MLP with one hidden layer of 128 neurons,

AC scaling parameter t = 3, Adam optimizer [57] with a learning rate of 0.001, a dropout

rate of 0.5, and unbiased training without downsampling. For baselines, we use the same

hyperparameters as in their papers.

Data splits for unbiased training and unbiased testing. Following [160, 151,

161, 162, 166, 153], we adopt 85%/5%/10% ratios for training, validation, and testing.

Specifically, for unbiased training and testing, we first randomly (with seed 0) divide

the (positive) edges E of the original graph into E+
train, E+

valid, and E+
test for training,

validation, and testing based on the selected ratios. Then, we set the negative pairs

in these three sets as (1) E−train = E− + E+
valid + E+

test, (2) E−valid = E− + E+
test, and

(3) E−test = E−, where E− is the set of all negative pairs (excluding self-loops) in the

original graph. Notice that the validation and testing positive edges are included in the

negative training set, and the testing positive edges are included in the negative validation

set. These inclusions simulate the real-world scenario where the testing edges (and the

validation edges) are unobserved during validation (training).

Evaluation metrics. We adopt Precision@k (prec@k)—proportion of positive edges

among the top k of all testing pairs, Hits@k (hits@k)—ratio of positive edges individually

ranked above kth place against all negative pairs, and Average Precision (AP)—area

under the precision-recall curve, as evaluation metrics. We report results from 10 runs

77

Link Prediction without Graph Neural Networks Chapter 4

with random seeds ranging from 1 to 10.

Following are the more detailed experiment settings:

Positive masking. For unbiased training, a trick similar to negative injection [151] in

biased training is needed to guarantee model generalizability. Specifically, we divide the

training positive edges into batches and during the training with each batch Eb, we feed

in only the residual edges E−Eb as the structural information to the model. This setting

simulates the testing phase, where the model is expected to predict edges without using

their own connectivity information. We term this trick positive masking.

Other implementation details. We add self-loops to the enhanced adjacency matrix

to ensure that each node has a valid transition probability distribution that is used in

computing Autocovariance. The self-loops are added to all isolated nodes in the train-

ing graph for PubMed, Photo, and Computers, and to all nodes for Cora and

CiteSeer. Following the postprocessing of the Autocovariance matrix for embedding

in [1], we standardize Gelato similarity scores before computing the loss. For training

with the cross entropy loss, we further add a linear layer with the sigmoid activation

function to map our prediction score to a probability. We optimize our model with

gradient descent via autograd in pytorch [196]. We find that the gradients are some-

times invalid when training our model (especially with the cross entropy loss), and we

address this by skipping the parameter updates for batches leading to invalid gradi-

ents. Finally, we use prec@100% on the (unbiased) validation set as the criteria for

selecting the best model from all training epochs. The maximum number of epochs

for Cora/CiteSeer/PubMed and Photo/Computers are set to be 100 and 250,

respectively.

Experiment environment. We run our experiments in an a2-highgpu-1g node of the

Google Cloud Compute Engine. It has one NVIDIA A100 GPU with 40GB HBM2 GPU

memory and 12 Intel Xeon Scalable Processor (Cascade Lake) 2nd Generation vCPUs

78

Link Prediction without Graph Neural Networks Chapter 4

with 85GB memory.

Reference of baselines. We list link prediction baselines and their reference repositories

we use in our experiments in Table 4.2. Note that we had to implement the batched

training and testing for several baselines as their original implementations do not scale

to unbiased training and unbiased testing without downsampling.

Baseline Repository

GAE [142] https://github.com/zfjsail/gae-pytorch

SEAL [151] https://github.com/facebookresearch/SEAL_OGB

HGCN [161] https://github.com/HazyResearch/hgcn

LGCN [162] https://github.com/ydzhang-stormstout/LGCN/

TLC-GNN [164] https://github.com/pkuyzy/TLC-GNN/

Neo-GNN [152] https://github.com/seongjunyun/Neo-GNNs

NBFNet [165] https://github.com/DeepGraphLearning/NBFNet

BScNets [166] https://github.com/BScNets/BScNets

WalkPool [153] https://github.com/DaDaCheng/WalkPooling

AC [1] https://github.com/zexihuang/random-walk-embedding

Table 4.2: Reference of baseline code repositories.

Number of trainable parameters. The only trainable component in Gelato is the

graph learning MLP, which for Photo has 208,130 parameters. By comparison, the

best performing GNN-based method, Neo-GNN, has more than twice the number of

parameters (455,200).

4.4.2 Link Prediction Performance

Table 4.3 summarizes the link prediction performance in terms of the mean and

standard deviation of Average Precision (AP) for all methods. Figure 4.4 and Figure 4.5

show results based on prec@k (k as a ratio of test edges) and hits@k (k as the rank) for

varying k.

First, we want to highlight the drastically different performance of GNN-based meth-

79

https://github.com/zfjsail/gae-pytorch
https://github.com/facebookresearch/SEAL_OGB
https://github.com/HazyResearch/hgcn
https://github.com/ydzhang-stormstout/LGCN/
https://github.com/pkuyzy/TLC-GNN/
https://github.com/seongjunyun/Neo-GNNs
https://github.com/DeepGraphLearning/NBFNet
https://github.com/BScNets/BScNets
https://github.com/DaDaCheng/WalkPooling
https://github.com/zexihuang/random-walk-embedding

Link Prediction without Graph Neural Networks Chapter 4

Cora CiteSeer PubMed Photo Computers

GNN

GAE 0.27 ± 0.02 0.66 ± 0.11 0.26 ± 0.03 0.28 ± 0.02 0.30 ± 0.02
SEAL 1.89 ± 0.74 0.91 ± 0.66 *** 10.49 ± 0.86 6.84∗

HGCN 0.82 ± 0.03 0.74 ± 0.10 0.35 ± 0.01 2.11 ± 0.10 2.30 ± 0.14
LGCN 1.14 ± 0.04 0.86 ± 0.09 0.44 ± 0.01 3.53 ± 0.05 1.96 ± 0.03

TLC-GNN 0.29 ± 0.09 0.35 ± 0.18 OOM 1.77 ± 0.11 OOM
Neo-GNN 2.05 ± 0.61 1.61 ± 0.36 1.21 ± 0.14 10.83 ± 1.53 6.75∗

NBFNet 1.36 ± 0.17 0.77 ± 0.22 *** 11.99 ± 1.60 ***
BScNets 0.32 ± 0.08 0.20 ± 0.06 0.22 ± 0.08 2.47 ± 0.18 1.45 ± 0.10
WalkPool 2.04 ± 0.07 1.39 ± 0.11 1.31∗ OOM OOM

Topological
Heuristics

CN 1.10 ± 0.00 0.74 ± 0.00 0.36 ± 0.00 7.73 ± 0.00 5.09 ± 0.00
AA 2.07 ± 0.00 1.24 ± 0.00 0.45 ± 0.00 9.67 ± 0.00 6.52 ± 0.00
RA 2.02 ± 0.00 1.19 ± 0.00 0.33 ± 0.00 10.77 ± 0.00 7.71 ± 0.00
AC 2.43 ± 0.00 2.65 ± 0.00 2.50 ± 0.00 16.63 ± 0.00 11.64 ± 0.00

Attributes +
Topology

MLP 0.30 ± 0.05 0.44 ± 0.09 0.14 ± 0.06 1.01 ± 0.26 0.41 ± 0.23
Cos 0.42 ± 0.00 1.89 ± 0.00 0.07 ± 0.00 0.11 ± 0.00 0.07 ± 0.00

MLP+AC 3.24 ± 0.03 1.95 ± 0.05 2.61 ± 0.06 15.99 ± 0.21 11.25 ± 0.13
Cos+AC 3.60 ± 0.00 4.46 ± 0.00 0.51 ± 0.00 10.01 ± 0.00 5.20 ± 0.00

MLP+Cos+AC 3.39 ± 0.06 4.15 ± 0.14 0.55 ± 0.03 10.88 ± 0.09 5.75 ± 0.11

Gelato 3.90 ± 0.03 4.55 ± 0.02 2.88 ± 0.09 25.68 ± 0.53 18.77 ± 0.19

Table 4.3: Link prediction performance comparison (mean ± std AP). Gelato con-
sistently outperforms GNN-based methods, topological heuristics, and two-stage ap-
proaches combining attributes and topology. (∗ Run only once as each run takes ∼100
hrs; *** Each run takes >1000 hrs; OOM: Out Of Memory.)

ods compared to those found in the original papers [162, 164, 152, 165, 166, 153] with

AUC performance reproduced in Table 4.4. While they achieve AUC/AP scores of often

higher than 90% under biased testing, here we see most of them underperform even the

simplest topological heuristics such as Common Neighbors under unbiased testing. These

results support our arguments from Section 4.2 that evaluation metrics based on biased

testing can produce misleading results compared to unbiased testing. The overall best

0 20 40 60 80 100
0

5

10

15

20

Pr
ec

@
k

(%
)

Cora

0 20 40 60 80 100
0

5

10

15

20 CiteSeer

0 20 40 60 80 100
0

6

12

18

24 PubMed

0 20 40 60 80 100
0

20

40

60

80 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

0 20 40 60 80 100
0

16

32

48

64 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Link prediction performance in terms of prec@k for varying values of k
(as percentages of test edges). With few exceptions, Gelato outperforms the baselines
across different values of k.

80

Link Prediction without Graph Neural Networks Chapter 4

2−2 20 22 24 260

10

20

30

40

Hi
ts

@
k

(%
)

Cora

2−2 20 22 24 260

14

28

42

56 CiteSeer

2−2 20 22 24 260

3

6

9

12 PubMed

2−2 20 22 24 260

8

16

24

32 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

2−2 20 22 24 260

6

12

18 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.5: Link prediction performance in terms of hits@k for varying values of k.
With few exceptions, Gelato outperforms the baselines across different values of k.

performing GNN model is Neo-GNN, which directly generalizes the pairwise topological

heuristics. Yet still, it consistently underperforms AC, a random-walk based heuristic

that needs neither node attributes nor supervision/training.

Cora CiteSeer PubMed Photo Computers

GNN

GAE 87.30 ± 0.22 87.48 ± 0.39 94.10 ± 0.22 77.59 ± 0.73 79.36 ± 0.37
SEAL 91.82 ± 1.08 90.37 ± 0.91 *** 98.85 ± 0.04 98.7∗

HGCN 92.60 ± 0.29 92.39 ± 0.61 94.40 ± 0.14 96.08 ± 0.08 97.86 ± 0.10
LGCN 91.60 ± 0.23 93.07 ± 0.77 95.80 ± 0.03 98.36 ± 0.01 97.81 ± 0.01

TLC-GNN 91.57 ± 0.95 91.18 ± 0.78 OOM 98.20 ± 0.08 OOM
Neo-GNN 91.77 ± 0.84 90.25 ± 0.80 90.43 ± 1.37 98.74 ± 0.55 98.34∗

NBFNet 86.06 ± 0.59 85.10 ± 0.32 *** 98.29 ± 0.35 ***
BScNets 91.59 ± 0.47 89.62 ± 1.05 97.48 ± 0.07 98.68 ± 0.06 98.41 ± 0.05
WalkPool 92.33 ± 0.30 90.73 ± 0.42 98.66∗ OOM OOM

Topological
Heuristics

CN 71.15 ± 0.00 66.91 ± 0.00 64.09 ± 0.00 96.73 ± 0.00 96.15 ± 0.00
AA 71.22 ± 0.00 66.92 ± 0.00 64.09 ± 0.00 97.02 ± 0.00 96.58 ± 0.00
RA 71.22 ± 0.00 66.93 ± 0.00 64.09 ± 0.00 97.20 ± 0.00 96.82 ± 0.00
AC 75.41 ± 0.00 72.41 ± 0.00 67.46 ± 0.00 98.24 ± 0.00 96.86 ± 0.00

Attributes +
Topology

MLP 85.43 ± 0.36 87.89 ± 2.05 87.89 ± 2.05 91.24 ± 1.61 88.84 ± 2.58
Cos 79.06 ± 0.00 89.86 ± 0.00 89.14 ± 0.00 71.46 ± 0.00 71.68 ± 0.00

MLP+AC 79.77 ± 0.03 82.26 ± 0.29 66.31 ± 0.74 98.02 ± 0.05 96.69 ± 0.05
Cos+AC 86.34 ± 0.00 89.29 ± 0.00 75.56 ± 0.00 97.28 ± 0.00 96.26 ± 0.00

MLP+Cos+AC 86.90 ± 0.14 89.42 ± 0.09 75.78 ± 0.27 97.27 ± 0.01 96.24 ± 0.01

Gelato 83.12 ± 0.06 88.38 ± 0.02 64.93 ± 0.06 98.01 ± 0.03 96.72 ± 0.04

Table 4.4: Link prediction performance comparison (mean ± std AUC). AUC results
conflict with other evaluation metrics, presenting a misleading view of the model
performance for link prediction. (∗ Run only once as each run takes ∼100 hrs; ***
Each run takes >1000 hrs; OOM: Out Of Memory.)

We then look at two-stage combinations of AC and models for attribute information.

We observe noticeable performance gains from combining attribute cosine similarity and

AC in Cora and CiteSeer but not for other datasets. Other two-stage approaches

81

Link Prediction without Graph Neural Networks Chapter 4

achieve similar or worse performance.

Finally, Gelato significantly outperforms the best GNN-based model with an average

relative gain of 145.2% and AC with a gain of 52.6% in terms of AP—similar results

were obtained for prec@k and hits@k. This validates our hypothesis that a simple MLP

can effectively incorporate node attribute information into the topology when our model

is trained end-to-end. Next, we will provide insights behind these improvements and

demonstrate the efficiency of Gelato on training and inference.

4.4.3 Visualizing Gelato Predictions

To better understand the performance of Gelato, we visualize its learned graph, pre-

diction scores, and predicted edges in comparison with AC and the best GNN-based

baseline (Neo-GNN) in Figure 4.6.

Figure 4.6a shows the input adjacency matrix for the subgraph of Photo containing

the top 160 nodes belonging to the first class sorted in decreasing order of their (within-

class) degree. Figure 4.6b illustrates the enhanced adjacency matrix learned by Gelato’s

MLP. Comparing it with the Euclidean distance between node attributes in Figure 4.6c,

we see that our enhanced adjacency matrix effectively incorporates attribute information.

More specifically, we notice the down-weighting of the edges connecting the high-degree

nodes with larger attribute distances (matrix entries 0-40 and especially 0-10) and the

up-weighting of those connecting medium-degree nodes with smaller attribute distances

(40-80). In Figure 4.6d and Figure 4.6e, we see the corresponding AC scores based on

the input and the enhanced adjacency matrix (Gelato). Since AC captures the degree

distribution of nodes [1], the vanilla AC scores greatly favor high-degree nodes (0-40).

By comparison, thanks to the down-weighting, Gelato assigns relatively lower scores

to edges connecting them to low-degree nodes (60-160), while still capturing the edge

82

Link Prediction without Graph Neural Networks Chapter 4

0 40 80 120 160
0

40

80

120

160

Edge Nonedge

(a) Input adjacency matrix

0 40 80 120 160
0

40

80

120

160

0.0 0.1 0.2 0.3 0.4 0.5

(b) Enhanced adjacency matrix

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25

(c) Attribute Euclidean distance

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(d) AC scores

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(e) Gelato scores

0 40 80 120 160
0

40

80

120

160

0.995 0.996 0.997 0.998 0.999 1.000

(f) Neo-GNN predictions

0 40 80 120 160
0

40

80

120

160

True positive False positive

(g) AC predicted edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(h) Gelato predicted edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(i) Neo-GNN predicted edges

Figure 4.6: Illustration of the link prediction process of Gelato, AC, and the best
GNN-based approach, Neo-GNN, on a subgraph of Photo. Gelato effectively incor-
porates node attributes into the graph structure and leverages topological heuristics
to enable state-of-the-art link prediction.

83

Link Prediction without Graph Neural Networks Chapter 4

density between high-degree nodes (0-40). The immediate result of this is the significantly

improved precision as shown in Figure 4.6h compared to Figure 4.6g. Gelato covers

as many positive edges in the high-degree region as AC while making far fewer wrong

predictions for connections involving low-degree nodes.

The prediction probabilities and predicted edges for Neo-GNN are shown in Fig-

ure 4.6f and Figure 4.6i, respectively. Note that while it predicts edges connecting high-

degree node pairs (0-40) with high probability, similar values are assigned to many low-

degree pairs (80-160) as well. Most of those predictions are wrong, both in the low-degree

region of Figure 4.6i and also in other low-degree parts of the graph that are not shown

here. This analysis supports our claim that Gelato is more effective at combining node

attributes and the graph topology, enabling state-of-the-art link prediction.

4.4.4 Loss and Training Setting

In this section, we demonstrate the advantages of the proposed N-pair loss and unbi-

ased training for supervised link prediction. Figure 4.7 shows the training and validation

losses and prec@100% (our validation metric) in training Gelato based on the cross en-

tropy (CE) and N-pair (NP) losses under biased and unbiased training respectively. The

final test AP scores are shown in the titles.

In the first column (CE with biased training), different from the training, both loss and

precision for (unbiased) validation decrease. This leads to even worse test performance

compared to the untrained base model (i.e., AC). In other words, albeit being the most

popular loss function for supervised link prediction, CE with biased training does not

generalize to unbiased testing. On the contrary, as shown in the second column, the

proposed NP loss with biased training—equivalent to the pairwise logistic loss [197]—is

a more effective proxy for unbiased testing metrics.

84

Link Prediction without Graph Neural Networks Chapter 4

0.42

0.54

0.66

Tr
ai

n
lo

ss

CE+biased : 14.87%±1.41%

Loss Prec@k

0.05

0.08

0.11
NP+biased : 19.63%±0.38%

0.3

0.6

0.9
CE+unbiased : 23.66%±1.01%

2.0

2.5

3.0
NP+unbiased : 25.68%±0.53%

0 50 100 150 200 250
0.30

0.60

0.90

Va
lid

 lo
ss

0 50 100 150 200 250
6

8

10

0 50 100 150 200 250
0.0

0.5

1.0

0 50 100 150 200 250
5.0

7.5

10.0

50

74

98

5.0

9.5

14.0

95.5

96.0

96.5

12.0

14.5

17.0

20

45

70

5

12

19

47

51

55

Tr
ai

n
pr

ec
@

10
0%

 (%
)

13

16

19

Va
lid

 p
re

c@
10

0%
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.7: Training of Gelato based on different losses and training settings for
Photo with test AP (mean ± std) shown in the titles. Compared with the cross
entropy loss, the N-pair loss with unbiased training is a more consistent proxy for
unbiased testing metrics and leads to better peak performance.

The right two columns show results with unbiased training, which is better for CE

as more negative pairs are present in the training set (with the original class ratio). On

the other hand, NP is more consistent with unbiased evaluation metrics, leading to 8.5%

better performance. This is because, unlike CE, which optimizes positive and negative

pairs independently, NP contrasts negative pairs against positive ones, giving higher

importance to negative pairs that are more likely to be false positives.

4.4.5 Ablation Study

We have demonstrated the superiority of Gelato over its individual components and

two-stage approaches in Table 4.3 and analyzed the effect of losses and training settings in

Section 4.4.4. Here, we collect the results with the same hyperparameter setting as Gelato

and present a comprehensive ablation study in Table 4.5. Specifically, Gelato−MLP

(AC) represents Gelato without the MLP (Autocovariance) component, i.e., only using

Autocovariance (MLP) for link prediction. Gelato−NP (UT) replaces the proposed N-

85

Link Prediction without Graph Neural Networks Chapter 4

pair loss (unbiased training) with the cross entropy loss (biased training) applied by the

baselines. Finally, Gelato−NP+UT replaces both the loss and the training setting.

Cora CiteSeer PubMed Photo Computers

Gelato−MLP 2.43 ± 0.00 2.65 ± 0.00 2.50 ± 0.00 16.63 ± 0.00 11.64 ± 0.00
Gelato−AC 1.94 ± 0.18 3.91 ± 0.37 0.83 ± 0.05 7.45 ± 0.44 4.09 ± 0.16
Gelato−NP+UT 2.98 ± 0.20 1.96 ± 0.11 2.35 ± 0.24 14.87 ± 1.41 9.77 ± 2.67
Gelato−NP 1.96 ± 0.01 1.77 ± 0.20 2.32 ± 0.16 19.63 ± 0.38 9.84 ± 4.42
Gelato−UT 3.07 ± 0.01 1.95 ± 0.05 2.52 ± 0.09 23.66 ± 1.01 11.59 ± 0.35
Gelato 3.90 ± 0.03 4.55 ± 0.02 2.88 ± 0.09 25.68 ± 0.53 18.77 ± 0.19

Table 4.5: Results of the ablation study based on AP scores. Each component of
Gelato plays an important role in enabling state-of-the-art link prediction perfor-
mance.

We observe that removing either MLP or Autocovariance leads to inferior perfor-

mance, as the corresponding attribute or topology information would be missing. Fur-

ther, to address the class imbalance problem of link prediction, both the N-pair loss and

unbiased training are crucial for effective training of Gelato.

While all supervised baselines originally adopt biased training, we also implement the

same unbiased training (and N-pair loss) as Gelato for those that are scalable. Specifically,

Table 4.6 summarizes the link prediction performance in terms of mean and standard

deviation of AP for Gelato and the baselines using unbiased training without downsam-

pling and the cross entropy loss, and Figure 4.8 and Figure 4.9 show results based on

prec@k and hits@k for varying k values.

We first note that unbiased training without downsampling brings serious scalabil-

ity challenges to most GNN-based approaches, making scaling up to larger datasets

intractable. For the scalable baselines, unbiased training leads to marginal (e.g., Neo-

GNN) to significant (e.g., BScNets) gains in performance. However, all of them still

underperform the topological heuristic, Autocovariance, in most cases, and achieve much

worse performance compared to Gelato. This supports our claim that the topology-

centric graph learning mechanism in Gelato is more effective than the attribute-centric

86

Link Prediction without Graph Neural Networks Chapter 4

Cora CiteSeer PubMed Photo Computers

GNN

GAE 0.33 ± 0.21 0.69 ± 0.18 0.63∗ 1.36 ± 3.38 7.91∗

SEAL 2.24∗ 1.11∗ *** *** ***
HGCN 0.54 ± 0.23 1.02 ± 0.05 0.41∗ 3.27 ± 2.97 2.60∗

LGCN 1.53 ± 0.08 1.45 ± 0.09 0.55∗ 2.90 ± 0.26 1.13∗

TLC-GNN 0.68 ± 0.16 0.61 ± 0.19 OOM 2.95 ± 1.50 OOM
Neo-GNN 2.76 ± 0.36 1.80 ± 0.22 *** *** ***
NBFNet *** *** *** *** ***
BScNets 1.13 ± 0.25 1.27 ± 0.20 0.47∗ 8.54 ± 1.55 4.40∗

WalkPool *** *** *** OOM OOM

Topological
Heuristics

CN 1.10 ± 0.00 0.74 ± 0.00 0.36 ± 0.00 7.73 ± 0.00 5.09 ± 0.00
AA 2.07 ± 0.00 1.24 ± 0.00 0.45 ± 0.00 9.67 ± 0.00 6.52 ± 0.00
RA 2.02 ± 0.00 1.19 ± 0.00 0.33 ± 0.00 10.77 ± 0.00 7.71 ± 0.00
AC 2.43 ± 0.00 2.65 ± 0.00 2.50 ± 0.00 16.63 ± 0.00 11.64 ± 0.00

Attributes +
Topology

MLP 0.22 ± 0.27 1.17 ± 0.63 0.44 ± 0.12 1.15 ± 0.40 1.19 ± 0.46
Cos 0.42 ± 0.00 1.89 ± 0.00 0.07 ± 0.00 0.11 ± 0.00 0.07 ± 0.00

MLP+AC 0.63 ± 0.32 1.00 ± 0.43 1.17 ± 0.44 11.88 ± 0.83 8.73 ± 0.45
Cos+AC 3.60 ± 0.00 4.46 ± 0.00 0.51 ± 0.00 10.01 ± 0.00 5.20 ± 0.00

MLP+Cos+AC 3.80 ± 0.01 3.94 ± 0.03 0.77 ± 0.01 12.80 ± 0.03 7.57 ± 0.02

Gelato 3.90 ± 0.03 4.55 ± 0.02 2.88 ± 0.09 25.68 ± 0.53 18.77 ± 0.19

Table 4.6: Link prediction performance comparison (mean ± std AP) with super-
vised link prediction methods using unbiased training. While we observe noticeable
improvement for some baselines (e.g., BScNets), Gelato still consistently and signif-
icantly outperform the baselines. (∗ Run only once as each run takes ∼100 hrs; ***
Each run takes >1000 hrs; OOM: Out Of Memory.)

0 20 40 60 80 100
0

5

10

15

20

Pr
ec

@
k

(%
)

Cora

0 20 40 60 80 100
0

5

10

15

20 CiteSeer

0 20 40 60 80 100
0

6

12

18

24 PubMed

0 20 40 60 80 100
0

20

40

60

80 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

0 20 40 60 80 100
0

16

32

48

64 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (%)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.8: Link prediction performance in terms of prec@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe noticeable
improvement for some baselines (e.g., BScNets), Gelato still consistently and signifi-
cantly outperform the baselines.

message-passing in GNNs for link prediction, leading to state-of-the-art performance.

As for the GNN-based baselines using both unbiased training and our proposed N-

pair loss, we have attempted to modify the training functions of the reference repositories

of the baselines and managed to train SEAL, LGCN, Neo-GNN, and BScNet. However,

despite our best efforts, we are unable to obtain better link prediction performance using

87

Link Prediction without Graph Neural Networks Chapter 4

2−2 20 22 24 260

10

20

30

40

Hi
ts

@
k

(%
)

Cora

2−2 20 22 24 260

14

28

42

56 CiteSeer

2−2 20 22 24 260

3

6

9

12 PubMed

2−2 20 22 24 260

8

16

24

32 Photo

GAE SEAL HGCN LGCN TLC-GNN Neo-GNN NBFNet BScNets WalkPool AC Gelato

2−2 20 22 24 260

6

12

18 Computers

0.0 0.2 0.4 0.6 0.8 1.0
k (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.9: Link prediction performance in terms of hits@k (in percentage) for vary-
ing values of k with baselines using unbiased training. While we observe noticeable
improvement for some baselines (e.g., BScNets), Gelato still consistently and signifi-
cantly outperform the baselines.

the N-pair loss. We defer the further investigation of the incompatibility of our loss and

the baselines to future research. On the other hand, we have observed significantly bet-

ter performance for MLP with the N-pair loss compared to the cross entropy loss under

unbiased training. This can be seen by comparing the MLP performance in Table 4.6

here and the Gelato−AC performance in Table 4.5. The improvement shows the poten-

tial benefit of applying our training setting and loss to other supervised link prediction

methods.

4.4.6 Sensitivity Analysis

The selected hyperparameters of Gelato for each dataset are recorded in Table 4.7, and

a sensitivity analysis of η, α, and β are shown in Figure 4.10 and Figure 4.11 respectively

for Photo and Cora.

Cora CiteSeer PubMed Photo Computers

η 0.5 0.75 0.0 0.0 0.0
α 0.5 0.5 0.0 0.0 0.0
β 0.25 0.5 1.0 1.0 1.0

Table 4.7: Selected hyperparameters of Gelato.

For most datasets, we find that simply setting β = 1.0 and η = α = 0.0 leads to

88

Link Prediction without Graph Neural Networks Chapter 4

0.00 0.25 0.50 0.75 1.00
η

23.4

24.0

24.6

25.2

25.8

AP
 (%

)

30.0

30.6

31.2

31.8

32.4

Pr
ec

@
10

0%
 (%

)
(a) Photo performance

0.00 0.25 0.50 0.75 1.00
η

3.00

3.25

3.50

3.75

4.00

AP
 (%

)

8.8

9.6

10.4

11.2

12.0

Pr
ec

@
10

0%
 (%

)

(b) Cora performance

Figure 4.10: Performance of Gelato with different values of η.

the best performance, corresponding to the scenario where no edges based on cosine

similarity are added and the edge weights are completely learned by the MLP. For Cora

and CiteSeer, however, we first notice that adding edges based on untrained cosine

similarity alone leads to improved performance (see Table 4.3), which motivates us to

set η = 0.5/0.75. In addition, we find that a large trainable weight β leads to overfitting

of the model as the number of node attributes is large while the number of (positive)

edges is small for Cora and CiteSeer (see Table 4.1). We address this by decreasing

the relative importance of trained edge weights (β = 0.25/0.5) and increasing that of the

topological edge weights (α = 0.5), which leads to better generalization and improved

performance. Based on our experiments, these hyperparameters can be easily tuned using

simple hyperparameter search techniques, such as line search, using a small validation

set.

4.4.7 Running Time

We compare Gelato with other supervised link prediction methods in terms of running

time for Photo in Figure 4.12. As the only method that applies unbiased training by

89

Link Prediction without Graph Neural Networks Chapter 4

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0

β

17.08 17.34 17.20 16.93

21.02 19.83 18.54 17.45

23.98 22.01 19.96 18.05

25.68 23.43 21.33 18.59

17.08 17.34 17.20 16.93

21.02 19.83 18.54 17.45

23.98 22.01 19.96 18.05

25.68 23.43 21.33 18.59

17

19

21

23

25

AP
 (%

)
(a) Photo AP scores

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0

β

25.53 25.82 25.59 24.99

29.54 28.38 26.98 25.62

31.31 30.08 28.38 26.31

32.13 30.88 29.53 26.82

25.53 25.82 25.59 24.99

29.54 28.38 26.98 25.62

31.31 30.08 28.38 26.31

32.13 30.88 29.53 26.82

25

26

27

28

29

30

31

32

Pr
ec

@
10

0%
 (%

)

(b) Photo prec@100% scores

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0

β

2.10 2.96 3.90 3.68

2.86 3.54 3.81 3.60

2.63 3.28 3.52 3.51

2.26 3.12 3.21 3.47

2.10 2.96 3.90 3.68

2.86 3.54 3.81 3.60

2.63 3.28 3.52 3.51

2.26 3.12 3.21 3.47

2.2

2.6

3.0

3.4

3.8

AP
 (%

)

(c) Cora AP scores

0.0 0.25 0.5 0.75
α

0.25

0.5

0.75

1.0
β

5.07 8.98 11.67 9.56

10.11 10.89 11.01 9.81

9.26 10.02 10.27 9.68

7.46 9.43 9.15 9.77

5.07 8.98 11.67 9.56

10.11 10.89 11.01 9.81

9.26 10.02 10.27 9.68

7.46 9.43 9.15 9.77

6

7

8

9

10

11

Pr
ec

@
10

0%
 (%

)

(d) Cora prec@100% scores

Figure 4.11: Performance of Gelato with different α and β.

default—with more negative samples—Gelato shows a competitive training speed that is

11× faster than the best performing GNN-based method, Neo-GNN. And when baselines

also adopt unbiased training, Gelato is the second fastest model, only slower than the

vanilla MLP. In terms of inference time, Gelato is much faster than most baselines with

a 6,000× speedup compared to Neo-GNN. We further observe more significant efficiency

gains for Gelato over Neo-GNN for larger datasets—e.g., 14× (training) and 25,000×

(testing) for Computers.

90

Link Prediction without Graph Neural Networks Chapter 4

GAE
SEAL

HGCN
LGCN

TLC-GNN

Neo-GNN

NBFNet

BScNets

MLP
Gelato

101

102

103

104

105

Ti
m

e
(s

)

1022

11493

92
56

42440

14807
30896

115
232

1265

(a) Training time with baselines adopting biased training

GAE
SEAL

HGCN
LGCN

TLC-GNN

Neo-GNN

NBFNet

BScNets

MLP
Gelato

102

103

104

105

106

Ti
m

e
(s

)

6361

>450000

1668 1401

53304

>450000>450000

2323

744
1265

(b) Training time with baselines adopting unbiased training

GAE
SEAL

HGCN
LGCN

TLC-GNN

Neo-GNN

NBFNet

BScNets

MLP
Gelato

10−2

100

102

104

106

Ti
m

e
(s

)

0.031

380

0.093 0.099

5.722

346

76737

0.394
1.801

0.057

(c) Inference time per unbiased testing

Figure 4.12: Training and inference time comparison between supervised link predic-
tion methods for Photo. Gelato has competitive training time (even when baselines
adopt biased training) and is significantly faster than most baselines in terms of in-
ference, especially compared to the best GNN model, Neo-GNN.

91

Link Prediction without Graph Neural Networks Chapter 4

4.5 Related Work

Topological heuristics for link prediction. The early link prediction literature fo-

cuses on topology-based heuristics. This includes approaches based on local (e.g., Com-

mon Neighbors [154], Adamic Adar [155], and Resource Allocation [195]) and higher-

order (e.g., Katz [198], PageRank [40], and SimRank [199]) information. More recently,

random-walk based graph embedding methods, which learn vector representations for

nodes [8, 9, 1], have achieved promising results in graph machine learning tasks. Popular

embedding approaches, such as DeepWalk [8] and node2vec [9], have been shown to im-

plicitly approximate the Pointwise Mutual Information similarity [11], which can also be

used as a link prediction heuristic. This has motivated the investigation of other similar-

ity metrics such as Autocovariance [28, 1, 2]. However, these heuristics are unsupervised

and cannot take advantage of data beyond the topology.

Graph Neural Networks for link prediction. GNN-based link prediction addresses

the limitations of topological heuristics by training a neural network to combine topolog-

ical and attribute information and potentially learn new heuristics. GAE [160] combines

a graph convolution network [142] and an inner product decoder based on node em-

beddings for link prediction. SEAL [151] models link prediction as a binary subgraph

classification problem (edge/non-edge), and follow-up work (e.g., SHHF [187], WalkPool

[153]) investigates different pooling strategies. Other recent approaches for GNN-based

link prediction include learning representations in hyperbolic space (e.g., HGCN [161],

LGCN [162]), generalizing topological heuristics (e.g., Neo-GNN [152], NBFNet [165]),

and incorporating additional topological features (e.g., TLC-GNN [164], BScNets [166]).

Motivated by the growing popularity of GNNs for link prediction, this work investigates

key questions regarding their training, evaluation, and ability to learn effective topolog-

ical heuristics directly from data. We propose Gelato, which is simpler, more accurate,

92

Link Prediction without Graph Neural Networks Chapter 4

and faster than the state-of-the-art GNN-based link prediction methods.

Graph learning. Gelato learns a graph that combines topological and attribute infor-

mation. Our goal differs from generative models [200, 201, 202], which learn to sample

from a distribution over graphs. Graph learning also enables the application of GNNs

when the graph is unavailable, noisy, or incomplete (for a recent survey, see [203]). LDS

[204] and GAug [205] jointly learn a probability distribution over edges and GNN pa-

rameters. IDGL [206] and EGLN [207] alternate between optimizing the graph and

embeddings for node/graph classification and collaborative filtering. [208] proposes two-

stage link prediction by augmenting the graph as a preprocessing step. In comparison,

Gelato effectively learns a graph in an end-to-end manner by minimizing the loss of a

topological heuristic.

4.6 Conclusion

This work sheds light on key limitations in how GNN-based link prediction methods

handle the intrinsic class imbalance of the problem and presents more effective and ef-

ficient ways to combine attributes and topology. Our findings might open new research

directions on machine learning for graph data, including a better understanding of the

advantages of increasingly popular and sophisticated deep learning models compared to

more traditional and simpler graph-based solutions.

93

Chapter 5

Global Counterfactual Explainer for

Graph Neural Networks

5.1 Introduction

Graph Neural Networks (GNNs) [142, 143, 144, 209, 210, 211] are being used in many

domains such as drug discovery [212], chip design [213], combinatorial optimization [214],

physical simulations [215, 216] and event prediction [217, 218, 219]. Taking the graph(s)

as input, GNNs are trained to perform various downstream tasks that form the core

of many real-world applications. For example, graph classification has been applied to

predict whether a drug would exhibit the desired chemical activity [212]. Similarly, node

prediction is used to predict the functionality of proteins in protein-protein interaction

networks [220] and categorize users into roles on social networks [221].

Despite the impressive success of GNNs on predictive tasks, GNNs are black-box

machine learning models. It is non-trivial to explain or reason why a particular prediction

is made by a GNN. Explainability of a prediction model is important to understand its

shortcomings and identify areas for improvement. In addition, the ability to explain a

94

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

model is critical towards making it trustworthy. Owing to this limitation of GNNs, there

has been significant efforts in recent times towards explanation approaches.

Existing work on explaining GNN predictions can be categorized mainly in two

directions: 1) factual reasoning [222, 223, 224, 225], and 2) counterfactual reasoning

[226, 227, 228, 229]. Generally speaking, the methods in the first category aim to find

an important subgraph that correlates most with the underlying GNN prediction. In

contrast, the methods with counterfactual reasoning attempt to identify the smallest

amount of perturbation on the input graph that changes the GNN’s prediction, for ex-

ample, removal/addition of edges or nodes.

Compared to factual reasoning, counterfactual explainers have the additional advan-

tage of providing the means for recourse [230]. For example, in the applications of drug

discovery [212, 231], mutagenicity is an adverse property of a molecule that hampers its

potential to become a marketable drug [232]. In Figure 5.1, formaldehyde is classified

by a GNN to be mutagenic. Factual explainers can attribute the subgraph containing

the carbon-hydrogen bond to the cause of mutagenicity, while counterfactual explainers

provide an effective way (i.e., a recourse) to turn formaldehyde into formic acid, which

is non-mutagenic, by replacing a hydrogen atom with a hydroxyl.

CH

O

H
(a) Formaldehyde

CH

O

O H
(b) Formic acid

Figure 5.1: Formaldehyde (a) is classified by a GNN to be an undesired mutagenic
molecule with its important subgraph found by factual reasoning highlighted in red.
Formic acid (b) is its non-mutagenic counterfactual example obtained by removing
one edge and adding one node and two edges.

In this work, we focus on counterfactual explanations. Our work is based on the obser-

95

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

vation that existing counterfactual explainers [222, 223, 224, 225] for graphs take a local

perspective, generating counterfactual examples for individual input graphs. However,

this approach has two key limitations:

• Lack of global insights: It is desirable to offer insights that generalize across

a multitude of data graphs. For example, instead of providing formic acid as a

counterfactual example to formaldehyde, we can summarize global recourse rules

such as “Given any molecule with a carbonyl group (carbon-oxygen double bond),

it needs a hydroxyl to be non-mutagenic”. This focus on global counterfactual

explanation promises to provide higher-level insights that are complementary to

those obtained from local counterfactual explanations.

• Information overload: The primary motivation behind counterfactual analysis is

to provide human-intelligible explanations. With this objective, consider real-world

graph datasets that routinely contain thousands to millions of graphs. Owing to

instance-specific counterfactual explanations, the number of counterfactual graphs

grows linearly with the graph dataset size. Consequently, the sheer volume of coun-

terfactual graphs overloads the human cognitive ability to process this information.

Hence, the initial motivation of providing human-intelligible insights is lost if one

does not obtain a holistic view of the counterfactual graphs.

Contributions: In this work, we study the problem of model-agnostic, global counter-

factual explanations of GNNs for graph classification. More specifically, given a graph

dataset, our goal is to counterfactually explain the largest number of input graphs with

a small number of counterfactuals. As we will demonstrate later in our experiments,

this formulation naturally forces us to remove redundancy from instance-specific coun-

terfactual explanations and hence has higher information density. Algorithmically, the

proposed problem introduces new challenges. We theoretically establish that the pro-

96

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

posed problem is NP-hard. Furthermore, the space of all possible counterfactual graphs

itself is exponential. Our work overcomes these challenges and makes the following con-

tributions:

• Novel formulation: We formulate the novel problem of global counterfactual

reasoning/explanation of GNNs for graph classification. In contrast to existing

works on counterfactual reasoning that only generate instance-specific examples,

we provide an explanation on the global behavior of the model.

• Algorithm design: While the problem is NP-hard, we propose GCFExplainer,

which organizes the exponential search space as an edit map. We then perform

vertex-reinforced random walks on it to generate diverse, representative counterfac-

tual candidates, which are greedily summarized as the global explanation.

• Experiments: We conduct extensive experiments on real-world datasets to vali-

date the effectiveness of the proposed method. Results show that GCFExplainer

not only provides important high-level insights on the model behavior but also out-

performs state-of-the-art baselines related to counterfactual reasoning in various

recourse quality metrics.

5.2 Global Counterfactual Explanations

This section introduces the global counterfactual explanation (GCE) problem for

graph classification. We start with the background on local counterfactual reasoning.

Then, we propose a representation of the global recourse rule that provides a high-level

counterfactual understanding of the classifier behavior. Finally, we introduce quality

measures for recourse rules and formally define the GCE problem.

97

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

5.2.1 Local Counterfactual

Consider a graph G = (V,E), where V and E are the sets of (labelled) nodes and

edges respectively. A (binary) graph classifier (e.g., a GNN) φ classifies G into either the

undesired class (φ(G) = 0) or the desired one (φ(G) = 1). An explanation of φ seeks

to answer how these predictions are made. Those based on factual reasoning analyze

what properties G possesses to be classified in the current class while those based on

counterfactual reasoning find what properties G needs to be assigned to the opposite

class.

Existing counterfactual explanation methods take a local perspective. Specifically,

for each input graph G, they find a counterfactual (graph) C that is somewhat similar

to G but is assigned to a different class. Without loss of generality, let G belong to

the undesired class, i.e., φ(G) = 0, then the counterfactual C satisfies φ(C) = 1. The

similarity between C and G is quantified by a predefined distance metric d, for example,

the number of added/removed edges [226, 227].

In our work, we consider the graph edit distance (GED) [233], a more general distance

measure, as the distance function to account for other types of changes. Specifically,

GED(G1, G2) counts the minimum number of “edits” to convert G1 to G2. An “edit” can

be the addition or removal of edges and nodes, or change of node labels (see Figure 5.2).

Moreover, to account for graphs of different sizes, we normalize the GED by the sizes

of graphs: ĜED(G1, G2) = GED(G1, G2)/(|V1| + |V2| + |E1| + |E2|). Nonetheless, our

method can be applied with other graph distance metrics, such as those based on graph

kernels (e.g., RW [234], NSPDG [235], WL [236]).

The distance function measures the quality of the counterfactual found by the ex-

planation model. Ideally, the counterfactual C should be very close to the input graph

G while belonging to a different class. Formally, we define the counterfactuals that are

98

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

Node/edge addition

Node/edge
removal Node label change

Figure 5.2: Edits between graphs.

within a certain distance θ from the input graph as close counterfactuals.

Definition 5.1 (Close Counterfactual) Given the GNN classifier φ, distance param-

eter θ, and an input graph G with undesired outcome, i.e., φ(G) = 0; a counterfactual

graph, C, is a close counterfactual of G when φ(C) = 1 and d(G,C) ≤ θ.

While the (close) counterfactual C found by existing methods explains the classifier

behavior for the corresponding input graph G, it is hard to generalize to understand the

global pattern. Next, we introduce the global recourse rule that provides a high-level

summary of the classifier behavior across different input graphs.

5.2.2 Global Recourse Representation

The global counterfactual explanation requires a global recourse rule r. Specifically,

for any (undesired) input graph G with φ(G) = 0, r provides a (close) counterfactual (i.e.,

a recourse) for G: φ(r(G)) = 1. While both a recourse rule and a local counterfactual

explainer find a counterfactual given an input graph, their goals are different. The goal

of the local counterfactual explainer is to find the best (closest) counterfactual possible

for each input graph, and therefore, r can be very complicated, e.g., in the form of an

99

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

optimization algorithm [227, 229]. On the other hand, a recourse rule aims to provide

an explanation of the classifier’s global behavior, which requires a simpler form that is

understandable for domain experts without prior knowledge of deep learning on graphs.

Existing global recourse rules for classifiers with feature vectors as input take the

form of short decision trees [237]. However, this is hard to be generalized to graph

data with rich structure information. Instead, we propose the representation of a global

recourse rule for a graph classifier to be a collection of counterfactual graphs C in the

desired class that are diverse and representative enough to capture its global behavior.

This representation does not require any additional knowledge for domain experts to

understand and draw insights from, similar to the local counterfactual examples. It

is also easy to find the local counterfactual for a given input graph G based on C by

nominating the closest graph in C: r(G) = arg minC∈C d(G,C).

5.2.3 Quantifying Recourse Quality

Given a graph classifier φ and a set of n input graphs G in the undesired class, we

want to compare the quality of different recourse representations C. Similar to the quality

metrics introduced for vector data [237], we aim to account for the following factors:

1. Coverage: Like local counterfactual explainers, we want to ensure that counterfac-

tuals found for individual input graphs are of high quality. Specifically, we introduce

recourse coverage—the proportion of input graphs that have close counterfactuals

from C under a given distance threshold θ:

coverage(C) = |{G ∈ G | min
C∈C
{d(G,C)} ≤ θ}|/|G|

2. Cost: Another quality metric based on local counterfactual quality is the recourse

100

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

cost (i.e., the distance between the input graph and its counterfactual) across the

input graphs:

cost(C) = agg
G∈G
{min
C∈C
{d(G,C)}}

where agg is an aggregation function, e.g., mean or median.

3. Interpretability: Finally, the recourse rule should be easy (small) enough for

human cognition. We quantify the interpretability as the size of recourse represen-

tation:

size(C) = |C|

5.2.4 Problem Formulation and Characterization

An ideal recourse representation should maximize the coverage while minimizing the

cost and the size. Formally, we define the global counterfactual explanation problem

(GCE) as follows:

Definition 5.1 (Global Counterfactual Explanation for Graph Classification)

Given a GNN graph classifier φ that classifies n input graphs G to the undesired class 0

and a budget k � n, our goal is to find the best recourse representation C that maximizes

the recourse coverage with size k:

max
C

coverage(C) s.t. size(C) = k

We note that in our problem formulation only coverage and size are explicitly ac-

counted for, whereas cost is absent. We make this design choice since cost and coverage

are intrinsically opposing forces. Specifically, if we are willing to allow a high cost, cov-

erage increases since we allow for higher individual distances between an input graph

101

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

and its counterfactual. Therefore, we take the approach of binding the cost to the dis-

tance threshold θ in the coverage definition. Nonetheless, an explicit analysis of all these

metrics including cost is performed to quantify recourse quality during our empirical

evaluation in Section 5.4. Below we discuss the hardness of GCE.

Theorem 5.1 (NP-hardness) The GCE problem is NP-hard.

Proof: To establish NP-hardness of the proposed problem we reduce it from the

classical Maximum Coverage problem.

Definition 5.2 (Maximum Coverage) Given a budget k and a collection of subsets

S = {S1, · · · , Sm} from a universe of items U = {u1, · · · , un}, find a subset S ′ ⊆ S of

sets such that |S ′| ≤ k and the number of covered elements |
⋃
∀Si∈S′ Si| is maximized.

We show that given any instance of a maximum coverage problem 〈S, U〉, it can be

mapped to a GCE problem. For ui, we construct a star graph with a center node with

an empty label and n leaf nodes with n − 1 empty labels and one label ui. For Si, we

construct a similar star graph with a center node with a special label γ and n leaf nodes

with |Si| labeled with the elements in Si and n− |Si| with empty labels. The classifier φ

classifies a graph as a desired one if and only if it is a star graph with a γ-labeled central

node and n leaf nodes with a set of labels among S = {S1, · · · , Sm}. The allowed edit

operations are either adding or deleting a set of labels (as a single edit), but not both

together. So, each Si corresponds to a counterfactual candidate Ci and d(Gj, Ci) ≤ θ = 1

if and only if uj ∈ Si. With this construction, it is easy to see that an optimal solution

for this instance of GCE is the optimal solution for the corresponding instance of the

maximum coverage problem.

Owing to NP-hardness, it is not feasible to identify the optimal solution for the

GCE problem in polynomial time unless NP = P. In the next section, we will introduce

GCFExplainer, an effective and efficient heuristic that solves the GCE problem.

102

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

5.3 Proposed Method: GCFExplainer

In this section, we propose GCFExplainer, the first global counterfactual explainer

for graph classification. The GCE problem requires us to find a collection of k counter-

factual graphs that maximize the coverage of the input graphs. Intuitively, we want each

individual counterfactual graph to be a close counterfactual to (i.e., “cover”) as many

input graphs as possible. Additionally, different counterfactual graphs should cover dif-

ferent sets of input graphs to maximize the overall coverage. These intuitions motivate

the design of our algorithm GCFExplainer, which has three major components:

1. Structuring the search space: The search space of counterfactual graphs con-

sists of all graphs that are in the same domain as the input graphs and within a

distance of θ. In other words, any graph within a distance of θ from an input graph

may be a potential counterfactual candidate and therefore needs to be analyzed.

The number of potential graphs within θ increases exponentially with θ since the

space of graph edits is combinatorial [238, 239]. GCFExplainer uses an edit map

to organize these graphs as a meta-graph G, where individual nodes are graphs that

are created via a different number of edits from the input graphs and each edge

represents a single edit.

2. Vertex-reinforced random walk: To search for good counterfactual candidates,

GCFExplainer leverages vertex-reinforced random walks (VRRW) [240] on the

edit map G. VRRW has the nice property of converging to a set of nodes that are

both important (i.e., cover many input graphs) and diverse (i.e., non-overlapping

coverage), which will form a small set of counterfactual candidates for further pro-

cessing.

3. Iterative computation of the summary: After obtaining good counterfactual

103

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

candidates from VRRW, GCFExplainer creates the final set of the counterfactual

graphs (i.e., the summary) as the recourse representation by iteratively adding the

best candidate based on the maximal gain of the coverage given the already added

candidates.

5.3.1 Structuring the Search Space

The search space for counterfactual graphs in GCFExplainer is organized via an

edit map G. The edit map is a meta-graph whose nodes are graphs in the same domain

as the input graphs and edges connect graphs that differ by a single graph edit. As an

example, each graph in Figure 5.2 represents a node in the edit map, and the arrows

denote edges between graphs (nodes) that are one edit away. In the edit map, we only

include connected graphs since real graphs of interest are often connected (e.g., molecules,

proteins, etc.).

While all potential counterfactual candidates are included as its nodes, the edit map

has an exponential size and it is computationally prohibitive to fully explore it. However,

a key observation is that a counterfactual candidate can only be a few hops away from

some input graph. Otherwise, the graph distance between the counterfactual and the

input graph would be too large for the counterfactual to cover it. This observation moti-

vates our exploration of the edit map to be focused on the union of close neighborhoods

of the input graphs (see Section 5.3.2). Additionally, while we cannot compute the entire

edit map, it is easy to chart the close neighborhoods by iteratively performing all possible

edits from the input graphs. Next, we introduce the vertex-reinforced random walk to

efficiently explore the edit map to find counterfactual candidates.

104

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

5.3.2 Vertex-Reinforced Random Walk

Vertex-reinforced random walk (VRRW) [240] is a time-variant random walk. Differ-

ent from other more widely applied random walk processes such as the simple random

walk and the PageRank [8, 145, 241, 242], the transition probability p(u, v) of VRRW

from node u to node v depends not only on the edge weight w(u, v) but also the number of

previous visits in the walk to the target node v, which we denote using N(v). Specifically,

p(u, v) ∝ w(u, v)N(v) (5.1)

GCFExplainer applies VRRW on the edit map and produces n most frequently

visited nodes in the walk as the set of counterfactual candidates S. Next, we formalize

VRRW in our setting and explain how it surfaces good counterfactual candidates for

GCE.

Vertex-reinforcement

Our main motivation for using VRRW to explore the edit map instead of other random

walk processes is that VRRW converges to a diverse and representative set of nodes

[243, 244] in different regions of the edit map. In this way, the frequently visited nodes

in instances of VRRW have the potential to be good counterfactual candidates as they

would cover a diverse set of input graphs in the edit map. The reason behind the diversity

of the highly visited nodes is the previous visit count N(v) in the transition probability.

Specifically, nodes with larger visit counts tend to be visited more often later (“richer

gets richer”), and thereby dominating all other nodes in their neighborhood. This leads

to a bunch of highly visited nodes to “represent” each region of the edit map. We refer

the readers to [243] for details on the mathematical basis and the theoretical correctness

of this property. Moreover, as our goal is to find counterfactual candidates, we only

105

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

reinforce (i.e., increase the visit counts of) graphs in the counterfactual class.

Importance function

While the vertex-reinforcement mechanism ensures diversity of the highly visited

nodes, we still need to guide the walker to visit graphs that are good counterfactual

candidates. We achieve this by assigning large edge weight w(u, v) to good counterfactual

candidates via an importance function I(v):

w(u, v) = I(v) (5.2)

The importance function I(v) should capture the quality of a graph v as a counterfactual

candidate. It has the following components:

1. Counterfactual probability pφ(v). The graph classifier φ predicts a probability for v

to be in the counterfactual class (φ(v) = 1). By using it as part of the importance

function, the walker is encouraged to visit regions with rich counterfactual graphs.

2. Individual coverage coverage({v}). The individual coverage of a graph v computes

the proportion of input graphs that are close to v. This encourages the walker to

visit graphs that cover a large number of input graphs.

3. Gain of coverage gain(v;S). Given a graph v and the current set of counterfactual

candidates S (i.e., the n most frequently visited nodes), we can compute the gain

between the current coverage and the coverage after adding v to S:

gain(v;S) = coverage(S ∪ {v})− coverage(S)

This guides the walker to find graphs that complement the current counterfactual

106

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

candidates to cover additional input graphs.

The importance function is a combination of these components:

I(v) = pφ(v)(α coverage({v}) + (1− α) gain(v;S)) (5.3)

where α is a hyperparameter between 0 and 1. With the above importance function, the

VRRW in GCFExplainer converges to a set of diverse nodes that have high counter-

factual probability and collectively cover a large number of input graphs.

Dynamic teleportation

The last component of VRRW, teleportation, is to help us manage the exponential

search space of the edit map. Since our goal is to find close counterfactuals to the

input graphs, the walker only needs to explore the nearby regions of the input graphs.

Therefore, we start the walk from the input graphs, and also at each step, let the walker

teleport back (i.e. transit) to a random input graph with probability τ .

To decide which input graph to teleport to, we adopt a dynamic probability distribu-

tion based on the current counterfactual candidate set S. Specifically, let g(G) = |{v ∈

S | d(v,G) ≤ θ and φ(v) = 1}| be the number of close counterfactuals in S covering an

input graph G. Then the probability to teleport to G is

pτ (G) =
exp(−g(G))∑

G′∈G exp(−g(G′))
(5.4)

This dynamic teleportation favors input graphs that are not well covered by the

current solution set and encourages the walker to explore nearby counterfactuals to cover

them after teleportation.

107

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

5.3.3 Iterative Computation of the Summary

We have applied VRRW to generate a good set of n counterfactual candidates S. In

the last step of GCFExplainer, we aim to further refine the candidate set and create

the final recourse representation (i.e., the summary) with k counterfactual graphs. This

summarization problem is also NP-hard and we propose to build C in an iterative and

greedy manner from S.

Specifically, we start with an empty solution set C0. Then, for each iteration t, we

add the graph v to Ct with the maximal gain of coverage gain(v;Ct). This is repeated

k times to get the final recourse representation C with k graphs. It is easy to show that

the summarization problem is submodular and therefore, our greedy algorithm provides

(1− 1/e)-approximation.

Notice that the greedy algorithm can also be applied to the local counterfactuals found

by existing methods to generate a GCE solution. Here, we highlight three advantages of

GCFExplainer:

1. Existing local counterfactual explainers [226, 227, 228, 229] are only able to generate

counterfactuals based on one type of graph edits—edge removal, while GCFEx-

plainer incorporates all types of edits to include a richer set of counterfactual

candidates.

2. The set of counterfactual candidates from GCFExplainer is generated with the

GCE objective in mind, while the local counterfactuals from existing methods are

optimized for individual input graphs. Therefore, they may not be good candidates

to capture the global behavior of the classifier.

3. It is easy to incorporate domain constraints (e.g., the valence of chemical bonds)

into GCFExplainer by pruning the neighborhood of the edit map, while existing

108

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

methods based on optimization require non-trivial efforts to customize.

We will empirically demonstrate the superiority of GCFExplainer to this two-stage ap-

proach with state-of-the-art local counterfactual explanation methods in our experiments

in Section 5.4.2.

Pseudocode and complexity: The pseudocode of GCFExplainer is presented in Al-

gorithm 5.1. Line 1-16 summarizes the VRRW component of GCFExplainer. Specifi-

cally, Line 3-10 determines the next graph to visit based on VRRW transition probabilities

and the dynamic teleportation, and Line 11-16 update the visit counts and the set of

counterfactual candidates. The iterative computation of the counterfactual summary is

described in Line 17-21. The overall complexity of GCFExplainer is O(Mhn + kn),

where M is the number of iterations for the VRRW, h is the average node degree in the

meta-graph, n is the number of input graphs, and k is the size of the global counterfac-

tual representation. In practice, we store the computed transition probabilities with a

space-saving algorithm [245] to improve the running time of GCFExplainer.

5.4 Experiments

We provide empirical results for the proposed GCFExplanier along with baselines on

commonly used graph classification datasets. Our code is available at https://github.

com/mertkosan/GCFExplainer.

5.4.1 Experimental Settings

Datasets

We use four different real-world datasets for graph classification benchmark with

their statistics in Table 5.1. Specifically, NCI1 [246], Mutagenicity [247, 232], and

109

https://github.com/mertkosan/GCFExplainer
https://github.com/mertkosan/GCFExplainer

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

Algorithm 5.1 GCFExplainer(φ, G)

1: G← random input graph from G, N(G)← 1, S = {G}
2: for i ∈ 1 : M do
3: Let ε ∼ Bernoulli(τ)
4: if ε = 0 then
5: for v ∈ Neighbors(G) do
6: Compute I(v) based on Equation 5.3
7: Compute p(G, v) based on Equation 5.1
8: v ← random neighbor of G based on p(G, v)
9: else

10: v ← random input graph from G based on Equation 5.4
11: if φ(v) = 1 then
12: if v ∈ S then
13: N(v)← N(v) + 1
14: else
15: S← S + {v}, N(v)← 1
16: G← v
17: S← top n frequently visited counterfactuals in S
18: C← ∅
19: for t ∈ 1 : k do
20: v ← arg maxv∈S gain(v;C)
21: C← C + {v}
22: return C

AIDS [247] are collections of molecules with nodes representing different atoms and edges

representing chemical bonds between them. The molecules are classified by whether

they are anticancer, mutagenic, and active against HIV, respectively. Proteins [220,

248] is a collection of proteins classified into enzymes and non-enzymes, with nodes

representing secondary structure elements and edges representing structural proximity.

For all datasets, we filter out graphs containing rare nodes with label frequencies smaller

than 50.

NCI1 Mutagenicity AIDS Proteins

#Graphs 3978 4308 1837 1113
#Nodes 118714 130719 28905 43471
#Edges 128663 132707 29985 81044

#Node Labels 10 10 9 3

Table 5.1: The statistics of the datasets.

110

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

Graph classifier

We follow [224] and train a GNN with 3 convolution layers [142] of embedding dimen-

sion 20, a max pooling layer, and a fully connected layer for classification. The model

is trained with the Adam optimizer [57] and a learning rate of 0.001 for 1000 epochs.

The datasets are split into 80%/10%/10% for training/validation/testing with the model

accuracy shown in Table 5.2.

NCI1 Mutagenicity AIDS Proteins

Training 0.8439 0.8825 0.9980 0.7800
Validation 0.8161 0.8302 0.9727 0.8198

Testing 0.7809 0.8000 0.9781 0.7297

Table 5.2: Accuracy of the GNN graph classifier.

Baselines

To the best of our knowledge, GCFExplainer is the first global counterfactual

explainer. To validate its effectiveness, we compare it against state-of-the-art local coun-

terfactual explainers combined with the greedy summarization algorithm described in

Section 5.3.3. The following local counterfactual generation methods are included in our

experiments.

• Ground-Truth: Using graphs belonging to the desired class from the original

dataset as local counterfactuals.

• RCExplainer [227]: Local counterfactual explainer based on the modeling of

implicit decision regions of GNNs.

• CFF [229]: Local counterfactual explainer based on joint modeling of factual and

counterfactual reasoning.

111

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

Explainer settings

We use a distance threshold θ of 0.05 for training all explainers. Since computing the

exact graph edit distance is NP-hard, we apply a state-of-the-art neural approximation

algorithm [239]. For GCFExplainer, we set the teleportation probability τ = 0.1 and

tune α, the weight between individual coverage and gain of coverage, from {0, 0.5, 1}.

A sensitivity analysis is presented in Section 5.4.6. The number of VRRW iterations

M is set to 50000, which is enough for convergence as shown in Section 5.4.5. For

baselines, we tune their hyperparameters to achieve the best local counterfactual rates

while maintaining an average distance to input graphs that is smaller than the distance

threshold θ.

5.4.2 Recourse Quality

We start by comparing the recourse quality between GCFExplainer and baselines.

Table 5.3 shows the recourse coverage with θ = 0.1 and median recourse cost of the

top 10 counterfactual graphs (i.e., k = 10). We first notice that the two state-of-the-art

local counterfactual explainers have similar performance as Ground-Truth, consis-

tent with our claim that local counterfactual examples from existing methods are not

good candidates for a global explanation. The proposed GCFExplainer, on the other

hand, achieves significantly better performance for global recourse quality. Compared to

the best baseline, RCExplainer, GCFExplainer realizes a 46.9% gain in recourse

coverage and a 9.5% reduction in recourse cost.

Next, we show the recourse coverage and cost for different sizes of counterfactual

summary in Figure 5.3. As expected, adding more graphs to the recourse representation

increases recourse coverage while decreasing recourse cost, at the cost of interpretability.

And GCFExplainer maintains a constant edge over the baselines.

112

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

NCI1 Mutagenicity AIDS Proteins
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

Ground-Truth 16.54% 0.1326 28.96% 0.1275 0.41% 0.2012 8.47% 0.2155
RCExplainer 15.22% 0.1370 31.99% 0.1290 8.96% 0.1531 8.74% 0.2283

CFF 17.61% 0.1331 30.43% 0.1327 3.39% 0.1669 3.83% 0.2557
GCFExplainer 27.85% 0.1281 37.08% 0.1135 14.66% 0.1516 10.93% 0.1856

Table 5.3: Recourse coverage (θ = 0.1) and median recourse cost comparison between
GCFExplainer and baselines for a 10-graph global explanation. GCFExplainer
consistently and significantly outperforms all baselines across different datasets.

0

20

40

60

80

Co
ve

ra
ge

 (%
)

NCI1

0

20

40

60

80 Mutagenicity

0

10

20

30

40 AIDS

0

10

20

30

40
Proteins

0 20 40 60 80 100
0.08

0.12

0.16

0.20

0.24

Co
st

0 20 40 60 80 100
0.09

0.13

0.17

0.21

0.25

0 20 40 60 80 100
0.11

0.14

0.17

0.20

0.23

Ground-Truth RCExplainer CFF GCFExplainer

0 20 40 60 80 100
0.11

0.25

0.39

0.53

0.67

0.0 0.2 0.4 0.6 0.8 1.0
Size (k)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Coverage and cost performance comparison between GCFExplainer and
baselines based on different counterfactual summary sizes. GCFExplainer consis-
tently outperforms the baselines across different sizes.

We also compare the recourse coverage based on different distance thresholds θ, with

results shown in Figure 5.4. While coverage increases for all methods as the thresh-

old increases, GCFExplainer consistently outperforms the baselines across different

thresholds.

5.4.3 Global Counterfactual Insight

We have demonstrated the superiority of GCFExplainer based on various quality

metrics for global recourse. Here, we show how GCFExplainer provides global insights

compared to local counterfactual examples. Figure 5.5 illustrates (a) four input unde-

sired graphs with a similar structure from the AIDS dataset, (b) corresponding local

113

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

0.00 0.04 0.08 0.12 0.16
0

30

60

90

Co
ve

ra
ge

 (%
)

NCI1

0.00 0.04 0.08 0.12 0.16
0

30

60

90
Mutagenicity

0.00 0.04 0.08 0.12 0.16
0

20

40

60 AIDS

Ground-Truth RCExplainer CFF GCFExplainer

0.00 0.04 0.08 0.12 0.16
0

10

20

30

40 Proteins

0.0 0.2 0.4 0.6 0.8 1.0
Distance threshold (θ)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Recourse coverage comparison between GCFExplainer and baselines
based on different distance threshold values (θ). GCFExplainer consistently out-
performs the baselines across different θ.

counterfactual examples (based on RCExplainer and CFF), and (c) the representa-

tive global counterfactual graph from GCFExplainer covering the input graphs. Our

goal is to understand why the input graphs are inactive against AIDS (undesired) and

how to obtain the desired property with minimal changes.

The local counterfactuals in (b) attribute the classification results to different edges

in individual graphs (shown as red dotted lines) and recommend their removal to make

input graphs active against HIV. Note that while only two edits are proposed for each

individual graph, they appear at different locations, which are hard to generalize for a

global view of the model behavior. In contrast, the global counterfactual graph from

GCFExplainer presents a high-level recourse rule. Specifically, the carbon atom with

the carbon-oxygen bond is connected to two other carbon atoms in the input graphs,

making them ketones (with a C=O bond) or ethers (with a C-O bond). On the other

hand, the global counterfactual graph highlights a different functional group, aldehyde

(shown in blue), to be the key for combating AIDS. In aldehydes, the carbon atom with

a carbon-oxygen bond is only connected to one other carbon atom, leading to different

chemical properties compared to ketones and ethers. Indeed, aldehydes have been shown

to be effective HIV protease inhibitors [249].

Finally, this case study also demonstrates that counterfactual candidates found by

114

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

(a) Input graphs

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

CCO

C

C

C

C

C

C
C

C

(b) Local counterfactuals

CCO

C

C

C

C

C

C
C

C

(c) Global counterfactual

Figure 5.5: Illustration of global and local counterfactual explanations for the
AIDS dataset. The global counterfactual graph (c) presents a high-level recourse
rule—changing ketones and ethers into aldehydes (shown in blue)—to combat HIV,
while the edge removals (shown in red) recommended by local counterfactual examples
(b) are hard to generalize.

GCFExplainer are better for global explanation than local counterfactuals. We note

that while the graph edit distance between the local counterfactuals and their correspond-

ing input graphs is only 2, they do not cover other similarly structured input graphs (with

distance > 5). Meanwhile, our global counterfactual graph covers all input graphs (with

distance ≤ 4).

115

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

5.4.4 Ablation Study

We then conduct an ablation study to investigate the effectiveness of GCFEx-

plainer components. We consider three alternatives:

• GCFExplainer-NVR: no vertex-reinforcement (N(v) = 1)

• GCFExplainer-NIF: no importance function (I(v) = 1)

• GCFExplainer-NDT: no dynamic teleportation (pτ (G) = 1/|G|)

The coverage results are shown in Table 5.4. We observe decreased performance when

any of GCFExplainer components is absent.

NCI1 Mutagenicity AIDS Proteins

GCFExplainer-NVR 24.56% 35.44% 11.33% 8.56%
GCFExplainer-NIF 13.29% 29.16% 4.54% 6.83%
GCFExplainer-NDT 27.34% 36.35% 14.05% 9.28%

GCFExplainer 27.85% 37.08% 14.66% 10.93%

Table 5.4: Ablation study results based on recourse coverage.

5.4.5 Convergence Analysis

In this subsection, we show the empirical convergence of VRRW based on the Muta-

genicity dataset in Figure 5.6. We observe that the coverage performance for different

summary sizes starts to converge after 15000 iterations and fully converges after 50000

iterations, which is the number we applied in our experiments.

5.4.6 Sensitivity Analysis

The only hyperparameter of GCFExplainer we tune is α in Equation 5.3 that

weights the individual coverage and gain of coverage for the importance function. Ta-

ble 5.5 shows the results based on different α. While GCFExplainer outperforms

116

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

0 15000 30000 45000 60000
Number of VRRW iterations (M)

0.25

0.40

0.55

0.70

0.85

Co
ve

ra
ge

 (%
)

10 25 50 100 200

Figure 5.6: Convergence of VRRW for the Mutagenicity dataset based on recourse
coverage with different summary sizes. VRRW fully converges after M = 50000
iterations.

baselines with all different α, we observe that individual coverage works better for NCI1

and gain of cumulative coverage works better for other datasets.

NCI1 Mutagenicity AIDS Proteins

α = 0.0 27.85% 36.87% 12.83% 10.11%
α = 0.5 27.50% 36.59% 14.66% 10.38%
α = 1.0 22.27% 37.08% 13.99% 10.93%

Table 5.5: Sensitivity analysis on α, the weight between individual coverage and gain
of coverage in the importance function.

5.4.7 Running Time

Table 5.6 summarizes the running times of generating counterfactual candidates based

on different methods. GCFExplainer has a competitive running time albeit exploring

more counterfactual graphs in the process. We also include results for GCFExplainer-

S which samples a maximum of 10000 neighbors for computing the importance at each

step. It achieves better running time at a negligible cost of 3.3% performance loss on

117

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

average. Finally, summarizing the counterfactual candidates takes less than a second for

all methods.

NCI1 Mutagenicity AIDS Proteins

RCExplainer 30454 52549 29047 8444
CFF 22794 31749 21296 6412

GCFExplainer 19817 24006 2615 19246
GCFExplainer-S 19365 18798 2539 7429

Table 5.6: Counterfactual candidates generation time comparison. GCFExplainer
(-S) has competitive running time albeit exploring more counterfactual graphs.

5.5 Related Work

Explanations for Graph Neural Networks. There is much research [222, 223, 224,

225] on explaining graph neural networks (GNNs). The first proposed method, GN-

NExplainer [222], finds the explanatory subgraph and sub-features by maximizing the

mutual information between the original prediction and the prediction based on the sub-

graph and sub-features. Later, PGExplainer [223] provides an inductive framework that

extracts GNN node embeddings and learns to map embedding pairs to the probability

of edge existence in the explanatory weighted subgraph. PGMExplainer [224] builds a

probabilistic explanation model that learns new predictions from perturbed node fea-

tures, performs variable selection using Markov blanket of variables, and then produces

a Bayesian network via structure learning. In XGNN [225], the authors find model-level

explanations by a graph generation module that outputs a sequence of edges using re-

inforcement learning. These explanation methods focus on factual reasoning while the

goal of our work is to provide a global counterfactual explanation for GNNs.

Counterfactual Explanations. Recently, there are several attempts to have explana-

tions of graph neural networks (GNNs) via counterfactual reasoning [226, 227, 228, 229].

118

Global Counterfactual Explainer for Graph Neural Networks Chapter 5

One of the earlier methods, CF-GNNExplainer [226], provides counterfactual explana-

tions in terms of a learnable perturbed adjacency matrix that leads to the flipping of

classifier prediction for a node. On the other hand, RCExplainer [227] aims to find a

robust subset of edges whose removal changes the prediction of the remaining graph by

modeling the implicit decision regions based on GNN graph embeddings. In [228], the

authors investigate counterfactual explanations for a more specific class of graphs—the

brain networks—that share the same set of nodes by greedily adding or removing edges

using a heuristic. More recently, the authors of CFF [229] argue that a good explanation

for GNNs should consider both factual and counterfactual reasoning and they explicitly

incorporate those objective functions when searching for the best explanatory subgraphs

and sub-features. Counterfactual reasoning has also been applied for link prediction

[250]. All the above methods produce local counterfactual examples while our work aims

to provide a global explanation in terms of a summary of representative counterfactual

graphs.

5.6 Conclusion

We have proposed GCFExplainer, the first global counterfactual explainer for

graph classification. Compared to local explainers, GCFExplainer provides a high-

level picture of the model behavior and effective global recourse rules. We hope that our

work will not only deepen our understanding of graph neural networks but also build a

bridge for experts from other domains to leverage deep learning models for high-stakes

decision-making.

119

Chapter 6

Other Problems Related to

Multiscale Graphs

Many real-world complex systems can be modeled as multiscale networks, where nodes

form dense clusters at different structural scales. For example, as shown in Figure 6.1,

the global network of airports connected by domestic and international flights can be nat-

urally organized into country and continent-level clusters [69]. And biological networks

such as structural representation of proteins also exhibit a hierarchy of increasingly finer

partitions from motifs such as α-helices and β-sheets (secondary structures) to sequences

of amino acids (primary structures) [28].

In this chapter, we summarize our ongoing works that are related to representation

learning for multiscale networks. Specifically, we first look at the problem of how to

leverage multiscale neighborhood information for effective semi-supervised node classifi-

cation with Graph Convolutional Networks. We then compare different quality functions

for multiscale community detection and investigate how to find the natural scale for

each community. Finally, we propose a novel method based on graph autoencoders for

multiscale graph anomaly detection.

120

Other Problems Related to Multiscale Graphs Chapter 6

Figure 6.1: Global airport network where different airports are organized by countries
and continents.

6.1 Graph Neural Diffusion Networks

6.1.1 Overview

Graph Neural Networks (GNNs) [142, 143, 144] have achieved great success in node

classification by learning neighborhood-enriched node embeddings. Graph Convolutional

Networks (GCN) [142] is a pioneering GNN model that introduces a simple but well-

behaved layer-wise message passing rule, which is derived from the first-order approxi-

mation of spectral graph convolutions [251]. However, determining the scales of neigh-

borhoods from which the information is aggregated is not a trivial task, especially when

the labels are scarce. Specifically, stacking too many graph convolutional layers leads to

over-smoothing, i.e., nodes from different classes become indistinguishable, while stacking

too few layers leads to under-smoothing, i.e., node features may not be sufficiently prop-

agated for effective embeddings. Figure 6.2 illustrates this idea by showing the t-SNE

visualization [61] of the GCN node embeddings based on a randomized weight matrix

and k layers of neighborhood aggregation for the Cora dataset [188]. By selecting the

right scale of the neighborhood for aggregation (in this case, k = 19), the ground-truth

121

Other Problems Related to Multiscale Graphs Chapter 6

cluster structure can be revealed even with an untrained weight matrix.

40 20 0 20 40
60

40

20

0

20

40

60

(a) k = 0 50 25 0 25 50

60

40

20

0

20

40

60

80

(b) k = 1 50 25 0 25 50

60

40

20

0

20

40

60

(c) k = 19 4 2 0 2 4
6

4

2

0

2

4

6

8

(d) k = 10, 000

Figure 6.2: The t-SNE visualization of the GCN node embeddings based on a random-
ized weight matrix and k layers of neighborhood aggregation for the Cora dataset.
Selecting k = 19 as the scale of aggregation reveal the cluster structures, while nei-
ther small (k = 0, 1) nor large scales (k = 10, 000) achieve comparable effects. Colors
denote ground-truth node labels.

There are several attempts in the current literature to address the selection of the

right scales for GCNs. JK-Nets [252] proposes to aggregate the output of each layer

by skipping connections, which allows selective information aggregation from neighbor-

hoods of different scales. However, their performance improvement over vanilla GCN is

marginal, possibly due to their stacking of too many graph convolutional layers, which is

hard to train. Simple Graph Convolution (SGC) [146] achieves similar results to GCN by

removing all the nonlinear activation functions and raising the graph Laplacian matrix

to the K-th power, but as a cost, the local neighborhood information is discarded. More

recently, PPNP [253] and GDC [254] adopt aggregation weights from existing graph diffu-

sions such as the personalized PageRank diffusion [255] and the heat kernel diffusion [256].

Their key weakness is that the diffusion weights for different scales are predefined and

fixed, which limits their adaptivity to datasets with different characteristics. Besides, the

closed-form solution of the personalized PageRank diffusion or the heat kernel diffusion

is also computationally expensive.

To properly address the multiscale neighborhood aggregation problem of GCNs, we

122

Other Problems Related to Multiscale Graphs Chapter 6

propose to learn the aggregation weights for different structural scales in a single layer.

The usage of a shallow architecture mitigates the hard-to-train problem of over-stacked

GCNs while exploiting both local and global information in an integral manner. Since

explicitly computing each scale of the node neighborhood information encoded in dif-

ferent powers of the graph Laplacian matrix is less efficient, we analyze the layer-wise

propagation rule of GCN from the perspective of power iteration and derive a sequence

of matrices. Then, we apply Single-Layer Perceptrons (SLPs) and Multi-Layer Percep-

trons (MLPs) to learn the aggregation weights. Differing from linear graph diffusions

adopted by existing methods, the aggregation weights in our model are learned by neural

networks and can adapt to different datasets, which we call neural diffusions. In addi-

tion, linear diffusion dynamics may not capture the complex relationships between nodes.

Thus, we also derive a variant of neural diffusions from nonlinear graph diffusion [257],

by adopting the MLP to learn the nonlinear functions in the dynamical system. We call

our GCN model equipped with neural diffusions GND-Nets (for Graph Neural Diffu-

sion Networks). And as we will show in our experiments, GND-Nets outperforms other

GNNs in semi-supervised node classification, especially for datasets with very sparse node

labels.

Our main contributions can be summarized as follows:

• We interpret the layer-wise propagation rule of GCNs from the perspective of power

iteration and propose to solve both the over-smoothing and under-smoothing of

GCNs by aggregating multiscale neighborhood information in a single layer. The

information is encoded in a sequence of matrices generated during the convergence

process of power iteration.

• We propose a new class of graph diffusions called neural diffusions with three vari-

ants. The first two variants adopt the SLP and MLP to aggregate the multiscale

123

Other Problems Related to Multiscale Graphs Chapter 6

neighborhood information. The last variant adopts the MLP to learn the nonlinear

function in the dynamical system. The utilization of neural networks enables neural

diffusions to adapt to different datasets.

• We develop a new GNN model called GND-Nets that combines GCNs and graph

neural diffusions and demonstrate its effectiveness and efficiency by carrying out

extensive comparative studies with state-of-the-art methods on various sparsely-

labeled graphs.

6.1.2 Method

Let G = (V,E,X) be an attributed graph of interest where V is the set of n nodes, E

is the set edges, A ∈ Rn×n is the corresponding adjacency matrix and X = (x1, ..., xn)> ∈

Rn×d is the d-dimensional node attribute (feature) matrix. Further, denote Ã = A+ I as

the adjacency matrix with self-loops and D̃ as the corresponding degree matrix. Then

the corresponding random-walk transition matrix M̃ can be computed as D̃−1Ã. We

want to solve the semi-supervised node classification problem, defined as follows:

Definition 6.1 (Semi-Supervised Node Classification) Given a graph G = (V,E

,X), nodes {v1, · · · , vm} are labeled as Yl = [y1, · · · , ym]> ,m � n (ym denotes the one-

hot encoding of the class label) and nodes {vm+1, · · · , vn} are unlabeled. The goal is to

learn a classifier to infer the labels Ŷu = [ŷm+1, · · · , ŷn]> of the unlabeled nodes based on

the given information.

Graph Diffusions

Different graph diffusion dynamics can be generalized as follows:

u(K) =
K−1∑
k=0

αkM̃
ku(0) (6.1)

124

Other Problems Related to Multiscale Graphs Chapter 6

where u(0) is a vector of length n with its entries recording the initial material at each

node, αk is a sequence of nonnegative decaying weights satisfying
∑

k αk = 1, and u(K)

captures how the material diffuses through the graph. If αk takes the form of αk =

(1 − γ) · γk with teleport probability γ ∈ (0, 1), Equation 6.1 becomes the personalized

PageRank diffusion [255]; if αk takes the form of αk = exp(−t) tk
k!

with the diffusion time

t, Equation 6.1 becomes the heat kernel diffusion [256].

We can also consider the continuous-time diffusion from the perspective of the dy-

namical system. Specifically, the heat kernel diffusion is a closed-form solution (u(∞) =

exp(−tM̃)u(0)) of the following differential equation:

∂u

∂t
= −M̃g(u) (6.2)

where g(u) = u.

Multiscale Neighborhood Information

By replacing the initial diffusion material vector u(0) with the projected node attribute

matrix Z = XΘ in Equation 6.1 and Equation 6.2, where Θ is a learnable weight matrix,

we can get the embedding matrix H encoding the multiscale neighborhood information

as follows:

H =
K−1∑
k=0

αkM̃
kZ (6.3)

∂H

∂t
= −M̃g(H) (6.4)

Neural Diffusions

Instead of using fixed diffusion weights (αk and g(·)) from existing diffusion dynamics,

we propose to learn them directly from data with the three following parameterizations:

125

Other Problems Related to Multiscale Graphs Chapter 6

• GND-Nets-SLP:H = SLP
(

[Z, M̃Z, · · · , M̃K−1Z]
)

= σ
(

(
∑K−1

k=0 βkM̃
k)Z
)

, where

βk are the learnable weights, and σ is an non-linear activation function.

• GND-Nets-MLP: H = MLP
(

[Z, M̃Z, · · · , M̃K−1Z]
)

, where the MLP is param-

eterized to take the stacked multiscale neighborhood information matrices as input.

• GND-Nets-DS: We parameterize the differential equation (Equation 6.4) as

∂H/∂t = −M̃MLP(H), and then approximate the derivative with forward Euler

integration to get the final embedding H = H(K) via iterative relationship H(k+1) =

H(k) − M̃MLP(H(k)), where H(0) = Z.

Finally, we add a fully connected layer parameterized by Θ′ with softmax activation to

predict the label probabilities:

Y = softmax(HΘ′) (6.5)

6.1.3 Results

We compare GND-Nets with ten state-of-the-art GNN models for semi-supervised

node classification: GCN [142], ChebyNet [258], JK-Nets [252], SGC [146], PPNP

and its variant PPNP-HK [253], N-GCN [259], MixHop [260], LanczosNet [261],

and DCNN [262]. The average classification accuracy for Cora [188], PubMed [190],

and Computers [191] datasets are shown in Table 6.1, Table 6.2, and Table 6.3, respec-

tively. For all datasets with different numbers of labeled nodes per class, our GND-Nets

consistently outperforms existing approaches.

We also show the learned mean absolute weights (βks) from GND-Nets-SLP for

Cora and PubMed in Figure 6.3. Compared to existing methods that adopt the fixed

diffusion weights, GND-Nets learns the optimal weights for different datasets to enable

126

Other Problems Related to Multiscale Graphs Chapter 6

labeled nodes/class 1 2 3 4 5

GND-Nets-SLP 56.04±11.54 66.15±8.58 70.52±6.38 73.81±3.62 74.79±3.15
GND-Nets-MLP 55.85±10.54 66.45±7.30 71.14±6.06 74.40±3.41 75.55±3.92
GND-Nets-DS 55.98±8.54 63.22±9.59 70.02±6.54 71.57±5.22 73.82±4.77

GCN 36.33±14.90 52.03±16.63 60.71±10.90 66.24±4.57 68.61±3.89
ChebyNet 24.21±9.47 32.63±13.31 39.18±13.49 47.78±11.80 55.38±8.67
JK-Nets 43.67±8.66 55.65±7.15 60.61±6.19 64.58±4.47 66.99±4.29
SGC 38.97±11.81 55.59±8.31 61.31±6.73 65.50±4.49 67.44±3.75
PPNP 45.91±12.46 59.47±9.21 65.66±7.73 69.48±5.86 71.43±5.08

PPNP-HK 35.99±12.17 57.64±12.26 64.78±7.81 69.07±4.91 71.27±4.56
N-GCN 42.03±11.14 53.06±7.48 58.09±5.14 61.98±4.16 64.21±3.37
MixHop 31.09±13.46 44.50±11.61 52.41±8.99 58.38±8.51 62.07±8.03

LanczosNet 44.34±10.46 55.71±6.88 61.01±5.96 64.75±4.10 66.72±4.63
DCNN 21.52±9.04 26.55±10.54 36.90±9.34 44.72±5.97 49.19±4.13

Table 6.1: Average classification accuracy (%) over 30 different data splits on Cora
with varying numbers of labeled nodes. GND-Nets consistently outperforms existing
approaches at all label sparsity levels.

labeled nodes/class 1 2 3 4 5

GND-Nets-SLP 58.63±9.83 65.52±9.57 68.12±5.94 70.43±4.87 71.10±4.48
GND-Nets-MLP 58.19±8.67 65.25±8.44 67.08±8.58 69.17±4.64 69.88±5.23
GND-Nets-DS 59.44±10.21 65.75±8.96 69.08±5.44 69.90±4.93 71.51±4.53

GCN 47.34±11.72 58.66±9.62 62.40±7.66 66.02±5.43 67.47±4.40
ChebyNet 45.95±8.56 52.81±10.94 58.26±8.02 60.57±8.19 62.31±6.92
JK-Nets 49.38±11.05 59.02±9.45 62.94±7.41 65.25±5.56 66.46±5.78
SGC 53.18±10.00 60.68±7.38 64.29±5.20 66.69±4.59 67.56±4.18
PPNP OOM OOM OOM OOM OOM

PPNP-HK OOM OOM OOM OOM OOM
N-GCN 51.37±10.02 58.89±8.27 62.81±4.42 64.81±4.73 66.17±4.30
MixHop 44.50±13.84 48.11±13.66 55.73±9.31 60.02±7.03 62.16±6.83

LanczosNet 52.21±10.12 60.55±10.51 65.00±5.59 67.51±4.72 68.27±4.56
DCNN 49.61±7.83 58.01±7.82 61.01±6.63 63.43±5.26 65.49±4.73

Table 6.2: Average classification accuracy (%) over 30 different data splits on Pubmed
with varying numbers of labeled nodes (OOM: Out of Memory). GND-Nets consis-
tently outperforms existing approaches at all label sparsity levels.

127

Other Problems Related to Multiscale Graphs Chapter 6

labeled nodes/class 1 2 3 4 5

GND-Nets-SLP 33.48±12.87 42.82±15.27 47.71±17.82 50.40±20.28 58.52±16.55
GND-Nets-MLP 38.26±12.76 46.75±18.41 57.89±16.24 64.03±15.08 68.90±6.88
GND-Nets-DS 23.14±12.32 29.78±10.05 34.06±11.01 43.39±9.14 50.30±10.61

GCN 10.54±8.95 12.64±11.12 13.41±12.75 12.13±10.89 13.30±14.29
ChebyNet 12.50±5.66 11.84±5.39 11.68±4.92 11.49±4.96 13.06±5.04
JK-Nets 8.31±8.81 9.29±7.96 12.36±9.42 10.71±9.14 10.91±8.10
SGC 10.66±10.66 13.49±10.76 12.38±11.23 13.43±11.82 13.25±12.84
PPNP OOM OOM OOM OOM OOM

PPNP-HK OOM OOM OOM OOM OOM
N-GCN 13.84±10.85 15.57±7.84 16.52±7.21 18.75±8.07 19.35±7.45
MixHop 10.27±7.82 10.91±8.16 10.34±7.17 11.57±9.12 10.95±6.71

LanczosNet 9.49±6.59 9.15±6.99 9.13±6.74 7.69±4.63 7.01±4.14
DCNN 9.35±9.73 12.25±11.88 13.84±14.36 13.47±14.92 17.28±18.71

Table 6.3: Average classification accuracy (%) over 30 different data splits on Com-
puters with varying numbers of labeled nodes (OOM: Out of Memory). GND-Nets
consistently outperforms existing approaches at all label sparsity levels.

0 5 10 15
index

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
ab

so
lu

te
 w

ei
gh

t

(a) Cora

0 5 10 15
index

0.25

0.28

0.31

0.34

0.37

0.40

0.43

M
ea

n
ab

so
lu

te
 w

ei
gh

t

(b) PubMed

Figure 6.3: Learned mean absolute weights (βks) from GND-Nets-SLP for different
neighborhood scales. GND-Nets learns the optimal weights for different datasets to
enable better performance for node classification.

128

Other Problems Related to Multiscale Graphs Chapter 6

better performance for node classification.

6.2 Multiscale Community Detection

6.2.1 Overview

Community detection, which consists of grouping nodes in a graph such that they are

connected densely within each community (cluster) and sparsely across communities, is

one of the long-standing graph-based machine learning tasks [58]. Most existing commu-

nity detection algorithms start with a predefined quality function for different community

partitions, such as normalized cut [263] or modularity [111]. Since optimizing those qual-

ity functions exactly is usually NP-hard, many heuristics have been proposed to find the

best community partition approximately [264, 265, 266].

However, extending the quality functions to detect communities at different structural

scales is non-trivial. One of the recent approaches, Markov Stability [28, 36], designs a

random-walk based multiscale node similarity metric, Autocovariance (AC), and con-

structs a clustered version of it as the community quality function. By tuning the length

of the random-walk, clustered AC enables the detection of community structures at dif-

ferent structural scales. One important weakness of this method is that the scale has to

be provided by the user and is fixed for the entire graph, which limits its application in

practice when natural scales for different communities are unknown and heterogeneous.

For example, in the global airport network shown in Figure 6.1, even communities at the

same level, e.g., countries, can have different sizes.

In this work, we address this limitation of Markov Stability by considering a differ-

ent random-walk based node similarity metric in the quality function, Pointwise Mutual

Information (PMI) [35]. It is the similarity metric implicitly preserved by popular graph

129

Other Problems Related to Multiscale Graphs Chapter 6

embedding methods such as DeepWalk [8] and node2vec [9], and has been shown to lead

to better node-level downstream task performance including community detection in our

previous work [1]. However, the most interesting property of PMI for multiscale commu-

nity detection is that it reveals the natural scale of ground-truth communities. Specifically,

consider an instance of the Stochastic Block Model (SBM) [59] with three blocks (com-

munities) of sizes (10, 20, 40) connected by intra-block edges with probability p = 0.9

and inter-block edges with probability q = 0.1, as shown in Figure 6.4a. Figure 6.4b

shows the AC scores for the three communities as a function of the scaling parameter,

Markov time τ , and Figure 6.4c shows the corresponding PMI scores. Notice that AC

scores monotonously decrease for all communities with increasing Markov time while

PMI scores reach a unique peak at different Markov times for different communities—

the Markov time at which the peak is reached corresponds to the natural scale of the

community. The goal of this work is to formally establish this property for PMI based

on theoretical analysis and design a multiscale community detection algorithm to take

advantage of it. In the next subsection, we share our current progress in the theoretical

analysis.

(a) SBM-(10, 20, 40)

0 1 2 3 4 5
Markov time τ

0.00

0.04

0.08

0.12

0.16

0.20

AC

10-node 20-node 40-node

(b) AC

0 1 2 3 4 5
Markov time τ

0

100

200

300

400

500

PM
I

10-node 20-node 40-node

(c) PMI

Figure 6.4: Multiscale community detection with PMI. (a) Visualization of a Stochas-
tic Block Model instance with three blocks (communities) of sizes (10, 20, 40); (b) AC
of each community monotonously decreases with increasing Markov time; (c) PMI
of communities with different sizes reach unique peaks at different Markov times,
revealing their natural scales.

130

Other Problems Related to Multiscale Graphs Chapter 6

6.2.2 Theoretical Analysis

Definitions

Let G = (V,E) be an undirected weighted graph, where V denotes the set of n nodes

and E denotes the set of edges, and A ∈ Rn×n and d/D are the weighted adjacency

matrix and degree vector/matrix, respectively. The Laplacian matrix Lrw and stationary

distribution π/Π of the standard random-walk on the graph are

Lrw = I −D−1A (6.6)

π = d/ vol(G),Π = D/ vol(G) (6.7)

where vol(G) =
∑n

i=1 di is the volume of the graph G.

AC [28] and PMI [35] are node similarity metrics that provide linear and non-linear

views of random-walk based proximity, governed by a scaling parameter τ , which is also

called Markov time. The AC and PMI similarity matrices are defined as

RAC(τ) = Π exp(−τLrw)− ππ> (6.8)

RPMI(τ) = log(Π exp(−τLrw))− log(ππ>) (6.9)

where exp() is the matrix exponential and log() is the element-wise logarithm.

To construct community quality functions based on these similarity matrices, consider

a community indicator vector h ∈ Rn, where hi = 1 if node i belongs to community h

and hi = 0, otherwise. Then the quality of community h is defined as the clustered node

131

Other Problems Related to Multiscale Graphs Chapter 6

similarity metric R(τ) (either RAC(τ) or RPMI(τ)):

r(h; τ) = h>R(τ)h (6.10)

The Markov stability algorithm [28] finds the best graph partition of c communities

H = [h1, · · · ,hc] that maximizes the quality of all communities in the partition at a

given scale τ ,

r(H; τ) = tr(H>R(τ)H) =
c∑
j=1

hj
>R(τ)hj (6.11)

Note that tuning the scale τ simultaneously changes the quality for each community in

the partition. Instead, we argue that with the scale-revealing property of PMI, we can

find the best partition that maximizes the quality of all communities computed at their

natural scales τj. That is, we want to maximize

r(h1, · · · ,hc; τ1, · · · , τc) =
c∑
j=1

hj
>R(τj)hj (6.12)

with respect to both h1, · · · ,hc and τ1, · · · , τc.

Monotonicity analysis for AC

We first show that the community quality function based on AC cannot reveal the

natural scale since it is monotonously decreasing with Markov time τ . Formally, we have

the following theorem.

Theorem 6.1 (Monotonicity of AC) For any community h, the quality function based

on AC, rAC(h; τ) = h>RAC(τ)h, is monotonously nonincreasing with τ .

132

Other Problems Related to Multiscale Graphs Chapter 6

Proof: The derivative of rAC(τ) with respect to τ is

r′AC(h, τ) = h>R′AC(τ)h

= −h>ΠLrw exp(−τLrw)h

(6.13)

To evaluate the matrix exponential exp(−τLrw), consider the symmetric Laplacian ma-

trix Lsym = D−1/2LD−1/2, which is similar to Lrw:

Lrw = D−1/2LsymD
1/2 (6.14)

Let the eigendecomposition of Lsym = UΛU>, we have:

exp(−Lrwτ) = exp(−D−1/2UΛU>D1/2τ)

=
∞∑
k=0

1

k!
(−τ)k(D−1/2UΛU>D1/2)k

=
∞∑
k=0

1

k!
(−τ)k(D−1/2UΛkU>D1/2)

= D−1/2U(
∞∑
k=0

1

k!
(−τ)kΛk)U>D1/2

= D−1/2U exp(−Λτ)U>D1/2

(6.15)

Substituting this into Equation 6.13, we have

r′AC(h, τ) = −h>ΠLrw exp(−τLrw)h

= −h>D(D−1/2UΛU>D1/2)(D−1/2U exp(−Λτ)U>D1/2)h/ vol(G)

= −h>D1/2U(Λ exp(−τΛ)U>D1/2h/ vol(G)

(6.16)

133

Other Problems Related to Multiscale Graphs Chapter 6

Since Lsym is positive semidefinite with nonnegative eigenvalues, we can write Λ = (Λ1/2)2

and let S = D1/2UΛ1/2 exp(−τΛ/2), then

r′AC(h, τ) = −h>D1/2U(Λ exp(−τΛ)U>D1/2h/ vol(G)

= −h>SS>h/ vol(G) = −‖S>h‖2/ vol(G) ≤ 0

(6.17)

which completes the proof.

Monotonicity analysis for PMI

Analyzing the monotonicity of the community quality function based on PMI is more

complicated than that of AC, due to the non-linearity introduced by the pointwise loga-

rithm function. Our goal is to prove the following hypothesis that supports the scaling-

revealing property of PMI:

Hypothesis 6.1 (Scaling-revealing property of PMI) For any community h that

is not a single node or an entire connected component, the quality function based on

PMI, rPMI(h; τ) = h>RPMI(τ)h, has a single maximizer τ ∗ ≥ 0.

The proof will start with computing the derivative of the quality function:

r′PMI(h, τ) = h>R′PMI(τ)h

= −h>
Lrw exp(−τLrw)

exp(−τLrw)
h

(6.18)

Here, the division represents the elementwise division of the two matrices, which pro-

hibits us from deriving a similar proof as the one for AC. Again, to evaluate the matrix

exponential, we consider the symmetric Laplacian matrix and its eigendecomposition:

134

Other Problems Related to Multiscale Graphs Chapter 6

Lsym = UΛU> =
∑n

i=1 λiuiu
>
i , then

r′PMI(h, τ) = −h>
Lrw exp(−τLrw)

exp(−τLrw)
h

= −h>
D−1/2(

∑n
i λie

−λiτuiu
>
i)D1/2

D−1/2(
∑n

i e
−λiτuiu>i)D1/2

h

= −h>
∑n

i λie
−λiτuiu

>
i∑n

i e
−λiτuiu>i

h

(6.19)

Further reduction of the above equation requires us to fully characterize the spectrum

of Lsym, which is non-trivial. So far, we have been able to analyze the following special

cases, with the general proof of Hypothesis 6.1 left for future work:

• The complete graph.

– d = (n− 1)1 , d1, and

Lsym =


1, i = j

−1/(n− 1), i 6= j

– λ1 = 0, u1 = 1/
√
n; λ2 = · · · = λn = n/(n− 1) , λ,

∑n
i=2 uiui

> = I − En/n,

where En is the all-one matrix of size n.

– The PMI matrix and its derivative:

RPMI(τ) =


log(1 + (n− 1)e−λτ), i = j

log(1− e−λτ), i 6= j

R′PMI(τ) =


− ne−λτ

1 + (n− 1)e−λτ
, i = j

ne−λτ

(n− 1)(1− e−λτ)
, i 6= j

135

Other Problems Related to Multiscale Graphs Chapter 6

– For any size 1 < k < n community h(k),

r′PMI(h(k); τ) =
n2e−λτ ((n− 1)ke−λτ − n+ k)

(n− 1)(1 + (n− 1)e−λτ)(1− e−λτ)

which has a unique solution τ ∗ = n−1
n

log (n−1)k
n−k . This means rPMI(h(k); τ) has

a single maximizer.

– The best partition assigns each node as a singleton community.

• Disconnected cliques.

– The symmetric Laplacian matrix is a block diagonal matrix of individual sym-

metric Laplacian matrix for each clique, and the spectral analysis is similar to

the complete graph case.

– Any community that includes a node pair belonging to different cliques has

a PMI value of −∞. Any community that is a subset of a clique but not a

single node has a single maximizer for its PMI value.

– The best partition assigns each node to the clique it belongs to.

• Weakly connected cliques: c weakly connected cliques of size n each with inter-

clique edge weight ε < 1.

– d = (n− 1 + (c− 1)nε)1 , d1 and

(Lsym)ij =


1, i = j

−1

d
, i 6= j and i, j ∈ Cs

− ε
d
, i ∈ Cs, j ∈ Ck

– λ1 = 0, u1 = 1/
√
cn; λ2 = · · · = λc = cnε/d , λα,

∑c
i=2 uiu

>
i = (Ic −

136

Other Problems Related to Multiscale Graphs Chapter 6

Ec/c)⊗En/n, where ⊗ stands for the Kronecker product; λc+1 = · · · = λcn =

(n+ (c− 1)nε)/d , λβ,
∑cn

i=c+1 uiu
>
i = Icn − Ic ⊗ En/n.

– The PMI matrix and its derivative:

RPMI(τ) =


log
(
1 + (c− 1)e−λατ + c(n− 1)e−λβτ

)
, i = j

log
(
1 + (c− 1)e−λατ − ce−λβτ

)
, i 6= j and i, j ∈ Cs

log
(
1− e−λατ

)
, i ∈ Cs, j ∈ Ck

R′PMI(τ) =



−(c− 1)λαe
−λατ − c(n− 1)λβe

−λβτ

1 + (c− 1)e−λατ + c(n− 1)e−λβτ
, i = j

−(c− 1)λαe
−λατ + cλβe

−λβτ

1 + (c− 1)e−λατ − ce−λβτ
, i 6= j and i, j ∈ Cs

λαe
−λατ

1− e−λατ
, i ∈ Cs, j ∈ Ck

– However, based on the PMI and its derivative above, it is hard to analyze the

optima and roots of the clustered PMI and its derivative.

• Two-level weakly connected cliques: Each micro community is a clique of size n.

Every c1 micro communities form a macro community with edges of weight ε1

connecting inter-micro pairs. There are c2 such macro communities in total in the

graph, and inter-macro pairs are connected by edges weight ε2.

– d = (n− 1 + (c1 − 1)nε1 + (c2 − 1)c1nε2)1 , d1 and

(Lsym)ij =



1, i = j

−1

d
, i, j intra-micro

−ε1
d
, i, j intra-macro

−ε2
d
, i, j inter-macro

137

Other Problems Related to Multiscale Graphs Chapter 6

– λ1 = 0, u1 = 1/
√
c2c1n; λ2 = · · · = λc2 = c2c1nε2/d , λα,

∑c2
i=2 uiu

>
i = Ic2 ⊗

Ec1n/(c1n)−Ec2c1n/(c2c1n); λc2+1 = · · · = λc2c1 = (c1nε1 + (c2 − 1)c1nε2)/d ,

λβ,
∑c1c2

i=c2+1 uiu
>
i = Ic2 ⊗ (Ic1/n − Ec1/(c1n)) ⊗ En; λc2c1+1 = · · · = λc2c1n =

(n+(c1−1)nε1+(c2−1)c1nε2)/d , λγ,
∑c1c2n

i=c1c2+1 uiu
>
i = Ic2c1n−Ic2c1⊗En/n.

– The PMI matrix and its derivative:

RPMI(τ) =



log
(

1 + (c2 − 1)e−λατ + c2(c1 − 1)e−λβτ + c2c1(n− 1)e−λγτ
)
, i = j

log
(

1 + (c2 − 1)e−λατ + c2(c1 − 1)e−λβτ − c2c1e−λγτ
)
, i, j intra-micro

log
(

1 + (c2 − 1)e−λατ − c2e−λβτ
)
, i, j intra-macro

log
(

1− e−λατ
)
, i, j inter-macro

R′PMI(τ) =



−
(c2 − 1)λαe

−λατ + c2(c1 − 1)λβe
−λβτ + c2c1(n− 1)λγe

−λγτ

1 + (c2 − 1)e−λατ + c2(c1 − 1)e−λβτ + c2c1(n− 1)e−λγτ
, i = j

−
(c2 − 1)λαe

−λατ + c2(c1 − 1)λβe
−λβτ − c2c1λγe−λγτ

1 + (c2 − 1)e−λατ + c2(c1 − 1)e−λβτ − c2c1e−λγτ
, i, j intra-micro

−
(c2 − 1)λαe

−λατ − c2λβe−λβτ

1 + (c2 − 1)e−λατ − c2e−λβτ
, i, j intra-macro

λαe
−λατ

1− e−λατ
, i, j inter-macro

– However, similar to the weakly connected cliques case, it is hard to analyze

the optima and roots of the clustered PMI and its derivative based on the

PMI and its derivative above.

6.3 Multiscale Anomaly Detection

6.3.1 Overview

Anomaly detection consists of uncovering noteworthy instances that significantly de-

viate from normal patterns or behaviors in datasets [267, 268]. It has a wide range of

applications such as surfacing fraud in financial systems [269, 270, 271], detecting intru-

138

Other Problems Related to Multiscale Graphs Chapter 6

sion in computer networks [272, 273, 274], identifying fake news in online social media

[275, 276, 277], to name a few.

In the context of graphs, anomalies are defined as nodes or subgraphs that exhibit

distinctive attribute and/or topological patterns from a broader context (e.g., a local

community or the entire graph). Most existing approaches focus on detecting node-level

anomalies within a given [267, 278, 279, 280, 281, 282, 283, 284, 285] or across multiscale

contexts [286, 287], while few recent works [288, 289] also seek to detect anomalies at a

subgraph level. The goal of this work is to detect anomalies at different structural scales,

including individual anomalous nodes and cohesive anomalous communities of different

sizes.

Our work is built upon two lines of research for graph anomaly detection. First, we

focus on anomaly detection in the unsupervised learning setting since anomaly labels in

most real-world settings are unavailable. This motivates us to take advantage of the graph

autoencoder paradigm [160], which attempts to reconstruct the graph topology with node

embeddings generated by Graph Neural Networks (GNNs) and assumes that anomalies

have poor reconstruction results (i.e., large reconstruction errors) [278, 280, 281, 279].

Second, to detect anomalies at multiple structural scales, we extend the spectral anal-

ysis of graph anomalies in [285] and find that anomalies at different structural scales

demonstrate distinctive spectral energy distribution patterns. In particular, Figure 6.5

shows the spectral energy distribution of normal nodes, node-level anomalies, and three

subgraph-level anomalies at different scales for the Cora dataset [188] with injected

anomalies. As pointed out in [285], the spectral energy distributions of anomalous ele-

ments concentrate more on high frequencies and less on low frequencies (i.e. “right shift”).

Our new observation is that the scales of anomalies affect the level of the right shift, with

spectral energy distributions of smaller-scale anomalies concentrated on higher-frequency

regions of the spectrum compared to larger-scale anomalies. Specifically in Figure 6.5,

139

Other Problems Related to Multiscale Graphs Chapter 6

node-level anomalies dominate the highest frequency band (λ = 1.4), followed by 1-scale

anomalies (λ = 1.2), 2-scale anomalies (λ = [0.8, 1.0]), and 3-scale anomalies (λ = 0.6),

while normal nodes dominate the low-frequency band (λ = 0). This motivates us to

leverage spectral localized GNNs to learn to detect anomalies at multiple scales.

�����������	���
� �
�����������������

����	����	���������� �!�"�����#�!���$�%�&�!������������'��(��������)*����������!��
����������������� ���

Figure 6.5: Spectral energy distributions of normal nodes, node-level anomalies, and
three subgraph-level anomalies at different scales for Cora with injected anomalies.
Compared to normal nodes, the spectral energy distributions of anomalous elements
concentrate more on the high-frequency regions. Further, the smaller the scale of the
anomalies, the higher the frequency bands they dominate.

In the next subsection, we briefly introduce our current model architecture based on

the graph autoencoder paradigm and spectral localized Beta Wavelet GNNs.

6.3.2 Model Design

Let G = (V,E,X) be an attributed graph, where V is the set of n nodes, E is the set

of edges, and X ∈ Rn×d is the node attribute matrix. Let A ∈ Rn×n be the adjacency

140

Other Problems Related to Multiscale Graphs Chapter 6

matrix of G, D be the degree matrix of G, and L = I−D−1/2AD−1/2 be the corresponding

normalized Laplacian matrix.

Graph Autoencoders

Given A and X, the encoder part of the graph autoencoder paradigm generates a

node embedding matrix Z ∈ Rn×k based on GNNs:

Z = ENC(A,X) (6.20)

Then, the node embedding matrix Z is mapped by the decoder part (e.g., inner product)

to reconstruct the graph structure, represented by a predefined function of the adjacency

matrix f(A):

f̂(A) = DEC(Z) (6.21)

The reconstruction error `(f̂(A) ‖ f(A)) is used for both training the encoder ENC(·)

and computing the anomaly scores for different graph elements.

Beta Wavelet GNNs

To attend to the distinctive spectral patterns of multiscale anomalies, we leverage

Beta Wavelet GNNs [285] to construct our encoders. Specifically, the Beta wavelet kernel

characterized by hyperparameters p, q > 0 is

Wp,q = βp,q(L) =
(L/2)p(I − L/2)q

2B(p+ 1, q + 1)
(6.22)

where B(p + 1, q + 1) = p!q!/(p + q + 1)! is a constant. Compared to heat kernels that

are more popular in GNNs, Beta kernels contain different band-pass filters that facilitate

the detection of anomalies at different scales (see Figure 6.6).

141

Other Problems Related to Multiscale Graphs Chapter 6

0.0 0.5 1.0 1.5 2.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

ex
p(
−τ

λ)

τ=1
τ=2
τ=4
τ=8
τ=16

(a) Heat kernels

0.0 0.5 1.0 1.5 2.0
λ

0.0

0.5

1.0

1.5

2.0

2.5

β p
,q

(λ
)

p= 0, q= 4
p= 1, q= 3
p= 2, q= 2
p= 3, q= 1
p= 4, q= 0

(b) Beta kernels

Figure 6.6: Spectral property comparison between heat kernels and Beta kernels. Beta
kernels contain different band-pass filters that facilitate multiscale anomaly detection.

For each scale s, we first apply a feature transformation Multi-Layer Perceptron

(MLP) to the node attributes, then build p + q = τ number of Beta wavelet filters to

generate τ number of embeddings:

Z(s)
p,q = Wp,qMLP(s)(X) (6.23)

The output node embedding Z(s) is a weighted sum of the embeddings based on different

filters, parameterized by {α(s)
p,q}:

Z(s) =
∑
p+q=τ

α(s)
p,qZ

(s)
p,q (6.24)

Finally, the parameters are learned with a scale-specific graph reconstruction loss,

`(f̂ (s)(A) ‖ f (s)(A)). Choices of the graph structure function f (s)(A) can be, for example,

f (s)(A) = As, or any other multiscale node similarity metrics, such as Autocovariance

142

Other Problems Related to Multiscale Graphs Chapter 6

[28, 1] or Pointwise Mutual Information [35, 11]. Our next steps for this ongoing project

are experimenting with these different loss functions and comparing our method with

other node and subgraph-level anomaly detection approaches.

143

Chapter 7

Conclusions

This dissertation is devoted to bridging information-rich complex systems modeled as

graphs and real-world data science applications of interest via graph representation learn-

ing. In particular, we have investigated multiscale graphs where communities appear at

different structural scales (Chapters 2 and 6), signed graphs with edge signs represent-

ing positive or negative interactions (Chapter 3), and attributed graphs with descriptive

node features (Chapters 4 and 5 and Sections 6.1 and 6.3), and covered applications

spanning node classification (Chapter 2 and Section 6.1), link prediction (Chapters 2-4),

community detection (Chapter 2 and Section 6.2), measuring polarization (Chapter 3),

counterfactual explanation (Chapter 5), and anomaly detection (Section 6.3). Our ap-

proaches are built upon the two popular graph representation learning paradigms—graph

embedding (Chapters 2-4 and Section 6.2) and Graph Neural Networks (Chapters 4 and

5 and Sections 6.1 and 6.3)—and also leverage other relevant tools including random-

walk dynamics (Chapters 2-6), spectral graph theory (Chapters 2 and 3 and Section 6.2),

graph structure learning (Chapters 4 and 5), combinatorial optimization (Chapter 5 and

Section 6.2), and social theories (Chapter 3).

Through our research, we have demonstrated the importance of accounting for the

144

interplay between the rich graph information and downstream task properties for graph

representation learning models to enable state-of-the-art performance. Specifically, we

have shown that successful models:

• Capture heterogeneous degree distributions for link prediction in scale-free graphs

(Chapter 2),

• Preserve polarized similarity consistency for signed link prediction in polarized

graphs (Chapter 3),

• Adopt topology-centric mechanism to combine structural and attribute information

for link prediction in attributed graphs (Chapter 4),

• Focus on representativeness and diversity for global counterfactual explanation in

collections of molecule graphs (Chapter 5), and

• Leverage adaptive neighborhood aggregation for semi-supervised node classification

(Section 6.1), scale-revealing property for community detection (Section 6.2), and

spectral energy distribution patterns for anomaly detection (Section 6.3) in multi-

scale graphs.

We hope that this dissertation will not only deepen our understanding of graph rep-

resentation learning approaches but also benefit researchers and practitioners alike from

other domains related to data science in their applications of machine learning on graphs.

145

Bibliography

[1] Z. Huang, A. Silva, and A. Singh, A broader picture of random-walk based graph
embedding, in SIGKDD, 2021.

[2] Z. Huang, A. Silva, and A. Singh, Pole: Polarized embedding for signed networks,
in WSDM, 2022.

[3] Z. Huang, M. Kosan, A. Silva, and A. Singh, Link prediction without graph neural
networks, 2023.

[4] Z. Huang, M. Kosan, S. Medya, S. Ranu, and A. Singh, Global counterfactual
explainer for graph neural networks, in WSDM, 2023.

[5] W. Ye, Z. Huang, Y. Hong, and A. Singh, Graph neural diffusion networks for
semi-supervised learning, arXiv preprint arXiv:2201.09698 (2022).

[6] Z. Huang, M. Kondapaneni, A. Silva, and A. Singh, Multiscale community
detection with pointwise mutual information, 2023.

[7] M. Arriola, M. Kosan, Z. Huang, S. Sharma, and A. Singh, Multiscale anomaly
detection with graph autoencoders, 2023.

[8] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social
representations, in SIGKDD, 2014.

[9] A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in
SIGKDD, 2016.

[10] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, Asymmetric transitivity preserving
graph embedding, in SIGKDD, 2016.

[11] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec, in WSDM, 2018.

[12] M. T. Schaub, J.-C. Delvenne, R. Lambiotte, and M. Barahona, Multiscale
dynamical embeddings of complex networks, Physical Review E 99 (2019), no. 6
062308.

146

[13] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, Line: Large-scale
information network embedding, in WebConf, pp. 1067–1077, 2015.

[14] J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang, Netsmf:
Large-scale network embedding as sparse matrix factorization, in WebConf, 2019.

[15] C. Zhou, Y. Liu, X. Liu, Z. Liu, and J. Gao, Scalable graph embedding for
asymmetric proximity, in AAAI, 2017.

[16] M. Khosla, J. Leonhardt, W. Nejdl, and A. Anand, Node representation learning
for directed graphs, in ECML-PKDD, 2019.

[17] A. Tsitsulin, D. Mottin, P. Karras, and E. Müller, Verse: Versatile graph
embeddings from similarity measures, in WebConf, 2018.

[18] S. Cao, W. Lu, and Q. Xu, Grarep: Learning graph representations with global
structural information, in CIKM, 2015.

[19] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, Harp: Hierarchical representation
learning for networks, arXiv:1706.07845 (2017).

[20] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, Learning structural node
embeddings via diffusion wavelets, in SIGKDD, 2018.

[21] Z. Xin, J. Chen, G. Chen, and S. Zhao, Marc: Multi-granular representation
learning for networks based on the 3-clique, IEEE Access 7 (2019) 141715–141727.

[22] S. Chanpuriya and C. Musco, Infinitewalk: Deep network embeddings as laplacian
embeddings with a nonlinearity, in SIGKDD, 2020.

[23] W. L. Hamilton, R. Ying, and J. Leskovec, Representation learning on graphs:
Methods and applications, arXiv preprint arXiv:1709.05584 (2017).

[24] P. Cui, X. Wang, J. Pei, and W. Zhu, A survey on network embedding, IEEE
TKDE 31 (2018), no. 5 833–852.

[25] H. Cai, V. W. Zheng, and K. C.-C. Chang, A comprehensive survey of graph
embedding: Problems, techniques, and applications, IEEE TKDE 30 (2018), no. 9
1616–1637.

[26] P. Goyal and E. Ferrara, Graph embedding techniques, applications, and
performance: A survey, Knowledge-Based Systems 151 (2018) 78–94.

[27] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, Machine learning
on graphs: A model and comprehensive taxonomy, arXiv preprint
arXiv:2005.03675 (2020).

147

[28] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of graph communities
across time scales, PNAS 107 (2010), no. 29 12755–12760.

[29] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, Signed network embedding
in social media, in SDM, 2017.

[30] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
Continuous-time dynamic network embeddings, in WebConf, 2018.

[31] A. Javari, T. Derr, P. Esmailian, J. Tang, and K. C.-C. Chang, Rose: Role-based
signed network embedding, in WebConf, 2020.

[32] D. Wang, P. Cui, and W. Zhu, Structural deep network embedding, in SIGKDD,
2016.

[33] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, Arbitrary-order
proximity preserved network embedding, in SIGKDD, 2018.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed
representations of words and phrases and their compositionality, in NeurIPS, 2013.

[35] O. Levy and Y. Goldberg, Neural word embedding as implicit matrix
factorization, in NeurIPS, 2014.

[36] J.-C. Delvenne, M. T. Schaub, S. N. Yaliraki, and M. Barahona, The stability of a
graph partition: A dynamics-based framework for community detection, in
Dynamics On and Of Complex Networks, Volume 2, pp. 221–242. Springer, 2013.

[37] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, Don’t walk, skip! online learning
of multi-scale network embeddings, in ASONAM, 2017.

[38] A.-L. Barabási and E. Bonabeau, Scale-free networks, Scientific american 288
(2003), no. 5 60–69.

[39] B. Srinivasan and B. Ribeiro, On the equivalence between positional node
embeddings and structural graph representations, in ICLR, 2019.

[40] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking:
Bringing order to the web., tech. rep., Stanford InfoLab, 1999.

[41] C. Eckart and G. Young, The approximation of one matrix by another of lower
rank, Psychometrika 1 (1936), no. 3 211–218.

[42] F. R. Chung and F. C. Graham, Spectral graph theory. No. 92. American
Mathematical Soc., 1997.

148

[43] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide: solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM,
1998.

[44] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions,
SIAM review 53 (2011), no. 2 217–288.

[45] L. Tang and H. Liu, Relational learning via latent social dimensions, in SIGKDD,
2009.

[46] J. Patokallio, “Openflights.org: Flight logging, mapping, stats and sharing.”
https://openflights.org/data.html, 2020.

[47] M. Mahoney, “Large text compression benchmark.”
https://www.mattmahoney.net/dc/textdata, 2011.

[48] L. A. Adamic and N. Glance, The political blogosphere and the 2004 us election:
divided they blog, in Workshop on Link discovery, 2005.

[49] L. Šubelj and M. Bajec, Model of complex networks based on citation dynamics, in
WebConf, 2013.

[50] N. Aspert, V. Miz, B. Ricaud, and P. Vandergheynst, A graph-structured dataset
for wikipedia research, in WebConf, 2019.

[51] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, Liblinear: A
library for large linear classification, JMLR 9 (2008), no. Aug 1871–1874.

[52] L. Tang, S. Rajan, and V. K. Narayanan, Large scale multi-label classification via
metalabeler, in WebConf, 2009.

[53] G. Tsoumakas, I. Katakis, and I. Vlahavas, Mining multi-label data, in Data
mining and knowledge discovery handbook, pp. 667–685. Springer, 2009.

[54] L. Lü and T. Zhou, Link prediction in complex networks: A survey, Physica A:
statistical mechanics and its applications 390 (2011), no. 6 1150–1170.

[55] D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding,
tech. rep., Stanford, 2006.

[56] A. Strehl and J. Ghosh, Cluster ensembles—a knowledge reuse framework for
combining multiple partitions, JMLR 3 (2002), no. Dec 583–617.

[57] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in ICLR,
2015.

149

https://openflights.org/data.html
https://www.mattmahoney.net/dc/textdata

[58] M. Girvan and M. E. Newman, Community structure in social and biological
networks, PNAS 99 (2002), no. 12 7821–7826.

[59] B. Karrer and M. E. Newman, Stochastic blockmodels and community structure in
networks, Physical review E 83 (2011), no. 1 016107.

[60] C. Seshadhri, A. Sharma, A. Stolman, and A. Goel, The impossibility of low-rank
representations for triangle-rich complex networks, PNAS 117 (2020), no. 11
5631–5637.

[61] G. E. Hinton and S. T. Roweis, Stochastic neighbor embedding, in NeurIPS, 2003.

[62] J. Bourgain, On lipschitz embedding of finite metric spaces in hilbert space, Israel
Journal of Mathematics 52 (1985), no. 1-2 46–52.

[63] M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for
embedding and clustering, in NeurIPS, 2002.

[64] J. Dı́az, J. Petit, and M. Serna, A survey of graph layout problems, ACM
Computing Surveys (CSUR) 34 (2002), no. 3 313–356.

[65] Y. Dong, N. V. Chawla, and A. Swami, metapath2vec: Scalable representation
learning for heterogeneous networks, in SIGKDD, 2017.

[66] L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang, Dynamic network embedding: An
extended approach for skip-gram based network embedding., in IJCAI, 2018.

[67] H. Zhang, L. Qiu, L. Yi, and Y. Song, Scalable multiplex network embedding., in
IJCAI, 2018.

[68] D. Ruelle, Thermodynamic formalism: the mathematical structure of equilibrium
statistical mechanics. Cambridge University Press, 2004.

[69] R. Lambiotte, J.-C. Delvenne, and M. Barahona, Random walks, markov
processes and the multiscale modular organization of complex networks, IEEE
TSNE 1 (2014), no. 2 76–90.

[70] H. Gao, J. Huang, Q. Cheng, H. Sun, B. Wang, and H. Li, Link prediction based
on linear dynamical response, Physica A: Statistical Mechanics and its
Applications 527 (2019) 121397.

[71] E. Ravasz and A.-L. Barabási, Hierarchical organization in complex networks,
Physical review E 67 (2003), no. 2 026112.

[72] A. Clauset, C. Moore, and M. E. Newman, Hierarchical structure and the
prediction of missing links in networks, Nature 453 (2008), no. 7191 98–101.

150

[73] M. Nickel and D. Kiela, Poincaré embeddings for learning hierarchical
representations, in NeurIPS, 2017.

[74] J. A. Tucker, A. Guess, P. Barberá, C. Vaccari, A. Siegel, S. Sanovich, D. Stukal,
and B. Nyhan, Social media, political polarization, and political disinformation: A
review of the scientific literature, tech. rep., The William and Flora Hewlett
Foundation, 2018.

[75] N. Gillani, A. Yuan, M. Saveski, S. Vosoughi, and D. Roy, Me, my echo chamber,
and i: introspection on social media polarization, in WebConf, 2018.

[76] V. R. K. Garimella and I. Weber, A long-term analysis of polarization on twitter,
in ICWSM, 2017.

[77] A. Guess, B. Nyhan, and J. Reifler, Selective exposure to misinformation:
Evidence from the consumption of fake news during the 2016 us presidential
campaign, European Research Council 9 (2018), no. 3 4.

[78] A. Prabhu, D. Guhathakurta, M. Subramanian, M. Reddy, S. Sehgal,
T. Karandikar, A. Gulati, U. Arora, R. R. Shah, P. Kumaraguru, et. al., Capitol
(pat) riots: A comparative study of twitter and parler, arXiv preprint
arXiv:2101.06914 (2021).

[79] S. B. Naeem, R. Bhatti, and A. Khan, An exploration of how fake news is taking
over social media and putting public health at risk, Health Information & Libraries
Journal 38 (2021), no. 2 143–149.

[80] J. M. Otala, G. Kurtic, I. Grasso, Y. Liu, J. Matthews, and G. Madraki, Political
polarization and platform migration: A study of parler and twitter usage by united
states of america congress members, in Fairness, Accountability, Transparency,
Ethics and Society on the Web, pp. 224–231, 2021.

[81] M. Thomas, B. Pang, and L. Lee, Get out the vote: determining support or
opposition from congressional floor-debate transcripts, in EMNLP, 2006.

[82] M. Lai, V. Patti, G. Ruffo, and P. Rosso, Stance evolution and twitter
interactions in an italian political debate, in NLDB, 2018.

[83] S. M. Theriault, Party polarization in the us congress: Member replacement and
member adaptation, Party Politics 12 (2006), no. 4 483–503.

[84] M. D. Conover, J. Ratkiewicz, M. Francisco, B. Gonçalves, F. Menczer, and
A. Flammini, Political polarization on twitter, in ICWSM, 2011.

[85] F. Bonchi, E. Galimberti, A. Gionis, B. Ordozgoiti, and G. Ruffo, Discovering
polarized communities in signed networks, in CIKM, 2019.

151

[86] A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing
community detection algorithms, Physical review E 78 (2008), no. 4 046110.

[87] R.-C. Tzeng, B. Ordozgoiti, and A. Gionis, Discovering conflicting groups in
signed networks, in NeurIPS, 2020.

[88] K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis,
Reducing controversy by connecting opposing views, in WSDM, 2017.

[89] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon, Exploiting longer cycles
for link prediction in signed networks, in CIKM, 2011.

[90] C.-J. Hsieh, K.-Y. Chiang, and I. S. Dhillon, Low rank modeling of signed
networks, in SIGKDD, 2012.

[91] J. Wang, J. Shen, P. Li, and H. Xu, Online matrix completion for signed link
prediction, in WSDM, 2017.

[92] J. Kim, H. Park, J.-E. Lee, and U. Kang, Side: representation learning in signed
directed networks, in WebConf, 2018.

[93] F. Heider, Attitudes and cognitive organization, The Journal of psychology 21
(1946), no. 1 107–112.

[94] J. Jung, W. Jin, L. Sael, and U. Kang, Personalized ranking in signed networks
using signed random walk with restart, in ICDM, 2016.

[95] X. Yin, X. Hu, Y. Chen, X. Yuan, and B. Li, Signed-pagerank: An efficient
influence maximization framework for signed social networks, IEEE TKDE 33
(2021), no. 5 2208–2222.

[96] D. McCumber, From the house on the hill: congressman looks back at his life,
Laredo Morning Times (2014).

[97] C. Malone, A q&a with the house democrat who’s voted with trump 75 percent of
the time, FiveThirtyEight (2017).

[98] B. Pershing, Pelosi, harman have long history, The Washington Post (2009).

[99] G. Skelton, California and the west: in the ring, with contenders for governor,
Los Angeles Times (1998).

[100] V. Kristof, M. Grossglauser, and P. Thiran, War of words: The competitive
dynamics of legislative processes, in WebConf, 2020.

[101] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, Edge weight
prediction in weighted signed networks, in ICDM, 2016.

152

[102] R. West, H. S. Paskov, J. Leskovec, and C. Potts, Exploiting social network
structure for person-to-person sentiment analysis, TACL 2 (2014) 297–310.

[103] J. Leskovec, D. Huttenlocher, and J. Kleinberg, Signed networks in social media,
in SIGCHI, 2010.

[104] G. Beigi, S. Ranganath, and H. Liu, Signed link prediction with sparse data: The
role of personality information, in WebConf, 2019.

[105] P. Xu, W. Hu, J. Wu, and B. Du, Link prediction with signed latent factors in
signed social networks, in SIGKDD, 2019.

[106] M. R. Islam, B. A. Prakash, and N. Ramakrishnan, Signet: Scalable embeddings
for signed networks, in PAKDD, 2018.

[107] Y. Chen, T. Qian, H. Liu, and K. Sun, ”bridge” enhanced signed directed network
embedding, in CIKM, 2018.

[108] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and
S. Albayrak, Spectral analysis of signed graphs for clustering, prediction and
visualization, in SDM, 2010.

[109] P. C. Guerra, W. Meira Jr, C. Cardie, and R. Kleinberg, A measure of
polarization on social media networks based on community boundaries, in
ICWSM, 2013.

[110] R. Kannan, S. Vempala, and A. Vetta, On clusterings: Good, bad and spectral,
JACM 51 (2004), no. 3 497–515.

[111] M. E. Newman, Modularity and community structure in networks, PNAS 103
(2006), no. 23 8577–8582.

[112] A. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha, and M. A. Porter, Party
polarization in congress: a network science approach, arXiv preprint
arXiv:0907.3509 (2011).

[113] K. Garimella, G. D. F. Morales, A. Gionis, and M. Mathioudakis, Quantifying
controversy on social media, TSC 1 (2018), no. 1 1–27.

[114] V. Mart́ınez, F. Berzal, and J.-C. Cubero, A survey of link prediction in complex
networks, ACM computing surveys (CSUR) 49 (2016), no. 4 1–33.

[115] J. Leskovec, D. Huttenlocher, and J. Kleinberg, Predicting positive and negative
links in online social networks, in WebConf, 2010.

[116] A. Javari and M. Jalili, Cluster-based collaborative filtering for sign prediction in
social networks with positive and negative links, TIST 5 (2014), no. 2 1–19.

153

[117] D. Song and D. A. Meyer, Link sign prediction and ranking in signed directed
social networks, Social network analysis and mining 5 (2015), no. 1 1–14.

[118] W. Yuan, K. He, D. Guan, L. Zhou, and C. Li, Graph kernel based link prediction
for signed social networks, Information Fusion 46 (2019) 1–10.

[119] J. Ye, H. Cheng, Z. Zhu, and M. Chen, Predicting positive and negative links in
signed social networks by transfer learning, in WebConf, 2013.

[120] G. Beigi, J. Tang, S. Wang, and H. Liu, Exploiting emotional information for
trust/distrust prediction, in SDM, 2016.

[121] J. Tang, X. Hu, Y. Chang, and H. Liu, Predictability of distrust with interaction
data, in CIKM, 2014.

[122] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, Propagation of trust and
distrust, in WebConf, 2004.

[123] S. Yuan, X. Wu, and Y. Xiang, Sne: signed network embedding, in PAKDD, 2017.

[124] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, Arnetminer: extraction and
mining of academic social networks, in SIGKDD, 2008.

[125] C. Li, J. Ma, X. Guo, and Q. Mei, Deepcas: An end-to-end predictor of
information cascades, in WebConf, 2017.

[126] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, Deepinf: Social
influence prediction with deep learning, in SIGKDD, 2018.

[127] M. Jamali and M. Ester, Trustwalker: a random walk model for combining
trust-based and item-based recommendation, in SIGKDD, 2009.

[128] F. Monti, M. Bronstein, and X. Bresson, Geometric matrix completion with
recurrent multi-graph neural networks, in NeurIPS, 2017.

[129] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, Kgat: Knowledge graph
attention network for recommendation, in SIGKDD, 2019.

[130] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and W. Cohen,
Open domain question answering using early fusion of knowledge bases and text,
in EMNLP, 2018.

[131] S. K. Sahu, F. Christopoulou, M. Miwa, and S. Ananiadou, Inter-sentence relation
extraction with document-level graph convolutional neural network, in ACL, 2019.

[132] L. Yao, C. Mao, and Y. Luo, Graph convolutional networks for text classification,
in AAAI, 2019.

154

[133] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller,
R. Hadsell, and P. Battaglia, Graph networks as learnable physics engines for
inference and control, in ICML, 2018.

[134] B. Ivanovic and M. Pavone, The trajectron: Probabilistic multi-agent trajectory
modeling with dynamic spatiotemporal graphs, in ICCV, 2019.

[135] A. L. da Silva, F. Kocayusufoglu, S. Jafarpour, F. Bullo, A. Swami, and A. Singh,
Combining physics and machine learning for network flow estimation, in ICLR,
2020.

[136] Y. Qi, Z. Bar-Joseph, and J. Klein-Seetharaman, Evaluation of different biological
data and computational classification methods for use in protein interaction
prediction, Proteins: Structure, Function, and Bioinformatics 63 (2006), no. 3
490–500.

[137] D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social
networks, Journal of the American society for information science and technology
58 (2007), no. 7 1019–1031.

[138] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for
recommender systems, Computer 42 (2009), no. 8 30–37.

[139] T. Martin, B. Ball, and M. E. Newman, Structural inference for uncertain
networks, Physical Review E 93 (2016), no. 1 012306.

[140] A. Bahulkar, B. K. Szymanski, N. O. Baycik, and T. C. Sharkey, Community
detection with edge augmentation in criminal networks, in ASONAM, 2018.

[141] B. Wilder, E. Ewing, B. Dilkina, and M. Tambe, End to end learning and
optimization on graphs, in NeurIPS, 2019.

[142] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional
networks, in ICLR, 2017.

[143] W. Hamilton, Z. Ying, and J. Leskovec, Inductive representation learning on large
graphs, in NeurIPS, 2017.

[144] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
Graph attention networks, in ICLR, 2018.

[145] J. Klicpera, A. Bojchevski, and S. Günnemann, Predict then propagate: Graph
neural networks meet personalized pagerank, in ICLR, 2018.

[146] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, Simplifying
graph convolutional networks, in ICML, 2019.

155

[147] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and W. Wang,
Robust graph representation learning via neural sparsification, in ICML, 2020.

[148] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, Hierarchical
graph representation learning with differentiable pooling, in NeurIPS, 2018.

[149] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, An end-to-end deep learning
architecture for graph classification, in AAAI, 2018.

[150] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and
M. Grohe, Weisfeiler and leman go neural: Higher-order graph neural networks,
in AAAI, 2019.

[151] M. Zhang and Y. Chen, Link prediction based on graph neural networks, in
NeurIPS, 2018.

[152] S. Yun, S. Kim, J. Lee, J. Kang, and H. J. Kim, Neo-gnns: Neighborhood
overlap-aware graph neural networks for link prediction, in NeurIPS, 2021.

[153] L. Pan, C. Shi, and I. Dokmanić, Neural link prediction with walk pooling, in
ICLR, 2022.

[154] M. E. Newman, Clustering and preferential attachment in growing networks,
Physical review E 64 (2001), no. 2 025102.

[155] L. A. Adamic and E. Adar, Friends and neighbors on the web, Social networks 25
(2003), no. 3 211–230.

[156] A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek,
Evolution of the social network of scientific collaborations, Physica A: Statistical
mechanics and its applications 311 (2002), no. 3-4 590–614.

[157] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. R. Benson, Combining label
propagation and simple models out-performs graph neural networks, in ICLR,
2021.

[158] Q. Li, Z. Han, and X.-M. Wu, Deeper insights into graph convolutional networks
for semi-supervised learning, in AAAI, 2018.

[159] J. Ma, B. Chang, X. Zhang, and Q. Mei, Copulagnn: towards integrating
representational and correlational roles of graphs in graph neural networks, in
ICLR, 2020.

[160] T. N. Kipf and M. Welling, Variational graph auto-encoders, arXiv preprint
arXiv:1611.07308 (2016).

156

[161] I. Chami, Z. Ying, C. Ré, and J. Leskovec, Hyperbolic graph convolutional neural
networks, in NeurIPS, 2019.

[162] Y. Zhang, X. Wang, C. Shi, N. Liu, and G. Song, Lorentzian graph convolutional
networks, in WebConf, 2021.

[163] L. Cai, J. Li, J. Wang, and S. Ji, Line graph neural networks for link prediction,
IEEE TPAMI (2021).

[164] Z. Yan, T. Ma, L. Gao, Z. Tang, and C. Chen, Link prediction with persistent
homology: An interactive view, in ICML, 2021.

[165] Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, Neural bellman-ford networks: A
general graph neural network framework for link prediction, in NeurIPS, 2021.

[166] Y. Chen, Y. R. Gel, and H. V. Poor, Bscnets: Block simplicial complex neural
networks, in AAAI, 2022.

[167] J. Davis and M. Goadrich, The relationship between precision-recall and roc
curves, in ICML, 2006.

[168] T. Saito and M. Rehmsmeier, The precision-recall plot is more informative than
the roc plot when evaluating binary classifiers on imbalanced datasets, PloS one
10 (2015), no. 3 e0118432.

[169] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
Open graph benchmark: Datasets for machine learning on graphs, in NeurIPS,
2020.

[170] A. Bordes, N. Usunier, A. Garćıa-Durán, J. Weston, and O. Yakhnenko,
Translating embeddings for modeling multi-relational data, in NeurIPS, 2013.

[171] B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng, Embedding entities and
relations for learning and inference in knowledge bases, in ICLR, 2015.

[172] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, Rotate: Knowledge graph embedding
by relational rotation in complex space, in ICLR, 2018.

[173] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to information
retrieval, vol. 39. Cambridge University Press Cambridge, 2008.

[174] X. Chen, X. Cheng, and S. Mallat, Unsupervised deep haar scattering on graphs,
in NeurIPS, 2014.

[175] K. Sohn, Improved deep metric learning with multi-class n-pair loss objective, in
NeurIPS, 2016.

157

[176] B. McFee and G. Lanckriet, Metric learning to rank, in ICML, 2010.

[177] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, Deep metric learning to rank,
in CVPR, 2019.

[178] J. Revaud, J. Almazán, R. S. Rezende, and C. R. d. Souza, Learning with average
precision: Training image retrieval with a listwise loss, in ICCV, 2019.

[179] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N. M. Robertson, Ranked
list loss for deep metric learning, in ICCV, 2019.

[180] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm
for combining preferences, JMLR 4 (2003), no. Nov 933–969.

[181] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, Listwise approach to learning to
rank: theory and algorithm, in ICML, 2008.

[182] S. Bruch, An alternative cross entropy loss for learning-to-rank, in WebConf, 2021.

[183] L. Cai and W. Y. Wang, Kbgan: Adversarial learning for knowledge graph
embeddings, in NAACL, 2018.

[184] P. Wang, S. Li, and R. Pan, Incorporating gan for negative sampling in knowledge
representation learning, in AAAI, 2018.

[185] V. Satuluri and S. Parthasarathy, Bayesian locality sensitive hashing for fast
similarity search, in VLDB, 2012.

[186] D. C. Anastasiu and G. Karypis, L2ap: Fast cosine similarity search with prefix
l-2 norm bounds, in ICDE, 2014.

[187] Z. Liu, D. Lai, C. Li, and M. Wang, Feature fusion based subgraph classification
for link prediction, in CIKM, 2020.

[188] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, Automating the
construction of internet portals with machine learning, Information Retrieval 3
(2000), no. 2 127–163.

[189] C. L. Giles, K. D. Bollacker, and S. Lawrence, Citeseer: An automatic citation
indexing system, in ACM conference on Digital libraries, 1998.

[190] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
Collective classification in network data, AI magazine 29 (2008), no. 3 93–93.

[191] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, Image-based
recommendations on styles and substitutes, in SIGIR, 2015.

158

[192] M. Fey and J. E. Lenssen, Fast graph representation learning with PyTorch
Geometric, in ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[193] Z. Yang, W. Cohen, and R. Salakhudinov, Revisiting semi-supervised learning
with graph embeddings, in ICML, 2016.

[194] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, Pitfalls of graph
neural network evaluation, arXiv preprint arXiv:1811.05868 (2018).

[195] T. Zhou, L. Lü, and Y.-C. Zhang, Predicting missing links via local information,
The European Physical Journal B 71 (2009), no. 4 623–630.

[196] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et. al., Pytorch: An imperative style,
high-performance deep learning library, in NeurIPS, 2019.

[197] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, Learning to rank using gradient descent, in ICML, 2005.

[198] L. Katz, A new status index derived from sociometric analysis, Psychometrika 18
(1953), no. 1 39–43.

[199] G. Jeh and J. Widom, Simrank: a measure of structural-context similarity, in
SIGKDD, 2002.

[200] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, Graphrnn: Generating
realistic graphs with deep auto-regressive models, in ICML, 2018.

[201] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, Learning deep
generative models of graphs, in ICML, 2018.

[202] A. Grover, A. Zweig, and S. Ermon, Graphite: Iterative generative modeling of
graphs, in ICML, 2019.

[203] T. Zhao, G. Liu, S. Günnemann, and M. Jiang, Graph data augmentation for
graph machine learning: A survey, arXiv preprint arXiv:2202.08871 (2022).

[204] L. Franceschi, M. Niepert, M. Pontil, and X. He, Learning discrete structures for
graph neural networks, in ICML, 2019.

[205] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah, Data
augmentation for graph neural networks, in AAAI, 2021.

[206] Y. Chen, L. Wu, and M. Zaki, Iterative deep graph learning for graph neural
networks: Better and robust node embeddings, in NeurIPS, 2020.

159

[207] Y. Yang, L. Wu, R. Hong, K. Zhang, and M. Wang, Enhanced graph learning for
collaborative filtering via mutual information maximization, in SIGIR, 2021.

[208] A. Singh, Q. Huang, S. L. Huang, O. Bhalerao, H. He, S.-N. Lim, and A. R.
Benson, Edge proposal sets for link prediction, arXiv preprint arXiv:2106.15810
(2021).

[209] Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, Gnnadvisor: An
efficient runtime system for gnn acceleration on gpus, in OSDI, 2021.

[210] Y. Wang, B. Feng, and Y. Ding, Qgtc: accelerating quantized graph neural
networks via gpu tensor core, in PPoPP, 2022.

[211] S. Nishad, S. Agarwal, A. Bhattacharya, and S. Ranu, Graphreach:
Position-aware graph neural network using reachability estimations, in IJCAI,
2021.

[212] M. Jiang, Z. Li, S. Zhang, S. Wang, X. Wang, Q. Yuan, and Z. Wei, Drug–target
affinity prediction using graph neural network and contact maps, RSC advances
10 (2020), no. 35 20701–20712.

[213] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. J. Jiang, E. M. Songhori, S. Wang,
Y. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong, K. Srinivasa,
W. Hang, E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho, R. Carpenter, and
J. Dean, Chip placement with deep reinforcement learning, CoRR
abs/2004.10746 (2020).

[214] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh, Gcomb:
Learning budget-constrained combinatorial algorithms over billion-sized graphs, in
NeurIPS, 2020.

[215] R. Bhattoo, S. Ranu, and N. Krishnan, Learning articulated rigid body dynamics
with lagrangian graph neural network, in NeurIPS, 2022.

[216] A. Thangamuthu, G. Kumar, S. Bishnoi, R. Bhattoo, N. M. A. Krishnan, and
S. Ranu, Unravelling the performance of physics-informed graph neural networks
for dynamical systems, in NeurIPS, 2022.

[217] M. Kosan, A. Silva, S. Medya, B. Uzzi, and A. Singh, Event detection on dynamic
graphs, arXiv preprint arXiv:2110.12148 (2021).

[218] S. Medya, M. Rasoolinejad, Y. Yang, and B. Uzzi, An exploratory study of stock
price movements from earnings calls, in WebConf, 2022.

[219] S. Gupta, S. Manchanda, S. Bedathur, and S. Ranu, TIGGER: scalable generative
modelling for temporal interaction graphs, in AAAI, 2022.

160

[220] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and
H.-P. Kriegel, Protein function prediction via graph kernels, Bioinformatics 21
(2005), no. suppl 1 i47–i56.

[221] S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha, Like like
alike: joint friendship and interest propagation in social networks, in WebConf,
2011.

[222] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, Gnnexplainer:
Generating explanations for graph neural networks, in NeurIPS, 2019.

[223] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
Parameterized explainer for graph neural network, in NeurIPS, 2020.

[224] M. Vu and M. T. Thai, Pgm-explainer: Probabilistic graphical model explanations
for graph neural networks, in NeurIPS, 2020.

[225] H. Yuan, J. Tang, X. Hu, and S. Ji, Xgnn: Towards model-level explanations of
graph neural networks, in SIGKDD, 2020.

[226] A. Lucic, M. A. Ter Hoeve, G. Tolomei, M. De Rijke, and F. Silvestri,
Cf-gnnexplainer: Counterfactual explanations for graph neural networks, in
AISTATS, 2022.

[227] M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang, P. C.-H. Lam, and Y. Zhang,
Robust counterfactual explanations on graph neural networks, in NeurIPS, 2021.

[228] C. Abrate and F. Bonchi, Counterfactual graphs for explainable classification of
brain networks, in SIGKDD, 2021.

[229] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li, and Y. Zhang, Learning and
evaluating graph neural network explanations based on counterfactual and factual
reasoning, in WebConf, 2022.

[230] P. Voigt and A. Von dem Bussche, The eu general data protection regulation
(gdpr), A Practical Guide, 1st Ed., Cham: Springer International Publishing 10
(2017), no. 3152676 10–5555.

[231] J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng, Graph neural networks for
automated de novo drug design, Drug Discovery Today 26 (2021), no. 6
1382–1393.

[232] J. Kazius, R. McGuire, and R. Bursi, Derivation and validation of toxicophores for
mutagenicity prediction, Journal of medicinal chemistry 48 (2005), no. 1 312–320.

161

[233] A. Sanfeliu and K.-S. Fu, A distance measure between attributed relational graphs
for pattern recognition, IEEE transactions on systems, man, and cybernetics
(1983), no. 3 353–362.

[234] K. Borgwardt, N. Schraudolph, and S. Vishwanathan, Fast computation of graph
kernels, in NeurIPS, 2006.

[235] F. Costa and K. De Grave, Fast neighborhood subgraph pairwise distance kernel,
in ICML, 2010.

[236] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M.
Borgwardt, Weisfeiler-lehman graph kernels., JMLR 12 (2011), no. 9.

[237] K. Rawal and H. Lakkaraju, Beyond individualized recourse: Interpretable and
interactive summaries of actionable recourses, in NeurIPS, 2020.

[238] Y. Liang and P. Zhao, Similarity search in graph databases: A multi-layered
indexing approach, in ICDE, 2017.

[239] R. Ranjan, S. Grover, S. Medya, V. Chakravarthy, Y. Sabharwal, and S. Ranu,
Greed: A neural framework for learning graph distance functions, in NeurIPS,
2022.

[240] R. Pemantle, Vertex-reinforced random walk, Probability Theory and Related
Fields 92 (1992), no. 1 117–136.

[241] Z. Huang, A. Silva, and A. Singh, A broader picture of random-walk based graph
embedding, in SIGKDD, 2021.

[242] Z. Huang, A. Silva, and A. Singh, Pole: Polarized embedding for signed networks,
in WSDM, 2022.

[243] Q. Mei, J. Guo, and D. Radev, Divrank: the interplay of prestige and diversity in
information networks, in SIGKDD, 2010.

[244] D. Natarajan and S. Ranu, A scalable and generic framework to mine top-k
representative subgraph patterns, in ICDM, 2016.

[245] A. Metwally, D. Agrawal, and A. E. Abbadi, Efficient computation of frequent
and top-k elements in data streams, in ICDT, 2005.

[246] N. Wale and G. Karypis, Comparison of descriptor spaces for chemical compound
retrieval and classification, in ICDM, 2006.

[247] K. Riesen and H. Bunke, Iam graph database repository for graph based pattern
recognition and machine learning, in Joint IAPR International Workshops on
Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), pp. 287–297, Springer, 2008.

162

[248] P. D. Dobson and A. J. Doig, Distinguishing enzyme structures from non-enzymes
without alignments, Journal of molecular biology 330 (2003), no. 4 771–783.

[249] E. Sarubbi, P. F. Seneci, M. R. Angelastro, N. P. Peet, M. Denaro, and K. Islam,
Peptide aldehydes as inhibitors of hiv protease, FEBS letters 319 (1993), no. 3
253–256.

[250] T. Zhao, G. Liu, D. Wang, W. Yu, and M. Jiang, Learning from counterfactual
links for link prediction, in ICML, 2022.

[251] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via
spectral graph theory, Applied and Computational Harmonic Analysis 30 (2011),
no. 2 129–150.

[252] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
Representation learning on graphs with jumping knowledge networks, in ICML,
2018.

[253] J. Klicpera, A. Bojchevski, and S. Günnemann, Predict then propagate: Graph
neural networks meet personalized pagerank, in ICLR, 2019.

[254] J. Klicpera, S. Weißenberger, and S. Günnemann, Diffusion improves graph
learning, in NeurIPS, 2019.

[255] R. Andersen, F. Chung, and K. Lang, Local graph partitioning using pagerank
vectors, in IEEE Symposium on Foundations of Computer Science, pp. 475–486,
IEEE, 2006.

[256] F. Chung, The heat kernel as the pagerank of a graph, PNAS 104 (2007), no. 50
19735–19740.

[257] J. L. Vázquez, The mathematical theories of diffusion: nonlinear and fractional
diffusion, in Nonlocal and nonlinear diffusions and interactions: new methods and
directions, pp. 205–278. Springer, 2017.

[258] M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering, in NeurIPS, 2016.

[259] S. Abu-El-Haija, A. Kapoor, B. Perozzi, and J. Lee, N-gcn: Multi-scale graph
convolution for semi-supervised node classification, in UAI, 2020.

[260] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. Ver Steeg, and A. Galstyan, Mixhop: Higher-order graph
convolutional architectures via sparsified neighborhood mixing, in ICML, 2019.

[261] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel, Lanczosnet: Multi-scale deep
graph convolutional networks, in ICLR, 2019.

163

[262] J. Atwood and D. Towsley, Diffusion-convolutional neural networks, in NeurIPS,
2016.

[263] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE TPAMI 22
(2000), no. 8 888–905.

[264] A. Clauset, M. E. Newman, and C. Moore, Finding community structure in very
large networks, Physical review E 70 (2004), no. 6 066111.

[265] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of
communities in large networks, Journal of statistical mechanics: theory and
experiment 2008 (2008), no. 10 P10008.

[266] V. A. Traag, L. Waltman, and N. J. Van Eck, From louvain to leiden:
guaranteeing well-connected communities, Scientific reports 9 (2019), no. 1 5233.

[267] B. Perozzi and L. Akoglu, Anomalous: A joint modeling approach for anomaly
detection on attributed networks, in IJCAI, 2018.

[268] L. Gutiérrez-Gómez, A. Bovet, and J.-C. Delvenne, Multi-scale anomaly detection
on attributed networks, in AAAI, 2020.

[269] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and
Y. Qi, A semi-supervised graph attentive network for financial fraud detection, in
ICDM, 2019.

[270] B. Branco, P. Abreu, A. S. Gomes, M. S. Almeida, J. T. Ascensão, and
P. Bizarro, Interleaved sequence rnns for fraud detection, in SIGKDD, 2020.

[271] C. Liu, Q. Zhong, X. Ao, L. Sun, W. Lin, J. Feng, Q. He, and J. Tang, Fraud
transactions detection via behavior tree with local intention calibration, in
SIGKDD, 2020.

[272] B. Perozzi and L. Akoglu, Scalable anomaly ranking of attributed neighborhoods,
in SDM, 2016.

[273] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, A deep learning approach to
network intrusion detection, IEEE transactions on emerging topics in
computational intelligence 2 (2018), no. 1 41–50.

[274] D. Chou and M. Jiang, A survey on data-driven network intrusion detection,
ACM Computing Surveys (CSUR) 54 (2021), no. 9 1–36.

[275] S. Yang, K. Shu, S. Wang, R. Gu, F. Wu, and H. Liu, Unsupervised fake news
detection on social media: A generative approach, in AAAI, 2019.

164

[276] V.-H. Nguyen, K. Sugiyama, P. Nakov, and M.-Y. Kan, Fang: Leveraging social
context for fake news detection using graph representation, in CIKM, 2020.

[277] Y. Liu and Y.-F. B. Wu, Fned: a deep network for fake news early detection on
social media, ACM Transactions on Information Systems (TOIS) 38 (2020), no. 3
1–33.

[278] K. Ding, J. Li, R. Bhanushali, and H. Liu, Deep anomaly detection on attributed
networks, in SIM, 2019.

[279] S. Bandyopadhyay, S. V. Vivek, and M. Murty, Outlier resistant unsupervised
deep architectures for attributed network embedding, in WSDM, 2020.

[280] H. Fan, F. Zhang, and Z. Li, Anomalydae: Dual autoencoder for anomaly
detection on attributed networks, in ICASSP, 2020.

[281] Z. Peng, M. Luo, J. Li, L. Xue, and Q. Zheng, A deep multi-view framework for
anomaly detection on attributed networks, IEEE TKDE 34 (2020), no. 6
2539–2552.

[282] T. Zhao, T. Jiang, N. Shah, and M. Jiang, A synergistic approach for graph
anomaly detection with pattern mining and feature learning, IEEE Transactions
on Neural Networks and Learning Systems 33 (2021), no. 6 2393–2405.

[283] K. Ding, Q. Zhou, H. Tong, and H. Liu, Few-shot network anomaly detection via
cross-network meta-learning, in WebConf, 2021.

[284] Z. Xu, X. Huang, Y. Zhao, Y. Dong, and J. Li, Contrastive attributed network
anomaly detection with data augmentation, in PAKDD, 2022.

[285] J. Tang, J. Li, Z.-C. Gao, and J. Li, Rethinking graph neural networks for
anomaly detection, in ICLR, 2022.

[286] G.-G. Leonardo, A. Bovet, and J.-C. Delvenne, Multi-scale anomaly detection on
attributed networks, in AAAI, 2020.

[287] X. Luo, J. Wu, A. Beheshti, J. Yang, X. Zhang, Y. Wang, and S. Xue, Comga:
Community-aware attributed graph anomaly detection, in WSDM, 2022.

[288] H. Wang, C. Zhou, J. Wu, W. Dang, X. Zhu, and J. Wang, Deep structure
learning for fraud detection, in ICDM, 2018.

[289] T. Zhao, C. Deng, K. Yu, T. Jiang, D. Wang, and M. Jiang, Error-bounded graph
anomaly loss for gnns, in CIKM, 2020.

165

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	A Broader Picture of Random-walk Based Graph Embedding
	Introduction
	Method
	Random-walk Process
	Similarity Function
	Embedding Algorithm

	Experiments
	Dataset
	Experiment Setting
	Results

	Insights on PMI vs Autocovariance
	Related Work
	Conclusion

	Polarized Embedding for Signed Networks
	Introduction
	Random-walk on Signed Graphs
	Notations
	Signed Random-walk
	Similarity Consistency

	A Measure of Polarization
	Random-walk Based Polarization
	Polarization of Real-world Graphs

	Polarized Embedding for Networks
	Limitation of Existing Methods
	The Solution: Polarized Embedding

	Experiments
	Experimental Settings
	Results

	Related Work
	Conclusion

	Link Prediction without Graph Neural Networks
	Introduction
	Limitations in Supervised Link Prediction Evaluation and Training
	Method
	Graph Learning
	Topological Heuristic
	N-pair Loss and Unbiased Training

	Experiments
	Experiment Settings
	Link Prediction Performance
	Visualizing Gelato Predictions
	Loss and Training Setting
	Ablation Study
	Sensitivity Analysis
	Running Time

	Related Work
	Conclusion

	Global Counterfactual Explainer for Graph Neural Networks
	Introduction
	Global Counterfactual Explanations
	Local Counterfactual
	Global Recourse Representation
	Quantifying Recourse Quality
	Problem Formulation and Characterization

	Proposed Method: GCFExplainer
	Structuring the Search Space
	Vertex-Reinforced Random Walk
	Iterative Computation of the Summary

	Experiments
	Experimental Settings
	Recourse Quality
	Global Counterfactual Insight
	Ablation Study
	Convergence Analysis
	Sensitivity Analysis
	Running Time

	Related Work
	Conclusion

	Other Problems Related to Multiscale Graphs
	Graph Neural Diffusion Networks
	Overview
	Method
	Results

	Multiscale Community Detection
	Overview
	Theoretical Analysis

	Multiscale Anomaly Detection
	Overview
	Model Design

	Conclusions
	Bibliography

